Front-End Reactive
Architectures

Explore the Future of the Front-End
using Reactive JavaScript Framewaorks
and Libraries

Luca Mezzalira

APress

ww.allitebooks.con

http://www.allitebooks.org

Front-End Reactive
Architectures

Explore the Future of the Front-End
using Reactive JavaScript
Frameworks and Libraries

Luca Mezzalira

Apress’

Front-End Reactive Architectures

Luca Mezzalira
London, Surrey, United Kingdom

ISBN-13 (pbk): 978-1-4842-3179-1 ISBN-13 (electronic): 978-1-4842-3180-7
https://doi.org/10.1007/978-1-4842-3180-7

Library of Congress Control Number: 2017964608
Copyright © 2018 by Luca Mezzalira

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Technical Reviewers: Antonio DeLuca and Massimo Nardone
Coordinating Editor: Nancy Chen

Copy Editor: Karen Jameson

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231791. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3180-7
http://www.allitebooks.org

To my Dad.

Table of Contents

About the AUROFccoicemmiiemnmnsnnssssssssas s an s a s san s an s a s nnna s nnnnnsnnnnnnnns ix
About the Technical REVIEWEI'Sccccsssssnsmsssasssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssas xi
Acknowledgments.......cccceriissssssmssnmmmmssssssssssssnnsseesssssssssssnnnsseesssssssssnnnnnsssssssssnnnnnns Xiii
Chapter 1: What Is Reactive Programming?.......ccccussseensesssssnssssssssssssssssssssssssssnnnsssss 1
What Is Reactive Programming?........cccoiininininnnnne s ssssessesssssssessessssssssssessssssssssessens 2
Programming Paradigmsccoveeerenrnnenenesesese s s e sensssenssaens 6
Imperative Programmingccccoceeennnenmrnnernsesesesesesesessesssssse s sessssesssssssssssesssssssssessssssenns 6
Functional Programmingccceoeeenernsnenenesesesssesessesesssessssesessssessssessssssessesssssssssssessssssenns 7
Reactive Programmingc.coooeernnmnemnenesssesssesese s sessesessssesss s e ssssessssesesssssssssessnnes 11
When Should You Use Reactive Programming?ccovcvmnenennenmsnsesssssessessssssssssessssssessssessnses 16
How Should You Write an Application Fully Reactive?...........ccccvvernvnnesnssessse e 17
Chapter 2: Architectures COMPpAariSoONcccuumssesesnmmmmmmmmssssssssmsemmmss————— 19
MV* ArCRITECIUTES ... s 21
MOdE! VIEW CONTIOL.......ccovieiriiecrerissssse s e 22
MOdE! VIEW PrESENTEN ..o 28
Model View VIEW=-MOGEIccorirmiiniiniissssse s ssssssssesssssssas 35
JAVASCHIPt FIAMEBWOIKScoveiererrerieserseressessesessersessesssssssessessssssssssessesssssssessessessessssessesesssssensessens 40
YT] RS 41
EMDEE . ————————————— 50
22T T S T 1 G 56
L1 L ¢SS 64

v

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3180-7_1
https://doi.org/10.1007/978-1-4842-3180-7_1
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec3
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec5
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec6
https://doi.org/10.1007/978-1-4842-3180-7_1#Sec7
https://doi.org/10.1007/978-1-4842-3180-7_2
https://doi.org/10.1007/978-1-4842-3180-7_2
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec6
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec8
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec9
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec11
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec13
https://doi.org/10.1007/978-1-4842-3180-7_2#Sec15
http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: Reactive Programmingccccccssesssssnssmsssnnsssss 65
Reactive Programming 107..........coiiininr s s 66
ODSEIVEr PAHEIN ... 68
1CE] 2L (0] o LA O S 69
Putting the Code int0 PractiCecouvvvenernsnnissnese s 70
Stream IMpIemMeNtationS.........ccucvrinnirr e ————————— 71
RXJS ettt R R e e e e e 71

Hot and Cold ODSErVabIESccoiirrneririnere s 77
COld ODSEIVADIES.....ccovrerriuirirerissssssssse e 78
HOt ODSEIVADIES ... s 80
D L= 1 R 82
2T Qo (TS - 90
Lo Lo OSSOSO STSN 95

Chapter 4: Cycle.js and MVL........ccccccmmmmsmmnmmmsssnsnmmssssssnsessssssnssssssnsnssssssssnsssssnnnnsssss 97
INtrOdUCEION 10 CYCILJS ..eevreeercericse s 97
Structuring a Simple Cycle.js AppliCALioNcccvvernrerenesernse e 99
Model View Intent ArchiteCtUrecvccerrnrscr s 110
Cycle.js and State Managementcccvcvievrrririene s s s e s saese s e saesnes 117
L1 127

Chapter 5: MobX: Simple State Management............cccousmmnsnmssnnssannssassssnsssansssans 129
INtroduction t0 MODX...........cccoreee e 129
Our First Application with MobX and React..........ccceevvvvninninnini s 133

Examining the Folder STrUCTUTE.........cco e 136
L0 00 G €U C= TN T TS 149
L T U ¢SSP PR 158

https://doi.org/10.1007/978-1-4842-3180-7_3
https://doi.org/10.1007/978-1-4842-3180-7_3
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec3
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec5
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec6
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec7
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec8
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec9
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec10
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec11
https://doi.org/10.1007/978-1-4842-3180-7_3#Sec12
https://doi.org/10.1007/978-1-4842-3180-7_4
https://doi.org/10.1007/978-1-4842-3180-7_4
https://doi.org/10.1007/978-1-4842-3180-7_4#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_4#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_4#Sec3
https://doi.org/10.1007/978-1-4842-3180-7_4#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_4#Sec5
https://doi.org/10.1007/978-1-4842-3180-7_5
https://doi.org/10.1007/978-1-4842-3180-7_5
https://doi.org/10.1007/978-1-4842-3180-7_5#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_5#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_5#Sec3
https://doi.org/10.1007/978-1-4842-3180-7_5#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_5#Sec5

TABLE OF CONTENTS

Chapter 6: SAM: A Functional Reactive Pattern...........cccccuseemnrnssnnnnnnsssnsnsssssssnnns 159
INtrOdUCEION 10 SAM ..o e e ee e e 160
SAM Pattern Data FIOW........coccvieiniscrncnine sttt s 162

A Basic Implementation 0f SAM.........cccininini e 165
Reviewing the EXamPIE ... s 166

Lo Lo OSSOSO 173
Chapter 7: A Reactive FUUre.......c.cccmmmismmmmmmsssssnnmmssssssnmssssssnnsssssssnssssssnsnssssssnnnnss 175
3] T I S 176
MiChel WESESIFALEccevuiirirerireser e e e 178
INA@X...uuuunnnnnnsnnnsnssnsssssnsnssssnsssssssssssnssssssssssssssssssssssnsssnssssnssnnsnnnnssnnnsnnsnnnsnnnnnnnnnnnnnnns 183
vii

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3180-7_6
https://doi.org/10.1007/978-1-4842-3180-7_6
https://doi.org/10.1007/978-1-4842-3180-7_6#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_6#Sec2
https://doi.org/10.1007/978-1-4842-3180-7_6#Sec3
https://doi.org/10.1007/978-1-4842-3180-7_6#Sec4
https://doi.org/10.1007/978-1-4842-3180-7_6#Sec5
https://doi.org/10.1007/978-1-4842-3180-7_7
https://doi.org/10.1007/978-1-4842-3180-7_7
https://doi.org/10.1007/978-1-4842-3180-7_7#Sec1
https://doi.org/10.1007/978-1-4842-3180-7_7#Sec2
http://www.allitebooks.org

About the Author

Luca Mezzalira is a System Architect with 15 years
of experience, a Google Developer Expert on Web
Technologies, and the London Javascript community
Manager (www.londonjs.uk).

He had the opportunity to work on cutting-edge projects
for mobile, desktop, web, TVs, set-top boxes, and embedded
devices.

He is also an international speaker on Tech conferences
with over 100 talks made in less than 10 years.

Luca thinks the best way to use any programming language is mastering their
models; that’s why he spends a lot of time researching topics such as OOP, Functional
and Reactive programming.

With these skills, Luca can easily apply the best practices learned and drive any team
to success.

He is also a natural leader, delivery focused, a problem solver, and a game changer;
his passion is the driver for any activity, and he’s able to make the difference in many
circumstances.

In his spare time, Luca writes for national and international technical magazines
and editors, and he’s a technical reviewer for Apress, Manning Publications, Packt
Publishing, Pragmatic Bookshelf, and O’Reilly.

ix

http://www.londonjs.uk/

About the Technical Reviewers

Antonio DeLuca is a fanatic of minimalist software development, accurate database
design, and meticulous business analysis. He is focused on functional/object paradigms
and service orientation. He has worked in various contexts and levels developing
applications for the Web as well as other purposes with JavaScript/PHP, Java/C#, and
other programming languages. He is based in London and is the Principal Software
Developer at DAZN (a division of Perform Group).

Massimo Nardone has more than 23 years of experiences
in Security, Web/Mobile development, Cloud, and IT
Architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

Massimo has worked as a Project Manager, Software
Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor, and Senior Lead IT Security/Cloud/
SCADA Architect for many years.

Technical skills include the following Security, Android, Cloud, Java, MySQL, Drupal,
Cobol, Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++,
WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

Currently he currently works as Chief Information Security Office (CISO) for
Cargotec Oyj and he is a member of the ISACA Finland chapter board.

Massimo has reviewed more than 40 IT books for different publishing companies
and is the coauthor of Pro Android Games (Apress, 2015).

vww allitebooks.conl

http://www.allitebooks.org

Acknowledgments

I'd like to thank so many people that probably they wouldn’t fit in just a page!

I think the most important one to mention though is my girlfriend Maela that is
always here for me and she is the key to our family happiness.

Sometimes inspirations come in strange ways. I once read the story of the UFC
champion Conor McGregor: he is really an interesting guy, sometimes with an
overwhelming personality, but I think it is part of the role or mask he decided to wear.

McGregor made me think when I read this sentence:

“There’s no talent here, this is hard work. This is an obsession. Talent does not exist,
we are all equal as human beings. You could be anyone if you put in the time. You will
reach the top, and that is that. T am not talented, I am obsessed.”

To be honest, I totally agree. Everyone can be who he or she wants to be; it’s hard and
often we can be nearly there for giving up a dream, but our obsessions could really make
the difference from failing to succeeding.

Several years ago, I would have never thought I'd be able to write an entire book in
English and succeeding as a Software Architect outside my country - apparently my
obsessions won.

xiii

CHAPTER 1

What Is Reactive
Programming?

A journey of a thousand miles begins with a single step.

—Lao Tzu, Tao Te Chang

Have you ever heard about Reactive Programming or Reactive Systems? Do you think
React.js is a reactive library? Have you ever thought about why you should use Rx.JS
inside an Angular project? Is Rx.JS the new Loadash?

If at least one of these questions is often in your mind, this is exactly the right book to
find an answer!

In these pages you will have a chance to learn more about reactive programming
and reactive architecture for front-end development: a programming paradigm that
is becoming more popular, every day, in the front-end community; but these days it is
probably one of the most misunderstood and abused paradigm.

The main goal of this book is to provide a good understanding of what reactive
programming is, how to use it in our projects, and particularly how to create fully
reactive architectures for creating resilient and maintainable projects.

During this journey you will learn the following:

o What Reactive Programming is and why it's important
o What are the best use cases of this programming paradigm

e How to structure a fully Reactive architecture with different

frameworks

o What will be the future of Reactive Programming on the front-end
ecosystem

© Luca Mezzalira 2018
L. Mezzalira, Front-End Reactive Architectures, https://doi.org/10.1007/978-1-4842-3180-7_1

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3180-7_1
http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

If you are wondering if the concepts learned inside this book are applicable also on a
back-end architecture, my answer would be YES, or at least, the majority of them could be
applied to your back-end architecture too.

Bear in mind that this book will focus the attention on front-end architectures with
JavaScript, but some of the concepts illustrated should be easily portable to other back-
end programming languages such as Node.js, for instance.

This book assumes that you already have good understanding of JavaScript, in
particular ECMAScript 6 and 7 syntax; object-oriented programming; and possibly some
knowledge of functional programming, but it’s not mandatory. Let the journey begin!

What Is Reactive Programming?

Every day when we open an editor or IDE to develop a program, we use our favorite
programming language; sometimes we study a new one, but, consciously or
unconsciously, we are making the decision of what kind of programming paradigm we
are going to work with.

Reactive programming is not a new paradigm: it’s one of the buzzwords we are used
to hearing about in the JavaScript community in the past year or so, and it will become
more than just a buzzword in the future.

I don’t want to begin immediately by using too many technical terms because we will
have enough time to learn about them while reading this book, but it’s important that
you understand what is the benefit of working in a “reactive way.”

If you read blog posts or articles on the Web, few of them are going to explain reactive
programming with the spreadsheet cells example, where spreadsheet cells are reacting
to changes happening in other cells after user input. This is definitely a good example
but we can do better than this.

I'm sure you are familiar with the dependency injection pattern where an object
is injected via the constructor or in a public method exposed by a class or module.

This pattern leverages several benefits like decoupling between two objects and the
possibility of testing the hosting object in isolation without creating dependencies and
SO on.

In some programming languages when we use dependency injection we are going to
define an interface as function’s argument in the hosting object and then we can interact
with the methods available in the injected object.

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

The injected object in this case is used as an interactive object, because the host
knows exactly what the contract is and how to use it.

In reactive programming instead, the hosting object will just subscribe to the injected
one, and it will react to the propagation of changes during the application lifetime.
See Figure 1-1.

.

0

INTERACTIVE REACTIVE

Figure 1-1. Interactive vs. Reactive programming: in Reactive Programming the
producer is A and the consumer is B

Looking at the image above, we can immediately grasp the main difference between
the two approaches:

o Inthe interactive example, object A is aware of which methods to
call because knows exactly the B’s object contract, also if we have to
understand who has affected the state of the ingested object, we will
search across all the projects that we are interacting with.

o Inthereactive one, the contract is standard and object A is reacting
to changes happened in object B, on top we are certain that any
manipulation would occur inside the injected object; therefore we
will have a stronger separation of concerns between objects.

o Because the hosting object is reacting to any value propagated inside

the object injected, our program will be up to date without the need
for implementing any additional logic.

vww .allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

It’s time for a simple example before we move ahead with other concepts.
Let’s assume we have a class called Calculator with a method sum and a class
Receipt with a method print as shown in Listing 1-1.

Listing 1-1. Check Snippetl.js

class Calculator {
sum(a, b){
return a + b;
}
}

class Receipt {
constructor(calculator){
this.calc = calculator;
}
print(itemA, itemB){
const total = this.calc.sum(itemA, itemB);
console.log(total receipt £${total}’);

}
}

const pizza = 6.00;
const beer = 5.00;

const calc = new Calculator();
const receipt = new Receipt(calc);

receipt.print(pizza, beer);

As you can imagine, the program outputs “fotal receipt £11.”

What we are doing in this example is creating the Calculator object and a Receipt
object, and then we inject the Calculator instance called calc and we call the method
print from the receipt instance with few arguments.

Inside the print method we are writing in the console the total price of the elements
passed.

Checking the Receipt class implementation, you can spot in the print method that
we are interacting with the method sum of the Calculator class and then getting the final
result.

4

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

Now let’s try to implement the same example in a reactive way in Listing 1-2.

Listing 1-2. Check Snippet2.js

class Calculator {
constructor(itemA, itemB){
const obs = Rx.Observable.of(itemA, itemB);
const sum$ = obs.reduce((acc, item) => (acc + item));

return {
observable: sum$

}
}
}

class Receipt {
constructor(observable$){
observable$.subscribe(value => console.log(total receipt: £${value}"))

}

const pizza = 6.00;
const beer = 5.00;

const calc = new Calculator(pizza, beer);
const receipt = new Receipt(calc.observable);

As you can see in this example, the Receipt class is subscribing to an object called
observable, injected via the constructor, and all the logic of how to sum the prices
and propagate them is delegated to the Calculator class. Therefore, the Receipt class
is just reacting to a change, happening in a certain moment of the program’s lifetime,
displaying in the console the value emitted by the Calculator instance.

Another thing to highlight here is the contract between the objects: instead of
knowing exactly what method we should call, we pass an, with a default contract, and we
react when something changes inside it.

Overall, it’s a very simple example but I hope it helps you to understand the shift of
mindset we are going to have when we work with reactive programming; in the next few
chapters we will see more reactive examples like this one.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

Programming Paradigms

It's time to spend some words on programming paradigms to shed some light on reactive
concepts and comparing them with functional and imperative programming.

Imperative Programming

Imperative programming is probably one of the most well-known programming paradigms.
Often, it’s the first paradigm that we learn for understanding how a computer
elaborates a program: it gives us all the tools for defining implementation details in
depth and specifying exactly how a program should behave step by step.
Let’s see an example of imperative programming:

class Calculator {
constructor(){
this. VAT = 22;
}
sum(...items){
let total = 0;
let i = 0;
for(i; i < items.length; i++){
total = total + items[i];
total = total + items[i] * this.VAT/100;
}
return total;
}
}

class Receipt {
constructor(calculator){
this.calc = calculator;
}
print(...items){
let total = this.calc.sum(...items);
console.log(total receipt £${total.toFixed(2)});

}
}

6

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

const JEANS = 80.00;
const SHIRT = 35.00;
const SHOES = 90.00;

const COAT = 140.00;
const HAT = 29.00;

const calc = new Calculator();
const receipt = new Receipt(calc);

receipt.print(JEANS, SHIRT, SHOES, COAT, HAT); //"total receipt £456.28"

Similar to the example discussed before, the sum method of the calculator object is
accepting multiple arguments instead of just a couple, and we are summing all of them
and applying the VAT value calculated per item.

As you can see, we are describing the exact implementation we want to perform:
from defining a for statement in order to iterate trough the values in the array until
expressing the VAT calculation for each single item.

Basically what we are doing is focusing on any implementation detail; potentially we
could change the way we were iterating through the array’s elements and start from the
last element in the array instead of the first one or use a different variable name from “i”;
these are the levels of detail we usually handle with imperative programming.

Now it’s time to see how this example would be handled in functional and reactive

programming.

Functional Programming

Functional programming is getting more famous on a daily base. Many languages arise
embracing this paradigm and many existing languages are embracing it too for the
readability, maintainability, and testability improvements.

If you are asking yourself why Functional Programming is becoming so popular, the
answer can be found behind the concepts of this paradigm.

When we talk about Functional Programming we are talking about functions: in
particular we are talking about pure functions.

A pure function is a function that, given an argument, is always returning the same
result; it’s predictable, easy to test, and doesn’t generate any side effect inside the program.

Another important topic related to functional programming is the concept of
immutability.

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

Immutability means that a specific value won’t ever change during its life cycle, but
if we need to manipulate it, we will create a new instance that contains the manipulated
version of the original object.

Even if you are not familiar with this concept or have never dealt with it, I want you to
see at least one concrete example.

Usually when you are dealing with an array and you want to iterate trough the values
and interact with them in an imperative programming way, you would write something
like this:

const originalArray = [1, 4, 8, 12];

for(let i = 0; i < originalArray.length; i++){
originalArray[i] = originalArray[i] + 1;

}
console.log(originalArray) //[2, 5, 9, 13]

At this stage we have completely lost the initial values of the array called
originalArray; if we want to have a copy of the initial values, we would create a new array
that contains the modified values and then we would check that one.

In functional programming, instead, we are working by default with immutable
objects; therefore, every modification we need to apply won't affect the original value
but will generate a new one.

Taking into consideration the previous example, we could write in a functional
programming way like this:

const originalArray = [1, 4, 8, 12];
const finalArray = originalArray.map(value => value+1);
console.log(finalArray); //[2, 5, 9, 13]

As you can see from these simple examples, functional programming is focused on
what you are trying to achieve more than its implementation details.

That’s a fundamental distinction compared to imperative programming. In fact, with
functional programming we are describing our program, focusing on each action; and
we need to do describe the data flow of our program more than focusing on each single
detail such as which variable we have to define for iterating an array or how to increment
the variable inside the for statement.

Another important aspect of software programming is how to deal with state

management.

8

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

In Object-Oriented Programming we are used to encapsulating a state inside an
object and changing it via different methods described in the same object. Butin
functional programming we are trying to compose it via pure functions that accept as the
argument a state and return a new state.

Redux (http://redux.js.org/), a very well-known library in the React community,
aims to resolve the problem of state management by implementing a state machine pattern.

In Redux, when we want to change the application state, we will need to call a
method that accepts two arguments: the previous application state and an action. And it
is returning the new state without mutating the previous one.

An Action is a simple object used for identifying in which state the application
should transform.

Relying to pure functions will make our code more modular and more reusable, will
create less bugs, and will suddenly become more testable!
Let’s try now to convert the previous imperative example, porting it to functional

programming. See Listing 1-3.

Listing 1-3. Check Snippet3.js

class Calculator {
getTotal(...items){
const total = items.map(::this.addVAT)
.reduce(this.sumElements);
return total;
}
addVAT (itemvalue){
return itemvValue + this.calculateVAT(itemValue);
}
calculateVAT(value){
const VAT = 22;
return value * VAT/100;
}
sumElements(accumulator, value){
return accumulator + value

vww allitebooks.conl

http://redux.js.org/
http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

class Receipt {
print(total){
console.log(total receipt £${total.toFixed(2)});
}
}

const JEANS
const SHIRT = 35.00;
const SHOES = 90.00;
const COAT = 140.00;
const HAT = 29.00;

80.00;

const calc = new Calculator();
const receipt = new Receipt();

receipt.print(calc.getTotal (JEANS, SHIRT, SHOES, COAT, HAT)); // "total
receipt £456.28"

As we can see in the sum method implementation, we are focusing more on the
actions we want to implement more than how to apply them; therefore, first we know
that we need to calculate the VAT value for each single element (map method) and then
to sum the items for retrieving the total (reduce method).

In this implementation we don’t need to specify how we are iterating through the
array elements or specifying variables to keep the state of the iteration; we just focus on
our goal.

Another thing to notice in this implementation is how we are using functions as an
argument of other functions; this mechanism is called high-order functions and it is
another cornerstone of Functional Programming.

Obviously, Functional Programming is not just that: it is a broad topic with many
other patterns to take in consideration like currying, practical application, memoization,
and so on, but this is not the main topic of the book.

Bear in mind these concepts and possibly read a few posts online regarding them
for mastering the different implementations because being familiar with Functional
Programing will allow you to embrace Reactive Programming more easily.

If you are not used to thinking functionally, I strongly suggest peaking at a book that
describes this paradigm in your favorite language; it’s a great time investment, and you

won't regret it.

10

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

Reactive Programming

We have just briefly seen Imperative and Functional Programming, but then what about
Reactive Programming?

Reactive Programming is not a new concept - it’s been a while since it has been
used on server-side programming - but it’'s becoming very popular on the front-end
ecosystem also.

We have seen how to easily turn a quick example to Reactive Programming, but it’s
not just that.

With Reactive Programming we could easily transform our code to Imperative
Reactive Programming or Functional Reactive Programming.

The main concept behind this paradigm is the data flow and how an object observes
and reacts to changes that happened during the life cycle of an application.

Let’s start defining what Reactive Programming means:

Reactive Programming is a paradigm based on asynchronous data streams that
propagate changes during the application life cycle.

What does it mean in practice? Let’s assume we have to develop a financial dashboard,
and all the data are coming from a server that is aggregating them for client visualization.

For the client we need to establish a polling mechanism or open a WebSocket
communication for retrieving these pieces of information, and then we need to translate
them into a nice user interface that will be consumed by our users.

Trying to decompose the challenge we want to implement and how we would be
reasoning without Reactive Programming, consider the following:

1. We need to create a proxy, an action, or a command to retrieve
the data from the server every few seconds, triggering the polling

mechanism.

2. After retrieving the data, we need to analyze these data, possibly
modifying or analyzing them to provide a friendlier visualization.

3. Then we pass these data to different components via a mediator,
store, controller, or any other layer that is coupled with a view for
updating it.

4. Inthe last part, we would be updating the DOM from the view,
maybe highlighting only the data that have been changed since
the previous change (in this case, a Virtual DOM mechanism

could come to rescue minimising the effort).
11

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

There a quite a few parts to take care and lots of events, commands, or signals to use
in order to make these data flowing from different parts of our application to display
them in our views.

What would you say if you knew there is a better way to do it? It’s a paradigm that will
allow us to write less code and become more expressive and pluggable inside our current
applications.

Obviously, I'm not saying we won’t implement all these tasks - Reactive
Programming is not a silver bullet or a magic wand - but we will learn soon that
this paradigm could have quite a few surprises in store regarding its simplicity and
expressiveness.

Another important concept on Reactive Programming is the way we are
communicating within objects.

If you remember, a few paragraphs before, I showed an example of how we could
solve a simple problem of communication between objects by injecting an observable
instance instead of an instance of a specific class or module.

This could lead to many interesting scenarios that are currently not fully explored in
the front-end panorama.

What would you say if the contract between objects become a standard one, and the
instance we inject will have a predefined contract that will allow the hosting object to
subscribe to changes from the injected instance?

This is not a new concept either: a similar idea was created in 1978 with
Communicating Sequential Processes (CSP).

Despite the name, CSP allows you to work with sequential and parallel processes;

a process is not more than a “channel” used for the asynchronous communication
between objects.

In this way you are decoupling the objects using a channel for the communication;
this channel though will allow you to not only pass data through it but to also do the
following:

e aggregating data

o transforming data
e reducing data

e decorating data

On top of that, we will be able to manipulate channels (splitting, piping, merging,
and so on) for creating sophisticated interactions between objects (Figure 1-2).

12

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

CHANNEL

MODEL or
PRESENTATI
ON MODEL

Figure 1-2. In this diagram we are injecting a channel to the view and the
controller, presentation model, mediator, or model for allowing the update of the
view when the main state changes

CSP is a fine-grained implementation of what we are going to explore in the Reactive
world. If you are interested in spending some time with CSP, I'd suggest checking the
library called CSP-JS (https://github.com/ubolonton/js-csp).

Understanding how CSP works will speed up your learning process on Reactive
Programming.

After this brief digression we can move back to the main topic of this book; it’s
time now to see Reactive Programming in action in association with Imperative and
Functional Programming.

Let’s start with the Imperative example shown in Listing 1-4.

Listing 1-4. Check Snippet4.js

class Calculator {

constructor(){
this.VAT = 22;

}

sum(items){

13

vww allitebooks.conl

https://github.com/ubolonton/js-csp
http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

const items$ = Rx.Observable.from(items);
const total$ = items$.map(value => value + (value * this.VAT/100))
.reduce((acc, value) => acc + value);
return total$;

}
}

class Receipt {

constructor(calculator){
this.calc = calculator;

}

print(...items){
const total$ = this.calc.sum(items);
total$.subscribe(total => console.log(total receipt £${total.
toFixed(2)}7));

}
}
const JEANS = 80.00;
const SHIRT = 35.00;
const SHOES = 90.00;

const COAT = 140.00;
const HAT = 29.00;

const calc = new Calculator();
const receipt = new Receipt(calc);

receipt.print(JEANS, SHIRT, SHOES, COAT, HAT);

In this example, we didn’t change much compared to the imperative one, but let’s
analyze what we have done:

o Inthe print method of the Receipt object, we have transformed the
arguments to an observable.

o Weinject the observable to the sum method in the calculator class.

14

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

o There we are first applying the VAT to each single element via the map
method.

o Then we sum these values and return another observable object.

o Last but not least, we subscribe to the observable object returned by
the sum method, and we show the total price inside the console.

At this stage, I don’t want to go in too much depth with reactive terminology; but for
now think about an observable as an object that is wrapping the data and exposes some
methods for manipulating the values - a sort of channel where data are flowing inside
and we can apply transformation to these data.

After understanding how to implement some reactivity to Imperative Programming,
let’s see how the Functional example would look like, as shown in Listing 1-5.

Listing 1-5. Check Snippet5.js

class Calculator {
getTotal(...items){
const items$ = Rx.Observable.from(items);
const total$ = items$.map(::this.addVAT)
.reduce(this.sumElements);
return total$;

}

addVAT (itemvalue){
return itemValue + this.calculateVAT(itemValue);

}

calculateVAT(value){
const VAT = 22;
return value * VAT/100;

}

sumElements(accumulator, value){
return accumulator + value

15

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

class Receipt {
print(total$){
total$.subscribe(total => console.log(total receipt £${total.
toFixed(2)}7));

}
}
const JEANS = 80.00;
const SHIRT = 35.00;
const SHOES = 90.00;

const COAT = 140.00;
const HAT = 29.00;

const calc = new Calculator();
const receipt = new Receipt();

receipt.print(calc.getTotal (JEANS, SHIRT, SHOES, COAT, HAT));

Also in this case, the example is pretty much the same but now the Receipt is using
the observable called total$ that got a different signature from the previous example
where we got just a simple number.

Once again, an observable allows subscribing to it and retrieving the values that are
flowing inside it.

At first glance these concepts could seem unimportant, but they will help us a lot
when we try to create a full reactive architecture.

When Should You Use Reactive Programming?

Often, when a new trend is rising, a lot of developers are used to abusing the new
technology or framework (hype-driven development). As we understood during this
chapter, Reactive Programming is used for handling the propagation of data during the
life cycle of an application. Therefore, a perfect fit for this paradigm would be a real-time
data application like a financial dashboard or any monitoring system for instance. In a
nutshell, we can say that any application that is heavily data driven could be a great fit for
Reactive Programming.

16

CHAPTER 1 WHAT IS REACTIVE PROGRAMMING?

Obviously, it doesn’t mean you shouldn’t use this paradigm in other applications,
but real-time web apps and applications with a large amount of asynchronous
transactions and mutations are where Reactive Programming really shines.

If we decide to use Reactive Programming inside existing architectures, such as
Angular or Redux, for instance, it could be a good design decision because it could
facilitate the update of our views or the state propagation inside components.

Nowadays the Web is full of plenty of reactive examples, libraries and frameworks are
raising them with great success, and embracing them will impose a shift of mindset in
order to embrace the real power of this paradigm.

Another great benefit of Reactive Programming is the simplicity of testing your code
and describing data flows in a concise but clear manner.

Reactive Programming is already implemented in production environments of
several large organizations such as Netflix, Google, and Microsoft.

Microsoft and Google, for instance, are a great contributor of the Reactive
Programming movement (http://reactivex.io/).

Netflix, as well, is another company that is contributing heavily to the evolution
of this paradigm with Rx.JS 5, and Reactive Programming is applied i