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Preface
I love Backbone.js. It's an amazing little library that does so much with so little.  
It's also unopinionated—there are endless ways to do the same thing. This last  
point gives many Backbone.js programmers a headache. The freedom to implement 
things the way we see fit is great, until we start making those unavoidable 
consistency errors.

When I first started with Flux, I couldn't really see how such an architecture could 
help out a mere Backbone.js programmer. Eventually, I figured out two things.  
First, Flux is unopinionated where it matters—the implementation specifics.  
Two, Flux is very much like Backbone in the spirit of minimal moving parts that  
do one thing well.

As I started experimenting with Flux, I realized that Flux provides the missing 
architectural perspective that enables scalability. Where Backbone.js and other 
related technologies fall apart is when something goes wrong. In fact, these bugs  
can be so difficult that they're never actually fixed—the whole system is scarred  
with workarounds.

I decided to write this book in the hope that other programmers, from all walks of 
JavaScript, can experience the same level of enlightenment as I have working with 
this wonderful technology from Facebook.

What this book covers
Chapter 1, What is Flux?, gives an overview of what Flux is and why it was created.

Chapter 2, Principles of Flux, talks about the core concepts of Flux and the essential 
knowledge for building a Flux architecture.

Chapter 3, Building a Skeleton Architecture, walks through the steps involved in 
building a skeleton architecture before implementing application features.
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Chapter 4, Creating Actions, shows how action creator functions are used to feed new 
data into the system while describing something that just happened.

Chapter 5, Asynchronous Actions, goes through examples of asynchronous action creator 
functions and how they fit within a Flux architecture.

Chapter 6, Changing Flux Store State, gives many detailed explanations and examples 
that illustrate how Flux stores work.

Chapter 7, Viewing Information, gives many detailed explanations and examples that 
illustrate how Flux views work.

Chapter 8, Information Lifecycle, talks about how information in a Flux architecture 
enters the system and how it ultimately exits the system.

Chapter 9, Immutable Stores, shows how immutability is a key architectural property 
of software architectures, such as Flux, where data flows in one direction.

Chapter 10, Implementing a Dispatcher, walks through the implementation of a 
dispatcher component, instead of using the Facebook reference implementation.

Chapter 11, Alternative View Components, shows how view technologies other than 
React can be used within a Flux architecture.

Chapter 12, Leveraging Flux Libraries, gives an overview of two popular Flux 
libraries—Alt.js and Redux.

Chapter 13, Testing and Performance, talks about testing components from within the 
context of a Flux architecture and discusses performance testing your architecture.

Chapter 14, Flux and the Software Development Life Cycle, discusses the impact Flux has 
on the rest of the software stack and how to package Flux features.

What you need for this book
•	 Any web browser
•	 NodeJS >= 4.0
•	 A code editor
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Who this book is for
Are you trying to use React, but are struggling to get your head around Flux?  
Maybe, you're tired of MV* spaghetti code at scale? Do you find yourself asking 
what the Flux?!

Flux Architecture will guide you through everything you need to understand  
the Flux pattern and design, and build powerful web applications that rely on  
Flux architecture.

You don't need to know what Flux is or how it works to read the book. No 
knowledge of Flux's partner technology, ReactJS, is necessary to follow along,  
but it is recommended that you have a good working knowledge of JavaScript.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"When the HOME_LOAD action is dispatched, we change the state of the store."

A block of code is set as follows:

// This object is used by several action
// creator functions as part of the action
// payload.
export constPAYLOAD_SORT = {
  direction: 'asc'
};

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on  
the book's webpage at the Packt Publishing website. This page can be accessed  
by entering the book's name in the Search box. Please note that you need to be 
logged in to your Packt account.
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Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.
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What is Flux?
Flux is supposed to be this great new way of building complex user interfaces that 
scale well. At least that's the general messaging around Flux, if you're only skimming 
the Internet literature. But, how do we define this great new way of building user 
interfaces? What makes it superior to other more established frontend architectures?

The aim of this chapter is to cut through the sales bullet points and explicitly spell 
out what Flux is, and what it isn't, by looking at the patterns that Flux provides. 
And since Flux isn't a software package in the traditional sense, we'll go over the 
conceptual problems that we're trying to solve with Flux.

Finally, we'll close the chapter by walking through the core components found in  
any Flux architecture, and we'll install the Flux npm package and write a hello world 
Flux application right away. Let's get started.

Flux is a set of patterns
We should probably get the harsh reality out of the way first—Flux is not a software 
package. It's a set of architectural patterns for us to follow. While this might sound 
disappointing to some, don't despair—there's good reasons for not implementing yet 
another framework. Throughout the course of this book, we'll see the value of Flux 
existing as a set of patterns instead of a de facto implementation. For now, we'll go 
over some of the high-level architectural patterns put in place by Flux.
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Data entry points
With traditional approaches to building frontend architectures, we don't put much 
thought into how data enters the system. We might entertain the idea of data entry 
points, but not in any detail. For example, with MVC (Model View Controller) 
architectures, the controller is supposed control the flow of data. And for the most 
part, it does exactly that. On the other hand, the controller is really just about 
controlling what happens after it already has the data. How does the controller  
get data in the first place? Consider the following illustration:

View Controller

Controller

At first glance, there's nothing wrong with this picture. The data-flow, represented 
by the arrows, is easy to follow. But where does the data originate? For example, the 
view can create new data and pass it to the controller, in response to a user event. 
A controller can create new data and pass it to another controller, depending on the 
composition of our controller hierarchy. What about the controller in question—can 
it create data itself and then use it?

In a diagram such as this one, these questions don't have much virtue. But, if we're 
trying to scale an architecture to have hundreds of these components, the points  
at which data enters the system become very important. Since Flux is used to  
build architectures that scale, it considers data entry points an important 
architectural pattern.
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Managing state
State is one of those realities we need to cope with in frontend development. 
Unfortunately, we can't compose our entire application of pure functions with no 
side-effects for two reasons. First, our code needs to interact with the DOM interface, 
in one way or another. This is how the user sees changes in the UI. Second, we don't 
store all our application data in the DOM (at least we shouldn't do this). As time 
passes and the user interacts with the application, this data will change.

There's no cut-and-dry approach to managing state in a web application, but there 
are several ways to limit the amount of state changes that can happen, and enforce 
how they happen. For example, pure functions don't change the state of anything, 
they can only create new data. Here's an example of what this looks like:

Input OutputPure Function

As you can see, there's no side-effects with pure functions because no data changes 
state as a result of calling them. So why is this a desirable trait, if state changes are 
inevitable? The idea is to enforce where state changes happen. For example, perhaps 
we only allow certain types of components to change the state of our application 
data. This way, we can rule out several sources as the cause of a state change.

Flux is big on controlling where state changes happen. Later on in the chapter, 
we'll see how Flux stores manage state changes. What's important about how Flux 
manages state is that it's handled at an architectural layer. Contrast this with an 
approach that lays out a set of rules that say which component types are allowed 
to mutate application data—things get confusing. With Flux, there's less room for 
guessing where state changes take place.

Keeping updates synchronous
Complimentary to data entry points is the notion of update synchronicity. That is, 
in addition to managing where the state changes originate from, we have to manage 
the ordering of these changes relative to other things. If the data entry points are the 
what of our data, then synchronously applying state changes across all the data in 
our system is the when.
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Let's think about why this matters for a moment. In a system where data is updated 
asynchronously, we have to account for race conditions. Race conditions can be 
problematic because one piece of data can depend on another, and if they're updated 
in the wrong order, we see cascading problems, from one component to another. 
Take a look at this diagram, which illustrates this problem:

Async Source

Async Source

System

Generic Data

Dependent Data

When something is asynchronous, we have no control over when that something 
changes state. So, all we can do is wait for the asynchronous updates to happen, and 
then go through our data and make sure all of our data dependencies are satisfied. 
Without tools that automatically handle these dependencies for us, we end up 
writing a lot of state-checking code.

Flux addresses this problem by ensuring that the updates that take place across our 
data stores are synchronous. This means that the scenario illustrated in the preceding 
diagram isn't possible. Here's a better visualization of how Flux handles the data 
synchronization issues that are typical of JavaScript applications today:

System

Async Source

Async Source

Synchronizer

Generic Data

Dependent Data
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Information architecture
It's easy to forget that we work in information technology and that we should be 
building technology around information. In recent times, however, we seem to have 
moved in the other direction, where we're forced to think about implementation 
before we think about information. More often than not, the data exposed by the 
sources used by our application doesn't have what the user needs. It's up to our 
JavaScript to turn this raw data into something consumable by the user. This is our 
information architecture.

Does this mean that Flux is used to design information architectures as opposed to a 
software architecture? This isn't the case at all. In fact, Flux components are realized 
as true software components that perform actual computations. The trick is that 
Flux patterns enable us to think about information architecture as a first-class design 
consideration. Rather than having to sift through all sorts of components and their 
implementation concerns, we can make sure that we're getting the right information 
to the user.

Once our information architecture takes shape, the larger architecture of our 
application follows, as a natural extension to the information we're trying to 
communicate to our users. Producing information from data is the difficult part.  
We have to distill many sources of data into not only information, but information 
that's also of value to the user. Getting this wrong is a huge risk for any project. 
When we get it right, we can then move on to the specific application components, 
like the state of a button widget, and so on.

Flux architectures keep data transformations confined to their stores. A store is 
an information factory—raw data goes in and new information comes out. Stores 
control how data enters the system, the synchronicity of state changes, and they 
define how the state changes. When we go into more depth on stores as we progress 
through the book, we'll see how they're the pillars of our information architecture.

Flux isn't another framework
Now that we've explored some of the high-level patterns of Flux, it's time to revisit 
the question: what is Flux again? Well, it is just a set of architectural patterns we 
can apply to our frontend JavaScript applications. Flux scales well because it puts 
information first. Information is the most difficult aspect of software to scale; Flux 
tackles information architecture head on.

So, why aren't Flux patterns implemented as a framework? This way, Flux would 
have a canonical implementation for everyone to use; and like any other large scale 
open source project, the code would improve over time as the project matures.

www.allitebooks.com

http://www.allitebooks.org
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The main problem is that Flux operates at an architectural level. It's used to address 
information problems that prevent a given application from scaling to meet user 
demand. If Facebook decided to release Flux as yet another JavaScript framework, 
it would likely have the same types of implementation issues that plague other 
frameworks out there. For example, if some component in a framework isn't 
implemented in a way that best suits the project we're working on, then it's not  
so easy to implement a better alternative, without hacking the framework to bits.

What's nice about Flux is that Facebook decided to leave the implementation options 
on the table. They do provide a few Flux component implementations, but these are 
reference implementations. They're functional, but the idea is that they're a starting 
point for us to understand the mechanics of how things such as dispatchers are 
expected to work. We're free to implement the same Flux architectural pattern as  
we see it.

Flux isn't a framework. Does this mean we have to implement everything ourselves? 
No, we do not. In fact, developers are implementing Flux libraries and releasing 
them as open source projects. Some Flux libraries stick more closely to the Flux 
patterns than others. These implementations are opinionated, and there's nothing 
wrong with using them if they're a good fit for what we're building. The Flux 
patterns aim to solve generic conceptual problems with JavaScript development,  
so you'll learn what they are before diving into Flux implementation discussions.

Flux solves conceptual problems
If Flux is simply a collection of architectural patterns instead of a software framework, 
what sort of problems does it solve? In this section, we'll look at some of the conceptual 
problems that Flux addresses from an architectural perspective. These include 
unidirectional data-flow, traceability, consistency, component layering, and loosely 
coupled components. Each of these conceptual problems pose a degree of risk to our 
software, in particular the ability to scale it. Flux helps us get out in front of these 
issues as we're building the software.

Data flow direction
We're creating an information architecture to support the feature-rich application 
that will ultimately sit on top of this architecture. Data flows into the system and will 
eventually reach an endpoint, terminating the flow. It's what happens in between the 
entry point and the termination point that determines the data-flow within a Flux 
architecture. This is illustrated here:
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Data Flow Start

Flow?

Data Flow End

Data flow is a useful abstraction, because it's easy to visualize data as it enters  
the system and moves from one point to another. Eventually, the flow stops.  
But before it does, several side-effects happen along the way. It's that middle  
block in the preceding diagram that's concerning, because we don't know exactly 
how the data-flow reached the end.

Let's say that our architecture doesn't pose any restrictions on data flow.  
Any component is allowed to pass data to any other component, regardless  
of where that component lives. Let's try to visualize this setup:

Data Flow Start

Data Flow End

Component

Component Component

Component

As you can see, our system has clearly defined entry and exit points for our data. 
This is good because it means that we can confidently say that the data-flows through 
our system. The problem with this picture is with how the data-flows between the 
components of the system. There's no direction, or rather, it's multidirectional. This isn't 
a good thing.
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Flux is a unidirectional data flow architecture. This means that the preceding 
component layout isn't possible. The question is—why does this matter? At times, it 
might seem convenient to be able to pass data around in any direction, that is, from 
any component to any other component. This in and of itself isn't the issue—passing 
data alone doesn't break our architecture. However, when data moves around our 
system in more than one direction, there's more opportunity for components to fall 
out of sync with one another. This simply means that if data doesn't always move in 
the same direction, there's always the possibility of ordering bugs.

Flux enforces the direction of data-flows, and thus eliminates the possibility of 
components updating themselves in an order that breaks the system. No matter  
what data has just entered the system, it'll always flow through the system in the 
same order as any other data, as illustrated here:

Data Flow Start

Data Flow End

Component

Component Component

Component

Predictable root cause
With data entering our system and flowing through our components in one 
direction, we can more easily trace any effect to it's cause. In contrast, when a 
component sends data to any other component residing in any architectural layer, 
it's a lot more difficult to figure how the data reached its destination. Why does this 
matter? Debuggers are sophisticated enough that we can easily traverse any level of 
complexity during runtime. The problem with this notion is that it presumes we only 
need to trace what's happening in our code for the purposes of debugging.
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Flux architectures have inherently predictable data-flows. This is important for a 
number of design activities and not just debugging. Programmers working on Flux 
applications will begin to intuitively sense what's going to happen. Anticipation 
is key, because it let's us avoid design dead-ends before we hit them. When the 
cause and effect are easy to tease out, we can spend more time focusing on building 
application features—the things the customers care about.

Consistent notifications
The direction in which we pass data from component to component in Flux 
architectures should be consistent. In terms of consistency, we also need to think 
about the mechanism used to move data around our system.

For example, publish/subscribe (pub/sub) is a popular mechanism used for inter-
component communication. What's neat about this approach is that our components 
can communicate with one another, and yet we're able to maintain a level of 
decoupling. In fact, this is fairly common in frontend development because component 
communication is largely driven by user events. These events can be thought of as  
fire-and-forget. Any other components that want to respond to these events in some 
way, need to take it upon themselves to subscribe to the particular event.

While pub/sub does have some nice properties, it also poses architectural  
challenges, in particular scaling complexities. For example, let's say that we've  
just added several new components for a new feature. Well, in which order do  
these components receive update messages relative to pre-existing components?  
Do they get notified after all the pre-existing components? Should they come first? 
This presents a data dependency scaling issue.

The other challenge with pub-sub is that the events that get published are often  
fine-grained to the point where we'll want to subscribe and later unsubscribe from 
the notifications. This leads to consistency challenges because trying to code lifecycle 
changes when there's a large number of components in the system is difficult and 
presents opportunities for missed events.
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The idea with Flux is to sidestep the issue by maintaining a static inter-component 
messaging infrastructure that issues notifications to every component. In other 
words, programmers don't get to pick and choose the events their components will 
subscribe to. Instead, they have to figure out which of the events that are dispatched 
to them are relevant, ignoring the rest. Here's a visualization of how Flux dispatches 
events to components:

Event Dispatcher

Event

Event

Event

Component

Component

Component

The Flux dispatcher sends the event to every component; there's no getting around 
this. Instead of trying to fiddle with the messaging infrastructure, which is difficult 
to scale, we implement logic within the component to determine whether or not the 
message is of interest. It's also within the component that we can declare dependencies 
on other components, which helps influence the ordering of messages. We'll cover this 
in much more detail in later chapters.

Simple architectural layers
Layers can be a great way to organize an architecture of components. For one 
thing, it's an obvious way to categorize the various components that make up our 
application. For another thing, layers serve as a means to put constraints around 
communication paths. This latter point is especially relevant to Flux architectures 
since it's important that data flow in one direction. It's much easier to apply 
constraints to layers than it is to individual components. Here is an illustration  
of Flux layers:

Actions

Stores

Views
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This diagram isn't intended to capture the entire data flow of a Flux 
architecture, just how data-flows between the main three layers. It 
also doesn't give any detail about what's in the layers. Don't worry, 
the next section gives introductory explanations of the types of Flux 
components, and the communication that happens between the 
layers is the focus of this book.

As you can see, the data-flows from one layer to the next, in one direction. Flux  
only has a few layers, and as our applications scale in terms of component counts, 
the layer counts remains fixed. This puts a cap on the complexity involved with 
adding new features to an already large application. In addition to constraining  
the layer count and the data-flow direction, Flux architectures are strict about  
which layers are actually allowed to communicate with one another.

For example, the action layer could communicate with the view layer, and we  
would still be moving in one direction. We would still have the layers that Flux 
expects. However, skipping a layer like this is prohibited. By ensuring that layers 
only communicate with the layer directly beneath it, we can rule out bugs introduced 
by doing something out-of-order.

Loosely coupled rendering
One decision made by the Flux designers that stands out is that Flux architectures 
don't care how UI elements are rendered. That is to say, the view layer is loosely 
coupled to the rest of the architecture. There are good reasons for this.

Flux is an information architecture first, and a software architecture second. We start 
with the former and graduate toward the latter. The challenge with view technology 
is that it can exert a negative influence on the rest of the architecture. For example, 
one view has a particular way of interacting with the DOM. Then, if we've already 
decided on this technology, we'll end up letting it influence the way our information 
architecture is structured. This isn't necessarily a bad thing, but it can lead to us 
making concessions about the information we ultimately display to our users.

What we should really be thinking about is the information itself and how this 
information changes over time. What actions are involved that bring about these 
changes? How is one piece of data dependent on another piece of data? Flux naturally 
removes itself from the browser technology constraints of the day so that we can focus 
on the information first. It's easy to plug views into our information architecture as it 
evolves into a software product.
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Flux components
In this section, we'll begin our journey into the concepts of Flux. These concepts 
are the essential ingredients used in formulating a Flux architecture. While there's 
no detailed specifications for how these components should be implemented, 
they nevertheless lay the foundation of our implementation. This is a high-level 
introduction to the components we'll be implementing throughout this book.

Action
Actions are the verbs of the system. In fact, it's helpful if we derive the name of 
an action directly from a sentence. These sentences are typically statements of 
functionality – something we want the application to do. Here are some examples:

•	 Fetch the session
•	 Navigate to the settings page
•	 Filter the user list
•	 Toggle the visibility of the details section

These are simple capabilities of the application, and when we implement them as 
part of a Flux architecture, actions are the starting point. These human-readable 
action statements often require other new components elsewhere in the system,  
but the first step is always an action.

So, what exactly is a Flux action? At it's simplest, an action is nothing more than a 
string—a name that helps identify the purpose of the action. More typically, actions 
consist of a name and a payload. Don't worry about the payload specifics just yet—as 
far as actions are concerned, they're just opaque pieces of data being delivered into 
the system. Put differently, actions are like mail parcels. The entry point into our 
Flux system doesn't care about the internals of the parcel, only that they get to  
where they need to go. Here's an illustration of actions entering a Flux system:

Payload

Action

Payload

Action

Payload

Action

Flux
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This diagram might give the impression that actions are external to Flux, when in 
fact they're an integral part of the system. The reason this perspective is valuable is 
because it forces us to think about actions as the only means to deliver new data into 
the system.

Golden Flux Rule: If it's not an action, it can't happen.

Dispatcher
The dispatcher in a Flux architecture is responsible for distributing actions to the 
store components (we'll talk about stores next). A dispatcher is actually kind of like a 
broker—if actions want to deliver new data to a store, they have to talk to the broker, 
so it can figure out the best way to deliver them. Think about a message broker in 
a system like RabbitMQ. It's the central hub where everything is sent before it's 
actually delivered. Here is a diagram depicting a Flux dispatcher receiving actions 
and dispatching them to stores:

Action

Action

Action

Action

Dispatcher

Store

Store

The earlier section of this chapter—"simple architectural layers"—didn't have an 
explicit layer for dispatchers. That was intentional. In a Flux application, there's only 
one dispatcher. It can be thought of more as a pseudo layer than an explicit layer. We 
know the dispatcher is there, but it's not essential to this level of abstraction. What 
we're concerned about at an architectural level is making sure that when a given action 
is dispatched, we know that it's going to make it's way to every store in the system.

Having said that, the dispatcher's role is critical to how Flux works. It's the place 
where store callback functions are registered and it's how data dependencies are 
handled. Stores tell the dispatcher about other stores that it depends on, and it's  
up to the dispatcher to make sure these dependencies are properly handled.
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Golden Flux Rule: The dispatcher is the ultimate arbiter of 
data dependencies.

Store
Stores are where state is kept in a Flux application. Typically, this means the 
application data that's sent to the frontend from the API. However, Flux stores take 
this a step further and explicitly model the state of the entire application. If this 
sounds confusing or like a generally bad idea, don't worry—we'll clear this up as 
we make our way through subsequent chapters. For now, just know that stores are 
where state that matters can be found. Other Flux components don't have state—
they have implicit state at the code level, but we're not interested in this, from an 
architectural point of view.

Actions are the delivery mechanism for new data entering the system. The term  
new data doesn't imply that we're simply appending it to some collection in a store. 
All data entering the system is new in the sense that it hasn't been dispatched 
as an action yet—it could in fact result in a store changing state. Let's look at a 
visualization of an action that results in a store changing state:

Payload

Action

Current State

Store

New State

Store

The key aspect of how stores change state is that there's no external logic that 
determines a state change should happen. It's the store, and only the store, that 
makes this decision and then carries out the state transformation. This is all tightly 
encapsulated within the store. This means that when we need to reason about 
particular information, we need not look any further than the stores. They're their 
own boss—they're self-employed.

Golden Flux Rule: Stores are where state lives, and only stores 
themselves can change this state.
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View
The last Flux component we're going to look at in this section is the view, and it 
technically isn't even a part of Flux. At the same time, views are obviously a critical 
part of our application. Views are almost universally understood as the part of our 
architecture that's responsible for displaying data to the user—it's the last stop as 
data-flows through our information architecture. For example, in MVC architectures, 
views take model data and display it. In this sense, views in a Flux-based application 
aren't all that different from MVC views. Where they differ markedly is with regard 
to handling events. Let's take a look at the following diagram:

Data Event

Typical View

Controller Model View

Data Event

Flux View

Action

Here we can see the contrasting responsibilities of a Flux view, compared with 
a view component found in your typical MVC architecture. The two view types 
have similar types of data flowing into them—application data used to render the 
component and events (often user input). What's different between the two types  
of view is what flows out of them.

The typical view doesn't really have any constraints in how its event handler 
functions communicate with other components. For example, in response to a user 
clicking a button, the view could directly invoke behavior on a controller, change the 
state of a model, or it might query the state of another view. On the other hand, the 
Flux view can only dispatch new actions. This keeps our single entry point into the 
system intact and consistent with other mechanisms that want to change the state of 
our store data. In other words, an API response updates state in the exact same way 
as a user clicking a button does.

Given that views should be restricted in terms of how data-flows out of them 
(besides DOM updates) in a Flux architecture, you would think that views should be 
an actual Flux component. This would make sense insofar as making actions the only 
possible option for views. However, there's also no reason we can't enforce this now, 
with the benefit being that Flux remains entirely focused on creating information 
architectures.
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Keep in mind, however, that Flux is still in it's infancy. There's no doubt going to 
be external influences as more people start adopting Flux. Maybe Flux will have 
something to say about views in the future. Until then, views exist outside of Flux 
but are constrained by the unidirectional nature of Flux.

Golden Flux Rule: The only way data-flows out of a view is 
by dispatching an action.

Installing the Flux package
We'll close the first chapter by getting our feet wet with some code, because  
everyone needs a hello world application under their belt. We'll also get some of  
our boilerplate code setup tasks out of the way too, since we'll be using a similar 
setup throughout the book.

We'll skip going over Node + NPM installation since it's sufficiently 
covered in great detail all over the Internet. We'll assume Node is 
installed and ready to go from this point forward.

The first NPM package we'll need installed is Webpack. This is an advanced module 
bundler that's well suited for modern JavaScript applications, including Flux-based 
applications. We'll want to install this package globally so that the webpack command 
gets installed on our system:

npm install webpack -g

With Webpack in place, we can build each of the code examples that ship with this 
book. However, our project does require a couple of local NPM packages, and these 
can be installed as follows:

npm install flux babel-core babel-loader babel-preset-es2015 --save-dev

The --save-dev option adds these development dependencies to our file, if one 
exists. This is just to get started—it isn't necessary to manually install these packages 
to run the code examples in this book. The examples you've downloaded already 
come with a package.json, so to install the local dependencies, simply run the 
following from within the same directory as the package.json file:

npm install
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Now the webpack command can be used to build the example. This is the only 
example in the first chapter, so it's easy to navigate to within a terminal window and 
run the webpack command, which builds the main-bundle.js file. Alternatively, 
if you plan on playing with the code, which is obviously encouraged, try running 
webpack --watch. This latter form of the command will monitor for file changes to 
the files used in the build, and run the build whenever they change.

This is indeed a simple hello world to get us off to a running start, in preparation 
for the remainder of the book. We've taken care of all the boilerplate setup tasks by 
installing Webpack and its supporting modules. Let's take a look at the code now. 
We'll start by looking at the markup that's used.

<!doctype html>
<html>
  <head>
    <title>Hello Flux</title>
    <script src="main-bundle.js" defer></script>
  </head>
  <body></body>
</html>

Not a lot to it is there? There isn't even content within the body tag. The important 
part is the main-bundle.js script—this is the code that's built for us by Webpack. 
Let's take a look at this code now:

// Imports the "flux" module.
import * as flux from 'flux';

// Creates a new dispatcher instance. "Dispatcher" is
// the only useful construct found in the "flux" module.
const dispatcher = new flux.Dispatcher();

// Registers a callback function, invoked every time
// an action is dispatched.
dispatcher.register((e) => {
  var p;

  // Determines how to respond to the action. In this case,
  // we're simply creating new content using the "payload"
  // property. The "type" property determines how we create
  // the content.
  switch (e.type) {
    case 'hello':
      p = document.createElement('p');
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      p.textContent = e.payload;
      document.body.appendChild(p);
      break;
    case 'world':
      p = document.createElement('p');
      p.textContent = `${e.payload}!`;
      p.style.fontWeight = 'bold';
      document.body.appendChild(p);
      break;
    default:
      break;
  }
});

// Dispatches a "hello" action.
dispatcher.dispatch({
  type: 'hello',
  payload: 'Hello'
});

// Dispatches a "world" action.
dispatcher.dispatch({
  type: 'world',
  payload: 'World'
});

As you can see, there's not much to this hello world Flux application. In fact, the only 
Flux-specific component this code creates is a dispatcher. It then dispatches  
a couple of actions and the handler function that's registered to the store processes  
the actions.

Don't worry that there's no stores or views in this example. The idea is that we've  
got the basic Flux NPM package installed and ready to go.
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Summary
This chapter introduced you to Flux. Specifically, we looked at both what Flux is 
and what it isn't. Flux is a set of architectural patterns that, when applied to our 
JavaScript application, help with getting the data-flow aspect of our architecture 
right. Flux isn't yet another framework used for solving specific implementation 
challenges, be it browser quirks or performance gains—there's a multitude of tools 
already available for these purposes. Perhaps the most important defining aspect  
of Flux are the conceptual problems it solves—things like unidirectional data flow. 
This is a major reason that there's no de facto Flux implementation.

We wrapped the chapter up by walking through the setup of our build components 
used throughout the book. To test that the packages are all in place, we created a 
very basic hello world Flux application.

Now that we have a handle on what Flux is, it's time for us to look at why Flux is the 
way it is. In the following chapter, we'll take a more detailed look at the principles 
that drive the design of Flux applications.
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Principles of Flux
In the previous chapter, you were introduced at a 10,000 foot level to some of the core 
Flux principles. For example, unidirectional data-flow is central to Flux's existence.  
The aim of this chapter is to go beyond the simplistic view of Flux principles.

We'll kick things off with a bit of an MVC retrospective—to identify where it falls 
apart when we're trying to scale a frontend architecture. Following this, we'll take 
a deeper look at at unidirectional data-flow and how it solves some of the scaling 
issues we've identified in MVC architectures.

Next, we'll address some high-level compositional issues faced by Flux architectures, 
such as making everything explicit and favoring layers over deep hierarchies. 
Finally, we'll compare the various kinds of state found in a Flux architecture and 
introduce the concept of an update round.

Challenges with MV*
MV* is the prevailing architectural pattern of frontend JavaScript applications.  
We're referring to this as MV* because there's a number of accepted variations on the 
pattern, each of which have models and views as core concepts. For our discussions 
in this book, they can all be considered the same style of JavaScript architecture.

MV* didn't gain traction in the development community because it's a terrible set 
of patterns. No, MV* is popular because it works. Although Flux can be thought 
of as a sort of MV* replacement, there's no need to go out and tear apart a working 
application.

There's no such thing as a perfect architecture, and Flux is by no means immune to 
this fact. The goal of this section isn't to downplay MV* and all the things it does 
well, but rather to look at some of the MV* weaknesses and see how Flux steps in 
and improves the situation.
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Separation of concerns
One thing MV* is really good at is establishing a clear separation of concerns. That 
is, a component has one responsibility, while another component is responsible for 
something else, and so on, all throughout the architecture. Complementary to the 
separation of concerns principle is the single responsibility principle, which enforces a 
clear separation of concerns.

Why do we care though? The simple answer is that when we separate responsibilities 
into different components, different parts of the system are naturally decoupled from 
one another. This means that we can change one thing without necessarily impacting 
the other. This is a desired trait of any software system, regardless of the architecture. 
But, is this really what we get with MV*, and is this actually something we should 
shoot for?

For example, maybe there's no clear advantage in dividing a feature into five distinct 
responsibilities. Maybe the decoupling of the feature's behavior doesn't actually 
achieve anything because we would have to touch all five components every time we 
want to change something anyway. So rather than help us craft a robust architecture, 
the separation of concerns principle has amounted to nothing more than needles 
indirection that hampers productivity. Here's an example of a feature that's broken 
down into several pieces of focused responsibility:

Controller Controller

Another Controller Another Controller

View

View View

View
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Anytime a developer needs to pull apart a feature so that they can understand  
how it works, they end up spending more time jumping between source code files. 
The feature feels fragmented, and there's no obvious advantage to structuring  
the code like this. Here's a look at the moving parts that make up a feature in a  
Flux architecture:

Logic

State

Logic

State

Logic

State

View

The Flux feature decomposition leaves us with a feeling of predictability. We've left out 
the potential ways in which the view itself could be decomposed, but that's because the 
views are outside Flux. All we care about in terms of our Flux architecture is that the 
correct information is always passed to our views when state changes occur.

You'll note that the logic and state of a given Flux feature are tightly coupled  
with one another. This is in contrast to MV*, where we want application logic to  
be a standalone entity that can operate on any data. The opposite is true with Flux, 
where we'll find the logic responsible for change state in close proximity to that state. 
This is an intentional design trait, with the implication being that we don't  
need to get carried away with separating concerns from one another, and that this 
activity can sometimes hurt rather than help.

As we'll see in the coming chapters, this tight coupling of data and logic is 
characteristic of Flux stores. The preceding diagram shows that with complex 
features, it's much easier to add more logic and more state, because they're always 
near the surface of the feature, rather than buried in a nested tree of components.
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Cascading updates
It's nice when we have a software component that just works. This could mean 
any number of things, but it's meaning is usually centered around automatically 
handling things for us. For instance, instead of manually having to invoke this 
method, followed by that method, and so on, everything is handled by the 
component for us. Let's take a look at the following illustration:

Input

Component

Component

Component

New State

When we pass input into a larger component, we can expect that it will do the right 
thing automatically for us. What's compelling about these types of components is 
that it means less code for us to maintain. After all, the component knows how to 
update itself by orchestrating the communication between any subcomponents.

This is where the cascading effect begins. We tell one component to perform 
some behavior. This, in turn, causes another component to react. We give it some 
input, which causes another component to react, and so on. Soon, it's very difficult 
to comprehend what's going on in our code. This is because the things that are 
taken care of for us are hidden from view. Intentional by design, with unintended 
consequences.

The previous diagram isn't too bad. Sure, it might get a little difficult to follow 
depending on how many subcomponents get added to the larger component,  
but in general, it's a tractable problem. Let's look at a variation of this diagram:
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Input

Component

Component

Component

New State

Component

Component

Component

What just happened? Three more boxes and four more lines just happened, resulting 
in an explosion of cascading update complexity. The problem is no longer tractable 
because we simply cannot handle this type of complexity, and most MV* applications 
that rely on this type of automatic updating have way more than six components. The 
best we can hope for is that once it works the way we want it to, it keeps working.

This is the naive assumption that we make about automatically updating 
components—this is something we want to encapsulate. The problem is that this 
generally isn't true, at least not if we ever plan to maintain the software. Flux sidesteps 
the problem of cascading updates because only a store can change it's own state, and 
this is always in response to an action.

Model update responsibilities
In an MV* architecture, state is stored within models. To initialize model state, we 
could fetch data from the backend API. This is clear enough: we create a new model, 
then tell that model to go fetch some data. However, MV* doesn't say anything about 
who is responsible for updating these models. One might think it's the controller 
component that should have total control over the model, but does this ever happen 
in practice?
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For example, what happens in view event handlers, called in response to user 
interactivity? If we only allow controllers to update the state of our models, then  
the view event handler functions should talk directly to the controller in question. 
The following diagram is a visualization of a controller changing the state of models 
in different ways:

API View
Model Model

Controller

Model

At first glance, this controller setup makes perfect sense. It acts as a wrapper around 
the models that store state. It's a safe assumption the anything that wants to mutate 
any of these models needs to go through the controller. That's its responsibility after 
all—to control things. Data that comes from the API, events triggered by the user 
and handled by the view, and other models—these all need to talk to the controller  
if they want to change the state of the models.

As our controller grows, making sure that model state changes are handled by the 
controller will produce more and more methods that change the model state. If we 
step back and look at all of these methods as they accumulate, we'll start to notice 
a lot of needless indirection. What do we stand to gain by proxying these state 
changes?

Another reason the controller is a dead-end for trying to establish consistent state 
changes in MV* is the changes that models can make to themselves. For example, 
setting one property in a model could end up changing other model properties as 
a side-effect. Worse, our models could have listeners that respond to state changes, 
somewhere else in the system (the cascading updates problem).

Flux stores deal with the cascading updates problem by only allowing state changes 
via actions. This same mechanism solves the MV* challenges discussed here; we don't 
have to worry about views or other stores directly changing the state of our store.
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Unidirectional data
A cornerstone of any Flux architecture is unidirectional data-flow. The idea being 
data flows from point A to point B, or from point A to B to C, or from point A to 
C. It's the direction that's important with unidirectional data-flow, and to a lesser 
extent, the ordering. So when we say that our architecture uses a unidirectional  
data-flow, we can say that data never flows from point B to point A. This is an 
important property of Flux architectures.

As we saw in the previous section, MV* architectures have no discernible direction 
with their data-flows. In this section, we'll talk though some of the properties that 
make a unidirectional data-flow worth implementing. We'll begin with a look at the 
starting points and completion points of our data-flows, and then we'll think about 
how side-effects can be avoided when data flows in one direction.

From start to finish
If data-flows in only one direction, there has to be both a starting point and a finish 
point. In other words, we can't just have an endless stream of data, which arbitrarily 
affects the various components the data-flows through. When data-flows are 
unidirectional with clearly defined start and finish points, there's no way we can have 
circular flows. Instead, we have one big data-flow cycle in Flux, as visualized here:

Action Update

This is obviously an over-simplification of any Flux architecture, but it does serve to 
illustrate the start and finish points of any given data-flow. What we're looking at is 
called an update round. A round is atomic in the sense that it's run-to-completion—
there's no way to stop an update round from completing (unless an exception is 
thrown).

JavaScript is a run-to-completion language, meaning that once a block of code starts 
running, it's going to finish. This is good because it means that once we start updating 
the UI, there's no way a callback function can interrupt our update. The exception to 
this is when our own code interrupts the updating process. For example, our store 
logic that's meant to mutate the state of the store dispatches an action. This would be 
bad news for our Flux architecture because it would violate the unidirectional data-
flow. To prevent this, the dispatcher can actually detect when a dispatch takes place 
inside of an update round. We'll have more on this in later chapters.
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Update rounds are responsible for updating the state of the entire application, not 
just the parts that have subscribed to a particular type of action. This means that as 
our application grows, so do our update rounds. Since an update round touches 
every store, it may start to feel as though the data is flowing sideways through all  
of our stores. Here's an illustration of the idea:

Action Store Store Store

Update

From the perspective of unidirectional data-flow, it doesn't actually matter how 
many stores there are. The important thing to remember is that the updates will not 
be interrupted by other actions being dispatched.

No side-effects
As we saw with MV* architectures, the nice thing about automatic state changes is also 
their demise. When we program by hidden rules, we're essentially programming by 
stitching together a bunch of side-effects. This doesn't scale well, mainly due to the fact 
that it's impossible to hold all these hidden connections in our head at a given point in 
time. Flux likes to avoid side-effects wherever possible.

Let's think about stores for a moment. These are the arbiters of state in our 
application. When something changes state, it has the potential to cause another 
piece of code to run in response. This does indeed happen in Flux. When a store 
changes state, views may be notified about the change, if they've subscribed to the 
store. This is the only place where side-effects happen in Flux, which is inevitable 
since we do need to update the DOM at some point when state changes. But what's 
different about Flux is how it avoids side-effects when there's data dependencies 
involved. The typical approach to dealing with data dependencies in user interfaces 
is to notify the dependent model that something has happened. Think cascading 
updates, as illustrated here:

Model Model

Model Model
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When there's a dependency between two stores in Flux, we just need to declare this 
dependency in the dependent store. What this does is it tells the dispatcher to make 
sure that the store we depend on is always updated first. Then, the dependent store 
can just directly use the store data it depends on. This way, all of the updates can still 
take place within the same update round.

Explicit over implicit
With architectural patterns, the tendency is to make things easier by veiling them 
behind abstractions that grow more elaborate with time. Eventually, more and more 
of the system's data changes automatically and developer convenience is superseded 
by hidden complexity.

This is a real scalability issue, and Flux handles it by favoring explicit actions and 
data transformations over implicit abstractions. In this section, we'll explore the 
benefits of explicitness along with the trade-offs to be made.

Updates via hidden side-effects
We've seen already, in this chapter, how difficult it can be to deal with hidden state 
changes that hide behind abstractions. They help us avoid writing code, but they 
also hurt by making it difficult to comprehend an entire work-flow when we come 
back and look at the code later. With Flux, state is kept in a store, and the store is 
responsible for changing its own state. What's nice about this is that when we want  
to inquire about how a given store changes state, all the state transformation code  
is there, in one place. Let's look at an example store:

// A Flux store with state.
class Store {
  constructor() {

    // The initial state of the store.
    this.state = { clickable: false };

    // All of the state transformations happen
    // here. The "action.type" property is how it
    // determines what changes will take place.
    dispatcher.register((e) => {

      // Depending on the type of action, we
      // use "Object.assign()" to assign different
      // values to "this.state".
      switch (e.type) {
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        case 'show':
          Object.assign(this.state, e.payload,
            { clickable: true });
          break;
        case 'hide':
          Object.assign(this.state, e.payload,
            { clickable: false });
          break;
        default:
          break;
      }
    });
  }
}

// Creates a new store instance.
var store = new Store();

// Dispatches a "show" action.
dispatcher.dispatch({
  type: 'show',
  payload: { display: 'block' }
});

console.log('Showing', store.state);
// → Showing {clickable: true, display: "block"}

// Dispatches a "hide" action.
dispatcher.dispatch({
  type: 'hide',
  payload: { display: 'none' }
});

console.log('Hiding', store.state);
// → Hiding {clickable: false, display: "none"}

Here, we have a store with a simple state object. In the constructor, the store  
registers a callback function with the dispatcher. All state transformations take  
place, explicitly, in one function. This is where data turns into information for  
our user interface. We don't have to hunt down the little bits and pieces of data  
as they change state across multiple components; this doesn't happen in Flux.
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So the question now becomes, how do views make use of this monolithic state data? 
In other types of frontend architecture, the views get notified whenever any piece of 
state changes. In the preceding example, a view gets notified when the clickable 
property changes, and again when the display property changes. The view has logic 
to render these two changes independently of one another. However, views in Flux 
don't get fine-grained updates like these. Instead, they're notified when the store 
state changes and the state data is what's given to them.

The implication here is that we should lean toward view technology that's good 
at re-rendering whole components. This is what makes React a good fit for Flux 
architectures. Nonetheless, we're free to use any view technology we please,  
as we'll see later on in the book.

Data changes state in one place
As we saw in the preceding section, the store transformation code is encapsulated 
within the store. This is intentional. The transformation code that mutates a store's 
state is supposed to live nearby. Close proximity drastically reduces the complexity 
of figuring out where state changes happen as systems grow more complex. This 
makes state changes explicit, instead of abstract and implicit.

One potential trade-off with having a store manage all of the state transformation 
code is that there could be a lot of it. The code we looked at used a single switch 
statement to handle all of the state transform logic. This would obviously cause  
a bit of a headache later on when there's a lot of cases to handle. We'll think about 
this more later in the book, when the time comes to consider large, complex stores. 
Just know that we can re-factor our stores to elegantly handle a large number of 
cases, while keeping the coupling of business logic and state tight.

This leads us right back to the separation of concerns principle. With Flux stores, the 
data and the logic that operates on it isn't separated at all. Is this actually a bad thing 
though? An action is dispatched, a store is notified about it, and it changes its state 
(or does nothing, ignoring the action). The logic that changes the state is located in 
the same component because there's nothing to gain by moving it somewhere else.

Too many actions?
Actions make everything that happens in a Flux architecture explicit. By everything, 
I mean everything—if it happens, it was the result of an action being dispatched. 
This is good because it's easy to figure out where actions are dispatched from. Even 
as the system grows, action dispatches are easy to find in our code, because they 
can only come from a handful of places. For example, we won't find actions being 
dispatched within stores.
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Any feature we create has the potential to create dozens of actions, if not more. 
We tend to think that more means bad, from an architectural perspective. If there's 
more of something, it's going to be more difficult to scale and to program with. 
There's some truth to this, but if we're going to have a lot of something, which is 
unavoidable in any large system, it's good that it's actions. Actions are relatively 
lightweight in that they describe something that happens in our application. In other 
words, actions aren't heavyweight items that we need to fret over having a lot of.

Does having a lot of actions mean that we need to cram them all into one huge 
monolithic actions module? Thankfully, we don't have to do this. Just because actions 
are the entry point into any Flux system, doesn't mean that we can't modularize them 
to our liking. This is true of all the Flux components we develop, and we'll keep an eye 
open for ways that we can keep our code modular as we progress through the book.

Layers over hierarchies
User interfaces are hierarchical in nature, partly because HTML is inherently 
hierarchical and partly because of the way that we structure the information 
presented to users. For example, this is why we have nested levels of navigation in 
some applications—we can't possibly fit everything on the screen at once. Naturally, 
our code starts to reflect this hierarchical structure by becoming a hierarchy itself. 
This is good in the sense that it reflects what the user sees. It's bad in the sense that 
deep hierarchies are difficult to comprehend.

In this section, we'll look at hierarchical structures in frontend architectures and how 
Flux is able to avoid complex hierarchies. We'll first cover the idea of having several 
top-level components, each with their own hierarchies. Then, we'll look at the side-
effects that happen within hierarchies and how data-flows through Flux layers.

Multiple component hierarchies
A given application probably has a handful of major features. These are often 
implemented as the top-level components or modules in our code. These aren't 
monolithic components; they're decomposed into smaller and smaller components. 
Perhaps some of these components share the smaller multipurpose components.  
For example, a top-level component hierarchy might be composed of models, views, 
and controllers as is illustrated here:
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Controller

Controller Controller

Model

View

Model

View

Controller

Controller Controller

Model

View

Model

View

This makes sense in terms of the structure of our application. When we look at 
pictures of component hierarchies, it's easy to see what our application is made of. 
Each of these hierarchies, with the top-level component as their root, are like a little 
universes that exist independently of one anothers. Again, we're back to the notion of 
separation of concerns. We can develop one feature without impacting another.

The problem with this approach is that user interface features often depend on other 
features. In other words, the state of one component hierarchy will likely depend on 
the state of another. How do we keep these two component trees synchronized with 
one another when there's no mechanism in place to control when state can change? 
What ends up happening is that a component in one hierarchy will introduce an 
arbitrary dependency to a component in another hierarchy. This serves a single 
purpose, so we have to keep introducing new inter-hierarchy dependencies to  
make sure everything is synchronized.

Hierarchy depth and side-effects
One challenge with hierarchies is depth. That is, how far down will a given 
hierarchy extend? The features of our application are constantly changing and 
expanding in scope. This can lead to our component trees growing taller. But 
they also grow wider. For example, let's say that our feature uses a component 
hierarchy that's three levels deep.
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Then, we add a new level. Well, we'll probably have to add several new components 
to this new level and in higher levels. So to build upon our hierarchies, we have to 
scale in multiple directions—horizontally and vertically. This idea is illustrated here:

...

Component

Component

Component ...

Scaling components in multiple directions is difficult, especially in component 
hierarchies where there's no data-flow direction. That is, input that ends up changing 
the state of something can enter the hierarchy at any level. Undoubtedly, this has 
some sort of side-effect, and if we're dependent on components in other hierarchies, 
all hope is lost.

Data-flow and layers
Flux has distinct architectural layers, which are more favorable to scaling 
architectures than hierarchies are. The reason is simple—we only need to scale 
components horizontally, within each layer of the architecture. We don't need  
to add new components to a layer and add new layers. Let's take a look at what 
scaling a Flux architecture looks like in the following diagram:

Action Action ...

Store Store ...

View View ...
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No matter how large an application gets, there's no need to add new architectural 
layers. We simply add new components to these layers. The reason we're able to do 
this without creating a tangled mess of component connections within a given layer 
is because all three layers play a part in the update round. An update round starts 
with an action and completes with the last view that is rendered. The data-flows 
through our application from layer to layer, in one direction.

Application data and UI state
When we have a separation of concerns that sticks presentation in one place  
and application data in another, we have two distinct places where we need to 
manage state. Except in Flux, the only place where there's state is within a store.  
In this section, we'll compare application data and UI data. We'll then address  
the transformations that ultimately lead to changes in the user interface. Lastly,  
we'll discuss the feature-centric nature of Flux stores.

Two of the same thing
Quite often, application data that's fetched from an API is fed into some kind of view 
layer. This is also known as the presentation layer, responsible for transforming 
application data into something of value for the user—from data to information in 
other words. In these layers, we end up with state to represent the UI elements. For 
example, is the checkbox checked? Here is an illustration of how we tend to group 
the two types of state within our components:

State

Model

State

View
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This doesn't really fit well with Flux architectures, because stores are where state 
belongs, including the UI. So, can a store have both application and UI state within 
it? Well, there isn't a strong argument against it. If everything that has a state is self-
contained within a store, it should be fairly simple to discern between application 
data and state that belongs to UI elements. Here's an illustration of the types of state 
found in Flux stores:

App+UI State

Store

App+UI State

Store

The fundamental misconception with trying to separate UI state from other state is 
that components often depend on UI state. Even UI components in different features 
can depend on each other's state in unpredictable ways. Flux acknowledges this 
and doesn't try to treat UI state as something special that should be split off from 
application data.

The UI state that ultimately ends up in a store can be derived from a number of things. 
Generally, two or more items from our application data could determine a UI state 
item. A UI state could be derived from another UI state, or from something more 
complex, like a UI state and other application data. In other cases, the application data 
is simple enough that it can be consumed directly by the view. The key is that the view 
has enough information that it can render itself without having to track its own state.

Tightly coupled transformations
Application data and UI state are tightly coupled together in Flux stores. It only 
makes sense that the transformations that operate on this data be tightly coupled  
to the store as well. This makes it easy for us to change the state of the UI based  
on other application data or based on the state of other stores.

If our business logic code wasn't in the store, then we'd need to start introducing 
dependencies to the components containing the logic needed by the store. Sure, 
this would mean generic business logic that transforms the state, and this could be 
shared in several stores, but this seldom happens at a high level. Stores are better 
off keeping their business logic that transforms the state of the store tightly coupled. 
If we need to reduce repetitive code, we can introduce smaller, more fine-grained 
utility functions to help with data transformations.
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We can get generic with our stores as well. These stores are abstract 
and don't directly interface with views. We'll go into more detail on 
this advanced topic later in the book.

Feature centric
If the data transformations that change the state of a store are tightly coupled to the 
store itself, does this mean that the store is tailored for a specific feature? In other 
words, do we care about stores being reused for other features? Sure, in some cases 
we have generic data that doesn't make much sense in repeating several times across 
stores. But generally speaking, stores are feature specific. Features are synonymous 
with domains in Flux parlance—everyone divides up the capabilities of their UI in 
different ways.

This is a departure from other architectures that base their data models on the data 
model of the API. Then, they use these models to create more specific view models. 
Any given MV* framework will have loads of features in their model abstractions, 
things like data bindings and automatic API fetching. They're only worried about 
storing state and publishing notifications when this state changes.

When stores encourage us to create and store new state that's specific to the UI,  
we can more easily design for the user. This is the fundamental difference between 
stores in Flux and models in other architectures—the UI data model comes first.  
The transformations within stores exist to ensure that the correct state is published  
to views—everything else is secondary.

Summary
This chapter introduced you to the driving principles of Flux. These should be in 
the back your mind as you work on any Flux architecture. We started the chapter 
off with a brief retrospective of MV* style architectures that permeate frontend 
development. Some challenges with this style of architecture include cascading 
model updates and a lack of data-flow direction. We then looked at the prize  
concept of Flux—unidirectional data-flow.

Next, we covered how Flux favors explicit actions over implicit abstractions.  
This makes things easier to comprehend when reading Flux code, because we  
don't have to go digging around for the root cause of a state change. We also  
looked at how Flux utilizes architectural layers to visualize how data-flows in  
one direction through the system.
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Finally, we compared application data with state that's generally considered specific 
to UI elements. Flux stores tend to focus on state that's relevant to the feature it 
supports, and doesn't distinguish between application data and UI state. Now that 
we have a handle on the principles that drive Flux architectures, it's time for us 
to code one. In the next chapter, we'll implement our skeleton Flux architecture, 
allowing us to focus on information design.
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Building a Skeleton 
Architecture

The best way to think in Flux is to write code in Flux. This is why we want to start 
building a skeleton architecture as early as possible. We call this phase of building 
our application the skeleton architecture because it isn't yet the full architecture. 
It's missing a lot of key application components, and this is on purpose. The aim of 
the skeleton is to keep the moving parts to a minimum, allowing us to focus on the 
information our stores will generate for our views.

We'll get off the ground with a minimalist structure that, while small, doesn't require 
a lot of work to turn our skeleton architecture into our code base. Then, we'll move 
on to some of the information design goals of the skeleton architecture. Next, we'll 
dive into implementing some aspects of our stores.

As we start building, we'll begin to get a sense of how these stores map to domains—
the features our users will interact with. After this, we'll create some really simple 
views, which can help us ensure that our data flows are in fact reaching their final 
destination. Finally, we'll end the chapter by running through a checklist for each of 
the Flux architectural layers, to make sure that we've validated our skeleton before 
moving on to other development activities.
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General organization
As a first step in building a skeleton Flux architecture, we'll spend a few minutes 
getting organized. In this section, we'll establish a basic directory structure, figure 
out how we'll manage our dependencies, and choose our build tools. None of this 
is set in stone—the idea is to get going quickly, but at the same time, establish some 
norms so that transforming our skeleton architecture into application code is as 
seamless as possible.

Directory structure
The directory structure used to start building our skeleton doesn't need to be fancy. 
It's a skeleton architecture, not the complete architecture, so the initial directory 
structure should follow suit. Having said that, we also don't want to use a directory 
structure that's difficult to evolve into what's actually used in the product. Let's take 
a look at the items that we'll find in the root of our project directory:

Skeleton Architecture

main.js

dispatcher.js

actions

stores

views

Pretty simple right? Let's walk through what each of these items represent:

•	 main.js: This is the main entry point into the application. This JavaScript 
module will bootstrap the initial actions of the system.

•	 dispatcher.js: This is our dispatcher module. This is where the Flux 
dispatcher instance is created.

•	 actions: This directory contains all our action creator functions and  
action constants.
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•	 stores: This directory contains our store modules.
•	 views: This directory contains our view modules.

This may not seem like much, and this is by design. The directory layout is reflective of 
the architectural layers of Flux. Obviously there will be more to the actual application 
once we move past the skeleton architecture phase, but not a whole lot. We should 
refrain from adding any extraneous components at this point though, because the 
skeleton architecture is all about information design.

Dependency management
As a starting point, we're going to require the basic Facebook Flux dispatcher as 
a dependency of our skeleton architecture—even if we don't end up using this 
dispatcher in our final product. We need to start designing our stores, as this is 
the most crucial and the most time-consuming aspect of the skeleton architecture; 
worrying about things like the dispatcher at this juncture simply doesn't pay off.

We need to start somewhere and the Facebook dispatcher implementation is good 
enough. The question is, will we need any other packages? In Chapter 1, What is Flux? 
we walked through the setup of the Facebook Flux NPM package and used Webpack 
to build our code. Can this work as our eventual production build system?

Not having a package manager or a module bundler puts us at a disadvantage, 
right from the onset of the project. This is why we need to think about dependency 
management as a first step of the skeleton architecture, even though we don't 
have many dependencies at the moment. If this is the first time we're building an 
application that has a Flux architecture behind it, the way we handle dependencies 
will serve as a future blueprint for subsequent Flux projects.

Is it a bad idea to add more module dependencies during the development of our 
skeleton architecture? Not at all. In fact, it's better that we use a tool that's well  
suited for the job. As we're implementing the skeleton, we'll start to see places in  
our stores where a library would be helpful. For example, if we're doing a lot of 
sorting and filtering on data collections and we're building higher-order functions, 
using something like lodash for this is perfect.

On the other hand, pulling in something like ReactJS or jQuery at this stage doesn't 
make a whole lot of sense because we're still thinking about the information and 
not how to present it in the DOM. So that's the approach we're going to use in this 
book—NPM as our package manager and Webpack as our bundler. This is the basic 
infrastructure we need, without much overhead to distract us.
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Information design
We know that the skeleton architecture we're trying to build is specifically focused 
on getting the right information into the hands of our users. This means that we're 
not paying much attention to user interactivity or formatting the information in a 
user-friendly way. It might help if we set some rough goals for ourselves—how do 
we know we're actually getting anywhere with our information design?

In this section, we'll talk about the negative influence API data models can have on 
our user interface design. Then, we'll look at mapping data to what the user sees  
and how these mappings should be encouraged throughout our stores. Finally,  
we'll think about the environment we find ourselves working in.

Users don't understand models
Our job as user interface programmers is to get the right information to the user at 
the right time. How do we do this? Conventional wisdom revolves around taking 
some data that we got from the API and then rendering it as HTML. Apart from 
semantic markup and some styles, nothing much has changed with the data since  
it arrived from the API. We're saying here's the data we have, let's make it look nice for 
the user. Here's an illustration of this idea:

API Data UI

There's no data transformation taking place here, which is fine, so long as the user is 
getting what they need. The problem this picture paints is that the data model of the 
API has taken the UI feature development hostage. We must heed everything that's 
sent down to us from the backend. The reason this is a problem is because we're 
limited in what we can actually do for the user. Something we can do is have our 
own models enhance the data that's sent back from the API. This means that if we're 
working on a feature that would require information that isn't exactly as the API 
intended it, we can fabricate it as a frontend model, as shown here:

API Data Transform Model UI

This gets us slightly closer to our goal in the sense that we can create a model of the 
feature we're trying to implement and put it in front of the user. So while the API 
might not deliver exactly what we want to display on the screen, we can use our 
transformation functions to generate a model of the information we need.
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During the skeleton architecture phase of our design process, we should think about 
stores independent of API's as much as possible. Not completely independently;  
we don't want to go way out into left field, jeopardizing the product. But the idea  
of producing a Flux skeleton architecture is to ensure that we're producing the right 
information, first and foremost. If there's no way the API can support what we're 
trying to do, then we can take the necessary steps, before spending a lot of time 
implementing full-fledged features.

Stores map to what the user sees
State isn't the only thing that's encapsulated by the stores found in our Flux 
architecture. There's also the data transformations that map old state to new state. 
We should spend more time thinking about what the user needs to see and less time 
thinking about the API data, which means that the store transformation functions 
are essential.

We need to embrace data transformations in Flux stores, because they're the 
ultimate determinant of how things change in front of the user's eyes. Without these 
transformations, the user would only be able to view static information. Of course, 
we could aim to design an architecture that only uses the data that's passed into the 
system "as-is", without transforming it. This never works out as we intend, for the 
simple reason that we're going to uncover dependencies with other UI components.

What should our early goals be with stores and how we transform their state? 
Well, the skeleton architecture is all about experimentation, and if we start writing 
transformation functionality upfront, we're likely to discover dependencies sooner. 
Dependencies aren't necessarily a bad thing, except when we find a lot of them late 
in the project, well after we've completed the skeleton architecture phase. Of course, 
new features are going to add new dependencies. If we can use state transformations 
early on to identify potential dependencies, then we can avoid future headaches.

What do we have to work with?
The last thing we'll need to consider before we roll up our sleeves and start 
implementing this skeleton Flux architecture is what's already in place. For example, 
does this application already have an established API and we're re-architecting the 
frontend? Do we need to retain the user experience of an existing UI? Is the project 
completely greenfield with no API or user experience input?
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The following diagram illustrates how these external factors influence the way we 
treat the implementation of our skeleton architecture:

Skeleton
Architecture

API Data
User

Experience

There's nothing wrong with having these two factors shape our Flux architecture. In 
the case of existing APIs, we'll have a starting point from which we can start writing 
our state transformation functions, to get the user the information that they need. 
In the case of keeping an existing user experience, we already know what the shape 
of our target information looks like, and we can work the transformation functions 
from a different angle.

When the Flux architecture is completely greenfield, we can let it inform both the 
user experience and the APIs that need to be implemented. It's highly unlikely that 
any of the scenarios in which we find ourselves building a skeleton architecture will 
be cut-and-dried. These are just the starting points that we may find ourselves in. 
Having said that, it's time to start implementing some skeleton stores.

Putting stores into action
In this section, we're going to implement some stores in our skeleton architecture. They 
won't be complete stores capable of supporting end-to-end work-flows. However, we'll 
be able to see where the stores fit within the context of our application.

We'll start with the most basic of all store actions, which are populating them with 
some data; this is usually done by fetching it via some API. Then, we'll discuss 
changing the state of remote API data. Finally, we'll look at actions that change  
the state of a store locally, without the use of an API.

Fetching API data
Regardless of whether or not there's an API with application data ready to consume, 
we know that eventually this is how we'll populate our store data. So it makes sense 
that we think about this as the first design activity of implementing skeleton stores.



Chapter 3

[ 45 ]

Let's create a basic store for the homepage of our application. The obvious 
information that the user is going to want to see here is the currently logged-in user, 
a navigation menu, and perhaps a summarized list of recent events that are relevant 
to the user. This means that fetching this data is one of the first things our application 
will have to do. Here's our first implementation of the store:

// Import the dispatcher, so that the store can
// listen to dispatch events.
import dispatcher from '../dispatcher';

// Our "Home" store.
class HomeStore {
  constructor() {

    // Sets a default state for the store. This is
    // never a bad idea, in case other stores want to
    // iterate over array values - this will break if
    // they're undefined.
    this.state = {
      user: '',
      events: [],
      navigation: []
    };

    // When a "HOME_LOAD" event is dispatched, we
    // can assign "payload" to "state".
    dispatcher.register((e) => {
      switch (e.type) {
        case 'HOME_LOAD':
          Object.assign(this.state, e.payload);
          break;
      }
    });
  }
}

export default new HomeStore();

This is fairly easy to follow, so lets point out the important pieces. First, we need to 
import the dispatcher so that we can register our store. When the store is created, 
the default state is stored in the state property. When the HOME_LOAD action is 
dispatched, we change the state of the store. Lastly, we export the store instance  
as the default module member.
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As the action name implies, HOME_LOAD is dispatched when data for the store has 
loaded. Presumably, we're going to pull this data for the home store from some  
API endpoints. Let's go ahead and put this store to use in our main.js module— 
our application entry point:

// Imports the "dispatcher", and the "homeStore".
import dispatcher from './dispatcher';
import homeStore from './stores/home';

// Logs the default state of the store, before
// any actions are triggered against it.
console.log(`user: "${homeStore.state.user}"`);
// → user: ""

console.log('events:', homeStore.state.events);
// → events: []

console.log('navigation:', homeStore.state.navigation);
// → navigation: []

// Dispatches a "HOME_LOAD" event, when populates the
// "homeStore" with data in the "payload" of the event.
dispatcher.dispatch({
  type: 'HOME_LOAD',
  payload: {
    user: 'Flux',
    events: [
      'Completed chapter 1',
      'Completed chapter 2'
    ],
    navigation: [
      'Home',
      'Settings',
      'Logout'
    ]
  }
});

// Logs the new state of "homeStore", after it's
// been populated with data.
console.log(`user: "${homeStore.state.user}"`);
// → user: "Flux"
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console.log('events:', homeStore.state.events);
// → events: ["Completed chapter 1", "Completed chapter 2"]

console.log('navigation:', homeStore.state.navigation);
// → navigation: ["Home", "Settings", "Logout"]

This is some fairly straightforward usage of our home store. We're logging the 
default state of the store, dispatching the HOME_LOAD action with some new payload 
data, and logging the state again to make sure that the state of the store did in fact 
change. So the question is, what does this code have to do with the API?

This is a good starting point for our skeleton architecture because there's a number 
of things to think about before we even get to implementing API calls. We haven't 
even started implementing actions yet, because if we did, they'd just be another 
distraction. And besides, actions and real API calls are easy to implement once we 
flesh out our stores.

The first question that comes to mind about the main.js module is the location of 
the dispatch() call to HOME_LOAD. Here, we're bootstrapping data into the store. 
Is this the right place to do this? When the main.js module runs will we always 
require that this store be populated? Is this the place where we'll want to bootstrap 
data into all of our stores? We don't need immediate answers to these questions, 
because that would likely result in us dwelling on one aspect of the architecture for 
far too long, and there are many other issues to think about.

For example, does the coupling of our store make sense? The home store we just 
implemented has a navigation array. These are just simple strings right now, but 
they'll likely turn into objects. The bigger issue is that the navigation data might 
not even belong in this store—several other stores are probably going to require 
navigation state data too. Another example is the way we're setting the new state 
of the store using the dispatch payload. Using Object.assign() is advantageous, 
because we can dispatch the HOME_LOAD event with a payload with only one state 
property and everything will continue to function the same. Implementing this store 
took us very little time at all, but we've asked some very important questions and 
learned a powerful technique for assigning new store state.
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This is the skeleton architecture, and so we're not concerned with the mechanics  
of actually fetching the API data. We're more concerned about the actions that  
get dispatched as a result of API data arriving in the browser; in this case, it's  
HOME_LOAD. It's the mechanics of information flowing through stores that matters 
in the context of a skeleton Flux architecture. And on that note, let's expand the 
capabilities of our store slightly:

// We need the "dispatcher" to register our store,
// and the "EventEmitter" class so that our store
// can emit "change" events when the state of the
// store changes.
import dispatcher from '../dispatcher';
import { EventEmitter } from 'events';

// Our "Home" store which is an "EventEmitter"
class HomeStore extends EventEmitter {
  constructor() {

    // We always need to call this when extending a class.
    super();

    // Sets a default state for the store. This is
    // never a bad idea, in case other stores want to
    // iterate over array values - this will break if
    // they're undefined.
    this.state = {
      user: '',
      events: [],
      navigation: []
    };

    // When a "HOME_LOAD" event is dispatched, we
    // can assign "payload" to "state", then we can
    // emit a "change" event.
    dispatcher.register((e) => {
      switch (e.type) {
        case 'HOME_LOAD':
          Object.assign(this.state, e.payload);
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new HomeStore();
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The store still does everything it did before, only now the store class inherits from 
EventEmitter, and when the HOME_LOAD action is dispatched, it emits a change 
event using the store state as the event data. This gets us one step closer to having  
a full work-flow, as views can now listen to the change event to get the new state  
of the store. Let's update our main module code to see how this is done:

// Imports the "dispatcher", and the "homeStore".
import dispatcher from './dispatcher';
import homeStore from './stores/home';

// Logs the default state of the store, before
// any actions are triggered against it.
console.log(`user: "${homeStore.state.user}"`);
// → user: ""

console.log('events:', homeStore.state.events);
// → events: []

console.log('navigation:', homeStore.state.navigation);
// → navigation: []

// The "change" event is emitted whenever the state of The
// store changes.
homeStore.on('change', (state) => {
  console.log(`user: "${state.user}"`);
  // → user: "Flux"

  console.log('events:', state.events);
  // → events: ["Completed chapter 1", "Completed chapter 2"]

  console.log('navigation:', state.navigation);
  // → navigation: ["Home", "Settings", "Logout"]
});

// Dispatches a "HOME_LOAD" event, when populates the
// "homeStore" with data in the "payload" of the event.
dispatcher.dispatch({
  type: 'HOME_LOAD',
  payload: {
    user: 'Flux',
    events: [
      'Completed chapter 1',
      'Completed chapter 2'
    ],
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    navigation: [
      'Home',
      'Settings',
      'Logout'
    ]
  }
});

This enhancement to the store in our skeleton architecture brings about yet more 
questions, namely, about setting up event listeners on our stores. As you can see, we 
have to make sure that the handler is actually listening to the store before any actions 
are dispatched. All of these concerns we need to address, and we've only just begun 
to design our architecture. Let's move on to changing the state of backend resources.

Changing API resource state
After we've set the initial store state by asking the API for some data, we'll likely end 
up needing to change the state of that backend resource. This happens in response to 
user activity. In fact, the common pattern looks like the following diagram:

Back-end
Resource

Store

SaveGet

Let's think about this pattern in the context of a Flux store. We've already seen 
how to load data into a store. In the skeleton architecture we're building, we're not 
actually making these API calls, even if they exist—we're focused solely on the 
information that's produced by the frontend right now. When we dispatch an action 
that changes the state of a store, we'll probably need to update the state of this store 
in response to successful completion of the API call. The real question is, what does 
this entail exactly?

For example, does the call we make to change the state of the backend resource 
actually respond with the updated resource, or does it respond with a mere success 
indication? These types of API patterns have a dramatic impact on the design of our 
stores because it means the difference between having to always make a secondary 
call or having the data in the response.
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Let's look at some code now. First, we have a user store as follows:

import dispatcher from '../dispatcher';
import { EventEmitter } from 'events';

// Our "User" store which is an "EventEmitter"
class UserStore extends EventEmitter {
  constructor() {
    super();
    this.state = {
      first: '',
      last: ''
    };

    dispatcher.register((e) => {
      switch (e.type) {
        // When the "USER_LOAD" action is dispatched, we
        // can assign the payload to this store's state.
        case 'USER_LOAD':
          Object.assign(this.state, e.payload);
          this.emit('change', this.state);
          break;

        // When the "USER_REMOVE" action is dispatched,
        // we need to check if this is the user that was
        // removed. If so, then reset the state.
        case 'USER_REMOVE':
          if (this.state.id === e.payload) {
            Object.assign(this.state, {
              id: null,
              first: '',
              last: ''
            });

            this.emit('change', this.state);
          }

          break;
      }
    });
  }
}

export default new UserStore();
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We'll assume that this singular user store is for a page in our application where only 
a single user is displayed. Now, let's implement a store that's useful for tracking the 
state of several users:

import dispatcher from '../dispatcher';
import { EventEmitter } from 'events';

// Our "UserList" store which is an "EventEmitter"
class UserListStore extends EventEmitter {
  constructor() {
    super();

    // There's no users in this list by default.
    this.state = []

    dispatcher.register((e) => {
      switch (e.type) {

        // The "USER_ADD" action adds the "payload" to
        // the array state.
        case 'USER_ADD':
          this.state.push(e.payload);
          this.emit('change', this.state);
          break;

        // The "USER_REMOVE" action has a user id as
        // the "payload" - this is used to locate the
        // user in the array and remove it.
        case 'USER_REMOVE':
          let user = this.state.find(
            x => x.id === e.payload);

          if (user) {
            this.state.splice(this.state.indexOf(user), 1);
            this.emit('change', this.state);
          }

          break;
      }
    });
  }
}

export default new UserListStore();
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Let's now create the main.js module that will work with these stores. In particular, 
we want to see how interacting with the API to change the state of a backend 
resource will influence the design of our stores:

import dispatcher from './dispatcher';
import userStore from './stores/user';
import userListStore from './stores/user-list';

// Intended to simulate a back-end API that changes 
// state of something. In this case, it's creating
// a new resource. The returned promise will resolve
// with the new resource data.
function createUser() {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve({
        id: 1,
        first: 'New',
        last: 'User'
      });
    }, 500);
  });
}

// Show the user when the "userStore" changes.
userStore.on('change', (state) => {
  console.log('changed', `"${state.first} ${state.last}"`);
});

// Show how many users there are when the "userListStore"
// changes.
userListStore.on('change', (state) => {
  console.log('users', state.length);
});

// Creates the back-end resource, then dispatches actions
// once the promise has resolved.
createUser().then((user) => {

  // The user has loaded, the "payload" is the resolved data.
  dispatcher.dispatch({
    type: 'USER_LOAD',
    payload: user
  });
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  // Adds a user to the "userListStore", using the resolved
  // data.
  dispatcher.dispatch({
    type: 'USER_ADD',
    payload: user
  });

  // We can also remove the user. This impacts both stores.
  dispatcher.dispatch({
    type: 'USER_REMOVE',
    payload: 1
  });
});

Here, we can see that the createUser() function serves as a proxy for the actual API 
implementation. Remember, this is a skeleton architecture where the chief concern 
is the information constructed by our stores. Implementing a function that returns a 
promise is perfectly acceptable here because this is very easy to change later on  
once we start talking to the real API.

We're on the lookout for interesting aspects of our stores—their state, how that state 
changes, and the dependencies between our stores. In this case, when we create the 
new user, the API returns the new object. Then, this is dispatched as a USER_LOAD 
action. Our userStore is now populated. We're also dispatching a USER_ADD action 
so that the new user data can be added to this list. Presumably, these two stores 
service different parts of our application, and yet the same API call that changes  
the state of something in the backend is relevant.

What can we learn about our architecture from all of this? For starters, we can see 
that the promise callback is going to have to dispatch multiple actions for multiple 
stores. This means that we can probably expect more of the same with similar API 
calls that create resources. What about calls that modify users, would the code  
look similar?

Something that we're missing here is an action to update the state of a user object 
within the array of users in userListStore. Alternatively, we could have this store 
also handle the USER_LOAD action. Any approach is fine, it's the exercise of building 
the skeleton architecture that's supposed to help us find the approach that best fits 
our application. For example, we're dispatching a single USER_REMOVE action here 
too, and this is handled easily by both our stores. Maybe this is the approach we're 
looking for?
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Local actions
We'll close the section on store actions with a look at local actions. These are actions 
that have nothing to do with the API. Local actions are generally in response to user 
interactions, and dispatching them will have a visible effect on the UI. For example, 
the user wants the toggle the visibility of some component on the page.

The typical application would just execute a jQuery one-liner to locate the element 
in the DOM and make the appropriate CSS changes. This type of thing doesn't fly in 
Flux architectures, and it's the type of thing we should start thinking about during 
the skeleton architecture phase of our application. Let's implement a simple store 
that handles local actions:

import dispatcher from '../dispatcher';
import { EventEmitter } from 'events';

// Our "Panel" store which is an "EventEmitter"
class PanelStore extends EventEmitter {
  constructor() {

    // We always need to call this when extending a class.
    super();

    // The initial state of the store.
    this.state = {
      visible: true,
      items: [
        { name: 'First', selected: false },
        { name: 'Second', selected: false }
      ]
    };

    dispatcher.register((e) => {
      switch (e.type) {

        // Toggles the visibility of the panel, which is
        // visible by default.
        case 'PANEL_TOGGLE':
          this.state.visible = !this.state.visible;
          this.emit('change', this.state);
          break;

        // Selects an object from "items", but only
        // if the panel is visible.
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        case 'ITEM_SELECT':
          let item = this.state.items[e.payload];

          if (this.state.visible && item) {
            item.selected = true;
            this.emit('change', this.state);
          }

          break;
      }
    });
  }
}

export default new PanelStore();

The PANEL_TOGGLE action and the ITEM_SELECT action are two local actions handled 
by this store. They're local because they're likely triggered by the user clicking a 
button or selecting a checkbox. Let's dispatch these actions so we can see how our 
store handles them:

import dispatcher from './dispatcher';
import panelStore from './stores/panel';

// Logs the state of the "panelStore" when it changes.
panelStore.on('change', (state) => {
  console.log('visible', state.visible);
  console.log('selected', state.items.filter(
    x => x.selected));
});

// This will select the first item.
dispatcher.dispatch({
  type: 'ITEM_SELECT',
  payload: 0
});
// → visible true
// → selected [ { name: First, selected: true } ]

// This disables the panel by toggling the "visible"
// property value.
dispatcher.dispatch({ type: 'PANEL_TOGGLE' });
// → visible false
// → selected [ { name: First, selected: true } ]
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// Nothing the second item isn't actually selected,
// because the panel is disabled. No "change" event
// is emitted here either, because the "visible"
// property is false.
dispatcher.dispatch({
  type: 'ITEM_SELECT',
  payload: 1
});

This example serves as an illustration as to why we should consider all things 
state-related during the skeleton architecture implementation phase. Just because 
we're not implementing actual UI components right now, doesn't mean we can't 
guess at some of the potential states of common building blocks. In this code, we've 
discovered that the ITEM_SELECT action is actually dependent on the PANEL_TOGGLE 
action. This is because we don't actually want to select an item and update the view 
when the panel is disabled.

Building on this idea, should other components be able to dispatch this action in the 
first place? We've just found a potential store dependency, where the dependent store 
would query the state of panelStore before actually enabling UI elements. All of 
this from local actions that don't even talk to APIs, and without actual user interface 
elements. We're probably going to find many more items like this throughout the 
course of our skeleton architecture, but don't get hung up on finding everything.  
The idea is to learn what we can, while we have an opportunity to, because once  
we start implementing real features, things become more complicated.

Stores and feature domains
With more traditional frontend architectures, models that map directly to what's 
returned from the API provide a clear and concise data model for our JavaScript 
components to work with. Flux, as we now know, leans more in the direction of the 
user, and focuses on the information that they need to see and interact with. This 
doesn't need to be a gigantic headache for us, especially if we're able to decompose 
our user interface into domains. Think of a domain as a really big feature.

In this section, we'll talk about identifying the top-level features that form the core  
of our UI. Then, we'll work on shedding irrelevant API data from the equation.  
We'll finish the section with a look at the structure of our store data, and the role  
it plays in the design of our skeleton architecture.
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Identifying top-level features
During the skeleton architecture phase of our Flux project, we should jump in and 
start writing store code, just as we've done in this chapter. We've been thinking about 
the information the user is going to need and how we can best get this information to 
the user. Something we didn't spend a lot of time on upfront was trying to identify 
the top level features of the application. This is fine, because the exercises we've 
performed so far in this chapter are often a prerequisite for figuring out how to 
organize our user interface.

However, once we've identified how we're going to implement some of the low-level 
store mechanisms that get us the information we're after, we need to start thinking 
about these top-level features. And there's a good reason for this—the stores we 
ultimately maintain will map to these features. When we say top-level, it's tempting 
to use the navigation as the point of reference. There's actually nothing wrong with 
using the page navigation as a guide; if it's big enough for the main navigation, it's 
probably a top-level feature that's worthy of its own Flux store.

In addition to being a top-level feature, we need to think about the role of the store—
why does it exist? What value does this add for the user? The reason these questions 
are important is because we could end up having six pages that all could have used 
the same store. So it's a balance between consolidating value into one store and 
making sure that the store isn't to large and general-purpose.

Applications are complex, with lots of moving parts that drive lots of features.  
Our user interface probably has 50 awesome features. But this is unlikely to require 
50 awesome top-level navigation links and 50 Flux stores. Our stores will have to 
represent the complex intricacies of these features in their data, at some point. This 
comes later though, for now we just need to get a handle on approximately how many 
stores we're working with, and how many dependencies we have between them.

Irrelevant API data
Use it or lose it—the mantra of Flux store data. The challenge with API data is 
that it's a representation of a backend resource—it's not going to return data that's 
specifically required for our UI. An API exists so that more than one UI can be built 
on it. However, this means that we often end up with irrelevant data in our stores. 
For example, if we only need a few properties from an API resource, we don't want 
to store 36 properties. Especially when some of these can themselves be collections. 
This is wasteful in terms of memory consumption, and confusing in terms of their 
existence. It's actually the latter point that's more concerning because we can easily 
mislead other programmers working on this project.
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One potential solution is to exclude these unused values from the API response. 
Many APIs today support this, by letting us opt-in to the properties we want 
returned. And this is probably a good idea if it means drastically reduced network 
bandwidth. However, this approach can also be error-prone because we have to 
perform this filtering at the ajax call level, instead of at the store level. Let's look  
at an example that takes a different approach, by specifying a store record:

import dispatcher from '../dispatcher';
import { EventEmitter } from 'events';

class PlayerStore extends EventEmitter {
  constructor() {
    super();

    // The property keys in the default state are
    // used to determine the allowable properties
    // used to set the state.
    this.state = {
      id: null,
      name: ''
    };

    dispatcher.register((e) => {
      switch (e.type) {
        case 'PLAYER_LOAD':

          // Make sure that we only take payload data
          // that's already a state property.
          for (let key in this.state) {
            this.state[key] = e.payload[key];
          }

          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new PlayerStore();
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In this example, the default state object plays an important role, other than 
providing default state values. It also provides the store record. In other words,  
the property keys used by the default state determine the allowable values when  
the PLAYER_LOAD action is dispatched. Let's see if this works as expected:

import dispatcher from './dispatcher';
import playerStore from './stores/player';

// Logs the state of the player store when it changes.
playerStore.on('change', (state) => {
  console.log('state', state);
});

// Dispatch a "PLAYER_LOAD" action with more payload
// data than is actually used by the store.
dispatcher.dispatch({
  type: 'PLAYER_LOAD',
  payload: {
    id: 1,
    name: 'Mario',
    score: 527,
    rank: 12
  }
});
// → state {id: 1, name: "Mario"}

Structuring store data
All of the examples shown so far in this chapter have relatively simple state objects 
within stores. Once we build the skeleton architecture up, these simple objects will 
turn into something more complicated. Remember, the state of a store reflects the 
state of the information that the user is looking at. This includes the state of some  
of the elements on the page.

This is something we need to keep an eye on. Just because we're through performing 
the skeleton architecture exercise doesn't mean an idea will hold up as we start to 
implement more elaborate features. In other words, if a store state becomes too large—
too nested and deep—then it's time to consider moving our stores around a little bit.
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The idea is that we don't want too many stores driving our views, because they're more 
like models from an MVC architecture at this point. We want the stores to represent a 
specific feature of the application. This doesn't always work out, because we could end 
up having some complex and convoluted state in the store for the feature. In this case, 
our top-level feature needs to be split somehow.

This will no doubt happen at some point during our time with Flux, and there's no 
rule in place that says when it's time to refactor stores. Instead, if the state data stays 
at a size where it feels comfortable to work with, you're probably f﻿ine with the store 
as it is.

Bare bone views
We've made some progress with our skeleton stores to the point where we're ready 
to start looking at skeleton views. These are simple classes, much in the same spirit 
as stores are, except we're not actually rendering anything to the DOM. The idea 
with these bare bone views is to affirm the sound infrastructure of our architecture, 
and that these view components are in fact getting the information they expect. This 
is crucial because the views are the final item in the Flux data-flow, so if they're not 
getting what they need, when they need it, we need to go back and fix our stores.

In this section, we'll discuss how our bare-boned views can help us more quickly 
identify when stores are missing a particular piece of information. Then, we'll look  
at how these views can help us identify potential actions in our Flux application.

Finding missing data
The first activity we'll perform with our bare bone views is figuring out whether or 
not the stores are passing along all the essential information required by the view. 
By essential, we're talking about things that would be problematic for the user were 
they not there. For example, we're looking at a settings page, and there's a whole 
section missing. Or, there's a list of options to select from, but we don't actually have 
the string labels to show because they're part of some other API.

Once we figure out that these critical pieces of information are missing from the 
store, the next step is to determine if they're a possibility, because if they're not, 
we've just avoided spending an inordinate amount of time implementing a full-
fledged view. However, these are the rare cases. Usually, it isn't a big deal to go  
back to the store in question and add the missing transformation that will compute 
and set the missing state we're looking for.
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How much time do we need to spend on these bare bone views? Think of it this 
way—as we start implementing the actual views that render to the DOM for us,  
we'll discover more missing state from the store. These, however, are superficial 
and easy to fix. With the bare bone views, we're more concerned with teasing out 
the critical parts that are missing. What can we do with these views when we're 
done with them? Are they garbage? Not necessarily, depending on how we want 
to implement our production views, we could either adjust them to become ReactJS 
components or we could embed the actual view inside the bare-bone view, making  
it more of a container.

Identifying actions
As we saw earlier in the chapter, the first set of actions to be dispatched by a given 
Flux architecture are going to be related to fetching data from the backend API. 
Ultimately, these are the start of the data-flows that end with the views. Sometimes, 
these are merely load type actions, where we're explicitly saying to go fetch the 
resource and populate our store. Other times, we might have more abstract actions 
that describe the action taken by the user, resulting in several stores being populated 
from many different API endpoints.

This gets the user to a point where we can start thinking about how they're going 
to want to interact with this information. The only way they do so is by dispatching 
more actions. Let's create a view with some action methods. Essentially, the goal 
is to have access our views from the browser JavaScript console. This lets us view 
the state information associated with the view at any given point, as well as call the 
method to dispatch the given action.

To do this, we need to adjust our Webpack configuration slightly:

output: {
  …
  library: 'views'
}

This one line will export a global views variable in the browser window, and its 
value will be whatever our main.js module exports. Let's have a look at this now:

import settingsView from './views/settings';
export { settingsView as settings };
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Well, this looks interesting. We're simply exporting our view as settings. So, as 
we're creating our bare bone views in the skeleton architecture, we simply follow this 
pattern in main.js to keep adding views to the browser console to experiment with. 
Let's now take a look at the settings view itself:

import dispatcher from '../dispatcher';
import settingsStore from '../stores/settings';

// This is a "bare bones" view because it's
// not rendering anything to the DOM. We're just
// using it to validate our Flux data-flows and
// to think about potential actions dispatched
// from this view.
class SettingsView {
  constructor() {

    // Logs the state of "settingsStore" when it
    // changes.
    settingsStore.on('change', (state) => {
      console.log('settings', state);
    });

    // The initial state of the store is logged.
    console.log('settings', settingsStore.state);
  }

  // This sets an email value by dispatching
  // a "SET_EMAIL" action.
  setEmail(email) {
    dispatcher.dispatch({
      type: 'SET_EMAIL',
      payload: 'foo@bar.com'
    });
  }

  // Do all the things!
  doTheThings() {
    dispatcher.dispatch({
      type: 'DO_THE_THINGS',
      payload: true
    })
  }
}
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// We don't need more than one of these
// views, so export a new instance.
export default new SettingsView();

The only thing left to do now is to see what's available in the browser console when 
we load this page. We should have a global views variable, and this should have 
each of our view instances as properties. Now, we get to play around with actions 
dispatched by views as though we're users clicking around in the DOM. Let's see 
how this looks:

views.settings.setEmail()
// → settings {email: "foo@bar.com", allTheThings: false}

views.settings.doTheThings()
// → settings {email: "foo@bar.com", allTheThings: true}

End-to-end scenarios
At some point, we're going to have to wrap up the skeleton architecture phase of the 
project and start implementing real features. We don't want the skeleton phase to 
drag on for too long because then we'll start making too many assumptions about 
the reality of our implementation. At the same time, we'll probably want to walk 
through a few end-to-end scenarios before we move on.

The aim of this section is to provide you with a few high-level points to be on the 
lookout for in each architectural layer. These aren't strict criteria, but they can 
certainly help us formulate our own measurements that determine whether or not 
we've adequately answered our questions about the information architecture by 
building a skeleton. If we're feeling confident, it's time to go full steam and flesh out 
the application detail—the subsequent chapters in this book dive into the nitty-gritty 
of implementing Flux.

Action checklist
The following items are worth thinking about when we're implementing actions:

•	 Do our features have actions that bootstrap store data by fetching it from  
the API?

•	 Do we have actions that change the state of backend resources? How are 
these changes reflected in our frontend Flux stores?

•	 Does a given feature have any local actions, and are they distinct from 
actions that issue API requests?
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Store checklist
The following items are worth thinking about when implementing stores:

•	 Does the store map to a top-level feature in our application?
•	 How well does the data structure of the store meet the needs of the views 

that use it? Is the structure too complex? If so, can we refactor the store into 
two stores?

•	 Do the stores discard API data that isn't used?
•	 Do the stores map API data to relevant information that the user needs?
•	 Is our store structure amenable to change once we start adding more 

elaborate view functionality?
•	 Do we have too many stores? If so, do we need to rethink the way we've 

structured the top-level application features?

View checklist
The following items are worth thinking about when implementing views:

•	 Does the view get the information it needs out of the store?
•	 Which actions result in the view rendering?
•	 Which actions does the view dispatch, in response to user interaction?

Summary
This chapter was about getting started with a Flux architecture by building some 
skeleton components. The goal being to think about the information architecture, 
without the distraction of other implementation issues. We could find ourselves in 
a situation where the API is already defined for us, or where the user experience is 
already in place. Either of these factors will influence the design of our stores, and 
ultimately the information we present to our users.

The stores we implemented were basic, loading data when the application starts and 
updating their state in response to an API call. We did, however, learn to ask the 
pertinent questions about our stores, such as the approach taken with parsing the 
new data to set as the store's state, and how this new state will affect other stores.
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Then, we thought about the top-level features that form the core of our application. 
These features give a good indication of the stores that our architecture will need. 
Toward the end of the skeleton architecture phase, we want to walk through a few 
end-to-end scenarios to sanity-check our chosen information design. We looked at 
a few high-level checklist items to help ensure we didn't leave anything important 
out. In the following chapter, we'll take a deeper look at actions and how they're 
dispatched.
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Creating Actions
In the previous chapter, we worked on building a skeleton architecture for our Flux 
application. The actions were directly dispatched by the dispatcher. Now that we 
have a skeleton Flux architecture under our belts, it's time to look more deeply into 
actions, and in particular, how actions are created.

We'll start by talking about the names we give actions and the constants used to 
identify the available actions in our system. Then, we'll implement some action 
creator functions, and we'll think about how we can keep these modular. Even 
though we might be done with implementing our skeleton architecture, we may  
still have a need to mock some API data—we'll go over how this is done with  
action creator functions.

Typical action creator functions are stateless—data in, data out. We'll cover some 
scenarios where action creators actually depend on state, such as when long-running 
connections are involved. We'll wrap the chapter up with a look at parameterized 
action creators, allowing us to reuse them for different purposes.

Action names and constants
Any large Flux application will have a lot of actions. This is why having action 
constants and sensible action names matter. The focus of this section is to discuss 
possible naming conventions for actions and to get organized with our actions. 
Constants help with reducing repetitive strings that are error-prone, but we'll  
also need to think about the best way to organize our constants. We'll also look  
at static action data—this will also help us reduce the amount of action dispatch  
code we have to write.
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Action name conventions
All actions in a Flux system have a name. The name is important because it tells 
whoever is looking at it a lot about what it does. An application where there are less 
than ten actions is unlikely to have a strong naming convention requirement, because 
we can easily figure out what these actions do. However, it's equally unlikely we'd 
use Flux to implement a small application—Flux is for systems that need to scale. 
This means that there's a strong likelihood of many actions.

Action names can be divided into two segments—the subject and the operation. For 
example, having an action named ACTIVATE wouldn't be terribly helpful—what are 
we activating? Adding a subject to the name is often all it takes to provide some much 
needed context. Here are some examples:

•	 ACTIVATE_SETTING

•	 ACTIVATE_USER

•	 ACTIVATE_TAB

The subject is just an abstract type of thing in our system—it doesn't even have to 
correspond to a concrete software entity. However, if there are a lot of subjects in  
our system with similar actions, we might want to change up the format of our 
action names, like this for example:

•	 SETTING_ACTIVATE

•	 USER_ACTIVATE

•	 TAB_ACTIVATE

At the end of the day, this is really a personal (or team) preference, just as long as  
the name is descriptive enough to provide meaning for someone who's looking at  
the code. What if the subject and the operation aren't enough? For example, there 
could be several subjects that are similar, and this could cause confusion. Then,  
we could add another layer of subject to the name—think of this as namespacing  
the action.

Try not to go beyond three segments in a Flux action name. If you 
feel the need to do this, there's probably somewhere else in your 
architecture that needs attention.
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Static action data
Some actions are very similar to other actions, similar in the sense, that the payload 
data that's sent to the stores has many of the same properties. If we were to directly 
dispatch these actions, using the dispatcher instance, then we'd usually have to 
repeat object literal code. Let's take a look at an action creator function:

import dispatcher from '../dispatcher';

// The action name.
export const SORT_USERS = 'SORT_USERS';

// This action creator function hard-codes
// the action payload.
export function sortUsers() {
  dispatcher.dispatch({
    type: SORT_USERS,
    payload: {
      direction: 'asc'
    }
  });
}

The aim of this action is pretty straightforward—sort the list of users that are 
presumably UI components. The only payload data that's required is a sort direction, 
which is specified in the direction property. The problem with this action creator 
function is that this payload data is hard-coded. For example, the payload data in 
question here seems fairly generic, and other action creator functions that sort data 
should follow this pattern. But, this also means that they'll each have their own  
hard-coded values.

One thing we can do about this is to create a module within the actions directory 
that exports any default payload data that can be shared amongst several action 
creator functions. Carrying on with the sorting example, the module might start  
off looking something like this:

// This object is used by several action
// creator functions as part of the action
// payload.
export const PAYLOAD_SORT = {
  direction: 'asc'
};
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This is easy to build on. We can extend PAYLOAD_SORT, as new properties are needed 
and when old defaults need to change. It's also easy to add new default payloads 
as they're needed. Let's take look at another action creator function that uses this 
default payload:

import dispatcher from '../dispatcher';
import { PAYLOAD_SORT } from './payload-defaults';

// The action name.
export const SORT_TASKS = 'SORT_TASKS';

// This action creator function is using
// the "PAYLOAD_SORT" default object as the
// payload.
export function sortTasks() {
  dispatcher.dispatch({
    type: SORT_TASKS,
    payload: PAYLOAD_SORT
  });
}

As we can see, the PAYLOAD_SORT object is used by the sortTasks() function, rather 
than hard-coding the payload within the action creator. This reduces the amount of 
code we need to write, and it puts common payload data in a central place, making it 
easy for us to change the behavior of many action creator functions.

You may have noticed that the default payload object is being passed to 
dispatch() as is. More often than not, we'll have part of the payload 
object that's common across several functions and part of the payload 
object that's dynamic. We'll build in the examples from this section in the 
last section of the chapter, when it's time to think about parameterized 
action creator functions.

Now, let's take a look at both of these action creator functions in use, to make sure 
we're getting what we expect. Rather than setting up stores for this, we'll just listen 
to the dispatcher directly:

import dispatcher from './dispatcher';

// Gets the action constant and creator function
// for "SORT_USERS".
import {
  SORT_USERS,
  sortUsers
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} from './actions/sort-users';

// Gets the action constant and creator function
// for "SORT_TASKS".
import {
  SORT_TASKS,
  sortTasks
} from './actions/sort-tasks';

// Listen for actions, and log some information
// depending on which action was dispatched.
// Note that we're using the action name constants
// here, so there's less chance of human error.
dispatcher.register((e) => {
  switch (e.type) {
    case SORT_USERS:
      console.log(`Sorting users "${e.payload.direction}"`);
      break;
    case SORT_TASKS:
      console.log(`Sorting tasks "${e.payload.direction}"`);
      break;
  }
});

sortUsers();
// → Sorting users "asc"

sortTasks();
// → Sorting tasks "asc"

Organizing action constants
You may have noticed that there's already a hint of organization with the action 
constants used in the previous example. For example, the SORT_USERS constant 
was defined in the same module as the sortUsers() action creator function. This 
is generally a good idea because these two things are closely related to one another. 
There is a downside to this though. Imagine a more complex store that needs to 
handle a lot of actions. If each individual action constant is declared in its own 
module, the store would have to perform a lot of imports just to get these constants. 
If there's a number of complex stores that each need access to lots of actions, the 
number of imports starts to really add up. This problem is illustrated here:

import { ACTION_A } from '../actions/action-a';
import { ACTION_B } from '../actions/action-b';
import { ACTION_C } from '../actions/action-c';
// …
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If we find ourselves in a situation like this one, where several stores need access to 
several modules, maybe we need a constants.js module in the actions directory. 
This module would expose every action in the system. Here's an example of what 
this module might look like:

export { ACTION_A } from './action-a';
export { ACTION_B } from './action-b';
export { ACTION_C } from './action-c';

As our system grows and new actions are added, this is where we would centralize 
the action constants for easy access by stores that require many of them. They're not 
defined here; this is just a proxy that reduces the number of imports from stores, 
because the stores never need the action creator functions. Let's see if the situation 
has improved from the perspective of a store that requires action constants:

import {
  ACTION_A,
  ACTION_B,
  ACTION_C
} from './actions/constants';

console.log(ACTION_A);
// → ACTION_A

console.log(ACTION_B);
// → ACTION_B

console.log(ACTION_C);
// → ACTION_C

That's better. Only one import statement gets us everything we need, and it's still 
nice and legible. There are several ways we could spin this approach to better suit 
our needs. For example, maybe instead of one big constants module, we want to 
group our actions into logical modules that more closely resemble our features, and 
likewise for our action creator functions. We'll discuss action modularity as it relates 
to our application features in the next section.

Feature action creators
Action creator functions need to be organized, just as action constants are. In the 
preceding code examples of this chapter, we've organized both our action constants 
and our action creator functions into modules. This keeps our action code clean and 
easy to traverse. In this section, we'll build on this idea from the feature point of 
view. We'll look at why this is worth thinking about in the first place, then we'll talk 
about how these ideas make the architecture as a whole more modular.
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When modularity is needed
Do we need to think deeply about modular action creator functions at the beginning 
of our Flux project? While the project is still small in size, it's okay if all action creator 
functions are part of one monolithic action creator module—there's simply no 
meaningful impact on the architecture. It's when we have more than a dozen or so 
actions that we need to start thinking about modularity and, in particular, features.

We can split our action creator module into several smaller modules, each with 
their own action creator function. This is certainly a step in the right direction, but 
in essence, we're just moving the problem to the directory level. So instead of a 
monolithic module, we now have a monolithic directory with lots of files in it.  
This directory is illustrated here:

actions

action.js

action.js

action.js

...

There's nothing inherently wrong with this layout—it's just that there's no indication 
of which feature a given action is part of. This may not even be necessary, but 
when the architecture grows to be a certain size, it's usually helpful to group action 
modules by features. This concept is illustrated here:

actions

feature

action.js

action.js

feature

action.js

action.js

feature

action.js

action.js

feature

action.js

action.js
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Once we're able to get the actions of the system organized in such a way that 
they reflect the behavior of any given feature, we can start thinking about other 
architectural challenges related to modularity. We'll discuss these next.

Modular architecture
It's a good thing when the modules in a Flux architecture start taking the shape of the 
features our application provides. This has implications elsewhere in the architecture 
as well. For example, if we're organizing the actions by features, then should we not 
also organize the stores and the views by feature as well? Stores are easy—they're not 
exactly decomposable into smaller stores; they naturally represent the feature in its 
entirety. Views, on the other hand, could potentially have many JavaScript modules  
to organize within a feature. Here's a potential directory structure of a Flux feature:

actions

action.js

action.js

views

view.js

Store.js

view.js

This is a cohesive structure—everything the views need to dispatch these actions are 
in the same parent directory. Likewise, the store that notifies the views about state 
changes is in the same place. We can get away with following a similar pattern for  
all of our features, which has the added benefit of promoting consistency.

We'll revisit structuring feature modules toward the end of the book. For now, our 
main concern is the dependencies that other features might have with a given set of 
actions. For example, our feature defines several actions that are dispatched by views. 
What should happen with other features that want to respond to these actions—do 
they need to depend on this feature for the action? There's also the matter of the action 
creators themselves, and whether or not other features can dispatch them. The answer 
is a resounding yes, and the reason is simple—actions are how things happen in Flux 
architectures. There's no event bus where modules publish events in a fire-and-forget 
way. Actions play a vital role in the modularity of our Flux architecture.
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Mocking data
The dispatcher in Flux architectures is the single point of entry for new data entering 
the system. This makes it easy to fabricate mock data to help us churn out features 
faster. In this section, we'll discuss mocking existing APIs, and whether or not this is 
worthwhile to build into the action creator functions that talk to them. Then, we'll go 
over implementing mocks for new APIs that doesn't yet exist, followed by a look at 
strategies to substitute mock action creators for the real deal.

Mocking existing APIs
In order to mock data in a Flux system, the actions that are dispatched need 
to deliver this mock data to the stores. This is done by creating an alternative 
implementation of the action creator function that dispatches the action. When 
there's already an API that an action creator can target, we don't necessarily need to 
mock the data during the development of a given feature—the data is already there. 
However, the existence of an API that's used by an action creator shouldn't rule out 
the existence of a mocked version.

The main reason we would want to do this is because at any given point during the 
lifetime of our product, there's going to be a missing API that we need. As we'll see 
in the next section, we'll obviously want to mock the data returned by this API, so we 
can continue implementing the feature we're working on. But do we really want to 
mock some actions and not others? The idea is illustrated here:

API Mock Data API Mock Data

API Action Mock Action API Action Mock Action

The challenge with this approach—mocking some actions while actually implementing 
others—is consistency. When we're mocking data that enters the system, we have to 
be cognizant of the relationships between one set of data and another. Look at it from 
the perspective of our stores—they'll likely have dependencies on one another. Can we 
capture these dependencies using a mixture of mock data and actual data? Here is an 
illustration of actions that mock the entirety of the system:

Mock Data Mock Data

Mock Action Mock Action

Mock Data

Mock Action Mock Action

Mock Data

www.allitebooks.com

http://www.allitebooks.org
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It's better to have total control over the data that's used when we experiment with 
new functionality. This eliminates the possibility of errant behavior because of some 
inconsistency in our data. It takes more effort to construct mock data like this, but it 
pays off in the end when we're adding new features and we only have to mock one 
new action at a time, as it's added into the system. As we'll see later in this section, 
it's easy to substitute mock action creators for production action creators.

Mocking new APIs
Once we reach the point during the implementation of a new feature where we're 
missing API functionality, we'll have to mock it. We can use this new mock with 
the other mocks we've created to support other features in the application. The 
advantage of doing this is that it allows us to create something without delay, 
something we can demonstrate to stakeholders. Another benefit of mocking APIs 
as action creator functions is that they can help steer the API in the right direction. 
Without a UI, the API has nothing to base its design on, so this is a good opportunity 
to solicit a design that works best with the application we're building.

Let's take a look at some action creator functions that mock the data that's dispatched 
as action payloads. We'll start with a basic loader function that bootstraps some data 
into the store for us:

import dispatcher from '../dispatcher';

// The action identifier...
export const LOAD_TASKS = 'LOAD_TASKS';

// Immediately dispatches the action using an array
// of task objects as the mock data.
export function loadTasks() {
  dispatcher.dispatch({
    type: LOAD_TASKS,
    payload: [
      { id: 1, name: 'Task 1', state: 'running' },
      { id: 2, name: 'Task 2', state: 'queued' },
      { id: 3, name: 'Task 3', state: 'finished'}
    ]
  });
}



Chapter 4

[ 77 ]

This is quite simple. The data we want to mock is part of the function, as the action 
payload. Let's look at another mock action creator now, one that manipulates the 
state of a store after the data has already been bootstrapped:

import dispatcher from '../dispatcher';

// The action identifier...
export const RUN_TASK = 'RUN_TASK';

// Uses "setTimeout()" to simulate latency we'd
// likely see in a real network request.
export function runTask() {
  setTimeout(() => {
    dispatcher.dispatch({
      type: RUN_TASK,

      // Highly-specific mock payload data. This
      // mock data doesn't necessarily have to
      // be hard-coded like this, but it does make
      // experimentation easy.
      payload: {
        id: 2,
        state: 'running'
      }
    });
  }, 1000);
}

Once again, we have very specific mock data we're using here, which is fine because 
it's directly coupled to the action creator function that's dispatching the action—this 
is the only way this data can enter the system too. Something else that's different 
about this function is that it's simulating latency by not dispatching the action until 
the setTimeout() callback triggers after one second.

We'll take a more detailed look at asynchronous actions, including 
latency, promises, and multiple API endpoints in a later chapter.
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At this point, we have two mock action creator functions available for use. But before 
we start using these functions, let's create a task store so that we can make sure the 
correct information is being stored:

import EventEmitter from 'events';
import dispatcher from '../dispatcher';
import { LOAD_TASKS } from '../actions/load-tasks';
import { RUN_TASK } from '../actions/run-task';

// The store for tasks displayed in the application.
class TaskStore extends EventEmitter {
  constructor() {
    super();

    this.state = [];

    dispatcher.register((e) => {
      switch(e.type) {

        // In the case of "LOAD_TASKS", we can use the
        // "payload" as the new store state.
        case LOAD_TASKS:
          this.state = e.payload;
          this.emit('change', this.state);
          break;

        // In the case of "RUN_TASK", we need to look
        // up a specific task object and change it's state.
        case RUN_TASK:
          let task = this.state.find(
            x =>x.id === e.payload.id);

          task.state = e.payload.state;

          this.emit('change', this.state);

          break;
      }
    });
  }
}

export default new TaskStore();
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Now that we have a store to handle both actions we've just implemented, let's put 
the store and the actions to use in the main.js module of the application:

import taskStore from './stores/task';
import { loadTasks } from './actions/load-tasks';
import { runTask } from './actions/run-task';

// Logs the state of the store, as a mapped array
// of strings.
taskStore.on('change', (state) => {
  console.log('tasks',
    state.map(x => `${x.name} (${x.state})`));
});

loadTasks();
// →
// tasks [
//   "Task 1 (running)",
//   "Task 2 (queued)",
//   "Task 3 (finished)"
// ]

runTask();
// →
// tasks [
//   "Task 1 (running)",
//   "Task 2 (running)",
//   "Task 3 (finished)"
// ]

As you can see, the tasks were  successfully bootstrapped into the store with the 
call to loadTasks(), and the state of the second task was updated when we called 
runTask(). This latter update isn't logged till one second has elapsed.

Replacing action creators
At this point, we have a working action creator function that dispatches actions with 
mock payload data into the system. Recall that we don't necessarily want to get rid of 
these action creator functions, because when it's time to implement something new, 
we'll want to use these mocks again. 
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What we really need is a global switch that toggles the mock mode of the system, 
and this would change the implementation of the action creator function that's used. 
Here's a diagram that shows how this might work:

action.js

mockAction()

prodAction()

Feature

action.js

mockAction()

prodAction()

The idea here is that there's a mock version and a production version of the same 
action creator function within the module. This is the easy part; the tricky part 
is going to be implementing a global mock switch so that the correct function is 
exported, depending on the mode of the application:

import { MOCK } from '../settings';
import dispatcher from '../dispatcher';

// The action identifier...
export const LOAD_USERS = 'LOAD_USERS';

// The mock implementation of the action creator.
function mockLoadUsers() {
  dispatcher.dispatch({
    type: LOAD_USERS,
    payload: [
      { id: 1, name: 'Mock 1' },
      { id: 2, name: 'Mock 2' }
    ]
  });
}

// The production implementation of the action creator.
function prodLoadUsers() {
  dispatcher.dispatch({
    type: LOAD_USERS,
    payload: [
      { id: 1, name: 'Prod 1' },
      { id: 2, name: 'Prod 2' }
    ]
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  });
}

// Here's where the "loadUsers" value is determined, based
// on the "MOCK" setting. It's always going to be exported
// as "loadUsers", meaning that no other code needs to change.
const loadUsers = MOCK ? mockLoadUsers : prodLoadUsers;
export { loadUsers as loadUsers };

This is very handy during development, because the extent of our mocked functions 
is limited to the action creator modules and is controlled by one setting. Let's see 
how this action creator function is used, regardless of whether the mock or the 
production implementation is exported:

import dispatcher from './dispatcher';

// This code never has to change, although the actual
// function that's exported will change, depending on
// the "MOCK" setting.
import { loadUsers } from './actions/load-users';

dispatcher.register((e) => {
  console.log('Users', e.payload.map(x =>x.name));
});

loadUsers();
// → Users ["Mock 1", "Mock 2"]
// When the "MOCK" setting is set to true...
// → Users ["Prod 1", "Prod 2"]

Stateful action creators
The action creator functions we've looked at so far in this chapter have been relatively 
simple—they dispatch some action when called. But before that happens, these action 
creators will typically reach out to some API endpoint to retrieve some data, then 
dispatch the action, using the data as the payload. These are called stateless action 
creator functions because there's no intermediary state about them—no lifecycle in 
other words.

In this section, we'll think about things that are stateful and how we might go about 
integrating these into our Flux architecture. Another challenge we could face is 
integrating our Flux application into another architecture. First, we'll cover some 
basic ground on stateful action creators, then we'll look at a concrete example using 
web sockets.
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Integrating with other systems
Most of the time, Flux applications are standalone in the browser. That is, they're not 
a cog in a larger machine. We will, however, come up against cases where our Flux 
architecture needs to fit into something bigger. For example, if we need to interface 
with components that use a completely different framework, then we need to come 
up with a way to embed our software without compromising the Flux patterns. Or 
perhaps the coupling between our application and the one we're integrating with is 
a little looser, as when communicating with another browser tab. Whatever the case 
may be, we have to be able to send messages to this external system and we need 
to be able to consume messages from it, translating them into actions. Here is an 
illustration of this idea:

Other System

Message

Message

actionCreator()

Action

View

Flux System

As you can see, the Flux architecture depicted here isn't a closed system. The main 
implication is that the typical action creator functions that we're used to working 
with aren't necessarily called within the system. That is, they're handling a stream of 
external messages, using a stateful connection to the other system. This is just how 
web sockets work. We'll look at these stateful action creators next.
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Web socket connectivity
Web socket connectivity is growing to the point of pervasiveness in modern web 
applications, and if we're building a Flux architecture, there's a good chance we're 
going to need to build web socket support. When something changes state in the 
backend, web socket connections are a great way to notify clients about such a 
change. For example, imagine a Flux store is managing the state of some piece of 
backend data, and something causes its state to change—wouldn't we want the  
store to know about it?

The challenge is that we need a stateful connection in order to receive web socket 
messages and translate them into Flux actions. This is how web socket data enters 
the system. Let's take a look at some socket listener code:

// Get the action constants and action functions
// that we need.
import { ONE, one } from './one';
import { TWO, two } from './two';
import { THREE, three } from './three';

var ws;
var actions = {};

// Create a mapping of constants to functions
// that the web socket handler can use to call
// the appropriate action creator.
actions[ONE] = one;
actions[TWO] = two;
actions[THREE] = three;

// Connects the web socket...
export default function connect() {
  ws = new WebSocket('ws://127.0.0.1:8000');

  ws.addEventListener('message', (e) => {

    // Parses the message data and uses the
    // "actions" map to call the corresponding
    // action creator function.
    let data = JSON.parse(e.data);
    actions[data.task](data.value);
  });
}
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All we're doing here is creating a simple actions map. This is how we call the 
correct action creator function based on the task property of the message that 
was received. What's nice about this approach is that there's very little additional 
functionality required to make this work; the preceding code is the extent of it.  
The actual action creator functions, constants, and so on, are just typical Flux items. 
Let's look at the server code that generates these web socket messages, so we have  
an idea of what's actually being passed to the socket listener code:

// The HTTP server...
var server = require('http').createServer();

// The web socket server...
var ws = new require('ws').Server({
  server: server,
});

// Makes life worth living...
var express = require('express');
var app = express();

// So we can serve "index.html"...
app.use(express.static(__dirname));

// Handler for when a client connects via web socket.
ws.on('connection', function connection(ws) {
  let i = 0;
  const names = [ null, 'one', 'two', 'three' ];

  // Sends the client 3 messages, spaced by 1 second
  // intervals.
  function interval() {
    if (++i< 4) {
      ws.send(JSON.stringify({
        value: i,
        task: names[i]
      }));

      setTimeout(interval, 1000);
    }
  }

  setTimeout(interval, 1000);
});
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// Fire up the HTTP and web socket servers.
server.on('request', app);
server.listen(8000, () => {
  console.log('Listening on', server.address().port)
});

Over the course of three seconds, we'll see three web socket messages delivered 
to the client. Each message has a task property, and this is the value we're using 
to determine which action is dispatched. Let's take a look at the main.js frontend 
module and make sure everything's working as expected:

import dispatcher from './dispatcher';
import connect from './actions/socket-listener';
import { ONE } from './actions/one';
import { TWO } from './actions/two';
import { THREE } from './actions/three';

// Logs the web socket messages that have been
// dispatched as Flux actions.
dispatcher.register((e) => {
  switch (e.type) {
    case ONE:
      console.log('one', e.payload);
      break;
    case TWO:
      console.log('two', e.payload);
      break;
    case THREE:
      console.log('three', e.payload);
      break;
  }
});
// →
// one 1
// two 2
// three 3

// Establishes the web socket connection. Note
// that it's important to connect after everything
// with the Flux dispatcher is setup. 
connect();
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As you can see, the connect() function is responsible for establishing the web 
socket connection. This is a simple implementation, lacking several production-grade 
capabilities, such as reconnecting dropped connections. However, the important 
thing to note here is that this listener is actually located in the same directory as the 
other action modules. We actually want a tight coupling here because the main goal 
of the socket listener is to dispatch actions, by translating web socket messages.

Parameterized action creators
The final section of this chapter focuses on parameterized action creators. All 
the action creator functions we've looked at so far in the chapter have been basic 
functions that don't accept any arguments. This is fine, except for when we start to 
accumulate several unique actions that are nearly identical. Without parameterized 
action creator functions, we'll soon have an endless proliferation of functions; this 
does not scale.

First, we'll establish the goals of passing arguments to action creator functions, 
followed by some example code that implements generic action creator functions. 
We'll then look into creating partial functions to further reduce repetitiveness by 
composing action creators.

Removing redundant actions
Action creators are plain JavaScript functions. This means that they can accept 
zero or more arguments when called. The whole point of implementing a function, 
regardless of whether or not it's in the context of Flux, is to reduce the amount of 
code we have to write. Action creators in a Flux application are likely to accumulate 
because they drive the behavior of our application. If anything happens, it can be 
traced back to an action. So it's easy to introduce several new actions over the course 
of a day.

Once our application has several features implemented, we're bound to have a lot of 
actions. Some of these actions will serve a distinct purpose, while other actions will be 
very similar to each other. In other words, some actions will start to feel redundant. 
The goal is to remove redundant action creator functions by introducing parameters.

We should exercise caution in how we go about refactoring our action creator 
functions. There's a strong argument in favor of keeping a dedicated function 
for each type of action in the system. That is, one action creator function should 
only ever dispatch one type of action, not one of several options. Otherwise, the 
traceability of our code will be diminished. We should aim to reduce the total 
number of actions in the system altogether.
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Keeping actions generic
When actions are generic, the architecture requires less of them. This is a good thing 
because it means there's less knowledge to keep in our heads as we're writing code. 
Let's take a look at a couple of actions that do essentially the same thing; in other 
words, they're not generic at all. The first action is as follows:

import dispatcher from '../dispatcher';
import sortBy from 'lodash/sortBy';

// The action identifier...
export const FIRST = 'FIRST';

export function first() {

  // The payload data.
  let payload = [ 20, 10, 30 ];

  // Dispatches the "FIRST" action with
  // the payload sorted in ascending order.
  dispatcher.dispatch({
    type: FIRST,
    payload: sortBy(payload)
  });
}

Simple enough—it's using the lodash sortBy() function to sort the payload before 
dispatching the action.

Note that we wouldn't actually sort payload data like this in the action 
creator function. Think of this as an API mock. The point is that action 
creator function is asking something outside of Flux for data.

Let's look at another similar but distinct action:

import dispatcher from '../dispatcher';
import sortBy from 'lodash/sortBy';

// The action identifier...
export const SECOND = 'SECOND';

export function second() {

  // The payload data.
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  let payload = [ 20, 10, 30 ];

  // Dispatches the action, with the
  // payload sorted in descending order.
  dispatcher.dispatch({
    type: SECOND,
    payload: sortBy(payload, x => x * -1)
  });
}

The only difference here is how we're sorting the data. If this were a production 
action creator function, we would tell the API to sort the data in descending order 
instead of using lodash to do it in the action creator. Do we need two distinct actions 
for these two sort directions? Or can we eliminate both of them in favor of a generic 
action that accepts a sort direction parameter? Here's a generic implementation of the 
action:

import dispatcher from '../dispatcher';
import sortBy from 'lodash/sortBy';

// The action identifier...
export const THIRD = 'THIRD';

// Accepts a sort direction, but defaults
// to descending.
export function third(dir='desc') {

  // The payload data.
  let payload = [ 20, 10, 30 ];

  // The iteratee function that's passed
  // to "sortBy()".
  let iteratee;

  // Sets up the custom "iteratee" if we
  // want to sort in descending order.
  if (dir === 'desc') {
    iteratee = x => x * -1;
  }

  // Dispatches the action, sorting the payload
  // based on "dir".
  dispatcher.dispatch({
    type: THIRD,
    payload: sortBy(payload, iteratee)
  });
}
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Here are all three actions being used. Note that the third action covers both cases, 
and yet the fundamental sort action is the same no matter what arguments are 
passed. You can see in the dispatcher callback function that stores would have  
an easier time listening to one action instead of two or more:

import dispatcher from './dispatcher';
import { FIRST, first } from './actions/first';
import { SECOND, second } from './actions/second';
import { THIRD, third } from './actions/third';

// Logs the specific action payloads as
// they're dispatched.
dispatcher.register((e) => {
  switch(e.type) {
    case FIRST:
      console.log('first', e.payload);
      break;
    case SECOND:
      console.log('second', e.payload);
      break;
    case THIRD:
      console.log('third', e.payload);
      break;
  }
});

first();
// → first [10, 20, 30]

second();
// → second [30, 20, 10]

third();
// → third [30, 20, 10]

third('asc');
// → third [10, 20, 30]
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Creating action partials
In some cases, function arguments are straightforward—as in there are one or two of 
them. In others, the argument lists can be daunting, especially when we're calling them 
repeatedly using the same handful of arguments. Action creators in Flux applications 
are no different. There will be cases where we have a generic function that supports the 
odd case where, instead of a new action creator function, we simply supply a different 
parameter. But in the most common case, where the same parameters have to be 
supplied all the time, this can get repetitive to the point where it defeats the purpose of 
having generic functions.

Let's look at a generic action creator function that accepts a variable number of 
arguments. Since the same arguments are passed to the function in the most common 
case, we'll also export a partial version of the function where these arguments have 
been partially applied.

Default parameters in ES2015 syntax are a good alternative to creating 
partial functions, but only when the number of arguments is fixed.

import dispatcher from '../dispatcher';
import partial from 'lodash/partial';

// The action identifier...
export const FIRST = 'FIRST';

// The generic implementation of the action creator.
export function first(...values) {

  // The payload data.
  let defaults = [ 'a', 'b', 'c' ];

  // Dispatches the "FIRST" action with
  // the "values" array concatenated to
  // the "defaults" array.
  dispatcher.dispatch({
    type: FIRST,
    payload: defaults.concat(values)
  });
}

// Exports a common version of "first()" with
// the common arguments already applied.
export const firstCommon = partial(first, 'd', 'e', 'f');
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Now let's see how these two versions of the same action creator are used:

import dispatcher from './dispatcher';
import { FIRST, first, firstCommon } from './actions/first';

// Logs the specific action payloads as
// they're dispatched.
dispatcher.register((e) => {
  switch(e.type) {
    case FIRST:
      console.log('first', e.payload);
      break;
  }
});

// Calls the action creator with a common set
// of arguments. This is the type of code we
// want to avoid repeating all over the place.
first('d', 'e', 'f');
// → first ["a", "b", "c", "d", "e", "f"]

// The exact same thing as the "fist()" call above.
// The common arguments have been partially-applied.
firstCommon();
// → first ["a", "b", "c", "d", "e", "f"]

It's important to note that the first() and firstCommon() functions 
are the same action creator, and this is why they're defined in the 
same module. If we were to define firstCommon() in another action 
module, this would lead to confusion, because they both use the same 
action type—FIRST.

Summary
In this chapter, you learned about the action creator functions that Flux applications 
utilize in order to dispatch actions. Without action creator functions, we'd have to 
directly interface with the dispatcher in our code, which makes the architecture  
more difficult to reason about.

We started off by thinking about action naming conventions and the general 
organization of our action modules. Grouping action creators by feature has 
implications for modularity as well, especially in how this influences modularity  
in other areas of the architecture.
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Next, we discussed mocking data using action creator functions. Mocking data in 
Flux applications is easy to do and encouraged. Actions are the only way for data to 
enter the system, making it easy for us to switch between mocked action data and 
our production implementations. We wrapped the chapter up with a look at stateful 
action creators that listen to things such as web socket connections, and a look at 
parameterized action creators that keep repetitive code to a minimum.

In the next chapter, we'll address another key aspect of action creator functions—
asynchronicity.
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Asynchronous Actions
In Chapter 4, Creating Actions, we examined Flux actions in detail—action creator 
functions in particular. One aspect of action creators we didn't cover was asynchronous 
behavior. Asynchronicity is central to any web application, and in this chapter, we'll 
think about what this means for a Flux architecture.

We'll start by covering the synchronous nature of Flux, as breaking this synchronicity 
breaks the whole architecture. Next, we'll dive into some code that makes API calls 
and some action creators that need to synchronize multiple API calls before actually 
dispatching the action. Then, we'll introduce promises as return values from action 
creator functions.

Keeping Flux synchronous
It may sound strange that we would want to keep an architecture synchronous—
especially on the web. What about the laggy user experience that happens when 
everything is performed synchronously?

It's just the Flux data-flow that's synchronous, not the entire application. In this 
section, we'll touch upon why keeping the core data-flow mechanisms of our 
architecture synchronous is a good idea. Next, we'll talk about how we should 
encapsulate asynchronous behavior in our application. Finally, we'll go over the 
general semantics of how asynchronous action creator functions work.

Why synchronicity?
The simple answer is that anything that's asynchronous introduces a level of 
uncertainty that wouldn't otherwise be there. It can be tempting, given all the new 
hotness in web browsers, to make everything happen in parallel—to leverage as 
many concurrent web requests and as many processor cores as we possibly can. 
Once we go down this path, it's hard to turn back, and the further down we go,  
the more tangled the synchronization semantics get.
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Let's think about the DOM API for a moment. JavaScript applications use this API to 
change the state of elements on the page. When these changes happen, the browser's 
rendering engine kicks in and performs an update to the screen so that the user 
can actually see the changes. The DOM API doesn't directly interface with what's 
displayed on screen—there's a whole bunch of nasty details taken care of for us by 
the rendering engine. This idea is illustrated here:

JavaScript Engine

Component Component

update() update()

Render Engine

The takeaway here is that it's not the individual updates made by our components 
that cause the rendering engine to update the screen. The JavaScript engine is run-to-
completion, meaning that it waits for all these components to finish making their calls 
to update the DOM (and any other code they're running) before handing off control 
to the rendering engine. This means that any updates the user sees are fundamentally 
synchronous—all the concurrent code in the world doesn't change the synchronous 
communication path between the JavaScript engine and the render engine.

You might be wondering what this has to do with Flux at this point. It's actually 
very relevant because the authors of Flux understand this synchronous DOM update 
mechanism, so rather than fight it with complex asynchronous code everywhere, 
they came up with data-flow semantics that embrace the synchronous nature of 
updating the DOM.

The core abstraction Flux uses for synchronous data-flow is the update round,  
which was introduced in Chapter 2, Principles of Flux. Nothing can interrupt an 
update round because every component that takes part in it has no asynchronous 
behavior. If Flux has a killer feature, this is it. The update round is such a critical 
property of Flux architectures that we have to be especially careful to maintain it. 
It's like an umbrella concept—dozens of little edge cases caused by asynchronous 
behavior fall outside of it.
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Encapsulating asynchronous behavior
With Flux update rounds being synchronous, where should we put our 
asynchronous code? Let's think about this for a moment. Flux architecture aside, 
any asynchronous behavior is going to update the state of the system in some way 
when the action completes and is synchronized with the rest of our code. In some 
architectures, this happens all over the place and there's nothing guarding against 
these types of asynchronous actions from being called from places where they 
shouldn't.

For example, a Flux update round should never result in new asynchronous behavior 
running. We know that update rounds are synchronous, so this is a non-starter. We 
do need to encapsulate our asynchronous behavior somehow though. This is what 
action creator functions are really good at—performing the asynchronous work and 
managing the action dispatches once the asynchronous portion has completed. Here 
is a visualization of action creator functions encapsulating asynchronous calls:

actionCreator()

async() Action

actionCreator()

async() Action

Dispatcher

Keeping asynchronous behavior in the action creator functions does two things for 
us. First, we know there's no synchronization semantics involved in calling the action 
creator—this is all handled within the function for us. The second advantage is that 
all of our asynchronous behavior can be found within a single architectural layer. 
That is, if there's something that's asynchronous, such as making an API call, we 
know where to look for this code.

Asynchronous action semantics
It's up to our action creator functions to perform any synchronizations before 
dispatching any actions. There are two parts to a given action creator function. The 
first is the asynchronous calls, if any, while the second part is the actual dispatching 
of the action. The job of these action creator functions is to synchronize the async call 
with the Flux dispatcher, meaning that the function will have to wait for some kind 
of response before the action can be dispatched. 
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This is because the asynchronous action has payload data. Let's take a look at an 
example, shall we? Here's an action creator function that calls an API to load a list of 
user objects:

import dispatcher from '../dispatcher';

// The action identifier...
export const LOAD_USERS = 'LOAD_USERS';

// Performs some asynchronous behavior, and once
// complete, dispatches the action.
export function loadUsers() {

  // Creates a new promise, intended to simulate
  // a call to some API function, which would likely
  // also return a promise.
  let api = new Promise((resolve, reject) => {

    // Resolves the promise with some data after half
    // a second.
    setTimeout(() => {
      resolve([
        { id: 1, name: 'User 1' },
        { id: 2, name: 'User 2' },
        { id: 3, name: 'User 3' }
      ]);
    }, 500);
  });

  // When the promise resolves, the callback that's
  // passed to "then()" is called with the resolved
  // value. This is the payload that's dispatched.
  api.then((response) => {
    dispatcher.dispatch({
      type: LOAD_USERS,
      payload: response
    });
  });
}

As you can see, we're using a promise in place of an actual API call. Generally 
speaking, our application will probably have an API function call that returns a 
promise. This is exactly what we're doing here—making it seem like we're talking with 
an API when in reality, it's just a promise. The mechanics are the same, regardless of 
whether setTimeout() or an actual AJAX response resolves the promise.
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The important thing to note is that it's the loadUsers() function that takes care 
of dispatching the action after the promise has resolved. Think of it this way—the 
dispatcher is never invoked unless we have new data for the system. The waiting 
part falls outside of the Flux update round, which is why it's nice to keep everything 
together in a function like this. Here's how we use the loadUsers() function:

import dispatcher from './dispatcher';
import { 
  LOAD_USERS, 
  loadUsers
} from './actions/load-users';

// Logs the specific action payloads as
// they're dispatched.
dispatcher.register((e) => {
  switch(e.type) {
    case LOAD_USERS:
      console.log('users', e.payload.map(x =>x.id));
      break;
  }
});

loadUsers();
// → users [1, 2, 3]

Something that you may have noticed is missing from this example is 
any kind of error handling. For example, it would be unpleasant to call 
loadUsers() and have it fail silently because something's wrong with 
the API. We'll cover error-handling in more depth in the final section of 
this chapter.

Making API calls
In this section, well go over the common case for asynchronous behavior in Flux 
architectures—making API calls over the network. Then, we'll discuss some the 
implications of asynchronous behavior in the context of user interactivity and the 
Flux tools available to deal with them.
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APIs are the common case
Flux architecture is for the frontend of web applications. That said, there's going to be 
a lot of network communication between some components of our architecture and the 
backend API. This is the common case for asynchronous behavior, not just in Flux, but 
in the majority of JavaScript applications. Therefore, this is where the emphasis should 
be when designing action creators that directly communicate asynchronously with 
these API endpoints. Here's what the most common communication paths look like in 
Flux applications:

API

actionCreator() actionCreator() actionCreator()

API API

The stores need to be populated with data, and this is the most common way to get 
data—by fetching it from the API. In fact, the user is likely going to spend more 
time consuming information than interacting with UI elements. As you saw in the 
last section, synchronizing the response with the dispatcher isn't difficult to do with 
promises.

These types of API calls aren't the only source of asynchronous data in Flux 
architectures. For example, reading a file using the file API requires the use of an 
asynchronous function call. Interacting with web workers is another asynchronous 
form of communication—you ask the worker to compute something and get a response 
in the form of a callback function. Although less common than HTTP calls, these 
asynchronous interfaces may be treated in the same way, as illustrated here:

HTTP API

actionCreator()

File API

actionCreator()

Web Worker API

actionCreator()

The same synchronization mechanism—promises—can be used for all of these types 
of asynchronous communication channels. As far as the action creator functions are 
concerned, they all have the same interface—a promised value that's resolved at a 
later time. The dispatcher semantics are the same here as well. 
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There's no asynchronous behavior entering the Flux update round because it's all 
encapsulated within the action creator functions themselves. Additionally, it could 
take more than one API to get all the data needed for an action payload. We'll look 
at this shortly. For now, let's turn our attention to how asynchronous action creators 
impact user interactivity.

API calls and user interactivity
The main challenge with asynchronous calls and user interface elements is that we 
have to manage the state of the request, which in turn reflects the state of the UI 
elements. For example, when the user submits a form, we have to give some sort 
of visual indication that the request has been made and that it's being processed. 
Moreover, we also need to prevent the user from interacting with certain UI elements 
until a response comes back with the state of the request.

The stores in a Flux architecture contain all application state, including the state 
of any network requests we want to track. This can help us coordinate the state of 
relevant UI elements with a given request. Let's look at an action creator that sends 
an asynchronous API request to start something:

import dispatcher from '../dispatcher';

// The action identifier...
export const START = 'START';

export function start() {

  // Simulate an async API call that starts
  // something. The promise resolves after
  // one second.
  let api = new Promise((resolve, reject) => {
    setTimeout(resolve, 1000);
  });

  // Dispatches the action after the promise
  // has resolved.
  api.then((response) => {
    dispatcher.dispatch({ type: START });
  });
}
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As you can see, the start() function dispatches the START action after the promise 
resolves. Just like a real API call, this delay allows the user ample time to interact 
with the UI before the call returns. So, we have to take steps to prevent this from 
happening. Let's look at another action creator function that tells the system about 
the state of the API request we just made:

import dispatcher from '../dispatcher';

export const STARTING = 'STARTING';

export function starting() {
  dispatcher.dispatch({ type: STARTING });
}

By calling starting(), we can inform any stores that might be listening that we're 
about to make an API call to start something. This could be what we need to take 
care of handling the state of UI elements to inform the user that the request is in 
progress, and to disable elements the user shouldn't touch while the request is 
happening. Let's take a look at a store that processes these types of actions.

The store also processes STOP and STOPPING actions. These 
modules aren't listed separately here because they're nearly 
identical to the START and STARTING actions, respectively.

import dispatcher from '../dispatcher';
import {
  START,
  STARTING,
  STOP,
  STOPPING
} from '../actions/constants';

import { EventEmitter } from 'events';

class MyStore extends EventEmitter {
  constructor() {
    super();

    this.state = {
      startDisabled: false,
      stopDisabled: true
    };
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    dispatcher.register((e) => {
      switch(e.type) {

        // If starting or stopping, we don't want any
        // buttons enabled.
        case STARTING:
        case STOPPING:
          this.state.startDisabled = true;
          this.state.stopDisabled = true;
          this.emit('change', this.state);
          break;

        // Disable the stop button after being started.
        case START:
          this.state.startDisabled = true;
          this.state.stopDisabled = false;
          this.emit('change', this.state);
          break;

        // Disabled the start button after being stopped.
        case STOP:
          this.state.startDisabled = false;
          this.state.stopDisabled = true;
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new MyStore();

The store has a clear representation of the disabled state for both a start and a 
stop button. If the STARTING or STOPPING action is dispatched, then we can mark 
both buttons as disabled. In the case of START or STOP, we can mark the appropriate 
button as disabled and the other as enabled. Now that the stores have all the state 
that they need, let's now look at a view that actually renders the button elements.

You might be wondering why we've separated these two actions into 
two action creator functions—start() and starting(). The reason 
is simple: one action creator dispatches one action. However, this 
isn't set in stone and is a matter of personal preference. For example, 
start() could have dispatched the STARTING action before actually 
making the API call. The upside here is that there's only one function 
that takes care of everything. On the downside, we lose the one-to-one 
correspondence between action creator and action, raising the potential 
for confusion.
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import myStore from '../stores/mystore';
import {
  start,
  starting,
  stop,
  stopping
} from '../actions/functions';

class MyView {
  constructor() {

    // The elements our view interacts with...
    this.start = document.getElementById('start');
    this.stop = document.getElementById('stop');

    // The start button was clicked. Dispatch the
    // "STARTING" action, and the "START" action
    // once the asynchronous call resolves.
    this.start.addEventListener('click', (e) => {
      starting();
      start();
    });

    // The stop button was clicked. Dispatch the
    // "STOPPING" action, and the "STOP" action
    // once the asynchronous call resolves.
    this.stop.addEventListener('click', (e) => {
      stopping();
      stop();
    });

    // When the store state changes, update the UI
    // by enabling or disabling the buttons,
    // depending on the store state.
    myStore.on('change', (state) => {
      this.start.disabled = state.startDisabled;
      this.stop.disabled = state.stopDisabled;
    });
  }
}

export default new MyView();
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Note that the main job of the click handlers is to call action creator functions. They're 
not performing extra state checking to make sure that the actions can be called, and so 
on. This sort of thing doesn't belong in views, it belongs in a store. We're following this 
tactic here, where we disable the buttons in the store by change a particular piece of 
state. If we check for this sort of thing in view event handlers, we end up decoupling 
the state from the logic that operates on it, and in Flux this is not a good thing.

Combining API calls
As development moves forward and features become more involved, we're 
inevitably faced with complex API scenarios. This means that there's no longer 
a simple API endpoint that delivers everything the feature needs with one call. 
Instead, our code has to stitch together two or more resources from different 
endpoints just to get the data needed by the feature.

In this section, we'll look at action creator functions that fetch data from multiple 
asynchronous resources and pass them to stores as payload data. These stores then 
convert these to information required by features. Then, we'll look at an alternative 
approach, where we compose action creator functions out of smaller action creator 
functions, each pulling data from their own asynchronous resource.

Complex action creators
Sometimes, a single API endpoint doesn't have all of the data we need for a given 
store. This means that we have to fetch data from multiple API endpoints. The 
challenge is that these are asynchronous resources, and they need to be synchronized 
before passing them to stores by dispatching them as action payloads. Let's take a 
look at an action creator that fetches data from three asynchronous API endpoints. 
But first, here's the API functions we'll use to simulate asynchronous network calls:

// API helper function - resolves the given
// "data" after the given MS "delay".
function api(data, delay=1000) {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve(data);
    }, delay);
  });
}

// The first API...
export function first() {
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  return api([ 'A', 'B', 'C' ], 500);
}

// The second API...
export function second() {
  return api([ 1, 2, 3 ]);
}

// The third API...
export function third() {
  return api([ 'D', 'E', 'F' ], 1200);
}

So we have consistent return values from these API functions—promises. Each 
promise that's returned from a given function is responsible for synchronizing that 
one API call. But what about when our store needs to combine all of these resolved 
values to form the state of a store? Let's now look at an action creator function that 
handles this:

import dispatcher from '../dispatcher';

// The mock API functions we need.
import {
  first,
  second,
  third
} from './api';

// The action identifier...
export constMY_ACTION = 'MY_ACTION';

export function myAction() {

  // Calls all three APIs, which all resolve
  // after different delay times. The "Promise.all()"
  // method synchronizes them and returns a new promise.
  Promise.all([
    first(),
    second(),
    third()
  ]).then((values) => {

    // These are the resolved values...
    let [ first, second, third ] = values;
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    // All three API calls have resolved, meaning we
    // can now dispatch "MY_ACTION" with the three
    // resolved async values as the payload.
    dispatcher.dispatch({
      type: MY_ACTION,
      payload: {
        first: first,
        second: second,
        third, third
      }
    });
  });
}

The action MY_ACTION is only dispatched once all three asynchronous values have 
resolved, because the store depends on all three. All three values are available to 
the store within a single update round when the action is dispatched. Something 
less obvious about this code, but important nonetheless, is the fact that we're not 
performing any data transformations inside the action creator function before 
dispatching the payload. Instead, we provide the resolved API data as is, in the form 
of payload properties. This ensures that the store is the sole component responsible for 
the state of its information. Let's look at how a store is now able to use this payload:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/myaction';

class MyStore extends EventEmitter {
  constructor() {
    super();

    this.state = [];

    dispatcher.register((e) => {
      switch(e.type) {
        case MY_ACTION:

          // Get the resolved async values from the
          // action payload.
          let { first, second, third } = e.payload;

          // Zip the three arrays and set the resulting
          // array as the store state.
          this.state = first.map((item, i) =>
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            [ item, second[i], third[i] ]);

          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new MyStore();

As you can see, the store has everything it needs in the payload to perform the 
necessary transformations. Let's call the action creator function and see if this store 
behaves as expected:

import { myAction } from './actions/myaction';
import myStore from './stores/mystore';

myStore.on('change', (state) => {
  console.log('changed', state);
});

myAction();
// → changed
// [
//   [ 'A', 1, 'D' ],
//   [ 'B', 2, 'E' ],
//   [ 'C', 3, 'F' ]
// ]

Composing action creators
As you saw earlier in the chapter, our action creator function calls can get quite 
verbose when user interactivity is involved. This is because we have to make two or 
more calls to action creator functions. One call ensures that the UI elements are in a 
state that's appropriate while the user waits for the asynchronous action to complete. 
The other call invokes the asynchronous behavior. To avoid having to make two calls 
everywhere, we could just have the action creator function dispatch two actions. 
However, this isn't always ideal because we might need to call the first action creator 
without the second action creator at some point. It's a granularity problem more than 
anything.



Chapter 5

[ 107 ]

The easy solution is to compose a function out of the two. This way, we keep the 
granularity intact, while reducing the number of functions to call in many places. 
Let's revisit our code from earlier, where we had to manually call starting()  
then start():

import { start as _start } from './start';
import { starting } from './starting';
import { stop as _stop } from './stop';
import { stopping } from './stopping';

// The "start()" function now automatically
// calls "starting()".
export function start() {
  starting();
  _start();
}

// The "stop()" function now automatically
// calls "stopping()"
export function stop() {
  stopping();
  _stop();
}

// Export "starting()" and "stopping()" so
// that they can still be used on their
// own, or composed into other functions.
export { starting, stopping };

Now our views can simply call start() or stop() and the necessary state changes 
are applied to the relevant UI elements. This works because the first action creator 
function is synchronous—meaning that the full Flux update round takes place before 
the asynchronous call is made. This behavior is consistent, no matter what. Where 
we start running into problems is when we start composing functions out of several 
asynchronous action creators, as visualized here:

action()

asyncAction() asyncAction()

Update Round Update Round
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The problem here is that each of these asyncAction() functions we've used to 
compose action() results in an update round. The update round that happens first 
is a race condition. We can't combine them into a single action creator that makes 
requests to multiple API endpoints because they service two different stores. Flux is 
all about predictable data flows, and this means always knowing the order of update 
rounds. In the next section, we'll revisit promises in action creator functions to help 
us get around these tricky asynchronous action creator scenarios.

Returning promises
None of the action creator functions we've looked at so far in this chapter have 
returned any values. That's because their main job is to dispatch actions, while at the 
same time hiding any concurrency synchronization semantics. On the other hand, 
action creator functions could return a promise so that we could compose more 
complex asynchronous behavior that spans multiple stores. In the last section, we 
saw that composing asynchronous behavior using action creator functions can be 
difficult if not impossible to do.

In this section, we'll revisit the challenges posed by asynchronous behavior in 
the context of composing larger functionality. Then, we'll create an example 
implementation with action creators that return promises and use them to synchronize 
with one another. Finally, we'll see whether returning promises from action creators 
can help us deal with errors that happen in the asynchronous resources we're 
communicating with.

Synchronizing without promises
One nice aspect of a Flux architecture is the fact that a lot of it is synchronous.  
For example, when we call the dispatcher with a new action and a new payload, 
we can rest assured that the call will block until the update round has completed, 
and everything in the UI is reflecting the current state of things. With asynchronous 
behavior, things are different—especially in a Flux architecture where this type of 
thing is strictly confined to action creator functions. Therefore, we face the inevitable 
challenge of trying to piece together complex systems from an abundance of 
asynchronous resources.

We saw how to get partway there earlier in the chapter. A single action creator 
function can combine the resolved values of several asynchronous resources into a 
single action and a payload. Then the logic within the store can figure out how to 
make use of the data and update its state. This works fine when single stores are in 
play, but falters when we're trying to synchronize resources across several stores  
and features. 
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This is when being able to synchronize the async data and the Flux update round 
becomes important. To do so, our action creator functions need to return promises 
that resolve when both have completed. Here's an illustration of what we need to 
accomplish:

actionCreator()

Promise

async()

updateRound()

Composing asynchronous behavior
The way to get around these tricky asynchronous action creator scenarios is to 
have these functions return promises that are resolved after the asynchronous 
behavior and the update round have completed. This lets the caller know that the 
update round is complete and that anything we call now will take place afterward. 
Consistency is what we're after here, so let's take a look at an action creator function 
that returns a promise:

// The action identifier...
export const FIRST = 'FIRST';

// The API function that returns a promise that's
// resolved after 1.5 seconds.
function api() {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve({ first: 'First Name' });
    }, 1500);
  });
}

export function first() {

  // Returns a promise so that the caller
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  // knows when the update round is complete,
  // regardless of the asynchronous behavior
  // that takes place before the action is dispatched.
  return new Promise((resolve, reject) => {
    api().then((response) => {

      // Action is dispatched after the asynchronous
      // value is resolved.
      dispatcher.dispatch({
        type: FIRST,
        payload: response
      });

      // Resolve the promise returned by "first()",
      // after the update round.
      resolve();
    });
  });
}

So this action creator calls an asynchronous API that resolves after 1.5 seconds, at 
which point the action payload is dispatched and the returned promise is resolved. 
Let's take a look at another action creator that uses a different API function:

import dispatcher from '../dispatcher';

// The action identifier...
export const LAST = 'LAST';

// The API function that returns a promise that's
// resolved after 1.5 seconds.
function api() {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      resolve({ last: 'Last Name' });
    }, 1000);
  });
}

export function last() {
  return new Promise((resolve, reject) => {
    api().then((response) => {
      dispatcher.dispatch({
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        type: LAST,
        payload: response
      });

      resolve();
    });
  });
}

You can see that the two action creator functions—first() and last()—follow 
an identical strategy by returning promises. The API function, however, resolves 
different data, and it takes only 1 second to do so. Let's see what happens when we 
try to use these two functions together:

import dispatcher from './dispatcher';
import { FIRST, first } from './actions/first';
import { LAST, last } from './actions/last';

// Logs the payload as actions are dispatched...
dispatcher.register((e) => {
  switch (e.type) {
    case FIRST:
      console.log('first', e.payload.first);
      break;
    case LAST:
      console.log('last', e.payload.last);
      break;
  }
});

// Order of update rounds isn't guaranteed here.
first();
last();
// →
// last Last Name
// first First Name

// With promises, update round order is consistent.
first().then(last);
// →
// first First Name
// last Last Name
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Handling errors
What happens when the API that Flux action creators interact with fails? Generally 
speaking, when we make AJAX calls, we supply both success and error callback 
functions. This way, we can fail in a graceful manor. We have to be careful about 
how we handle failure in Flux action creators because, just as stores want to know 
about actions, they want to know about failures too.

So the question is—what do we do differently in our action creator functions? Do we 
just dispatch some sort of error action from within the action creator when the API 
fails? We do want to dispatch an error action so that the stores can adjust their state 
accordingly, but what about the caller of the action creator? For example, we could 
have a generic action creator function that's used in many places, and the error-
handling could be context dependent.

The answer is to have the promise that's returned by the action creator reject. This 
allows the caller to specify their own behavior in the event of a failed API call. Let's 
look at an action creator function that handles errors this way:

import dispatcher from '../dispatcher';

// The action identifier...
export const UPDATE_TASK = 'UPDATE_TASK';

// The action error identifier...
export const UPDATE_TASK_ERROR = 'UPDATE_TASK_ERROR';

// Returns a promise that's rejected with an error
// message after 0.5 seconds.
function api() {
  return new Promise((resolve, reject) => {
    setTimeout(() => {
      reject('Failed to update task');
    }, 500);
  });
}

export function updateTask() {
  return new Promise((resolve, reject) => {

    // Dispatches the "UPDATE_TASK" action as usual
    // when the promise resolves. Then resolves
    // the promise returned by "updateTask()".
    api().then((response) => {
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      dispatcher.dispatch({
        type: UPDATE_TASK
      });

      resolve();

    // If the API promise rejects, reject the promise
    // returned by "updateTask()" as well.
    }, (error) => {
      reject(error);
    });
  });
}

// A basic helper action creator for when the
// "updateTask()" function is rejected.
export function updateTaskError(error) {
  dispatcher.dispatch({
    type: UPDATE_TASK_ERROR,
    payload: error
  });
}

Now let's call this updateTask() function and see if we can assign error handling 
behavior to it:

import dispatcher from './dispatcher';
import {
  UPDATE_TASK,
  UPDATE_TASK_ERROR,
  updateTask,
  updateTaskError
} from './actions/update-task';

// Logs the payload as actions are dispatched...
dispatcher.register((e) => {
  switch (e.type) {
    case UPDATE_TASK:
      console.log('task updated');
      break;
    case UPDATE_TASK_ERROR:
      console.error(e.payload);
      break;
  }
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});

// We can tell "updateTask()" how to respond when
// the underlying API call fails.
updateTask().catch(updateTaskError);
// → Failed to update task

Summary
This chapter focused on asynchronous action creators in Flux architectures. These 
are functions that need to dispatch actions, but before they can, they have to wait for 
some asynchronous resource to resolve. We looked at the synchronous update round 
concept, which is central to any Flux architecture. Then, we discussed how action 
creators encapsulate asynchronous behavior in such a way that they preserve the 
synchronous update rounds.

Network calls are the most common form of asynchronous communication in 
JavaScript applications, including Flux architectures. We covered the difference 
between these and other asynchronous channels, and how promises can be used to 
bridge the gap between them. We also looked at how promises can be utilized by 
action creator functions to allow for the composition of more complex functionality.

In the next chapter, we'll take a deeper look at stores and everything they have to do 
to maintain consistent state in our Flux architectures.



[ 115 ]

Changing Flux Store State
This chapter is about the continuing evolution of our Flux stores, as the application 
features we implement drive architectural improvements. In fact, this is something 
Flux architectures excel at—adapting to changes influenced by the application as 
they happen. This chapter dives into changing the design of stores and hammers 
home the idea that stores will change often. Higher-level changes to our stores might 
be necessary, such as introducing generic stores that are shared by several other 
stores that target specific features. As stores evolve, so do the dependencies between 
them; we'll look at how to manage inter-store dependencies using the dispatcher. 
We'll close the chapter with a discussion on keeping store complexity at bay.

Adapting to changing information
Earlier in the book, I mentioned that stores aren't models from MV* architectures. 
They're different from a number of perspectives, including their ability to cope with 
changing schemas in other architectural areas, such as the API and changing feature 
requirements. In this section, we'll look at the Flux store's ability to adapt to changing 
APIs. We'll also address the opposite direction of change, when views that consume 
store data have changing requirements. Finally, we'll talk about other components 
that might change as the direct result of a store's ongoing evolution.

Changing API data
API data changes, especially during the early stages of development. Even though 
we tell ourselves that a given API is going to stabilize over time, this rarely works 
out in practice. Or if an API does become stable and unchanging, we end up having 
to use a different API. The safe assumption is that this data is going to change, and 
our stores will need to adapt to such changes.
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The beautiful part of Flux stores is the fact that they're feature driven more than 
they're API driven. This means that changes in API data have less of an impact on 
stores because their job is to transform the API data into information required by the 
feature. Here is a visualization of this idea:

API Data Feature
Information

transform()

Store

Unlike models, we're not trying to represent the API data in stores as is. Stores hold 
on to state that serves as information consumed by the features our customers use. 
This means that when changes happen in the API data that a given store depends 
on, we just have to revisit the transformation functions that create the feature 
information. On the other hand, models that are used by many different views in 
many different features of the application have a much harder time coping with API 
data changes such as these. It's because these components have dependencies with 
the schema of the API data, and not with the actual state that's relevant for the UI 
elements we need to render.

Can we always recreate the feature information that is used in our architecture after 
an API change has taken place? Not always. And this requires that we revisit how 
our views interact with the store. For example, if properties are removed entirely 
from a given API schema, this will likely require more than a simple transform 
update in our store. But this is a rare case; the most common case is that Flux stores 
can easily adapt to changing API data.

Changing feature functionality
Stores change and evolve through changing API data. This can impact the information 
that's available to the features that rely on the store. As our application grows, stores 
can feel pressure in the opposite direction—changing feature functionality often 
requires new information. This concept is illustrated in the following diagram:

Feature
Functionality

API

UI

transform()

Store
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Instead of the API data alone dictating what happens in the transform() function, 
it's the other way around. The feature and the information that drives it serve as 
input to the design of the store transformation. This can actually be more difficult 
than adapting to changing API data. There are two main reasons for this.

First, there's the information itself. The store can transform resources into whatever 
the feature needs. But stores aren't magical—the API data needs to provide at least 
the basic necessities in terms of data; otherwise, we're at a dead end. Second, there 
are the UI elements themselves, some of which have state that needs to be captured 
by the store. Combining these two factors can make for a challenge.

It's good to get these difficult feature-related questions about information answered 
sooner rather than later. Being able to work in this direction means that we're 
letting the information that users care about drive the design, rather than letting the 
available API dictate what's possible.

Impacted components
As we saw earlier in this section, stores transform their data sources into information 
that's consumable by user features. This is a great architectural characteristic of Flux, 
because it means that the views that listen to these stores aren't constantly having 
to change as a result of changes made to the API. We do, however, need to stay 
conscious of the impact to other components when stores evolve.

Let's think about actions for a moment. When the API data changes, is this likely to 
result in new actions that we need to dispatch? No, because we're likely dealing with 
existing entry points into the system—these actions already exist. What about feature 
functionality—does this result in new actions? This is likely, because we could see 
new user interactivity introduced into a feature or new data and APIs. Existing action 
payloads can evolve as well, in response to changing UI elements, for example.

Something else to consider is the effect a changing store has on other stores that 
depend on it. Will it still be able to get the information it needs after the change? 
Views aren't the only Flux components that have store dependencies. We'll look  
at inter-store dependencies in more depth later in the chapter.

Reducing duplicate store data
Stores help us separate the state found in our architectures into features. This works 
out well because we can have drastically different data structures from one feature to 
the next. Alternatively, we could find that, as new features are introduced, a lot of the 
same data starts to appear in different stores. Nobody wants to repeat themselves—
it's inefficient, and we can do better.
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In this section, we'll introduce the notion of generic stores. These types of stores 
aren't necessarily used by views, but by other stores as a sort of repository for 
common data. We'll then walk through the basic setup of a generic store and how we 
can put generic stores to use in our more specialized stores.

Generic store data
Generic stores are similar to parent classes in a class hierarchy. A parent class has the 
common behavior and properties found in several children. However, unlike class 
hierarchies, we don't have several levels of structure. The aim of generic stores in 
Flux architectures is pretty simple—remove duplication where possible. Here is an 
illustration of a generic store:

Generic
Store

Specific
Store

Specific
Store

Specific
Store

This allows for the state and transformations that are common to stores that serve 
specific features to share state that's also common. Otherwise, every update round will 
have to perform the same update on a different store. It's better to keep the update in 
one place to let stores query the generic store to compute their own state.

It's important to point out that specific stores don't actually inherit 
anything from generic stores in the way that a child class would 
inherit properties from its parent. Think of generic stores as instances, 
just like any other store. Also just like any other store, generic stores 
receive actions from the dispatcher to compute state changes.

Registering generic stores
With data dependencies, such as those we'll eventually find with the stores in our 
Flux architectures, order matters. For example, if a specific store is processed before 
a store that it depends on in an update round, we could end up with unexpected 
results. The generic store always needs to process actions first so that it has an 
opportunity to perform any transformations and set its state before any dependent 
stores access it. 
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Let's look at an example. First, we'll implement a generic store that takes a collection 
of document objects and maps it to a collection of document names:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { LOAD_DOC } from '../actions/load-doc';

// The generic "Docs" store keeps an index
// of document names, since they're used
// by many other stores.
class Docs extends EventEmitter {
  constructor() {
    super();

    this.state = [];

    dispatcher.register((e) => {
      switch(e.type) {
        case LOAD_DOC:

          // When a "LOAD_DOC" action is dispatched,
          // we take the "payload.docs" data and
          // transform it into the generic state that's
          // required by many other stores.
          for (let doc of e.payload.docs) {
            this.state[doc.id] = doc.name;
          }

          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new Docs();

Next, we'll implement a specific store that depends on this generic Docs store. It will be 
a specific document, which is used by a page that displays the name of the document. 
This store will have to locate the name based on the id property, in the generic store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import docs from './docs';
import { LOAD_DOC } from '../actions/load-doc';

// The specific store that depends on the generic
// "docs" store.
class Doc extends EventEmitter {
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  constructor() {
    super();

    this.state = {
      name: ''
    };

    dispatcher.register((e) => {
      switch(e.type) {
        case LOAD_DOC:

          // The "id" of the document...
          let { id } = e.payload;

          // Here's where the generic store data
          // comes in handy - we only care about
          // the document name. We can use the "id"
          // to look this up from the generic store.
          this.state.name = docs.state[id];

          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new Doc();

Let's stop for a moment and think about what we've done here and why we're doing 
it. This generic Docs store implements a transformation that maps a collection of 
document data to an array of names. We're doing this because we have several other 
stores that need to look up a document name by id. If it were just the Doc store that 
needed this data, this would hardly be worth implementing. The idea is to reduce 
duplication, not to introduce indirection.

With that said, let's take a look at an action creator function that both of these stores 
will listen to:

import dispatcher from '../dispatcher';

// The action identifier...
export constLOAD_DOC = 'LOAD_DOC';

// Loads the name of a specific document.
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export function loadDoc(id) {

  // The API data resolves raw document data...
  new Promise((resolve, reject) => {
    resolve([
      { id: 1, name: 'Doc 1' },
      { id: 2, name: 'Doc 2' },
      { id: 3, name: 'Doc 3' }
    ]);
  }).then((docs) => {

    // The payload contains both the raw document
    // collection and the specific document "id".
    // The generic "docs" store uses the raw
    // "docs" data while the specific store depends
    // on this generic collection.
    dispatcher.dispatch({
      type: LOAD_DOC,
      payload: {
        id: id,
        docs: docs
      }
    });
  });
}

As you can see, this function takes a document id as a parameter and makes an 
asynchronous call to load all the documents. Once they're loaded, the LOAD_DOC 
action is dispatched and the two stores can set their state. The challenge then 
becomes—how do we ensure that the generic store is updated before any stores  
that depend on it? Let's take a look at the main.js module and see this action 
creator, along with the two stores, put to work:

// We have to import the generic "docsStore", even though
// we're not using it here, so that it can register with
// the dispatcher and respond to "LOAD_DOC" actions.
import docsStore from './stores/docs';
import docStore from './stores/doc';
import { loadDoc } from './actions/load-doc';

// Logs the data our specific store gets from
// the generic store.
docStore.on('change', (state) => {
  console.log('name', `"${state.name}"`);
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});

// Load the document with an id of 2.
loadDoc(2);
// → name "Doc 2"

When loadDoc(2) is called, the specific store gets its state set as we expect. This only 
works because of the order in which we're importing the two stores into main.js. 
In fact, if we were to swap the order, and import docStore before docsStore, then 
we wouldn't see the results we expect. The reason is simple—the order in which the 
stores are registered with the dispatcher determines the order in which they process 
actions. Later in the chapter, we'll look at a less cumbersome approach to handling 
store dependencies.

Combining generic and specific data
What's nice about generic stores is that they can be used directly by views. That 
is, they're not some abstract concept. These same stores can also be used by more 
specific stores to extend their data and transform their state into something that's 
required by other views. Let's look at an example where a specific store combines 
the state of a more general store with its own state. We'll start by looking at a generic 
group's store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { LOAD_GROUPS } from '../actions/load-groups';

// A generic store for user groups...
class Groups extends EventEmitter {
  constructor() {
    super();

    this.state = [];

    dispatcher.register((e) => {
      switch(e.type) {

        // Stores the payload of a group array "as-is".
        case LOAD_GROUPS:
          this.state = e.payload;
          this.emit('change', this.state);
          break;
      }
    });
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  }
}

export default new Groups();

There isn't much going on here in the way of state transformation—the store just 
sets the payload as its state. Now, we'll look at the more specific users store, which 
depends on the groups store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import groups from './groups';
import { LOAD_USERS } from '../actions/load-users';

// A users store that depends on the generic
// groups store so that it can perform the necessary
// state transformations.
class Users extends EventEmitter {
  constructor() {
    super();

    this.state = [];

    dispatcher.register((e) => {
      switch(e.type) {
        case LOAD_USERS:

          // We only want to keep enabled users.
          let users = e.payload.filter(
            x => x.enabled);

          // Maps to a new users array, each user object
          // containing a new "groupName" property. This
          // comes from the generic group store, and is
          // looked up by id.
          this.state = users.map(
            x =>Object.assign({
              groupName: groups.state.find(
                y =>y.id === x.group
              ).name
            }, x));

          this.emit('change', this.state);
          break;
      }



Changing Flux Store State

[ 124 ]

    });
  }
}

export default new Users();

The state transformation that happens in this store is a little more involved. The LOAD_
USERS payload is an array of user objects, each with a group property. However, the 
views that observe this store have a specific need for the name of the group, not the 
id. So, it is here that we perform the mapping that creates a new array of user objects, 
this one with the groupName property required by our views. Here's a look at the 
loadUsers() action creator function:

import dispatcher from '../dispatcher';

// The action identifier...
export constLOAD_USERS = 'LOAD_USERS';

// Dispatches a "LOAD_USERS" action once the
// asynchronous data has resolved.
export function loadUsers() {
  new Promise((resolve, reject) => {
    resolve([
      { group: 1, enabled: true, name: 'User 1' },
      { group: 2, enabled: false, name: 'User 2' },
      { group: 2, enabled: true, name: 'User 3' }
    ]);
  }).then((users) => {
    dispatcher.dispatch({
      type: LOAD_USERS,
      payload: users
    });
  });
}

And here's how we load the generic group's data, followed by the users data which 
depends on it:

import groupsStore from './stores/groups';
import usersStore from './stores/users';
import { loadGroups } from './actions/load-groups';
import { loadUsers } from './actions/load-users';

// Log the state of the "usersStore" to make
// sure that includes data from the generic
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// "groupsStore"
usersStore.on('change', (state) => {
  state.forEach(({ name, groupName }) => {
    console.log(`${name} (${groupName})`);
  });
});

// We always load the generic data first. Especially
// if it doesn't change often.
loadGroups();
loadUsers();
// →
// User 1 (Group 1)
// User 3 (Group 2)

Generic store data like this is especially useful if it's used by plenty of other specific 
stores, and if its state doesn't change often. For example, loading this generic store 
data could be part of the application initialization activities, and it doesn't need to  
be touched after that.

Handling store dependencies
So far in this book, we've treated our Flux store dependencies implicitly. The order 
in which we imported the store modules determined the order in which actions were 
handled, which has implications if something we depend on hasn't been updated 
yet. It's time to start treating our store dependencies with a little more rigor.

In this section, we'll introduce the waitFor() mechanism of the Flux dispatcher to 
manage store dependencies. Then, we'll talk about two types of store dependencies 
we might have. The first type of dependency is strictly related to application data. 
The second type of dependency is related to UI elements.

Waiting for stores
The dispatcher has a built-in mechanism that allows us to explicitly resolve store 
dependencies. What's more, dependencies are declared right in the callback function, 
where the dependency is actually used. Let's look at an example that highlights the 
improved code for dealing with store dependencies. First, we have a basic store that 
doesn't do much:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';
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class Second extends EventEmitter {
  constructor() {
    super();

    // Registering a callback with the dispatcher
    // returns an identifier...
    this.id = dispatcher.register((e) => {
      switch(e.type) {
        case MY_ACTION:
          this.emit('change');
          break;
      }
    });
  }
}

export default new Second();

You'll notice something about this store looks slightly different. We're assigning 
the return value of dispatcher.register() to the id property of the store. This 
value is used to identify the callback function that we've just registered within the 
dispatcher. Now, let's define a store that depends on this one so that we can see why 
this id property is relevant:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';
import second from './second';

class First extends EventEmitter {
  constructor() {
    super();

    // Registering a callback with the dispatcher
    // returns an identifier...
    this.id = dispatcher.register((e) => {
      switch(e.type) {
        case MY_ACTION:

          // This tells the dispatcher to process any
          // callback functions that were registered
          // to "second.id" before continuing here.
          dispatcher.waitFor([ second.id ]);
          this.emit('change');
          break;
      }
    });
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  }
}

export default new First();

The id property is used by the call to dispatcher.waitFor(). This method of the 
dispatcher forces actions to be dispatched to the stores that we depend on before 
we continue with making state transformations. This ensures that we're always 
working with the most up-to-date data in the stores that we depend on. Let's see the 
myAction() function in use, and whether the dependency management between our 
two stores is working as expected:

// The order of store imports no longer matters,
// since the stores use the dispatcher to
// explicitly handle dependency resolution.
import first from './stores/first';
import second from './stores/second';
import { myAction } from './actions/my-action';

// The first store changed...
first.on('change', () => {
  console.log('first store changed');
});

// The second store changed...
second.on('change', () => {
  console.log('second store changed');
});

// Dispatches "MY_ACTION"...
myAction();

It no longer matters which order things happen in main.js, or anywhere else in the 
architecture for that matter. The dependency is declared where it matters, close to the 
code that's using the dependent data. This is enforced by the dispatcher component.

Note that the waitFor() method accepts an array of IDs. This 
means that in more complex scenarios where we depend on the state 
of more than one store, we can pass in each store ID that we depend 
on. However, the more common case is to depend on the state of one 
store. If there are multi-store dependencies all over the architecture, 
it's a sign of too much complexity.



Changing Flux Store State

[ 128 ]

Data dependencies
There are two types of dependencies worth thinking about in Flux stores. The most 
common are data dependencies. This is the type of dependency in place when a 
specific store depends on a generic store—it has some generic data that several stores 
need to access. This application data usually comes from an API and is ultimately 
rendered by a view. However, we're not restricted to generic stores when we're 
talking about data dependencies.

For example, let's say that we have a user interface and the main layout is 
separated by tabs. The stores in our Flux architecture are, unsurprisingly, aligned 
with these tabs. If one of these stores makes an API call, then performs some data 
transformations to set its state, can another store depend on this store to use this 
data? It would make sense to share data like this, otherwise, we'd have to repeat the 
same API request, data transforms, and so on—this gets repetitive and we'd like to 
avoid it.

However, when stores that explicitly model top-level features such as tabs, we 
start to notice other dependencies that aren't strictly data-related. These are UI 
dependencies, and it's perfectly feasible to have these. For example, what the user 
sees in one tab could depend on the state of a checkbox in another tab. Here's an 
illustration of the two types of store dependencies:

Store Store

Data UI

Store

UI dependencies
In typical frontend architectures, the state of UI elements is probably the single most 
error-prone aspect of state modeling. The main problem with UI elements is that 
when we don't explicitly model their states, we have a hard time grasping cause and 
effect when those states change. This gets particularly troublesome when the state 
of one UI element depends on the state of another UI element. We end up with code 
that implicitly ties these items together.
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Flux stores are better at dealing with this type of dependency because in a store, a UI 
dependency is the same as a data dependency—it's all just state. It's a good thing that 
we're easily able to do this in Flux architectures, because these types of dependencies 
tend to grow complex rather quickly. To illustrate how Flux deals with UI 
dependencies, let's look at an example. We'll create two stores for different sections 
of the UI: one for checkboxes and one for labels. The idea is that the labels depend on 
the state of the checkboxes, because their style changes as the checkboxes change.

First, we have the store representing the checkbox elements:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { FIRST } from '../actions/first';
import { SECOND } from '../actions/second';

class Checkboxes extends EventEmitter {
  constructor() {
    super();

    this.state = {
      first: true,
      second: true
    };

    // Sets the dispatch id of this store
    // so that other stores can depend on it.
    // Depending on the action, this handler
    // changes the boolean UI state of a given
    // checkbox.
    this.id = dispatcher.register((e) => {
      switch(e.type) {
        case FIRST:
          this.state.first = e.payload;
          this.emit('change', this.state);
          break;
        case SECOND:
          this.state.second = e.payload;
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new Checkboxes();
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There are two checkbox elements modeled by this store—first and second. The state 
is Boolean, true when checked, false when unchecked. By default, both checkboxes 
are checked, and when either the FIRST or the SECOND actions are dispatched, the 
state of the respective checkbox is updated to reflect the payload. Now let's look at the 
Labels store, which depends on the state of the Checkboxes store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { FIRST } from '../actions/first';
import { SECOND } from '../actions/second';
import checkboxes from './checkboxes';

class Labels extends EventEmitter {
  constructor() {
    super();

    // The initial state of this store depends
    // on the initial state of the "checkboxes"
    // store.
    this.state = {
      first: checkboxes.state.first ?
        'line-through' : 'none',
      second: checkboxes.state.second ?
        'line-through' : 'none'
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // The "FIRST" action was dispatched, so wait
        // for the "checkboxes" UI state, then update
        // the UI state of the "first" label.
        case FIRST:
          dispatcher.waitFor([ checkboxes.id ]);

          this.state.first = checkboxes.state.first ?
            'line-through' : 'none';

          this.emit('change', this.state);
          break;

        // The "SECOND" action was dispatched, so wait
        // for the "checkboxes" UI state, then update
        // the UI state of the "second" label.
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        case SECOND:
          dispatcher.waitFor([ checkboxes.id ]);

          this.state.second = checkboxes.state.second ?
            'line-through' : 'none';

          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new Labels();

You can see here that even the initial state of this store is dependent on the state of 
the Checkboxes store. The value of the first or second state properties in this store 
are actually CSS values. It's important that we model these values here, because this 
is state, after all—all state goes into a store. This means that later on something else 
can depend on these values. When everything is explicit, we know why the way 
things are the way they are, which translates to stable software.

Now, let's look at the views that use these stores to render the UI elements and to 
respond to user input. First, the Checkboxes view:

import checkboxes from '../stores/checkboxes';
import { first } from '../actions/first';
import { second } from '../actions/second';

class Checkboxes {
  constructor() {

    // The DOM elements our view manipulates (these
    // are checkboxes).
    this.first = document.getElementById('first');
    this.second = document.getElementById('second');

    // Dispatch the appropriate action when either
    // of the checkboxes change. The action payload
    // is the "checked" property of the UI element.
    this.first.addEventListener('change', (e) => {
      first(e.target.checked);
    });

    this.second.addEventListener('change', (e) => {



Changing Flux Store State

[ 132 ]

      second(e.target.checked);
    });

    // When the "checkboxes" store changes state,
    // render the view using the new state.
    checkboxes.on('change', (state) => {
      this.render(state);
    });

  }

  // Sets the "checked" properties of the checkbox
  // UI elements. By default, we use the initial
  // state of the "checkboxes" store. Otherwise,
  // we use whatever state is passed.
  render(state=checkboxes.state) {
    this.first.checked = state.first;
    this.second.checked = state.second;
  }
}

export default new Checkboxes();

There are two checkbox elements used here, and the first thing that's done in the 
view's constructor is to set up the change event handlers for the checkboxes. These 
handlers will dispatch the appropriate action—FIRST or SECOND—depending on the 
checkbox and its checked state. The render() function actually updates the DOM 
based on the state. Now. let's look at the Labels view:

import labels from '../stores/labels';

class Labels {
  constructor() {

    // The DOM elements this view manipulates (these
    // are labels).
    this.first = document.querySelector('[for="first"]');
    this.second = document.querySelector('[for="second"]');

    // When the "labels" store changes, render
    // the view using the new state.
    labels.on('change', (state) => {
      this.render(state);
    });
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  }

  // Updates the "textDecoration" style of our
  // label UI elements, using the "labels" store
  // state as the default. Otherwise, we use whatever
  // state is passed in.
  render(state=labels.state) {
    this.first.style.textDecoration = state.first;
    this.second.style.textDecoration = state.second;
  }
}

export default new Labels();

This view works similarly to the Checkboxes view. The main differences are that 
there's no user interactivity here, and that the changes made to the UI elements are 
style property values that were set in the Labels store. These ultimately depend  
on the state of the Checkboxes store, so as the user changes the state of checkbox, 
they'll see the corresponding label change its style.

If this feels like a lot of code to accomplish something simple, that's because it is. 
Remember, we've actually accomplished a lot more here than a simple checkbox toggle 
and label style update. We've established explicit UI state dependencies between 
two different sections of the UI. This is a victory for our architecture, because the 
first moment a given architecture struggles to scale is when we can't figure out why 
something happens. Throughout the lifetime of a Flux architecture, we actively take 
steps to make sure this doesn't happen, as we've just demonstrated here.

View update order
While it's nice to be able to explicitly control the dependencies of our stores using 
waitFor(), views don't have such luxuries. In this section, we'll look at the order in 
which our views render UI elements. First, we'll look at the role stores have to play 
in the order of view updates. Then, we'll go over the cases where view order actually 
affects the user experience versus those where the ordering doesn't matter.
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Store registration order
The order in which actions are dispatched to stores matters. When a store transforms 
its state, it also notifies any views listening to the store. This means that if one view 
is listening to a store that was registered with the dispatcher first, this view will be 
rendered before any other views. The idea is illustrated here:

Action

Store render() View

Store render() View

Store render() View

As you can see, the order of the store callback functions within the dispatcher clearly 
impacts the rendering order of views. Store dependencies can also impact the order 
of view rendering. For example, if store A depends on store B, then any views 
listening to store B will be rendered first. It could be that none of this matters or  
there could be some interesting side effects. We'll look at both outcomes next.

Prioritizing view rendering
Given that the stores that form the core of our Flux architecture can also determine 
the render order of our views, we have to take care to prioritize according to user 
experience. For example, we could have a store that represents the top header area  
of the page and another store that's for the main content area. Now, if the main 
content area renders first, leaving a noticeable gap near the top of the page, we'll 
want to fix that.

Seeing as how users will start at the top of the page and work their way down,  
we would have to make sure that the store for the header content is registered first. 
How do we do this? Once again, we're back to where we were when dealing with 
store dependencies. We have to take care to import our views in the correct order—
an order that reflects the rendering order. As we saw with stores, this isn't an ideal 
situation to be in.
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One answer is to introduce a store dependency. Even though the content store 
doesn't actually use any data from the header store, it could still depend on it for 
render ordering purposes. By using the waitFor() method, we'd know that any 
views that listen to the header store will be rendered first, eliminating the possibility 
of usability issues related to render order. The risk here, of course, is the same as any 
store dependency—complexity. When we reach the point where there are too many 
store dependencies to easily comprehend, it's time to rethink our store design.

Dealing with store complexity
The leading culprit of Flux store complexity is dependency management. Despite 
having the dispatcher as a tool to manage these dependencies, something is lost 
when there's too many of them. In this final section of the chapter, we'll discuss the 
consequences of having too many stores in our architecture and what can be done to 
remedy the situation.

Too many stores
The top-level features of our application do a decent job of providing a boundary 
for our stores and the state that they encapsulate. The challenge with stores is 
when there are too many of them. For example, as our applications grow over time, 
more features will be built which translates to more stores being tossed into the 
architecture. Additionally, the stores that already exist are apt to grow more complex 
as well, as they have to find ways to get along with all the other changing features of 
the application.

This makes for a complex scenario—growing complexity in stores and more stores 
overall. This almost certainly will lead to an explosion in dependencies, as we tease 
out all the edge cases of our user interface. Generic stores that are shared by many 
other specific stores can also be a source of trouble. For example, we could end up 
with way too many generic stores, eventually getting to the point where all our state 
data is indirect. 

When we've reached the point where the sheer number of stores in our architecture 
is untenable, it's time to start rethinking what constitutes a feature.
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Rethinking feature domains
Having top-level features map to our stores generally works well enough, until we 
have a lot of top-level features. At this point, it's time to re-evaluate the policy that a 
feature maps to a store. For example, if we have a lot of top-level features, odds are 
that there's a lot of similar data that could be folded into a single store that drives 
many features. Another potential effect of reducing the number of stores that power 
our features is the removal of generic stores. Generic stores are only good if we have 
too much duplicate data, which tends to be less of a problem when the number of 
stores shrinks. Here is a diagram that shows how a store could be the driver of more 
than one feature:

Store

Feature Feature Feature

We might find ourselves in the opposite situation as well, whereby a store's complexity 
is simply too great, and we need to reduce its responsibilities by refactoring it into 
multiple stores. To fix this, we have to think about how one large feature can be turned 
into two smaller features. If we can't think of a good way to divide the feature, then 
maybe the complexity of the store is the best we can do, and it should be left alone.

Summary
In this chapter, we took a detailed look at stores in Flux architectures, starting with 
the aspects that are most likely to change once we've moved on from the skeleton 
architecture phase. We then introduced the notion of generic stores, the idea being  
to reduce the amount of state that individual stores have to keep. The awkward part 
of generic stores are the dependencies that they introduce, and to deal with them, 
you learned how to use the dispatcher's waitFor() mechanism.

Dependencies between stores come in two varieties, data dependencies and UI 
dependencies, and you learned that UI dependencies are a critical part of any Flux 
architecture. Finally, we discussed some of the ways that stores can grow out of hand 
in terms of complexity, and what can be done about it. In the following chapter, we'll 
look at view components in Flux architectures.
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Viewing Information
The view layer is the last data flow stop in a Flux architecture. Views are the essence 
of our application because they provide information directly to the user and respond 
directly to user interactions. This chapter takes a detailed look at view components 
within the context of a Flux architecture.

We'll start with a discussion about getting views their data, and what they can  
do with it once they have it. Next, we'll look at some examples that emphasize the 
stateless nature of Flux views. Then, we'll review the responsibilities of views in Flux 
architectures, which are different from views in other types of frontend architectures.

We'll wrap the chapter up with a look at using ReactJS components as the view layer. 
Let's get started!

Passing views data
Views don't have their own data source that they can use to render UI elements. 
Instead, they rely on the state of Flux stores, and they listen for changes in state. In 
this section, we'll cover the change event that stores will emit to signify that views 
can render themselves. We'll also discuss the idea that it's ultimately up to the view 
to decide when and how to render the UI.

Data via the change event
The view components that we've seen so far in this book have all relied on the 
change event that stores emit when the state of a store has changed. This is how  
the view knows that it can render itself to the DOM—because there's new store  
state, meaning that there's probably a visual change that we want the user to see.
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You may have noticed from the earlier examples that all the handler functions  
that listen for change events had a state parameter—this is the state of the store.  
The question is—why do we need to include this state data? Why can't the view just 
reference the store directly to reference the state data? This idea is illustrated here:

Store

View

State
change()

The change event is still necessary, even though the view is directly referencing the 
store's state—how else would it know to render? The change event is emitted, and 
the view then knows that the state it's referencing has changed as well. There's a 
potential issue with this approach, and it has to do with immutability. Let's look at 
some code to better understand the problem. Here's a store with a name property as 
its state:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { NAME_CAPS } from '../actions/name-caps';

class First extends EventEmitter {
  constructor() {
    super();

    // The default state is a "name" property
    // with a lower-case string.
    this.state = {
      name: 'foo'
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // Mutates the "name" property, keeping
        // the "state" object intact.
        case NAME_CAPS:
          let { state } = this;
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          state.name = state.name.toUpperCase();
          this.emit('change', state);
          break;
      }
    });
  }
}

export default new First();

When this store responds to the NAME_CAPS action, its job is to transform the state of 
the name property, using a simple call to toUpperCase(). Then, the change event is 
emitted with the state as the event data. Let's look at another store that does the same 
thing, but using a different approach to updating the state object:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { NAME_CAPS } from '../actions/name-caps';

class Second extends EventEmitter {
  constructor() {
    super();

    // The defaul state is a name property
    // with a lower-case string.
    this.state = {
      name: 'foo'
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // Assigns a new "state" object, invalidating
        // any references to any previous state.
        case NAME_CAPS:
          this.state = {
            name: this.state.name.toUpperCase()
          };
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new Second();
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As you can see, the two stores are basically identical, and they produce the 
same result when the NAME_CAPS action is dispatched. However, note that this 
transformation doesn't mutate the state object. It replaces it instead. This approach 
keeps the state object immutable, meaning that the store will never change any of its 
properties. The difference is felt in the view layer, and it highlights the need for the 
state argument in the change event handler:

import first from './stores/first';
import second from './stores/second';
import { nameCaps } from './actions/name-caps';

// Setup references to the state of the
// two stores.
var firstState = first.state;
var secondState = second.state;

first.on('change', () => {
  console.log('firstState', firstState.name);
});
// → firstState FOO

second.on('change', () => {
  console.log('secondState', secondState.name);
});
// → secondState foo

second.on('change', (state) => {
  console.log('state', state.name);
});
// → state FOO

nameCaps();

This is why we can't make assumptions about the state of a store. In the preceding 
code, we just made a critical error in assuming that we could hold onto a 
secondStore.state reference. It turns out that this object is immutable, and so 
the only way for views to access the new state is through the state argument in the 
change handler.
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Views decide when to render
The job of a Flux store is centered primarily on generating the correct information for 
views to consume. What isn't part of a store's job description is to know when a view 
actually needs to update or not. This means that it's up to the view to decide what 
happens when a store triggers a change event—it could be that nothing in the DOM 
needs to be updated. The question then becomes—why would a store emit a change 
event if nothing has changed?

The simple answer is that stores don't do enough bookkeeping to make a 
determination as to whether something has changed or not. The store knows how 
to perform the correct state transformations, but it doesn't necessarily keep track of 
previous states for diffing purposes—although it certainly could do that.

Let's look at a store that doesn't mutate its state. Instead, it creates new state when 
something is transformed:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { NAME_CAPS } from '../actions/name-caps';

class MyStore extends EventEmitter {
  constructor() {
    super();

    this.state = {
      name: 'foo'
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {
        case NAME_CAPS:

          // Convert to upper-case.
          let name = this.state.name.toUpperCase();

          // Only assign the new state object if
          // the "name" isn't already in upper-case.
          this.state = this.state.name === name ?
            this.state : {
              name: this.state.name.toUpperCase()
            };

          // Tell views about the state change, even
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          // if the state object is the same.
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new MyStore();

This store is listening to the same NAME_CAPS message from the previous example. Its 
job is still the same—transform the name property to uppercase. However, this code 
works differently than in the last version of the store. It's immutable in that it doesn't 
mutate the state object—it replaces it. But it only does so if the value has actually 
changed. Otherwise, the state object stays the same. The idea here isn't to show 
that stores should detect state changes on individual properties, but rather that the 
change event can be emitted even when the state hasn't changed. In other words,  
our views shouldn't make the assumption that rendering to the DOM is necessary, 
just because of a change event.

Let's turn our attention to the view now. The plan is simple—don't render unless we 
have to:

import myStore from '../stores/my-store';

class MyView {
  constructor() {

    // The view keeps a copy of the previous
    // store state.
    this.previousState = null;

    myStore.on('change', (state) => {

      // Make sure we have a new state before
      // rendering. If "state" is equal to
      // "previousState", then we know there's
      // nothing new to render.
      if (state !== this.previousState) {
        console.log('name', state.name);
      }

      // Keep a reference of the state, so that
      // we can use it in the next "change"
      // event.
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      this.previousState = state;
    });
  }
}

export default new MyView();

You can see that the previousState property keeps a reference to the state of the 
store. But wait, isn't that a bad thing, according to the section before this one? Well, 
no, because we're not actually using the reference for anything other than strict 
equality checking. This is used to determine whether or not the view needs to render. 
Since the store state is immutable, we can assert that if the same reference is passed 
as an argument to the change event handler, nothing actually changed and we can 
safely ignore the event. Let's see what happens when we call the same action several 
times in succession:

import myView from './views/my-view';
import { nameCaps } from './actions/name-caps';

// Despite repeated calls to "nameCaps()",
// "myView" is only rendered once.
nameCaps();
nameCaps();
nameCaps();
// → name FOO

Later in this chapter when we look at ReactJS, we'll see more advanced scenarios 
of views that only render what they need to. Later in the book when we look at 
Immutable.js, we'll tackle more advanced state change detection.

Keeping views stateless
Views can't be completely stateless because they interact with the DOM, and the 
DOM elements associated with a view will always have a state. However, we 
can take steps to treat views as stateless entities within the context of our Flux 
architecture. In this section, we'll address two aspects of stateless views.

First, we'll go over the idea that all state in a Flux architecture belongs in a store, 
including any UI state that we might be tempted to keep in our view components. 
Second, we'll look at DOM querying and why we want to avoid doing this from 
within our Flux views.
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UI state belongs in stores
As you learned in the previous chapter, UI state is just like state that's derived  
from application data—it all belongs in a store. UI state includes things such as  
the disabled property of a button or the name of a class that's applied to a div.  
The reason these bits of state belong in a store is that other stores might depend 
on them. This in turn affects the rendering outcome of other views. This type of 
dependency is visualized as follows:

Store

Store Store

UI State UI State

If the UI state that other stores might depend on isn't kept in a store, then they'd have 
to depend on the view or the DOM itself. This is inconsistent and goes against what 
Flux stands for—strict update ordering and keeping state confined.

No querying the DOM
When the UI state is kept in a Flux store, there's no need to query the DOM to 
figure out whether or not a button is disabled. Think about the jQuery approach to 
manipulating application state. First, we have to issue a DOM query that gets us 
the relevant DOM elements, and then we have to figure out whether they're in the 
appropriate state by reading some of their properties. Then, we can make changes 
elsewhere in the application. Or perhaps there's a blend of state that's kept directly  
in the DOM and some JavaScript objects.

It's the consistency that's the biggest difference maker in Flux architectures, because 
we don't have to query the DOM to get the href property of a link. The stores that 
hold onto UI state already have this information. This is always the case—it's never  
a matter of figuring out whether it's in the DOM or some other component.

Another advantage of having all the UI state that we need to make rendering 
decisions in our stores is that there's no performance bottleneck. Querying the DOM 
once or twice is not a big deal, and this does need to happen if we're going to display 
changes for the user. What we don't want is to have a long series of DOM query calls 
that don't even result in something being rendered. In other words, there's no need 
to query the DOM to extract information when it should already be in a store. 
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This is the same strategy used by virtual DOM tree technologies such as ReactJS, 
where the DOM data is all stored in JavaScript objects. Looking up some UI 
state from a JavaScript object is inherently faster than looking up DOM element 
properties, and this is how ReactJS is able to perform so well—by minimizing the 
number of DOM interactions for a given UI change.

View responsibilities
At this point in the book, you probably have a pretty good handle on the role of 
view components in a Flux architecture. Put simply, their job is to display store 
information for users by inserting it into the DOM. In this section, we'll break this 
core view concept into three parts.

First there's the input to the views—the store data. Next, we have the structure of 
the view itself, and the various ways that it can be decomposed into smaller views. 
Finally, there's the user interactivity. Each of these three areas of view components 
has a relation to the flow of data through our Flux architecture. Let's look at each of 
them now.

Rendering store data
If the store transforms data into information that the user needs, then why have 
views at all? Why not have the stores directly render the information to the DOM? 
We need views for a couple reasons. First of all, a store could actually be used 
in several places, rendered by several views. Second of all, Flux isn't necessarily 
concerned with the visual display of information. For example, if we were to design 
some view that's doesn't render HTML but some other display format, that would  
be perfectly fine.

Views don't keep any state or perform any transformations on store information. 
However, they do need to transform the information a little, to turn it into valid 
markup for display in the browser or any other display medium where our application 
runs. But aside from marking up the information returned from stores, views have 
little to do. It's the view technology, such as ReactJS, that does the majority of the 
legwork in terms of marking up JavaScript objects and inserting them into the DOM. 
Here is a diagram that shows the process:

Store

transform() Information

View

HTMLrender()Data
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Subview structure
The aim of stores in Flux architectures is to structure them so that there's only one 
store per top-level feature. This gets us around the issues created by having massive 
hierarchies of data structures. Views, on the other hand, can benefit from a little bit of 
hierarchical structure. Just because a top-level feature is driven by information from 
a single store, it doesn't mean that only a single view can drive the user experience.

Earlier in the book, we discussed the notion of hierarchical structure and how it 
should be avoided in Flux architectures. This is still true to an extent with views, 
because no matter how you slice it, deep hierarchies are difficult to comprehend. 
Views do need to be decomposed to an extent, because otherwise we'll end of 
putting all the markup complexity in one place. HTML markup is hierarchical by 
nature, so to some degree our views should mimic this structure, as illustrated here:

Feature View

Child View

Child View

Child View

Child View Child View

Child View

Just like stores can be generic, so can views. More than one feature can use generic 
components to present information using a common display pattern. For instance, 
think about some kind of expandable/collapsible panel that's used by all of our 
features—would it not make sense to plug this into our larger features rather than 
duplicate the functionality? The view technology that we're using is also a deciding 
factor in how we want to decompose our views into smaller reusable pieces, since 
this is easier to do with some frameworks than others. For example, we'll see in 
the next section that ReactJS makes it easy to compose coarse-grained views out of 
smaller more fine-grained views because they're largely self-contained.
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Something to be aware of when composing view hierarchies like 
this—be mindful of the data-flow. For example, when a Flux store 
changes, it emits the change event so that the top-level view can 
render itself. Then it renders its immediate children, who render 
their immediate children, and so on. As the store state flows through 
these views, no data transformations should be happening along the 
way. Put another way, the leaf views in the tree should get the same 
information as the root view.

User interactivity
The final area of view responsibility we need to think about is user interactivity. 
Apart from passively watching the information on their screens change as the 
underlying stores of our architecture handle actions, they're going to need to do 
things. If nothing else, users need to be able to navigate around the application to 
use the various features we've implemented. To handle this sort of thing, the view 
components that render the UI should also intercept the DOM events as they're 
triggered. This generally results in a new action being dispatched, as we've already 
seen earlier in the book.

The key thing to remember about these event handlers is that they should have 
essentially one responsibility—calling the right action creator function. What these 
event handlers should avoid is trying to execute any logic—this belongs in a store, 
along with the state that the logic affects. This is so fundamental to Flux that it's 
quite possible I'll repeat it at least twelve more times in the book. Once we start 
introducing logic in places other than stores, we lose the ability to reason about  
the state of something—and the state largely determines what the user sees.

It's entirely plausible to pass action creator functions directly as event 
handlers to DOM nodes. This could actually help us, because it provides 
a very low chance of logic being introduced in the wrong place.
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Using ReactJS with Flux
ReactJS is a library for creating view components. In fact, React doesn't even label 
itself as a view library—it's a set of tools for creating components that render UI 
elements. This simple premise is easy to understand and powerful—a perfect fit as 
the view technology in our Flux architecture.

In this section, we'll look at making ReactJS the technology of choice for views in 
our Flux applications, starting with passing state information from stores into React 
components. Next, we'll talk about the composition of views, and how Flux state 
flows from stores to parent views to child views. Lastly, we'll implement some event 
handling capabilities in our views using React mechanisms and a router using the 
react-router library.

Setting the view state
There are two ways to render React components based on the state of our Flux stores. 
These involve two different types of components—statefull and stateless—both of 
which we'll address here. First, let's take a look at the store containing the state that 
drives our views:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { ADD } from '../actions/add';

class MyStore extends EventEmitter {
  constructor() {
    super();

    // The "items" state is an empty array
    // by default...
    this.state = {
      items: []
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // Push the "payload" to the "items"
        // array when the "ADD" action is
        // dispatched.
        case ADD:
          let { state } = this;
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          state.items.push(e.payload);
          this.emit('change', state);
          break;
      }
    });
  }
}

export default new MyStore();

The idea here is simple—any time an ADD action is dispatched, we're pushing the 
action payload onto the items array. Any React components that wish to respond  
to this store state change can do so by listening for the change event. First, let's look 
at a stateful React component that renders the items list:

import { default as React, Component } from 'react';
import myStore from '../stores/my-store';

// A stateful React component that relies on
// it's on state in order to render updates.
export default class Stateful extends Component {
  constructor() {
    super();

    // When "myStore" changes, we set the state of
    // this component by calling "setState()", causing
    // a render to happen.
    myStore.on('change', (state) => {
      this.setState(state);
    });

    // The initial state of the component is
    // taken from the initial state of the Flux store.
    this.state = myStore.state;
  }

  // Renders a list of items.
  render() {
    return (
      <ul>
        {this.state.items.map(item =>
          <li key={item}>{item}</li>)}
      </ul>
    );
  }
}
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This is a typical React component, created using the ES2015 class syntax and 
extending the base React Component class. This approach is necessary for stateful 
components. As you can see, the constructor of this component directly interacts 
with a Flux store. When the store changes, it calls setState(), which is how the 
component renders to reflect new store state. The constructor also sets the initial  
state by setting the state property. Next, we have the render() method, which 
returns React elements based on this state.

Note that our React component is using JSX syntax to define elements. We're not 
going to cover how this works in this book, nor will we cover other aspects of React 
in any level of detail. This is a book on Flux architecture, and we'll cover parts of 
React that are relevant in a Flux context. If you want more of a technical deep dive  
on React itself, there's plenty of free resources, as well as plenty of other books on  
the subject.

Now let's look at another implementation of the exact same component, meaning  
the exact same output. This is the stateless approach to React components/views:

import React from 'react';

// The stateless version of the React
// component is a much stripped-down
// version of a class component. Since
// it only relies on properttes passed
// into it, it can be a basic arrow function
// that returns a React element.
export default ({ items }) => (
  <ul>
    {items.map(item =>
      <li key={item}>{item}</li>)}
  </ul>
);

Wait, what? This is the exact same component, only it doesn't depend on state.  
This could be a good thing if we're implementing this as a view component inside  
our Flux architecture. The thing that stands out most about this implementation is that 
there are more comments than code, which is a good thing, allowing us to focus on the 
resulting DOM structure. You'll notice that there's no interaction with a Flux store in 
this module. Remember, this is a stateless React component, a simple arrow function, 
which means we don't have any life cycle methods to define, including the initial state. 
This is okay; let's see how we use both types of components in our main.js module:

import React from 'react';
import { render } from 'react-dom';
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import Stateful from './views/stateful';
import Stateless from './views/stateless';
import myStore from './stores/my-store';
import { add } from './actions/add';

// These are the DOM element "containers" that
// our React components are rendered into.
var statefulContainer =
  document.getElementById('stateful');
var statelessContainer =
  document.getElementById('stateless');

// Sets up the store change listener for our
// "Stateless" React component. This is simple
// "render()" call, React efficiently handles
// the DOM diffing semantics.
myStore.on('change', (state) => {
  render(
    <Stateless items={myStore.state.items}/>,
    statelessContainer
  );
});

// Initial rendering of our two components.
render(
  <Stateful/>,
  statefulContainer
);

render(
  <Stateless items={myStore.state.items}/>,
  statelessContainer
);

// Dispatch some actions, causing our store to change,
// and our React components to re-render.
add('first');
add('second');
add('third');

The key difference here is that the Stateless view needs to have its interactions 
with the store set up manually here. The stateful component encapsulates this by 
setting up the change listener in the constructor.
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Is one approach superior to the other? Within a Flux architecture, stateless React 
components tend to have an advantage over their stateful counterparts. This is due 
to the simple fact that they enforce the idea that state belongs in stores, nowhere else. 
When our React components are simple functions, we have no choice but to figure 
out the correct way to transform store state into something that can be consumed  
as simple immutable properties.

Composing views
Just as the state of our application is composed into stores, the views of that state 
are composed hierarchically to a degree. I say to a degree because we want to avoid 
decomposing the structure of our UI at a deep level, as this just makes it difficult to 
grasp. Where view composition really matters is when we have smaller parts that 
are used by many larger components. React is good at composing views without 
introducing too much complexity. In particular, stateless views are a good way to 
keep the vein of unidirectional data flow as it traverses the view levels. Let's look 
at an example. Here's a store with some initial state, which sorts this state upon a 
specific action:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { SORT_DESC } from '../actions/sort-desc';

class MyStore extends EventEmitter {
  constructor() {
    super();

    // The default store state has an array of
    // strings.
    this.state = {
      items: [
        'First',
        'Second',
        'Third'
      ]
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // The "SORT_DESC" action sorts the
        // "items" array in descending order.
        case SORT_DESC:
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          let { state } = this;

          state.items.sort().reverse();
          this.emit('change', state);
          break;
      }
    });
  }
}

export default new MyStore();

In this case, we would expect the array to be Third, Second, First (alphabetically) when 
the SORT_DESC action is dispatched. Now, let's look at the main view component that 
listens to this store:

import React from 'react';
import Item from './item';

// The application view. Renders a list of
// "Item" components.
export default ({ items }) => (
  <ul>
    {items.map(item =>
      <Item key={item}>{item}</Item>)}
  </ul>
);

Once again, we have a simple functional view that doesn't hold on to any state, 
because there's no need—all state is held in the Flux stores. Rather than use an li 
element here, we're using a custom Item React component that we've implemented 
for our application. This is part of the larger App view, and perhaps its part of other 
larger views. The result is code reuse and simplified aggregate views. Let's look at 
the Item component next:

import React from 'react';

// An "li" component with "strong" text.
export default (props) => (
  <li>
    <strong>{props.children}</strong>
  </li>
);
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Not the most exciting view in the world, and in practice you'll find more complex 
atomic views than this. But the idea is the same—the value of props.children 
ultimately comes from a Flux store, and it traverses a parent view to get here. Let's 
see how all the pieces fit together in main.js:

import React from 'react';
import { render } from 'react-dom';

import myStore from './stores/my-store';
import App from './views/app';
import { sortDesc } from './actions/sort-desc';

// The containiner element for our application.
var appContainer = document.getElementById('app');

// Renders the "App" view component when
// the store state changes.
myStore.on('change', (state) => {
  render(
    <App {...state}/>,
    appContainer
  );
});

// Initial rendering...
render(
  <App {...myStore.state}/>,
  appContainer
);

// Perform the descending sort...
sortDesc();

Reacting to events
React components have their own event system baked into them. They're actually 
a wrapper around the DOM event system, making it easier for us to include event 
handling functions as part of the component JSX markup. This has implications 
for our Flux architecture too, because these events often translate directly to action 
creator function calls.
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To get a feel for React events in a Flux context, let's build on the previous example. 
We'll add a button that toggles the sort order of our items. But first, we'll take a look 
at the store modifications required to support this new behavior:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { SORT } from '../actions/sort';

// Constants for the direction label
// of the sort button.
const ASC = 'sort ascending';
const DESC = 'sort descending';

class MyStore extends EventEmitter {
  constructor() {
    super();

    // We have some "items", and a "direction"
    // as the default state of this store.
    this.state = {
      direction: ASC,
      items: [
        'Second',
        'First',
        'Third'
      ]
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {
        case SORT:
          let { state } = this;

          // The "items" are always sorted.
          state.items.sort()

          // If the current "direction" is ascending,
          // then update it to "DESC". Otherwise, it's
          // updated to "ASC" and the order is reversed.
          if (state.direction === ASC) {
            state.direction = DESC;
          } else {
            state.direction = ASC;
            state.items.reverse();
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          }

          this.emit('change', state);
          break;
      }
    });
  }
}

export default new MyStore();

There's a new piece of state in MyStore—direction. It's relevant to both the sort 
direction of the items and the text content of the sort button in the view. Let's take  
a look at the new application view now:

import React from 'react';
import Sort from './sort';
import Item from './item';

// The application view. Renders a sort
// button and a list of "Item" components.
export default ({ items, direction }) => (
  <div>
    <Sort direction={direction}/>
    <ul>
      {items.map(item =>
        <Item key={item}>{item}</Item>)}
    </ul>
  </div>
);

You can see that the element returned by this stateless function is a div. Although not 
strictly necessary from a markup perspective, it is necessary from a React component 
perspective—rendering functions can only return one element. The Sort element we've 
added above the list represents the sort button. Let's take a look at this component now:

import React from 'react';
import { sort } from '../actions/sort';

// Some inline styles for the React view...
var style = {
  textTransform: 'capitalize'
};
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// Renders a "button" element, with the
// "direction" store state as the label
// and the "sort()" action creator function
// is called when the button is clicked.
export default ({ direction }) => (
  <button
    style={style}
    onClick={sort}>{direction}
  </button>
);

This element is a simple button HTML element, with a style that will capitalize 
the direction label. You can see too that the onClick property is used to specify 
the event handler. In this case, it's simple—we're calling the sort() action creator 
function directly when the button is clicked.

In practice, other state-handling actions might be dispatched in concert 
with the SORT action. For example, a PRE_SORT action might be necessary 
to handle button state.

Routing and actions
The react-router library is the de facto routing solution of ReactJS projects.  
If we're using React component for in the view layer of our Flux architecture, 
then there's a good chance that we'll want to use this package for routing in our 
application. However, there are some subtle nuances to be aware of when using 
react-router in the context of Flux. In this final section of the chapter, we'll address 
some of the tradeoffs we need to make with react-router by implementing it in a 
Flux architecture.

The basic premise of react-router is what makes it so attractive in the first place. 
The router and the routes within it are themselves React components that we can 
render into the DOM. We can declare that a given route should render a given React 
component when the route is activated. The router handles all of the nitty-gritty details 
for us. The question is, how does this work within the context of a Flux application?  
As we know, stores are where state lives in our application. So this means that they 
might want to know about the state of the router as well.

Let's start by looking at the main.js module, where the router component is 
declared and rendered:

import React from 'react';
import { render } from 'react-dom';
import { Router, Route, IndexRoute } from 'react-router';
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import App from './views/app';
import First from './views/first';
import Second from './views/second';
import { routeUpdate } from './actions/route-update';

// The containiner element for our application.
var appContainer = document.getElementById('app');

// Called by the "Router" whenever a route changes.
// This is where we call the action creator
// "routeUpdate()", passing it the path of the
// new route.
function onUpdate() {
  routeUpdate(this.state.location.pathname);
}

// Renders the router components. Each route
// has an associated React component that's
// rendered when the route is activated.
render((
  <Router onUpdate={onUpdate}>
    <Route path="/" component={App}>
      <IndexRoute component={First}/>
      <Route path="first" components={First}/>
      <Route path="second" component={Second}/>
    </Route>
  </Router>
), appContainer);

You can see here that there are three main routes, the default / route, followed  
by a /first and a /second route. Each route has a corresponding component  
that's rendered when the route becomes active. What's interesting about these  
route declarations is that the First and Second components are children of App.  
This means that when their routes are activated, they're actually rendered within  
App. Let's take a look at the App component now:

import React from 'react';
import { Link } from 'react-router';

// Renders some links to the routes in the app.
// The "props.children" are any sub-components.
export default (props) => (



Chapter 7

[ 159 ]

  <div>
    <ul>
      <li><Link to="/first">First</Link></li>
      <li><Link to="/second">Second</Link></li>
    </ul>
    {props.children}
  </div>
);

This component renders a list of links that point to our two routes—first and second. 
It also renders child components through props.children. This is where the child 
component is rendered. Let's turn our attention to the routeUpdate() action creator 
function now. This is called by the Router component whenever the route changes:

import dispatcher from '../dispatcher';

// The action identifiers...
export const ROUTE_UPDATE = 'ROUTE_UPDATE';
export const PRE_ROUTE_UPDATE = 'PRE_ROUTE_UPDATE';

export function routeUpdate(payload) {

  // Immediately dispatch the "PRE_ROUTE_UPDATE"
  // action, giving stores a chance to adjust
  // their state while asynchronous activities happen.
  dispatcher.dispatch({
    type: PRE_ROUTE_UPDATE,
    payload: payload
  });

  // Dispatches the "ROUTE_UPDATE" action
  // after one second.
  setTimeout(() => {
    dispatcher.dispatch({
      type: ROUTE_UPDATE,
      payload: payload
    });
  }, 1000);
}
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There's actually two actions that are dispatched by this function. First, there's the 
PRE_ROUTE_UPDATE action, which is dispatched so that stores have an opportunity to 
prepare for the changed route. Then, we perform some asynchronous behavior using 
setTimeout() and then dispatch the ROUTE_UPDATE action. Now let's take a look at 
one of the stores used by our components. We'll then look at one of the views that 
listens to this store. The stores and views are nearly identical, so there's no need to 
look at more than one of each:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';

// We need a couple action constants from
// the same action module.
import {
  PRE_ROUTE_UPDATE,
  ROUTE_UPDATE
} from '../actions/route-update';

class First extends EventEmitter {
  constructor() {
    super();

    // The "content" state is initially an
    // empty string.
    this.state = {
      content: ''
    };

    this.id = dispatcher.register((e) => {
      let { state } = this;

      switch(e.type) {

        // The "PRE_ROUTE_UPDATE" action means the
        // route is about to change once the
        // asynchronous code in the action creator
        // resolves. We can update the "content"
        // state here.
        case PRE_ROUTE_UPDATE:
          if (e.payload.endsWith('first')) {
            state.content = 'Loading...';
            this.emit('change', state);
          }
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          break;

        // When the "ROUTE_UPDATE" action is dispatched,
        // we can change the content to show that it has
        // loaded.
        case ROUTE_UPDATE:
          if (e.payload.endsWith('first')) {
            state.content = 'First Loaded';
            this.emit('change', state);
          }
          break;
      }
    });
  }
}

export default new First();

The store updates its content state based on the action type and the current route. 
This is important because other areas of the application might want to know that  
this store is waiting for a route update to complete. Now let's look at the view that 
listens to this store:

import { default as React, Component } from 'react';
import first from '../stores/first';

export default class First extends Component {
  constructor() {
    super();

    // The initial state comes from the store.
    this.state = first.state;

    // The store "change" callback function is
    // defined here so that it can be bound to
    // "this" and set the component state.
    this.onChange = (state) => {
      this.setState(state);
    };
  }

  // Renders the HTML using "content".
  render() {
    return (
      <p>{this.state.content}</p>
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    );
  }

  // Sets up the store "change" listener.
  componentWillMount() {
    first.on('change', this.onChange);
  }

  // Removes the store "change" listener.
  componentWillUnmount() {
    first.removeListener('change', this.onChange);
  }
}

This component is stateful because it has to be. Since it's the router that renders the 
component initially, we can't re-render it other than by setting its state. This is how 
we're able to re-render the component to reflect the state of the store—by setting 
up a handler for the change event. This component also has life cycle methods for 
listening to the change event of the store, as well as removing the listener. If we 
didn't remove it, it would try to set the state on a component that isn't mounted.

Summary
This chapter went into detail on the view layer of Flux architectures. Starting with 
getting information into views, you learned that the change event is fundamental 
in reflecting the state of the store in the view, and that views often read directly 
from stores during their initial render. Then, we went over the idea that views are 
stateless. The state of a given UI element belongs in a store, because other parts of the 
application might depend on this state, and we don't want to have to query the DOM.

Next, we went over some of the high-level responsibilities of view components. 
These include rendering store information, composing larger view structures  
out of smaller view components, and handling user interactivity. We wrapped  
the chapter up with a walkthrough of using ReactJS components as the view 
technology in a Flux architecture. In the following chapter, we'll dig into the  
life cycle of Flux components and how they differ from other architectures.
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Information Lifecycle
Any information system has a lifecycle. Individual components in these systems 
have their own lifecycles as well. Cumulatively, these can be easy to deal with 
or overwhelmingly difficult. In frontend JavaScript architectures, the tendency 
is toward the latter. The reason is simple, the lifecycles that our components go 
through, fundamentally alter the flow of information over time in ways that are  
close to impossible to predict.

This chapter is about the information life cycle in Flux architectures. Flux is different 
from other architectures in that it puts emphasis on scaling information instead 
of on JavaScript components. We'll begin exploring this theme with a look at the 
difficulties we've faced for years, using the typical component lifecycles found in 
modern JavaScript frameworks. Then, we'll contrast this approach with that of Flux, 
where high-level components are relatively static.

Next, we'll jump into the concept of scaling information and how this leads to more 
sane architectures that are much easier to maintain than alternative approaches. 
We'll close the chapter with a discussion on inactive stores—stores that aren't 
actively serving a view with data. Let's get to it.

Component life cycle difficulties
One aspect of scaling a frontend architecture is cleaning up unused resources. 
This frees memory for new resources that get created as the user interacts with the 
application. JavaScript is garbage-collected, meaning that once an object doesn't 
have any references to it, it's eligible for collection the next time the collector runs. 
This gets us partway there; in that, there's no need to manually allocate/de-allocate 
memory. However, we have a whole other category of scaling issues, and they're all 
related to the lifecycle of components.
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In this section, we'll talk about the scenarios where we want to reclaim unused 
resources and how this generally happens in frontend architectures. Then, we'll look 
at the challenges that component dependencies present, in the context of lifecycle 
management. Finally, we'll look at memory leak scenarios. Even with the best 
tools in place, there's always the possibility that our code has done something to 
circumvent memory management.

Reclaiming unused resources
Something that happens a lot throughout the course of an application, is that new 
resources are created while old resources are destroyed. This is in response to user 
interactivity—as they traverse the features of the application, new components get 
created in order to present new information. Much of this creation and destruction of 
JavaScript objects and DOM elements is transparent to us—the tools we employ can 
take care of this for us. The following diagram captures the idea of a component that 
frees internal resources as it changes state:

Framework

Component Component

Resource Resource

Resource Resource

Framework

Component Component

Resource Resource

Resource Resource

The key lies with the lifecycle of our components. Depending on the framework 
that's responsible for managing this lifecycle, different things can happen at different 
times. For instance, your component is instantiated and stored when it's parent 
component is created. When your component is rendered, it inserts new DOM 
elements and keeps a reference to them. Finally, when the component's parent is 
destroyed, our component is instructed to remove its DOM elements and release any 
references to them. This is an oversimplified work-flow, but the general idea is the 
same no matter how many moving parts there are. The job of the tools we use is to 
handle the lifecycle of our components in a way that reclaims unused components.
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Why is reclaiming unused components so important? The fundamental limitation we 
face is that memory is finite, and we're trying to build a robust application that scales 
well. Removing components from memory when they're no longer needed, makes 
room for new components to be created when they're needed. So, what's the big deal 
if we're using a framework that has well-defined lifecycles for our components and 
handles a lot of the messy details for us?

One limiting factor to this approach is that with a complex application that has lots 
of moving parts, the framework is constantly creating and destroying objects. This 
inevitably leads to the garbage collector getting invoked frequently, causing pauses 
in the main JavaScript execution thread. In the worst case, this can lead to pauses in 
the user experience due to unresponsive user events. The other potential pitfall of 
automatically managed component lifecycles is that the framework doesn't always 
know what we're thinking, and this can lead to hidden dependencies that end up 
breaking the flow of the component create/destroy lifecycle.

Hidden dependencies
Patterns that define the lifecycle of a particular type of component are a good 
thing—provided that our components abide by their lifecycle one hundred 
percent of the time. This rarely works out because we're trying to build something 
unique that solves a problem for our users, not a piece of software that plays 
nice with a framework just for the sake of it. The biggest risk here is that we'll 
accidentally prevent the framework from properly freeing resources by introducing 
dependencies. These dependencies might make perfect sense in the context of our 
application, but as far as the framework is concerned, it doesn't know about them, 
and this breaks in unpredictable ways. Take a look at the following diagram:

Framework Our Code

Component

destroy()

Reference
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The actual scenarios we face will be a little more nuanced than the scenario depicted 
here. The general theme is that frameworks that manage lifecycles are unforgiving. 
All it takes is a dependency in the wrong place to completely invalidate everything 
that the framework is doing for the application. However, this is the cost/benefit of 
having lifecycles for architectural components in the first place. The benefit being 
that we need to reclaim components to make way for new ones, and if a framework 
can automate this arduous task for us, all the better. The risk is that any time things 
are created and destroyed, there's a chance that this isn't done properly, leading to 
memory leaks.

Memory leaks
When our code is constantly creating and destroying objects, the JavaScript garbage 
collector thrashes, and we experience performance hiccups. However, this is a minor 
problem compared to leaky JavaScript components that are never fully garbage-
collected. This tends to happen when our application code has ideas that don't quite fit 
with those of the framework that manages the lifecycle of our components. Obviously 
memory leaks are a huge scalability issue and one that want to avoid at all costs.

So what we have are two related scalability issues with regard to the lifecycle of 
components in our architecture. First, we don't want to constantly create and destroy 
objects because this has garbage-collection pausing problems. Second, we don't 
want to leak memory by introducing hidden dependencies that the framework 
isn't aware of, breaking the intended lifecycle. As we'll see in the following section, 
Flux architectures help with both aspects of component lifecycle issues. There isn't 
a lot of creation/destruction of components in a Flux architecture. This reduces the 
probability of introducing logic that breaks the lifecycle of a given component. Later 
in the chapter, we'll see how Flux focuses on information rather than JavaScript 
components to achieve scale.

Flux structures are static
Given that the need to constantly create and destroy objects presents an opportunity 
for scaling issues, it seems that we should create and destroy as little as possible. 
It turns out that Flux architectures are different in this area in that much of the 
component infrastructure is static.

In this section, we'll look at what sets Flux apart from other architectures in this 
regard, starting with the singleton pattern that's used by many modules. Then,  
we'll compare the traditional MVC model approach to Flux stores. Lastly, we'll  
take a look at static view components and see if this is an idea worth pursuing in 
order to achieve scale.
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Singleton pattern
As you've probably noticed by now, most of the modules we've worked with so far 
in this book have exported a single instance. The dispatcher exposes a single instance 
of the Dispatcher class from the Facebook Flux package. This is the singleton 
pattern in action.

The basic idea is that there's only one instance of a class, creating more is never 
necessary because the first instance is all we'll ever need. This bodes well with 
the scaling issues we've discussed in this chapter, where constant creation and 
destruction makes our code vulnerable to errors. These errors ultimately prevent the 
application from scaling, due to memory leaks or performance problems.

Instead, Flux architectures tend to assemble the plumbing between the components 
at startup time, and this pluming stays in place permanently. Think about the 
physical plumbing where you live, it sits idle when it's not being used. However, 
the cost of tearing out the physical plumbing to reclaim the space, and the cost of 
replacing it when needed simply doesn't add up. The overhead of having static 
plumbing structures within our walls isn't a scaling bottleneck in our day-to-day 
lives.

So while we can avoid some of the creation and destruction of objects by following 
the singleton pattern, there are tradeoffs. For example, the single pattern isn't 
necessarily a good pattern. At least not in all our modules where everything is a 
class, and yet, everything is only instantiated once. Let's look at a store module 
and see if we can implement something that doesn't actually require a store. First, 
let's implement a typical store module which exports a singleton class instance for 
comparison:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// A typical Flux store class. This module
// exports a singleton instance of it.
class SingletonStore extends EventEmitter {
  constructor() {
    super();

    this.state = {
      pending: true
    };

    this.id = dispatcher.register((e) => {
      switch(e.type) {
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        case MY_ACTION:
          this.state.pending = false;
          this.emit('change', this.state);
          break;
      }
    });
  }
}

export default new SingletonStore();

There's only a handful of properties that the outside world requires from this 
module. It needs the state, so other components can read it. It needs the identifier 
of dispatcher registration, so other components can depend on it using waitFor(). 
And, it needs the EventEmitter, so other components can listen for store state 
changes. Let's now implement a store that doesn't actually require instantiating a 
new class:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// Exports the state of this store...
export var state = {
  pending: true
};

// Exports the "id" of the dispatcher registration
// so that other stores can depend on this module.
export var id = dispatcher.register((e) => {
  switch(e.type) {
    case MY_ACTION:
      state.pending = false;
      emitter.emit('change', state);
      break;
    }
});

// We need to create a new "EventEmitter" here
// since there's no class to extend it.
const emitter = new EventEmitter();

// Exports the minimal interface that views
// require to listen/unlisten to stores.
export const on = emitter.on.bind(emitter);
export const off = emitter.removeListener.bind(emitter);
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As you can see, we're exporting the bare necessities that allow other components 
to treat this module as a store. And it is indeed a store, it's simply structured 
differently. Instead of exporting a singleton class instance, which has the essential 
store interface, we're directly exporting the pieces of the interface. Is there any 
fundamental advantage to either approach? No, there's not. If you prefer classes and 
the ability to extend a base class, then stick with the singleton pattern. If you feel that 
classes are ugly and unnecessary, stick with the module approach.

At the end of the day, the architectural result is the same. The store simply exists. 
There's no need to create and destroy the store as the user interacts with the 
application. There's nothing preventing us from doing this—setting up and tearing 
down stores as the state of the application changes. But as we'll see later in the 
chapter, there's really no advantage to doing this, just as there's no advantage to 
tearing your walls apart when the sink isn't running.

Let's see these two stores in action. Aside from how they're imported, they're 
indistinguishable:

import { myAction } from './actions/my-action';
import singletonStore from './stores/singleton-store';

// Note that "moduleStore" is a module, with everything
// that it exports, not a class instance.
import * as moduleStore from './stores/module-store';

// Registers a "change" callback with the singleton
// store...
singletonStore.on('change', (state) => {
  console.log('singleton', state.pending);
});

// Registers a "change" callback with the module
// store. Not that it looks and feels exactly
// like a class instance.
moduleStore.on('change', (state) => {
  console.log('module', state.pending);
});

// Triggers the "MY_ACTION" action.
myAction();



Information Lifecycle

[ 170 ]

Comparison to models
Remember the idea that stores represent features at the top-level of our application? 
Well, top-level features generally aren't created and destroyed constantly throughout 
the lifetime of the application. Models on the other hand, our friends from the family 
of MV* architectures, often represent more fine-grained data domains. And because 
of this, they need to pop in and out of existence.

For example, suppose we're on the search page of an application, and there's a bunch 
of results displayed. The individual results are likely models, representative of some 
structure returned by the API. The view that renders the search results probably 
knows how to display these modules. When the results change or the user navigates 
to another part of the application, the models are inevitably destroyed. This is part 
of the whole lifecycle discussion we had earlier in the chapter. It's not a simple 
deletion—there's cleanup steps that need to be performed.

With Flux stores, we don't have the same level of complexity. There's views that 
listen to a given store, but that's it. When the state of a store changes, like when some 
search result data is deleted from the store state, the views are notified. It's then up to 
the view to reflect this changed data by re-rendering the UI. With Flux, the cleanup is 
a simple deletion problem, both from the point of view of the DOM and of the store. 
The fact that we're not blowing away entire stores while the user interacts with the 
application means that there's less chance for our architectural components to fall out 
of sync with one another.

Static views
Since views are the components responsible for rendering information that the user 
can see, it would make sense that the view is cleaned up when the user isn't looking 
at it, right? Well, not necessarily. Revisiting the plumbing analogy, when we leave 
the kitchen, we turn the tap in the sink off. We don't get a toolbox and start ripping 
out pipes. The notion that views in a Flux architecture can be static is in fact viable. 
It's the water we need to turn off in order to scale, not the plumbing.

Let's look at some views that are created at startup and never destroyed as the user 
interacts with the application. First, we'll implement a class-based static view:

import myStore from '../stores/my-store';

class ClassView {
  constructor() {

    // The "container" DOM element for this view.
    this.container =
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      document.getElementById('class-view');

    // Render the new state when "myStore" changes.
    myStore.on('change', (state) => {
      this.render(state);
    });
  }

  render({ classContent } = myStore.state) {

    // Sets the content of the container element.
    // This is done by reducing the "classContent"
    // array to a single string. If it's empty,
    // any existing DOM elements are removed from
    // the container.
    this.container.innerHTML = classContent.reduce(
      (x, y) => `<strong>${x + y}</strong>`, '');
  }
}

export default new ClassView();

This looks like your typical class that you would find in a Flux architecture. It's 
instantiated within the module and exported. The content itself is rendered by 
reducing an array to a <strong> tag. We'll see why we're rendering such a tag like 
this when we look at the store. But first, let's look at another static view that takes the 
form of a function:

import React from 'react';

// Renders the view content using a functional
// React component.
export default ({content}) => (
  <strong>{content}</strong>
);

This is the functional style of React components that you were introduced to in the 
previous chapter. As you can see, there's nothing much to it, as React takes care of 
a lot of the heavy lifting for us. Now let's take a look at the store that both of these 
views relies on for information:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { SHOW_CLASS, SHOW_FUNCTION } from '../actions/show';

class MyStore extends EventEmitter {
  constructor() {
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    super();

    // The two content properties of this store's state
    // empty arrays, meaning empty content.
    this.state = {
      classContent: [],
      functionContent: []
    };

    this.id = dispatcher.register((e) => {
      let {state} = this;

      switch(e.type) {

        // If the "SHOW_CLASS" action was dispatched,
        // the "classContent" state gets a single item
        // array and the "functionContent" state gets
        // and empty array.
        case SHOW_CLASS:
          Object.assign(state, {
            classContent: [ 'Class View' ],
            functionContent: []
          });

          this.emit('change', state);
          break;

        // If the "SHOW_FUNCTION" action was dispatched,
        // the "functionContent" state gets a single item
        // array and the "classContent" state gets an
        // empty array.
        case SHOW_FUNCTION:
          Object.assign(state, {
            classContent: [],
            functionContent: [ 'Function View' ]
          });

          this.emit('change', state);
          break;
      }
    });
  }
}

export default new MyStore();
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You can see that both actions—SHOW_CLASS and SHOW_FUNCTION—are processed 
the same way. One action sets a piece of state while deleting another. Let's discuss 
this approach here for a moment. The classContent and functionContent state 
properties both use single-item arrays for a string value. Both of our views iterate 
over these arrays—using map() and reduce(). The reason we're doing it this way is 
to keep logic out of the views. The business logic that operates on stores should stay 
in the store. However, views need to know what to display and what to remove. By 
always iterating over a collection, like an array, the content generation is consistent 
and logic-free. Let's see how both of these views are used in main.js:

import React from 'react';
import { render } from 'react-dom';

import { showClass, showFunction } from './actions/show';
import myStore from './stores/my-store';
import classView from './views/class';
import FunctionView from './views/function';

// The DOM element used by our "FunctionView"
// component.
var functionContainer = document
  .getElementById('function-view');

// Utility to render the "FunctionView" React
// component. Called by the store "change"
// handler and to perform the initial rendering.
function renderFunction(state) {
  render(
    <FunctionView
      content={state.functionContent}/>,
    functionContainer
  );
}

// Sets up the "change" handler for "FunctionView"...
myStore.on('change', renderFunction);

// Perform the initial rendering of both views...
classView.render();
renderFunction(myStore.state);

// Dispatch the "SHOW_CLASS" action.
showClass();
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// Wait one second, then dispatch the "SHOW_FUNCTION"
// action.
setTimeout(() => {
  showFunction();
}, 1000);

The classView is straightforward to use. It's imported and rendered. The store 
state handling is encapsulated within the view module. The FunctionView React 
component on the other hand, needs to be set up with a handler function that's 
called when myStore changes state. Technically, this isn't a static view, because 
it's a function that's called whenever React.render() is called. However, in the 
context of Flux, it does behave a lot like a static view, because it's the React rendering 
system that handles the creation and destruction of view components—our code isn't 
creating or destroying anything—only passing components to render().

Scaling information
As you've seen so far in this chapter, Flux doesn't try to scale things that don't 
need to be scaled. For example, stores and views are often created just once during 
startup. Trying to clean these components repeatedly as the application changes state 
over time is simply error-prone. It's scaling the information that Flows through our 
Flux components that will knock our system over if we're not careful.

We'll start this section off with a look at how our Flux architectures can scale well 
on their own, without massive amounts of data entering the system. This also 
serves to illustrate the idea that these are in fact two separate problems—scaling the 
infrastructure of our Flux components versus scaling the volume of data that our 
architecture is able to process. Then, we'll discuss the topic of designing our user 
interfaces for less information, to make the design process of scalable components 
straightforward. We'll explore the role of Flux actions when it comes time to scale 
our system up to the next level.

What scales well?
As our application grows, it needs to scale in response to things like new feature 
requests, and growing datasets. The question is, which of these scaling issues is most 
deserving of our attention? It should be the issue with the highest potential to topple 
our system. Generally speaking, this has more to do with the input data than it does 
with the configuration of our Flux components. For instance, there's a potential scaling 
issue if we're processing input data in polynomial time instead of logarithmic time.
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This is why our Flux architecture doesn't need to concern itself with lifecycles and 
maintaining the plumbing between components the same way other architectures 
do. Will having a lot of components occupy more memory than they need to and 
is this expensive in terms of performance? Sure, this is always a consideration—we 
don't want to have more components then we need. In practice, this type of overhead 
is hardly noticeable by users. Let's take look at the impact a large component 
infrastructure has on performance. First, the view:

// A really simple view...
export default class MyView {
  constructor(store) {

    // Do nothing except verify that there's
    // a "result" state property.
    store.on('change', ({ result }) => {
      console.assert(
        Number.isInteger(result),
        'MyView'
      );
    });
  }
}

There's nothing much to this view because there doesn't need to be. We're not testing 
the rendering performance of the view itself—we're testing the scalability of the 
architecture. So all that's required is that the view exists and can listen to a store. 
We're passing the store instance in through the constructor because we're creating 
several instances of this view that listen to different stores, as we'll see here in a 
moment. Let's look at the store code next:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// We're exporting the store class instead of
// an instance from this module because the
// main module will create a bunch of them.
export default class MyStore extends EventEmitter {
  constructor() {
    super();

    // The EventEmitter thinks we're leaking memory
    // there's too many listeners. This circumvents
    // the limitation.
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    this.setMaxListeners(5000);

    this.state = {};

    this.id = dispatcher.register((e) => {
      let {state} = this;

      // Perform some basic arithmetic before emitting
      // the "change" event with the "result" state
      // property.
      switch(e.type) {
        case MY_ACTION:
          state.result = 100000 * e.payload;
          this.emit('change', state);
          break;
      }
    });
  }
}

This is a pretty basic store that does a pretty basic calculation when MY_ACTION is 
dispatched. Again, this is intentional. Now let's see how these components can scale 
in a Flux architecture without much data:

import MyStore from './stores/my-store';
import MyView from './views/my-view';
import { myAction } from './actions/my-action';

// Holds onto our store and view references...
var stores = [];
var views = [];

// How many items to create and actions to
// dispatch...
var storeCount = 100;
var viewCount = 1000;
var actionCount = 10;

// Setup our Flux infrastructure. This establishes
// all the relevant store listeners and view
// listeners. They all stay active throughout the
// lifetime of the application.
console.time('startup');
for (let i = 0; i < storeCount; i++) {
  let store = new MyStore();
  stores.push(store);
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  for (let i = 0; i < viewCount; i++) {
    views.push(new MyView(store));
  }
}
console.timeEnd('startup')
// → startup: 26.286ms

console.log('stores', stores.length);
console.log('views', views.length);
console.log('actions', actionCount);
// →
// stores 100
// views 100000
// actions 10

// Dispatches the actions. This is where we either
// succeed or fail at scaling the architecture.
console.time('dispatch');
for (let i = 0; i < actionCount; i++) {
  myAction();
}
console.timeEnd('dispatch');
// → dispatch: 443.929ms

We're measuring the startup cost of creating these components and setting up their 
listeners, because this will typically add to the startup cost of a Flux application. But 
as we can see here, getting all these components ready is inconsequential in terms of 
user experience. The big test comes when the actions are dispatched.

This setup causes one million view render calls to happen, and it takes about 
half a second. This is the plumbing in the wall of our application, and it really 
doesn't benefit us to tear it down and set it all back up again later. This aspect of 
the architecture scales well. It's the data that enters the system, and the logic that 
operates on it that's the real scaling challenge. If we have to run this same test again 
with an action payload of a 1000 item array that was sorted by the store, we might 
have a problem.

We'll address more fine-grained performance testing scenarios 
in Chapter 13, Testing and Benchmarking.
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Minimal information required
As you just saw, the notion that Flux components and their connections can be 
statically-defined is valid. At least, in terms of scaling challenges, having static 
plumbing in place isn't going to be the thing that knocks our system down when 
we try to scale it. It's the data that flows into the system, and the means by which 
we transform it into information for the user. This is the thing that's very difficult to 
scale, and so, it's best that we do as little of it as possible.

It may sound trivially obvious at first, but having less information to display scales 
well. This can easily be overlooked because we're out to build features, not to 
measure the volume of information output from our views. Sometimes, this is the 
most effective way, or possibly the only way, to fix scaling problems.

When we're designing a Flux architecture for our application, we have to keep 
information scalability in mind. Often, the best angle to look at the problem is from 
the UI itself. If there's a way that we can axe certain things, in an effort to reduce 
clutter, we also reduce the amount of information that views need to generate. 
Potentially, we can remove an entire data flow from our application simply by 
changing what the user sees. Lean user interfaces scale well.

Something else to be on the lookout for is information that leaks out of store 
components. By this, I mean information that a store generates for no real purpose. 
This could have been something that used to be relevant to how the view worked, but 
when the feature changed, we forgot to take out the relevant information. Or, it could 
simply be an oversight in the design—we're generating information that the view 
doesn't actually need, and its been this way from day one. These problems are difficult 
to spot, but easy to fix. The only foolproof approach is to periodically audit our views 
to ensure that they're consuming the information that they need and nothing more.

Actions that scale
Actions are the gatekeepers of any data that wants to enter our Flux system—if it's 
not an action payload, then it's not data that we care about. Action creator functions 
aren't problematic to scale, as they don't do much. The most complex aspect of an 
action creator function is managing asynchronous behavior, if necessary. But this 
isn't a fundamental scaling problem, every JavaScript application has asynchronous 
components. There's two fundamental ways that actions can thwart our scaling efforts.

The first is having too many actions. This means that there's more opportunity for 
programmer error due to all the possibilities. It becomes less obvious which action 
creator should be used in which context. The same problem can happen when there 
are few actions and too many action creator parameters. This directly inhibits our 
ability to get the right data into the stores of our application.
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The second way that actions can stumble when we try to scale our system is that 
the action creator functions are doing too much. For example, an action creator 
function might try to filter out some of the API response data in an effort to slim 
down the data that's handed off to the stores through the dispatcher. This is hugely 
problematic, because it violates the Flux rule that all state and all logic that changes 
state belongs in stores.

It's understandable how something like this can happen though, when under pressure 
to scale an application, the most obvious place to fix data problems is at the source. In 
this case, the source is the handler of the AJAX response. The better way to handle this 
is to tweak the API itself and have the action creator function supply the appropriate 
parameters to get the smaller set of data. When state transformations move outside 
of stores in the frontend, we reduce the likelihood of scaling successfully because we 
increase the likelihood of other issues taking place.

Inactive stores
In the previous section, we explored the idea that we can have a relatively static 
component infrastructure in our Flux architecture. This isn't something that causes 
concerns about scalability. Rather, it's the large amounts of data that's held in our 
stores. In this final section, we'll cover some scenarios in which we have a store with 
lots of data as its state, and we don't want our application to become memory-bloated.

The first approach involves deleting the data from the store, freeing resources.  
We can take this approach a step further by adding heuristics to our store logic  
that determines that nothing has changed and there's no need to touch the DOM  
by emitting a change event. Finally, we'll talk about some of the side-effects caused 
by deleting store data and how to deal with them.

Deleting store data
Something we have to think long and hard about with our Flux components is how 
data that enters the system will eventually exit the system. If we only put data in 
without taking any of it out, we've got a problem. In fact, this activity is fundamental 
to Flux architectures, because removing data from store states is also how we remove 
other data structures, such as DOM nodes and event handler functions.

Earlier in the chapter, we saw that by emptying an array, we could tell the view 
to remove UI elements. This is essentially how we scale Flux applications—by 
removing the data that has potential to cause scaling headaches. Imagine a store  
that had a collection with thousands of items in it. This collection would not only  
be expensive to process as is, but it also has the potential to grow much larger. 
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The simple solution is to empty this collection out when it's no longer needed.  
Let's revisit this approach. First, here's what the view looks like:

import React from 'react';
import { hideAll, hideOdd } from '../actions/hide';

// The view function, renders a button
// that deletes store data by dispatching
// the "HIDE_ALL" action, and renders a list
// of items. The hide odds button only deletes
// some store data by dispatching the "HIDE_ODD"
// action.
export default ({ items }) => (
  <div>
    <button onClick={hideAll}>Hide All</button>
    <button onClick={hideOdd}>Hide Odd</button>
    <ul>
      {items.map(item =>
        <li key={item}>{item}</li>
      )}
    </ul>
  </div>
);

A couple of buttons and a list of items—pretty simple. When a button is clicked,  
it calls an action creator function. Let's turn our attention to the store now:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { HIDE_ALL, HIDE_ODD } from '../actions/hide';

class MyStore extends EventEmitter {
  constructor() {
    super();

    // The initial state is an "items" array
    // of 100 numbers.
    this.state = {
      items: new Array(100)
        .fill(null)
        .map((x, y) => y)
    };

    this.id = dispatcher.register((e) => {
      let { state } = this;
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      switch(e.type) {

        // When the "HIDE_ALL" action is dispatched,
        // the "items" state is reset back to
        // an empty array.
        case HIDE:
          state.items = []
          this.emit('change', state);
          break;

        // When the "HIDE_ODD" action is dispatched,
        // the "items" state is filtered to include
        // only even numbers.
        case HIDE_ODD:
          state.items = state.items.filter(
            x => !(x % 2));
          this.emit('change', state);
          break;
      }
    });
  }
}

export default new MyStore();

The HIDE_ALL action simply deletes all the items by assigning an empty array. This 
is exactly what we're after—deleting data when it's no longer needed. This is the real 
scaling challenge, cleaning up data that has the potential to be big and expensive to 
process. The HIDE_ODD action is a variation that filters out even numbers. Lastly, let's 
see how this all comes together in main.js:

import React from 'react';
import { render } from 'react-dom';

import myStore from './stores/my-store';
import MyView from './views/my-view';

// The DOM container for the React view...
var container = document.getElementById('my-view');

// Renders the functional "MyView" React
// component.
function renderView(state) {
  render(
    <MyView
      items={state.items}/>,
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    container
  );
}

// Re-render the React component when the store
// state changes.
myStore.on('change', renderView);

// Perform the initial render.
renderView(myStore.state);

Optimizing inactive stores
One potential scaling issue with the setup we've used in the preceding example is 
that the view itself performs some expensive computation. For example, we can't 
rule out the possibility that even with an empty array as the supplied information 
to render, the view has some implementation issues. This is problematic in a Flux 
architecture, because actions are always being dispatched to stores, which in turn 
notify views that are listening to them. So it's important that views are fast.

This is where React fits really well into Flux. React components are meant to be re-
rendered in a top–down fashion, from the root component all the way down to the 
leaves. It's able to do this efficiently because of the virtual DOM it uses under the 
hood to compute patches that are then applied to the real DOM. This eliminates 
many performance issues because issuing a lot of DOM API calls is a performance 
bottleneck. On the other hand, it would be slightly naive to assume that the store  
will be publishing changes to an efficient React component.

Stores are responsible for emitting change events when the time is right. Therefore, 
we could determine within the store that when a given action is dispatched, there's 
no need to emit a change event. This would involve some sort of heuristic that would 
determine that the view is already displaying the appropriate information given the 
state of the store, and that emitting a change event now would be of no value. By 
doing this, we could avoid any performance challenges in the view. The problem 
with this approach is that we're building up complexity in our store. It's probably 
better that we emit change events consistently and deal with views that are doing 
things inefficiently. Or if we're not using React as the view layer yet, perhaps this is 
an argument in favor of doing so.

In the next chapter, we'll look at implementing advanced change 
detection heuristics in our view components.
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Keeping store data
In this chapter, you've seen how to remove data from stores in a way that scales well. 
If the user has moved from one part of the user interface to another, then we likely 
want to delete any store data that's no longer needed in this new section. The idea 
is that rather than take out all of our JavaScript components, we focus on the data in 
our stores, the aspect of our application that's the most difficult to scale. However, 
there's a potential problem with this approach that we need to consider.

What happens if another store depends on the data that we've just removed? For 
example, the user is on a page that's driven by state from store A. They then move on 
to another page, which is driven by store B, which depends on store A. But we've just 
deleted the state inside of store A—isn't this going to be a problem for store B?

This isn't a common case—the majority of our stores won't have any dependencies, 
and we should be safe to delete unused data. However, we need to come up with a 
game plan for stores that do have dependencies. Let's walk through an example and 
start with the views. First, we have the radio button view, which is a simple control 
that allows the user to toggle from a list of users to a list of groups:

import React from 'react';
import { id } from '../util';
import { showUsers, showGroups } from '../actions/show';

// This react view displays the two radio
// buttons that determine which list to display.
// Note that they're both using "map()" even
// though it's a single item array. This is to
// keep the logic in the store and out of the view.
export default ({ users, groups }) => (
  <div>
    {users.map(user =>
      <label key={id.next()}>
        {user.label}
        <input
          type="radio"
          name="display"
          checked={user.checked}
          onChange={showUsers}
        />
      </label>
    )}
    {groups.map(group =>
      <label key={id.next()}>
        {group.label}
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        <input
          type="radio"
          name="display"
          checked={group.checked}
          onChange={showGroups}
        />
      </label>
    )}
  </div>
);

The change event for both radio buttons is hooked up to an action creator function, 
which affects the display of our two other views—we'll look at these next, starting 
with the user list view:

import React from 'react';

// A simple React view that displays a list of
// users.
export default ({ users }) => (
  <ul>
    {users.map(({ name, groupName }) =>
      <li key={name}>{name} ({groupName})</li>
    )}
  </ul>
);

Pretty straightforward, and you can see that there's a group dependency here, as 
we're displaying the group that the user belongs to. We'll dig into that dependency 
momentarily, but for now, let's look at the group list view:

import React from 'react';

// A simple React view that displays a list
// of groups...
export default ({ groups }) => (
  <ul>
    {groups.map(group =>
      <li key={group}>{group}</li>
    )}
  </ul>
);



Chapter 8

[ 185 ]

Now, let's take a look at the stores that drive these views, starting with the radio 
button store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';

import { SHOW_USERS, SHOW_GROUPS } from '../actions/show';

class Radio extends EventEmitter {
  constructor() {
    super();

    // This store represents radio buttons for
    // the "users" and "groups" display. Each
    // is represented as an array so that we can
    // easily take the take the button out of
    // the view by emptying the array.
    this.state = {
      users: [{
        label: 'Users',
        checked: true
      }],
      groups: [{
        label: 'Groups',
        checked: false
      }]
    };

    this.id = dispatcher.register((e) => {

      // Easy access to the state properties
      // we need in this handler. See the two
      // getter methods below.
      let { users, groups } = this;

      switch(e.type) {

        // Mark the "users" display as "checked".
        case SHOW_USERS:
          users.checked = true;
          groups.checked = false;

          this.emit('change', this.state);



Information Lifecycle

[ 186 ]

          break;

        // Mark the "groups" display as "checked".
        case SHOW_GROUPS:
          users.checked = false;
          groups.checked = true;

          this.emit('change', this.state);
          break;
      }
    });
  }

  // A shortcut for easy access to the "users" state.
  get users() {
    return this.state.users[0]
  }

  // A shortcut for easy access to the "groups" state.
  get groups() {
    return this.state.groups[0]
  }
}

export default new Radio();

You can see here that we're using the single-item array technique once again. This  
is why we have the map() call in the view that uses this store's data. The idea is that 
to hide one of these buttons, we can do it right here in the store by setting it to an 
empty collection—keeping logic out of the view. Notice that we've set up some  
basic getter functions to make dealing with these single-item arrays easier as well. 
Now let's check out the groups store:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { SHOW_GROUPS } from '../actions/show';

class Groups extends EventEmitter {
  constructor() {
    super();

    // The default "_group" state is an array of group
    // names.
    this.state = {
      _groups: [
        'Group 1',
        'Group 2'
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      ]
    };

    // The "groups" state is what's actually used
    // by views and is an empty array by default
    // because nothing is displayed by default.
    this.state.groups = [];

    this.id = dispatcher.register((e) => {
      let { state } = this;

      switch(e.type) {

        // The "SHOW_GROUPS" action will map the
        // "_groups" state to the "groups" state
        // so that the view has something to display.
        case SHOW_GROUPS:
          state.groups = state._groups.map(x => x);
          this.emit('change', state);
          break;

        // By default, the "groups" state is emptied,
        // which clears out the view's elements. The
        // "_groups" state, however, remains intact.
        default:
          state.groups = [];
          this.emit('change', state);
          break;
      }
    });
  }
}

export default new Groups();

This store has two pieces of state—_groups and groups. Yes, they're basically the 
same thing. The difference is that the view depends on groups, not on _groups. 
The Groups store is able to compute the groups state based on _groups. This means 
that we can safely delete the groups state to update the view rendering while the 
_groups state isn't touched. Other stores can depend on this store now, without risk 
of any data disappearing. Let's take a look at the users store now:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import groups from './groups';
import { SHOW_USERS } from '../actions/show';
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class Users extends EventEmitter {
  constructor() {
    super();

    // The default state of the "_users" state is
    // an array of user objects with references to
    // groups from another store.
    this.state = {
      _users: [
        { name: 'User 1', group: 1 },
        { name: 'User 2', group: 0 },
        { name: 'User 3', group: 1 }
      ]
    };

    // Sets the "users" state array, the state
    // that's actually used by views. See
    // "mapUsers()" below.
    this.mapUsers();

    this.id = dispatcher.register((e) => {
      let { state } = this;

      switch(e.type) {

        // If we're showing users, we need to "waitFor()"
        // the "groups" store because we depend on it.
        // Then we can use "mapUsers()" again.
        case SHOW_USERS:
          dispatcher.waitFor([ groups.id ]);

          this.mapUsers();

          this.emit('change', state);
          break;

        // The default action is to empty out
        // the "users" state so that the view
        // will delete the UI elements. However, the
        // "_users" state remains, so that other stores
        // that depend on this one can still access
        // the data.
        default:
          state.users = [];
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          this.emit('change', state);
          break;
      }
    });
  }

  // Maps the "_users" state to the "users" state.
  // The idea being that the "users" array can be
  // emptied to update view displays while the "_users"
  // array remains intact for other stores to use.
  mapUsers() {
    this.state.users = this.state._users.map(user =>
      Object.assign({
        groupName: groups.state._groups[user.group]
      }, user)
    );
  }
}

export default new Users();

You can see that the Users store is able to depend on the _groups state from the 
Groups store in order to build the state that's needed by the user list view. This 
store follows the same pattern as the Groups store in that it has a _users state and a 
users state. This allows for other views to depend on _users if necessary, and we 
can still wipe the users state to clear the UI. However, if it turns out that nothing is 
dependent on this store, we can revert the pattern so that there's only one piece of 
state that's deleted when no longer required by the current view. Lastly, let's take a 
look at the main.js module and see how this all fits together:

import React from 'react';
import { render } from 'react-dom';

import radio from './stores/radio';
import users from './stores/users';
import groups from './stores/groups';

import Radio from './views/radio';
import Users from './views/users';
import Groups from './views/groups';

// The container DOM element...
var container = document.getElementById('app');

// Renders the React components. The state for the
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// Flux stores are passed in as props.
function renderApp(
  radioState=radio.state,
  usersState=users.state,
  groupsState=groups.state
) {
  render(
    <div>
      <Radio
        users={radioState.users}
        groups={radioState.groups}/>
      <Users
        users={usersState.users}/>
      <Groups
        groups={groupsState.groups}/>
    </div>,
    container
  );
}

// Renders the app with the new "radio" state.
radio.on('change', (state) => {
  renderApp(state, users.state, groups.state);
});

// Renders the app with the new "users" state.
users.on('change', (state) => {
  renderApp(radio.state, state, groups.state);
});

// Renders the app with the new "groups" state.
groups.on('change', (state) => {
  renderApp(radio.state, users.state, state);
});

// Initial app rendering...
renderApp();
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Summary
The focus of scaling a Flux architecture is on the information that stores produce, 
rather than the various components. This chapter started with a discussion on the 
common practices of other architectures that involve the constant creation and 
destruction of JavaScript components. This is done to free resources, but it comes 
at a cost—the potential for error. Next, we looked at the relatively static nature of 
Flux architectures, where components have a long life. They don't have to constantly 
create and destroy components, which means that there's less potential for issues.

Next, we covered the concept of scaling information. We did so by demonstrating 
that our JavaScript components and the connections between them were the least of 
our worries when it comes to scaling the architecture. The real challenge comes when 
there's a lot of data to process, and the data that enters the system is likely to grow 
much faster than the number of JavaScript components we have.

We closed the chapter with some examples of how to deal with unused store data. 
This is ultimately the most important aspect of scaling a Flux architecture since it 
gives the browser back unused resources. In the next chapter, we'll tackle the topic  
of immutable stores. This is something we've alluded to throughout the book, and 
we'll give it some focused attention now.
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Immutable Stores
In this chapter, we're going to look at immutable data in Flux stores. Immutability 
is a term that often coincides with functional programming. Immutable data is 
data that doesn't change (mutate) once it's been created. The key benefit is that 
you can predict the root cause of data changes in an application because data can't 
inadvertently be changed by side-effects. Immutability and Flux get along nicely 
because they're both about explicitness and predictability.

We'll kick things off by talking about hidden updates or side-effects. Flux by itself 
discourages such things and immutable data helps enforce the idea. Then, we'll 
go over what these side-effects entail for the integrity of our Flux architecture. 
The most severe consequence of side-effects caused by mutating store data are 
disruptions to the unidirectional data flow of Flux. Next, we'll look at the hidden 
costs of immutability—these are mostly related to the additional resources required, 
which can lead to noticeable performance degradation. Finally, we'll look at the 
Immutable.js library for help with performing transformations on immutable data.

Renouncing hidden updates
The unidirectional nature of Flux is what sets it apart from other modern frontend 
architectures. The reason that the unidirectional data-flow works is because action 
creators are the only way that new data can enter the system. However, this isn't 
strictly enforced by Flux, and this means that some errant piece of code has the 
potential to completely break our architecture.

In this section, we'll look at how something like this is even possible in Flux. 
Then we'll look at how views typically get their data from stores and whether or 
not there's a better way. Finally, we'll think about other components in our Flux 
architecture and see if anything in addition to store data can be made immutable.
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How to break Flux
The easiest way to break Flux is by mutating the state of a store without going 
through the proper channels. The action dispatcher is the gateway for new data 
entering the system, and it also coordinates the action handlers of our stores. For 
example, one action might trigger the handler of a couple stores, using the action 
payload in different ways. This simply won't happen if the state of stores are being 
mutated directly. We could get lucky and the changes we make don't have any side-
effects. But isn't the whole premise of being explicit with actions that we can't predict 
complex side-effects?

If we lower the bar and start directly manipulating state here and there, what's 
to stop us from doing this more frequently? The most likely scenario is a view 
event handler that mutates store data. This is because views typically have direct 
references to stores, whereas other Flux components typically do not. So when the 
user clicks a button and our handler simply changes the state of a store instead of 
dispatching an action, we could find ourselves in trouble.

Let's walk through an example that highlights just how dangerous operating outside 
of the Flux playing field can be. We'll check out the button store first:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { TOGGLE } from '../actions/toggle';

class Button extends EventEmitter {
  constructor() {
    super();

    // The default state is to show the button
    // as enabled and to process click events.
    this.state = {
      text: 'Enabled',
      disabled: false
    };

    this.id = dispatcher.register((e) => {
      let { state } = this;

      switch(e.type) {

        // When the "TOGGLE" action is dispatched,
        // the next state of the button depends on
        // the current state of the "disabled"
        // property.
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        case TOGGLE:
          state.text = state.disabled ?
            'Enabled' : 'Disabled';
          state.disabled = !state.disabled;

          this.emit('change', state);
          break;
      }
    });
  }
}

export default new Button();

Seems pretty simple—control the text and the disabled status of the buttons. This is 
pretty simple, but only if we're abiding by the Flux rules and dispatching actions to 
change the state of a store. Now, let's take a look at a view component that uses this 
store to render itself:

import React from 'react';
import button from '../stores/button';
import { toggle } from '../actions/toggle';

function onClick() {

  // Oh snap! This just totally broke Flux...
  button.state.disabled = !button.state.disabled;

  // Call the action creator as we should...
  toggle();
}

// Renders your typical HTML button, complete
// with properties and a callback handler for
// click events.
export default ({ text, disabled }) => (
  <button
    onClick={onClick}
    disabled={disabled}>{text}</button>
);
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What's supposed to happen here is that the button should become disabled when it's 
clicked, because the button store will change the state accordingly when the TOGGLE 
action is dispatched. This much works as expected. However, the result is that this 
will never work as expected, due to that one line above the call to toggle(). Here, 
we're directly manipulating the state of a store. This prevents the expected behavior 
from taking place when the TOGGLE action is dispatched, because the state has 
already been changed, so now it will change back.

It's these little hacks that can cause big trouble down the road if we're not careful. 
When you look at this view module, the problematic code jumps off the screen. 
Imagine a real project with many more views that are each much bigger than this 
one—would you be able to spot this issue before it's too late?

Getting store data
Given that referencing store state is a dangerous thing, perhaps we could avoid it 
altogether? This would drastically reduce the potential for errors, as we saw in the 
previous section. For example, when two stores depend on one another, they use 
the dispatcher's waitFor() method to ensure that the store we're dependent on is 
updated first. Then we can just directly access the store, knowing that its state has 
already been updated. The approach is visualized as follows:

Store

Dependent

waitFor() State

The dependent store is directly referencing the state of the store that it depends on, 
which is something that can lead to big problems if we're not careful. An alternative 
approach would be to have the dependent store listen to the change event on the 
store that it depends on. The callback can then use the new state that's passed to it as 
an argument. Of course, we would still need to use waitFor() or something along 
those lines to ensure that the stores update in the correct order. This approach is 
shown here:
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Store

Dependent

waitFor() change(state)

This is starting to look like a view component—views listen to the change event of 
stores so that they can render UI updates to reflect the changes in state. Views also 
need to perform an initial rendering of the store data, and this is why they typically 
reference store state. The problem with any of these ideas is that none of them 
actually insulate us from directly accessing store state—who knows what kind of 
reference will be passed in as one of these callback arguments. The other problem is 
that by introducing callback functions where directly reading a value is possible is 
an over-complication in design terms. There has to be a better way. Making our store 
state data immutable is a step in the right direction.

In the next chapter, we're going to implement our own dispatcher 
component. While doing so, we'll think about implementing some 
safeguards against accessing state data from a store while an update 
round is happening, but the store hasn't been updated. This will 
make for easier troubleshooting with dependencies.

Everything is immutable
As the last topic before discussing how we might go about enforcing immutability, 
let's talk about the idea of everything in a Flux architecture being immutable. 
Theoretically, this shouldn't be that difficult to do since Flux cordons off state from 
living anywhere other than inside a store. So, let's start with stores.

Should all our stores be immutable, or perhaps just some of them? Having only some 
immutable stores isn't a good idea because it promotes inconsistency. What about 
having immutability in place at all, is it even necessary? Now this is a very important 
question one has to ask about their architecture because there's no cut-and-dried 
answer here. The immutability argument works when we need that extra assurance 
that there will be no surprises with store states later on. The counterargument is that 
we're disciplined enough as programmers that the immutability mechanisms just 
add overhead.
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We'll spend the remainder of this chapter arguing in favor of immutable data, simply 
because the positives outweigh the negatives in almost every case. Regardless of 
how you feel about immutability, it's good to know what its strengths are in a Flux 
architecture—even if you're not going to use it.

What about view components—can they actually be immutable? Well, it turns out 
that they cannot, because the DOM API doesn't allow this. Our view components 
have to actually manipulate the state of the elements on the page. However, if we're 
using a view technology like React, then we get a veil of immutability because the 
idea is to always re-render components. So it seems as though we're taking old 
elements and replacing them with new ones when, all the while React figures out the 
DOM manipulations for us. This promotes the idea that state has no place within a 
Flux view.

Enforcing unidirectional data flow
If new data only enters the system via action payloads delivered by the dispatcher 
and our store data is immutable, we have a unidirectional data-flow. This is the goal, 
so the questions is, how do we enforce this? Can we simply say that our store data is 
immutable and be done with it? Well, that's something to shoot for, absolutely, but 
there's more to it than that.

In this section, we'll address the concept of data flowing in unintended directions, 
and what causes this to happen. We'll then consider the notion of having too many 
stores and not enough actions as contributors to dysfunctional data-flows. Finally, 
we'll examine some techniques that we can utilize to make our store data immutable.

Backwards, sideways, and leaky data flow
Flux architectures have a unidirectional data-flow—data enters from the left and 
exits on the right. This is easy to visualize as a flow that moves forward. What are 
some of the ways this can go wrong then? Take backwards flow, for instance. If a 
view instance holds a reference to a store instance and proceeds to mutate its state, 
then the flow is moving from the view to the store. This is the complete opposite of 
the expected flow direction, so it is moving backwards. Here's an illustration of what 
this looks like:

Store

State mutate() View
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This is obviously not what we'd expect when working with a Flux system. But it's 
also a likely scenario unless we rule out the possibility by having the store's state 
return immutable data structures to any other components that want to interact with 
it. What about stores - can they mutate the state of another store? They shouldn't, 
and if they do, that would look like a sideways data-flow.

ProTip: Anything that goes sideways is a bad thing.

Here's what a sideways data-flow between two Flux stores might look like:

Store
Store

Statemutate()

Dispatcher

This is just as bad as the view component that directly mutates the state of a store, 
because the state we just changed could impact the next state that's computed. This  
is the same situation we saw in the first code example we looked at in the chapter.

What about actions—are they capable of directly manipulating the state of a store? 
This is probably the least likely scenario, because action creator functions are supposed 
to just dispatch actions after they coordinate any asynchronous behavior. However, 
an action creator function could incorrectly mutate a store state in an AJAX callback 
handler, for example. This is what we refer to as leaky flows because they're going 
around the dispatcher. So, we're leaking mutations without any traceable actions to 
show where they originated. Here's an illustration of the idea:

Store

State

mutate()Dispatcher

action()
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Too many stores?
There's always a possibility that there are too many Flux stores in our architecture. 
Perhaps the application has grown beyond what we had originally designed for in 
terms of features. Now, simply mapping a store to a feature won't suffice because 
there are dozens of stores.

If we're unable to rein in the store count, a possible outcome is more direct state 
mutations by other components. It's just a matter of convenience, if there's a ton of 
stores to think about, it means that we're going to have to take care of several other 
dispatcher-related development activities any time we want to do something. When 
there's lots of stores, there's the urge to manipulate their state directly. Removing 
stores reduces this urge.

Not enough actions
Is it possible that our Flux architecture doesn't have enough actions? For example, 
a view that we're working on needs to change the state of a store. There's no action 
to handle this for us, so rather than build a new action creator and update the store 
to handle the logic, we just directly mutate the store. It sounds like an easy enough 
task—building an action creator function and adding the necessary store update 
logic. But if we have to keep implementing these one-off action creator functions, 
eventually we'll just stop caring. There are two ways to fix this issue. The first is to 
implement more generic actions that apply to more than just one specific situation 
and can accept parameters. The second is to build a handful of action creator 
functions that are relevant to the feature that you're working on, even before you 
need them. When you know that the functions are there, in the back of your mind, 
you're more likely to use them.

Enforcing immutability
Let's explore some different approaches to keeping store state immutable. The goal 
is that when some external entity references a store's state, any changes that entity 
makes to the state doesn't actually affect the store because the data is immutable. 
We'll start by implementing a store that doesn't actually return a reference to its 
state—it returns a copy of it using Object.assign():

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// The state of this store is encapsulated
// within the module.
var state = {
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  first: 1,
  second: 2,
};

class Copy extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        case MY_ACTION:

          // Mutates "state" with new properties...
          Object.assign(state, e.payload);
          this.emit('change', state);
          break;
      }
    });
  }

  // Returns a new copy of "state", not a reference
  // to the original.
  get state() {
    return Object.assign({}, state);
  }
}

export default new Copy();

Here, you can see that the actual store state is in a module-level state variable. This 
means that it isn't accessible directly by the outside world because it isn't exported.  
We want the state to be encapsulated like this so that it's harder for other components 
to mutate it. If other components need read access to the store's state properties, they 
can read the state property of the store. Since this is a getter method, it can compute 
the value that will be returned. In this case, we'll create a new object on the fly. Now 
let's look at a store that stores its state in a constant:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// The state of this store is encapsulated
// within this module. It's also stored as
// a constant.
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const state = {
  first: 1,
  second: 2,
};

class Constant extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        case MY_ACTION:
          // Mutates "state" with new properties...
          Object.assign(state, e.payload);
          this.emit('change', state);
          break;
      }
    });
  }

  // Returns a reference to the "state" constant...
  get state() {
    return state;
  }
}

export default new Constant();

This store has the same structure and patterns as the Copy store. The difference is 
that state isn't a variable—it's a constant. This means that we shouldn't be able 
to mutate it, right? Well, not quite—we just can't assign new values to it. So this 
approach has limited value because the state() getter returns a direct reference to 
the constant. We'll see how this works momentarily, when other components use  
the store. Let's look at one more approach, which uses Object.frozen() to make 
objects immutable:

import { EventEmitter } from 'events';
import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// The store state is encapsulated within
// this module...
var state;
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// Merges new values with current values, freezes
// the new state, and assigns it to "state".
function change(newState) {
  let changedState = Object.assign({}, state, newState);
  state = Object.freeze(changedState);
}

// Sets the initial state and freezes it...
change({
  first: 1,
  second: 2,
});

class Frozen extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        case MY_ACTION:

          // Calls "change()" to update the "state"
          // value and re-freeze it.
          change(e.payload);
          this.emit('change', state);
          break;
      }
    });
  }

  // Returns a reference to the frozen "state"...
  get state() {
    return state;
  }
}

export default new Frozen();

The state() getter is actually returning a reference to the frozen state variable. 
What's interesting about this approach is that we don't necessarily need to make a 
new copy of the data because our change() function has made it immutable. And 
when the store itself needs to update its state, that's when the state is refrozen. 
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Let's see how these approaches compare now. First, we'll import the stores and get 
references to their states:

import copy from './stores/copy';
import constant from './stores/constant';
import frozen from './stores/frozen';

var copyState = copy.state;
var constantState = constant.state;
var frozenState = frozen.state;

copyState.second++;
constantState.second++;

try {
  frozenState.second++;
} catch (err) {
  console.error(err);
  // →
  // TypeError: Cannot assign to read only property
  // 'second' of object
}

console.assert(
  copy.state.second !== copyState.second,
  'copy.second mutated'
);

console.assert(
  constant.state.second !== constantState.second,
  'constant.second mutated'
);
// → Assertion failed: constant.second mutated

It seems like we were able to successfully change the state of copyState. This is sort 
of true—we changed the state of a copy that doesn't actually reflect the state of the 
store. The constantState change, on the other hand, does have side-effects because 
any other components that read state from the constant store will see this change.

When we try to change frozenState, a TypeError is thrown. This might actually 
be the desired outcome, since it's made explicit that what we're trying to do with 
fronzenState is not allowed. Similar things happen when we add new properties  
to the store states—copy fails silently, constant fails, and frozen fails explicitly:

copyState.third = 3;
constantState.third = 3;

try {
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  frozenState.third = 3;
} catch (err) {
  console.error(err);
  // →
  // TypeError: Can't add property third, object is
  // not extensible
}

Finally, let's look at the state data that's sent when the change event is emitted:

copy.on('change', (state) => {
  console.assert(state !== copyState, 'copy same');
  console.assert(state.fourth, 'copy missing fourth');
});

constant.on('change', (state) => {
  console.assert(state !== constantState, 'constant same');
  // → Assertion failed: constant same

  console.assert(state.fourth, 'constant missing fourth');
});

frozen.on('change', (state) => {
  console.assert(state !== frozenState, 'frozen same');
  console.assert(state.fourth, 'frozen missing fourth');
});

myAction({ fourth: 4 });

The myAction() function will extend the store state with new data. As we can see 
once again, the constant approach has failed us because it returns the same reference 
that was mutated. Generally speaking, none of these approaches are particularly 
easy to implement in practice. This is another reason why we'll want to seriously 
consider using a library like Immutable.js, where immutability is the default mode 
and mostly hidden from our code.

The cost of immutable data
By now you are well aware of the advantage immutable data brings to a Flux 
architecture—a level of assurance about our unidirectional data-flow. This safety net 
comes at a cost. In this section, we'll discuss how expensive immutability can be and 
what can be done about it.
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We'll start by covering the biggest immutability issue—transient memory allocations 
and garbage collection. These things are big threats to the performance of our Flux 
architecture. Next, we'll think about lessening the amount of memory allocations 
by batching together transformations on immutable data. Finally, we'll think about 
the ways in which immutable data eliminates code that's only needed to handle 
scenarios where data is mutable.

Garbage collection is expensive
One good thing about mutable data structures is that once they're allocated, they 
tend to stick around for a while. That is, we don't need to copy the properties of  
an existing structure into a new one, then destroy the old one any time we need to 
make an update. This is software, so we're going to be making a lot of updates.

With immutable data, we face a memory consumption challenge. Every time we 
mutate an object, we have to allocate a new copy of that object. Imagine we're in a 
loop, making changes to immutable objects in a collection—this adds up to a lot  
of memory allocations in a short period of time—a spike if you will. Furthermore,  
the old objects that have been superseded by the new ones aren't instantaneously 
deleted from memory. They have to wait for the garbage collector to clean them up.

When our application uses more memory than it needs to, performance suffers. 
When the garbage collector has to run frequently because of all our memory 
allocations, performance suffers. It's the garbage collector more than anything else 
that triggers laggy user experiences, because our JavaScript code can't respond to  
any pending events while it's running.

Maybe there's an approach to immutable data that's less memory-intensive than 
replacing large objects when all we want is a simple update.

Batched mutations
Luckily for us, stores mutate their own state. This means that store dispatcher 
callbacks encapsulate everything that happens during state transformations.  
So if our stores have immutable state data, then the outside world doesn't need  
to know about any shortcuts the store takes internally in order to cut down on  
the number of memory allocations.
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Let's say that a store receives an action and it has to perform three separate 
transformations on its state: make a transformation that results in a new object, 
make another transformation on that new object, and so on. That's a lot of transient 
memory allocations for intermediary data that no other component will ever touch. 
Here's an illustration of what's going on:

State transform()

transform()

transform()

New State

New State

New State

We want the final result to be a new state reference, but the intermediary new state 
that's created in between is wasteful. Let's see if there's a way that we can batch 
together these state transformations before the final immutable value is returned:

State transform()

transform()

transform()

State

State

New State

Now, we're only allocating one new object, despite making three state transformations. 
The mutations we're making within a Flux store are absolutely inconsequential to any 
other component in the system, yet we're maintaining immutability for anything else 
that wants to access and read this state.
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Offsetting the cost
The painful part of mutable data is that components using this data have to account 
for side-effects. They don't necessarily know when or how this data will mutate. 
So they need side-effect handling code. While code that handles unexpected side-
effects often doesn't utilize more memory, it isn't free to run either. When there's 
code to handle edge cases all over our source, the performance degradation can add 
up. With immutable data, we can remove most, if not all, of this extraneous code 
that checks the state of something, because we can better predict what it's going to 
be. This helps to offset the cost of extra memory allocations and garbage collection 
runs. Even if we're not using immutable data in our stores, Flux architectures make 
the need for side-effect handling code virtually obsolete. A unidirectional data-flow 
makes Flux very predictable.

Using Immutable.js
The Immutable.js library from Facebook provides immutable JavaScript data 
structures. This might sound trivial but there's a lot that goes on behind the scenes  
to make this work, namely creating new instances from transformations as efficiently 
as possible.

In this section, we'll look at immutable lists and maps. These are viable substitutes 
for arrays and plain objects, respectively, in our Flux store data. Then, we'll look 
at how Immutable.js can compose complex transformations without the need for 
intermediary representations. Finally, we'll see how Immutable.js returns the same 
instance when there's no mutations after running through a transformation, allowing 
for eff﻿icient change detection.

Immutable lists and maps
We'll start by looking at lists and maps, since these are fairly common structures that 
we'll need to implement in our stores. Lists are kind of like arrays and maps are kind 
of like plain JavaScript objects. Let's implement a store that uses a list:

import { EventEmitter } from 'events';
import Immutable from 'Immutable';

import dispatcher from '../dispatcher';
import { LIST_PUSH, LIST_CAPS } from '../actions/list';

// The state of this store is an "Immutable.List"
// instance...
var state = Immutable.List();
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class List extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When the "LIST_PUSH" action is dispatched,
        // we create a new List instance by calling
        // "push()". The new list is assigned to "state".
        case LIST_PUSH:
          this.emit('change',
            (state = state.push(...e.payload)));
          break;

        // When the "LIST_CAPS" action is dispatched,
        // we created a new List instance by calling
        // "map()". The new list is assigned to "state".
        case LIST_CAPS:
          this.emit('change',
            (state = state.map(x => x.toUpperCase())));
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new List();

You can see that the state variable is initialized to an empty Immutable.List() 
instance (the new keyword isn't necessary because these are functions that return new 
instances). Whenever we call a method on this list instance, a new instance is returned. 
This is why we have to assign the result of calling push() and map() to state.

Now let's implement a map store:

import { EventEmitter } from 'events';
import Immutable from 'Immutable';

import dispatcher from '../dispatcher';
import { MAP_MERGE, MAP_INCR } from '../actions/map';

// The state of this store is an "Immutable.Map"
// instance...
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var state = Immutable.Map();

class MapStore extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When the "MAP_MERGE" action is dispatched,
        // we create a new Map instance by calling
        // "merge()". The new map is assigned to "state".
        case MAP_MERGE:
          this.emit('change',
            (state = state.merge(e.payload)));
          break;

        // When the "MAP_INCR" action is dispatched,
        // we create a new Map instance by calling
        // "map()". The new map is assigned to "state".
        case MAP_INCR:
          this.emit('change',
            (state = state.map(x => x + 1)));
      }
    });
  }

  get state() {
    return state;
  }
}

export default new MapStore();

As you can see, maps follow the same immutability patterns as lists. The main 
difference is that they're keyed instead of indexed. Now let's see how both of these 
stores are used:

import list from './stores/list';
import map from './stores/map';
import { listPush, listCaps } from './actions/list';
import { mapMerge, mapIncr } from './actions/map';
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// Logs the items in the "list" store when
// it's state changes.
list.on('change', (state) => {
  for (let item of state) {
    console.log('  list item', item);
  }
});

// Logs the items in the "map" store when
// it's state changes.
map.on('change', (state) => {
  for (let [key, item] of state) {
    console.log(`  ${key}`, item);
  }
});

console.log('List push...');
listPush('First', 'Second', 'Third');
// → List push...
//     list item First
//     list item Second
//     list item Third

console.log('List caps...');
listCaps();
// → List caps...
//     list item FIRST
//     list item SECOND
//     list item THIRD

console.log('Map merge...');
mapMerge({ first: 1, second: 2 });
// → Map merge...
//     first 1
//     second 2

console.log('Map increment...');
mapIncr();
// → Map increment...
//     first 2
//     second 3
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Immutable transformations
Now, it's time to implement a more involved transformation inside a Flux store.  
This means chaining together operations on Immutable.js structures to create a  
new structure. But what about intermediary memory allocations—we'll want to  
keep an eye on these, right? Here's a store that attempts to use less memory while 
making transformations to a store's state:

import { EventEmitter } from 'events';
import Immutable from 'Immutable';

import dispatcher from '../dispatcher';
import { SORT_NAMES } from '../actions/sort-names';

// The state is an object with two immutable
// list instances. The first is a list of user
// maps. The second is a list of user names and
// is empty by default.
const state = {
  users: Immutable.List([
    Immutable.Map({ id: 33, name: 'tHiRd' }),
    Immutable.Map({ id: 22, name: 'sEcoNd' }),
    Immutable.Map({ id: 11, name: 'firsT' })
  ]),
  names: Immutable.List()
};

class Users extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // The "SORT_NAMES" action was dispatched...
        case SORT_NAMES:

          // Determines the "sort" multiplier that's passed
          // to "sortBy()" to sort in ascending or
          // descending direction.
          let sort = e.payload === 'desc' ? -1 : 1;

          // Assigns the sorted list to "users" after
          // performing a series of transforms. The
          // "toSeq()" and "toList()" calls aren't strictly



Chapter 9

[ 213 ]

          // necessary. Any calls in between them, however,
          // don't result in new structures being created.
          state.names = state.users
            .sortBy(x => x.get('id') * sort)
            .toSeq()
            .map(x => x.get('name'))
            .map(x => `${x[0].toUpperCase()}${x.slice(1)}`)
            .map(x => `${x[0]}${x.slice(1).toLowerCase()}`)
            .toList();

          this.emit('change', state);
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new Users();

The SORT_NAMES action results in some interesting transformations happening to  
our immutable list. The idea is to map it to a list of capitalized user names, sorted 
by user id. The technique that's employed here involves converting the list into a 
sequence once it's sorted, using toSeq(). This is done to prevent the map() calls  
from allocating new structures, because we don't actually need a concrete structure 
till we're done mapping. To do this, we just have to call toList(), which will call 
all the mappings we've set up on the sequence and create the list. This means that 
the only structures we're creating here, are the new list from sortBy(), the new 
sequence from toSeq(), and the new list from toList().

In this particular example, this might be overkill, simply due to the fact that there 
are three operations done on a three-element list. So, we would just remove toSeq() 
and toList() from our code to simplify things. However, as we scale up to larger 
collections and more complex transformations on them, it doesn't hurt to know  
about this technique to reduce the memory footprint of our architecture. Let's see  
this store in action now:

import users from './stores/users';
import { sortNames } from './actions/sort-names';

// Logs the user names...
users.on('change', ({names}) => {



Immutable Stores

[ 214 ]

  for (let item of names) {
    console.log('  name', item);
  }
});

console.log('Ascending...');
sortNames();
// → Ascending...
//     name First
//     name Second
//     name Third

console.log('Descending...');
sortNames(true);
// → Descending...
//     name Third
//     name Second
//     name First

Change detection
In this final example of the chapter, we'll see whether we can use Immutable.js 
structures to implement efficient change detection in our Flux stores. Actually, the 
detection itself will take place in the React view, but this relies on the store state using 
an Immutable.js object. Why would we want to do this—isn't React already efficient 
enough at computing diffs using its virtual DOM? React definitely excels here, but 
it still has to do a fair amount of work to figure out that no re-rendering is needed. 
We can lend a hand to our React components by providing hints that the store's state 
hasn't actually changed. So without further ado, here's the store we'll use:

import { EventEmitter } from 'events';
import Immutable from 'Immutable';

import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// The store state is an Immutable.js Map instance.
var state = Immutable.Map({
  text: 'off'
});

class MyStore extends EventEmitter {
  constructor() {
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    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When "MY_ACTION" is dispatched, we set
        // the "text" property of "state" as the
        // "payload". If the value has change, "state"
        // "set()" returns a new instance. If there's
        // no change, it returns the same instance.
        case MY_ACTION:
          this.emit('change',
            (state = state.set('text', e.payload)));
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new MyStore();

Nothing fancy is done on our part here; we're simply using an Immutable.js Map 
as our store state. We're then assigning the new Map instance to state when set() 
is called, since it returns a new instance. Here's the heuristic we're interested in—
if nothing changes, the same instance is returned. Let's see how we can use this 
property of Immutable.js data in our a view:

import { default as React, Component } from 'react';

export default class MyView extendsComponent {

  render() {

    // Logs the fact that we're rendering because
    // "shouldComponentUpdate()" will prevent it
    // if the store state hasn't changed.
    console.log('Rendering...');

    let { state } = this.props;

    return (
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      <p>{state.get('text')}</p>
    );
  }

  // Since we're using an Immutable.js Map as
  // the store state, we know that if the
  // instances are equal, nothing has changed
  // and there's no need to render.
  shouldComponentUpdate(nextProps) {
    return nextProps.state !== this.props.state;
  }
}

The key piece of this component is the shouldComponentUpdate() method, which 
makes the determination that the store has changed by doing a strict inequality 
comparison. In cases where this component is being rendered a lot but there's no 
need to change anything, this will avoid a lot of virtual DOM tree checking. Now, 
let's see how we would go about using this view:

import React from 'react';
import { render } from 'react-dom';

import myStore from './stores/my-store';
import MyView from './views/my-view';
import { myAction } from './actions/my-action';

// The container DOM element for our React component.
const container = document.getElementById('app');

// The payload that's sent to "myAction()"...
var payload = 'off';

// Renders the React components using the
// "myStore" state...
function renderApp(state=myStore.state) {
  render(
    <MyView state={myStore.state} />,
    container
  );
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}

// Re-render the app when the store changes...
myStore.on('change', renderApp);

// Performs the initial rendering...
renderApp();

// Dispatches "MY_ACTION" every 0.5 seconds. This
// causes the store to change state and the app
// to re-render.
setInterval(() => {
  myAction(payload);
}, 500);

// After 5 seconds, change the payload that's
// dispatched with "MY_ACTION" so that the store
// state is actually different.
setTimeout(() => {
  payload = 'on';
}, 5000);

As you can see, actions that cause our view to re-render are constantly dispatched. 
However, since the set() call in our store is returning the same instance when 
nothing changes, the view itself is doing very little work. Then, once we do change 
the payload value after 5 seconds, the Immutable.js map instance changes, and the 
view updates. This view is rendered a grand total of two times—the initial rendering 
and the rendering that takes place when the store data actually changes.

You may have noticed that this implementation could have gone in another 
direction, one where the store isn't so naive as to emit changes when nothing has 
changed. It's all a matter of taste and tradeoffs. The approach we've chosen does 
require that the views take an active role in optimizing the rendering work-flow. 
This is easy to do with React components, and it simplifies our store logic. On the 
other hand, we might prefer to keep our views completely logic-less, including the 
shouldComponentUpdate() checks. If this is the case, we'd simply move this logic 
back into the store, and not have the change event emitted if the two Immutable.js 
instances are the same.
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Summary
This chapter introduced you to immutability—both in the general sense of the term 
and from a Flux architecture viewpoint. We began the chapter with a discussion 
on the various ways that mutable data can break Flux. In particular, this breaks the 
crown jewel of any Flux architecture—unidirectional data-flow. Next, we looked at 
the different types of data-flow that emerge when we start mutating data outside of 
stores, as these are good things to look for when troubleshooting Flux architectures.

There are several ways that our code can enforce immutable data in our Flux stores, 
and we explored many of them. Immutable data comes at a cost—because the garbage 
collector constantly needs to run, blocking other JavaScript code from running, to 
collect all these extra copies of objects. We looked at how to minimize these extra 
memory allocations and how to offset the overall cost of using immutable data.

We closed the chapter by implementing several stores that used Immutable.js data 
structures. This library buys us immutability, added functionality, and efficient use 
of intermediary memory allocations by default. In the next chapter, we'll implement 
our own dispatcher component.
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Implementing a Dispatcher
Up until this point in the book, we've relied on the reference implementation of the 
Flux dispatcher. There's nothing wrong with doing this—it's a functional piece of 
software, and the dispatcher doesn't have many moving parts. On the other hand, it is 
just a reference implementation of a larger idea—that actions need to be dispatched to 
stores, and store dependencies need to be managed.

We'll kick things off by talking about the abstract dispatcher interface that's required by 
Flux architectures. Next, we'll discuss some of the motivations behind implementing 
our own dispatcher. Finally, we'll devote the remainder of the chapter to implementing 
our own dispatcher module, and then improving our store components so that they're 
able to seamlessly interact with the new dispatcher.

Abstract dispatcher interface
The idea with any reference implementation is to directly illustrate, using code, how 
something is supposed to work. The Facebook reference implementation of the Flux 
dispatcher does just that—we can use it in a real Flux architecture and get results. 
We also gain an understating of the abstract dispatcher interface. Put another way, 
the reference implementation is kind of like software requirements, expressed in 
code form.

In this section, we'll try to better understand what these minimum requirements are 
before we dive into our own dispatcher implementation. The first essential piece 
of functionality that the dispatcher must implement is store registration so that 
the dispatcher can dispatch payloads to it. Then, we need the actual dispatching 
mechanism, which iterates over the registered stores and delivers payloads. Finally, 
we have the dependency semantics to think about while we're dispatching payloads.
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Store registration
When we instantiate a store, we have to tell the dispatcher about it. Otherwise, the 
dispatcher doesn't know about the store's existence. The pattern generally looks 
something like this:

Store Store Store

Callbacks

register()

Dispatcher

The dispatcher maintains an internal collection of callbacks to run whenever  
an action is dispatched. It simply needs to iterate over this collection of callback 
functions, calling each of them in turn. This really is as easy as it sounds, when 
everything during a Flux update round is synchronous. The question is, what  
would we want to change about the way the store registration process works?

Maybe instead of registering a callback function within the store constructor, we were 
to pass the dispatcher a reference to the store instance itself? Then, when it comes time 
to notify the store about an action that's been dispatched, the dispatcher would iterate 
over a collection of store instances and call some predefined method. The advantage to 
this approach would be that since the dispatcher has a reference to the store, it could 
access other metadata about the store, such as its dependencies.

We'll explore this idea further once we start writing code, a bit later on in the 
chapter. The bottom line is this—we need a means to tell the dispatcher that a  
given store instance would like to receive action notifications.
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Dispatching payloads
The actual dispatching of payloads is quite simple. The only complicated part is 
handling dependencies between stores—we'll talk about that next. For now, just 
imagine an architecture where there are no inter-store dependencies. It's just a  
simple collection to iterate over, calling each function with the action payload  
as the argument. Here's an illustration of the process:

callback() callback() callback()

Callbacks

Dispatcher

Apart from dependency management, is there anything else that's missing from this 
picture? Well, there is one situation we could find ourselves in—nested dispatches. 
These are strictly forbidden in Flux architectures as they would disrupt the 
synchronous unidirectional update rounds. In fact, the reference implementation of 
the dispatcher by Facebook tracks the state of any given update round and will catch 
this if it happens.

This doesn't mean that a dispatcher component that we implement has to check  
for such conditions. However, it's never a bad idea to fail fast when something  
so disruptive to the nature of the architecture is taking place.

Something else worth thinking about is the necessity of calling every registered store 
in a given update round. Sure, it makes sense as far as consistency goes—treat every 
store the same and notify them about all the things. On the other hand, we could have 
a large application with hundreds of actions being dispatched. Would it make sense 
to always dispatch actions to stores that never respond to them? When we implement 
our own dispatcher component, we're free to think about how we can implement such 
heuristics that benefit our application while staying true to the principles of Flux.
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Handling dependencies
Perhaps the most challenging aspect of dispatching actions is making sure that store 
dependencies are handled correctly. On the other hand, the dispatcher just has to 
make sure that the store action handlers are called in the correct order. Dispatching 
actions with dependencies in mind is illustrated here:

Dispatcher

Store StorewaitFor()

dispatch()

As long as stores that fall on the right-hand side of waitFor() calls get the dispatch 
notifications first, then all is well. So in essence, store dependencies are an ordering 
problem as far as the dispatcher is concerned. Order the callbacks in such a way that 
satisfies the dependency graph, then iterate and call each handler.

Here's the thing—do we really want to rely on the waitFor() dispatcher method as 
a means to manage store dependencies? Possibly a better way to handle this would 
be to declare an array of stores that we depend on. This would then be passed to the 
dispatcher at registration time, and we would no longer require the waitFor() calls.

We have the basic blueprint of what's required to implement our own dispatcher. 
But before we go ahead with the implementation, let's spend a little more time 
discussing the challenges faced with the Facebook dispatcher.

Challenges with the dispatcher
In the preceding section, we caught a glimpse of some of the potential challenges 
with the Facebook reference implementation of a Flux dispatcher. In this section, 
we'll elaborate on some some of this reasoning, in an attempt to provide motivation 
to implement our own custom dispatcher.

In this section, we'll reiterate the fact that the Flux NPM package mainly exists  
as an educational tool. Depending on a package like this is fine, especially since  
it does the job, but we'll go over some of the risks that something like this carries  
in a production context. Then, we'll talk about the fact that dispatcher components 
are singleton instances and they probably don't need to be.
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We'll then think about the store registration process and the fact that it's a more 
manual process than it needs to be. Finally, we'll touch on the store dependency 
management problem again with a discussion on waitFor() and possible 
declarative alternatives.

Educational purposes
The Facebook Flux NPM package, as we know, provides a reference implementation 
of a dispatcher. The best way to learn how such a component is supposed to work is 
to write code that uses it. It's for educational purposes, in other words. This gets us 
off the ground quickly, as we figure out the best way to write Flux code. Facebook 
could have just as easily left out the dispatcher implementation and left it up to 
programmers reading the Flux documentation to figure this out. Code is highly 
educational though, and serves as a form of documentation. Even if we decide that 
we're not crazy about how the dispatcher is implemented, we can at least read the 
code to figure out what the dispatcher is supposed to do.

So is there any risk involved if we were to use this package in a production setting? 
If we use the default Flux dispatcher in our project, and everything we've developed 
against it works, there's no reason we couldn't use it in a production application. If it 
works, it works. However, the fact that this is a reference implementation meant for 
educational purposes probably means that there's no serious development happening 
with it. Take React as a counter example, where millions of people use this software 
in a production environment. There's motivation that this technology moves forward 
and improves upon itself. This simply isn't the case with a reference dispatcher 
implementation. Rolling our own is definitely worth thinking about, especially if 
there's room for improvement.

Singleton dispatchers
If we use the Flux dispatcher from Facebook, we have to instantiate it, as it's just a 
class. However, since there's only one update round happening at any given time, 
there's no need for more than one dispatcher instance across the entire application. 
This is the singleton pattern, and it isn't always the best pattern to use. For one thing, 
it's needless indirection.

For example, any time we want to dispatch an action, we need to access the 
dispatch() method of the dispatcher. This means that we have to import the 
dispatcher instance and invoke the method using the instance as the context, like 
this: dispatcher.dispatch(). The same is true with the register() method;  
when a store wants to register itself with the dispatcher, it first needs to access  
the instance before it calls the method.
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So, it would seem that this singleton dispatcher instance serves no real purpose 
other than to get in the way and make for more verbose code. What if instead of 
a singleton class instance, the dispatcher were just a simple module that exported 
the relevant functions? This would greatly simplify the code in places where the 
dispatcher is required, which is probably quite a few if our application has a lot  
of stores and actions.

Manual store registration
One invariant of Flux architectures is that stores are connected to dispatchers.  
There's no other way to change the state of a store, other than by dispatching  
an action. So unless we want a static store that never changes state, we need  
to register it with the dispatcher. All the example stores we've looked at in this  
book so far set up their dispatcher handlers in the constructor. This is where we 
handle actions that could potentially change the state of a store.

Since dispatcher registration is a given, do we really need to explicitly register 
a callback function when every store is created? An alternative approach might 
involve a base store class that takes care of this registration for us; this isn't 
necessarily a dispatcher-specific problem.

The other aspect of store registration that feels unnecessary for the most part is 
managing dispatcher IDs. For example, if we implement a store that depends on 
another store, we have to reference that other store's dispatch ID. The reason IDs  
are used is simple—a callback function doesn't identify the store. So we have to  
use the dispatcher to map the callback ID to the store. The whole approach just  
feels messy, so when we implement our own dispatcher, we can do away with  
these dispatch IDs entirely.

Error-prone dependency management
The final gripe that we'll want to address with the default Facebook Flux dispatcher 
is the way that dependencies between stores are handled. The waitFor() mechanism 
does its job in that it blocks further execution of the handler until all its dependencies 
have handled the action. This way, we know that the store that we depend on is 
always up to date. The trouble is that waitFor() feels kind of error-prone.
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For one thing, it always has to be in the same place—right at the top of the store 
action handler. We have to remember to use the dispatch IDs from the stores that we 
depend on so that waitFor() knows which stores to process next. A more declarative 
approach would mean that we could set the store's dependencies as an array of store 
references or something along these lines. This way, the dependencies are declared 
outside of the actual callback function and are a little more obvious. We'll figure out  
a way to implement this in our dispatcher, which we'll now get started on.

Building a dispatcher module
In this section, we're going to implement our own dispatcher module. This will serve 
as a replacement for the Facebook reference implementation that we've relied upon so 
far in this book. First, we'll think about how the dispatcher will track references to store 
modules. Then, we'll discuss the functions that this module needs to expose, followed 
by a walk-through of the dispatch() implementation. Lastly, we'll figure out how we 
want to handle dependency management with this dispatcher module.

Encapsulating store references
The first aspect of our dispatcher module to consider are the stores themselves. 
With Facebook's reference implementation, there are no references to stores—
only references to callback functions. That is, when we register with Facebook's 
dispatcher, we're passing the register() method a function instead of the store 
instance itself. Our dispatcher module will hold onto store references instead of  
just callback functions. Here's a diagram that illustrates the approach taken by  
the reference implementation:

Dispatcher

Store

register()

callback() callback() callback()
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Each time register() is called, it adds a callback function to the list of callbacks to be 
processed by the dispatcher any time an action is dispatched. However, the downside 
is that the dispatcher might need access to the store for more advanced capabilities that 
we want to implement, as we'll see shortly. So we'll want to register the store instance 
itself, rather than just a callback function. This approach is illustrated here:

Dispatcher

Store

register()

Store StoreStore

The list of callback functions is now a list of store instances, and when an action is 
dispatched, the dispatcher now has access to store data, which is useful for things,  
such as methods and dependency lists. The trade-off here is that callback functions are 
more generic, and they're simply called by the dispatcher. As we'll see momentarily, 
there are advantages to this approach that make for simplified store code.

Handling dependencies
The first thing we'll think about in terms of our dispatcher implementation is how 
dependencies between stores are managed. The standard approach is to implement 
a waitFor() method that blocks execution in the store handler function until the 
stores it depends on have been handled. As you're now aware, this approach can 
be problematic due to the fact that it's used within the handler function. A more 
declarative approach is what we're shooting for with our implementation.

The idea is that the list of stores that are depended upon are declared as a property 
of the store. This allows the store to be queried for other stores that it depends on. It 
also takes the dependency management aspect of stores out of the handler code that's 
supposed to focus on actions. Here's a visual comparison of the two approaches:
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Store

handler()

waitFor()

Dependencies

handler()

Dependencies

Store

Trying to access dependencies that are specified in waitFor() is like peeling back an 
onion—they're hidden. Our goal is to separate the handler code from the dependency 
specification. So how do we do that exactly?

Rather than trying to handle dependencies during the dispatching process, we could 
sort out our dependencies as stores are registered. If a store has its dependencies 
listed in a property, then the dispatcher can organize the store list in such a way that 
satisfies those dependencies. Here's an implementation of a register() function for 
our dispatcher module:

// This is used by stores so that they can register
// themselves with the dispatcher.
export function register(store) {

  // Don't let a store register itself twice...
  if (stores.includes(store)) {
    throw `Store ${store} already registered`;
  }

  // Adds the "store" reference to "stores".
  stores.push(store);

  // Sorts our stores based on dependencies. If a store
  // depends on another store, the other store is
  // considered "less than" the store. This means that
  // dependencies will be satisfied if the stores are
  // processed in this sort order.
  stores.sort((a, b) => {
    if (a.deps.includes(b)) {
      return 1;
    }
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    if (b.deps.includes(a)) {
      return -1;
    }

    return 0;
  });
}

This is the function that stores can use to register themselves. The first thing this 
function does is it checks if the store has already been registered with the dispatcher. 
This is an easy check to perform, because the references are stored in an array; we 
can use the includes() method. If the store hasn't already been registered, then  
we can push the store onto the array.

Next, we handle store dependencies. Every time a store is registered, we re-sort the 
stores array. This sort is based on the deps property of the store. This is where the 
dependencies of the store are declared. The sort comparator is straightforward. It's 
based on whether Store A depends on Store B or vice-versa. For example, let's say 
these stores were registered in the following order:

Store A Store B Store C Store D

Now, let's assume that the follow store dependencies have been declared:

Store A Store B Store C Store D

This means that Store A depends on both Store B and Store D. After each of these 
stores have been registered, the order of the store list in our dispatcher modules 
would be as follows:

Store B Store D Store A Store C

Now the store list is in an order that satisfies the dependencies of the stores. When the 
dispatcher iterates over the store list and calls each store handler, it will be done in the 
correct order. Since Store A depends on Store C and Store D, all that matters is that 
these two stores are handled first. The order of Store A and Store C are inconsequential 
since there's no dependency declared between them. Now, let's see how to implement 
the dispatching logic of our module.
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Dispatching actions
In the Facebook reference implementation of a Flux dispatcher, the dispatching 
mechanism is a method of a dispatcher instance. Since there's really no need for a 
singleton dispatcher instance, our dispatcher is a simple module with a couple of 
functions exposed, including a dispatch() function. Thanks to the dependency 
sorting logic, we've implemented in the register() function; the work-flow of 
dispatch() will be nice and straightforward. Let's take a look at this code now:

// Used by action creator functions to dispatch an
// action payload.
export function dispatch(payload) {

  // The dispatcher is busy, meaning that we've
  // called "dispatch()" while an update round
  // was already taking place.
  if (busy) {
    throw 'Nested dispatch() call detected';
  }

  // Marks the dispatcher as "busy" before we
  // start calling any store handlers.
  busy = true;

  // The action "type" determines the method
  // that we'll call on a the store.
  let { type } = payload;

  // Iterates over each registered store, looking
  // for a method name that matches "type". If found,
  // then we call it, passing it the "payload" that
  // was dispatched.
  for (let store of stores) {
    if (typeof store[type] === 'function') {
      store[type](payload);
    }
  }

  // The dispatcher isn't busy any more, so unmark it.
  busy = false;
}
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You can see that there's a busy variable that's checked at the top of the function.  
This is set just before we start calling store handlers. Essentially, this checks for 
anything that calls dispatch() as a result of a store handling an action. For example, 
we could accidentally call dispatch() from a store or from a view that's listening 
to a store. This is not allowed as it breaks the unidirectional data-flow of our Flux 
architecture. When this happens, it's better to detect it and fail fast than it is to let 
nested update rounds run their course.

Aside from the busy state handling logic, this function iterates over the stores 
collection and checks if there's an appropriate method to call. The method name 
is based on the action type. For example, if the action is MY_ACTION and store has 
a method of the same name, then that method is invoked with the payload as an 
argument. The process is visualized here:

Store

dispatch()

MY_ACTION

MY_ACTION()

This is quite the departure from the standard switch statement approach we've been 
using in this book so far. Instead, it's up to the dispatcher to locate the appropriate 
code to run within the store. This means that if the store doesn't implement a method 
that corresponds to the action that has been dispatched, it's ignored by the store. 
This is something that happens often within our store dispatch handlers, only now 
it happens more efficiently because it sidesteps the switch case checking. In the next 
section, we'll see how our stores can work with this new dispatcher implementation. 
But first, here's the dispatcher module in its entirety, so you can see how everything 
fits together:

// References to registered stores...
const stores = [];

// This is true when the dispatcher is performing
// an update round. By default, it's not busy.
var busy = false;

// This is used by stores so that they can register
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// themselves with the dispatcher.
export function register(store) {

  // Don't let a store register itself twice...
  if (stores.includes(store)) {
    throw `Store ${store} already registered`;
  }

  // Adds the "store" reference to "stores".
  stores.push(store);

  // Sorts our stores based on dependencies. If a store
  // depends on another store, the other store is
  // considered "less than" the store. This means that
  // dependencies will be satisfied if the stores are
  // processed in this sort order.
  stores.sort((a, b) => {
    if (a.deps.includes(b)) {
      return 1;
    }

    if (b.deps.includes(a)) {
      return -1;
    }

    return 0;
  });
}

// Used by action creator functions to dispatch an
// action payload.
export function dispatch(payload) {

  // The dispatcher is busy, meaning that we've
  // called "dispatch()" while an update round
  // was already taking place.
  if (busy) {
    throw 'Nested dispatch() call detected';
  }

  // Marks the dispatcher as "busy" before we
  // start calling any store handlers.
  busy = true;
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  // The action "type" determines the method
  // that we'll call on a the store.
  let { type } = payload;

  // Iterates over each registered store, looking
  // for a method name that matches "type". If found,
  // then we call it, passing it the "payload" that
  // was dispatched.
  for (let store of stores) {
    if (typeof store[type] === 'function') {
      store[type](payload);
    }
  }

  // The dispatcher isn't busy any more, so unmark it.
  busy = false;
}

Improving store registration
We can't improve the work-flow of the dispatcher without improving the work-
flow of our stores. Thankfully, the hard work has already been implemented by 
the dispatcher. We just need to implement our stores in a way that best utilizes 
the improvements we've made to the dispatcher. In this section, we'll discuss 
implementing a base store class, followed by some example implementations  
of stores that extend it and implement their own action methods.

Base store class
The new dispatcher we've just implemented has some important differences from 
Facebook's reference implementation. The two key differences are that the store 
registers an instance of itself instead of a callback function, and that the store needs 
to implement action methods. The base store class should be able to automatically 
register itself with the dispatcher when it's created. This would mean that stores 
extending this base class wouldn't need to worry about the dispatcher at all—just 
implementing action methods that change the state of the store accordingly.
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The layout of the dispatcher, the base store, and stores that extend it is illustrated here:

register()Base Store

Base Store Base Store

Dispatcher

Let's go ahead and look at the implementation of our base store class now. Then, we'll 
implement some stores that extend it so that we can see our new dispatcher module  
in action:

import { EventEmitter } from 'events';
import { register } from './dispatcher';

// Exports the base store for others to extend.
export default class Store extends EventEmitter {

  // The constructor sets the initial "state" of the
  // store, as well as any dependencies "deps" with
  // other stores.
  constructor(state = {}, deps = []) {
    super();

    // Stores the state and dependencies. The "deps"
    // property is actually required by the
    // dispatcher.
    this.state = state;
    this.deps = deps;

    // Registers the store with the dispatcher.
    register(this);
  }

  // This is a simple helper method that changes the
  // state of the store, by setting the "state"
  // property and then emitting the "change" event.
  change(state) {
    this.state = state;
    this.emit('change', state);
  }

}
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That's it, pretty simple right? The constructor accepts the initial state of the store and 
an array of store dependencies. Both of these arguments are optional—they have 
default argument values. This is especially important for the deps property because 
our dispatcher module expects it to be there. Then, we call the register() function 
so that the dispatcher is automatically aware of any stores. Remember, a Flux store is 
of no use if it's unable to handle actions as they're dispatched.

We've also added a handy little change() method that updates the state and emits 
the change event for us. Now that we have a base store class, we're free to implement 
little helper methods like this in order to reduce duplicate store code.

An action method
Let's complete our example that's been running through a few sections now. To do 
so, we'll implement a few stores that extend the base store we've just created. Here's 
the first store:

import Store from '../store';
import second from './second';
import third from './third';

// The initial state of the store, we'll
// pass this to "super()" in the constructor.
const initialState = {
  foo: false
};

// The dependencies this store has on other
// stores. In this case, it's "second" and
// "third". These too, are passed through
// "super()".
const deps = [ second, third ];

class First extends Store {

  // The call to "super()" takes care for setting up
  // the initial store state, and the dependencies
  // for us.
  constructor() {
    super(initialState, deps);
  }

  // Called in response to the "FOO" action
  // being dispatched...
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  FOO(payload) {
    this.change({ foo: true });
  }

  // Called in response to the "BAR" action
  // being dispatched...
  BAR(payload) {
    this.change(Object.assign({
      bar: true
    }, this.state));
  }
}

export default new First();

This store has all of the relevant moving parts to work with our new base store class 
and our new dispatcher module. You can see in the constructor that we're passing 
the initialState and the deps values to the Store constructor. You can also see 
that we have two action methods implemented in this store: FOO() and BAR(). This 
means that if any actions with a type of FOO or BAR are dispatched, this store will 
respond to them. Now let's implement the two stores that this store depends on:

If you absolutely can't stand the look of all-caps method names, 
feel free to change the case of the action types that get dispatched. 
Another alternative is to implement case-insensitive matching in 
the dispatcher. The trade-off working against this latter option 
is that we'd lose the direct mapping from action type to method 
name. Be careful what you wish for.

import Store from '../store';
import third from './third';

class Second extends Store {

  // The call to "super()" sets the initial
  // state for us.
  constructor() {
    super({
      foo: false
    });
  }
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  // Called in response to the "FOO" action
  // being dispatched...
  FOO(payload) {
    this.change({ foo: true });
  }

  // Called in response to the "BAR" action
  // being dispatched. Note that we're
  // dependent on the "third" store, yet
  // we don't make this dependency explicit.
  // This could lead to trouble.
  BAR(payload) {
    this.change({
      foo: third.state.foo
    });
  }
}

export default new Second();

The Second store is similar to the First store. It extends the base Store class and 
sets a default state. It also responds to two actions, as we can see by the two method 
names. However, this store doesn't declare any dependencies, yet it clearly depends 
on the third store in the BAR() action handler. This may or may not work, depending 
on where the third store lands in the collection of stores held by the dispatcher. 
If we declare third as a dependency, then we know for certain that it'll always be 
updated before this store. Let's look at our last store now:

import Store from '../store';

class Third extends Store {

  // The call to "super()" sets the initial
  // state for us...
  constructor() {
    super({
      foo: false
    });
  }

  // Called in response to the "FOO" action
  // being dispatched.
  FOO(payload) {
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    this.change({ foo: 'updated' });
  }
}

export default new Third();

Once again, this store follows the same patterns as its two successors. The key 
difference being that it has no BAR() action handler. This means that nothing in  
this store will be called when BAR actions are dispatched. This is in contrast to  
our earlier handlers where every action would have funnelled through a switch 
statement only to be ignored. Finally, let's look at main.js to tie this all together:

import first from './stores/first';
import second from './stores/second';
import third from './stores/third';

import { foo } from './actions/foo';
import { bar } from './actions/bar';

// Logs the state of each store as it changes...
first.on('change', (state) => {
  console.log('first', state);
});

second.on('change', (state) => {
  console.log('second', state);
});

third.on('change', (state) => {
  console.log('third', state);
});

foo();
// →
// third {foo: "updated"}
// second {foo: true}
// first {foo: true}

bar();
// →
// second {foo: "updated"}
// first {bar: true, foo: true}

Note that the output of foo() reflects the correct dependency order and that the 
output of bar() reflects the missing action handler in Third.



Implementing a Dispatcher

[ 238 ]

Summary
In this chapter, you learned about some of the limitations that are inherent with the 
Facebook Flux component. For starters, it's not targeted for production environments, 
because it's a reference implementation for the Flux patterns. We're free to implement 
these dispatcher patterns however we like.

The essential aspects of a dispatcher are the ability to register store code that 
handles actions as they're dispatched and the ability to perform the dispatches. 
Given the simplicity of the requirements, it doesn't make sense to implement 
another singleton class. Instead, the dispatcher only needs to expose a register() 
and dispatch() function.

The big change with our implementation was with regard to dependency 
management. Instead of figuring out dependencies every time an action is dispatched, 
the register() function sorts the stores collection in such a way that satisfies the 
store dependencies. We then implemented a base store class that's used to simplify  
our store code by automatically registering the store with the dispatcher for us.

In the next chapter, we'll look at view components that rely on technologies other 
than ReactJS to render themselves.
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Alternative View Components
The Flux documentation doesn't have a whole lot to say about view components. 
And yet, views are an essential part of any Flux architecture. Perhaps what the  
Flux authors really mean is that Flux doesn't really care about the mechanisms  
used to render our views—just as long as they're rendered somehow.

It's no secret that Flux was designed with React in mind. Facebook had already  
built React for their view components—Flux was the missing piece that allows  
them to formulate a full-fledged, frontend architecture. We'll start this chapter  
off with a discussion on what makes React such a good fit for Flux architectures. 
Then we'll weigh these benefits against the downsides of React.

Next, we'll spend some time building views using jQuery and the Handlebars 
template engine. These are two popular technologies that have likely crossed  
the path of any given developer at some point. We'll then close the chapter by 
thinking about views that don't require specific rendering technology, allowing  
us to be nimble about our views and adopt the new hotness when it arrives.

ReactJS is a good fit for Flux
It's no surprise that React is a good fit for Flux architectures. Both technologies  
were created by the same company, and they both solve complimentary problems. 
In this section, we'll dive into some of the details of what it is about React that makes 
it work so well with Flux. We'll start by looking at the unidirectional flows found in 
both Flux and React. Next, we'll discuss the idea that re-rendering DOM structures 
is easier than manipulating specific DOM nodes, and why this is a good fit for store 
change event handlers. Finally, we'll talk about the relatively small code footprint of 
React components.
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ReactJS is unidirectional
The data-flow in a Flux architecture is unidirectional. It starts with an action  
and ends with view updates—there's no other way for data to get into a view 
component. React itself shares this same unidirectional philosophy with Flux.  
Data flows into a root React component and trickles down into any components  
used to compose the root. This process is recursive down the component hierarchy.

Data flows into Flux stores through actions, and flows out as change events. React 
components keep this unidirectional flow going. Once the React component has 
re-rendered itself based on the store state, the flow is done. The only option is to 
start all over again by dispatching a new action. The flow between Flux and React 
components is illustrated here:

Action

Dispatcher

Store

View

Virtual DOM

DOM

The first three items in our data flow are Flux entities. Any given data flow is kicked 
off when an action is dispatched. The action itself then enters the dispatcher and is 
sent to every store. Then the store makes any state changes as appropriate. From here, 
the data-flow is handed off to the React component. This is where we've specified the 
structure of the markup we want to render, using JSX. The component then consults 
with the virtual DOM to figure out what changes, if any, should be made in the actual 
DOM. Once these changes are made, the end of the data-flow has been reached.
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The flow that we've outlined here for React components wouldn't look any different 
even if they weren't part of a Flux architecture. The Flux components just add 
predictable state changes in a synchronous way, before handing the data off to 
components for rendering. Without Flux, React would still need to start from the  
top and pass data down so that the re-rendering process can start. This fits nicely 
with the change events that are emitted by the Flux stores.

What doesn't fit so well with React is the idea of two-way data binding. Some people 
love the idea and have found ways to make it work with React, but I digress. For 
two-way binding to be effective, our view components need to be in close proximity 
to mutable data. Then, the view can listen directly to this data in order to re-render 
itself. We're not setup to handle this with Flux architectures, let alone React. The idea 
that we can directly mutate the state of something without first entering a work-flow 
that manages the synchronous update of application-wide state, goes against every 
idea of Flux. Put simply, Flux architectures favor unidirectional data-flows with 
predictable outcomes and React helps with this mission.

Re-rendering new data is easy
One thing about ReactJS that really stands out is it's ability to re-render entire DOM 
trees. Well, any JavaScript code can replace an existing DOM tree by building it again. 
React uses what's called a virtual DOM to compare the existing elements that the user 
is currently looking at, against the new elements that we've just rendered. Instead of 
replacing the entire tree, React will only touch the DOM in places where the two trees 
differ. Aside from the heuristics React has built into it, the fundamental performance 
edge comes from the fact that the virtual DOM is in JavaScript memory—we don't 
have to query the real DOM for elements. It's querying the DOM that can have 
negative performance implications.

To get around these performance issues, our view code can issue specific queries that 
are efficient to run, and only fetch the exact elements we need. Our view code can 
also cache the specific elements that it needs. The problem with this approach is that 
it feels fragmented once we have more than a few view components. It's difficult for 
components to share code when they're all tailored for their own specific performance 
requirements, and this is highly dependent on the DOM structure of the component.

It's more natural for programmers to be able to say here's a snapshot of what these view 
elements should look like at this point in time. We shouldn't have to pick apart the DOM 
structure and say that this div should look like this while this span should be hidden 
and so on. This is why JSX works; we can more easily visualize what the output of 
our component is going to look like, because it's structured like the elements are 
structured.
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Small code footprint
React components generally have less code than view components that have lots of 
imperative DOM manipulation code. React doesn't have this type of code because it 
just needs to express the structure of the DOM through JSX. However, without Flux 
as the architecture, an application that uses React will probably find that the React 
components contain much more data transformation code.

For example, when React components are mounted into the DOM, we might need to 
perform some kind of transformation on data that comes from some source, perhaps 
an AJAX response. With Flux, the source is always the state of the store, so we know 
that the data transforms have already happened by the time they're handed off to the 
React views. Remember, it's the views that drive the structure of our store state, not 
the stores that drive how our views must be structured.

Event-handling code is another area where React components can have a small 
code footprint. Well, there's really two dimensions to this. First, event handlers 
in React are declared right in the JSX, so they're as much a part of the DOM tree 
structure as any other element properties—there's no need to insert the elements 
into the DOM and then look them up again later so we can attach an event handler 
function to them. The second dimension isn't actually specific to React, but more of 
a Flux phenomenon. The event handlers themselves are usually just action creator 
functions. All the logic that would have been in our views is now part of our stores.

The downsides of ReactJS
Now that you have a good handle on the benefits of using ReactJS as the view  
layer in a Flux architecture, it's time to look at some of the downsides. Everything 
has negative tradeoffs—there's no such thing as a perfect technology. So these things 
are worth considering in the context of a Flux architecture for your application.

First, we'll consider memory consumption. React is a fairly big library and has 
a noticeable impact on application load time. However, this is of minor concern 
compared to the amount of memory consumed by the virtual DOM. Next, we'll  
look at introducing JSX syntax into our JavaScript modules and the problems that 
might introduce for those not accustomed to blending other languages into their 
JavaScript modules.
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Virtual DOM and memory
JavaScript applications should strive to be as memory-efficient as possible. Those 
that don't feel bloated and unresponsive to the user. Applications that use a lot of 
memory are inherently slower than those that use less memory because they need 
to perform more work. For example, if we need to look something up in a collection, 
it's obviously going to take more compute resources if the collection has a ton of 
objects in it, as opposed to a collection that's much smaller. Another place this can 
hurt application performance is during garbage collection. This is less of an issue if 
we have huge collections that are allocated and never freed (possibly due to other 
problems like leaks). But the more common behavior is to allocate large amounts 
of memory in response to a user action, then to deallocate that memory when the 
user moves on. This behavior will trigger frequent garbage collection runs, which 
translates to pauses in responsiveness.

The architecture of React requires more memory than alternative approaches to 
memory. This is due to the virtual DOM that React maintains. This in-memory 
structure is meant to reflect the structure of the real DOM. It doesn't track every 
single piece of data about every element that the real DOM has. It only tracks  
the data that's necessary to compute diffs. Here's an illustration of the mapping 
between our component, the virtual DOM, and the real DOM:

React Component

Element

Element Element

Element

Element Element

Element

Element Element

Virtual DOM Real DOM

The elements in our React component aren't necessarily occupying much memory, 
because they're just the declarative part of the component that specify which 
elements to use and which property values they should have. The virtual DOM 
reflects the structure and properties as specified in our JSX; these elements actually 
do occupy memory. Finally, we have the real DOM elements that the user sees and 
interacts with. These occupy a significant amount of memory too.

The main challenge with this approach is that we're doubling-up on anything that's 
rendered in the DOM. Put another way, the virtual DOM adds to the total memory 
consumed by our DOM elements out of necessity. Without the virtual DOM, React  
and JSX is just another template engine. The virtual DOM solves performance issues  
in other places. The main area where React excels performance-wise is efficient DOM 
API interactions, because the virtual DOM eliminates the need for many of these calls.
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Is the memory consumed by your typical React application a showstopper? Absolutely 
not. Memory is quickly becoming a commodity, even in the mobile space. So if we 
can allocate more memory to solve real performance issues, we should by all means 
do so. However, there are cases where excessive memory allocation can become a 
problem with React applications. For instance, what if we simply need to render lots of 
elements? When and if this becomes a performance issue, your best bet is to probably 
design for fewer elements.

JSX and markup
JSX is essentially HTML (well, XML technically) mixed in with JavaScript code.  
If your initial response to this approach wasn't favorable, you're not alone. Over 
a long period of time, decades actually, we've been conditioned to separate our 
concerns. Something like HTML should never be in the same module as the 
JavaScript logic that controls when and how that markup is displayed. If we've  
been living through the separation-of-concerns principle for so many years, it's  
only natural to balk at the notion of combining to concerns into a single module.

It's quite possible that the last project you worked on involved specifying markup 
in template files. These templates are then fed into the view layer for rendering. 
Coming to Flux from this setting might be a little too much to take in all at once. 
On one hand, we have a whole new unidirectional data-flow to think about. On the 
other hand, we're talking about throwing out everything we've worked so hard to 
build into separate layers.

Let's not forget the fact that the separation of concerns principle does serve a purpose. 
If two concerns are implemented in two different places, there's less chance that a 
change in one concern will impact the other. Think of having templates as a way to 
compartmentalize the visual aspect of any given component. We can, in theory at least, 
give the design team free reign over the templates and not have to worry about them 
breaking the JavaScript implementation of the component.

If you've learned anything so far in this book, it's probably that there's a lot more to the 
complexities of UI components than the sum of their parts. Flux tries to acknowledge 
these complexities by explicitly modeling them in stores. There's a strict ordering and 
synchronicity to updating the UI in Flux for a reason: predictability despite all the 
complexity involved. What does this have to do with JSX, you might ask? Well, before 
discounting it as something that violates the separation of concerns principle, think 
about how well it fits with Flux stores. Also consider the idea that markup and the 
logic that renders it might be the same concern after all.
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Vendor lock-in
Have you ever heard someone say something along the lines of I'm using library 
x because I don't want to be locked into library y? Vendor lock-in is a tricky area to 
navigate. Although these days, where most projects rely on open source projects,  
it's more like technology approach lock-in. I would be remiss if I didn't at least mention 
the subject here with regard to Flux and React.

Once we start using React and JSX, we've pretty much rolled the dice. It's a safe 
bet for more reasons than it's an unsafe one. Nonetheless, we've started down a 
path that's very difficult to get off, which is essentially the point of these past three 
sections. Even if your mind is 95% made up on choosing React, you'll sleep better  
at night knowing that you've weighed the tradeoffs.

Using jQuery and Handlebars
Both jQuery and Handlebars are pervasive technologies in modern web applications. 
There's a high probability that someone new to Flux has used one or both of these 
technologies, so we'll spend this section implementing some views that use both 
jQuery and Handlebars.

We'll start with a discussion on what makes jQuery and Handlebars a good fit  
for implementing view components. Then, we'll implement a basic view that uses 
these technologies to render the state of Flux stores. After this, we'll think about the 
various ways that we can compose larger views out of smaller parts and how to best 
handle user events.

Why jQuery and Handlebars?
Before there were JavaScript frameworks, there was jQuery. This small library set 
out to solve cross-browser issues prevalent in frontend development, and in general 
to make development more pleasant. Today, jQuery is still a dominant player in the 
JavaScript library game. Many larger frameworks depend on jQuery, because it's so 
effective and the barrier to learn how it works is so low.

One thing that jQuery isn't so great at is specifying the layout of UI components 
using HTML. For example, we can use jQuery to construct new elements and insert 
them into the DOM on the fly. However, something about this approach feels 
cumbersome and unnatural. It's often clearer to be able to write the HTML using the 
same structure as it would appear on the page. This removes a layer of indirection 
and makes it easier for us to map the markup to the rendered output.
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Enter Handlebars. This library adds a sophisticated template engine to our frontend. 
Writing Handlebars templates means that we can write HTML, along with some 
specific Handlebars syntax for the dynamic bits, and avoid the mess of trying to 
assemble elements using jQuery. Both libraries are complimentary to one another. 
We have Handlebars templates that declare the structure of our application, and 
we use the Handlebars rendering engine to render this structure. Then, jQuery can 
handle every other aspect of the view components, such as selecting DOM elements  
and handling events. Let's see how this looks in the context of a Flux architecture  
by implementing a view that renders a Handlebars template.

Rendering templates
Let's start by covering the most basic usage scenario—rendering a Handlebars 
template into a DOM element using jQuery. Let's first start by looking at the 
Handlebars template file itself:

<p><strong>First: </strong>{{first}}</p>
<p><strong>Last: </strong>{{last}}</p>

As you can see, this is essentially basic HTML with a bit of specialized Handlebars 
syntax mixed in for the dynamic parts. This template is stored inside of a .hbs file 
(short for handlebars—some people use the full .handlebars extension). We can 
update our Webpack configuration to add the Handlebars loader. This parses and 
compiles the .hbs templates for us, meaning that our code that uses these templates 
can import them just like regular JavaScript modules. Let's take a look at what this 
looks like in our view component:

// Imports the compiled Handlebars "template"
// function just like a regular JavaScript module.
import template from './my-view.hbs';
import myStore from '../stores/my-store';

export default class MyView {
  constructor(element) {

    // Sets the container element that
    // we'll use to place the rendered template
    // content. Expected to be a jQuery object.
    this.element = element;

    // When the store state changes, we can
    // re-render the view.
    myStore.on('change', (state) => {
      this.render(state);
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    });
  }

  // Renders the view. The default state is
  // the initial "myStore.state". We use the
  // "element" property of the view to set the
  // HTML to the rendered output of the Handlebars
  // "template()".
  render(state = myStore.state) {
    this.element.html(template(state));
    return this;
  }
}

The template() function that this view module imports is created as the result of 
the Webpack plugin compiling the template into a function for us. The runtime for 
Handlebars is included as part of the bundle that Webpack creates. The render() 
method of our view component calls the template() function, passing it a context 
and using the return value as the new content for the view's element. The context is 
just the state of the store, and each time the store state changes, the html() jQuery 
function is used to replace the existing element content.

The fundamental difference between ReactJS and an approach 
such as this one that uses the Handlebars templating engine, is 
that React attempts to make small updates. With Handlebars, we 
could end up replacing a lot of DOM content, and the performance 
issues could become noticeable by users. To combat these sorts of 
problems, we have to change the way our application is composed. 
This in and of itself could put us at a disadvantage compared to 
using something like React where we can re-render large DOM 
structures and still be efficient.

Now, let's take a look at the store that drives the content of this view:

import { EventEmitter } from 'events';

import dispatcher from '../dispatcher';
import { MY_ACTION } from '../actions/my-action';

// The initial state of the store. Instead of
// empty strings, this state uses labels that
// indicate that there's still data to come.
var state = {
  first: 'loading...',
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  last: 'loading...'
};

class MyStore extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When the "MY_ACTION" action is
        // dispatched, we extend the state
        // with the value of "payload",
        // overriding any existing property values.
        case MY_ACTION:
          this.emit('change',
            (state = Object.assign(
              {},
              state,
              e.payload
            ))
          );
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new MyStore();

This is a fairly typical store—not unlike most stores that we've seen so far in this 
book. The payload that's dispatched as part of the MY_ACTION action is used to 
extend the state of the store and will override existing property names, if any.  
Let's take a look at the main program now:

import $ from 'jquery';

import { myAction } from './actions/my-action';
import MyView from './views/my-view';
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// Constructs the new view and performs the
// initial render by calling "render()". Note
// that there's now stored reference to this view,
// because we don't actually need to. If we
// did, "render()" returns the view instance.
new MyView($('#app')).render();

// After 1 second, dispatch "MY_ACTION", which
// will replace the "loading..." labels.
setTimeout(() => {
  myAction({
    first: 'Face',
    last: 'Book'
  });
}, 1000);

This is where we initialize the instance of our view component, passing it a jQuery 
instance. This jQuery object represents the #app element, and is used by the view to 
hold the rendered Handlebars template content. After a one second delay, we call 
myAction(), which causes the myStore state to change and the handlebars template 
to re-render.

Generally, what happens when our Handlebars templates start 
getting bigger, we'll start adding specialized handlers that only 
respond to specific store properties. The reason is that the properties 
change too frequently and they only impact a tiny section of the 
visible UI. These micro-handlers then proliferate, and we start to 
lose predictability because we're introducing more paths into the 
rendering code. With ReactJS, this is less likely to happen, because 
we seldom have to decompose our view updates like this.

Composing views
If we're using Handlebars templates as the main ingredient of our view components, 
we probably need the ability to decompose our templates into smaller chunks.  
Think about the way we decompose our React components—we end up with  
smaller components that can usually be shared across features. Using Handlebars 
templates, we can achieve something similar using partial templates. The partial is  
a smaller part that fits into a larger whole to form the template that gets rendered  
by the view component.
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Let's start by looking at a Handlebars template that serves as the list view for a store 
that has an array of user data:

<ul>
  {{#each users}}
  <li>{{> item-view}}</li>
  {{/each}}
</ul>

This template is iterating over the users property of our store, which is an array. 
However, instead of directly rendering each item, it's simply referring to a partial 
template using special syntax. Let's look at this partial template now, so we can get  
a sense of what's being passed to it:

<span style="text-transform: capitalize">{{first}}</span>
<span style="text-transform: capitalize">{{last}}</span>

In this template, we don't have to qualify the properties that are used in this case: 
first and last. The context in the parent template is passed to the partial template, 
in this case the user object. So it's kind of like passing in props to a child React 
component from a parent component. Once again, however, the difference is that 
every Handlebars component we use to compose the structure of the DOM elements 
is re-rendered as there's no virtual DOM to speak of. Let's look at the store that was 
used to populate this view with data:

import { EventEmitter } from 'events';

import dispatcher from '../dispatcher';
import { REVERSE } from '../actions/reverse';

// The initial state is a list of
// user objects.
var state = {
  users: [
    { first: 'first 1', last: 'last 1' },
    { first: 'first 2', last: 'last 2' },
    { first: 'first 3', last: 'last 3' }
  ]
};

class MyStore extends EventEmitter {
  constructor() {
    super();
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    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When the "REVERSE" action is dispatched,
        // the "state.users" array is reversed by
        // calling "reverse()".
        case REVERSE:
          this.emit('change',
            (state = Object.assign(
              {},
              state,
              { users: state.users.reverse() }
            ))
          );
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new MyStore();

And finally, the main program. Here, we'll setup an interval timer that keeps 
dispatching the REVERSE action. This causes the whole UI to re-render with every 
dispatch:

import $ from 'jquery';

import { reverse } from './actions/reverse';
import ListView from './views/list-view';

// Performs the initial rendering of
// the list view, after initializing
// the view using the "#app" element.
new ListView($('#app')).render();

// Every second, toggle the sort
// order of the list by re-rendering
// the main template and it's partial
// templates.
setInterval(reverse, 1000);
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Generally speaking, Flux architectures should have as few stores as 
possible. However, if we're using Handlebars in the view layer, we 
might be influenced to design our stores differently. For example, we 
might want to split the collective application state in such a way that 
results in less DOM structure being re-inserted into the document.

Handling events
Long before any modern web frameworks came into existence, jQuery was 
addressing cross-browser event-handling issues. Though the API has changed  
over the years, the powerful capabilities of jQuery's event handling remain intact. 
This is something that's obviously relevant if we're building views that are powered 
by jQuery and Handlebars.

The most pressing challenge with event handling in this context is the fact that  
we're re-rendering elements every time a Handlebars template needs updating. 
What we don't want is to have to re-attach event handlers to DOM elements every 
time they're inserted into the DOM. ReactJS utilizes a strategy that doesn't actually 
bind event handlers directly to the element we want to listen to. Instead, the handler 
is bound to the body element and as events bubble up, the appropriate handler is 
invoked. It turns out that this approach has a performance advantage, because it 
avoids having to bind the same handler function to the same element, over and over. 
Here's an illustration of the idea:

Root Element

Element

Element

event()

event()

handler()

handler()

handler()

Elementevent()

We can achieve something similar to this using jQuery. Let's first look at the 
Handlebars template files so that we can get a feel for the type of UI we're dealing 
with here. We'll extend the preceding example by adding a reverse button and 
selection capabilities. Here's the new item view template:

<a href="#{{@index}}" style="font-weight: {{fontWeight}}"
  <span style="text-transform: capitalize">{{first}}</span>
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  <span style="text-transform: capitalize">{{last}}</span>
</a>

The item is now a link. Note that we're able to use the @index Handlebars syntax, 
which allows access to the index of the current item in the collection we're iterating 
over. Even though the iteration happens in another template, this special value is still 
accessible. Now let's see what we have in the main list view Handlebars template:

<button>Reverse</button>
<ul>
  {{#each users}}
  <li>{{> item-view}}</li>
  {{/each}}
</ul>

The ul that builds the list is the same as it was previously. Now we have a new 
button to reverse the sort order of the list, instead of an interval timer. Let's now  
take a look at the event handling capabilities of the view component:

import template from './list-view.hbs';
import { reverse } from '../actions/reverse';
import { select } from '../actions/select';
import myStore from '../stores/my-store';

export default class ListView {
  constructor(element) {

    this.element = element;

    // When the store state changes, re-render
    // the view.
    myStore.on('change', (state) => {
      this.render(state);
    });

    this.element

      // Binds the click event to "#app", but
      // is only handled if a "button" element
      // generated the event. The "reverse()"
      // action creator is used as the handler.
      .on('click', 'button', reverse)

      // Binds the click event to "#app", but
      // is only handled if an "a" element



Alternative View Components

[ 254 ]

      // generated the event. The index is parsed
      // from the "href" attribute, and this is
      // passed as the payload to the "select()"
      // action creator.
      .on('click', 'a', (e) => {
        e.preventDefault();

        let index = +(/(\d+)$/)
          .exec(e.currentTarget.href)[1];

        select(index);
      });
  }

  // Sets the HTML of "element" to the rendered
  // Handlebars "template()". The context of
  // the template is always the Flux store state.
  render(state = myStore.state) {
    this.element.html(template(state));
    return this;
  }
}

We're following the pattern of React where the handler is never directly attached  
to something that's going to be re-rendered frequently. In fact, you can see that  
the event handlers are setup in the constructor of the view component, long before 
anything has ever been rendered by this view. This works because the #app element 
is already in place, and this is the element we're interested in.

The first handler is for the reverse button, and it uses the reverse() action creator 
function. It's the second parameter to on() that provides the element context, so that 
we know this handler is for button elements. The same principle is applied with 
our second handler, which is called when the user clicks a link. Here, we're simply 
preventing the default browser behavior and dispatching the select event. Now, 
let's take a look at some of the changes we had to make to our store to support this 
new event behavior:

import { EventEmitter } from 'events';

import dispatcher from '../dispatcher';
import { REVERSE } from '../actions/reverse';
import { SELECT } from '../actions/select';

// The initial state is a list of
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// user objects. They each have a
// "fontWeight" property which is
// translated to a CSS value when
// rendered.
var state = {
  users: [
    {
      first: 'first 1',
      last: 'last 1',
      fontWeight: 'normal'
    },
    {
      first: 'first 2',
      last: 'last 2',
      fontWeight: 'normal'
    },
    {
      first: 'first 3',
      last: 'last 3',
      fontWeight: 'normal'
    }
  ]
};

class MyStore extends EventEmitter {
  constructor() {
    super();

    this.id = dispatcher.register((e) => {
      switch(e.type) {

        // When the "REVERSE" action is dispatched,
        // the "state.users" array is reversed by
        // calling "reverse()".
        case REVERSE:
          this.emit('change',
            (state = Object.assign(
              {},
              state,
              { users: state.users.reverse() }
            ))
          );
          break;
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        // When the "SELECT" action is dispatched, we
        // need to find the appropriate item based on
        // the "payload" index and mark it as selected.
        case SELECT:
          this.emit('change',
            (state = Object.assign(
              {},
              state,
              { users: state.users.map((v, i) => {

                // If the current index is the selected
                // item, change the "fontWeight" property.
                if (i === e.payload) {
                  return Object.assign({}, v,
                    { fontWeight: 'bold' });

                // Otherwise, set the "fontWeight" back
                // to "normal" so that any previously
                // selected items are reset.
                } else {
                  return Object.assign({}, v,
                    { fontWeight: 'normal' });
                }
              })}
            ))
          );
          break;
      }
    });
  }

  get state() {
    return state;
  }
}

export default new MyStore();

There are two important changes here that are worth pointing out. The first change  
is that our users array now has a new fontWeight property for each item within it.  
This is necessary because it controls the display of our links to indicate that something 
has been selected. Everything defaults to normal since nothing has been selected yet.
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We could put some code in our view component that looks for a 
fontWeight property, and when it can't find one, it defaults to 
normal. The problem with this tactic is that it introduces unnecessary 
logic into the view component. We're trying to keep everything in 
the store, even seemingly trivial things like this. Even if that means 
adding default values in a store that are also default in the browser.

The second change to the store is the addition of the SELECT handling logic. When 
this action is dispatched, we match up the item index with the payload index and 
change the font weight. Everything else that doesn't match gets reverted back to a 
normal font-weight.

Using VanillaJS
Not having enough diversity in the ecosystem of frontend JavaScript rendering 
libraries isn't a problem. In fact, the problem for us is the exact opposite—there's too 
many libraries and frameworks to choose from. While some people in the JavaScript 
community view this disjointed plethora of choice as a problem, it doesn't have to be. 
It's better to have too many technologies to choose from than not enough.

In this section, we'll discuss using VanillaJS as our view technology—no libraries or 
frameworks. The idea isn't to completely avoid using frameworks, it's to keep our 
options open as the architecture of our application unfolds. Eventually, we might 
move our view components to use React, or perhaps there's some other new hotness 
we've been keeping our eye on.

Keeping my options open
At some point, we have to choose a technology to use with our view components. 
That depends on which stage of the project we're on. If it's early in the game and 
we've already decided on a view library, we could end up limiting ourselves to this 
technology for a long time. Given how fast JavaScript and it's surrounding ecosystem 
is moving, being stuck with any technology for a length of time usually isn't a good 
thing. We have to embrace the fact that change is constantly deprecating the thing 
that was once new hotness.

On the other hand, we don't want to wait too long to make a technology decision  
for our views, because the more things we build using plain JS, the more difficult  
it's going to be to migrate these views to a more opinionated approach. Where's  
the sweet-spot?



Alternative View Components

[ 258 ]

The best strategy is to avoid lock-in where possible. This involves keeping things 
loosely-coupled so that they're substitutable. Thankfully, Flux architectures make 
this easy because the responsibilities of the view layer are fairly limited. They need 
to listen to store change events and render the store state. Maybe we should try 
building two sets of view components. The first set uses a technology such as React, 
and the other uses something else, such as jQuery and Handlebars. This not only 
allows us to pick the view technology that works best for our product, but also lets 
us test our readiness to adopt new technologies, which we'll inevitably want to do.

Moving to React
As you saw in this chapter, we can use technologies like jQuery and Handlebars 
in the view components of our Flux architecture. What's more, they don't interfere 
with the unidirectional data-flow found in Flux architectures. That being said, React 
is probably the best suited view technology to use as part of a Flux architecture. 
From the perspective of unidirectional data-flow, React picks this up naturally. Even 
without Flux in place, stateless functional React components behave exactly how we 
would expect a view to behave in a Flux architecture. When new properties come in, 
new HTML is rendered.

In addition to React's natural tendency toward unidirectional data-flow, the idea of 
re-rendering large DOM structures feels less daunting. Thanks to the virtual DOM 
that React uses to patch the rendered output—instead of replacing the entire thing—
we can efficiently pass store state to top-level views for re-rendering. React also 
handles other edge cases for us too, such as maintaining the focus of a form control 
during a re-render.

The real question is twofold: how inevitable is a move to React, and how salvageable 
is our existing code? Well, the first question is generally pretty easy to answer—
there's a high probability that you're going to use React in your Flux architecture. 
It's simply a good fit for a Flux architecture. However, it's naive to assume that there 
are no negative tradeoffs, like higher memory consumption for example. So if we 
do decide to move to React after already having developed some view components, 
do we need to throw everything out? Unlikely. Views play a relatively small role in 
Flux architectures, as I've stressed throughout the book. So, if moving to React solves 
problems in your Flux view components, by all means do so—it's a good direction to 
move in. For now.
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New hotness
A couple of years ago, React was brand new hotness. As with any new hotness, 
developers can and should approach the technology with some degree of skepticism. 
As it turned out, React was a good bet for many of it's early adopters. On the other 
hand, not all new and shiny technologies work out. This is how progress is made, 
and is why so much progress has been made in the JavaScript ecosystem. What's  
the point of this anecdote? There's always going to be new hotness that's superior  
to what you've already bet on. Be ready to adopt and re-adopt again.

For example, Google is currently implementing view technology called Incremental 
DOM (http://google.github.io/incremental-dom/), which takes a different 
approach to rendering that uses a lot less memory. There's Veu.js (http://vuejs.
org/). There are endless other possibilities for the future. Just make sure that you are 
views can pivot and embrace the latest and greatest view technology—it'll be here soon.

Summary
The focus of this chapter was on the view components of our Flux architecture 
and how they're loosely-coupled to the point that we can substitute rendering 
technologies. We started with a discussion on React itself and what makes it a 
good fit for Flux architectures. Then, we switched gears and covered the potential 
downsides of using ReactJS.

We spent some time implementing views that leveraged both jQuery and Handlebars. 
These are two mature technologies that many developers are familiar with and serve 
as a good jumping off point for implementing a Flux architecture. However, there 
are strong motivations for anyone implementing Flux to look at React as the view 
technology of choice.

We wrapped the chapter up with a discussion on using VanillaJS to render our view 
components. There's no sense in rushing into using a particular technology until  
we understand the ramifications of that choice. There's always going to be newer  
and better view libraries, and Flux architectures make it easy to pivot and embrace 
new hotness.

http://google.github.io/incremental-dom/
http://google.github.io/incremental-dom/
http://vuejs.org/




[ 261 ]

Leveraging Flux Libraries
Flux, first and foremost, is a set of architectural guidelines, specified as patterns 
for us to follow. While this affords the ultimate flexibility, it can be paralyzing 
sometimes, when it comes to deciding how to implement a given Flux component. 
Thankfully, there are some really good Flux libraries out there that provide 
opinionated implementations of Flux components, which remove the need for a lot 
of the boilerplate code we would have to write. The idea of this chapter is to look  
at two of these libraries, to show just how different Flux implementations can be.  
The goal isn't compliance, but rather a solid architecture that helps our application 
get the job done.

Implementing core Flux components
In this section, we're going to reiterate the idea that we can change the implementation 
specifics of the various Flux components in our architecture. We'll start by talking 
about the dispatcher itself, and think about the various changes that we might make. 
Then, we'll think about stores and the enhancements we might want to make there. 
Finally, we'll discuss actions and action creator functions.

Customizing the dispatcher
In Chapter 10, Implementing a Dispatcher, we implemented our own dispatcher 
component. The reference implementation by Facebook is perfectly fine to use, 
but it's not meant to be the de-facto component found in every production Flux 
architecture. Instead, it's meant to be a jumping off point, so we can see how the  
Flux dispatcher specification is supposed to work.

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=8f387021-6d00-2fec-c5ee-567947ed576b
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Our solution was to expose the dispatch() and register() functions from the 
dispatcher module. By doing so, we made using the dispatcher a little more direct in 
other areas of our code. There was no longer a dispatcher instance to think about—
everything was encapsulated within the dispatcher module.

A generic Flux library might want to take this a step further and completely  
dissolve the dispatcher, which might sound nuts—it's an essential Flux component. 
However, we can still achieve the same architectural principle of the dispatcher 
without explicitly implementing this abstraction. This is the whole point of releasing 
Flux as a set of specs instead of a concrete implementation. We know conceptually 
what a Flux architecture should and should not do—we get to pick how to enforce 
these rules with our implementation.

Implementing a base store
Another improvement we made in Chapter 10, Implementing a Dispatcher, was to the 
store hierarchy. We had each of our stores inherit from a base class. The main reason 
we implemented this functionality was to automate the registration of the store with 
the dispatcher, which is good, because there's not much sense in a Flux store that 
isn't listening to events emitted from the dispatcher. Perhaps a Flux library should 
handle this type of base functionality for us.

We also implemented method action handlers. This was actually a function of the 
dispatcher itself in our implementation, and it was quite limiting. Perhaps the base 
store is the appropriate place for this type of functionality. Libraries should contain 
this type of generic complexity, not our application.

What's nice about inheriting base functionality with Flux stores is that this is 
where the brains of our application live. If we were to discover some generic state 
transformation behavior that applied to more than one store, having a base store in 
place makes it easy for us to factor out the common code. Maybe a Flux library could 
ship with some basic transformations in their base store that we would inherit from.

Creating actions
Constants are a great way to be explicit about actions in Flux architectures.  
The action module defines the constant, and the action creator function passes  
the constant to the dispatcher. Stores also use these constants when determining  
how to handle actions as they're dispatched. This creates an explicit tie between  
the action creator and the code in stores that respond to this action.

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=8f387021-6d00-2fec-c5ee-567947ed576b
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In Chapter 10, Implementing a Dispatcher, we adopted a different approach. The action 
creator functions still defined constants and used them when dispatching the action. 
However, we made changes that allowed for our stores to define method handlers. 
So instead of one function that listened to the dispatcher, the stores defined methods 
that matched the constant defined for the action. This is convenient from the store's 
perspective, but it diminishes the value of having constants if they're only used by 
the action creator functions.

A Flux library could help make dispatching and handling actions a little more 
straightforward. Using constants and switch statements is good insofar as it makes 
what's happening explicit. We like explicitness in our Flux architecture. The challenge 
is that this approach requires diligence on the part of the programmers implementing 
the system. In other words, there's plenty of opportunity for human error. A Flux 
library could remove the error-prone aspects of dealing with constants in two places.

Another area that a Flux library could help is with asynchronous action creator 
functions. The asynchronous behavior of our application is likely to follow a  
similar pattern:

•	 Dispatch an action that changes the state of a store before the asynchronous 
code runs

•	 Dispatch an action when the response arrives
•	 Dispatch a different action if the asynchronous behavior fails.

It's almost like asynchronous actions have a lifecycle that could be abstracted into a 
common function by a Flux library.

Implementation pain points
In the preceding section, we covered the areas of Flux that might benefit from a custom 
implementation. Before we dive into Alt.js and Redux, we'll briefly talk about some 
of pain points with implementing Flux architectures. Asynchronous actions are tough 
to get right, in any architecture, let alone Flux. The way we partition our application 
state into stores can be a tricky design problem. If we get this wrong, it can be hard to 
recover from. Finally, we have data dependency challenges to think about.
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Dispatching asynchronous actions
As we discussed in the preceding section, asynchronous action creators are difficult 
to implement. It's challenging because we usually have to let the stores know that 
this asynchronous action is about to take place so that the UI can be updated to reflect 
this. For example, when a button is clicked that sends one or more AJAX requests, we 
probably want to disable that button before actually sending the request, to prevent 
duplicate requests. The only way to do this in Flux is to dispatch an action, because 
everything is unidirectional.

Libraries can help with this, to an extent. For example, the pre-request actions and 
success/error response actions can be somewhat abstracted into something that's 
easier to use, because that's a common pattern. However, even doing this leaves the 
issue of assembling requests to go fetch all the data that's needed for a given action, 
synchronize the responses and pass them each to the store so that it can transform 
them into something that the view needs.

Maybe it's best if we were to leave this asynchronous problem outside the scope of 
Flux. Facebook has introduced GraphQL, for example, a language that simplifies 
building complex data from backend services and only responding with what the 
store actually needs. This is all done in one response, so we save on bandwidth 
and latency as well. This approach isn't for everyone, and so it's up to the Flux 
implementer to choose how they want to deal with asynchronicity, just as long  
as the unidirectional data-flow on the client remains intact.

Partitioning stores
Incorrectly partitioning the stores in our Flux architecture is perhaps one of the 
biggest design risks we face. What generally happens is that the stores are roughly 
balanced; then, as the system evolves, all the new features end up going into one 
store while the responsibilities of the other stores aren't clear. The stores become 
unbalanced, in other words. The store that holds onto the majority of the application 
state gets too complex to maintain.

Another potential issue with the partitioning of our stores is that they grow to be too 
fine-grained. We don't want this to happen either. Though the state that's managed 
by individual stores is simple enough, the complexity resides in the dependencies 
between all these stores. Even if there aren't too many dependencies, when there's 
more stores to think about, it's more difficult to hold enough state in our heads as 
we're trying to reason about something. When related state is all in one place, it's 
much easier to predict what will happen.
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What if a Flux library, like Redux, took a radical approach and eliminated all sources 
of confusion by only allowing a single store? This indeed prevents design issues like 
partitioning stores. Instead, as we'll see later on the chapter, Redux uses reducer 
functions to transform the state of the single store.

Using Alt
Alt.js is a Flux library that implements a lot of the boilerplate code for us.  
It completely adheres to the Flux concepts and patterns, but let's us focus on  
the architecture from the perspective of our application, rather than worrying  
about action constants and switch statements.

In this section, we'll touch on the core concepts of Alt before diving into a simple 
todo list example. The example is intentionally simple—you'll be able to map the 
code back to the Flux concepts you've learned about so far in this book.

The core ideas
The main goal of the Facebook Flux package is to provide a reference implementation 
of a basic dispatcher component. This serves well as an aide to the concepts of Flux—
actions are dispatched to stores in a synchronous, unidirectional fashion. As we've seen 
through the book, the dispatcher concept doesn't even necessarily need to be exposed 
to those who are implementing Flux. We can simplify the Flux abstractions and yet still 
fall within the constraints of a Flux architecture.

Alt is a Flux library that's supposed to be used in production applications—it's not a 
reference implementation. Let's go over a few of it's goals as a Flux library before we 
jump into the code.

•	 Compliant: Alt doesn't borrow ideas from Flux—it's truly meant for Flux 
systems. For example, the concept of stores, actions, and views are all relevant. 
Likewise, the principles of Flux architecture are followed closely by Alt. Things 
like synchronous update rounds and unidirectional data-flow are enforced.

•	 Automates boilerplate: Some of the more tedious programming tasks 
associated with implementing Flux are handled nicely by Alt. These include 
things like automatically creating action creator functions and action constants. 
Alt will also take care of store action handler methods for us—reducing the 
need for long switch statements.

•	 No dispatcher: There's no dispatcher for our code to interface with. 
Dispatching actions to all the stores is taken care of behind the scenes, when 
we call our action creator functions. Things like dependency management 
between stores are handled directly within the stores themselves.
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Creating stores
The simple application that we're going to create will display two lists for the user. 
One list is for the todo items, the other list is for the items that have been completed. 
We'll use two stores—one for each list. Let's take a look at how we create stores using 
Alt.js. First, we have the Todo store:

import alt from '../alt';
import actions from '../actions';

class Todo {
  constructor() {

    // This is the state of the input element
    // used to create a new Todo item.
    this.inputValue = '';

    // The initial list of todo items...
    this.todos = [
      { title: 'Build this thing' },
      { title: 'Build that thing' },
      { title: 'Build all the things' }
    ];

    // Sets up the handler methods to be called
    // when the corresponding action is dispatched.
    this.bindListeners({
      createTodo: actions.CREATE_TODO,
      removeTodo: actions.REMOVE_TODO,
      updateInputValue: actions.UPDATE_INPUT_VALUE
    });
  }

  // Creates a new Todo using the action "payload"
  // as the title.
  createTodo(payload) {
    this.todos.push({ title: payload });
  }

  // Removes the Todo based on the index, which is
  // passed in as the action payload.
  removeTodo(payload) {
    this.todos.splice(payload, 1);
  }
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  // Updates the Todo value that the user is currently
  // entering in the Todo input box.
  updateInputValue(payload) {
    this.inputValue = payload;
  }
}

// The "createStore()" function hooks our store class
// up with all the relevant action dispatching machinery,
// returning an instance of the store.
export default alt.createStore(Todo, 'Todo');

This probably doesn't look very familiar, relative to what we've seen so far in 
this book. Not to worry; we'll walk through the moving parts here now. The first 
question you probably have is—where's the state? It's not clear by looking at 
the code, but the state is any instance variables of the class. In this case, it's the 
inputValue string and the todos array.

Next, we have a call to bindListeners() with a configuration object passed to it. 
This is how Alt stores map actions to methods. You can see that we have methods 
defined that correspond to what's passed into bindListeners(). Lastly, we have  
the call to createStore(). This function instantiates the Todo store class for us,  
but it also hooks up the dispatch mechanism.

That's all there is to the store definition—it's ready to be used by views that need 
to render it's state. Now let's take a look at the Done store, which follows the same 
approach, only with fewer moving parts:

import alt from '../alt';
import actions from '../actions';
import todo from './todo';

class Done {
  constructor() {

    // The "done" state holds an array of
    // completed items.
    this.done = [];

    // Binds the only listener of this store.
    this.bindListeners({
      createDone: actions.CREATE_DONE
    });
  }
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  // This action payload is the index of an item
  // from the "todo" store. This is called when
  // the item is clicked, and the item is added
  // to the "done" array.
  //
  // Note that this action handler does not mutate
  // the "todo" state as that is not allowed.
  createDone(payload) {
    const { todos } = todo.getState();
    this.done.splice(0, 0, todos[payload]);
  }
}

// Creates the store instance, and hooks it
// up with the Alt dispatching machinery.
export default alt.createStore(Done, 'Done');

You can see here that this store actually uses the Todo store to copy over item data 
when an item is marked as done. However, this store doesn't mutate the Todo store, 
as that would violate the unidirectional data-flow.

These store classes aren't event emitters, so they don't explicitly 
emit anything when the state changes. For example when a todo 
is added, how do the views know that anything has changed? 
Since the createTodo() method is called automatically for 
us, the notification mechanism also happens automatically once 
our method has finished executing. We'll see more on the state 
change notification semantics momentarily.

Declaring action creators
We've seen how stores respond to actions being dispatched. Now we need a means 
to actually dispatch these actions. This is probably the easiest aspect of our Alt 
application. Alt can generate the functions we need, as well as the constants that 
are used by the bindListeners() call in our stores. Let's take a look at the actions 
module and see how this works with Alt:

import alt from './alt';

// Exports an object with functions that accept
// a payload argument. These are the action
// creators. Also creates action constants
// based on the names passed to "generateActions()"
export default alt.generateActions(
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  'createTodo',
  'createDone',
  'removeTodo',
  'updateInputValue'
);

This will export an object with action creator functions that have the same names as the 
strings passed to generateActions(). And it'll generate the action constants used by 
the store. Since our action creator functions are all very similar, generateActions() 
has high utility. There's a lot of boilerplate code that we no longer have to maintain. 
On the other hand, there are more complex cases that involve asynchronous actions 
that need more code than this. Take a look at the Alt documentation for asynchronous 
actions if you're interested in using this library for your project.

Listening for state changes
All throughout this book, we've added event handler functions to the change 
event emitted by our stores. With libraries like Alt, this is somewhat managed for 
us already. Let's take a look at the main module of our application which uses the 
AltContainer React component to feed store data into our other React components:

// The React and Alt components we need...
import React from 'react';
import { render } from 'react-dom';
import AltContainer from 'alt-container';

// The stores and React components from
// this application...
import todo from './stores/todo';
import done from './stores/done';
import TodoList from './views/todo-list';
import DoneList from './views/done-list';

// Renders the "AltContainer" component. This
// is where the stores are tied to the views.
// The "TodoList" and "DoneList" components
// are children of the "AltContainer", so
// they get the "todo" and the "done" stores
// as props.
render(
  <AltContainer stores={{ todo, done }}>
    <TodoList/>
    <DoneList/>
  </AltContainer>,
  document.getElementById('app')
);
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The AltContainer component accepts a stores property. The container will listen 
to each of these stores and re-render it's children when the state of the any store 
changes. This is the only setup involved for getting our views to listen to stores—no 
manual on() or listen() calls all over the place. In the next section, we'll look at the 
TodoList and the DoneList components to see how they work with AltContainer.

Rendering views and dispatching actions
The job of the TodoList component is to render items from the Todo store. There are 
two other things this view needs to handle as well. First, there's the input element 
that the user uses to enter new todo items. Second, we also need to mark items 
as done when they're clicked, by moving them to the done list. These latter two 
responsibilities involve event handling and dispatching actions. Let's take a look  
at the implementation of the todo list view:

import React from 'react';
import { Component } from 'react';

import actions from '../actions';

export default class TodoList extends Component {
    render() {

      // The relevant state from the "todo" store
      // that we're rendering here.
      const { todos, inputValue } = this.props.todo;

      // Renders an input for new todos, and the list
      // of current todos. When the user types
      // and then hits enter, the new todo is created.
      // When the user clicks a todo, it's moved to the
      // "done" store.
      return (
        <div>
          <h3>TODO</h3>
          <div>
            <input
              value={inputValue}
              placeholder="TODO..."
              onKeyUp={this.onKeyUp}
              onChange={this.onChange}
              autoFocus
            />
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          </div>
          <ul>
            {todos.map(({ title }, i) =>
              <li key={i}>
                <a
                  href="#"
                  onClick={this.onClick.bind(null, i)}
                >{title}</a>
              </li>
            )}
          </ul>
        </div>
      );
    }

    // An active Todo was clicked. The "key" is the
    // index of the Todo within the store. This is
    // passed as the payload to the "createDone()"
    // action, and next to the "removeTodo()" action.
    onClick(key) {
      actions.createDone(key);
      actions.removeTodo(key);
    }

    // If the user has entered some text and the
    // "enter" key is pressed, we use the
    // "createTodo()" action to create a new
    // item using the entered text. Then we clear
    // the input using the "updateInputValue()"
    // action, passing it an empty string.
    onKeyUp(e) {
      const { value } = e.target;

      if (e.which === 13 && value) {
        actions.createTodo(value);
        actions.updateInputValue('');
      }
    }

    // The text input value changed - update the store.
    onChange(e) {
      actions.updateInputValue(e.target.value);
    }
}
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You might be  wondering why we can't just clear e.target.value 
when the Enter key is pressed. Indeed we could do this, but this would 
go against the nature of Flux where state is kept in stores. This includes 
transient values as they're being entered by the user. What if another part 
of the application wanted to know about the text input value? Well, all it 
needs is to depend on the Todo store. If the state wasn't there, then our 
code would have to query the DOM, which we don't want to do.

Finally, let's look at the done list component. This component is simpler than the 
todo list because there's no  event handling:

import React from 'react';
import { Component } from 'react';

export default class DoneList extends Component {
  render() {

    // The "done" array is the only state we need
    // from the "done" store.
    const { done } = this.props.done;

    // We want to display these items
    // as strikethrough text.
    const itemStyle = {
      textDecoration: 'line-through'
    }

    // Renders the list of done items, with
    // the "itemStyle" applied to each item.
    return (
      <div>
        <h3>DONE</h3>
        <ul>
          {done.map(({ title }) =>
            <li style={itemStyle}>{title}</li>
          )}
        </ul>
      </div>
    );
  }
}
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Using Redux
In this section, we're going to look at the Redux library for implementing a Flux 
architecture. Unlike Alt.js, Redux doesn't aim for Flux compliance. The goal 
of Redux is to borrow the important ideas from Flux, leaving the tedious bits 
behind. Despite not implementing Flux components as specified in the official 
documentation, Redux is the go-to solution for React architectures now. Redux  
is proof that simplicity always wins over advanced features.

The core ideas
Before implementing some Redux code, let's take a moment to look at the core ideas 
of Redux:

•	 No dispatcher: This is just like Alt.js, which also purges the dispatcher 
concept from it's API. The fact that these Flux libraries don't expose a 
dispatcher component serves to illustrate the point that Flux is just a set of 
ideas and patterns, not an implementation. Both Alt and Redux dispatch 
actions, they just don't require a dispatcher to do it.

•	 One store to rule them all: Redux eschews the notion that a Flux architecture 
requires multiple stores. Instead, one store is used to hold the entire 
application state. At first glance, this might sound like the store would get 
too large and be too difficult to understand. This is just as likely to happen 
with multiple stores, the only difference there is that the application state is 
split into different modules.

•	 Dispatch to the store: When there's only one store to worry about, we can 
make design concessions, such as treating the store and the dispatcher as the 
same concept. This is exactly what Redux does—it dispatches actions directly 
to the store.

•	 Pure reducers: The idea behind multiple Flux stores is to split the application 
state into a few logically separated domains. We can still do this using Redux, 
the difference is that we separate our state into domains using reducer 
functions. These functions are responsible for transforming the state of the 
store when actions are dispatched. They're pure because they return new  
data and avoid introducing any side-effects.
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Reducers and stores
We're now going to implement the same simple todo application that we made 
using Alt—this time using Redux. There's a lot of overlap between the two libraries, 
particularly with the React components themselves; not much needs to change there. 
Where Redux departs from Alt and Flux in general is with it's single store, and the 
reducer functions that change it's state. With that said, we'll look at the store and  
it's reducer functions first.

We'll create a module for the initial state of the the Redux store. This is an important 
first step because it provides the initial structure for the reducer functions that 
transform the store state. Let's take a look at the initial state module:

import Immutable from 'immutable';

// The initial state of the Redux store. The
// "shape" of the application state includes
// two domains - "Todo" and "Done". Each domain
// is an Immutable.js structure.
const initialState = {
  Todo: Immutable.fromJS({
    inputValue: '',
    todos: [
      { title: 'Build this thing' },
      { title: 'Build that thing' },
      { title: 'Build all the things' }
    ]
  }),
  Done: Immutable.fromJS({
    done: []
  })
};

export default initialState;

The state is a simple JavaScript object. You can see that the single store isn't just a 
tangled mess of properties, it's organized by two main properties—Todo and Done. 
This is like having multiple stores, except they're in one object. Something else you'll 
notice is that each store property is an Immutable.js data structure. The reason 
for this is that we need to treat the state that's passed into our reducer functions as 
immutable. This library makes enforcing immutability easy.
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The state transformations that take place with the store state will be divided into  
two reducer functions. In fact, the two functions map to the two initial properties  
of the store: Todo and Done. Let's look at the Todo reducer first:

import Immutable from 'immutable';

import initialState from '../initial-state';
import {
  UPDATE_INPUT_VALUE,
  CREATE_TODO,
  REMOVE_TODO
} from '../constants';

export default function Todo(state = initialState, action) {
  switch (action.type) {

    // When the "UPDATE_INPUT_VALUE" action is dispatched,
    // we set the "inputValue" key of the Immutable.Map.
    case UPDATE_INPUT_VALUE:
      return state.set('inputValue', action.payload);

    // When the "CREATE_TODO" action is dispatched,
    // we push the new item to the end of the
    // Immutable.List
    case CREATE_TODO:
      return state.set('todos',
        state.get('todos').push(Immutable.Map({
          title: action.payload
        }))
      );

    // When the "REMOVE_TODO" action is dispatched,
    // we delete the item at the given index from
    // the Immutable.List.
    case REMOVE_TODO:
      return state.set('todos',
        state.get('todos').delete(action.payload));
    default:
      return state;
  }
}
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The switch statement that's used here should look familiar—it's the same pattern 
we've been implementing the stores throughout this book. In fact, this function is 
just like a store, with two main differences. The first difference is that it's a function 
instead of a class. This means that instead of setting state property values, we return 
the new state. The second difference is that Redux handles the mechanics of listening 
to stores and calling this reducer function. With classes, we have to write a lot of this 
code ourselves.

It's important that these reducer functions do not mutate the state 
argument. This is why we're using the Immutable.js library—to 
make it easier to transform existing state by creating new data. It's 
not necessary to use Immutable.js for transforming Redux store 
state, but it does help with code brevity.

Now let's look at the Done reducer function:

import Immutable from 'immutable';

import initialState from '../initial-state';
import { CREATE_DONE } from '../constants';

export default function Done(state = initialState, action) {
  switch (action.type) {

    // When the "CREATE_DONE" action is dispatched,
    // we insert the new item into the beginning
    // of the Immutable.List.
    case CREATE_DONE:
      return state.set('done',
        state.get('done')
          .insert(0, Immutable.Map(action.payload))
      );

    // Nothing to do, return the state "as-is".
    default:
      return state;
  }
}
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We're almost done with our Redux store. At this point, we have two reducer functions, 
each in their own module. We need to tie them together using combineReducers() 
and createStore(). Let's take a look at our store module now:

import { combineReducers, createStore } from 'redux';

import initialState from './initial-state';
import Todo from './reducers/todo.js';
import Done from './reducers/done.js';

export default createStore(combineReducers({
  Todo,
  Done
}), initialState);

As you can see, the combineReducers() function creates a new function. This is  
the main reducer function that maintains the state of the application. So instead of 
your typical Flux dispatcher that needs to handle getting actions to several stores, 
Redux actions are dispatched to this single store, and our reducer functions are  
called in response.

Redux actions
As you know, there's a difference between actions and action creators. Actions 
are the payloads that get sent to the various Flux stores, whereas action creators 
are responsible for creating the action payloads, and then sending them to the 
dispatcher. With Redux, action creator functions are slightly different in that they 
only create the action payloads, they don't talk directly with the dispatcher.

We'll see how the action creators are called in the following section when we 
implement the view components. But for now, here's what our actions module  
looks like:

import {
  CREATE_TODO,
  CREATE_DONE,
  REMOVE_TODO,
  UPDATE_INPUT_VALUE
} from './constants';

// Creates a new Todo item. The "payload" should
// be an object with a "title" property.
export function createTodo(payload) {
  return {
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    type: CREATE_TODO,
    payload
  };
}

// Creates a new Done item. The "payload" should
// be an object with a "title" property.
export function createDone(payload) {
  return {
    type: CREATE_DONE,
    payload
  };
}

// Removes the todo and the given "payload" index.
export function removeTodo(payload) {
  return {
    type: REMOVE_TODO,
    payload
  };
}

// Updates the "inputValue" state with the given
// "payload" string value.
export function updateInputValue(payload) {
  return {
    type: UPDATE_INPUT_VALUE,
    payload
  };
}

These functions just return the data that's going to be dispatched by the store— 
they don't actually dispatch the data. The exception to this is when asynchronous 
actions are involved. In this case, we actually need to dispatch the action once the 
asynchronous values have resolved. See the official Redux documentation where 
there are plenty of asynchronous action examples.
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Rendering components and dispatching 
actions
At this point, we have a Redux store and action creator functions. All that's left to do 
is implement our React components and connect them to the store. We'll start with 
the TodoList view:

import React from 'react';
import { Component } from 'react';
import { connect } from 'react-redux';

import {
  updateInputValue,
  createTodo,
  createDone,
  removeTodo
} from '../actions';

class TodoList extends Component {
  constructor(...args) {
    super(...args);
    this.onClick = this.onClick.bind(this);
    this.onKeyUp = this.onKeyUp.bind(this);
    this.onChange = this.onChange.bind(this);
  }

  render() {

    // The relevant state from the "todo" store
    // that we're rendering here.
    const { todos, inputValue } = this.props;

    // Renders an input for new todos, and the list
    // of current todos. When the user types
    // and then hits enter, the new todo is created.
    // When the user clicks a todo, it's moved to the
    // "done" array.
    return (
      <div>
        <h3>TODO</h3>
        <div>
          <input
            value={inputValue}
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            placeholder="TODO..."
            onKeyUp={this.onKeyUp}
            onChange={this.onChange}
            autoFocus
          />
        </div>
        <ul>
          {todos.map(({ title }, i) =>
            <li key={i}>
              <a
                href="#"
                onClick={this.onClick.bind(null, i)}
              >{title}</a>
            </li>
          )}
        </ul>
      </div>
    );
  }

  // An active Todo was clicked. The "key" is the
  // index of the Todo within the store. This is
  // passed as the payload to the "createDone()"
  // action, and next to the "removeTodo()" action.
  onClick(key) {
    const { dispatch, todos } = this.props;

    dispatch(createDone(todos[key]));
    dispatch(removeTodo(key));
  }

  // If the user has entered some text and the
  // "enter" key is pressed, we use the
  // "createTodo()" action to create a new
  // item using the entered text. Then we clear
  // the input using the "updateInputValue()"
  // action, passing it an empty string.
  onKeyUp(e) {
    const { dispatch } = this.props;
    const { value } = e.target;

    if (e.which === 13 && value) {
      dispatch(createTodo(e.target.value));
      dispatch(updateInputValue(''));
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    }
  }

  // The text input value changed - update the store.
  onChange(e) {
    this.props.dispatch(
    updateInputValue(e.target.value));
  }
}

// The props that get passed to this component
// from the store. We just need to convert the
// "Todo" Immutable.js structure to plain JS.
function mapStateToProps(state) {
  return state.Todo.toJS();
}

// Exports the "connected" version of the
// component that's connect to the Redux store.
export default connect(mapStateToProps)(TodoList);

The key thing to note about this module is that it's not the component class that's 
exported. Instead, we use the connect() function from the react-redux package. 
This function connects the Redux store to this view. The state from the store passes 
through the mapStateToProps() function, which determines how the React 
component properties are assigned. In this case, we just need to transform the 
Immutable.js structure into a plain JavaScript object.

The downside of the event handlers is that we need to bind their context in 
the constructor, because React doesn't auto-bind the context for ES2015 style 
components. The handlers need access to this.props because it has the dispatch() 
function needed to dispatch our action data to the store, as well as the store data 
used to construct the action payloads. Now let's look at the DoneList component:

import React, { Component } from 'react';
import { connect } from 'react-redux';

class DoneList extends Component {
  render() {

    // The "done" array is the only state we need
    // from the "done" store.
    const { done } = this.props;
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    // We want to display these items
    // as strikethrough text.
    constitemStyle = {
      textDecoration: 'line-through'
    }

    // Renders the list of done items, with
    // the "itemStyle" applied to each item.
    return (
      <div>
        <h3>DONE</h3>
        <ul>
          {done.map(({ title }, i) =>
            <li key={i} style={itemStyle}>{title}</li>
          )}
        </ul>
      </div>
    );
  }
}

// The props that get passed to this component
// from the store. We just need to convert the
// "Done" Immutable.js structure to plain JS.
function mapStateToProps(state) {
  return state.Done.toJS();
}

// Exports the "connected" version of the
// component that's connect to the Redux store.
export default connect(mapStateToProps)(DoneList);

As you can see, this works in much the same way as the TodoList component.  
In fact, these  components haven't changed much relative to the Alt implementation 
of the same application. The last step is to hook up the two components with the 
Redux store, which can be accomplished using the Provider component:

import React from 'react';
import { render } from 'react-dom';
import { Provider } from 'react-redux';

import store from './store';
import TodoList from './views/todo-list';
import DoneList from './views/done-list';
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// Renders the "TodoList" and the "DoneList"
// components. The "Provider" component is
// used to connect the store to the components.
// When the store changes state, the children
// of "Provider" are re-rendered.
render(
  <Provider store={store}>
    <div>
      <TodoList/>
      <DoneList/>
    </div>
  </Provider>,
  document.getElementById('app')
);

Summary
In this chapter, you learned about leveraging Flux libraries. In particular, we looked 
at two of the prevailing libraries that can be used to implement Flux architectures.

We started the chapter off with a discussion that was mostly a recap of the 
fundamental principles of Flux and how we implemented them throughout the 
previous chapters of this book. We then covered some of the various pain points 
of implementing Flux—like singleton dispatchers, repetitive action code, and 
partitioning store modules. These are areas that a library like Alt.js or Redux  
could address for us.

We then proceeded to implement a simple todo application using the Alt.js Flux 
library. The idea behind Flux is to implement all the relevant Flux components while 
automating the typical arduous implementation chores behind the scenes for us. 
After this, we turned our attention to the Redux library. Redux is less concerned 
with following the Flux patterns exactly. Instead, Redux aims for simplicity while 
borrowing some of the more important Flux ideas like unidirectional data-flow.

In the next chapter, we'll cover two very important aspects of any Flux architecture—
functional and performance testing.
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Testing and Performance
We want the architecture of our application to be the best that it can possibly be.  
It may sound silly to have to state this, but it does bear repeating from time to time, 
as a reminder that the work we're doing with Flux has the potential to make or break 
the success of the application. The best tools we have in our arsenal are unit tests and 
performance tests. These two activities are equally important. Being functionally-
correct but slow as hell is a failure. Being fast as hell and riddled with bugs is a failure.

A huge contributing factor to implementing successful tests is to focus on what's 
relevant. We'll spend time in this chapter thinking about what the important tests  
are for Flux architectures—from both a functional and a performance perspective.  
This is especially important to think about given how new Flux is to the community. 
We'll focus on specific Flux components and design some unit tests for them.  
We'll then think about the difference between benchmarking low-level code  
versus performance testing end-to-end scenarios.

Hello Jest
Jasmine is the widely accepted tool of choice when it comes to writing effective  
unit tests for JavaScript code. There's no shortage of add-on tools for Jasmine that 
make it possible to test just about anything and to use any tool to run your tests.  
For example, it's common practice to use a task runner such as Grunt or Gulp to  
run tests, along with the other various build tasks associated with the project.

Jest is a unit testing tool, developed by Facebook, which leverages the best parts  
of Jasmine while adding new capabilities. It's also easy to run Jest in our projects.  
For example, projects that depend on Webpack generally rely on NPM scripts to 
perform various tasks, as opposed to a task runner. This is easy to do with Jest,  
as we'll see in a moment.
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There are three key aspects to Jest that will help us test our Flux architectures:

•	 Jest provides a virtualized JavaScript environment, including a  
DOM interface

•	 Jest spawns multiple worker processes to run our tests, leading to less time 
waiting for tests to complete and an overall faster development lifecycle

•	 Jest can mock JavaScript modules for us, making it easier to isolate units  
of code to test

Let's take a look at a quick example to get things rolling. Suppose we have the 
following function that we'd like to test:

// Builds and returns a string based
// on the "name" argument.
export default function sayHello(name = 'World') {
  return `Hello ${name}!`;
}

This should be easy enough, we just need to write a unit test that checks for expected 
output. Let's see what this test looks like in Jest:

// Tells Jest that we want the real "hello"
// module, not the mocked version.
jest.unmock('../hello');

// Imports the function we want to test.
import sayHello from '../hello';

// Your typical Jasmine test suite, test cases,
// and test assertions.
describe('sayHello()', () => {
  it('says hello world', () => {
    expect(sayHello()).toBe('Hello World!');
  });

  it('says hello flux', () => {
    expect(sayHello('Flux')).toBe('Hello Flux!');
  });
});

If this looks a lot like Jasmine, that's because it is. Jasmine is actually used under the 
hood to perform all the test assertions. However, at the top of the test module, you 
can see that there's a Jest function call to unmock(). This tells Jest that we don't want 
a mocked version of the sayHello() function. We want to test the real thing.
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There's actually quite a bit of tinkering involved with getting Jest 
set up to work with ES2015 module imports. But rather than try to 
explain that here, I'd recommend looking at the source code that 
ships along with this book. And now, back to the important stuff.

Let's create a main.js module that imports the sayHello() function and calls it:

import sayHello from './hello';
sayHello();

The Jest unit test that we created for the sayHello() function isolated the sayHello() 
function. That is, we didn't have to test any other code in order to test this function. If 
we apply this same logic to the main module, we shouldn't have to rely on the code 
that implements sayHello(). This is where the mocking capability of Jest comes 
in handy. Our last test turned off the mocking feature for the hello module, where 
sayHello() is defined. This time, we actually want to mock the function. Let's see 
what the main test looks like:

jest.unmock('../main');

// The "main" module is the real deal. The
// "sayHello()" function is a mock.
import '../main';
import sayHello from '../hello';

describe('main', () => {

  // We're expecting the "main" module to call
  // "sayHello()" exactly once. Since the "sayHello()"
  // function we've imported here is the same mock
  // called by main, we can verify this is indeed
  // what main is actually doing.
  it('calls sayHello()', () => {
    expect(sayHello.mock.calls.length).toBe(1);
  });
});

This time around, we're making sure that the main.js module is not mocked by Jest. 
This means that the sayHello() function that we've imported is in fact the mocked 
version. To verify that the main module is working as expected, as simple as the 
module is, we just need to verify that the sayHello() function was called once.
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Testing action creators
Now that we have a rough idea of how Jest works, it's time to start testing the various 
components of our Flux architecture. We'll start with action creator functions, since 
these determine the data that enters the system and are the starting point of the 
unidirectional data-flow. There are two types of action creators we'll want to test.  
First, we have the basic synchronous functions, followed by the asynchronous ones. 
Both types of actions lead to very different types of unit tests.

Synchronous functions
The job of an action creator is to create the necessary payload data and to dispatch it 
to stores. So to test this functionality, we'll want the real action creator function and a 
mocked dispatcher component. Remember, the idea is to isolate the component as the 
single unit that's being tested—we don't want any side-effects from the dispatcher code 
to influence the test outcome. With that said, lets take a look at the action creator:

import dispatcher from '../dispatcher';

export const SYNC = 'SYNC';

// Your typical synchronous action creator
// function. Dispatches an action with
// payload data.
export function syncFunc(payload) {
  dispatcher.dispatch({
    type: SYNC,
    payload
  });
}

This sort of function is probably looking familiar by now. We want our unit test for 
this function to verify whether or not the dispatch() method is called correctly. 
Let's take a look at the test now:

// We want to test the real "syncFunc()" implementation.
jest.unmock('../actions/sync-func');

import dispatcher from '../dispatcher';
import { syncFunc } from '../actions/sync-func';

// The "dispatch()" method is mocked by
// Jest. We'll use it in the test to validate
// our action.
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const { dispatch } = dispatcher;

describe('syncFunc()', () => {
  it('calls dispatch()', () => {

    // Calling "syncFunc()" should dispatch an
    // action. We can verify this by making sure
    // that the "dispatch()" was called.
    syncFunc('data');
    expect(dispatch.mock.calls.length).toBe(1);
  });

  it('calls dispatch() with correct payload', () => {
    syncFunc('data');

    // After calling "syncFunc()", we can get
    // argument information from the mock.
    const args = dispatch.mock.calls[1];
    const [ action ] = args;

    // Make sure the correct information was
    // passed to the dispater.
    expect(action).toBeDefined();
    expect(action.type).toBe('SYNC');
    expect(action.payload).toBe('data');
  });
});

This works exactly as we expect it to. The first step is to tell Jest not to mock what's 
in the sync-func module, using the unmock() function. Jest will still mock everything 
else, including the dispatcher. So when this test calls syncFunc(), it's  calling the 
mock dispatcher in-turn. When it does so, the mock records information about the 
call, which we then use in our test assertions to make sure that everything is working 
as expected.

Nice and easy, right? Things get a little trickier when we need to mock asynchronous 
action creator functions, but we'll try to simplify everything in the next section.
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Asynchronous functions
Jest makes it easy for us to isolate the code that a given unit test should be testing 
by mocking all the irrelevant parts. Some things are easily handled by the Jest mock 
generator. Others need our intervention, as you'll see in this example. So let's start off 
and take a look at the asynchronous action creator function that we're trying to test:

import dispatcher from '../dispatcher';
import request from '../request';

export const ASYNC = 'ASYNC';

// Makes a "request()" call (which is really
// just an alias for "fetch()") and dispatches
// the "ASYNC" action with the JSON response
// as the action payload.
export function asyncFunc() {
  return request('https://httpbin.org/ip')
    .then(resp => resp.json())
    .then(resp => dispatcher.dispatch({
      type: ASYNC,
      payload: resp
    }));
}

This action creator makes a request to a public JSON endpoint, and then dispatches 
the ASYNC action with the response as the action payload. If the request() function 
that we're using to make the network request looks a lot like the global fetch() 
function, that's because it is that function. The request module simply exports it,  
as follows:

// We're exporting the global "fetch()" function
// so that Jest has an opportunity to mock it.
export default fetch;

It seems pointless, but there's really no overhead involved. This is how we're able to 
mock all network requests in our code easily. If we mock this request module for our 
unit tests, it means that our code won't be trying to reach a remote server. To mock 
this module, we just have to create a module by the same name in the __mocks__ 
directory, alongside the __tests__ directory. Jest will mock find this mock and 
substitute it for the real module when it's imported. Let's look at the source of the 
mock request() function now:

// Exports the mocked version of the "request()"
// function our action creators use. In this case,
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// we're emulating the "fetch()" function and the
// "Response" object that it resolves.
export default function request() {
  return new Promise((resolve, reject) => {
    process.nextTick(() => {
      resolve({
        json: () => new Promise((resolve, reject) => {

          // This is where we put all of our mock fetch
          // data. A given function should just test
          // the properties that it's interested in,
          // ignoring the rest.
          resolve({ origin: 'localhost' });
        })
      });
    });
  });
}

If this code looks a little gross, don't worry—it's confined to this one place. All it's 
doing is replicating the interface of the native fetch() function that this module 
replaces (because we don't actually want to fetch anything). The tricky part of this 
approach is that any request() calls in our code are going to get the same resolved 
values. But this should be fine, assuming that our code can just ignore properties that 
it doesn't care about and that we can keep the test data in here to a minimum.

At this point, we have a mocked network layer, which means that we're ready to 
implement the actual unit test now. Let's go ahead and do that:

jest.unmock('../actions/async-func');

// The "dispatcher" is mock while "asyncFunc()"
// is not.
import dispatcher from '../dispatcher';
import { asyncFunc } from '../actions/async-func';

describe('asyncFunc()', () => {

  // For testing asynchronous code that returns
  // promises, we use "pit()" in place of "it()".
  pit('dispatch', () => {

    // Once the call to "asyncFunc()" has resolved,
    // we can perform our test assertions.
    return asyncFunc().then(() => {
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      // Collect stats about he mock
      // "dispatch()" method.
      const { calls } = dispatcher.dispatch.mock;
      const { type, payload } = calls[0][0];

      // Make sure that the asynchronous function
      // dispatches an action with the appropriate
      // payload.
      expect(calls.length).toBe(1);
      expect(type).toBe('ASYNC');
      expect(payload.origin).toBe('localhost');
    });
  });
});

There are two important things to note about this test. One, it's using the pit() 
function as a drop-in replacement for it(). Two, the asyncFunc() function itself 
returns a promise. These two aspects of Jest are what make writing asynchronous 
unit tests so straightforward. The difficult part of this example isn't the test, it's 
the infrastructure we need in place in order to mock things like network requests. 
Thanks to everything Jest takes care of for us, our unit test code is actually a lot 
smaller than it would otherwise be.

Testing stores
In the previous section, we used Jest to test action creator functions. This wasn't 
much different from testing any other JavaScript function, except that Flux action 
creators need to somehow dispatch the actions they create to stores. Jest helps us 
achieve this by automatically mocking certain components, and it will certainly  
help us test our store components.

In this section, we'll look at testing the basic path of an action being dispatched to a 
store and the store emitting a change event. Then, we'll think about the initial store 
state and how this can lead to bugs that unit tests should be able to catch. Making 
all of this work is going to involve thinking about implementing testable store code, 
which is something we have yet to think about in this book.
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Testing store listeners
Store components can be tricky to isolate from other components. This in turn makes 
designing unit tests for stores difficult. For example, a store will typically register 
itself with the dispatcher by passing it a callback function. This is the function that 
will change the state of the store, depending on the action payload that's passed to it. 
The reason this is a challenge is that it's tightly-coupled with the dispatcher.

Ideally, we want the dispatcher removed from the unit test completely. We're only 
testing our store code in the unit test, so we don't want anything that's happening in 
the dispatcher to interfere with the outcome. The odds of this happening are slim, since 
the dispatcher doesn't really have much to do. However, it's better to be consistent 
with all our Flux components and somehow isolate them completely. We've seen  
how Jest can help us out in the previous section. We just need to somehow apply  
this principle to stores—to decouple them from the dispatcher during unit tests.

This is a case where we might need to reconsider how we write our store code—
sometimes for code to be good, it needs to be changed slightly so that it's good and 
testable. For example, the anonymous function that we would normally register 
with the dispatcher becomes a store method. This allows the test to call the method 
directly, skipping the whole dispatching mechanism, which is exactly what we want. 
Let's take a look at the store code now:

import { EventEmitter } from '../events';
import dispatcher from '../dispatcher';
import { DO_STUFF } from '../actions/do-stuff';

var state = {};

class MyStore extends EventEmitter {
  constructor() {
    super();

    // Registers a method of this store as the
    // handler, to better support unit testing.
    this.id = dispatcher.register(this.onAction.bind(this));
  }

  // Instead of performing the state transformation
  // in the function that's registered with the
  // dispatcher, it just determines which store
  // method to call. This approach better supports
  // testability.
  onAction(action) {
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    switch (action.type) {
      case DO_STUFF:
        this.doStuff(action.payload);
        break;
    }
  }

  // Changes the "state" of the store, and emits
  // a "change" event.
  doStuff(payload) {
    this.emit('change', (state = payload));
  }
}

export default new MyStore();

As you can see, the onAction() method is registered with the dispatcher, and will 
be called any time an action is dispatched. The doStuff() method breaks the specific 
state transformation that takes place in response to the DO_STUFF action out of the 
onAction() method. This isn't strictly necessary, but it does provide us with another 
target for our unit tests. For example, we could have just left the anonymous callback 
function in place and have our tests target the doStuff() method directly. However, 
if our tests call onAction() with the same type of payload data that comes from the 
dispatcher, we get better test coverage of the store.

The astute reader might have noticed that this store is importing EventEmitter from 
a different place than usual—../events. We have our own events module? We do 
now, and it's the same idea as with the fetch() function in the preceding section. 
We're providing a module of our own that Jest can mock. This is an easy way for Jest 
to mock the EventEmitter class. We were so busy thinking about the dispatcher, 
that we forgot to decouple our store from the event emitter for our test. Let's take 
a look at the events module so that you can see we're still exposing the good old 
EventEmitter we all know and love:

// In order to mock the Node "EventEmitter" API,
// we need to expose it through one of our own modules.
import { EventEmitter } from 'events';
export { EventEmitter as EventEmitter } ;
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This means that the methods inherited by our store will be mocked by Jest, which 
is perfect because now our store is completely isolated from other component code 
and we can use data collected by the mock to perform some test assertions. Let's 
implement the unit test for this store now:

// We want to test the real store...
jest.unmock('../stores/my-store');

import myStore from '../stores/my-store';

describe('MyStore', () => {
  it('does stuff', () => {

    // Directly calls the store method that's
    // registered with the dispatcher, passing it
    // the same type of data that the dispatcher
    // would.
    myStore.onAction({
      type: 'DO_STUFF',
      payload: { foo: 'bar' }
    });

    // Get some of the mocked "emit()" call info...
    const calls = myStore.emit.mock.calls;
    const [ args ] = calls;

    // We can now assert that the store emits a
    // "change" event and that it has the correct info.
    expect(calls.length).toBe(1);
    expect(args[0]).toBe('change');
    expect(args[1].foo).toBe('bar');
  });
});

What's nice about this approach is that it closely resembles how the data flows 
through the store, but without actually depending on other components in order 
to run the test. The test data enters the store the same way it would with an actual 
dispatcher component. Likewise, we know that the correct event data is being 
emitted by the store by measuring the mock implementation. This is where the 
store's responsibilities end, and so too do the test's responsibilities.
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Testing initial conditions
One thing we'll learn soon after our Flux stores grow large and complex is that they 
become increasingly difficult to test. For example, if the number of actions that a 
store responds to goes up, then the number of state configurations we'll want to test 
with will also go up. To help accommodate the unit tests for our stores, it would be 
helpful to be able to set the initial state of the store. Let's take a look at a store that 
allows us to set the initial state and responds to a couple of actions:

import { EventEmitter } from '../events';
import dispatcher from '../dispatcher';
import { POWER_ON } from '../actions/power-on';
import { POWER_OFF } from '../actions/power-off';

// The initial state of the store...
var state = {
  power: 'off',
  busy: false
};

class MyStore extends EventEmitter {

  // Sets the initial state of the store to the given
  // argument if provided.
  constructor(initialState = state) {
    super();
    state = initialState;
    this.id = dispatcher.register(this.onAction.bind(this));
  }

  // Figure out which action was dispatched and call the
  // appropriate method.
  onAction(action) {
    switch (action.type) {
      case POWER_ON:
        this.powerOn();
        break;
      case POWER_OFF:
        this.powerOff();
        break;
    }
  }

  // Changes the power state to "on", if the power state is
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  // currently "off".
  powerOn() {
    if (state.power === 'off') {
      this.emit('change', 
        (state = Object.assign({}, state, {
          power: 'on'
        }))
      );
    }
  }

  // Changes the power state to "off" if "busy" is false and
  // if the current power state is "on".
  powerOff() {
    if (!state.busy && state.power === 'on') {
      this.emit('change', 
        (state = Object.assign({}, state, {
          power: 'off'
        }))
      );
    }
  }

  // Gets the state...
  get state() {
    return state;
  }
}

export default MyStore;

This store responds to the POWER_ON and POWER_OFF actions. If you look at the 
methods that handle the state transformations of these two actions, you can see that 
the result depends on the current state. For example, powering on a store requires 
that the store already be off. Powering off a store is even more restrictive—the store 
has to be off and cannot be busy. These types of state transformations need to be 
tested using different initial store states, to make sure that the happy path works as 
expected, as well as the edge cases. Now let's take a look at the test for this store:

// We want to test the real store...
jest.unmock('../stores/my-store');

import MyStore from '../stores/my-store';
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describe('MyStore', () => {

  // The default initial state of the store is
  // powered off. This test makes sure that
  // dispatching the "POWER_ON" action changes the
  // power state of the store.
  it('powers on', () => {
    let myStore = new MyStore();

    myStore.onAction({ type: 'POWER_ON' });

    expect(myStore.state.power).toBe('on');
    expect(myStore.state.busy).toBe(false);
    expect(myStore.emit.mock.calls.length).toBe(1);
  });

  // This test changes the initial state of the store
  // when it is first instantiated. The initial state
  // is now powered off, and we've also marked the
  // store as busy. This test makes sure that the
  // logic of the store works as expected - the state
  // shouldn't change, and no events are emitted.
  it('does not powers off if busy', () => {
    let myStore = new MyStore({
      power: 'on',
      busy: true
    });

    myStore.onAction({ type: 'POWER_OFF' });

    expect(myStore.state.power).toBe('on');
    expect(myStore.state.busy).toBe(true);
    expect(myStore.emit.mock.calls.length).toBe(0);
  });

  // This test is just like the one above, only the
  // "busy" property is false, which means that we
  // should be able to power off the store when the
  // "POWER_OFF" action is dispatched.
  it('does not powers off if busy', () => {
    let myStore = new MyStore({
      power: 'on',
      busy: false
    });
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    myStore.onAction({ type: 'POWER_OFF' });

    expect(myStore.state.power).toBe('off');
    expect(myStore.state.busy).toBe(false);
    expect(myStore.emit.mock.calls.length).toBe(1);
  });
});

The second test is perhaps the most interesting because it makes sure that no events 
were emitted as a result of the action, due to the way the state transformation logic of 
the store works.

Performance goals
It's time to switch gears and think about testing the performance of our Flux 
architecture. Testing the performance of a particular component can be difficult for 
the same reason that testing the functionality of a component is difficult—we have to 
isolate it from other code. On the other hand, our users don't necessarily care about 
the performance of individual components—just the overall user experience.

In this section, we'll discuss what we're trying to achieve with our Flux architecture 
in terms of performance. We'll start with the user perceived performance of the 
application, because this is the most consequential aspect of an under-performing 
architecture. Next, we'll think about measuring the raw performance of our Flux 
components. Finally, we'll consider the benefits of putting performance requirements 
in place for when we develop new components.

User perceived performance
From the point of view of our users, our application either feels responsive or laggy. 
This feeling is called user-perceived performance, because the user isn't actually 
measuring how long something takes to complete. Generally speaking, user-
perceived performance is about frustration thresholds. Whenever we have to wait  
for something, frustration grows because we don't feel in control of the situation.  
We can't do anything to make it hurry up, in other words.

One solution is to distract the user. There are times when our code has to process 
something and there's no way around the length of time it takes. While this is 
happening, we can keep the user updated on the task progress. We might even be 
able to show some of the output that's already been processed, depending on the 
type of task. The other answer is to write performant code, which is something we 
should always strive for anyway.
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User-perceived performance is critically important for the software product that 
we're building because if it's perceived as being slow, it's also perceived as being of 
poor quality. At the end of the day, it's the user's opinion that matters—this is how 
we measure whether or not our Flux architecture scales to an acceptable level. The 
downside of user perceived performance is that it's impossible to quantify, at least  
at a granular level. This is where we need tooling in place to help us measure how 
our components perform.

Measured performance
Performance metrics tell us specifically where the performance bottlenecks in our 
code are. If we know where the performance issues are, then we're better equipped 
to address them. From the perspective of a Flux architecture, for example, we would 
want to know whether the action creators are taking a long time to respond, or 
whether the stores are taking a long time to transform their state.

There are two types of performance testing that can help us stay on top of any 
performance issues during the development of our Flux architecture. The first  
type of testing is profiling, and we'll look at this in more detail in the next section. 
The second type of performance testing is benchmarking. This latter type of testing  
is done at a lower level and is good for comparing different implementations.

The only question is—how do we make performance measurement a fact of daily 
life, and what can we do with the results?

Performance requirements
Given that we have the tools necessary for performance testing at our disposal,  
it would seem that it's possible to define some requirements around performance. 
For example, if someone is implementing a store, could we introduce a performance 
requirement that says a store can take no longer than x milliseconds to emit a change 
event? The plus side is that we could be reasonably confident about the performance 
of our architecture, right down to the component level. The down side is the 
complexity involved.

For one thing, development of new code would noticeably slow down, because not 
only would we have to test for functional correctness, we would also have a strict 
performance bar to clear. This takes time, and the payoff is most likely nothing.  
Let's say that we end up spending a bunch of time improving the performance of 
some component because it's barely failing the requirement. This would mean that 
we're spinning our wheels on something that's intangible to the user.
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This isn't to say that performance testing cannot be automated or that it shouldn't 
be done at all. We simply have to be smart about where we invest our time testing 
the performance of our Flux code. The ultimate decider of performance is the user, 
so it's difficult to set concrete requirements that mean good enough performance, but 
it's really easy to waste time trying to achieve optimal performance that nobody will 
notice, least of all your customers.

Profiling tools
The various profiling tools available to us through a web browser are often enough to 
address any performance issues in our interface. These include the components that 
make up our Flux architecture. In this section, we'll go over the three main tools found 
in browser developer tools that we'll want to use to profile our Flux architecture.

First are the action creator functions, specifically asynchronous functions. Then we'll 
think about the memory consumption of our Flux components. Finally, we'll discuss 
CPU utilization.

Asynchronous actions
The network is always going to be the slowest layer of the application. Even if the 
API call we're making is relatively fast, it's still slow compared to other JavaScript 
code. If our application didn't make any network requests, it would be blazing fast. 
It also wouldn't be of much use. Generally speaking, JavaScript applications rely on 
remote API endpoints as their data resources.

To make sure that these network calls aren't causing performance issues, we can 
leverage the networking profiler of the browser developer tools. This shows us,  
in great detail, what any given request is doing, and how long it takes to do it.  
For example, if the server is taking a long time to respond to a request, this will  
be reflected in the timeline of the request.

Using this tool, we can also see the number of requests that are outstanding at any 
given point. For instance, maybe there's a page in our application that's hammering 
the server with requests and overwhelming it. In that case, we have to rethink the 
design. Each request that we look at in this tool allows us to drill down into the 
code that initiated the request. In Flux applications, this should always be an action 
creator function. With this tool, we always know which action creator functions are 
problematic from a network point of view and we can do something about them.
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Store memory
The next developer tool that can help us test the performance of our Flux architecture 
is the memory profiler. Memory is obviously something that we have to be careful 
with. On the one hand, we have to be considerate of other applications running on the 
system and avoid hogging memory. On the other hand, when we try to be careful with 
memory, we end up with frequent allocations/deallocations, triggering the garbage 
collector. It's hard to put a number on the maximum amount of memory a component 
should use. The application needs what it needs.

In terms of Flux, we're most interested in what the memory profiler can tell us about 
our stores. Remember, stores are where we're likely to face scalability issues as our 
application grows, because they'll have to handle more input data. Of course, we'll 
also want to keep an eye on the memory consumed by our view components as well, 
but ultimately it's the stores that control how much or how little memory views will 
consume.

There are two ways the memory profiler can help us better understand the memory 
consumption of our Flux stores. First, there's the memory timeline. This view shows 
how memory is allocated/deallocated over time. This is useful because it lets us 
see how memory is used as we interact with the application the same way a user 
would. Second, the memory profiler lets us take a snapshot of the current memory 
allocations. This is how we determine the type of data that's being allocated, and the 
code that's doing it. For example, with a snapshot, we can see which store is taking 
up the most memory.

CPU utilization
As you saw in the previous section on the memory profiler, the frequent garbage 
collections can cause issues with responsiveness. This is because the garbage 
collector will block any other JavaScript code from running. The CPU profiler  
can actually show us how much CPU time the garbage collector is taking away  
from other code. If it's a lot, then we can figure out a better memory strategy.

Once again, however, we should turn our attention to the store components of our 
Flux architecture when profiling the CPU. The simple reason is that this will have 
the biggest return on investment. The scalability issues that we're likely to face are 
centered around the data transformation functions used to handle action payloads 
within stores. Unless these functions are efficient enough to handle the data that 
enters the system, the architecture won't scale because the CPU is being over-utilized 
by our code. And with that, we'll turn our attention to benchmarking the functions 
that are critical to the scalability of our systems.
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Benchmarking tools
On one end of the performance testing spectrum, there's user-perceived performance. 
This is where one of our customers is complaining about laggyness, and sure 
enough, it's easy for us to replicate the problem. This could be an issue with view 
components, network requests, or something in our store that's causing the suboptimal 
user experience. On the other end of the spectrum, we have raw benchmarking of 
code, where we want accurate timings to ensure that we're using the most efficient 
implementation.

In this section, we'll briefly introduce the concept of benchmarking, and then we'll 
show an example that uses Benchmark.js to compare two state transformation 
implementations.

Benchmarking code
When we benchmark our code, we're comparing one implementation to another, 
or we can compare three or more implementations. The key is to isolate the 
implementations from any other components and to make sure that they each  
have the same input and produce the same output. Benchmarks are like unit tests  
in a sense, because we have a unit of code that we isolate as a unit and use a tool  
to measure and test its performance.

One challenge with performing these sorts of micro-benchmarks is accurate timing. 
Another challenge is creating an environment that isn't disrupted by other things. 
For example, trying to run a JavaScript benchmark in a web page is likely to face 
interference by other things, such as the DOM. Benchmark.js handles the nitty-
gritty details of getting the most accurate measurement for our code. With that said, 
let's jump into an example.

Unlike unit tests, benchmarks aren't necessarily something we want 
to keep around and maintain forever. It's simply too much of a 
burden, and the value of benchmarks tends to diminish when there's 
hundreds of them. There are probably a few exceptions, where we 
want to keep benchmarks in the repository for illustrative purposes. 
But generally speaking, benchmarks can safely be discarded once the 
code has been implemented or once the performance of existing code 
has been improved.
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State transformations
The state transformations that happen inside of Flux stores have the potential to 
bring the system to a halt when we try to scale it up. As you know, the rest of the 
Flux components in our architecture scale well. It's the added request volume and 
added data volume that cause problems. Low-level functions that transform this data 
need to perform well. We can use a tool like Benchmark.js to build benchmarks for 
the code that works with store data. Here's an example:

import { Suite } from 'benchmark';

// The "setup()" function is used by each benchmark in
// the suite to create data to used within the test.
// This is run before anything is measured.
function setup() {

  // The "coll" array will be available in each
  // benchmark function because this source gets
  // compiled into the benchmark function.
  const coll = new Array(10000)
    .fill({
      first: 'First',
      last: 'Last',
      disabled: false
    });

  // Disable some of the items...
  for (let i = 0; i<coll.length; i += 10) {
    coll[i].disabled = true;
  }
}

new Suite()

  // Adds a benchmark that tests the "filter()"
  // function to remove disabled items and the
  // "map()" function to transform the string
  // properties.
  .add('filter() + map()', () => {
    const results = coll
      .filter(item => !item.disabled)
      .map(item => ({
        first: item.first.toUpperCase(),
        last: item.last.toUpperCase()
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      }));
  }, { setup: setup })

  // Adds a benchmark that tests a "for..of" loop
  // to build the "results" array.
  .add('for..of', () => {
    const results = [];

    for (let item of coll) {
      if (!item.disabled) {
        results.push({
          first: item.first.toUpperCase(),
          last: item.last.toUpperCase()
        });
      }
    }
  }, { setup: setup })

  // Adds a benchmark that tests a "reduce()"
  // call to filter out disabled items
  // and perform the string transforms.
  .add('reduce()', () => {
    const results = coll
      .reduce((res, item) => !item.disabled ?
        res.concat({
          first: item.first.toUpperCase(),
          last: item.last.toUpperCase()
        }) : res);
  }, { setup: setup })

  // Setup event handlers for logging output...
  .on('cycle', function(event) {
    console.log(String(event.target));
  })
  .on('start', () => {
    console.log('Running...');
  })
  .on('complete', function() {
    const name = this.filter('fastest').map('name');
    console.log(`Fastest is "${name}"`);
  })
  .on('error', function(e) {
    console.error(e.target.error);
  })
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  // Runs the benchmarks...
  .run({ 'async': true });
  // →
  // Running...
  // filter() x 1,470 ops/sec ±1.00% (86 runs sampled)
  // for..of x 1,971 ops/sec ±2.39% (81 runs sampled)
  // reduce() x 1,479 ops/sec ±0.89% (87 runs sampled)
  // Fastest is "for..of"

As you can see, we just need to add two or more benchmark functions to the suite, 
then run it. The output is specific performance data that compares the various 
implementations. In this case, we're filtering and mapping an array of 10,000 items. 
The "for..of" approach stands out as the best bet performance-wise.

What's important about benchmarking is that it can rule out false assumptions 
fairly easily. For example, we might assume that because "for..of" outperforms 
the alternative implementations, that it's automatically the best choice. Well, the 
two alternatives aren't that far behind. So if we really would rather implement the 
functionality using reduce(), there's probably no scaling risk in doing so.

The code that ships with this book implements a few tricks to make 
this example work with ES2015 syntax using Babel. This is an 
especially good idea if you're transpiling your production code using 
Babel, so your benchmarks reflect reality. It's also handy to add an 
npm bench script to your package.json for easy access.

Summary
The focus of this chapter has been testing our Flux architectures. There are two types  
of tests that we employ to do this: functional and performance. With functional units, 
we verify that the units of code that make up our Flux architecture are behaving as 
expected. With performance units, we're validating that the code is performing at the 
expected levels.

We introduced the Jest testing framework to implement unit tests for our action 
creators and our stores. We then discussed the various tools in the browser that  
can help us troubleshoot performance issues at a high-level. These are the types  
of things that impact the user experience in a tangible way.

We closed the chapter with a look at benchmarking our code. This is something 
that takes place at a low-level and is most likely related to the state transformation 
functionality of our stores. Now it's time to consider the implications a Flux 
architecture has on the overall software development lifecycle.
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Flux and the Software 
Development Lifecycle

Flux is about information architecture, first and foremost. This is the reason that 
Flux is a set of patterns instead of a framework implementation. When we design 
front-end architectures that scale, the specific implementation matters very little, 
relative to the design of the overall system. It's things like unidirectional data-flows 
and synchronous update rounds that have a lasting impact on the scalability of the 
system. In fact, Flux can be influential enough that it changes the way we develop 
our software.

In this chapter we'll look at the software development lifecycle through the lens of 
Flux. We'll open the chapter with a discussion on the open-ended possibilities with 
Flux implementations. Then we'll compare the types of development activities that 
take place at the beginning of a new Flux project with what happens with a maturing 
Flux project.

We'll also think about the concepts that make Flux appealing to begin with, and how 
to extract these ideas and apply them to other software systems. Lastly, we'll end 
the chapter with a look at creating monolithic Flux systems versus packaging Flux 
components.

Flux is open to interpretation
One problem with JavaScript frameworks is that they're just one instantiation of a 
full spectrum of possible solutions. One solution isn't as universal as we might hope. 
Even a specification such as Flux that contains just a handful of patterns is open for 
interpretation. The fact that they're just patterns makes it easier for one group to go 
and implement their software one way, while another group uses the same patterns 
to implement their software how they see fit.
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In this section, we'll reiterate the fact that Flux is just a set of patterns to follow.  
We'll revisit the possibility of using a Flux library, each of which has a different 
take on implementing the Flux patterns. Then we'll consider the trade-offs of 
implementing our own Flux components.

Implementation option 1 – just the patterns
Flux is just patterns for us to follow. We might not even follow them exactly. Pattern 
efficacy isn't what's important—what's important is that we get the fundamental 
value of Flux out of our design. For example, actions describe something that has 
happened, and they carry with them a payload of new data to enter the system. 
Once the new data has been dispatched, it continues in one direction until it is 
rendered. Flux just happens to use the concept of a dispatcher and a store. We could 
call our implementation of Flux a conveyor belt if we wanted to. If the data-flow is 
unidirectional and predictable, then we've met one Flux goal.

Likewise, we can implement the dispatcher and the store components to our liking. 
There are probably tweaks that we could make to a store component that would better 
serve our application. These could be for performance reasons, or they could be simple 
developer conveniences. Either of these things are fine to introduce, as long as the  
data-flow stays unidirectional and synchronous.

These ideas of unidirectional data-flow and synchronous update rounds aren't 
unique to Flux. We could work within the confines of other architectures, such as 
MVC, and achieve the same principles. What is unique about Flux is that it was born 
out of frustration. Engineers at Facebook decided that they needed a vehicle  
to explicitly state just how to get these design principles right.

Implementation option 2 – use a Flux library
We certainly don't have to implement every Flux component ourselves. There's 
plenty of choice out there when it comes to Flux libraries. What's interesting is that 
this Flux library ecosystem reinforces the assertion that Flux is open to interpretation. 
Perhaps the best example of this is Redux. This library is not an implementation of 
the concepts outlined in the Flux documentation. Instead, Redux takes a different 
route to implementing Flux principles.
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For example, there's no dispatcher in Redux, and we can only create one store, which 
consists of reducer functions. What's important is that we still get the unidirectional 
data-flow and that the update rounds are synchronous. Then there's Alt.js, which 
takes a more traditional approach to implementing Flux in that it has the same 
abstractions as outlined in the Flux documentation. But Alt.js also builds its own 
ideas on top of these concepts to make implementing Flux that much easier and  
more enjoyable.

Is it all-or-nothing when we decide to leverage a Flux library? Not necessarily. This 
fear of all-or-nothing stems from monolithic frameworks that prescribe a certain 
way of doing things, and there's no easy way to work around these. With libraries, 
the idea is to be able to pick and choose the bits that you need in order to compose 
larger behavior. Take the view layer in a Flux architecture—this is most commonly 
made up of React components. However, neither Redux or Alt.js require that we 
use React. Redux is small enough that we can just use its store component for our 
application state, and Alt.js has several smaller modules that we can pick and 
choose from—there are probably several that we'll never use.

Roll your own Flux
Given that there are so many approaches to implementing a Flux system, is there  
any utility in implementing our own? In other words, would we be re-inventing 
the wheel by rolling our own Flux components instead of depending on one of 
the many Flux libraries out there? Not at all. There's a strong possibility that none 
of the Flux libraries meet the needs of what we're trying to accomplish. Or maybe 
there are several things about the Flux components that we want to customize, so 
that it makes less sense to depend on an implementation that we're going to change 
completely.

Most of the code in this book has been based on our own implementations of Flux 
components. We've relied on the reference implementation of the Flux dispatcher, 
but then we went and implemented our own, without much difficulty. The positive 
aspect of implementing our own Flux components is that we have the freedom to 
tweak the components to meet the needs of our application as it evolves. This is  
more difficult to do when we depend on someone else's implementation.

One possibility is that we use a library like Alt.js for inspiration for rolling our 
own implementation. This way, we can implement the cool features from that library 
while modifying them as we see fit. On the other hand, we could be better off just 
using a Flux library as-is. The best bet is to think about this sort of thing while you're 
building a skeleton Flux architecture. Don't depend on any libraries upfront, but 
decide early on if you're going to use something like Redux, so you don't have to 
throw out too many components.
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Development methodologies
In this section, we'll look at the development methodologies that take place at 
different stages of a Flux project. Keep in mind that these are just guidelines, as 
methodologies can vary quite drastically from team to team. If two different teams 
are implementing a Flux system, there will no doubt be some commonalities.

First we'll think about what happens during the initial phases of a new Flux project. 
Then we'll think about Flux projects that have had a chance to mature, and what the 
process might look like for adding a new feature to the system.

Upfront Flux activities
Many software development methodologies frown upon big upfront design.  
The reason is simple—we spend too much time designing before any software is 
written and tested. Incrementally delivering pieces of software gives us a chance to 
validate any assumptions we may have made while writing code. The question is, 
does Flux require big upfront design, or can we incrementally implement parts of a 
Flux system?

As you saw earlier in the book, the first step to designing a Flux architecture is 
writing code. At first, we're only interested in producing a skeleton architecture  
so that we can get a feel for the types of information our components will need.  
We don't spend time implementing UI components initially, because doing so 
will likely be a time sink and a distraction from thinking about the other Flux 
components that we'll need—such as stores and actions.

The question is, can building a skeleton architecture fit into the regular flow of 
developing software without being big on upfront design? I think so.

We don't want to spend too much time on a skeleton architecture, because that's just 
a recipe for bike-shedding. We could, however, set sprint goals for building pieces of 
the skeleton architecture and reviewing with a larger group. Something like a sprint 
demo might actually be the ideal forum to decide whether or not we've built enough 
of the skeleton architecture and whether we're happy with it. Then it's time to start 
building features in earnest.
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Maturing a Flux application
Once we've moved well beyond the skeleton architecture phase, we hopefully have 
in place a solid product with features that our customers will enjoy using. Ideally, 
this means that we've hit a sweet spot with our Flux architecture—it scales well, it's 
easy to maintain, and we're able to keep our customers happy by delivering new 
features. The application is mature, in other words. So how did we get to this point, 
and how do we keep it going?

Let's consider a feature that we've been asked to build. We have a team of all-purpose 
programmers to build it. How should we go about decomposing the feature into 
implementation tasks? Flux makes this fairly easy to figure out, because there are a 
limited number of component types. So if we can get a small team assembled to deliver 
a feature, then one person can focus on implementing the views, another on the stores 
and actions, and another to build the back-end data services. Here's an illustration of a 
team and the Flux components they build to realize a feature of the application:

Team Feature

Brian

Josh

Ann

API

Stores

Views

An alternative approach would be to have teams that focus on the same types of 
components. For example, a store team would be spread across features but each 
member would work on a store component at any given time. This approach is inferior 
because a team of Flux programmers working on the same deliverable have collective 
insight into how the feature is going to provide maximum customer value.

Borrowing ideas from Flux
Flux forces us to think about the information architecture of our application in new 
and interesting ways. Rarely does adopting a new approach like this happen in a 
vacuum. The ideas tend to spread to other parts of the technology stack. With Flux, it's 
the architectural principles of data-flow direction and feature-driven information that 
stand out as having a positive impact. If these things can have a positive impact on the 
frontend code, why couldn't they influence the design of the system as a whole?
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Unidirectional data flow
The unidirectional flow of data through a Flux architecture is probably the key aspect 
that enables it to scale. By itself, unidirectional data-flow makes the code we write 
easy to reason about. In places, this approach can be a little more verbose, but this is 
a conscious trade-off that we make in order to facilitate predictability. For example, 
with the two-way data binding capabilities found in some frameworks, we can get 
away with writing less code. This, however, is a developer convenience that trades 
off predictability.

This is the type of lesson from Flux that may in fact be applicable to other areas  
of our technology stack. For example, are there pieces of code that are difficult to 
reason about because the data that flows through them moves in several directions? 
Can we change that?

It might be hard to enforce unidirectional data-flows to the extent that Flux does, 
but we can at least think about the benefits that this brings to the front-end of the 
application and try to apply the same principles to other code. For instance, maybe 
we can't get a unidirectional data-flow in place but we can slim down the component 
by removing flows that are particularly difficult to predict.

Information design is king
Flux architectures start with information that the user interacts with, and work their 
its way backward, toward the API. This approach is different from other front-end 
architectures where you have the API entities, and you then create front-end models, 
and the views (or view models) figure out the transformations necessary to create 
information that's relevant to the user. The challenge with putting information 
first is that we might come up with something that's just not feasible from the API 
perspective.

However, if this is the case then we probably have a dysfunctional team structure  
to begin with, because it's easy to isolate oneself in one's own technology bubble 
(back-end, network, front-end, and so on), but this simply does not work in a  
feature-driven product. All contributing members need to know what's going  
on in every layer of the stack.

If we can sort out the teams so that each contributor is fully aware of what's happening 
in the various parts of the code-base, then we can adopt an information is king attitude 
toward feature development. Flux works well for this, and it turns out that this is 
actually the best way to serve our customers. If we know what information is needed, 
we can figure out how to get it.
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On the other hand, we're biased about what can and cannot be done because we 
already have an API to work with. This, however, should never be the determining 
factor of when and how we're able to implement a feature. Like Flux, we should 
design our abstractions around the information required by the feature, and not  
the other way around.

Packaging Flux components
In this last section, we'll think about the composition of large Flux applications from 
the point of view of packages. First, we'll make the case for a monolithic distribution 
of a Flux application, and the point at which this approach becomes untenable. 
Then we'll talk about packages, and how they help us scale up the Flux application 
development effort. Finally, we'll walk through an example of how this might work.

The case for monolithic Flux
Anyone who has been caught in dependency hell knows that it's an unpleasant place 
to be. Generally speaking, we bring these issues on ourselves by relying too heavily 
on third-party packages. For example, we might use a couple components from a 
gigantic library, or we might use an exceedingly simple library for something we 
could have written ourselves. In any case, we end up with more dependencies than 
what's justified for the size and scope of our project.

Just because we're implementing a Flux architecture for our application, we don't 
have to scale it up for scaling's sake. In other words, we can still use Flux for simple 
applications and acknowledge the fact that there's no need to scale it yet. In this case, 
we're probably better off avoiding dependencies wherever possible.

The composition of our simple Flux application can be monolithic as well. By this, 
I don't mean putting everything into a few modules. A monolithic Flux application 
would be distributed as a single NPM package. We can probably do this for quite 
some time. For example, we could successfully ship software for years without this 
ever being a problem. However, when extensibility becomes an issue, we have to 
rethink the best way to compose and package our Flux application.
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Packages enable scale
Applications will eventually become a victim of their own success. If an application 
manages to stay around long enough and gain enough attention from customers, it 
will eventually have more features than it can feasibly handle. That's not to say that 
our Flux architecture can't handle a lot of features—it can. But look at things from 
the customers' viewpoint. They probably don't want or need everything that other 
customers use.

This requires that we seriously think about the composition of our Flux architecture, 
because you can bet that we're going to need more fine-grained management of 
features. Installable features, in other words. But just how fine-grained do these 
components, and the packages through which we install them, need to be? Well,  
I think a top-level feature might be a good unit of measurement.

For example, we typically model the state of a given top-level feature of our 
application in a single store. Other features have their own stores, we can depend 
on them, and so on. This means that our application needs to take into consideration 
that a given feature component might not be installed on the system. For instance, if 
we were to create a Flux component that implements user management functionality, 
our application that loads these components would require this feature as though it 
were any other third-party package.

Installable Flux components
In this section, we'll walk through an example application—albeit a simple one—
to illustrate how we can go about installing the major pieces of our application 
components. It's beneficial to be able to excise the major parts from our core 
application, because this decouples them from the application, and it makes  
it easier to use the package elsewhere.

Let's start by looking at the main module of the application, which will help set  
the context for the other two NPM packages that make up two main features:

// The React components we need...
import React from 'react';
import { render } from 'react-dom';

// The stores and views from our "feature packages".
import { Users, ListUsers } from 'my-users';
import { Groups, ListGroups } from 'my-groups';

// The components that are core to the application...
import dispatcher from './dispatcher';
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import AppData from './stores/app';
import App from './views/app';
import { init } from './actions/init';

// Constructs the Flux stores, passing in the
// dispatcher as an argument. This is how we're
// able to get third-party Flux components to
// talk to our application and vice-versa.
const app = new AppData(dispatcher);
const users = new Users(dispatcher);
const groups = new Groups(dispatcher);

// Re-render the application when the store
// changes state.
app.on('change', renderApp);
users.on('change', renderApp);
groups.on('change', renderApp);

// Renders the "App" React component, and it's
// child components. The dispatcher is passed
// to the "ListUsers" and the "ListGroups"
// components since they come from different
// packages.
function renderApp() {
  render(
    <App {...app.state}>
      <ListUsers
        dispatcher={dispatcher}
        {...users.state}
      />
      <ListGroups
        dispatcher={dispatcher}
        {...groups.state}
      />
    </App>,
    document.getElementById('app')
  );
}

// Dispatches the "INIT" action, so that the
// "App" store will populate it's state.
init();
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We'll start at the top—where we're importing stores and views from the my-users 
and the my-groups packages. This is the code for our application, but note that we're 
not using a relative import path. This is because they're installed as NPM packages. 
This means that another application could easily share these components, and that 
they can be updated independently of the applications that use them. After these 
imports, we have the rest of the application components.

Apple's legal team will be happy to see that I named the store 
AppData instead of AppStore.

Next, we create the store instances. You can see that each store has a reference to  
the dispatcher passed to it. This is how we communicate with Flux components  
that we're dependent on for composing a larger application. We'll look at the  
stores shortly.

The renderApp() function then renders the main App React component, and the 
two components from our NPM packages as children. It's this function that we've 
registered with each of the store instances, so that when any of these stores change 
state, the UI is re-rendered. Finally, the init() action creator function is called, 
which populates the main navigation.

This main module is key to being able to compose larger applications out of smaller, 
separately installable Flux packages. We import them and configure them all in one 
place. The dispatcher is the main communication mechanism—it's passed to both the 
stores and the views. We don't have to touch more than one file in order to important 
and make use of big application features, which is hugely important for scaling up 
the development effort.

Now we'll take a look at the app store (not Apple's) to see how the navigation data is 
driven:

import { EventEmitter } from 'events';
import { INIT } from '../actions/init';

// The initial state of the "App" store has
// some header text and a collection of
// navigation links.
const initialState = {
  header: [ 'Home' ],
  links: [
    { title: 'Users', action: 'LOAD_USERS' },
    { title: 'Groups', action: 'LOAD_GROUPS' }
  ]
};
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// The actual state is empty by default, meaning
// that nothing gets rendered.
var state = {
  header: [],
  links:[]
};

export default class App extends EventEmitter{
  constructor(dispatcher) {
    super();

    this.id = dispatcher.register((action) => {
      switch(action.type) {

        // When the "INIT" action is dispatched,
        // we assign the initial state to the empty
        // state, which triggers a re-render.
        case INIT:
          state = Object.assign({}, initialState);
          break;

        // By default, we empty out the store's state.
        default:
          state = Object.assign({}, state, {
            header: [],
            links: []
          });
          break;
      }

      // We always emit the change event.
      this.emit('change', state);
    });
  }

  get state() {
    return Object.assign({}, state);
  }
}

Here you can see that this store has two sets of state–one is for the initial state of the 
store, and one is the actual state that's passed to view components for rendering.  
The state has empty properties by default so that views using this store don't  
actually render anything. The INIT action will cause the state to be populated  
from initialState, and this results in the view being updated.
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Let's take a look at this view now:

import React from 'react';
import dispatcher from '../dispatcher';

// The "onClick()" click handler will dispatch
// the given action. This argument is bound when
// the link is rendered. Actions that are dispatched
// from this function can be handled by other packages
// that are sharing this same dispatcher.
function onClick(type, e) {
  e.preventDefault();
  dispatcher.dispatch({ type });
}

// Renders the main navigation links, and
// any child elements. Nothing is rendered
// if the store state is empty.
export default ({ header, links, children }) => (
  <div>
    {header.map(title => <h1 key={title}>{title}</h1>)}
    <ul>{
      links.map(({ title, action }) =>
        <li key={action}>
          <a
            href="#"
            onClick={onClick.bind(null, action)}>{title}
          </a>
        </li>
      )
    }</ul>
    {children}
  </div>
);

When the store state is empty, as it is by default, all that's rendered is an empty div, 
and an empty ul. This is enough to completely remove the view from the screen. 
The click event is interesting. It's using the dispatcher to dispatch actions. The action 
type comes from the store data, and, by default, this application doesn't actually do 
anything with the LOAD_USERS or LOAD_GROUPS actions. But the two packages we've 
imported and set up in the main module do listen to these actions. This is a big part 
of what makes this approach scale–different NPM Flux packages can dispatch or 
react to actions–but this doesn't mean either will actually happen.
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This is the gist of our application. Now we'll walk through the my-users package. 
The my-groups package is nearly identical, so we won't list that code here. First we 
have the store:

import { EventEmitter } from 'events';
import { LOAD_USERS } from '../actions/load-users';
import { LOAD_USER } from '../actions/load-user';

// The initial state of the store has some header
// text and a collection of user objects.
const initialState = {
  header: [ 'Users' ],
  users: [
    { id: 1, name: 'First User' },
    { id: 2, name: 'Second User' },
    { id: 3, name: 'Third User' }
  ]
};

// The state of the store that gets rendered by
// views. Initially this is empty so nothing is
// rendered by the view.
var state = {
  header: [],
  users: []
};

export default class Users extends EventEmitter{
  constructor(dispatcher) {
    super();

    this.id = dispatcher.register((action) => {
      switch(action.type) {

        // When the "LOAD_USERS" action is dispatched,
        // we populate the store state using the initial
        // state object. This causes the view to render.
        case LOAD_USERS:
          state = Object.assign({}, initialState);
          break;

        // When the "LOAD_USER" action is dispatched,
        // we update the header text by finding the user
        // that corresponds to the "payload" id, and using
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        // it's "name" property.
        case LOAD_USER:
          state = Object.assign({}, state, {
            header: [ state.users.find(
              x => x.id === action.payload).name ]
          });
          break;

        // By default, we want to empty the store state.
        default:
          state = Object.assign({}, state, {
            header: [],
            users: []
          });
          break;
      }

      // Always emit the change event.
      this.emit('change', state);
    });
  }

  get state() {
    return Object.assign({}, state);
  }
}

There are two key actions that this store handles. The first is LOAD_USERS, which 
takes the initial state and uses it to populate the store state. The LOAD_USER action 
changes the content of the header state, and this action is dispatched when a user 
link is clicked. By default, the store state is cleared out. Now let's take a look at the 
React component that renders the store data:

import React from 'react';
import { LOAD_USER } from '../actions/load-user';

// The "click" event handler for items in the users
// list. The dispatcher is passed in as an argument
// because this Flux package doesn't have a dispatcher,
// it relies on the one from the application.
//
// The "id" of the user that was clicked is also passed
// in as an argument. Then the "LOAD_USER" action
// is dispatched.
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function onClick(dispatcher, id, e) {
  e.preventDefault();

  dispatcher.dispatch({
    type: LOAD_USER,
    payload: id
  });
}

// Renders the component using data from the store
// state that was passed in as props.
export default ({ header, users, dispatcher }) => (
  <div>
    {header.map(h => <h1 key={h}>{h}</h1>)}
    <ul>{users.map(({ id, name }) =>
      <li key={id}>
        <a
          href="#"
          onClick={
            onClick.bind(null, dispatcher, id)
          }>{name}
        </a>
      </li>
    )}</ul>
  </div>
)

The key difference between this view and your typical Flux view is that the dispatcher 
itself is passed in as a prop. Then, as the links are rendered, the dispatcher instance is 
bound as the first argument to the handler function.

I strongly recommend downloading and experimenting with the code from this 
example. The two packages that are installed are very simple, just enough to 
illustrate how we can get the basic mechanisms in place that enable us to break  
major features out of the application and into their own installable packages.
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Summary
This chapter looked at Flux in the larger context of the software development life-
cycle. Since Flux is a set of architectural patterns for us to follow, they're largely open 
to interpretation as far as implementation goes. At the beginning of a Flux project, the 
emphasis is on iteratively delivering pieces of a skeleton architecture. Once we have a 
mature application with several features, the focus shifts to managing complexity.

We then discussed the possibility that other areas of our technology stack might want 
to borrow ideas from Flux. Things like unidirectional data-flows mean that there's less 
chance of side-effects and that the system as a whole is more predictable. Finally, we 
closed the chapter with a look at how we could potentially compose larger applications 
out of separately installable features made out of Flux components.

I hope this book has been an enlightening read on Flux architecture. The goal wasn't 
necessarily to nail down the ideal Flux implementation–I don't think there is such 
a thing. Instead, I wanted to impart the style of thinking that goes along with the 
important principles of Flux. If you find yourself implementing something, and  
start thinking about unidirectional data-flows and predictability, then I might  
have succeeded. 
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