
www.allitebooks.com

http://www.allitebooks.org

Groovy for Domain-specific
Languages
Second Edition

Extend and enhance your Java applications with
domain-specific scripting in Groovy

Fergal Dearle

BIRMINGHAM - MUMBAI

[FM-2]

Groovy for Domain-specific Languages
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Second edition: September 2015

Production reference: 1230915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-540-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Fergal Dearle

Reviewers
David W Millar

Pietro Martinelli

Jason Winnebeck

Commissioning Editor
Erol Staveley

Acquisition Editors
Tushar Gupta

Antony Lowe

Content Development Editor
Adrian Raposo

Technical Editor
Siddhi Rane

Copy Editors
Janbal Dharmaraj

Kevin McGowan

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

[FM-4]

About the Author

Fergal Dearle is a seasoned software development professional with almost
30 years' experience in software product development across a wide variety of
technologies. He is currently the principal consultant with his own software
development consulting company, Dearle Technologies Ltd., engaged in design,
development, and architecture of new software products for client companies.
Recent projects have included the integration of the Telegraph (http://www.
telegraph.co.uk) into Apple's new Apple News application for iOS 9 and the
reengineering of the G-Cloud Digital Marketplace for the United Kingdom Cabinet
Office (https://www.digitalmarketplace.service.gov.uk).

He is a committed mentor in his local CoderDojo in Wexford Town where he teaches
Groovy to the young coding ninjas. He has been recently nominated as a CoderDojo
Hero for his work.

In the past, Fergal has worked in lead architect and developer roles for Candle
Corporation on the OMEGAMON product, which is now part of IBM's Tivoli
product suite, and as the development manager for Unix implementations of
Lotus 1-2-3. In the early 1990s, Fergal led the team at Glockenspiel that developed
CommonView, the first object-oriented UI framework for Microsoft Windows.
The team was awarded one of the first ever Jolt Productivity Awards by
Dr. Dobbs Journal.

www.allitebooks.com

http://www.telegraph.co.uk
http://www.telegraph.co.uk
https://www.digitalmarketplace.service.gov.uk
http://www.allitebooks.org

[FM-5]

Acknowledgments

Being part of the extended Groovy community has been one of the most fulfilling
periods of my professional life. I have had the privilege to work with some of the
best and most talented software developers and Groovy programmers around the
world, and I have learned a lot from them all. There are so many to mention; first
names will have to do: George, Elliot, Adam, Steve, Rob, Glenn, Zsolt, Chris, Tao,
Adi, Grezg, Brendan, Alex, Sean, Atilla, Eugen, Alvaro, Jet, Dom, and Tim … to
name but a few.

Special thanks must go to Peter Ledbrook for his tireless work running the London
Groovy Grails User Group, and to the organizers of GGX and GR8 conferences.
Some of the great blogs and conference talks that inspired me to write this book were
presented by Guilliame Laforge, Cédric Champeau, Marco Vermeulen, Mr Haki,
and Jeff Scott Brown.

Closer to home, I could not have finished this book were it not for the tireless
support of my coworker and comentor at CoderDojo, Tony Davidson.

Last, but not least, I want to thank my girls, Caroline, Eabha, Nessa and Sadhbh,
who put up with my long absences during the writing, and without whose love and
tolerance I would never have completed this book.

[FM-6]

About the Reviewers

David W Millar is a veteran software craftsman who holds a degree in computer
science from Drexel University. He has had the pleasure of working in a wide variety
of environments from small start-ups and research groups to industry giants such
as IBM and Comcast. He is an active member of the Philadelphia tech scene and a
contributor to the Groovy ecosystem. In his free time, he can be found hacking on
open source projects; eagerly following tech trends such as the container revolution,
IoT, DevOps, and infrastructure automation; or playing with his cats.

Pietro Martinelli is a software engineer, who has been working in enterprise
application development since 2003. In 2002, he received his degree in computer
engineering at the University of Brescia with highest honors. His main technical
interests are languages development (primarily parsers and code generation tools
development), enterprise application design, build and deployment automation,
and quality-oriented development methodologies. He's an object orientation
and testing bigot who loves teaching and mentoring students and colleagues on
software design and testing methodologies. He writes about his technological
experiences and his technical vision of the world in his blog, Java Peanuts,
http://javapeanuts.blogspot.com.

My wife Cristina and my daughters Irene and Laura beautifully fill
every moment of my spare time.

Jason Winnebeck is a full-stack software developer with both frontend and
backend development experience, including 15 years of experience with Java
technologies and 4 years' experience with Groovy, specifically. He holds a master's
degree in computer science from the Rochester Institute of Technology. He is
married with two children, and enjoys volleyball and traveling.

www.allitebooks.com

http://javapeanuts.blogspot.com
http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Introduction to DSLs and Groovy 1

DSL – a new name for an old idea 2
The evolution of programming languages 3

General-purpose languages 4
Spreadsheets and 4GLs 5

Language-oriented programming 5
Who are DSLs for? 6

A DSL for process engineers 6
Stakeholder participation 8

DSL design and implementation 8
External versus internal DSLs 9
Operator overloading 10

Groovy 11
A natural fit with the JVM 12
Groovy language features 13

Static and optional typing 13
Native support for lists and maps 13

Closures 14
Groovy operator overloading 15
Regular expression support 15
Optional syntax 15
Groovy markup 16

Summary 19

Table of Contents

[ii]

Chapter 2: Groovy Quick Start 21
Installing Groovy with GVM 21

Installing GVM 22
Installing GVM on Windows 22

How to find and install Groovy from binaries 23
Running Groovy 24

The Groovy script engine – groovy 25
Shebang scripts 27
The Groovy shell – groovysh 28
The Groovy console – groovyConsole 29
The Groovy compiler – groovyc 31

The Groovy IDE and editor integration 31
NetBeans 31
Eclipse 32
Spring STS 32
IntelliJ IDEA 32
Other IDEs and editors 32

Summary 32
Chapter 3: Essential Groovy DSLs 33

Installing Gradle 33
Gradle basics 34

Gradle build scripts 34
Gradle tasks 35

Adding actions to tasks 35
Default tasks 37
Creating task dependencies 38
Built-in tasks and plugins 39
Repositories 41

Dependencies 42
Spock tests 42

Given, when, then 42
Spock specification structure 43
Feature methods 43
Blocks 44
Fields 46
Fixture methods 46
Helper methods 47
Where blocks 48
Fixture blocks 49
Testing Gradle using Spock 49

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Further reading 50
Summary 50

Chapter 4: The Groovy Language 51
Introducing the Groovy language 51

The module structure 51
Groovy shorthand 53

Implicit imports 54
Default visibility, optional semicolon 54
Optional parentheses 55
The optional dot in method chains 56
Dynamic types 57
The optional return keyword 57

Assertions 61
Autoboxing 62
Strings 63
Regular expressions 64
Methods and closures 67
Control structures 70

Groovy Truth 71
Ternary and Elvis operators 72
Spaceship and Elvis operators 74
The switch statement 76
Loops 76

Collections 77
Ranges 77
Lists 78
Maps 80

Operators 82
Spread and spread-dot 82
Null safe dereference 83
Operator overloading 84

Summary 84
Chapter 5: Groovy Closures 85

What is a closure? 86
Closures and collection methods 87
Closures as method parameters 88

Method parameters as DSL 89
Forwarding parameters 90

Calling closures 92
The implicit doCall method 94

Finding a named closure field 95

Table of Contents

[iv]

Closure parameters 97
Enforcing zero parameters 98
Parameters and the doCall method 99
Passing multiple parameters 101
Default parameter values 101
Implementing closures in Java 101
Curried parameters 103

Closure return values 104
The closure scope 105

The this, owner, and delegate variables 108
Closure composition 108
Closure trampoline 109
Closure memoization 110

Summary 111
Chapter 6: Example DSL – GeeTwitter 113

Twitter 113
Working with the Twitter APIs 114

Using Twitter4J Java APIs 117
Tweeting 118
Direct messages 119
Searching 120
Following 121

Groovy improvements 122
A Groovier way to find friends 122

Groovy searching 124
Removing the boilerplate 125

Refactoring 126
Fleshing out GeeTwitter 128
Improving search 130

Adding a command-line interface 131
Adding built-in methods 132
Summary 137

Chapter 7: Power Groovy DSL Features 139
Named parameters 140

Named parameters in DSLs 142
Command chains 144
Builders 145

The builder design pattern 146
Using Groovy builders 147

MarkupBuilder 148
Namespaced XML 149

The GroovyMarkup syntax 151

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[v]

GroovyMarkup and HTML 152
Using program logic with builders 155
Builders for every occasion 156

NodeBuilder 157
SwingBuilder 158
Method pointers 161
Metaprogramming and the Groovy MOP 162

Reflection 162
Groovy reflection shortcuts 164

Expandos 165
Categories 166
Traits 169
MetaClass 170

Pretended methods – MetaClass.invokeMethod 172
Understanding this, delegate, and owner 173

How builders work 176
ExpandoMetaClasses 179

Replacing methods 180
Adding or overriding static methods 180
Dynamic method naming 181
Adding overloaded methods 182
Adding constructors 183

Summary 184
Chapter 8: AST Transformations 185

What is an AST 186
Compiler phases 187
Local AST transformations 189
Using ASTBuilder 192

Build from code 192
Build from Spec 193
Traits to the rescue 194

Global AST transformations 197
A finite state machine DSL 197
The state machine pattern 198
A state machine AST transformation 201
Handling errors – compile errors 207
Building the new AST nodes 210
Testing the state machine DSL 218
Compiling and packaging an AST transformation 221

Summary 222

Table of Contents

[vi]

Chapter 9: Existing Groovy DSLs 223
Grails object relational mapping – GORM 223

Grails quick start 224
The grails-app directory 224
Building a GORM model 225

Using domain classes 226
Modeling relationships 228

Associations 228
Composition 237
Inheritance 238

Querying 239
Dynamic finders 240
GORM as a DSL 241

Spock as a DSL 241
Spock 242

JUnit 244
Summary 245

Chapter 10: Building a Builder 247
The builder code structure 247

Closure method calls 248
The resolve strategy – OWNER_FIRST 250

Pretended methods 252
invokeMethod 252
methodMissing 253

The closure delegate 254
BuilderSupport 255

BuilderSupport hook methods 255
A database builder 261

FactoryBuilderSupport 267
Summary 273

Chapter 11: Implementing a Rules DSL 275
Groovy bindings 276

Exploiting bindings in DSLs 278
Closures as built-in methods 278
Closures as repeatable blocks 278
Using a specification parameter 280
Closures as singleton blocks 281
Using binding properties to form context 283
Storing and communicating results 284

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[vii]

Building a rewards DSL 286
Designing the DSL 287

BroadbandPlus 287
Reward types 289
The reward DSL 289
Handling events – deferred execution 294
Convenience methods and shorthand 296
The offers 297
The RewardService class 298
The BroadbandPlus application classes 302
Testing with Spock 304

Summary 308
Chapter 12: Integrating It All 309

Groovy as a teaching language 309
Hiding complexity 311

A game DSL for kids 312
A game DSL – goals 313

Architecture and technology choices 313
TicTacToe in a DSL 314
Implementing the AST transform 323
Building the game engine pattern 327
Testing the DSL 337
Class loading issues 338

Gradle subprojects 338
Debugging 339
The game server 340
Integrating with Spring Boot server 343

Controller annotations 344
JSONP 345

Loading the DSL 346
Spring Data mapping for MongoDB 347
The Game UI 348

Summary 351
Index 353

www.allitebooks.com

http://www.allitebooks.org

Preface

[ix]

Preface
The Java virtual machine runs on everything from the largest mainframe to the
smallest microchip and supports every conceivable application. But Java is a
complex, and sometimes arcane, language to develop with. Groovy allows us to
build targeted single-purpose mini languages, which can run directly on the JVM
along with the regular Java code.

This book provides a comprehensive tutorial on designing and developing mini
Groovy-based domain-specific languages (DSLs). It is a complete guide to the
development of several mini DSLs with a lot of easy-to-understand examples.
This book will help you gain all of the skills needed to develop your own
Groovy-based DSLs.

Groovy for Domain-specific Languages, Second Edition, guides you from the basics
through to the more complex metaprogramming features of Groovy. The focus is on
how the Groovy language can be used to construct domain-specific mini languages.

Practical examples are used throughout to demystify these seemingly complex
language features and to show how they can be used to create simple and elegant
DSLs. The examples include a quick and simple Groovy DSL to interface
with Twitter.

The book concludes with a chapter focusing on integrating a Groovy-based
DSL in such a way as the scripts can be readily incorporated into your own Java
applications. The overall goal of this book is to take developers through the skills
and knowledge they need to start building effective Groovy-based DSLs to integrate
into their own applications.

Preface

[x]

What this book covers
Chapter 1, Introduction to DSLs and Groovy, discusses how DSLs can be used in place
of general-purpose languages to represent different parts of a system. You will see
how adding DSLs to your applications can open up the development process to
other stakeholders in the development process. You'll also see how, in extreme cases,
the stakeholders themselves can even become co-developers of the system by using
DSLs that let them represent their domain expertise in the code.

Chapter 2, Groovy Quick Start, covers the basics of installing Groovy and running
simple Groovy scripts.

Chapter 3, Essential Groovy DSLs, covers two essential Groovy-based tools, Gradle and
Spock. Gradle is a build, test, and deployment automation tool, which is powered by
a Groovy DSL. Spock is a unit testing and specification framework built over JUnit.
Both tools are used extensively throughout the book.

Chapter 4, The Groovy Language, covers a whistle-stop tour of the Groovy language. It
also touches on most of the significant features of the language as a part of this tour.

Chapter 5, Groovy Closures, covers closures in some depth. It covers all of the
important aspects of working with closures. You can explore the various ways to call
a closure and the means of passing parameters. You will see how to pass closures as
parameters to methods, and how this construct can allow the adding of mini DSL
syntax to our code.

Chapter 6, Example DSL – GeeTwitter, focuses on how we can start with an existing
Java-based API and evolve it into a simple user-friendly DSL that can be used by
almost anybody. You'll learn the importance of removing boilerplate code and
how you can structure our DSL in such a way that the boilerplate is invisible to
our DSL users.

Chapter 7, Power Groovy DSL Features, covers all of the important features of the
Groovy language, and looks in depth at how some of these features can be applied
to developing DSLs.

Chapter 8, AST Transformations, covers how to use the Groovy abstract syntax tree
(AST) transformations. AST transformations are a mechanism for us to hook into
the Groovy compilation process. Here we look at compile time metaprogramming
and see how we can use AST transformations to build code on the fly during the
compilation process.

Chapter 9, Existing Groovy DSLs, discusses some existing Groovy DSLs that are in
current use and are free to download.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xi]

Chapter 10, Building a Builder, explains how Groovy provides two useful support
classes that make it much simpler to implement our own builders than if we used the
MOP. You'll see how to use BuilderSupport and FactoryBuilderSupport to create
our own builder classes.

Chapter 11, Implementing a Rules DSL, takes a look at Groovy bindings to see how
they can be used in our DSL scripts. By placing closures strategically in the binding,
you can emulate named blocks of code. You can also provide built-in methods and
other shorthand by including closures and named Boolean values in the binding.
These techniques can be used to great effect to write DSL scripts that can be read
and understood by stakeholders outside of the programming audience.

Chapter 12, Integrating It All, takes all the knowledge from the previous chapters and
builds a fully functioning web application based on a simple Game Engine DSL for
Tic Tac Toe.

What you need for this book
It is highly recommended that you download the example code to use while you
read the book. You will also need to download and install three key pieces of
software, Groovy, Spock, and Gradle. Download and installation instructions
for these are included in Chapter 2, Groovy Quick Start, and Chapter 3, Essential
Groovy DSLs.

Who this book is for
This book is for any software developers who have an interest in building domain
scripting into their applications. No knowledge of Groovy is required, although it
will be helpful. This book will not teach Groovy, but will quickly introduce the basic
ideas of Groovy. An experienced developer should have no problems with this and
will move quickly onto the more involved aspects of creating DSLs with Groovy.
No experience of creating a DSL is required.

The book should also be useful for experienced Groovy developers who have so far
only used Groovy DSLs, such as Groovy builders, and would like to start building
their own Groovy-based DSLs.

Preface

[xii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Before you go to the Groovy documentation for MarkupBuilder to look for the
book, author, and surname methods in MarkupBuilder, let me save you the effort."

A block of code is set as follows:

<?xml version="1.0"?>
<book>
 <author>
 <first_name>Fergal</first_name>
 <surname> Dearle</surname>
 </author>
 <title>Groovy for DSL</title>
</book>

Any command-line input or output is written as follows:

Hello, World!

Goodbye, World!

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the button to Create New App, then complete the form to create you app."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xiii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org

[1]

Introduction to DSLs
and Groovy

It has been over 10 years since my first contact with the Groovy language. The
occasion was an introductory talk about Groovy at JavaOne in the Moscone Centre,
San Francisco, by James Strachan, the creator of the Groovy language. Java itself was
just 10 years old at that time and Groovy was one of the very first languages other
than Java to run on the Java Virtual Machine (JVM).

Just this year, Java celebrated its twentieth birthday. In 2005, there were an estimated
3 million Java developers worldwide. Now, in 2015, Wikipedia estimates it as 11
million. The Groovy language has also taken off. There were an estimated 5 million
downloads of Groovy in the last year alone. So what are the benefits of Groovy and
why should you consider using it?

The Groovy project site at http://www.groovy-lang.org explains this better than I
ever could with six major benefits:

• A flat learning curve
• Powerful features
• Smooth Java integration
• Domain-specific languages
• A vibrant and rich ecosystem
• The scripting and testing glue

In this book, we will cover all the key benefits of the Groovy language. The main
focus, however, is on how Groovy supports the development of domain-specific
languages through its metaprogramming features.

http://www.groovy-lang.org

Introduction to DSLs and Groovy

[2]

One of the big benefits of Groovy is how its dynamic features support the
development of domain-specific languages (DSLs) or "mini languages", which
we can run directly on the JVM alongside your existing Java code. Groovy DSLs
integrate seamlessly into the Groovy language itself in such a way that it's not
always apparent where the regular Groovy code stops and the DSL starts.

In fact, large parts of almost any Groovy application are written using Groovy-based
DSLs. For instance, a new developer starting out with Groovy might assume that
the builder code he uses to output some XML is a part of the core Groovy
language. But it is, in fact, a mini internal DSL implemented using the Groovy
metaprogramming features.

If you are an Android developer, the chances are you may have programmed
in Groovy already. Since 2013, the build system in the Android SDK has been a
tool called Gradle (http://www.gradle.org). Gradle is a Groovy-based DSL for
dependency management and build automation.

Whether you are one of the 11 million existing Java developers, looking to add
DSL features to you application, or you are an existing Groovy developer looking
to improve your knowledge of DSL writing, metaobject programming or AST
transformations, this book is intended for you.

By the end of this book, I hope that you will have the knowledge and the confidence
to start building your own DSLs with Groovy, and be able to integrate them into
your Java applications. To begin with, in this chapter, we will take some baby steps.
This chapter will give you a brief background on DSLs and their usage. We will also
dip a toe into the Groovy language, and briefly touch on the features of the language
that distinguish it from Java and make it a great tool for developing DSLs on top of
the Java platform.

DSL – a new name for an old idea
I've mentioned domain-specific language (DSL) several times now, so what
does this really mean? The term "DSL" describes a programming language that is
dedicated to a specific problem domain. The idea is not new. DSLs have been around
for a long time. One of the most exciting features of Unix has always been its mini
languages. These include a rich set of typesetting languages (troff, eqn, pic, and so
on), shell tools (awk, sed, and so on), and software development tools (make, yacc,
and lex).

www.allitebooks.com

http://www.gradle.org
http://www.allitebooks.org

Chapter 1

[3]

The Java platform has a multitude of mini DSLs in the form of XML config files for
configuration of everything from EJBs to web applications. In many JEE applications,
Enterprise Java Beans (EJB) can be configured using an XML configuration file,
ejb-jar.xml. While the ejb-jar.xml file is written in the general-purpose language
XML, the contents of the file need to conform to a document type definition (DTD)
or XML schema, which describes the valid structure of the file.

XML configuration files can be found across a wide range of libraries and
frameworks. Spring is configured by using a spring-config.xml file, and Struts
with struts-config.xml. In each case, the DTD or schema defines the elements
and tags, which are valid for the specific domain, be it EJB, Spring, or Struts. So,
ejb-jar.xml can be considered a mini DSL for configuring EJB, spring-config.
xml is a mini DSL for configuring Spring beans, and so on.

In essence, DSL is a fancy name for something that we use every day of our
professional programming lives. There are not many applications that can be
fully written in a single general-purpose language. As such, we are the everyday
consumers of many different DSLs, each of which is specific to a particular purpose.

A typical day's work could involve working with Java code for program logic, CSS
for styling a web page, JavaScript for providing some dynamic web content, and
Ant, Maven, or Gradle to build the scripts that tie it all together. We are well used
to consuming DSLs, but seldom consider producing new DSLs to implement our
applications—which we should.

The evolution of programming languages
My own background is probably typical of many of my generation of old-school
programmers. Back in 1986, I was a young software engineer fresh out of college.
During my school and college years, I studied many different programming
languages. I was fortunate in high school to have had a visionary Math teacher who
taught us to program in BASIC, so I cut my teeth programming as early as 1974.
Through various college courses, I came to know about Pascal, C, Fortran, Lisp,
Assembler, and COBOL.

My school, college, and early professional career all reinforced a belief that
programming languages were for the exclusive use of us programmers. We liked
nothing better than spending hours locked away in dark rooms writing reams
of arcane and impenetrable code. The more arcane and impenetrable the better!
The hacker spirit prevailed, and annual competitions such as the International
Obfuscated C Code Contest (IOCCC) were born.

Introduction to DSLs and Groovy

[4]

The IOCCC runs to this day. The point of the contest is to write valid but
impenetrable C code that works. Check out http://www.ioccc.org to
see how not to write code.

General-purpose languages
All of the teaching in college in those days revolved around the general-purpose
languages. I recall sitting in class and being taught about the "two" types of
programming language: machine language, and high-level languages. Both
were types of general-purpose languages, in which you could build any type of
application, but each language had its own strengths and weaknesses. The notion of
a DSL was not yet considered as part of the teaching program. Nor was the idea that
anyone other than a cadre of trained professional programmers (hackers) would ever
write programs for computers. These days, the word "hacker" has bad connotations
of being synonymous with virus writers and the likes. In those days, a good "hack"
was an elegant programming solution to a hard problem and being called a hacker
by one's peers was a badge of pride for most programmers.

The high-level programming language you used defined what type of an application
programmer you were. COBOL was for business application programming, Fortran
was for scientific programmers, and C was for hackers building Unix and PC
software. Although COBOL and Fortran were designed to be used in a particular
business domain, they were still considered general-purpose languages. You could
still write a scientific application in COBOL or a business application in Fortran
if you wanted to. However, you were unlikely to try any low-level device driver
development in COBOL.

Although it was possible to build entire applications in assembly language (and
many people did), high-level languages, such as C, BASIC, and COBOL, were
much better suited to this task. The first version of the world-beating spreadsheet
Lotus 1-2-3 was written entirely in 8086 assembly language, and ironically, it was
the rewrite of this into the supposed high-level language C that nearly broke the
company in the late 1980's.

Languages such as C and C++ provide the low-level functionality in a high-level
language, which enabled them to be used across a much greater range of domains,
including those where assembly was utilized before. These days, Java, C# and C++
compete with each other like the Swiss Army knives of general-purpose languages.
There are almost no application domains to which these languages have not
been applied, from space exploration, through to enterprise business systems,
and mobile phones.

www.allitebooks.com

http://www.ioccc.org
http://www.allitebooks.org

Chapter 1

[5]

Spreadsheets and 4GLs
Programs such as Lotus 1-2-3 and its precursor VisiCalc revolutionized people's view
of who would program computers. A whole generation of accountants, financial
analysts, scientists, and engineers came to realize that they can develop sophisticated
turnkey solutions for themselves, armed only with a spreadsheet and a little
knowledge of macros. Spreadsheet macros are probably one of the first DSLs to find
their way out of the cloisters of the IT community and into the hands of the general
business user.

Around this time, there was also much media attention paid to the new 4GL
(fourth-generation language) systems. 4GLs were touted as being hugely more
efficient for developing applications than traditional high-level languages, which
then became known as third-generation language (3GL). From the hype in the
media at the time, you would be forgiven for thinking that the age of the professional
programmer was coming to an end and that an ordinary business user could use a
4GL to develop their own business applications. I viewed this claim with a degree of
healthy skepticism—how could a non-programmer build software?

Like DSLs, 4GLs were, generally speaking, targeted at particular problem spaces,
and tended to excel at providing solutions in those narrow target markets. The
sophistication of most applications in those days was such that it was possible to
build them with a few obvious constructs. 4GLs tended to be turnkey environments
with integrated tools and runtime environments. You were restricted by the
environment that the 4GL provided, but the applications that could be built
with a 4GL could be built rapidly, and with a minimal amount of coding.

4GLs differ from our modern understanding of a DSL. We generally think of a
DSL as being a mini language with a particular purpose, and they do not generally
impose an entire runtime or tool set on their use. The best DSLs can be mixed and
matched together, and used in conjunction with a general-purpose programming
language, such as C++ or Java, to build our applications.

Language-oriented programming
Martin Fowler has spoken about the use of many mini DSLs in application
development. He advocates building applications out of many mini DSLs, which
are specific to the particular problem space, in a style of development called
language-oriented programming. In a way, this style of programming is the norm
for most developers these days, when we mix and match HTML, CSS, SQL, and Java
together to build our applications.

Introduction to DSLs and Groovy

[6]

The thrust of language-oriented programming is that we should all be going
beyond exploiting these generally available languages and implementing our own
DSLs that represent the particular problem space that we are working on. With a
language-oriented programming approach, we should be building DSLs that are as
narrowly focused as the single application that we are currently working on. A DSL
does not need to be generally applicable to be useful to us.

Who are DSLs for?
It's worth considering for a moment who the different types of users of a DSL might
be. Most DSLs require some programming skills in order to get to grips with them,
and are used by software and IT professionals in their daily chores, building, and
maintaining and managing systems. They are specific to a particular technical aspect
of system development. So the domain of CSS as a DSL is web development in
general, and specifically page styling and layout. Many web developers start from
a graphic design background and become proficient as coders of HTML, CSS,
and JavaScript simply because it gives them better fine-grained control of the
design process.

Many graphic designers, for this reason, eventually find themselves eschewing
graphical tools such as Dreamweaver in favor of code. Hopefully, our goal in life
will not be to turn everybody into a coder. Whereas most DSLs will remain in the
realm of the programmer, there are many cases where a well-designed DSL can
be used by other stakeholders in the development process other than professional
developers. In some cases, DSLs can enable stakeholders to originate parts of the
system by enabling them to write the code themselves. In other cases, the DSL can
become a shared representation of the system. If the purpose of a particular DSL is
to implement business rules then, ideally, that DSL should express the business rule
in such a way that it can be clearly understood upon reading by both the business
stakeholder who specified it and the programmer who wrote it.

A DSL for process engineers
My own introduction to the concept of DSLs came about in 1986 when I joined
Computer Products Inc. (CPI) as a software engineer. In this case, the DSL in
question was sophisticated enough to enable the stakeholders to develop large
parts of a running system.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[7]

CPI developed a process control system, which was primarily sold to chemical and
pharmaceutical industries. It was a genuinely distributed system when most process
control systems were based on centralized mini or mainframe computers. It had its
own real-time kernel, graphics, and a multitude of device drivers for all types of
control and measurement devices. But the most innovative part of the system, which
excited customers, was a scripting language called EXTended Operations Language
(EXTOL). EXTOL was a DSL in the purest sense because it drew the domain experts
right into the development process, as originators of the running code.

With EXTOL, a chemical process engineer or chemist could write simple scripts to
define the logic for controlling their plant. Each control block and measurement
block in the system was addressable from EXTOL. Using EXTOL, a process engineer
could write control logic in the same pseudo English that they used to describe the
logic to their peers.

The following script could be deployed on a reactor vessel to control the act of
half-filling the vessel with the reactant from VALVE001:

drive VALVE001 to OPEN
when LEVELSENSOR.level >= 50%
drive VALVE001 to CLOSED

This was an incredibly powerful concept. Up to this point, most process control
systems were programmed in a combination of high-level languages on the main
process system, and relay logic on PLCs in the plant. Both tasks required specific
programming skills, and could not generally be completed by the chemists or
chemical engineers, who designed the high-level chemical processing undertaken at
the plant. I recall a room full of white-coated chemists at one plant happily writing
EXTOL scripts, as we commissioned the plant.

The proof of the pudding is always in the eating, and I don't recall a CPI engineer
ever being called upon to write a single line of EXTOL code on behalf of a customer.
Given an appropriate DSL that fit their needs, our customers could write all of the
code that they need themselves, without having to be programmers.

This shows the power of DSLs at their best. At this extreme end of the spectrum,
a DSL becomes a programming tool that a domain expert can use independently,
and without recourse to the professional programmer. It's important to remember,
however, that the domain experts in this case were mostly process engineers.
Process engineers are already well accustomed to devising stepwise instructions,
and building process flows. They will often use the same visual representations as
a programmer, such as a flow chart to express a process that they are working on.

Introduction to DSLs and Groovy

[8]

When devising a DSL for a particular domain, we should always consider the
stakeholders who need to be involved in using it. In the case of EXTOL, the DSL
was targeted at a technical audience who could take the DSL and become part of the
system development process. Not all of our stakeholders will be quite as technical as
this. But, at the very least, the goal when designing a DSL should be to make the DSL
understandable to nontechnical stakeholders.

Stakeholder participation
It's an unfortunate fact that with many DSLs, especially those based on XML,
the code that represents a particular domain problem is often only legible to the
programming staff. This leads to a disconnect between what the business analysts
and domain experts define, and what eventually gets implemented in the system. For
instance, a business rule is most likely to be described in plain English by a business
analyst in a functional specification document. But these rules will most likely be
translated by developers into an XML representation that is specific to the particular
rules engine, which is then deployed as a part of the application. If the business
analyst can't read the XML representation and understand it, then the original intent
of the rule can easily be lost in translation.

With language-oriented programming, we should aim to build DSLs that can be read
and understood by all stakeholders. As such, these DSLs should become the shared
living specification of the system, even if in the end they must, by necessity, be
written by a programmer with a technical understanding of the DSL.

DSL design and implementation
DSLs can take many different forms. Some DSLs, such as Unix mini languages,
(sed, awk, and troff) have a syntactical structure, which is unique to that particular
language. To implement such DSLs, we need to be able to parse this syntax out of the
text files that contain the source code of that particular language. To implement our
own DSL in this style involves implementing a mini compiler that uses lexing and
parsing tools such as lex, yacc, or antlr.

Compiler writing is one particular skill that is outside the skill set of most application
development teams. Writing your own parser or compiler grammar is a significant
amount of effort to go to, unless the DSL is going to be used generally, and is beyond
the scope of most application-specific DSLs.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[9]

EXTOL circumvented this problem by having its own syntax-sensitive editor. Users
edited their EXTOL scripts from within the editor, and were prompted for the
language constructs that they needed to use for each circumstance. This ensured
that the scripts were always well-formed and syntactically correct. This also meant
that the editor can save the scripts in an intermediate p-code form so that the
scripts never existed as text-based program files, and therefore never needed
to be compiled.

Many of the DSLs that we use are embedded within other languages. The multitude
of XML configuration scripts in the Java platform are an example of this. These mini
DSLs piggyback on the XML syntax, and can optionally use an XML DTD or schema
definition to define their own particular syntax. These XML-based DSLs can be easily
validated for "well-formedness" by using the DTD or schema.

External versus internal DSLs
We generally refer to DSLs that are implemented with their own unique syntax as
external DSLs, and those that are implemented within the syntax of a host language
as embedded or internal DSLs. Ideally, whenever building a new DSL, it would be
best to give it its own unique and individual syntax. By designing our own unique
syntax, we can provide language constructs, which are designed with both the
problem domain and the target audience in mind.

If the intended user of the DSL is a non-programmer, then developing an XML-based
syntax can be problematic. XML has its own particular rules about opening, closing,
and properly terminating tags that appear arcane to anybody except a programmer.
This is a natural constraint when working with DSLs that are embedded/internal to
another language. An XML-based DSL cannot help being similar to XML.

Embedded/internal DSLs will never be as free-form as a custom external DSL due
to the constraints of the host language. Fortunately, Groovy-based DSLs are capable
of being structured in a more human-readable format. However, they always need
to use well-formed Groovy syntax, and there are always going to be compromises
when designing Groovy-based DSLs that are readable by your target audience.

Introduction to DSLs and Groovy

[10]

Operator overloading
Some general-purpose languages, such as C++, Lisp, and now Groovy, have
language features that assist in the development of mini language syntaxes. C++ was
one of the earliest languages to implement the concept of operator overloading. By
using operator overloading, we can make non-numeric objects behave like numeric
values by implementing the appropriate operators. So, we can add a plus operator to
a String object in order to support concatenation. When we implement a class that
represents a numeric type, we can add the numeric operators again to make them
behave like numeric primitives. We can implement a ComplexNumber class, which
represents complex numbers, as follows:

class ComplexNumber {
public:
double real, imag;
 ComplexNumber() { real = imag = 0; }
 ComplexNumber(double r, double i) { real = r; imag = i; }
 ComplexNumber& operator+(const ComplexNumber& num);
};

To add one complex number to another, we need to correctly add each of the real
and imaginary parts together to generate the result. We implement an equality
operator for ComplexNumber as follows:

ComplexNumber& ComplexNumber::operator=(const ComplexNumber& num) {
 real = num.real;
 imag = num.imag;
 return *this;
}

This allows us then to add ComplexNumber objects together as if they were simple
numeric values:

int main(int argc, const char* argv[]) {
 ComplexNumber a(1, 2), b(3, 4);
 ComplexNumber sum;
 sum = a + b;
 cout << "sum is " << sum.real << " ; "
 << sum.imaginary << "i" << endl;
}

One of the criticisms of the operator overload feature in C++ is that when using
operator overloading, there is no way to control what functionality is being
implemented in the overloaded function. It is perfectly possible—but not very
sensible—to make the + operator subtract values and the – operator add values.
Misused operator overloading has the effect of obfuscating the code rather than
simplifying it. However, sometimes this very obfuscation can be used to good effect.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[11]

The preceding example illustrates what could be considered as a classic case of
obfuscation in C++. If your use of C++ predated the introduction of the standard
C++ libraries and the streams libraries in particular, you will probably do a double
take when looking at this code.

The example uses what has become commonly known as the stream operator
<<. This operator can be used to send a character stream to standard output, the
logic being that it looks very much like how we stream output from one program
to another in a Unix shell script. In fact, there really is no such thing as a stream
operator in C++ and what has been overloaded here is the binary left shift operator
<<. I have to admit that my first encounter with a code like this left me perplexed.
Why would anybody want to left shift the address of a string into another object
was beyond me? Common use over the intervening years means that this is now
a perfectly natural coding style for all C++ programmers. In effect, the streaming
operator implements a mini internal DSL for representing streaming. It subverts the
original language a little by using an operator out of context, but the end effect is
perfectly understandable and makes sense.

During a fireside chat event at JavaOne some years ago, James Gosling was asked if
he would ever consider operator overloading for the Java language, and the answer
was a resolute no! Fortunately, we don't have to wait and see if Oracle will ever
add operator overloading to Java. With Groovy, we can have it now. Groovy has an
extensive set of features, including operator overloading that allow us to implement
feature-rich DSLs from within the language. We'll take a look at some of those
features that distinguish it from Java, now.

Groovy
In the later chapters of this book, we will discuss the Groovy language in detail,
but let's begin with a brief introduction to the language and some of the features
that make it a useful addition to the Java platform.

The Java platform has expanded over the years to cover almost all conceivable
application niches—from Enterprise applications, to mobile and embedded
applications. The core strengths of Java are its rich set of APIs across all of these
problem domains and its standardized virtual machine (VM) interface. The
standard VM interface has meant that the promise of "write once, run anywhere" has
become a reality. The JVM has been implemented on every hardware architecture
and operating system from the mightiest mainframe down to the humble Lego
Mindstorms robotic kits for kids.

Introduction to DSLs and Groovy

[12]

On top of this standard VM, the list of APIs that have been built extends into every
conceivable domain. In addition to the standard APIs that are a part of JME, JSE, and
JEE, which are extensive in themselves, there are literally thousands of open source
component libraries and tools to choose from. All of this makes for a compelling
argument for using Java for almost any software project that you can think of.

For many years of its evolution, the JVM was considered to be just that—a virtual
machine for running Java programs. The JVM spec was designed originally by James
Gosling to be used exclusively for the Java language. In recent years, there have been
a number of open source projects that have started to introduce new languages on
top of the JVM, such as JRuby (an implementation of the Ruby language), Jython (an
implementation of the Python language and Groovy), Clojure, and Scala.

A natural fit with the JVM
Groovy differs from the preceding languages, as the Groovy language was designed
specifically to be a new language to run on the JVM. Groovy is designed to be source
compatible with the Java language as well as being binary-compatible at the byte
code level.

James Strachan and Bob McWhirter started the Groovy project in August 2003 with
the goal of providing a new dynamic and object-oriented language, which can run on
the JVM. It took several existing dynamic languages, such as Ruby, Python, Dylan,
and Smalltalk, as its inspiration. James had looked at the Python scripting language
and had been impressed with the power that it had over Java. James and Bob wanted
to design a language that had the powerful scripting features of Python, but stayed
as close to the Java language as possible in terms of its syntax.

Groovy is code compatible with Java, and for this reason, it is possible in most cases
to take an existing .java file and rename it to .groovy and it will continue to work.
Groovy has its own compiler, groovyc, which generates Java byte code from Groovy
source files just as the javac compiler does. Groovyc generates class files, which run
directly on the JVM. Methods defined in a Groovy class can be called directly from
Java and vice versa.

Groovy classes and interfaces are 100 percent binary compatible with their Java
counterparts. Uniquely, this means that we can create a new Groovy class that
extends a Java class or implements a Java interface. You can also create Java classes
that extend Groovy classes or implement Groovy interfaces.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[13]

Groovy language features
Groovy adds a number of unique features that distinguish it from Java and allow
developers to code at a higher level, and use a more abstract idiom, than is possible
with Java. Placing all of these powerful features on top of a language that is code and
API compatible with the Java platform is a powerful proposition.

Static and optional typing
In Java, as in other statically-typed languages, variables must first be declared with
a type before they can have a value assigned to them. In Groovy, type can be left to
be determined at the time of assignment. Groovy supports both static and optional
typing as follows:

String str1 = "I'm a String"
def str2 = "I'm also a String"

Both variables str1 and str2 are of the type String. The late binding of the type in
the Groovy-style assignment allows for a much less verbose code.

Native support for lists and maps
One of the great bugbears of the Java language is the cumbersome interfaces
required for list and map manipulation. Groovy adds native support for all
of the Java collection types through a very intuitive and readable syntax.
The following code:

def authors = ['Shakespeare', 'Beckett', 'Joyce', 'Poe']
println authors
println authors[2]

Produces this output:

[Shakespeare, Beckett, Joyce, Poe]

Joyce

Maps are also declared with ease:

def book = [fileUnder: "Software Development",
 title: "Groovy for DSL" , author: "Fergal Dearle"]
println book
println book['title']
println book.title

Introduction to DSLs and Groovy

[14]

This produces the following output:

[fileUnder: Software Development, title: Groovy for DSL, author: Fergal
Dearle]

Groovy for DSL

Groovy for DSL

Closures
Closures are one of the most powerful language features in Groovy. Closures are
anonymous code fragments that can be assigned to a variable. Closures can be
invoked by the call method as follows:

def biggest = { number1, number2 ->
 number1<number2?number2:number1
}
// We can invoke the call method of the Closure class
def result = biggest.call(7, 1)
println result
// We can use the closure reference as if it were a method
result = biggest(3, 5)
println result
// And with optional parenthesis
result = biggest 13, 1
println result

Closures can contain multiple statements and can therefore be as complex as you
like. In the following example, we iterate through a list looking for the biggest
number, and return it when we are done:

def listBiggest = { list ->
 def biggest = list[0]
 for(i in list)
 if(i > biggest)
 biggest = i
 return biggest
}
def numberList = [8, 6, 7, 5, 3, 9]
println listBiggest(numberList)

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[15]

Groovy operator overloading
Operator overloading is a powerful feature of the C++ language. Java inherited
many of the features of the C++ language, but operator overloading was significantly
left out. Groovy introduces operator overloading as a base language feature.

Any Groovy class can implement a full set of operators by implementing the
appropriate corresponding method in the class. For example, the plus operator is
implemented via the plus() method.

Regular expression support
Groovy builds regular expression handling right into the language via the =~
operator and matcher objects. The following example creates a regular expression to
match all multiple occurrences of the space character. This creates a matcher object
from this expression and applies it to a string by using the replaceAll method:

def lorem =
"Lorem ipsum dolor sit amet, consectetur adipisicing elit"
println lorem
def matcher = lorem =~ " +"
def removed = matcher.replaceAll(" ")
println removed

Optional syntax
Optional typing means that variable type annotations are optional. This does not
mean that variables have an unknown variable type. It means that the type will be
determined at run time based on the value that gets assigned to the variable. All of
the following are legal syntax in Groovy:

int a = 3
def b = 2
String t = "hello"
def s = 'there'

Trailing semicolons at the end of statements are optional. The only time that you
explicitly need to use a semicolon in Groovy is to separate statements that occur on
the same line of code, as shown in the first and third lines in the following code:

int a = 3; int b = 4;
def c = 2
def d = 5; def e = 6

Introduction to DSLs and Groovy

[16]

Method call parentheses are also optional when the method being invoked has
passed some parameters. We saw earlier, with closures, that we can invoke a closure
through its reference as if it were a method call. When invoking a closure in this
way, we can also drop the parentheses when passing parameters, as shown in the
following code:

println(a);
c = 2
print c
printit = { println it }
printit c

These make for a much looser programming style, which is closer to the scripting
syntax of Ruby or Python. This is a big benefit when we are using Groovy to build
DSLs. When our target audience is nontechnical, being able to drop parentheses and
semicolons will make our code much more legible. Consider the following example,
where we have two methods, or closures, to get an account by ID and then credit the
account with some funds:

Account account = getAccountById(234);
creditAccount(account, 100.00);

With optional types, such as parentheses and semicolons, this can be used to write
code that is far more legible to our target audience:

account = getAccountById 234
creditAccount account, 100.00

Groovy markup
There are a number of builder classes built in Groovy. There are markup builders for
HTML, XML, Ant build scripts, and for Swing GUI building. Markup builders allow
us to write code to build a tree-based structure directly within our Groovy code.
Unlike API-based approaches for building structures, the tree-like structure of the
resulting output is immediately obvious from the structure of our Groovy markup
code. Consider the following XML structure:

<?xml version="1.0"?>
<book>
 <author>Fergal Dearle</author>
 <title>Groovy for DSL</title>
</book>

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[17]

In Groovy markup, this XML can be generated simply with the following
code fragment:

def builder = new groovy.xml.MarkupBuilder()
builder.book {
 author 'Fergal Dearle'
 title 'Groovy for DSL'
}

At first glance, this looks like strange special case syntax for markup. It's not! The
structure of this code can be explained through the use of closures and the optional
syntax that we've discussed in this chapter. We will go into this in great detail in
Chapter 5, Groovy Closures, but it is interesting at this point to see how the clever
use of some language features can yield a powerful DSL-like markup syntax.

Breaking down the preceding code a little, we can rewrite it as:

def builder = new groovy.xml.MarkupBuilder()
def closure = {
 author 'Fergal Dearle'
 title 'Groovy for DSL'
}
// pass a closure to book method
builder.book(closure)
// which can be written without parentheses
builder.book closure
// or just inline the closure as a parameter
builder.book {
…
}

In other words, the code between the curly braces is in fact a closure, which is passed
to the book method of MarkupBuilder. Parentheses being optional, we can simply
declare the closure inline after the method name, which gives the neat effect of
seeming to mirror the markup structure that we expect in the output.

Similarly, author and title are just method invocations on MarkupBuilder with
the optional parentheses missing. Extending this paradigm a little further, we can
decide to have author take a closure parameter as well:

def builder = new groovy.xml.MarkupBuilder()
builder.book {
 author {

Introduction to DSLs and Groovy

[18]

 first_name 'Fergal'
 surname 'Dearle'
 }
 title 'Groovy for DSL'
}

This will output the following nested XML structure:

<?xml version="1.0"?>
<book>
 <author>
 <first_name>Fergal</first_name>
 <surname> Dearle</surname>
 </author>
 <title>Groovy for DSL</title>
</book>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

The method calls on MarkupBuilder start off by outputting an opening XML tag,
after which they invoke the closure if one has been passed. Finally, the XML tag
is properly terminated before the method exits. If we analyze what happens in
sequence, we can see that book invokes a closure that contains a call to author.
Additionally, the author tag contains a closure with calls to first_name, surname,
and so on.

Before you go to the Groovy documentation for MarkupBuilder to look for the book,
author, and surname methods in MarkupBuilder, let me save you the effort. They
don't exist. These are what we call pretend methods. We will see later in the book
how Groovy's metaprogramming features allow us to invoke methods on closure
that don't really exist, but have them do something useful anyway.

Already, we are seeing how some of the features of the Groovy language can
coalesce to allow the structuring of a very useful DSL. I use the term DSL here for
Groovy builders because that is essentially what they are. What initially looks like
special language syntax for markup is revealed as being regular closures with a
little bit of clever metaprogramming. The result is an embedded or internal DSL
for generating markup.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Chapter 1

[19]

Summary
So, now we have a feel for DSLs and Groovy. We have seen how DSLs can be used in
place of general-purpose languages to represent different parts of a system. We have
also seen how adding DSLs to our applications can open up the development process
to other stakeholders in the development process. We've also seen how, in extreme
cases, the stakeholders themselves can even become co-developers of the system by
using DSLs that let them represent their domain expertise in code.

We've seen how using a DSL that makes sense to a nontechnical audience means
it can become a shared resource between programming staff and business
stakeholders, representing parts of the system in a language that they all
understand. So, we are beginning to understand the importance of usability
when designing a DSL.

We have dipped a tentative toe in the water by looking at some Groovy code. We've
gained an appreciation of how Groovy is a natural fit with the Java language due
to its binary and class level compatibility. We have touched on the features of the
Groovy language that make it unique from Java, and looked at how these unique
features can be used as a basis for building on the base Groovy language with
internal DSLs.

In the next chapter, we will go into more depth with the language itself and see how
we can use these features to build programs. In subsequent chapters, we will dive
deeper and see how the language can be exploited as an ideal platform for building
DSLs on top of the Java platform.

www.allitebooks.com

http://www.allitebooks.org

[21]

Groovy Quick Start
In this chapter, we will jump straight into getting you up and running with the
language on your computer. We will explore the various ways you can get Groovy
installed and running on your environment, and look at how we make use of the
various tools that come packaged in the Groovy installation:

• We will start out with a section on using GVM. This is definitely
the preferred mechanism for installing Groovy and a host of other
Groovy-related tools.

• We will follow this with a section on how to find the Groovy binaries and
install them on your system.

• The next section will guide you through running Groovy scripts by using
the various shell tools provided with the Groovy download.

• Most of you will be using one of the popular IDE environments, so
we'll look at the various integration options for the popular IDEs
and programmer's editors.

Installing Groovy with GVM
The Groovy ecosystem continues to evolve and is not too proud to take inspiration
from other sources. While the language itself has moved forwards in leaps and
bounds over the last few years, by far my favorite addition to the ecosystem is GVM
(Groovy enVironment Manager). GVM was inspired by tools such as RVM (Ruby
Version Manager).

Groovy Quick Start

[22]

GVM is the ideal tool for maintaining parallel versions of the various tools in the
Groovy ecosystem. GVM has a simple and intuitive command-line interface for
installing and using Groovy, and a whole collection of other useful Groovy-based
tools. Switching between different versions of the Grails framework is achieved
with a simple command:

$gvm use grails 3.0.5

$grails run-app

$gvm u grails 3.0.5

$grails upgrade

As well as Groovy itself, GVM can be used to install most of the popular Groovy
tools such as Grails, Griffon, Gradle, and Vert.x. This list is being extended by the
Groovy community all the time, so for the latest list of supported tools, see the GVM
tool site at http://gvmtool.net.

Installing GVM
On Linux, Mac OS X, Solaris, and FreeBSD, installation of GVM can be achieved with
one simple command:

$curl –s get.gvmtool.net | bash

I like the elegance and simplicity of this installation method. If you load
http://get.gvmtool.net into a browser, you will see that it is the bash installation
script for GVM. The curl command downloads the script and pipes it into bash to
execute. You can immediately open a new terminal window and start using GVM.
Use the following commands to check the available options:

$gvm help

Installing GVM on Windows
In my experience, Windows developers fall into two camps: those who love Cygwin
because it gives them the power of a Linux style Command Prompt on Windows,
and those who just hate it because it imposes too many constraints. If you are the
former type of developer, then you already have Cygwin and the curl package
installed, which means you have already run the previous curl command,
so job done!

www.allitebooks.com

http://gvmtool.net
http://get.gvmtool.net
http://www.allitebooks.org

Chapter 2

[23]

If you are the latter, then GVM has got to be your best reason yet for giving Cygwin
a spin. You can install Cygwin by running the setup program from the following
address: http://cygwin.com/install.html. Pick the setup program appropriate to
your system, either 32-bit or 64-bit. Cygwin does not install all packages by default,
so at the end of the installation process, you will need to pick curl from the Net
package category and unzip from the Archive category.

From the directory where you installed Cygwin, you can now launch the Cygwin
command prompt using the Cygwin.bat command file:

C:\cygwin\Cygwin.bat

Fergal@mypc ~

You can now issue the curl command we used earlier to install GVM in your
Cygwin session.

Cygwin will pick up all your Windows environment and path variables.
GVM itself depends on there being a valid JDK available and will look
first for JAVA_HOME and then for the javac command executable to
determine where this is. Make sure you have a properly configured JDK
in your path somewhere. You can download and install the latest JDK
from http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

How to find and install Groovy from
binaries
The Groovy project is hosted at http://www.groovy-lang.org/download.html
and can be downloaded as a ZIP archive or a platform-specific installer for Windows
and certain Linux distributions. At the time of writing this book, the latest version of
the language available is Groovy 2.4.4.

In five simple steps, you can run Groovy and start experimenting with the language:

1. Download the latest build from
http://www.groovy-lang.org/download.html.

2. Unzip the archive into a directory on your computer.
3. Set an environment variable in your command line or shell for GROOVY_HOME.

This should point to the base directory to which you unzipped the archive.

http://cygwin.com/install.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.groovy-lang.org/download.html
http://www.groovy-lang.org/download.html

Groovy Quick Start

[24]

4. Add the Groovy bin directory to your PATH. This will be %GROOVY_HOME%\bin
(Windows) or $GROOVY_HOME/bin on Linux and Unix systems.

5. Open a new command shell and test your setup by issuing the Groovy
version command groovy -v.

Windows users can also make use of the Windows Installer, which can
be found at http://www.groovy-lang.org/download.html.

If all goes well, you should see something like the following:

$ groovy -v

Groovy Version: 2.4.4 JVM: 1.8.0_51 Vendor: Oracle Corporation OS: Mac OS
X

Your Groovy installation relies on having a working Java version set up already on
your computer. Groovy will work with any version of Java from 1.4.1 onwards, but
if you want to use some of the language features, such as generics and annotations,
you will need to have a minimum of Java 1.5 installed. You can check your Java
version with the command java -version, if you are not sure. You can find an
upgrade at http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

Running Groovy
Now that you have Groovy installed, let's introduce some of the tools that come with
the Groovy package. Groovy can be compiled into a Java class file and deployed as
part of an application, the same as for any other Java class file. In addition to this,
Groovy has several tools that allow us to execute a Groovy program as a script
without the need to package it into a Java application.

There are three commands that we can use to launch a script. In the following
sections, we will demonstrate the different methods of running Groovy scripts.
As we progress through the book, you can use these methods to execute the
Groovy scripts that we will describe.

www.allitebooks.com

http://www.groovy-lang.org/download.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.allitebooks.org

Chapter 2

[25]

The Groovy script engine – groovy
Let's start by writing a Groovy version of the ubiquitous Hello World program. We
can start by creating a file called Hello.groovy, which contains the following code:

public class HelloGroovy {
public static void main(String [] args) {
 System.out.println("Hello, World!");
}
}

To any Java developer, this looks strangely like Java code. That's because it is Java
code. In the first instance, Groovy is Java source code compatible. Almost anything
you write in Java is source-level compatible with Groovy. To prove this, let's try and
run the following code as a script from the command line:

$groovy HelloWorld.groovy

Hello, World!

This is interesting, and it is a feature that we can make good use of in the future, but
we are not gaining many of the benefits of Groovy by writing in Java. Let's rewrite
this script to be more Groovy.

Groovy is also a scripting language, so we don't need to write our code within a class
to execute it, and we don't need a static main method either. A lot of useful methods
from the JDK, such as println, are provided as wrapper shortcuts by the Groovy
class DefaultGroovyMethods. Thus, we can rewrite our Hello World program in
one line of code as follows:

println "Hello, World!"

The Groovy script engine also defaults the filename suffix, so the following
command works just as well:

$groovy HelloWorld

Hello, World!

We can also invoke the Groovy script engine and pass it a single statement
to execute:

$groovy -e "println 'Hello, World'"

Hello, World!

Groovy Quick Start

[26]

We already know that Groovy is a language built on top of the JVM and that it runs
as Java bytecode. So, how is it possible for a Groovy script to run without being
compiled to a Java class? The answer is that the Groovy scripting engine compiles
scripts on the fly and loads the bytecode onto the JVM. We will find out how to
compile our Groovy script later in the chapter.

The important thing to note for now is that even though our scripts seem to be
running on the command line, they are in fact running on a JVM, and as a result, we
have access to all of the power of the JVM and Java APIs. To demonstrate, let's look
at a more complicated script.

The Java management extension JMX is an extremely useful component of the Java
platform. JMX is a framework for managing and monitoring applications, system
objects, and devices. In JMX, resources are represented as MBeans and we can use
the JMX APIs to access the resources to monitor the state of our application.

Typical JMX clients such as jManage tend to be heavy-weight GUI applications that
allow application resources to be inspected. Sometimes, I just want to monitor one or
two values that are relevant to the performance of my application, such as its current
heap usage, and log it to a file at intervals.

Consider the following Groovy script, monitor.groovy, which connects to the
platform MBean of a remote JVM and monitors its heap usage before and after a
garbage collection operation:

import java.lang.management.*
import java.lang.management.ManagementFactory as Factory
import javax.management.remote.JMXConnectorFactory as JMX
import javax.management.remote.JMXServiceURL as ServiceURL

def serverUrl = 'service:jmx:rmi:///jndi/rmi://localhost:3333/jmxrmi'
def server = JMX.connect(
 new ServiceURL(serverUrl)).MBeanServerConnection

println "HEAP USAGE"
def mem = Factory.newPlatformMXBeanProxy(server,
 Factory.MEMORY_MXBEAN_NAME, MemoryMXBean.class)
def heapUsage = mem.heapMemoryUsage
println """Memory usage : $heapUsage.used"""
mem.gc()
heapUsage = mem.heapMemoryUsage
println """Memory usage after GC: $heapUsage.used"""

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[27]

You can try this script against any running Java application. Just add the following
switches to the Java startup command of the application. This instructs your JVM
to start up with an open JMX connection on the port 3333. For simplicity, we have
abstained from using a secure connection or password authentication:

-Dcom.sun.management.jmxremote.port=3333-Dcom.sun.management.jmxremote.
authenticate=false-Dcom.sun.management.jmxremote.ssl=false

After running the script and connecting to an application, we get instant feedback
about the state of our heap usage:

$groovy monitor.groovy

HEAP USAGE

Memory usage : 1118880

Memory usage after GC: 607128

If you are not familiar with JMX, don't worry. The point to be grasped here is that
Groovy unleashes the power of the JVM and APIs, and puts them at your disposal
through the command-line shell. My starting point for the previous script was an
existing Java program that implemented the JMX API calls I needed. This is a slightly
cleaned up version of the script, which exploits some Groovy syntax that we will
learn about later. In practically no time, it is possible to drop Java API code into a
Groovy script and you have a command-line version to play with. The possibilities
for tool development are endless.

Shebang scripts
If you are running Groovy on UNIX, Linux, Mac OS X, or in the Cygwin shell for
Windows, you can go one step further with this approach. The Groovy script engine
is designed to work as a proper shell scripting language and supports the "shebang"
#! characters. By placing #!/usr/bin/env groovy as the first line of a script,
the shell will pass the remainder of the script for processing by Groovy. These are
commonly referred to as shebang scripts. We can modify our Hello.groovy
as follows:

#!/usr/bin/env groovy
println "Hello, World!"

Now, if we change the permissions of the file to executable, we can call it directly
from the shell:

$mv Hello.groovy Hello
$chmod a+x Hello
$./Hello
Hello, World!

Groovy Quick Start

[28]

The Groovy shell – groovysh
The Groovy shell is a useful command-line tool for trying out snippets of Groovy
code interactively. The shell allows you to enter Groovy code line by line and
execute it. We can run the groovysh command and immediately start entering
Groovy statements:

$ groovysh
Groovy Shell (2.4.4, JVM: 1.8.0_51)
Type ':help' or ':h' for help.
--groo
vy:000> "Hello, World!"
===> Hello, World!
groovy:000>

The Groovy shell evaluates each line and outputs the return value of the statement.
The preceding statement contains just one instance of a string, so the string
Hello, World! is returned. By contrast, our single line Hello script outputs
Hello, World!, but returns null, as follows:

groovy:000> println "Hello, World!"
Hello, World!
===> null
groovy:000>

This is an important point to remember if you make use of the Groovy shell, as
it sometimes can be the cause of unexpected error messages in otherwise correct
scripts. The Groovy shell will try to interpret and print the return value of your
statement irrespective of whether it makes sense to do so or not.

With the Groovy shell, statements can span more than one line. Partially complete
Groovy statements are stored in a buffer until completion. You can use the :display
command to output a partially complete statement, as follows:

groovy:000> class Hello {
groovy:001> :display
 001> class Hello {
groovy:001> String message
groovy:002> :display
 001> class Hello {
 002> String message
groovy:002> }
===> true
groovy:000>

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[29]

The load command allows scripts to be loaded into groovysh from a file. However,
some limitations of the Groovy shell make this problematic. The Groovy shell works
by using an instance of the GroovyShell class to evaluate each line of script in turn.
When we run any Groovy script, the variables local to the script are stored in the
binding object. Variables in the binding object behave exactly like variables that are
in a global scope. Since groovysh evaluates the script piecemeal as it encounters
each line, only variables that find their way into the binding are preserved. So, the
following code works because the message variable is stored in the binding, which is
shared between evaluations:

groovy:000> message = "Hello, World!"

===> Hello, World!

groovy:000> println message

Hello, World!

===> null

groovy:000>

However, this version causes an error as message is now treated as a local variable
and not stored in the binding:

groovy:000> String message = "Hello, World!"

===> Hello, World!

groovy:000> println hello

Unknown property: message

groovy:000>

The Groovy console – groovyConsole
The limited set of commands and crude command-line operations make groovysh
problematic for anything other than trying out single expressions or statements.
A much more useful tool is the Groovy console. The Groovy console is a GUI
editor and runtime environment. You only need to type your Groovy statements
in the top pane and the output gets listed in the bottom pane.

You can launch the Groovy console from the command line with the
following command:

$groovyConsole

Groovy Quick Start

[30]

This launches the following Groovy console:

In the preceding GroovyConsole, we are trying out a handy feature of Groovy,
which is the ability to find class methods on the fly. This simple line of code exploits
a few of the Groovy language features. Object.methods is analogous to calling
getMethods() for the Object class. Instead of a method array, a Groovy list is
returned containing the method objects. We use the built-in iteration method to pass
each element in the list to the closure that prints the method details. We will go over
all of these language features in depth later.

On the other hand, GroovyShell, the class on which groovysh is built, is an
extremely useful class. Later in this book, we will use GroovyShell to evaluate DSL
scripts on the fly, but other uses can be made of it including building an on-the-fly
Groovy interpreter into your application, if necessary.

The Groovy console has several other features, such as the ability to select a part
of the buffer and run it, and also has a useful object browser. This allows you to
inspect the last result object from the console. Combined with the ability to select
part of the display buffer and run it independently, the console is the ideal sandbox
for playing with code snippets—whether debugging existing code or learning the
Groovy language.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[31]

The Groovy compiler – groovyc
Using the Groovy script engine, we can execute Groovy scripts from the command
line. For experimenting and debugging our scripts, we can run them interactively in
the Groovy shell or the Groovy console. To build our Groovy programs into larger
apps that require more than one class, or to integrate our Groovy programs into
existing Java applications, we need to be able to compile Groovy.

The groovyc command works exactly the same way as javac does. It takes a Groovy
source file and compiles it into a corresponding class file that can be run on the JVM.
Our script examples up to now have not defined a class. The Groovy compiler will
wrap our Groovy scripts into an executable class file, which can be invoked with the
java command as if they had a public static void main() method.

Let's take the JMX monitor.groovy script that we wrote earlier, and compile and
run it:

$ groovyc monitor.groovy

$ java -cp $GROOVY_HOME/embeddable/groovy-all-2.4.4.jar:. monitor

HEAP USAGE

Memory usage : 1118880

Memory usage after GC: 607128

The Groovy IDE and editor integration
If you are going to do any amount of serious Groovy coding, you will want to work
with Groovy in your favorite IDE.

NetBeans
Of the popular IDE environments, NetBeans was the first to provide built-in Groovy
support. From NetBeans 6.5 onwards, Groovy support is available from within any
of the Java bundles without any additional plugins being required. By default, you
have excellent Groovy source editing with syntax highlighting, source folding, and
code completion. You can mix and match Groovy with Java in your projects, or build
a full Groovy on Grails-based project from scratch. You can download the latest
NetBeans installation from https://netbeans.org/downloads/.

https://netbeans.org/downloads/

Groovy Quick Start

[32]

Eclipse
Eclipse was the first Java IDE to have Groovy support integrated through the
Groovy-Eclipse plugin. You can install the Groovy-Eclipse plugin from the update
site at http://dist.springsource.org/snapshot/GRECLIPSE/e4.5/.

The Groovy-Eclipse plugin has full support for source-level Groovy editing with
syntax highlighting, auto completion, and refactoring.

Spring STS
If you don't want the hassle of managing individual plugins in your Eclipse
installation, then it's worth downloading and installing the Groovy/Grails Tool Suite
from http://spring.io/tools.

IntelliJ IDEA
All the latest versions of IntelliJ IDEA have excellent built-in support for Groovy,
including excellent support for Grails, Gradle, and Spock. For the purpose of most of
the examples in this book, the free Community Edition of IntelliJ IDEA is sufficient
for your needs.

Other IDEs and editors
Other IDEs with Groovy support are JDeveloper and JEdit. In addition, many
of the popular program editors, such as TextMate and UltraEdit, also now have
Groovy support. There is even a plugin available to download for Emacs.
Check out http://www.groovy-lang.org/ides.html for a full list of available
plugins, and extensive instructions on setting up and running Groovy in your
preferred environment.

Summary
In this chapter, I gave you all the tools to get started with the Groovy language, but
we have barely touched the language itself. Whatever your own personal preference
for an operating system or IDE, you should now be ready to start coding.

In the next chapter, we will start to look at some of the essential Groovy DSLs that
are available. Gradle is a Groovy-based build and dependency management tool.
Spock is a Groovy-based unit testing framework that used DSL syntax to implement
behavior-driven development (BDD) syntax into your tests.

www.allitebooks.com

http://dist.springsource.org/snapshot/GRECLIPSE/e4.5/
http://spring.io/tools
http://www.groovy-lang.org/ides.html
http://www.allitebooks.org

[33]

Essential Groovy DSLs
It's tempting at this point in the book to dive into the Groovy language. Instead in
this chapter we will take a slightly different tack. Here we will take a look at two
essential Groovy tools and, more importantly, the DSLs that they provide. Gradle is
a build, test and deployment automation tool, which is powered by a Groovy DSL.
Spock is a unit testing and specification framework built over JUnit. The stand out
feature of Spock is its highly expressive Groovy based DSL, which allows the tests to
be written in behavior-driver development (BDD) style semantics.

In this chapter we will cover some of the basic features of both DSLs. Both Gradle
and Spock are used extensively in the code examples that accompany this book.
Where possible throughout the rest of the book we will use Spock's BDD syntax to
illustrate Groovy features. I urge you to read this chapter first before continuing with
the rest of the book. Familiarity with Spock and Gradle will be assumed in the text
from this chapter forward.

Installing Gradle
Let's start by installing Gradle using the GVM tool we used in the last chapter.
Installing Gradle is simplicity itself if you have followed the instructions from
Chapter 2, Groovy Quick Start, to install the GVM tool. Just issue the following
GVM command:

$gvm install gradle

This will install the latest available version of Gradle into your environment.
The Gradle developers, Gradleware, have a policy of first deprecating old features
and then removing them entirely. So, to avoid any future compatibility issues, you
can use the GVM tool to install the version of Gradle used when this book was
written as follows:

$gvm install gradle 2.4

Essential Groovy DSLs

[34]

If you already have Gradle installed with a different version you can switch versions
as follows:

$gvm use gradle 2.4

GVM takes care of all the detail of installing Gradle and setting up the path and
GRADLE_HOME environment for you. If you are not using the GVM tool, you can find
the Gradle installation packages at http://www.gradle.org/downloads. Then
configure the Gradle environment by following the instructions at http://www.
gradle.org/docs/current/userguide/installation.html.

Gradle basics
To understand Gradle builds, you need to only consider three basic
concepts initially:

• The build script: Gradle automatically looks for a file called build.gradle
in the current directory. This file is the build script, which defines the projects
and tasks that make up the build.

• Projects: Gradle can work with a single or multiple projects per build. For the
purpose of this chapter, we will only be looking at single project builds.

• Tasks: Gradle tasks are the building blocks of the build, for example,
compile, test, and clean.

Gradle build scripts
Gradle automatically looks for a file called build.gradle in the current directory
and uses this as the build script. For most simple projects, all you ever need to write
is a build.gradle file. The source package that accompanies this book has a build.
gradle file in the root directory. This is a very simple build script file from which we
only care about one main task.

You can test all the code in the book with one Gradle command:

$gradle test

We will look at this build.gradle script in more detail later in the chapter to see
how this is achieved. But first, let's look at some basic Gradle tasks. In the following
examples, we will use build scripts with different names to build.gradle. This is
purely so that we can have more than one build script in the same directory. To run
a build script other than build.gradle from the command line, we will use the
following code:

$gradle -b hello.gradle

www.allitebooks.com

http://www.gradle.org/downloads
http://www.gradle.org/docs/current/userguide/installation.html
http://www.gradle.org/docs/current/userguide/installation.html
http://www.allitebooks.org

Chapter 3

[35]

Gradle tasks
As we saw previously, Gradle tasks are the building blocks of a Gradle build. We can
define as many tasks as we like within our build script. Here is an example of a very
simple task:

task hello {
 doLast {
 println "Hello, World!"
 }
}

What the preceding Gradle script snippet is doing is declaring a single task called
hello. Tasks can be comprised of multiple actions. In this case, there is one action
defined for the task, that is, the code block:

{
println "Hello, World!"
}

This is actually a Groovy closure. We will dedicate a full chapter later to learning
about closures. It is sufficient for now to know that by declaring this as the doLast
action we are asking for this block of code to be executed last as part of the hello
task. You can run this script from the command line as follows:

$gradle -q -b hello.gradle hello

For the rest of the Gradle examples in this chapter, we will always use the
-q "quite execution" option. This will ensure that only the output from the
tasks is printed and not the other Gradle status messages on startup.

Adding actions to tasks
There is also a doFirst method we can use to add an action to the start of a task.
The doFirst and doLast methods are useful notational conveniences if you have
a very simple task to define like the one that follows:

task helloWithActions {
 doFirst {
 print "Hello, "
 }
 doLast {
 println "World Actions!"
 }
}

Essential Groovy DSLs

[36]

If we add multiple doFirst and doLast actions in a task, Gradle gives us what seem
to be illogical results. So, the first doFirst action is last and the last doLast action is
last to be executed. Confused? Look at this task and then check out the output, and it
will be clearer:

task confused {
 doFirst {
 println "The First doFirst will be last"
 }
 doFirst {
 println "The last doFirst will be first"
 }
 doLast {
 println "The first doLast will be first"
 }
 doLast {
 println "The last doLast will be last"
 }
}

You can execute the preceding task from the root directory of the sample code
package with the following command:

$gradle -q -b scripts/ChapterThree/hello.gradle confused

The last doFirst will be first

The First doFirst will be last

The first doLast will be first

The last doLast will be last

From the preceding output, we can see that the order of our actions is not quite
what we might have expected. The reason is that each of the doFirst and doLast
methods are executed in turn as they occur in the task definition. When Gradle
encounters a doFirst method in the definition, it is established as the first action to
execute, but subsequent doFirst actions are inserted before it. The same happens
with doLast, except that doLast at least adds actions to the action list in the order
they are encountered.

For the preceding reasons and to avoid hours spent scratching your head wondering
why actions are not performing in the order you expect, I suggest not using doFirst
and doLast in anything except a trivial Gradle task. The better notation to use is the
<< operator as follows:

task helloSimple << {
 println "Hello, Simple World!"
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[37]

The << operator is synonymous with doLast, so we can use it over again in the build
script to add actions to the end of the task. In this example, we create a task called
actionsInOrder. Once this task is created, we can continue to use << to action
actions to the task.

task actionsInOrder << {
 println "The first will be first"
}
actionsInOrder << {
 println "The last will be last"
}

When we run this script, the actions are executed in the order they are encountered
in the script as follows:

$gradle -q -b scripts/ChapterThree/hello.gradle actionsInOrder

The first will be first

The last will be last

Default tasks
Sometimes, in a build system, we need to define a default task or tasks to execute
whenever the build is run. We define default tasks in a Gradle build script with
the defaultTasks method. For instance, here we have two tasks; clean and
runTests, which we want to run by default whenever the build is executed
without a task specified.

defaultTasks 'clean', 'runTests'

task clean << {
 println 'Cleaning'
}
task runTests << {
 println 'Running Tests'
}

The preceding Gradle script when run produces the following output:

$gradle -q -b scripts/ChapterThree/default.gradle

Cleaning

Running tests

Essential Groovy DSLs

[38]

Creating task dependencies
Any build tool is incomplete without the ability to create dependencies between
build tasks. With Gradle, we create dependencies using the dependsOn attribute.
We can create a dependency between two tasks as follows:

task helloSimple << {
 println "Hello, Simple World!"
}
task helloWithDepends (dependsOn: 'helloSimple') << {
 println "Hello, Dependent World!"
}

Invoking the helloWithDepends task will first cause the helloSimple task to
be executed.

$gradle -q -b scripts/ChapterThree/hello.gradle helloWithDepends

Hello, Simple World!

Hello, Dependent World!

Dependent tasks can be chained together by declaring one task to depend on another
task. This task in turn can already depend on a third task. We can also make a single
task dependent on multiple other tasks:

task clean << {
 println 'Cleaning'
}
task runTests << {
 println 'Running Tests'
}
task buildApplication (dependsOn: 'clean') << {
 println 'Building Application'
}
task deploy (dependsOn: ['runTests','buildApplication']) << {
 println 'Deploying'
}

When we run the preceding script, it produces the following output:

$gradle -q -b scripts/ChapterThree/default.gradle deploy

Cleaning

Building Application

Running Tests

Deploying

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[39]

Built-in tasks and plugins
So far, we've looked at tasks we provide ourselves in the build script. While Gradle
is a powerful tool, it would be tedious to use if we had to script every build task
ourselves by hand. Luckily, Gradle provides a plugin mechanism to overcome this.
There are many different plugins, which provide focused functionality for various
use cases building.

Java and Groovy are supported via Gradle plugins. In addition to these core plugins
that are supported by Gradleware themselves, there are numerous other plugins
supported by the community for everything from the Cobertura plugin for code
coverage support to the Tomcat plugin, which supports deployment of your web
app to an embedded Tomcat container.

Let's take a look at the build.gradle script supplied with the example code package
for this book:

apply plugin: "groovy"
apply plugin: "idea"
apply plugin: "eclipse"

repositories {
 mavenCentral()
}
dependencies {
 compile "org.codehaus.groovy:groovy-all:2.4.4
 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
}

What is unusual about this in light of what we've read already about Gradle is the
fact that this script does not define any tasks. However, as was stated already in this
build script is all we need to build and run all the example code for the book. The
reason we don't need to add any tasks is that the plugins defined are providing all
the tasks we need in this case.

Even an empty build script has some default tasks provided by Gradle itself. One of
these is tasks, which we can use to list the available tasks in a build script. Try the
tasks task against some of the build scripts in the code package. If we run it on a
completely empty script, it reports the basic built-in tasks that Gradle provides out
of the box.

$gradle -b scripts/ChapterThree/empty.gradle tasks --all

Essential Groovy DSLs

[40]

This includes some useful tasks as follows:

• tasks: This lists available tasks as we've seen earlier
• wrapper: This is a useful way of packaging your Gradle build with a self-

installing gradle jar
• projects: This lists the available projects in your build
• dependencies: This lists the dependencies in your build

The same command run against our hello.gradle example script will also report
the tasks listed in the build script itself: hello, helloSimple, helloWithActions,
and so on. When we run it against the build.gradle script from our previous
examples, it will report they additional tasks provided by the plugins.

Plugins
You will also notice that the script declares three plugins to use, Groovy, IDEA,
and Eclipse. Plugins bundle additional tasks into Gradle that focus on a specific
functionality. By applying these plugins, we are in effect adding additional built-in
tasks to our build that we can call upon.

The Gradle Groovy plugin
The first plugin we have included is the Gradle Groovy plugin. We can see what
additional tasks are applied to our build by running gradle tasks --all in the
sample root directory. The Groovy plugin bundles some useful tasks into our build
to facilitate the compilation, testing, and packaging of the Groovy code. Here are
some of the tasks provided:

• classes: This task builds the classes from source
• testClasses: This task builds test classes from source
• test: This builds all classes and runs the tests
• clean: This cleans up all target classes and other output files from the build
• groovydoc: This generates documentation from the JavaDoc style comments

in Groovy classes

The IDEA plugin
As the name suggests, the IDEA plugin is used to support IntelliJ IDEA. This plugin
provides two main tasks: cleanIdea and idea. These tasks will clear and create the
support files that allow you to view a project in IntelliJ IDEA. Running the following
command from the example source's root will enable you build the project files that
will allow you to view all the sample sources in IDEA:

$gradle cleanIdea idea

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[41]

The Eclipse plugin
The Eclipse plugin does exactly the same for Eclipse users. To generate a project
setup to allow the samples to be viewed in Eclipse, all we need to do is run:

$gradle cleanEclipse eclipse

Repositories
The next section in our preceding build script is the repositories section.
The repositories section tells Gradle where to look to resolve dependencies
in the build.

repositories {
 mavenCentral()
}

In this build script, all of our dependencies can be resolved in the Maven central,
so we get all that we need to declare. We can also declare our own company Maven,
Ivy, or local repository if we have one.

repositories {
 maven {
 url "https:repos.company.com/nexus"
 }
 ivy {
 url "https:repos.company.com/ivy"
 }
 ivy {
 url "../local-ivy"
 }
}

Gradle will search the defined repositories in the order they are specified
in the repositories section and stop at the first repository that has the
required dependency.

Essential Groovy DSLs

[42]

Dependencies
The final section in our preceding build script declares the dependencies we need
to resolve. Gradle is a Groovy-based tool, so it already ships with Groovy library.
However, in order to declare what version of Groovy we want used by our own
builds, we need to declare that as a dependency. The previous dependencies
section declares a compile time dependency on the latest Groovy version available
at time of publication:

dependencies {
 compile "org.codehaus.groovy:groovy-all:2.4.4
 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
}

Dependencies can be declared for compile and runtime phases of the build. We can
declare a dependency that is just to be used at the test compilation phase with a
testCompile configuration. In the previous example, we configured a dependency
for the Spock test framework, which is the second of our essential Groovy DSLs.

Spock tests
The Spock Framework is a behavior-driven development (BDD) tool built on top
of JUnit. Spock uses the features of the Groovy language to add BDD style syntax
to JUnit tests. Spock allows us to write our test specifications as "given, when, then"
style expressions, but under the covers, they still run as JUnit tests and can still be
run by the JUnit runner. This means that Spock tests are compatible with most build
tools, IDEs, and continuous integration servers.

Given, when, then
The main characteristic of BDD is the concept of expressing tests in plain English
sentences. User stories should be accompanied with clear descriptive acceptance
criteria, which describe expected behavior in the system under test.

In support of this concept, an accepted dialect has evolved to describe acceptance
tests. The general form follows the pattern: given (some initial context), when
(some event or stimulus occurs), then (a certain outcome is expected).

A simpler version when no stimulus is involved is given (some initial context) and
expect (certain condition to be true). The Spock DSL allows us to specify tests using
these familiar terms.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[43]

Spock specification structure
Spock specifications are written as a Groovy class that extends one of the core
Spock specification classes. We will use spock.lang.Specification for our
tests. The anatomy of the specification itself breaks down as follows:

• Feature methods: These are the core of the Spock specification. They describe
the feature of the system under test and how it is expected to work.

• Blocks: Within a feature method, Spock specification comprise of blocks.
These are the conceptual elements of the test and describe initial state and
expected outcomes of a test specification.

• Fields: Class instance fields are where we store objects belonging to a
specifications fixture.

• Fixture methods: These are the methods Spock uses for setup and
cleanup operations.

• Helper methods: Spock aims through its rich syntax to make specification as
expressive as possible. Often, however, our specifications get large or contain
duplication. Helper methods are not run as features by the Spock, but are
used within the feature methods themselves.

Feature methods
The fundamental building block of a Spock test specification is the feature method.
Feature methods in a Spock specification are any method in the specification class
that contains Spock blocks, which we will describe in the next section. We can
declare a feature method using classic Java style method naming, or we can do so
using a special Groovy naming style, which allows method names as string.

The latter style is the convention in Spock, which supports the BDD goal of defining
tests in plain English. We can in fact chose whatever we like as a feature method
name, but the more descriptive we make these names, the more readable our test
specifications become. Once you make regular use of BDD, it starts to become natural
to define your tests in the same plain English used in the acceptance tests written in
your user stories.

Essential Groovy DSLs

[44]

Here is a simple Spock test specification. The specification itself is a Groovy class
extended from the spock.lang.Specification class. It contains one feature method
called "the truth could not be truer" and it has two blocks. The specification itself is
written in the Groovy language, and so far in the book, we have barely touched on
the syntax of the language at all. However, it still should be possible to read this test
specification and understand what it is aiming to achieve.

import spock.lang.Specification

class ChapterThreeSimpleSpec extends Specification {
 def "the truth could not be truer" () {
 given:
 def truth = true

 expect:
 truth
 }
}

Blocks
Spock feature methods comprise of combinations of blocks. In the following
example, we will see how we can specify a BDD style given, when, then sentence.
We have a block for each of the BDD keywords. The string description after each
keyword is entirely optional, but it is best practice to provide it because it adds
readability to your specifications:

void "two wrongs don't make a right" () {
 given: "two false statements"
 def theWorldIsFlat = false
 def theEarthOrbitsTheSun = false

 when: "we combine the two falsehoods"
 def copernicusWasWrong =
 theWorldIsFlat && theEarthOrbitsTheSun

 then: "Copernicus was telling the truth"
 ! copernicusWasWrong
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[45]

For the most part, we can write whatever we like within the block itself. However,
Spock applies some rules, which make sense. The then: and expect: blocks should
only contain expressions that can be evaluated as Boolean expressions. In the next
chapter, we will cover how Groovy's interpretation of truth is wider than Java. In
effect any expression which, evaluates to Boolean true, is a positive or non null value
or a collection with elements in it will all evaluate to true.

As you would expect the code can have multiple lines in any block. However, it may
make sense to logically separate this to aid the readability of a test. For instance,
the previous given: block can be been broken up as follows:

 given: "a flat world"
 def theWorldIsFlat = false
 and: "two celestial bodies"
 def theEarthOrbitsTheSun = false

We can extend any block of our test specification with an additional and: block.
Here, we will add a second expect: to the specification:

void "we can extend Spock specs with and blocks" () {
 given: "Two Integer numbers"
 Number a = 10
 Number b = 5

 expect: "Integer multiplication and addition are commutative"
 a * b == b * a

 and:
 a + b == b + a
}

Spock does its best to preserve the logical structure of our BDD style specification, so
it will disallow sequences of blocks that don't make sense. Odd block sequences such
as given/then or given/expect/when will either result in a polite suggestion from
Spock to use an alternative or a syntax error.

Essential Groovy DSLs

[46]

Fields
Spock test specifications can contain class instance fields, which is a good place to
store fixture objects. It's important to note however that while fields are declared
as class instance fields their values are not shared between feature methods. In the
following example, truth will be reinitialized to false for each feature method:

class ChapterThreeSimpleSpec extends Specification {
 def truth = false

 void "the truth could not be truer" () {
 given: "the unvarnished truth"
 truth = true

 expect: "its true"
 truth
 }
}

Sometime, it might be desirable to subvert this feature of Spock and have a field
whose state is preserved between feature methods. The @Shared annotation will
overcome the default Spock behavior for fields and share the value between feature
method executions.

@Shared def truth = false

Fixture methods
Spock provides four special fixture methods that allow setup and cleanup of objects
in the specification. These can be used in combination with fields in our specification
to handle any setup and cleanup required by the specification or the individual
feature methods:

• setupSpec(): This is called once per test specification, before the first feature
method is run. This can be used for any specific test initialization required by
the system under test, but it cannot access any instance fields.

• cleanupSpec(): This is called once per test specification, after the last feature
method has been called. Here, we can do any final teardown of services
required by the test, but we cannot access any instance fields.

• setup(): This is called before every feature method. It's good practice to
initialize fixture data in here.

• cleanup(): This is called after each feature method. We can release any
resources consumed in setup() here.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[47]

Here is a slightly complex but very useful example of a use for fixture methods.
We will go into more detail in later chapters about how to use the GroovyShell
class. In this example, we will set up a Groovy shell in our test specification and a
PrintStream object to capture the output from the shell. The GroovyShell class will
allow us to execute Groovy source code from a file in our path without the need to
compile it and include it in the class path:

 GroovyShell shell
 Binding binding
 PrintStream orig
 ByteArrayOutputStream out

 def setup() {
 orig = System.out
 out = new ByteArrayOutputStream()
 System.setOut(new PrintStream(out))
 binding = new Binding()
 shell = new GroovyShell(binding)
 }
 def cleanup() {
 System.setOut(orig)
 }

Helper methods
A feature method is any method that has a Spock block in it. Any method that does
not have a Spock block defined, and is not one of the four fixture methods, will be
treated by Spock as a helper method and will be compiled into the test as a regular
instance method.

We can call a helper method from anywhere in one of our feature methods. For
instance, the following helper method works alongside our GroovyShell fixture
methods to return the output after executing a Groovy script in the Groovy shell:

protected String output() {
 out.toString().trim()
}

Essential Groovy DSLs

[48]

Together these fixtures and helper methods give us a neat way to test the expected
outcome of running an external Groovy script. Remember this one because we will
make use of it in the following chapters of the book:

def "HelloWorld says Hello World"() {
 given: "we have a Hello World script"
 def script = new File("scripts/ChapterTwo/Hello.groovy")
 when: "we run the script"
 shell.evaluate script
 then: "the script outputs the correct details"
 "Hello, World!" == output()
}

Where blocks
The BDD style syntax provided in Spock allows us to write very expressive tests,
but because of its nature can become very repetitive when we have multiple
expectations we want to test, which have the same or different outcomes and
which are data-driven. Spock fortunately has a very useful where: block to
cover this scenario.

The where blocks always come at the end of a feature method. In the following
example, the where block defines two feature method variables, filename and
expectedOutput. The feature method will iterate the values for each of these
variables applying each in turn and asserting the outcomes in turn.

def "HelloWorld says Hello World in Java and Groovy styles"() {
 given: "we have a Hello World script"
 def script = new File(fileName)
 when: "we run the script"
 shell.evaluate script
 then: "the script outputs the correct details"
 expectedOutput == output()
 where: "we have different versions of HelloWorld"
 fileName | expectedOutput
 "scripts/ChapterTwo/Hello.groovy" | "Hello, World!"
 "scripts/ChapterTwo/HelloWorld.groovy" | "Hello, World!"
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

[49]

Fixture blocks
Sometimes, we will have fixture data which is specific to a feature method and is not
something we want to be shared across multiple feature methods. Spock provides
setup: and cleanup: for this purpose.

 def "Fixtures can be in blocks too"() {
 setup:
 orig = System.out
 out = new ByteArrayOutputStream()
 System.setOut(new PrintStream(out))
 binding = new Binding()
 shell = new GroovyShell(binding)
 and: "we have a Hello World script"
 def script = new
 File("scripts/ChapterTwo/Hello.groovy")
 when: "we run the script"
 shell.evaluate script
 then: "the script outputs the correct details"
 "Hello, World!" == output()
 cleanup:
 System.setOut(orig)
 }

Note that the setup: block is synonymous with given: and can often be
used interchangeably.

Testing Gradle using Spock
We started out the chapter by describing some of the features of Gradle. If we
take test-driven development (TDD) seriously, it should be possible to assert any
expected outcome using a test tool. As it happens, it is not difficult to use Spock to
verify the assertions we made earlier about how Gradle itself works. Consider the
following feature method:

 def "hello task says Hello, World!"() {
 given: "we have a gradle build command"
 def command = "gradle -q -b hello.gradle hello"
 when: "we run the build command"
 def proc = command.execute()
 proc.waitFor()
 then: "the script outputs the correct details"
 "Hello, World!" == proc.in.text.trim()
 }

Essential Groovy DSLs

[50]

Further reading
I encourage you to read the detailed documentation for both these tools at their
respective sites. The Gradle DSL has full and comprehensive documentation
hosted at http://www.gradle.org/docs/current/dsl/index.html. A detailed
documentation on Spock can be found at http://spockframework.github.io/
spock/docs/1.0/index.html.

As further reading take a look at the ChapterThreeGradleSpec.groovy example
in the code sources. Most of the Gradle examples from the start of the chapter are
asserted via Spock feature methods in this specification. Now, take the time to
explore the sample code associated with the book. Spock is used extensively to
illustrate and assert the code examples in the book. Gradle is used as the primary
build tool for building all the examples in the book.

Summary
The purpose of this chapter was to give you sufficient background in both Gradle
and Spock so that you are comfortable with them when we make reference to these
tools later in the book. We covered enough material to serve this purpose, but for
both Gradle and Spock, there is a lot more to learn. Gradle alone is the subject of
several books, including one excellent title by this publisher, Packt Publishing.

In the next chapter, we will take a tour of the Groovy language. While this will not
be a comprehensive guide of all aspects of the language, I will cover enough of the
language so that you will be able to start coding in Groovy yourself, and start to
follow the examples in the rest of the book.

www.allitebooks.com

http://www.gradle.org/docs/current/dsl/index.html
http://spockframework.github.io/spock/docs/1.0/index.html
http://spockframework.github.io/spock/docs/1.0/index.html
http://www.allitebooks.org

[51]

The Groovy Language
In this chapter, we will conduct a whistle-stop tour of the Groovy language. We don't
have the scope in this book to cover the whole language in a tutorial fashion, but by
the end of the book, we will have covered most of the aspects of the language that
you need to be able to write your own Groovy-based DSLs. For now, in this chapter,
we will just touch on some of the main points that differentiate Groovy from its
parent language—Java.

This chapter makes extensive use of Spock style test assertions throughout. If you
have not already read Chapter 3, Essential Groovy DSLs, I would strongly suggest you
at least read the Spock tests section of that chapter and familiarize yourself with the
unique Spock syntax.

Introducing the Groovy language
In the following sections, we will cover some of the fundamental concepts and
features of the Groovy language. A working knowledge of Java is assumed, so we
will focus on what is different between the Groovy and Java languages.

The module structure
Groovy programs and scripts are generally stored in Groovy source files with the
.groovy extension. The exception to this are the Unix "shebang" scripts described
in Chapter 2, Groovy Quick Start. Unlike Java source files, which must always contain
a class definition, Groovy source files can contain both class definitions and inline
scripting. When we compile or run a Groovy script, Groovy generates a class object
for each Groovy class that it encounters in the source. If the source file contains some
scripting elements, it also generates a class object for these.

The Groovy Language

[52]

To see how this works, let's take an example script and compile it with the Groovy
compiler. We can use the GVM tool we encountered in Chapter 2, Groovy Quick Start,
to make Groovy available on the command line:

$gvm use groovy 2.4.4

$groovyc AccountTest.groovy

The following example contains two class definitions and some script that uses
these classes:

// AcountTest.groovy
class Customer {
 int id
 String name
}

class Account {
 int id
 double balance
 Customer owner
 void credit (double deposit) {
 balance += deposit
 }
 String toString() {
 "Account id ${id} owner ${owner.name} balance is ${balance}"
 }
}
customer = new Customer(id:1,name:"Aaron Anderson")
savings = new Account(id:2, balance:0.00, owner:customer)

savings.credit 20.00
println savings

Compiling the preceding code with groovyc will result in the generation of three
class files: Customer.class, Account.class, and AccountTest.class. If we were
to name our script Customer.groovy or Account.groovy, the Groovy compiler
will see this example as having duplicate class definitions because it is also trying to
generate a class file for us.

This extra, generated, class is the key to what makes a script runnable. The generated
class will have a regular Java main method generated along with a run method.
When we run a Groovy script in a shell script or via the groovy command, we are
invoking the main() method of the generated class, which in turn calls the run
method. The code within the script itself is actually within this run method.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[53]

In Java, we are used to the idiom of writing a single class per Java file. The
previous style of coding is common in Groovy when writing standalone
scripts and DSLs. For regular coding circumstances, we make use of
Groovy classes in the same idiom as Java with a single class per Groovy
source file, so the coding style will not be unfamiliar to you.

Another important difference to remember when writing Groovy classes versus
Groovy scripts is that Groovy scripts have a special binding for variable references.
In scripts, we can immediately start using a variable from the point that we initialize
it without having to declare it first. Script variables are stored in this binding scope.
So, we can initialize the previous savings variable with the following line of code:

savings = new Account(id:2, balance:0.00, owner:customer)

This will result in the savings variable being automatically added to the binding
scope. At this point, we make use of savings:

println savings

At this point, savings must be in the binding scope or we will get an error.

If we rewrite the script portion of our preceding example to include a class definition
and a static main method, then savings and customer must be explicitly defined by
using the def keyword, as follows:

class AccountSample {
 public static void main (args) {
 def customer = new Customer(id:1,name:"Aaron Anderson")
 def savings = new Account(id:2, balance:0.00,
 owner:customer)

 savings.credit 20.00
 println savings
 }
}

Groovy shorthand
We have seen already that Groovy is source compatible with Java. To be more
script-like, Groovy has some syntax elements that are optional and other syntax
shortcuts that make code easier to read and write. By examining the AccountTest
example, we can see some of these shorthand features in action.

The Groovy Language

[54]

Implicit imports
Java automatically imports the java.lang package for you. Groovy goes a step
further and automatically imports some of the more commonly-used Java packages,
as follows:

• java.lang.*

• java.util.*

• java.net.*

• java.io.*

• java.math.BigInteger

• java.math.BigDecimal

Two additional packages from the Groovy JDK (GDK) are also imported:

• groovy.lang.*

• groovy.util.*

Default visibility, optional semicolon
The majority of classes that I have written in Java have been declared public. Java
requires us to always explicitly express the public visibility of a class. This is because
the default visibility of classes is "package private", which, to be honest, is a visibility
that is seldom used and is often misunderstood. "Package private" visibility means
classes are accessible by other classes in the same package, but not by classes in
other packages. Groovy makes the more sensible decision that public visibility is
the default visibility, so it does not need to be stated in the class definition.

Java uses the semicolon to separate statements even when they end on the same
line. In Groovy, semicolons are optional as long as we limit ourselves to a single
statement per line. This small change makes for much cleaner looking code:

def customer = new Customer(id:1,name:"Aaron Anderson")
def savings = new Account(id:2, balance:0.00, owner:customer)

The previous snippet from our Account example would have been more
syntactically verbose in Java, without adding to the clarity of the code:

Customer customer = new Customer(id:1,name:"Aaron Anderson");
Account savings = new Account(id:2, balance:0.00, owner:customer);

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[55]

If we have multiple statements on a line, a semicolon is required. The semicolon can
still be left off the last statement in the line:

class Account {
 def id; double balance; Customer owner
…
}

Optional parentheses
The parentheses around method call parameters are optional for top-level
statements. We have been looking at this language feature since the start of the
chapter. Our Hello World program is:

println "Hello, World!"

This is, in fact, a call to the built-in Groovy println method and can be expressed
with parentheses if we want, as follows:

println ("Hello, World!")

Similarly, the call to the Account.credit method in our Account example could
have been written with parentheses:

savings.credit(20.00)

When a method call or closure call takes no arguments, then we need to supply
the parentheses. The compiler will interpret any reference to a method without
parameters as a property lookup for the same name. A reference to a closure will
return the closure itself:

getHello = { return "Hello, World" }

// Prints the closure reference
hello = getHello
println hello

// Parens required because
// println
// on its own is a reference to a property called println
println ()

// calls the closure
hello = getHello()
println hello

The Groovy Language

[56]

When method calls are nested, the parentheses are also needed to let the compiler
distinguish between the calls:

greeting = { name -> return "Hello, " + name }

// Parens are optional for println but required for nested
// greeting call
println greeting ("Fergal")

The optional dot in method chains
Version 1.8 of the Groovy language added another nice feature. When we chain
methods, the dot notation as well as the parentheses becomes optional. We will see
in a later chapter how we can use this feature to enhance our DSLs. Here is a simple
example that illustrates how it works:

class Message {
 String message

 def to(String person) {
 println "$message, $person!"
 }
}

def say (String message) {
 new Message(message:message)
}

Here we have a simple Groovy class that has a to method. The say method returns
a Message object, so we can chain calls together. Using regular Java style syntax,
we can call:

say("Hello").to("Fred");

However, with Groovy's optional parentheses plus the option dot notation, we can
shorten this to:

say "Hello" to "Fred"

We can also invoke closures without the dot notation. We can modify the preceding
example so that the say method returns a map with closure entries as follows:

def say (String message) {
 [to: { person ->
 println "$message, $person!"
 }]
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[57]

Now, when we invoke, say as before we are retrieving the entry in the returned
map for to which is a closure. We can invoke this closure without needing the dot
notation as follows:

say "Hello" to "Fred"
// which is similar to calling
say("Goodbye")['to'].call('Barney')

Dynamic types
Groovy also has the concept of dynamic types. We can define variables and member
fields with explicit types if we wish. In our Customer and Account class, we declare
our id fields with the def keyword. This allows us to decide at runtime what actual
type we want our IDs to be.

Note that the def keyword is required when declaring properties within
the context of a class, but is optional when we write Groovy scripts.
Another way to look at the def keyword is that it declares a variable of
the type Object; so the two lines are analogous: def number = 1 and
Object number = 1.

The optional return keyword
Every statement in Groovy has a resulting object value. We can see this clearly by
running the Groovy shell groovysh and typing in statements. The shell outputs the
resulting value of each statement as it is executed. Sometimes, this value is null,
as in the case of our Hello World script:

groovy:000> println message

Hello, World!

===> null

In Groovy, the return keyword is optional because the value of the last statement is
always returned from a method call, with the exception of methods declared with a
return type of void. The type of the returned object will depend on the return type
defined. If no return type is defined, then the type will be determined at runtime.
If the method is a void method, then the value returned will be null. We can try
using Spock test notation to illustrate some of the possibilities. Imagine we have the
following method:

String returnString(param) {
 param
}

The Groovy Language

[58]

The preceding method returns String object, while the type of the object passed in
is dynamic, so Groovy will attempt to coerce the return object to a String and return
that value:

when: "calling a method with a typed return"
 def result = returnString("Fred")
then: "type of returned value is String"
 result instanceof String

when: "we pass the same function an Integer"
 result = returnString(123)
then: "the type returned is still String"
 result instanceof String
 result == "123"

No matter what type of object we try to return, the return type defined in the method
will determine the type that is actually returned:

String returnIntegerCoercedToString(Integer param) {
 param
}

when: "we pass a typed Integer"
 result = returnIntegerCoercedToString(123)
then: "the type returned is still String"
 result instanceof String
 result == "123"

However, if the method uses the def keyword as its return type, then the return type
is considered to be dynamic, so the type we get back is determined by the type of the
returned object:

def returnDef(param) {
 param
}
when: "calling a method with dynamic return type"
 def result = returnDef("Fred")
then: "type of returned value is String"
 result instanceof String

when: "we pass the same function an Integer"
 result = returnDef(123)
then: "the type returned is Integer"
 result instanceof Integer
 result == 123

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[59]

No matter what value is contained in the last statement in a method, if the return
type is void, the value returned will always be null:

void returnVoid(param) {
 param
}

when: "calling a method with void return, passing String"
 def result = returnVoid("Fred")
then: "type of returned value is null"
 !result
 result == null

when: "calling a method with void return, passing Integer"
 result = returnVoid(123)
then: "type of returned value is null"
 !result
 result == null

Properties and GroovyBeans
We know from Java that a JavaBean is a class that implements getters and setters for
some or all of its instance fields. Groovy automatically generates getters and setters
for instance fields in a class that have the default visibility of public. It also generates
a default constructor. This means that a Groovy class is automatically accessible as
a JavaBean without any additional coding. Instance fields that have automatically
generated getters and setters are known in Groovy as properties, and we refer to these
classes as GroovyBeans, or by the colloquial POGO (Plain Old Groovy Object):

given: "a Groovy class"
 Customer customer = new Customer()
when: "we set a value via the Setter"
 customer.setName "Brian Beausang"
then: "we can use either the getter or property notation"
 "Brian Beausang" == customer.getName()
 customer.getName() == customer.name
when: "we set a value via property notation"
 customer.name = "Carol Coolidge"
then: "we can use either the getter or property notation
 "Carol Coolidge" == customer.name

The Groovy Language

[60]

This code snippet shows how we can optionally use getter/setter methods to
manipulate the name field of our Customer class, or we can use field access syntax.
It's important to note that when we use the field access syntax customer.name,
we are not accessing the field directly. The appropriate getter or setter method is
called instead.

If you want to directly access the field without going through a getter
or setter, you can use the field dereference operator @. To access
customer.name directly, you would use customer@.name.

A JavaBean version of our Customer class would require getters, setters, and a
default constructor, as follows:

public class Customer implements java.io.Serializable {
 private int id;
 private String name;

 public Customer () {
 }
 public int getId() {
 return this.id;
 }
 public void setId(final int id) {
 this.id = id;
 }
 public String getName() {
 return this.name;
 }
 public void setName(final String name) {
 this.name = name;
 }
}

GroovyBeans have a very useful initialization feature. We can pass Map to the
constructor of a bean that contains the names of the properties, along with an
associated initialization value:

given: "we initialize some beans with a Map of values"
 def map = [id: 1, name: "Barney Rubble"]
 def customer1 = new Customer(map)
 def customer2 = new Customer(id: 2, name: "Fred Flintstone")
expect: "the bean properties have been set"
 customer1.id == 1
 customer2.id == 2
 customer1.name == "Barney Rubble"
 customer2.name == "Fred Flintstone"

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[61]

When passing the map directly to the Customer constructor, we can omit the map
literal square brackets, as seen here when initializing customer2. However, this is
another case where the method's parentheses cannot be omitted.

Every GroovyBean has this default built-in Map constructor. This constructor works by
iterating the map object and calling the corresponding property setter for each entry in
the map object. Any entry in map that doesn't correspond to an actual property of the
bean will cause an exception to be thrown. The beauty and simplicity of this approach
is that it allows us to have absolute flexibility when initializing beans.

We can name properties in any order that we want, and omit properties if we see fit.

This feature is often referred to as named parameters as it gives the
impression that we are providing a flexible parameter list where we
name those parameters, even though we are just passing a Map object.

Assertions
Groovy has a built-in assertion keyword assert. The assert keyword
can be used in conjunction with any Boolean conditional statement. Groovy
assertions work similarly to Java assertions, however, since Groovy 1.7, they
provide much more information about assertion failures, including a visual
representation of each subexpression in the assertion, and its corresponding
value. If the asserted statement is not true, the assert keyword can cause a
java.lang.AssertionExceptionAssertionExceptionError exception to be
thrown. Assertions have two forms:

assert 1 == 1
assert 1 == 2 : "One is not two"

This gives the following output:

java.lang.AssertionError: One is not two. Expression: (1 == 2)

The first assertion passes silently, whereas the second throws the AssertionError
exception and the test inserted after the colon is injected into the exception log for
more clarity. Groovy 1.7 introduced the "power assert". If we use the first form
of preceding assertion without the failure message, Groovy will automatically
introspect the full expression within the assertion and give a detailed breakdown
of what was wrong.

def map = [a:'a',b:'b',c:[d:'d',e:['f','g']]]
assert map.c.e[1] == 'h'

The Groovy Language

[62]

Here, we are asserting a value within a complex structure of arrays and maps.
Groovy will happily breakdown each element of the structure in the assertion
output, as follows:

Assertion failed:

assert map.c.e[1] == 'h'
 | | || |
 | | |g false
 | | [f, g]
 | [d:d, e:[f, g]]
 [a:a, b:b, c:[d:d, e:[f, g]]]

From time to time in the text, we will use assertions as a shorthand means of
validating and illustrating the code. For instance, in the Account examples, we could
have illustrated setting and getting property values using assertions as follows:

Customer customer = new Customer()
customer.setName("Carol Coolidge")
assert customer.name == customer.getName()

Autoboxing
Java has two ways of handling numeric values. We can either use the numeric
primitive types, such as int, float, double, and so on, or their equivalent classes,
such as Integer, Float, Double, and so on. Unfortunately, you can't put an int
or any other primitive type into a collection; so you must box the int object into
an Integer object to put it into the collection, and unbox it if you need to use the
primitive int type again.

From Java 1.5 onwards, Java introduced the concept of autoboxing, whereby
primitive types are automatically promoted to their object-based equivalent when
the need arises. Groovy goes a step further with the autoboxing concept. In essence,
Groovy behaves as if primitives don't exist. Numeric fields of classes are stored as
the declared primitive type; however, as soon as we make use of that variable and
assign it to a local variable, it is automatically converted to the equivalent wrapper
type object. Even numeric literals behave like objects:

expect: "numeric literal is implemented with Numeric class"
 2.0 instanceof BigDecimal
 2 instanceof Integer
 2.00000f instanceof Float
 2l instanceof Long

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[63]

For all intents and purposes, you can treat any numeric value as if it is both an
object-based numeric value and a primitive. You can pass a Groovy numeric object to
a Java method that requires a primitive, and Groovy automatically unboxes it to the
equivalent primitive.

If we need to explicitly coerce a numeric type to its equivalent primitive, for example,
to call a Java method that takes a primitive parameter, we can do this unboxing with
the (as) operator:

javaMethodCall(3.0 as double))

In most cases, this is redundant as Groovy will automatically unbox to the correct
type. However, it can be useful as a hint about which method call we need to select
when multiple methods signatures exist.

Strings
Regular Groovy strings can be defined with either the single quote (') or double
quotes ("") characters. This makes it easy to include either type of quotes in a
string literal:

String singleQuote = "A 'single' quoted String"
String doubleQuote = 'A "double" quoted String'

Strings declared with double quotes can also include arbitrary expressions by using
the ${expression} syntax. Any valid Groovy expression can be included in the
${..}. Normal strings in Groovy are instances of the java.lang.String class.
Strings that contain the ${…} syntax are instantiated as Groovy GString objects:

given: "a Groovy object"
 Customer customer = new Customer(name:"Daniel Dewdney")
 def string1 = "Customer name is Daniel Dewdney"
 def string2 = "Customer name is ${customer.name}"
expect: "We can compare both strings as if the are equivalent"
 string1 == string2
and: "they are implemented by two different classes"
 string1 instanceof String
 string2 instanceof GString

Multiline strings can be defined by surrounding them in a triple quote, which can
use single quote (''') or double quote (""") characters as follows:

given: "some multiline strings with single and double quotes"
 String multiLine = '''Line one
 Line two

The Groovy Language

[64]

 "We don't need to escape quotes in a multi-line string"
 '''
 def name = "Daniel Dewdney"
 def customerSelectSQL = """
 select * from customer where name = ('${name}');
 """
expect:
 multiLine instanceof String
 customerSelectSQL instanceof GString

Multiline strings are useful for embedding XML, HTML, and SQL. Combined with
GStrings, they are ideal for building templates in our code.

Regular expressions
Groovy supports regular expressions natively within the language. There are three
built-in convenience operators specifically for this purpose:

• The regex match operator, ==~
• The regex find operator, =~
• The regex pattern operator, ~String

The match operator is a simple Boolean operator that takes the operands
String ==~ regex string. The match returns true if the string operand is a match
to the regex string. Regex strings are a sequence of characters that define a pattern
to apply when searching for a match within a string. They can consist of specific
characters or character classes, such as \d (any digit), and \w (any word character).
Later, we'll look at a table with some of the more commonly-used character classes.

In the simplest case, a regular expression can just consist of a sequence of regular
characters. So, a regex string Match Me will match only strings containing exactly
the characters Match Me. In other words, it can be used to just test equality. We can
use this feature to show how the different ways of expressing strings in Groovy
result in the same string:

given: "A String we want to match"
 def matchMe = "Match Me"
expect: "We can do an exact match using single quoted Strings"
 matchMe ==~ 'Match Me'
and: "using multiline style String"
 matchMe ==~ """Match Me"""
and: "using slashy String"
 matchMe ==~ /Match Me/

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[65]

The final assertion shown in the preceding code introduces yet another Groovy
string syntax, which goes under the name slashy strings. Slashy strings are most
commonly used when defining regex strings, but they can be used anywhere you
wish to define a string object.

The biggest advantage of the slashy string is the fact that the backslash character
\ does not need to be escaped. In a literal string, \\ is a single backslash. So, to place
the character class \d in a string literal, we need to write \\d. To match the backslash
character itself, we need to write \\\\. In slashy string format, these become /\d/
and /\\/ respectively.

A further refinement was added to slashy strings in Groovy 1.8. Dollar slashy strings
are denoted by a starting $/ and ending /$ and have different escaping rules to the
regular GStrings. Slash and backslash do not need to be escaped. However, $ can be
used as an escape if needed. The differences are best illustrated with an example:

given: "a dollar slashy"
 def dollarSlashy = $/
$ dollar
$$ dollar
\ backslash
/ slash
$/ slash
/$
and: "an old style multiline string"
 def multi = """
\$ dollar
\$ dollar
\\ backslash
/ slash
/ slash
"""
expect:
 multi == dollarSlashy

Groovy adds some neat usability features to Java regular expression handling,
but under the covers, it still uses the java.util.regex classes. Groovy regex
pattern strings are identical to their Java equivalents. The most comprehensive
documentation for all of the pattern options available can be found in your Java SE.

The Groovy Language

[66]

You can find JavaDoc under the class documentation for java.util.regex.Pattern.
The following is a truncated list of some of the more commonly-used patterns:

Construct Matches
. Any character
^ The start of a line
$ The end of a line
X The character x
\d A digit character
\D Any character except a digit
\s A whitespace character
\S Any character except whitespace
\w A word character
\W Any character except word characters
\b A word boundary
(x|y|z) x or y or z, that is, (apple|orange|pear)
[a-f] The character class containing any character between a and f
[abc] a, b, or c

The Groovy find operator (=~) is similar to match but returns a
java.util.regex.Matcher object. In the following code, we use find
to return a matcher for all three-letter words with a middle letter of o. The
pattern we use is /\b.o.\b/. Groovy allows us to use the collection convenience
method "each" to iterate over the resulting matches and invoke a closure on each
match to output the result. There will be more on collections and closures shortly:

given: "A String with words we want to match"
 def quickBrownFox =
 "The quick brown fox jumps over the lazy dog."
and: "a matcher built via the find operator"
 def matcher = quickBrownFox =~ /\b.o.\b/
expect: "to match all three letter words with middle letter o"
 matcher.findAll() == ['fox','dog']

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[67]

Every time we use the match and find operators, behind the scenes, Groovy
transforms the regex string into a java.util.regex.Pattern object and compiles
it. The pattern operator does the same thing, and transforms the string it operates
on into a compiled Pattern object. For most applications, using find and match
directly on a pattern string is fine because the overhead of transformation and
compilation to a Pattern object is not significant. The rationale behind the pattern
operator is that complex patterns are often expensive to compile on demand, so the
precompiled pattern object will be faster to use.

A simple change to the previous code is all that is required to use a precompiled
pattern instead:

given: "A String with words we want to match"
 def quickBrownFox =
 "The quick brown fox jumps over the lazy dog."
and: "a matcher built via a pattern object"
 def pattern = ~/\b.o.\b/
 def matcher = pattern.matcher(quickBrownFox)
expect: "to match all three letter words with middle letter o"
 matcher.findAll() == ['fox','dog']

Methods and closures
Closures will be dealt with in detail in the next chapter, so we won't go into them
in depth here. In order to do justice to the Groovy control structures and the special
built-in support Groovy has for collections, we need to take just a brief excursion into
closures for now.

Closures are snippets of Groovy program code enclosed in curly braces. They can be
assigned to an instance property, or a local variable, or even passed as parameters to
a method. In Java, program logic can only be found in class methods. The inclusion
of static member functions in classes gives some flexibility to Java in allowing
methods to be invoked outside of the context of an object instance.

In Groovy, methods can exist both inside classes and outside of classes. We already
know that Groovy scripts get compiled to classes that have the same name as the
script. Groovy methods within scripts just get compiled into member methods of the
script class. Groovy has a slightly different syntax from Java to support the concept
of a dynamic return type.

The Groovy Language

[68]

Groovy methods look very similar to Java methods except that public visibility is the
default, so the public keyword can be left out. In addition, Groovy methods support
optional arguments, as do closures. As with dynamic variables, we need to use the
def keyword when defining a method that has a dynamic return type:

// Java method declaration
public String myMethod() {
…
}
// Groovy method declaration
String myMethod() {
…
}
// And with dynamic return type
def myMethod() {
}

Groovy script methods, which are declared in the same script, can be called directly
by name:

def greet(greeting) {
 println greeting + ", World!"
}

greet ("Hello")
greet ("Goodbye")

The previous code gives the output:

Hello, World!

Goodbye, World!

Class methods are called by object reference, similar to Java:

class Greeting {
 def greet(greeting) {
 println greeting + ", World!"
 }
}
greeting = new Greeting()
greeting.greet ("Hello")
greeting.greet ("Goodbye")

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[69]

Closures can look deceptively similar to method calls in their usage. In the next code
snippet, we will create a variable called greet and assign a closure to it. This closure
is just a snippet of code enclosed in braces, which prints a greeting. Regular methods
have their own local scope and can only access variables defined within that scope
or member fields in the containing class. Closures, on the other hand, can reference
variables from outside their own scope, as illustrated in the following code.
Closures can be invoked by applying the method call syntax to the variable
containing the closure:

given: "a variable in scope"
 def greeting = "Hello"
and: "a closure that can access the variable"
 def greet = { println "$greeting, World!"}
when: "we invoke the closure with variable different"
 greet()
 greeting = "Goodbye"
 greet()
then: "the output is as expected"
 """Hello, World!
Goodbye, World!""" == output()

Closures can also accept parameters, but they have their own particular syntax for
doing so. The next closure accepts a parameter, greeting. Multiple parameters can
be defined by separating them with commas. Parameters can also have an optional
type annotation:

given: "a closure which takes a single parameter"
 def greet = { greeting -> println "$greeting, World!"}
when: "we call closure with a single parameter"
 greet("Hello")
then: "that parameter was what was passed"
 "Hello, World!" == output()

given: "a closure which takes a several parameters"
 def greet = { String greeting, name ->
 println "$greeting, $name!"
 }
when: "we call closure with two parameters"
 greet("Goodbye", "Fred")
then: "that parameter was what was passed"
 "Goodbye, Fred!" == output()

The Groovy Language

[70]

We can pass a closure as a method parameter. Many useful collection methods take a
closure as a parameter. The list each() method takes a closure as its parameters. The
each() method iterates over a list and applies the closure to each element in the list:

given: "a list of fruits"
 def fruits = ["apple","orange","pear"]
and: "a closure that can operate on a single String"
 def likeIt = {String fruit -> println "I like ${fruit}s"}
when: "we invoke the each method of list passing the closure"
 fruits.each likeIt
then: "each element of the list is passed to the closure in turn"
 """I like apples
I like oranges
I like pears""" == output()

Now, if we look back at our matcher example, at the first glance, it seems to be using
some specialized collection iteration syntax:

matcher.each { match -> println match }

However, if we remember that matcher is a collection of matches, and that
parentheses in Groovy are optional, we can see that all that is happening here is that
a closure is passed to the each method of the matcher collection. We could have
written the same statement as:

matcher.each ({ match -> println match })

Groovy also has a neat shorthand for closures, which have just one parameter.
We don't need to explicitly name this parameter and can just refer to it as it.
So, our matcher statement can be even more succinct:

matcher.each { println it }

Control structures
Groovy supports the same logical branching structures as Java. The Groovy versions
of the common branching are identical in structure to those of Java:

// Simple if syntax
if (condition) {
}
// If else syntax
if (condition) {
} else {
}
// Nested if then else syntax

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[71]

if(condition) {
} else if (condition) {
} else {
}

Groovy Truth
The only difference is in how Groovy interprets the if conditions. Groovy can
promote a number of non-Boolean conditions to true or false. So, for instance,
a non-zero number is always true. This wider, more all-encompassing notion of
what can be true is often referred to as "Groovy Truth":

// Java non zero test
int n = 1;
if (n != 0) {
}
// Groovy equivalent does not need to form a boolean expression
def n = 1;
if (n) {
}

Other "Groovy Truths" are as shown in the following code. In other words,
when taken in the context of a predicate, these values will all equate to a
Boolean true value:

given: "An initialized value"
 String initialized = "Some Value"
 Customer customer = new Customer(name: "Joey")
 def array = [1,2,3]
 def map = [a:1,b:2]
expect: "it will evaluate to true"
 initialized
 customer
 array
 map

Now, let's look at some "Groovy Falsehoods". Things which when used as a
predicate will equate to a Boolean false value are:

given: "A null uninitialized or empty value"
 String nullString = null
 String uninitializedString
 Customer customer = null
 def array = []
 def map = [:]
 def emptyString = ''

The Groovy Language

[72]

expect: "it will evaluate to false"
 !nullString
 !uninitializedString
 !customer
 !array
 !map
 !emptyString

As with many Groovy language features, Groovy's loose interpretation of what can
be true allows for much more succinct and understandable branching conditions.
From Groovy 1.7, Groovy Truth got even more useful. Now, any class can implement
the asBoolean method to define what it means for it to be true:

enum Status {
 ACTIVE,
 INACTIVE,
 DELETED
 def asBoolean () {
 this == Status.ACTIVE
 }
}

In this example, we will implement a Status enum where only ACTIVE is considered
to be true:

expect: "Only Status.ACTIVE will return true from asBoolean"
 Status.ACTIVE
 !Status.INACTIVE
 !Status.DELETED

Ternary and Elvis operators
The standard Java ternary operator (a ? b : c) is supported. Groovy also has
another similar operator, the bizarrely named Elvis operator (a ? : b). We can
express the ternary operation as a traditional if-else branch as follows:

// Ternary operator
x > 0 ? y = 1 : y = 2

// Is same as
if (x > 0)
 y = 1
else
 y = 2

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[73]

We can set up a Spock test to assert that this is true for various values of a:

given:
 def b = 'value1'
 def c = 'value2'
and: "a ternary expression"
 def result1 = (a ? b : c)
and: "the logical equivalent using if and condition"
 def result2
 if (a) {
 result2 = b
 } else {
 result2 = c
 }
expect: "these expressions are equivalent for various values of a"
 result1 == result2
where:
 a << [1,0,2,true,false]

The Elvis operator's behavior is best illustrated as a version of the ternary operator.
So, (a ? : b) is equivalent to (a ? a : b). The use of the Elvis operator makes more
sense in the light of our previous discussion on Groovy Truth where the Boolean
condition used can be something other than a regular expression:

given:
 def b = 'value1'
and: "a ternary expression"
 def result1 = (a ?: b)
and: "the logical equivalent using if and condition"
 def result2
 if (a) {
 result2 = a
 } else {
 result2 = b
 }
expect: "these expressions are equivalent for various values of a"
 result1 == result2
where:
 a << [1,0,2,true,false]

The Groovy Language

[74]

The Elvis operator has the added benefit of avoiding a second evaluation of the
initial predicate. This may be important if x is either expensive to evaluate, has
unwanted side effects, or results in an operation that we don't necessarily want to
repeat (such as a database retrieval). The Elvis operator works by maintaining a
hidden local variable, which stores the initial result. If that result is true according
to the rules of Groovy Truth, then that value is returned, otherwise, the alternative
value is used.

Suppose that we want to retrieve shopping cart items in a Map so that we can display
a list of selected items. If the check database and the cart contain entries, then that
is the Map that we want to display. If there are no items in the cart, then we want to
return a Map, which contains a dummy entry to display that just says that the cart is
empty. If we use regular conditional logic, we can't use a ternary operator because
we don't really want to check the cart twice. We would have to write something like
the following to manage a temporary map while we decide what to do with it:

cartItemsMap = Cart.getItems()

if (cartItemsMap) // Groovy true if map has entries in it
 return cartItemsMap
else
 return ["-1": "empty"]

Cart.getItems returns a Map, which in Groovy Truth is true if it has elements
and false if it is empty. Knowing this, we can rewrite the same code as a succinct
one-liner:

return Cart.getItems() ?: ["-1": "empty"]

Spaceship and Elvis operators
We can't look at the Elvis operator without also looking at the other oddly name
"spaceship" operator. The spaceship operator is comprised of two angle brackets
and an equals sign <=> and is so named because it resembles a UFO or spaceship in
flight. Spaceship is a shorthand operator that works the same as Java's compareTo
method. In other words, it compares two operands and returns 0 if they are equal, -1
if the first is less than the second, and 1 if the first is greater than the second. We can
express how the spaceship operator works with a simple block of Spock code.
Try this out yourself and play with different values for b and c:

expect:
 a == (b <=> c)
and:
 (b <=> c) == b.compareTo(c)

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[75]

where:
 a | b | c
 -1 | 1 | 2
 0 | 1 | 1
 1 | 2 | 1

One of my favorite Groovy shortcuts is what we can do if we combine the spaceship
operator with the Elvis operator. Suppose we have an object, which has three fields
that define an account balance, first name and last name, we might want to sort these
balances highest first, but then order them by the last name and then first name:

class Balance {
 String first
 String last
 BigDecimal balance
 String toString() { "$last, $first : $balance"}
}

We can express the sort very succinctly using a combination of spaceship
comparators and Elvis operators:

a.balance<=>b.balance ?: a.last<=>b.last ?: a.first<=>b.first

Let's take a look at this in practice with a Spock test:

given: "we have a few customer account objects"
 def accounts = [
 new Balance(balance: 200.00,
 first:"Fred", last:"Flintstone"),
 new Balance(balance: 100.00,
 first:"Wilma", last:"Flintstone"),
 new Balance(balance: 100.00,
 first:"Barney", last:"Rubble"),
 new Balance(balance: 100.00,
 first:"Betty", last:"Rubble"),
]
when: "we sort these with spaceship Elvis operators"
 accounts.sort { a, b ->
 a.balance <=> b.balance ?:
 a.last <=> b.last ?: a.first <=> b.first
 }.each { println it }
then: "the accounts are sorted by balance - last - first"
 """Rubble, Barney : 100.00
Rubble, Betty : 100.00
Flintstone, Wilma : 100.00
Flintstone, Fred :200.00"""

The Groovy Language

[76]

The switch statement
Groovy adds some neat features to the switch statement by adding some extra
options that can be tested in the case expression:

switch (x) {
case 1:
// if x is number 1 we end up here
break;

case "mymatch":
// if x equals string "mymatch" we end up here
break;
case /.o./:
// if x is a string and matches regex /.o./ we end up here
break;

case ["apple", "orange","pear", 1, 2, 3]:
// if x is found in the list we end up here
break;
case [a: 1, b: 2]:
// If x is a key of the map we end up here
break;

case 1..5:
// if x is one of the values 1, 2, 3, 4 or 5 we end up here
break;
}

Loops
Groovy does not support the traditional Java do { } while (condition) style of
looping. This does support traditional while loops, as follows:

int n = 0;
while (n++ < 10) {
 println n
}

Groovy makes up for this lack of looping options with its own style of looping.
Groovy loops are simpler and in many ways more powerful than the Java
equivalent. In Groovy, we can iterate over any range of values, as follows:

for (n in 0..10)
 println n

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[77]

We can iterate all the values of a list without any funky Iterator objects:

for (x in ["apple", "orange", "pear"])
 println x

In fact, as we will see in the following section on collections, we can use the
in expression to iterate over any collection type. We can even iterate over the
characters in a string, as follows:

def hello = "Hello, World!"
for (c in hello)
 println c

Collections
Groovy has enhanced the Java collection classes by adding to, and improving on,
the declaration syntax and additional convenience methods. It also adds the new
collection type range, which provides a special-purpose syntax for managing ranges
of values.

Ranges
Groovy supports the concept of a range of values. We define a range of values with
the range operator (..). So, a range of integers from 1 to 10 is defined with 1..10. A
range value can be any object that belongs to a class that defines the previous() and
next() methods and implements the Comparable interface. We saw previously how
we can use the for (variable in range) style loop to iterate through a range.
We can define ranges that are inclusive or exclusive, as follows:

given: "an inclusive and exclusive range"
 def inclusive = 1..10
 def exclusive = 'a'..<'e'
when: "we collect all the possible values of that range"

 def inclusiveValues = inclusive.collect { it }
 def exclusiveValues = exclusive.collect { it }
then: "result is an inclusive/exclusive list of those values"
 inclusiveValues == [1,2,3,4,5,6,7,8,9,10]
 exclusiveValues == ['a','b','c','d']

The Groovy Language

[78]

Range objects have two properties, to and from, that define their limits, as shown in
the following code:

given: "some ranges"
 def numbers = 1..100
 def letters = 'a'..'z'
expect: "range has to and from properties"
 numbers.from == 1
 numbers.to == 100
 letters.from == 'a'
 letters.to == 'z'

Ranges are implemented under the covers by the java.util.List class.
This means that all of the Java APIs that are available on a List object can
also be applied to a range:

and: "range is a java.util.List so we can use contains"
 numbers.contains 2
 numbers.contains 5

We can also use the in keyword as part of a predicate to test if a particular value is
contained within the range:

and: "we can use the in keyword with ranges"
 5 in numbers

Lists
Groovy supports the notion of list literals. List declarations look like array
declarations in Java. Lists declared in this way are in fact java.util.List
objects. Let's prove the last statement that ranges are equivalent to lists:

given: "a range and the list equivalent"
 def numberList = [1,2,3,4,5,6,7,8,9,10]
 def numberRange = 1..10
expect: "they are equal"
 numberList == numberRange

There are some useful list operators that we can use as shortcuts with lists, including
plus, minus, and left shift:

given: "a list within a list"
 def multidimensional = [1,3,5,["apple","orange","pear"]]

expect: "we can add to lists together using the plus operator"

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[79]

 [1,3,5] + [["apple","orange","pear"]] == multidimensional
and: "also with the left shift operator"
 [1,3,5] << ["apple","orange","pear"] == multidimensional
and: "we can Subtract elements with the minus operator"
 multidimensional - [["apple","orange","pear"]] == [1,3,5]
and: "we can flatten that multi dimensional list"
 multidimensional.flatten() == [1,3,5,"apple","orange","pear"]

There are also some convenience functions that make list management easier. In the
preceding code, we use the flatten method to flatten a multidimensional List. Next,
we can see the use of the reverse, collect, and grep find and sort methods and their
effect on a List:

given: "some Lists"
 def odds = [1,3,5]
 def evens = [2,4,6]
 def animals = ["cat", "dog", "fox", "cow"]
expect: "we can reverse the order of a list"
 odds.reverse() == [5,3,1]
and: "can apply a closure to a list to transform it using collect"
 odds.collect { it + 1 } == evens
and: "we can find in the list using regex"
 animals.grep(~/.o./) == ["dog", "fox", "cow"]
and: "we can sort a list"
 [5,1,3].sort() == odds
and: "we can find elements matching an expression"
 animals.find { it == "dog" } == "dog"

We can iterate over a list in both directions by applying a closure to each item:

given:
 def list = [1,3,5]
 def number = ''
when: "we iterate forwards"
 list.each { number += it }
then: "the numbers are added to the string in order"
 number == '135'
when: "we iterate backwards"
 number = ''
 list.reverseEach { number += it }
then: "the numbers are added in reverse order"
 number == '531'

The Groovy Language

[80]

Groovy adds two additional new methods to lists: any and every. These return
a Boolean value if any or every member of the list, respectively, satisfies the
given closure:

given:
 def list = [1,2,3,5,7,9]
expect: "any member is even because 2 is even"
 list.any { it % 2 == 0 }
and: "every member is not even"
 ! list.every { it % 2 == 0 }

Maps
Groovy provides a map literal syntax as well. The declaration syntax for maps is
very similar to that of lists. We declare a map as a list of key-value pairs delimited
by colons. Groovy is flexible in what type of objects can be used as keys or values.
In principal, any object that has a hashCode function that returns consistent values
can be used as either a key or value in a map. By consistent, I mean that any specific
value that we define for the object will always return the same hashCode value. Let's
start by looking at maps by using strings as keys.

The first thing we can try is accessing a property. We can access an element of a Map
using both array style and property access:

given: "we declare a simple map"
 def fruitPrices = ["apple":20,"orange":25,"pear":30]
expect: "we can subscript a map with any key value"
 fruitPrices["apple"] == 20
and: "use the key like it was a property"
 fruitPrices.apple == 20

We can also access elements of the Map using the get method directly:

expect: "we can retrieve a value using the get method"
 fruitPrices.get("apple") == 20
and: "we can supply a default value for items that are not found"
 fruitPrices.get("grape", 5) == 5

Empty maps can be declared as [:] this creates an empty Map that can be added
to later:

given: "we can declare a variable that is empty but is a map"
 def empty = [:]
expect: "it is an empty map"
 empty instanceof Map
 empty.size() == 0

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[81]

When assigning values to Map elements, we can use either the array superscript
syntax or property access syntax:

when: "assigning a value, it can be done via superscript"
 fruitPrices['apple'] = 21
then: "the expected value was set"
 fruitPrices['apple'] == 21
when: "we try the same with property access"
 fruitPrices.apple = 22
then: "that also works"
 fruitPrices['apple'] == 22
when: "assign a value to a key that does not exist"
 fruitPrices.grape = 6
then: "a new item is added to the Map"
 fruitPrices == [apple:22,orange:25,pear:30, grape:6]

Maps support the plus operator for adding maps together:

given:
 def fruit = [apple:20, orange:25]
 def veg = [pea:1, carrot:15]
expect: "we can add these Maps using plus"
 fruit + veg == [apple:20, orange:25, pea:1, carrot:15]

and: "map equality is agnostic to order"
 fruit + veg == [pea:1, carrot:15, apple:20, orange:25]

The most common use of maps in Groovy is with String keys. When we use a
String as key, we can interchangeably use the key with or without quotes. We can
also look up the value by using the subscript operator, or by using the property
reference semantics. Because any object can be a key, this allows us to define some
unusual looking maps:

given:
 def squares = [1:1, 2:4, 3.0:9]
expect:
 squares[1] == 1
 squares[2] == 4
 squares[3.0] == 9

Here we see how we can use what seem to be primitive numeric values as keys.
Because Groovy autoboxes these primitives into their equivalent wrapper object and
these wrappers implement consistent hashCode methods, we can use them as keys.
Not only this, but we can mix the type of object that we use as a key.

The Groovy Language

[82]

We also can use object values as keys, but in order to do so, we need to add
parentheses around them to assist the compiler in determining our intention.
In the following code, we add two keys to the map. The first key is a string, apple,
but the second is the value contained in the apple local variable, which is 1:

given:
 def apple = 1
 def map = [apple:"Red", (apple):"Green"]
then:
 map[1] == "Green"
 map["apple"] == "Red"

Operators
Groovy implements all of the usual operators that we expect from Java, and adds a
number of unique operators of its own. We have already encountered some of these
in the preceding sections, such as the spaceship operator (<=>), the Elvis operator
(? :), the manual type coercion operator (as) and the regex match (==~), find (=~),
and pattern operators (~).

Spread and spread-dot
Collections also support some useful operators such as the spread-dot operator (*.).
Spread-dot is used when we need to apply a method call or make a field or property
accessible across all members of a collection. This is best illustrated with some
examples, as shown in the following code:

given: "a map and two arrays with the same keys and values"
 def map = [a:"apple", o:"orange", p:"pear"]
 def keys = ["a", "o", "p"]
 def values = ["apple", "orange", "pear"]
expect: "we can use spread dot to access all keys/values"
 map*.key == keys
 map*.value == values
and: "which is equivalent to using the collect method"
 map.collect { it.key } == keys
 map.collect { it.value } == values

We can use spread-dot to invoke a method across all members of a list:

class Name {
 def name
 def greet(greeting) {
 println greeting + " " + name
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[83]

given: "An array of Name objects"
 def names = [new Name(name:"Aaron"),
 new Name(name:"Bruce"),
 new Name(name:"Carol")]
when: "we invoke a method via spread dot"
 names*.greet("Hello")
then: "the method is called in sequence across all the members"
 """Hello, Aaron
Hello, Bruce
Hello, Carol""" == output()

A close relative of spread-dot is the spread operator. Spread has the effect of tearing
a list apart into its constituent elements, as shown here:

and: "a closure that expects three parameters"
 def greetAll = { a, b, c ->
 println "Hello $a, $b and $c"
 }
when: "we use spread against the names array"
 greetAll(*names.name)
then: "It explodes the names array into three separate objects"
 "Hello Arron, Bruce and Carol"

Null safe dereference
One of my favorite operators in Groovy is the null safe dereference operator.
How many times in your programming career with Java have you needed to
write the following?

Customer customer = getCustomerFromSomewhere();
if (customer != null) {
 String name = customer.getName();
}

Groovy provides a neat (?.) operator that automatically does the null check for you
before dereferencing, so the preceding code can be written, as follows:

Customer customer = getCustomerFromSomewhere()
String name = customer?.name;

All told, these syntactical shortcuts make for much more concise and readable code.
Freed from the syntactical sugar of Java, we can write cleaner code more quickly.
Once you've gotten used to this shorthand, going back to Java is like wearing a pair
of lead boots.

The Groovy Language

[84]

Operator overloading
Java inherited many features from the C++ language, with one notable exception—
operator overloading. Groovy implements operator overloading as a language
feature, which means that any class can implement its own set of operators. In the
simplest case, we can overload the arithmetic operators and make any object of the
class behave as if it is a numeric value. Operators are overloaded by implementing
the corresponding operator method in the class, for example, the plus() method to
implement addition.

The Groovy version of the Date class implements some operators, including the
plus() and minus() operators. Operator overloading is a fundamental feature in
implementing DSLs, so we will go into this feature in significant detail later in
the book:

given:
 def today = new Date()
 def tomorrow = today + 1
 def yesterday = today - 1
expect:
 today.plus(1) == tomorrow
 tomorrow.minus(1) == today
 today.minus(1) == yesterday

Summary
In this chapter, we conducted a whistle-stop tour of the Groovy language. We
touched on most of the significant features of the language as a part of this tour.

In the subsequent chapters, we will delve deeper into some of these features, such as
operator overloading. We will also cover some of the more advanced features that
have not been touched on here, such as builders and metaprogramming. However,
this book is not intended to be a complete tutorial on the Groovy language, and I
recommend you delve further into the language by reading the Groovy user guide,
which is available at http://www.groovy-lang.org/documentation.html.

www.allitebooks.com

http://www.groovy-lang.org/documentation.html
http://www.allitebooks.org

[85]

Groovy Closures
In this chapter, we will focus exclusively on closures. We touched upon closures
already in the previous chapter. Now, we will take a close look at them from every
angle. Why devote a whole chapter of the book to one aspect of the language? The
reason is that closures are the single most important feature of the Groovy language.
Closures are the special seasoning that helps Groovy stand out from Java. They are
also the single most powerful feature that we will use when implementing DSLs.
In this chapter, we will discuss the following topics:

• We will start by explaining just what a closure is and how we can define
some simple closures in our Groovy code

• We will look at how many of the built-in collection methods make use of
closures for applying iteration logic, and see how this is implemented by
passing a closure as a method parameter

• We will look at the various mechanisms for calling closures, and we will take
a look under the covers at how Groovy implements its various doCall()
methods for different parameter types

• We will go into some depth on how parameters are passed to closures,
including a discussion on optional type annotations and default
parameter values

• We will take a look at how return values are handled in closures, and finally,
we will look into how scope affects closures, particularly the field variables
that are visible in surrounding scopes

• Finally, we will look at some of the more advanced closure features such as
parameter currying, closure composition, trampolines, and memorization

A handy reference that you might want to consider having to hand while you read
this chapter is GDK JavaDocs, which will give you full class descriptions of all of the
Groovy built-in classes, but of particular interest here is groovy.lang.Closure.

Groovy Closures

[86]

What is a closure?
Closures are such an unfamiliar concept to begin with that it can be hard to grasp
initially. Closures have characteristics that make them look like a method in so far
as we can pass parameters to them and they can return a value. However, unlike
methods, closures are anonymous. A closure is just a snippet of code that can be
assigned to a variable and executed later:

def flintstones = ["Fred","Barney"]
def greeter = { println "Hello, ${it}" }
flintstones.each(greeter)
greeter "Wilma"
greeter = { }
flintstones.each(greeter)
greeter "Wilma"

Because closures are anonymous, they can easily be lost or overwritten. In the
preceding example, we defined a variable greeter to contain a closure that prints a
greeting. After greeter is overwritten with an empty closure, any reference to the
original closure is lost.

It's important to remember that greeter is not the closure. It is a variable
that contains a closure, so it can be supplanted at any time.

Given that greeter is a variable with dynamic type, we could have assigned any
other object to it. All closures are a subclass of the type groovy.lang.Closure. As
groovy.lang is automatically imported, we can refer to Closure as a type within
our code. By declaring our closures explicitly as Closure, we cannot accidentally
assign a non-closure to them:

Closure greeter = { println it }

For each closure that is declared in our code, Groovy generates a
Closure class for us, which is a subclass of groovy.lang.Closure.
Our closure object is an instance of this class. Although we cannot predict
which exact type of closure is generated, we can rely on it being a subtype
of groovy.lang.Closure.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[87]

Closures and collection methods
In the last chapter, we encountered Groovy lists and saw some of the iteration
functions, such as the each method:

def flintstones = ["Fred","Barney"]

flintstones.each {
 println "Hello, ${it}"
}

This looks like it could be a specialized control loop similar to a while loop. In fact,
it is a call to the each method of Object. The each method takes a closure as one
of its parameters, and everything between the curly braces {} defines another
anonymous closure.

Closures defined in this way can look quite similar to code blocks, but they are not
the same. Code defined in a regular Java or Groovy style code block is executed as
soon as it is encountered. With closures, the block of code defined in the curly braces
is not executed until the call() method of the closure is made:

println "one"
def two =
{
println "two"
}
println "three"
two.call()
println "four"

This will print the following:

one

three

two

four

Let's dig a bit deeper into the structure of each of the calls shown in the preceding
code. We refer to each as a call because that's what it is—a method call. Groovy
augments the standard JDK with numerous helper methods. This new and improved
JDK is referred to as the Groovy JDK, or GDK for short. In the GDK, Groovy adds the
each method to the java.lang.Object class. We will discover later in this book how
to inject methods into existing classes ourselves. The signature of the each method is
as follows:

Object each(Closure closure)

Groovy Closures

[88]

The java.lang.Object class has a number of similar methods such as each, find,
every, any, and so on. Because these methods are defined as part of Object, you
can call them on any Groovy or Java object. They make little sense on most objects,
but they do something sensible if not very useful:

given: "an Integer"
 def number = 1
when: "we call the each method on it"
 number.each { println it }
then: "just the object itself gets passed into the Closure"
 "1" == output()

given: "a String"
 def string = "String"
when: "we call the each method on the String"
 string.each { println it }
then: "each knows to iterate the chars in the String"
 """S
t
r
i
n
g""" == output()

These methods all have specific implementations for all of the collection types,
including arrays, lists, ranges, and maps. So, what is actually happening when we
see the call to flintstones.each is that we are calling the list's implementation of
the each method. Because each takes a Closure object as its last and only parameter,
the following code block is interpreted by Groovy as an anonymous Closure object
to be passed to the method.

The actual call to the closure passed to each is deferred until the body of the each
method itself is called. The closure may be called multiple times—once for every
element in the collection.

Closures as method parameters
We already know that parentheses around method parameters are optional,
so the previous call to each can also be considered equivalent to:

flintstones.each ({ println "Hello, ${it}")

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[89]

Groovy has special handling for methods whose last parameter is a closure. When
invoking these methods, the closure can be defined anonymously after the method
call parentheses. So, yet another legitimate way to call the preceding line is:

flintstones.each() { println "hello, ${it}" }

The general convention is not to use parentheses unless there are parameters in
addition to the closure:

given:
 def flintstones = ["Fred", "Barney", "Wilma"]
when: "we call findIndexOf passing int and a Closure"
 def result = flintstones.findIndexOf(0) { it == 'Wilma'}
then:
 result == 2

The signature of the GDK findIndexOf method is:

int findIndexOf(int, Closure)

We can define our own methods that accept closures as parameters. The simplest
case is a method that accepts only a single closure as a parameter:

def closureMethod(Closure c) {
 c.call()
}

when: "we invoke a method that accepts a closure"
 closureMethod {
 println "Closure called"
 }
then: "the Closure passed in was executed"
 "Closure called" == output()

Method parameters as DSL
Method parameters as DSL is an extremely useful construct when we want to wrap a
closure in some other code. Suppose we have some locking and unlocking that needs
to occur around the execution of a closure. Rather than the writer of the code locking
via a locking API call, we can implement the locking within a locker method that
accepts the closure:

def locked(Closure c) {
 callToLockingMethod()
 c.call()
 callToUnLockingMethod()
}

Groovy Closures

[90]

The effect of this is that whenever we need to execute a locked segment of code,
we simply wrap the segment in a locked closure block, as follows:

locked {
 println "Closure called"
}

In a small way, we are already writing a mini DSL when we use these types on
constructs. This call to the locked method looks, to all intents and purposes, like
a new language construct; that is, a block of code defining the scope of a locking
operation. We will be using this again and again in our DSL examples later in
this book.

When writing methods that take other parameters in addition to a closure, we
generally leave the Closure argument till last. As already mentioned in the previous
section, Groovy has a special syntax handling for these methods, and allows the
closure to be defined as a block after the parameter list when calling the method:

def closureMethodInteger(Integer i, Closure c) {
 println "Line $i"
 c.call()
}

when: "we invoke a method that accepts an Integer and a Closure"
 closureMethodInteger(1) {
 println "Line 2"
 }
then: "the Closure passed in was executed with the parameter"
 """Line 1
Line 2""" == output()

Forwarding parameters
Parameters passed to the method may have no impact on the closure itself, or
they may be passed to the closure as a parameter. Methods can accept multiple
parameters in addition to the closure. Some may be passed to the closure, while
others may not:

def closureMethodString(String s, Closure c) {
 println "Greet someone"
 c.call(s)
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[91]

when: "we invoke a method that accepts a String and a Closure"
 closureMethodString("Dolly") { name ->
 println "Hello, $name"
 }
then: "the Closure passed in was executed with the parameter"
 """Greet someone
Hello, Dolly""" == output()

This construct can be used in circumstances where we have a look-up code that
needs to be executed before we can have access to an object. Say we have customer
records that need to be retrieved from a database before we can use them:

def withCustomer (id, Closure c) {
 def cust = getCustomerRecord(id)
 c.call(cust)
}

withCustomer(12345) { customer ->
 println "Found customer ${customer.name}"
}

We can write an updateCustomer method that saves the customer record after
the closure is invoked, and amend our locked method to implement transaction
isolation on the database, as follows:

class Customer {
 String name
}
def locked (Closure c) {
 println "Transaction lock"
 c.call()
 println "Transaction release"
}

def update (customer, Closure c) {
 println "Customer name was ${customer.name}"
 c.call(customer)
 println "Customer name is now ${customer.name}"
}

def customer = new Customer(name: "Fred")

Groovy Closures

[92]

At this point, we can write code that nests the two method calls by calling update
as follows:

locked {
 update(customer) { cust ->
 cust.name = "Barney"
 }
}

This outputs the following result, showing how the update code is wrapped by
updateCustomer, which retrieves the customer object and subsequently saves it.
The whole operation is wrapped by locked, which includes everything within
a transaction:

Transaction lock

Customer name was Fred

Customer name is now Barney

Transaction release

Calling closures
In our previous examples, we were passing closures to the built-in collection
methods. In the examples to date, we have deferred to the collection method to
do the closure invocations for us. Let's now look at how we can make a call to the
closure ourselves. For the sake of this example, we will ignore the fact that the GDK
provides versions of the Thread.start method that achieves the same thing:

class CThread extends Thread {
 Closure closure

 CThread(Closure c) {
 this.closure = c
 this.start()
 }
 public void run() {
 if (closure)
 closure() // invoke the closure
 }

}

CThread up = new CThread(
 {
 [1..9]* each {
 sleep(10 * it)
 println it

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[93]

 }
 })

CThread down = new CThread(
 {
 ["three","two", "one", "liftoff"] each {
 sleep(100)
 println it
 }
 })

Here we define a subclass of the Java Thread class, which can be constructed with
a closure. The run method of the Thread invokes the closure using an unnamed ()
invocation on the closure field. The CThread constructor automatically starts the
thread. We can invoke a closure in two different ways, as follows:

• Using the unnamed () invocation syntax, as described here:
public void run(Closure closure) {
 closure()
}

• By calling the call() method of groovy.lang.Closure, as follows:

public void run(Closure closure) {
 closure.call()
}

This example was useful as an illustration of how to call a closure that you have
saved in a member field or variable. However, I think you will agree that the built-in
Thread.start method taking a closure is far more elegant:

Thread.start
 {
 [1..9]*.each {
 sleep(10 * i)
 println i
 }
 }

Thread.start
 {
 ["three","two", "one", "liftoff"] .each {
 sleep(100)
 println i
 }
 }

Groovy Closures

[94]

The implicit doCall method
There is a third mechanism that you can use to invoke a Closure calling the
doCall() method of the closure itself:

public void run(Closure closure) {
 closure.doCall()
}

The call and doCall methods might seem redundant, but there is an important
distinction. The call method is part of the groovy.lang.Closure class and can
accept any number of dynamic arguments. When we declare a closure in Groovy,
the doCall method is generated dynamically for each closure that we define in our
code, and has a signature that is specific to the individual closure.

The doCall method for the following closure will only accept a single string as its
parameter list:

def closure = { String s -> println s }

The general convention is to use either the unnamed () syntax or groovy.lang.
Closure.call() when invoking closures. The doCall method is used by the Groovy
runtime, and we should never directly invoke it ourselves. It is good to understand
its role however, if we ever want to write a closure in Java.

All closures we declare in our Groovy code will have a doCall method. However,
it's worth remembering that the groovy.lang.Closure class, which is a Java class,
is perfectly feasible for us to build a closure in Java:

public class MyClosure extends Closure{
 public MyClosure(Object owner) {
 super(owner);
 }
 public MyClosure(Object owner, Object thisObject) {
 super(owner, thisObject);
 }
 Object doCall(String message) {
 System.out.println(message);
 return null;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[95]

We can then make use of this closure class in our Groovy code as normal.
Groovy will match closure invocations with a String parameter and will throw a
MethodMissingException for all others. Our closure will behave in the same way as
if it was declared in Groovy:

given: "an instance of a Java Closure"
 def stringParams = new MyClosure(this)
when: "Invoking this with the parameters defined by the doCall"
 stringParams "String"
then: "we expect them to work"
 notThrown Exception
when: "we pass an incorrect type for the doCall parameter"
 stringParams 1
then: "we expect that Groovy won't find a matching Closure"
 thrown MissingMethodException

Closures declared using the regular Groovy method only have a single method
signature. However, when declaring a closure in Java, we can add as many
overloaded doCall methods as we like. It's also feasible to declare a closure in Java
that did not implement doCall at all and overloaded the call methods of closure
instead. However, according to the documentation for groovy.lang.Closure, this
will have the unwanted side effect of disallowing the use of the unnamed () calling
syntax, so it should be avoided.

Finding a named closure field
All of the previous techniques for calling a closure rely on us having prior
knowledge of a field or variable that contains a closure. This is fine for most
straightforward applications of closures, but this book is about developing DSLs,
so let's dig a little deeper.

Take the Grails application framework as an example. You can download Grails
from http://grails.org/Download. Grails uses closures as a neat way of defining
actions for its user interface controllers. No further configuration is required for the
Grails runtime to be able to dispatch requests to an action:

class UserController {
….
 def login = {
 …. Login closure code
 }
}

http://grails.org/Download

Groovy Closures

[96]

We can implement a login action for our user controller in Grails—simply by
declaring a closure in the controller class and assigning it to a field called login.
In the UI, Grails provides tags to automatically create a link that will dispatch to our
login action:

<g:link controller="user" action="login">Login</g:link>

The Grails runtime can find the appropriate action, given the closure field name as a
string, and call that closure when the user clicks on the link. We can achieve the same
effect by simply using Java reflection:

class MyController {
 def public myAction = {
 println "I'm an action"
 }
}

void callPublicClosureField(Class clazz, String closure) {
 def controller = clazz.newInstance()
 controller.getClass()
 .getDeclaredField(closure).get(controller).call()
}

callPublicClosureField(MyController.class, "myAction")

Grails 2.0 has added the ability to define Controller actions as
methods, and this is now the preferred method of defining actions.
It is still worth looking at how this technique works.

Here we are using Java reflection to access a public field in our controller class.
We then invoke this closure field with the call method. Java reflection honors class
visibility, so we need to make the field public in order to be able to access it. Later
in this book, we will explore other methods that allow us to access static and private
fields in both classes and scripts.

This gives the ability to write code like:

def something = {
 snippet of code
}

Having a separate runtime that makes sense will be the key to writing some of our
DSLs later in the book.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[97]

Closure parameters
In our previous examples, we have made use of the it keyword. When a closure
accepts only a single parameter, we are able to refer to this parameter as it and are
free from having to explicitly define the parameter. The possible syntax definitions
for a closure are:

• The default case allows any parameters to be passed to the closure:
{
// statements
}

• The closure does not accept any parameters:
{ ->
// statements
}

• The closure can accept one to many parameters with optional type annotations:

{ [type] param (,[type] param)* ->
// statements
}

The parameter list is a comma-separated list of parameter names with optional type
definitions. Closures behave slightly different depending on whether we supply the
optional type:

given: "Closures with various parameter definition"
 def defaultParams = { println it; }
 def dynamicParams = { something -> println something; }
 def intParams = { int something -> println something; }
 def stringParams = { String something -> println something; }
 def noParams = { -> }
when: "Invoking these with valid parameters"
 defaultParams 1
 defaultParams "String"
 dynamicParams 1
 dynamicParams "String"
 intParams 1
 stringParams "String"
 noParams ()
then: "we expect them to work"
 notThrown MissingMethodException
when: "we pass an incorrect type for a typed parameter"
 stringParams 1

Groovy Closures

[98]

then: "we expect that Groovy won't find a matching Closure"
 thrown MissingMethodException
when: "we pass too many parameters"
 dynamicParams "String1", 1
then: "that should fail also"
 thrown MissingMethodException
when: "passing a parameter to a Closure that does not expect one"
 noParams "String"
then: "we expect that to fail"
 thrown MissingMethodException

The preceding examples illustrate the use of dynamic versus static typing for closure
parameters. When we declare a closure with default parameters, then we can pass
pretty much whatever parameters we like to the closure, and Groovy will not mind.
When we declare a parameter but not its type, then Groovy will police the number
of parameters we try to pass but not their type. If we declare the type of a parameter,
then Groovy will check the parameters passed against that type. Finally, if we want
to enforce that a Closure does not accept a parameter, we can use the -> operator
with no parameter list.

Enforcing zero parameters
When we declare a closure with the default unnamed syntax, we will use the
it keyword in place of the assumed parameter. If we then invoke this closure
with no parameters, the closure gets called but a null is passed for the default
parameter value:

given: "a closure which declares no params"
 def greet = { println "Hello, ${it}" }
when: "we invoke the closure"
 greet()
then:
 "Hello, null" == output()

Sometimes, we want to explicitly define a closure as having no parameters. Passing a
parameter to a closure like this will result in an exception being thrown:

given: "a closure which should take zero parameters"
def greet = { -> println "Hello,World!" }
when: "we try and call this with a parameter"
greet "Hello"
then: "we should get an exception"
thrown MissingMethodException

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[99]

Parameters and the doCall method
You will note from the preceding example that we check for whether
MethodMissingException has been thrown to determine whether the method call
was successful. Groovy calls to closure methods are always via a dynamic method
lookup. MethodMissingException is the exception that the Groovy runtime throws
whenever it can't find a match to the method/closure based on the parameters
being passed.

MethodMissingException that is thrown relates to the generated doCall() method
for the closure. We know that Groovy generates Closure classes for each closure
that we define in our code. Therefore, we can imagine that Groovy is generating the
following closure classes on our behalf for the previous examples:

• For a closure with no explicit parameter defined, we can expect a doCall
method that accepts varargs to be generated. So, doCall for this closure
will accept any parameter that we pass to it:
def defaultParams = { println it; }

class Closure1 extends groovy.lang.Closure{
 def doCall(Object [] params) {
 }
}
closure1 = new Closure1()

closure1.doCall("hello")
closure1.doCall("hello",1,0.1)

• For a closure accepting only one dynamically typed parameter, we would
expect our doCall method to also accept a single parameter. We can pass any
value to this doCall method, but should expect an exception if we pass more
than one parameter:
def dynamicParams = { something -> println something; }
class Closure2 extends groovy.lang.Closure{
 def doCall(something) {
 }
}

closure2 = new Closure2()

closure2.doCall("hello")
closure2.doCall(1)
closure2.doCall("hello",1,0.1) // exception

Groovy Closures

[100]

• A closure that accepts typed parameters will have a doCall method
that accepts only the same specific types as the closure parameters to
be generated:

def stringParams = { String something -> println something; }

class Closure3 extends groovy.lang.CLosure{
 def doCall(String s) {
 }
}

closure3 = new Closure3()

closure3.doCall("hello")
closure3.doCall(1) // exception

class Closure4 extends groovy.lang.Closure{
 def doCall(int s) {
 }
}

closure3 = new Closure3()

closure3.doCall("hello") // exception
closure3.doCall(1)

For this reason, closures are often best used with dynamically typed parameters, as it
is difficult to guard against the side effects. Consider the following code. We would
probably prefer it if the closure was applied to the whole of the list and not to only a
part of it. In this case, the each method will process all of the elements in the list up
until it encounters the string nine element, which causes an exception to be thrown:

given: "a hetrogeneous list"
 def list = [1,3,5,7, "nine"]
and: "a typed closure"
 def intParams = { int something -> println something; }
when: "we use the each method of the collection"
 list.each intParams
then: "Fails when we hit list[4]"
 thrown MissingMethodException

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[101]

Passing multiple parameters
So far, our examples have all been using single parameters. To accept multiple
parameters, we will list the parameters in order before the -> symbol:

given: "a closure which declares no params"
 def greet = { greeting, name -> println "$greeting, $name" }
when: "we invoke the closure"
 greet "Hello", "Dolly"
then:
 "Hello, Dolly" == output()

Default parameter values
We can define default parameters by supplying a value in the parameter list,
as follows:

given: "a closure with default parameters"
 def greetString = {greeting, name = "World" ->
 return "${greeting}, ${name}!"
 }
expect:
 greetString("Hello") == "Hello, World!"
 greetString("Hello", "Dolly") == "Hello, Dolly!"

Implementing closures in Java
Earlier we looked at the Closure code generated for us by the Groovy compiler.
We know that under the covers a closure is just a Java class extending the
groovy.lang.Closure interface. So, let's try implementing a closure in pure Java:

public class StringClosure extends Closure{
 public StringClosure(Object owner) {
 super(owner);
 }
 public StringClosure(Object owner, Object thisObject) {
 super(owner, thisObject);
 }
 Object doCall(String message) {
 System.out.println(message);
 return null;
 }
}

Groovy Closures

[102]

In the preceding code, we implemented a simple closure, which accepts a single
string parameter. We can now make use of this closure within our Groovy code,
as follows:

given: "an instance of a Java Closure"
 def stringParams = new StringClosure(this)
when: "Invoking this with the parameters defined by the doCall"
 stringParams "String"
then: "we expect them to work"
 notThrown Exception
when: "we pass an incorrect type for the doCall parameter"
 stringParams 1
then: "we expect that Groovy won't find a matching Closure"
 thrown MissingMethodException

Now, we can try a more complex closure that accepts multiple different parameter
types by implementing multiple doCall methods in the closure:

public class MultiClosure extends Closure{
 public MultiClosure(Object owner) {
 super(owner);
 }
 public MultiClosure(Object owner, Object thisObject) {
 super(owner, thisObject);
 }
 Object doCall(String message) {
 System.out.println(message);
 return null;
 }
 Object doCall(Integer number) {
 System.out.println(number);
 return null;
 }
}

We can then pass the different parameter types to this closure, and it will work fine:

given: "an instance of a Java Closure"
 def multiParams = new MultiClosure(this)
when: "Invoking these with the parameters defined by the doCall"
 multiParams "String"
then: "we expect them to work"
 notThrown Exception
when: "Invoking these with the parameters defined by the doCall"
 multiParams 1
then: "we expect them to work"
 notThrown Exception

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[103]

Curried parameters
Curried parameters does not mean that we are including our parameters as
ingredients in an Indian dish. Currying is a term borrowed from functional
programming that is named after its inventor, the logician Haskell Curry. Currying
involves transforming a function or method that takes multiple arguments in such a
way that it can be called as a chain of functions or methods taking a single argument.

In practice, with Groovy closures, this means we can "curry" a closure by prepacking
one or more of its parameters. This is best illustrated with an example:

given: "a closure taking three parameters"
def indian = { style, meat, rice ->
 return "${meat} ${style} with ${rice} rice."
}
when: "we curry the closure with different first parameters"
def vindaloo = indian.curry "Vindaloo"
def korma = indian.curry "Korma"
then: "it is as if we passed these parameters together"
vindaloo "Chicken","Fried" == "Chicken Vindaloo with Fried rice."
korma "Lamb","Boiled" == "Lamb Korma with Boiled rice."

The preceding indian closure accepts three parameters. We can prepack its first
parameter by calling the curry method of the closure. The curry method returns
a new instance of the closure with one or more of its parameters set. The variables
vindaloo and korma contain instances of the indian closure with the first parameter
style set. We refer to these as curried closures.

We can curry multiple parameters in one go. Parameters will always be curried in
their order of declaration, so in this case, chickitikka will cause the style and
meat parameters to be set:

when: "we curry the closure with multiple parameters"
def chickitikka = indian.curry "Tikka", "Chicken"
then: "it is the same as if we passed these parameters together"
chickitikka "Boiled" == "Chicken Tikka with Boiled rice."

If we take a curried closure such as korma and curry it again, we now curry the
subsequent parameters from the original indian closure. The style and meat
parameters are now curried into the variable lambKorma:

when: "we curry a curried closure"
def lambKorma = korma.curry "Lamb"
then:
lambKorma "Fried" == "Lamb Korma with Fried rice."

Groovy Closures

[104]

We can continue currying parameters until we run out of parameters (or curry
powder). At this point, we have a curried closure lambKormaBoiled that can be
invoked without passing any parameters:

when: "we exhaust all the parameters"
def lambKormaBoiled = lambKorma.curry "Boiled"
then:
lambKormaBoiled() == "Lamb Korma with Boiled rice."
lambKormaBoiled() == lambKorma("Boiled")
lambKormaBoiled() == korma("Lamb","Boiled")
lambKormaBoiled() == indian("Korma","Lamb","Boiled")

Curried closures can be used very effectively in circumstances where contextual data
needs to be gathered on the fly and then acted upon. We can write an appropriate
closure that acts on all parameters as if they were available. We curry the parameters
of the closure as we discover them, and eventually invoke the closure to act on the
data. The only limitation that we have is that our closure parameters need to be
defined in the correct order.

Since the release of Groovy 1.8, we are no longer limited to currying parameters from
left to right. Two new closure methods are available to curry right to left and to curry
any arbitrary nth parameter:

when: "we curry the closure with right parameters"
def fried = indian.rcurry "Fried"
then:
fried "Vindaloo","Chicken" == "Chicken Vindaloo with Fried rice."

when: "we curry the closure with 2nd parameters"
def chicken = indian.ncurry 1, "Fried"
then:
chicken "Vindaloo","Fried" == "Chicken Vindaloo with Fried rice."

Closure return values
Closure declarations syntax provides no means of defining a return value. Every
closure does, however, return a value with each invocation. A closure can have
explicit return statements. If a return statement is encountered, then the value
defined in the return statement is returned; otherwise, execution continues until
the last statement in the closure block:

given: "a closure that returns values"
def closure = { param ->
 if (param == 1)
 return 1

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[105]

 2
}
expect:
closure(1) == 1 // return statement reached
closure(-1) == 2 // ending statement evaluates to 2

If no return statement is encountered, then the value returned by the closure is the
result of evaluating the last statement encountered in the closure block. If the last
statement has no value, the closure will return null:

void voidMethod() {
}
given: "a closure returning void method"
def nullReturn = { voidMethod() }
expect:
nullReturn() == null

The closure scope
Closures have access to variables in their surrounding scope. These can be local
variables or parameters passed to a method inside which the closure is defined.
Here, we can access the name parameter and the local variable salutation in
our closure:

def greeting (name) {
 def salutation = "Hello"
 def greeter = { println "$salutation , $name" }
 greeter()
}

when: "we call the greeting method"
 greeting("Dolly")
then:
 "Hello , Dolly" == output()

If the closure is defined within a class method, then the object instance fields are
also available to the closure. The field member separator, shown in the following
code, is also accessible within the closure:

class ClosureInClassMethodScope {
 def separator = ", "
 def greeting (name) {
 def salutation = "Hello"
 def greeter = { println "$salutation$separator$name" }
 greeter()

Groovy Closures

[106]

 }
}

given: "A class with a closure in a method"
ClosureInClassMethodScope greeter = new
ClosureInClassMethodScope()
when: "we call the class method"
 greeter.greeting "Dolly"
then:
 "Hello, Dolly" == output()

In addition to directly accessing variables, we can also use GStrings to paste variables
from the local scope into a string.

In essence, the closure simply inherits all of the visible variables and fields from the
surrounding scope in which it is defined. The closure can update any of these fields
or variables, and the class or local method scope will see these changes. Likewise,
any changes that occur in the class or method scope will also be seen by the closure.

Unlike the regular method or class scope, we are able to pass a closure back from a
method. At the time that a closure is defined, Groovy binds all of the variables that it
accesses to the closure object. When this happens, Groovy converts any stack-based
variables such as method parameters and local variables into heap-based duplicates
of these objects. The values of these objects are now bound to the individual closure
because the original values were lost once the method was returned. Take the
following example, which illustrates this:

class MethodReturningClosure {
 def member = "first"
 def method (String param) {
 def local = member
 return {
 "Member: $member Local: $local Parameter: $param"
 }
 }
}

given: "we have a class with a method returning a closure"
 MethodReturningClosure myClazz = new MethodReturningClosure()
when: "we invoke the method"
 def clos1 = myClazz.method("first")
then: "member and stack variables are bound to the closure"
 clos1() == "Member: first Local: first Parameter: first"
when: "we invoke again we get a new closure"

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[107]

 myClazz.member = "second"
 def clos2 = myClazz.method("second")
then: "new member, local and parameter values are bound"
 clos2() == "Member: second Local: second Parameter: second"
and: "but the first still has the old parameter and locals bound"
 clos1() == "Member: second Local: first Parameter: first"

Here we are examining the effect on scoped variables when we make multiple calls
to a method that returns a closure. To keep things simple in this example, we are not
modifying any variables within the closure. The first time that we call method, we
return a closure which, when invoked, outputs the following:

Member: first Local: first Parameter: first

Both the field member and local variable reflect the first state of the member field
because the local variable is just a copy of the field variable. The parameter variable
reflects the parameter value that we just passed to method.

Before calling the method for a second time, we can change the member variable to
second. When we invoke the closure that is returned from this call, we see:

Member: second Local: second Parameter: second

The field member and local variable reflect the second state of the member field,
and the parameter value is what we just passed to the method. We then call the first
closure for a second time, and we see:

Member: second Local: first Parameter: first

The member field shows the latest state of the field member, but the local variable
and parameter are preserved in the same state as when the first call to method was
made. If we had modified one or more local variables, then eventually all bets will
be off in terms of the state of these variables in relation to any particular closure
instance. I recommend caution whenever returning closures from methods. Ensure
that you fully understand the impact of the variables that you are acting upon and
the state they will have when called is truly the state that you expect.

This note of caution also extends to accessing field members from a returned closure.
While we can at least be sure that the state of a field member is the same whether it is
accessed from the class or the closure, there is also the impact on the encapsulation of
the class to be considered. When we pass a closure back from a class method, we are
potentially giving insecure access to the inner workings of the class.

Groovy Closures

[108]

The this, owner, and delegate variables
Groovy has three implicit variables in scope inside each closure. They are: this,
owner, and delegate. The this variable refers to the enclosing class, providing that
one exists. If the closure is defined within the scope of a script, the enclosing class is
the script class. This will be autogenerated if we are running in the GroovyConsole
or the Groovy shell.

The owner variable is the enclosing object of the closure. This is generally analogous
to this, except in the case of nested closures where the enclosing object is another
closure. The delegate variable is also usually the same as the owner variable, except
that delegate can be changed.

In most closures, we only need to care about this as a means of accessing field
variables in an outer scope. The owner and delegate variables will only become
relevant later in the book when we deal with implementing our own builders.

Closure composition
In mathematics, we can compose a new function from other functions. Suppose we
have a function f: R -> R given by f(x) = 2x + 4 and another function g: R -> R given
by g(x) = x3. We can compose a new function fg: R -> R given by fg(x) = 2x3 + 4 or the
reverse composition gf: R -> R given by gf(x) = (2x + 4)3:

Therefore:

• fg(x) = f(g(x)) = f(x3) = 2x3 + 4
• gf(x) = g(f(x)) = g(2x + 4) = (2x + 4)3

In Groovy, we can compose a new closure from two existing closures using <<
for composition and >> for reverse composition. So we can mimic the preceding
functions in two closures, and compose them using Groovy closure composition.

This can be expressed with Groovy closures as follows:

given: "two closures for f(x) = 2x + 4 and g(x) = x cubed"
 def f = { it*2 + 4}
 def g = {it * it * it}
and: "a closure composed from these"
 def fg = f << g
and: "a reverse composition of the same"
 def gf = f >> g
expect:
 fg(10) == f(g(10))

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[109]

 fg(7) == f(7*7*7)
 fg(13) == (2*(13*13*13)+4)
and:
 gf(5) == g(f(5))
 gf(7) == g(7*2+4)
 gf(13) == (13*2+4)*(13*2+4)*(13*2+4)

Closure trampoline
Recursive method calls are notorious for causing stack overflow errors. Closures
are no different. If we implement a recursive algorithm in a closure, then in all
likelihood there is a limit to how deep it can be called before we get a stack overflow.
For example, an algorithm to calculate factorials might be written as follows:

def factorial
factorial = { BigDecimal n ->
 println "Called"
 if (n < 2)
 1
 else
 n * factorial(n - 1)
}
factorial(1)
factorial(1000)
factorial(100000000)

Eventually, this will cause a StackOverflowError no matter how big our stack
is. To overcome this problem, Groovy 1.8 introduced the concept of a closure
trampoline. We create a trampoline by calling the trampoline method of the
closure. Calls to the trampolined closure are invoked sequentially until the
closure returns something other than another trampoline:

given: "a factorial algorithm using trampoline()"
 def factorial
 factorial = { int n, BigDecimal accumulator = 1 ->
 if (n < 2)
 accumulator
 else
 factorial.trampoline(n - 1, n * accumulator)
 }
and: "we use trampoline() to wrap the closure"
 factorial = factorial.trampoline()
expect: "it correctly calculates factorials"
 factorial(1) == 1
 factorial(3) == 1*2*3

Groovy Closures

[110]

 factorial(6) == 1*2*3*4*5*6
when: "we use value that overflows the stack for recursion"
 factorial(10000)
then: "it works"
 notThrown StackOverflowError

Closure memoization
The final closure feature we will look at is another useful addition from Groovy 1.8.
Memoization allows the return values for closure invocations to be cached. This is
useful for potentially expensive or long running closure calls, as long as the outcome
of the closure call is predictable and does not have other side effects that impact the
system state:

given: "a simple closure"
 def callCount = 0
 def memoized = { name ->
 callCount++
 "Hello, $name $callCount"
 }
and: "we memoize the closure"
 memoized = memoized.memoize()
when: "we make subsequent calls with the same parameter"
 def firstResult = memoized "Dolly"
 def secondResult = memoized "Dolly"
 def thirdResult = memoized "World"
then:
 firstResult == secondResult
 firstResult == "Hello, Dolly 1"
 secondResult != "Hello, Dolly 2"
 thirdResult == "Hello, World 2"

In the preceding code, we see that the first call to memoized is cached and the closure
is not actually invoked again until we pass a different parameter value. Memoization
can be combined usefully with a trampolined closure and will cut down the potential
for repeated expensive processing:

given: "a factorial algorithm using trampoline()"
 def trampolined
 trampolined = { int n, BigDecimal accumulator = 1 ->
 if (n < 2)
 accumulator
 else

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

[111]

 trampolined.trampoline(n - 1, n * accumulator)
 }.trampoline()
and: "we memoize() the trampolined closure"
 def factorial = trampolined.memoize()
expect: "it still correctly calculates factorials"
 factorial(1) == 1
 factorial(3) == 1*2*3
 factorial(6) == 1*2*3*4*5*6

Summary
In this chapter, we covered closures in some depth. We covered all of the important
aspects of working with closures. We explored the various ways to call a closure and
the means of passing parameters. We saw how we can pass closures as parameters to
methods, and how this construct can allow us to appear to add mini DSL syntax to
our code.

Closures are the real "power" feature of Groovy, and they form the basis of most
of the DSLs that we will develop later in this book. In the next chapter, we will
build on this knowledge of closures and take a look at some more of the power
features of the Groovy language, including builders and metaprogramming with
the ExpandoMetaClass classes.

www.allitebooks.com

http://www.allitebooks.org

[113]

Example DSL – GeeTwitter
Before we dive any deeper into Groovy's more advanced features, let's take
some time out to build a simple Groovy DSL, using some of the knowledge that
we acquired in the previous chapters. In this chapter, we will use closures to
build a simple and useful DSL that allows us to automate simple scripts that
interact with Twitter.

We will take a stepwise approach to building our DSL. Starting with some vanilla
Java APIs that require Groovy or Java programming skills, we will progressively
apply some cool Groovy features to evolve a simple DSL that anybody can use.

Twitter
Since the first version of this book was released in 2010, Twitter has become an
ubiquitous part of the social media landscape. So ubiquitous in fact, that the Oxford
English Dictionary now recognizes words such as Tweet, Twitter, and Twitterati,
with their own descriptions. Broadsheets, tabloids, and TV news channels now
report what is trending on Twitter as news items in themselves.

Twitter has been variously described as a micro-blogging or social networking
service. Twitter is a synergy between instant messaging, SMS, e-mail, and the Web,
and allows users to make comments—"tweets"—and have them instantly sent to
multiple recipients—"followers".

Using Twitter is the essence of simplicity. Once you have set up an account, you can
log onto the service and set a status message. Status messages are text messages of
up to 140 characters in length. Twitter keeps a log of your status messages so that
you or any other Twitter user can view them. If you follow another user or they
follow you, then you will see their status messages in your updates page, and they
will see yours.

Example DSL – GeeTwitter

[114]

With Twitter, you can tweet from the Web or from your mobile phone. If you register
your mobile phone with your account, you can send your tweets via SMS, and in
certain countries, you can get the tweets of the folks that you follow sent directly to
your mobile phone as SMS messages.

To begin with, like most people, I was very skeptical about Twitter. My initial
Twitter experiences mostly involved reading friends' tweets about what they were
having for breakfast. The experience was not unlike reading early bloggers blogging
about the mundane aspects of their day. Since then Twitter has evolved, and many
eminently sensible people are out there tweeting about stuff that really does have
value.

Try searching Twitter for keywords such as "Groovy DSL" and you'll find tweets
from folks such as Guillaume LaForge, who is a senior figure in the Groovy
community. It's probably worth following the user @glaforge on Twitter for that
reason. In fact, it's safe to say that it is worth following anybody who is tweeting
about "Groovy DSL".

Like most major modern websites, Twitter has a self-contained API that allows us
to interface with it. By providing an open API to developers, Twitter has fostered
a community of developers who have developed numerous different client
applications. As a result, there are numerous third-party and open source client
applications for Twitter, for both mobile and desktop platforms.

Suppose we were able to use Twitter APIs to develop a Groovy-based scripting
interface, what would it look like? Imagine a script that allows us to follow every
Twitter user who has recently tweeted about "Groovy DSL". Based on our knowledge
of Groovy, something like the following would probably make sense:

// Follow all that have tweeted recently about Groovy and DSL
search ("Groovy DSL") { from, tweet ->
 follow(from)
 println "Following ${from}"
}

For the rest of this chapter, we will walk through the steps it takes to turn this script
into a working reality.

Working with the Twitter APIs
Twitter provides APIs that cover the whole gamut of operations that we might like to
invoke for interacting with the service. Through the APIs, we can update our status,
send direct messages to other users, list our friends and followers, and search for
tweets by keyword, among many other useful features.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[115]

Twitter APIs are all pure HTTP-based requests. Any method that just retrieves data
such as a search operation is implemented by using an HTTP GET request, whereas
any method that updates, deletes, or creates, an object is implemented by using
an HTTP POST request. Most of the APIs conform to REST design principals and
support XML and JSON data formats, RSS, and Atom Syndication Formats.

We can interact with the Twitter APIs by using any tool or programming
language that allows us to interact with a web server using HTTP
requests.
In order to use the APIs, you first need to create an application with your
own Twitter user account. To do this, you will need to log in to Twitter at
http://apps.twitter.com. Click on the button to Create New App,
then complete the form to create your app. Next, click on the Permissions
tab and change the Access type to Read, Write and direct messages.
Finally, navigate to the Keys and Access Tokens page, and click on the
Create my access token button.
You now have four unique codes generated for this account. To run the
examples, you will need to copy the generated keys and secrets into the
twitter4j.properties file in the examples directories.
Before we go on, you can test out the raw APIs using the Twitter online
OAuth tool. Just click on the Test OAuth button on the App page. Try a
simple search via the APIs by typing the following into the request URI:
https://api.twitter.com/1.1/search/tweets.
json?q=Groovy

This will generate the OAuth signature headers for you so that you can
try the API out.

Try out the generated cURL command at the command line for example (your
version will have keys and secrets that are generated for your account):

curl --get 'https://api.twitter.com/1.1/search/tweets.json'
--data 'q=Groovy' --header 'Authorization: OAuth oauth_consumer_
key="xxxxxxxxxxxxxxxxxxxxxxxx", oauth_nonce="xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxx", oauth_signature="xxxxxxxxxxxxxxxxxxxxx", oauth_signature_
method="HMAC-SHA1", oauth_timestamp="1416572721", oauth_token="xxxxxxx-
xxxxxxxxxxxxxxxxxxxxxxx ", oauth_version="1.0"' --verbose

This will invoke the search API, searching for tweets containing the keyword
Groovy. The resulting list of tweets is formatted as JSON. cURL is a command-line
tool for fetching files using URL syntax. It's available by default on Mac OS X and
most Linux distributions, or can be downloaded from http://curl.haxx.se/
download.html. There is extensive documentation of the Twitter APIs that can be
found at https://dev.twitter.com/rest/public.

http://apps.twitter.com
http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
https://dev.twitter.com/rest/public

Example DSL – GeeTwitter

[116]

Running the curl command will display the resulting HTTP response from Twitter.
This will include the HTTP response headers along with the response body in JSON.
The JSON returned is not formatted in a user-readable manner, so it can be hard to
read. A favorite site of mine is http://www.jsbeautifier.org. Cutting and
pasting the JSON file into the Beautify JavaScript or HTML input box will let you
produce properly formatted JSON. The following code is a much simplified version
of one response:

{
 "statuses": [
 {
 "entities": {
 "hashtags": [
 {
 "text": "Groovy",
 "indices": [
 13,
 19
]
 }
]
 },
 "text": "Let's talk #Groovy at GGX 2014",
 "metadata": {
 "iso_language_code": "en",
 "result_type": "recent"
 },
 "user": {
 "name": "Fergal Dearle",
 "created_at": "Mon Apr 26 06:01:55 +0000 2010",
 },
 "followers_count": 70,
 "statuses_count": 579,
 "friends_count": 110,
 }
]
}

The response JSON contains details about the tweet, including details about the user
who tweeted.

www.allitebooks.com

http://www.jsbeautifier.org
http://www.allitebooks.org

Chapter 6

[117]

Reading raw JSON tweets is obviously not user friendly. Fortunately, thanks to the
vibrant developer community that has sprung up around Twitter APIs, there are
high-level client libraries for most languages, including Java, C++, PHP, and Ruby.
There are three Java-based client libraries to be found—Twitter4J, JTwitter, and
java-twitter. So far, there is no Groovy library listed, but because Groovy is fully
Java compatible, we can work with any of the Java libraries.

Using Twitter4J Java APIs
In the following examples, we will use Twitter4J by Yusuke Yamamoto. Twitter4J
is an excellent open source Java library for Twitter APIs, released under the BSD
license. Using Twitter4J greatly simplifies the code that we need to write in order
to build a simple DSL scripting interface for Twitter. Twitter4J can be downloaded
from http://yusuke.homeip.net/twitter4j/en/index.html. However, we
will simply add the twitter4j dependency to build.gradle in the code in the
example pack:

dependencies {
 compile "org.twitter4j:twitter4j-core:4.0.2"
}

To begin with, let's try out the Twitter4J APIs and see what we can do with them.
Although Twitter4J is a Java API, all of the examples here will run as Groovy scripts.
If we were to write the same code as Java, we would need to build the examples
into full-blown classes with the main methods before we could see any results.
With Groovy, we can be up and running almost immediately.

In the following examples, we will use Groovy scripts. These scripts can be run from
the command line as follows:

$ groovy Script.groovy

We will use the @Grab annotation to resolve the Twitter 4J dependency in these
scripts. Each script therefore needs to begin with @Grab, but we will omit this in
the text for terseness sake:

@Grab(group='org.twitter4j', module='twitter4j-core',
version='[4.0,)')
import twitter4j.*

Our examples dip into Groovy features at times, but we could simply cut and paste
the sample code from the Twitter4J site and run it unchanged. Used in this way,
Groovy can be a sandbox for exploring the Twitter4J APIs even without writing any
Groovy code.

http://yusuke.homeip.net/twitter4j/en/index.html

Example DSL – GeeTwitter

[118]

You will find full documentation for using Grape and the @Grab
annotation at http://docs.groovy-lang.org/latest/html/
documentation/grape.html.
If you are running the preceding example from behind an http proxy,
you may need to refer to the Proxy settings section in this documentation.

Tweeting
We'll start by trying out the APIs to get and set our current Twitter status. We will
use the Twitter class from Twitter4J to log in to our Twitter account and access the
APIs to update and get our status, so you will need to have added your OAuth
credentials into twitter4j.properties before you try this yourself:

// Get a twitter connection
def twitter = TwitterFactory.singleton
// Update twitter status
twitter.updateStatus("Updating my status via the Twitter4J APIS")
println twitter.showUser("groovydsl").status.text

The sample code pack has several examples that make use of the Twitter4J
libraries. You will need to locate each of these twitter4j.properties
files and edit them. Each file contains the following properties that will
need to be filled in:

debug=true
oauth.consumerKey=
oauth.consumerSecret=
oauth.accessToken=
oauth.accessTokenSecret=

Once we've got a connection to the service with the Twitter object, we can start to
play with the APIs. The Twitter.updateStatus method sets a new status message
(tweet) for us on our Twitter account. Try out this script yourself. Check your Twitter
status through your favorite Twitter client or on the Web, and you will see it has
been updated.

Retrieving our status is just as simple. We can use the Twitter.showUser method to
get a User object for any user, including ourselves. Calling getStatus on this object
retrieves the current status message for any user.

www.allitebooks.com

http://docs.groovy-lang.org/latest/html/documentation/grape.html
http://docs.groovy-lang.org/latest/html/documentation/grape.html
http://www.allitebooks.org

Chapter 6

[119]

Direct messages
Twitter has a direct message feature that allows you to send messages directly to
another Twitter user. Direct messages don't show up in your general Twitter profile
and are private to the sender and the recipient. We can use the APIs to send direct
messages to a user and to check our own current messages from other users:

def twitter = TwitterFactory.singleton

// Send a direct messsage to twitter user GroovyDSL
twitter.sendDirectMessage(
 "GroovyDSL",
 "Hi Fergal read Groovy for DSL and loved it")

// Retrieve our latest direct messages
// same as visiting http://twitter.com/#inbox
messages = twitter.directMessages

messages.each { message ->
 println "Message from : $message.senderScreenName"
 println " ${message.text}"
}

You can only direct message to users in Twitter who follow you. This
also applies to the preceding example. If you try it out yourself, you
will need to use a user ID that is one of your Twitter followers.

In the code snippet that we've just seen, we used the Twitter.sendDirectMessage
method to send a message to the Twitter user GroovyDSL. We then use the
Twitter.directMessages method to retrieve our latest direct messages from our
inbox. This, in fact, is a shortcut to the Twitter.getDirectMessages API, which
returns a list of DirectMessage objects. Groovy conveniently allows us to take
shortcuts to any getter methods as a property access, even though the Twitter class
is not in fact a POJO. We then list the sending user's screen name and the text of the
message. We can also retrieve the time when the message was sent, and the user
objects for the sender and recipient of the message.

Example DSL – GeeTwitter

[120]

Searching
The Twitter APIs have a powerful search capability that allows us to search for what
people are commenting on at any given time. Twitter4J implements searching by
passing a Query object to the Twitter.search API. Using the following code,
we will search for tweets containing the keywords Groovy and DSL:

def twitter = TwitterFactory.singleton
// Create a query for tweets containing terms "Groovy" and "DSL"
def query = new Query("Groovy DSL")
// Search and iterate the results
twitter.search(query).tweets.each { tweet ->
 println "${tweet.user.screenName} : ${tweet.text}"
}

Calling the Twitter.search API returns a QueryResult object.
QueryResult.getTweets() will return a list of tweet objects. We can use
the list of tweets matching our search criteria as a Groovy collection, and
iterate it through the use of the built-in each method. At the time of writing
this book, I got the following result from running this script:

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[121]

Amid this cacophony of tweets, you might see comments from glaforge, the
Groovy project manager. We might also see comments from Graeme Rocher in this
list depending on when we run the script. Graeme is the creator of the Grails project.
We might be interested in seeing what Graeme is saying about Grails right now. We
can then modify our query to search for messages just from Graeme about Groovy
and Grails as follows:

// Create a query for tweets containing the terms
// "Groovy" and "Grails"
Query query = new Query("from:graemerocher Groovy Grails")

Running the search script with this query would have resulted in an output that
contained the following comment among the tweets:

graemerocher : RT @springsource: @glaforge , @graemerocher and @cdupuis
are presenting at this week's #Groovy and #Grails eXchange http://bit.
ly/6Otsf ...

The @glaforge notation means graemerocher is referencing Guillaume in his
comments. It's always interesting to hear what these guys are talking about,
especially when they reference each other. We can search for tweets from Guillaume
referencing Graeme by using the query string from:glaforge @graemerocher, and
so on.

I've just touched upon some of the search capabilities of the Twitter APIs. The APIs
allow you to use all of the same search operators that you can use in the Twitter
Search box on the web application at https://twitter.com/search-home. The full
list of search operators that can be used are listed at https://dev.twitter.com/
rest/public/search.

Following
The fundamental feature of Twitter is the concept of following and having followers.
You can tweet away on Twitter to your heart's content, but if no one is following
your tweets, you will not be heard. When you follow someone, your Twitter client
will pick up their latest tweets and display them for you. If they follow you, then
your tweets will be listed in their Twitter client when they view it. The Twitter web
application has two lists: for those "following" and your "followers". Confused?

https://twitter.com/search-home
https://dev.twitter.com/rest/public/search
https://dev.twitter.com/rest/public/search

Example DSL – GeeTwitter

[122]

The Twitter4J APIs refer to the users you follow as friends and those following you as
followers. This certainly clears up the confusion a little bit. However, users on Twitter
don't necessarily know, or seldom care about, who is following them. So, calling
them friends who eavesdrop on all their conversations is a little like stalking.
Anyway, we can use the APIs to list all of our friends or followers, or to create a
new friendship (in other words follow another user):

def twitter = TwitterFactory.singleton
// Get a list of my followers
def friends = twitter.getFriendsList('groovydsl',-1)
friends.each { friend ->
 // Print each screen name
 println friend.screenName
}
// "Follow" the Twitter user GroovyDSL
twitter.createFriendship("GroovyDSL")

Here we use the Twitter.getFriendsList method to retrieve the list of users that
we are currently following. Iterating this list, we can print the screen names of all of
these users. Finally, we use the Twitter.createFriendship method to start stalking
the user GroovyDSL. This is a user that I set up while writing this book and testing
out these scripts. Feel free to run this script and start following me yourself. I just
can't guarantee that it won't be a Twitter bot written in the Groovy DSL that updates
this user!

Groovy improvements
So far we have been using Twitter4J as a vanilla API, with a smattering of Groovy, so
we have not been bringing any of the Groovier features to bear. Now that we know a
little bit about the API, let's try to improve our usage by using some Groovy features.
In this section, we will progressively improve our usage of the Twitter4J APIs by
selectively using the features that Groovy provides. One of the most obvious features
to use is closures.

A Groovier way to find friends
In the previous examples, we iterated over our friends and printed out their
details. What if we were to provide a method that takes a closure to apply to each
friend or follower? In this example, we add these methods to a script, along with a
follow method, to follow another Twitter user. We can use the eachFollower or
eachFriend methods to list our current connections:

followersList = { user ->
 TwitterFactory.singleton.getFollowersList(user,-1)

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[123]

}
friendsList = { user ->
 TwitterFactory.singleton.getFriendsList(user,-1)
}
cachedFriendsList = friendsList.memoize()

// Method to apply a closure to each friend
def eachFriend(Closure c) {
 def friends = friendsList('groovydsl')
 friends.each {
 c.call(it.screenName)
 }
}

// Method to apply a closure to each follower
def eachFollower(Closure c) {
 def followers = followersList('groovydsl')
 followers.each { follower ->
 c.call(follower.screenName)
 }
}

// Method to follow another twitter user
void follow(user) {
 TwitterFactory.singleton.createFriendship(user)
}

With these methods defined, we can start writing some powerful Groovy code to act
on our friends and followers. How about printing the screen names of all the users
that we are following:

println "I'm Following"
eachFriend {
 println it
}

Or those who are following us:

println "Following me"
eachFollower {
 println it
}

Example DSL – GeeTwitter

[124]

We can write a neat auto-follow script. In the following example, we will use
eachFollower to apply a closure to each of our followers. The closure method
determines if we are already a friend of this follower simply by using the Groovy
collections any, and follows the follower if we are not:

// Auto follow
eachFollower { follower ->
 // If any of my friends is this follower
 if (twitter.friends.any { friend ->
 friend.screenName == follower
 })
 return;
 // Otherwise follow him
 println "Following ${follower}"
 follow(twitter, follower)
}

Twitter throws an exception if we try to follow a user that we are already following.
In the Auto follow closure shown in the previous code snippet, we first checked to
see if any of our friends is a follower before trying to follow him or her.

Groovy searching
In the same vein, we can also add a search method taking a closure:

void search(terms, Closure c) {
 def query = new Query(terms)
 TwitterFactory.singleton.search(query).tweets.each {
 c.call(it.user.screenName,it.text)
 }
}

We can pass a closure to the search method in order to print out the details of the
tweets that we find:

// Print all recent tweets about Groovy and DSL
search ("Groovy DSL") { from, tweet ->
 println from + " : " + tweet
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[125]

Or we can use the follow method to follow the tweets of any user who posts about
the search terms that we are interested in:

// Follow users that have tweeted recently about Groovy and DSL
search ("Groovy DSL") { from, tweet ->
 follow(from)
 println "Following ${from}"
}

Adding all of these methods together is the first step towards writing a useful and
simple DSL for Twitter, but it suffers from a number of problems, which we need
to address.

Removing the boilerplate
Any DSL that we develop with Groovy is referred to as an embedded DSL. In other
words, it uses language features from the host language in order to build a new
mini dialect that achieves a particular goal. As programmers, we can appreciate the
elegance of how a closure can define a mini dialect that is embedded within our
code. We are used to all of the boilerplate that goes with using a Java library.

By boilerplate, we mean all of the setup code that is needed to establish the context
in which our code is running. This could be connecting to a database, establishing a
connection to a remote EJB object via a JNDI lookup, and so on. It also includes all
of the other code, which is superfluous to the problem at hand but is imposed by
the languages and environments that we use. The requirement in Java to write all
of our code within a class is a case in point. Comparing the Groovy "Hello, World"
program with its Java equivalents, we can see that all but a single line of the code is
boilerplate, imposed by the language:

// Groovy
println "Hello, World!"

// Java
class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

Example DSL – GeeTwitter

[126]

Even the one useful line in the Java version is burdened with boilerplate. We have
to explicitly write System.out.println to say that we are using the System class
to print to the standard output. In Groovy, this is all just assumed. When we write
Groovy, we embed mini DSLs within our code all the time, and surround it with
these types of regular Groovy and Java-like structures. The fact that we are using the
mini dialect of Groovy is hidden because the cool stuff gets hidden among other
not-so-cool boilerplate code.

What if we would like a non-Groovy or non-Java programmer to use our DSL?
Ideally, we just want to document how to use the DSL features, and not the
boilerplate that goes with it. Otherwise, we would find ourselves saying to our users,
"Trust me, just write this line of code and it will work… don't worry about what it
does." Unfortunately, that's not what happens in practice. Boilerplate will always be
a source of confusion and mistakes; so the less of it we have the better.

When we write something like the following in isolation of the boilerplate, we
are actually getting towards a dialect that could be written by a non-Groovy
programmer:

eachFriend {
 println it
}

The goal now should be to remove as much of the boilerplate code as possible from
our scripts.

Refactoring
The next steps we take with our DSL are refactorings to remove boilerplate. Our
previous examples have all implemented methods locally within the script. This
clearly needs to change, so our first step will be to refactor these methods into a
standalone class. This class will become the main class for our DSL. We'll call the
class GeeTwitter.

We need to consider how we would like our users to access the methods in our class.
By default, the methods that we add to a class are instance methods and are only
accessible through an instance of the class. If we define login and search methods
in our class, as shown in the following code, the user of the DSL must first create a
new instance of the GeeTwitter class before they can use them:

import twitter4j.*

class GeeTwitter {
 void search(terms) {
 def query = new Query(terms)

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[127]

 TwitterFactory.singleton.search(query).tweets.each {
 println it.text
 }
 }

 void search(terms, Closure c) {
 def query = new Query(terms)
 TwitterFactory.singleton.search(query).tweets.each {
 c.call(it.user.screenName,it.text)
 }
 }
}

We can write a script that uses these search methods, as follows:

def gTwitter = new GeeTwitter()

gTwitter.search "Groovy DSL"

gTwitter.search ("Groovy DSL") { from, tweet ->
 println "${from} : ${tweet}"
}

Although this is fine for most circumstances, we would like to make the ending DSL
scripts as clear and to the point as possible so that a non-programmer might be able
to write them. The need to create a GeeTwitter object before we can use the method
is more unnecessary boilerplate. If, instead, we make the method static, the usage of
the method is much clearer to the average user:

class GeeTwitter {
 static void search(terms) {
 def query = new Query(terms)
 TwitterFactory.singleton.search(query).tweets.each {
 println it.text
 }
 }

 static void search(terms, Closure c) {
 def query = new Query(terms)
 TwitterFactory.singleton.search(query).tweets.each {
 c.call(it.user.screenName,it.text)
 }
 }
}

Example DSL – GeeTwitter

[128]

To use this method, we can write the following script:

GeeTwitter.search ("Groovy DSL") { from, tweet ->
 println "${from} : ${tweet}"
}

Or even better:

import static GeeTwitter.*

search "Groovy DSL"

The classes generated by Groovy scripts are in the default package by default. In
the previous examples, we didn't define a package for the GeeTwitter class, so it
also resides in the default package. When we run the search script, Groovy will
automatically look for any class that we use and compile it, as long as it is in the
same directory as the script that we launch with.

Next, we will look at some more improvements to allow us launch our DSL
scripts from the command line. First, let's fully flesh out the GeeTwitter class
with more methods.

Fleshing out GeeTwitter
The following code is the fully fleshed out GeeTwitter class, with methods for
sending direct messages, along with following and searching methods:

import twitter4j.*
import static twitter4j.TwitterFactory.*

class GeeTwitter {
 static sendMessage(user, message) {
 // Send a direct messsage to twitter user GroovyDSL
 singleton.sendDirectMessage(user, message)
 }
 // Method to apply a closure to each friend
 static eachMessage(Closure c) {
 singleton.directMessages.each {
 c.call(it.senderScreenName,it.text)
 }
 }

 // Method to apply a closure to each friend
 static void eachFriend(Closure c) {
 singleton.getFriendsList('fdearle',-1).each {

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[129]

 c.call(it.screenName)
 }
 }

 // Method to apply a closure to each follower
 static void eachFollower(Closure c) {
 singleton.getFollowersList('fdearle',-1).each {
 c.call(it.screenName)
 }
 }

 // Method to follow another twitter user
 static void follow(user) {
 singleton.createFriendship(user)
 }

 static void search(terms) {
 def query = new Query(terms)
 singleton.search(query).tweets.each {
 println it.text
 }
 }

 static void search(terms, Closure c) {
 def query = new Query(terms)
 singleton.search(query).tweets.each {
 c.call(it.user.screenName,it.text)
 }
 }
}

Now, if we launch the GroovyConsole from the same directory as this class and
add the Twitter4J JAR from the class path, we can start experimenting with our
fully-fledged Twitter DSL interactively. Here we can issue a search for the terms
"Groovy DSL" and see the result directly within the console output pane.

In the following snippet, we will see how the auto follow script has been reduced
to one line. By removing all boilerplate and handling the follow method within
our own DSL method, we can eliminate the need for the user to care about any
exceptions that might be thrown. Auto follow becomes one elegant line of script:

import static GeeTwitter.*

eachFollower { follow it }

Example DSL – GeeTwitter

[130]

Improving search
Earlier on, in this chapter, we searched for Tweets from Guillaume LaForge to Graeme
Rocher by passing the string from:glaforge @graemerocher to the Twitter4J Query
method. We could do the same with our simple DSL search method:

search "from:glaforge @graemerocher"

This feels a little clunky, so let's see if there are ways we can improve this interface.
You will remember from Chapter 4, The Groovy Language, the technique we referred
to as named parameters. When we have a method signature in Groovy that includes
a Map, we can omit the brackets around the Map when passing it as a parameter.
Imagine we have a search method that takes a Map as a parameter, then we can
make calls to it as follows:

search from: "glaforge", username: "graemerocher", "Groovy"
search "authentication", from: "alvaro_sanchez", hashtag: "codemotion_
es"

Named parameters allow us to intersperse the String search terms parameter with
the named, Map parameters. In this case, we are using the Map to represent some of
the extended searching features available from the Twitter search API, which we can
implement as follows:

static void search(Map args, String terms = "") {
 def queryString = ""
 args.each { arg ->
 switch (arg.key.toString().toLowerCase()) {
 case 'from':
 queryString += "from:${arg.value} "
 break
 case 'to':
 queryString += "to:${arg.value} "
 break
 case 'hashtag':
 queryString += "#${arg.value} "
 break
 case 'username':
 queryString += "@${arg.value} "
 break
 }
 }
 queryString += terms
 def query = new Query(queryString)
 singleton.search(query).tweets.each {
 println it.text
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[131]

Adding a command-line interface
One more step in making our DSL roadworthy is to add a command-line interface to
it. In doing so, we move from invoking the DSL directly to allowing it to be loaded
by a DSL command. This gives us more control over the environment in which the
DSL will run, and allows us to take care of the housekeeping, such as adding the
search method to the String class.

Groovy being Groovy, adding a command line is surprisingly easy:

#!/usr/bin/env groovy
@Grab(group='org.twitter4j', module='twitter4j-core',
version='[4.0,)')

if (args)
 evaluate(new File(args[0]))
else
 println "Usage: GeeTwitter <script>"

The preceding shell script is all that we need in order to launch and run our
GeeTwitter DSL. Being a shell script, we can run this directly on most Linux
environments and Mac OS X, and on Windows if you have the Cygwin shell
installed. In the script, we will test to see if we have any arguments passed, and
evaluate the first argument as the name of a file containing the DSL script.

The evaluate method in Groovy allows us to pass a file containing Groovy code to
the Groovy interpreter. Any code contained within the file is compiled and executed
within the same virtual machine as the one where we are running the loading script.
When the preceding script is executed from the command, the groovy command is
invoked by the shell, which in turn launches a JVM. The evaluate method causes
the target script to be loaded and executed in the same environment, and everything
else works as if by magic.

Using the evaluate method means that any filename or extension can be used to
contain the Twitter DSL scripts. Instead of naming all of our GeeTwitter scripts with
the .groovy extension, we can decide that by convention our Twitter DSLs should
have the extension .gtwit.

By saving the command-line script as GTweet_1.0 in a file accessible on the
command path, we now have a bona fide Twitter DSL, implemented in Groovy,
and that we can invoke through a shell command.

Example DSL – GeeTwitter

[132]

We can now try out our DSL from the command line. To run a script to search for
tweets about the Groovy and Grails eXchange event, we can save the following in a
file called ggx.gtwit and invoke the GTweet_1.0 shell script:

import static GeeTwitter.*

search "Groovy Grails eXchange"

Adding built-in methods
However simple our DSL might now look, the need to preface our method calls with
GeeTwitter is one final piece of boilerplate code that it would be nice to remove. In
some of the previous examples we have used a static import to do this, but it is still
not very intuitive to a non Java/Groovy programmer why we are doing this. Since
we are evaluating the DSL script ourselves, rather than allowing Groovy to do it,
we still have some scope to do this.

It would certainly be nicer to be able to write:

eachFollower {
 sendMessage it, "Thanks for taking the time to follow me!"
}

This assumes that the eachFollower method is built in to the DSL, rather than the
more verbose:

GeeTwitter.eachFollower {
 GeeTwitter.sendMessage (it,
 "Thanks for taking the time to follow me!")
}

Groovy provides two mechanisms that allow us achieve just this. Later in the book,
we will look at how we can manipulate the binding to achieve this. For this chapter,
we will look at a more straightforward mechanism, which exploits the compilation
model for Groovy scripts.

Whenever we run a Groovy script, the script gets compiled behind the scenes into a
class derived from the Groovy Script class (see http://docs.groovy-lang.org/
latest/html/gapi/groovy/lang/Script.html). Most of the time, we are unaware
of the fact that Script has just a few methods of interest to us. For instance, to access
the binding of a script, we reference the binding property. When we do so, what we
are in fact doing is calling the Script.getBinding() method. Similarly, when we
used evaluate in the previous section to load and run our DSL from the launcher
script, we were actually calling the Script.evaluate() method.

www.allitebooks.com

http://docs.groovy-lang.org/latest/html/gapi/groovy/lang/Script.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/lang/Script.html
http://www.allitebooks.org

Chapter 6

[133]

Instead of calling Script.evaluate() in the launch script, we can use
the GroovyScript class to do the same thing. However, now we have the
option of initializing the GroovyScript object that evaluates our DSL with a
CompilationConfiguration object (See http://docs.groovy-lang.org/latest/
html/gapi/org/codehaus/groovy/control/CompilerConfiguration.html).
This now gives us control over how the compilation of the script will be handled.

CompilationConfiguration gives us the ability to set a number of compilation
attributes, including the classpath to be used and the PrintWriter object to be used
as a standard output. We can even add the static import for the GeeTwitter class.
The command-line script needs to be modified as follows:

#!/usr/bin/env groovy
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*

if(args) {
 def conf = new CompilerConfiguration()
 def imports = new ImportCustomizer()
 imports.addStaticStar("GeeTwitter")
 conf.addCompilationCustomizers(imports)
 def shell = new GroovyShell(this.class.classLoader,
 new Binding(), conf)
 shell.evaluate (new File(args[0]))
} else
 println "Usage: GTweet_2.0 <script>"

The CompilationConfiguration class also provides a method
CompilationConfiguration.setScriptBaseClass(), which allows us to provide
an alternative subclass of Script to be used for the base class of our script instance:

abstract class MyBaseScript extends Script {
 def builtIn (a) { println a }
}

If we provide the preceding MyBaseScript class as the alternate Script class, any
script that we evaluate by using this class will have the builtIn method available by
default. There is nothing magical here; it's now just a method of the Script class that
gets compiled into our environment. We can now rewrite our GeeTwitter class to
make it a subclass of Script. Let's call it GeeTwitterScript, in order to distinguish
it from the original:

@Grab(group='org.twitter4j', module='twitter4j-core',
version='[4.0,)')
import twitter4j.*

http://docs.groovy-lang.org/latest/html/gapi/org/codehaus/groovy/control/CompilerConfiguration.html
http://docs.groovy-lang.org/latest/html/gapi/org/codehaus/groovy/control/CompilerConfiguration.html

Example DSL – GeeTwitter

[134]

import static twitter4j.TwitterFactory.*

abstract class GeeTwitterScript extends Script {
def sendMessage(user, message) {
 // Send a direct messsage to twitter user GroovyDSL
 singleton.sendDirectMessage(user, message)
}
// Method to apply a closure to each friend
def eachMessage(Closure c) {
 singleton.directMessages.each {
 c.call(it.senderScreenName,it.text)
 }
}

// Method to apply a closure to each friend
def eachFriend(Closure c) {
 singleton.getFriendsList('groovydsl',-1).each {
 c.call(it.screenName)
 }
}

// Method to apply a closure to each follower
def eachFollower(Closure c) {
 singleton.getFollowersList('groovydsl',-1).each {
 c.call(it.screenName)
 }
}

// Method to follow another twitter user
def follow(user) {
 singleton.createFriendship(user)
}

void search(terms) {
 def query = new Query(terms)
 singleton.search(query).tweets.each {
 println it.text
 }
}

def search(terms, Closure c) {
 def query = new Query(terms)
 singleton.search(query).tweets.each {
 c.call(it.user.screenName,it.text)

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[135]

 }
}

void search(Map args, String terms = "") {
 def queryString = ""
 args.each { arg ->
 switch (arg.key.toString().toLowerCase()) {
 case 'from':
 queryString += "from:${arg.value} "
 break
 case 'to':
 queryString += "to:${arg.value} "
 break
 case 'hashtag':
 queryString += "#${arg.value} "
 break
 case 'username':
 queryString += "@${arg.value} "
 break
 }
 }
 queryString += terms
 def query = new Query(queryString)
 singleton.search(query).tweets.each {
 println it.text
 }
}

def block(user) {
 singleton.createBlock(user)
}
}

With this version, we will supply the name of the new subclass to the
CompilerConfiguration object in the launch script. The new launch
script appears as follows:

#!/usr/bin/env groovy
 import org.codehaus.groovy.control.*

if(args) {
 def conf = new CompilerConfiguration()
 conf.setScriptBaseClass("GeeTwitterScript")
 def shell = new GroovyShell(this.class.classLoader,
 new Binding(), conf)

Example DSL – GeeTwitter

[136]

 shell.evaluate (new File(args[0]))
}
else
 println "Usage: GTweet_2.1 <script>"

With this final version of our DSL, we have managed to distill the code down to
the barest outline that is needed to express what we want to do. Using only the
preceding launcher shell script, and the GeeTwitterScript.groovy class, we can
start to automate our Twitter experience from the command line. Here are some of
sample GeeTwitter scripts we can try out:

• Send a direct message to a user:
sendMessage "GroovyDSL", "Using GeeTwitter to send you a message."

• Send a direct message to all of my followers:
eachFollower {
 sendMessage it, "Thanks for taking the time to follow
 me!"
}

• List all of the users that I'm following:
eachFriend { println it}

• Follow all of my followers:

eachFollower {
 follow it
}

I think you'll agree that we've built quite an elegant DSL for Twitter, and we've
been able to do it with surprisingly little code. This version has limited functionality
to choose from, as I did not want to clutter the text with a fully functional Twitter
DSL. With a little bit more coding, we could extend this DSL to do a lot more. For
example, if you've got a follower on Twitter who is following hundreds of users, but
who has no followers, and who has issued only one tweet containing a link, then
chances are that the follower is a spammer. Wouldn't it be nice to be able to block
such a user automatically with a DSL script?

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

[137]

Summary
We have now built our first fully-fledged, albeit simple, Groovy DSL. We've seen
how we can start with an existing Java-based API and evolve it into a simple
user-friendly DSL that can be used by almost anybody. We've learned the
importance of removing boilerplate code and how we can structure our DSL
in such a way that the boilerplate is invisible to our DSL users.

The resulting DSL, being written in Groovy, is still an embedded DSL, but by
sufficiently isolating the user scripts from its runtime and boilerplate, we have
developed a DSL that could be documented in such a way that non-programming
users could readily grasp how to use it. In the next chapter, we will extend our
knowledge of the language further, by using some of Groovy's more advanced
features, such as builders, metaprogramming, and command chains.

www.allitebooks.com

http://www.allitebooks.org

[139]

Power Groovy DSL Features
In this chapter, we will cover some more advanced Groovy features. Coincidentally,
these are also the features that, along with closures, allow us to extend and
manipulate the language in order to create DSLs. We will cover a lot of ground
in this chapter, including the following important features:

• Named parameters: To begin, we will look at this simple but effective
feature, and see how maps passed as parameters act as named parameters
to a method.

• Command chains: We will cover how, when chaining methods together, we
can omit the dot notation to give us a simple command chain DSL pattern.

• Builders: We will cover how to use Groovy builders to rapidly construct
anything from web pages and XML to Swing UIs. While looking at Groovy
builders, we will also introduce the native Groovy support for tree-based
DOM structures, by looking at the built-in GPath operators in the
Groovy language.

• SwingBuilder: We will add a quick and simple UI to our Twitter DSL,
by using the SwingBuilder class.

• Method pointers: We will cover method pointers as a useful way to
create aliases.

• Meta Object Protocol: We will cover the inner workings of Groovy's Meta
Object Protocol (MOP).

• How builders work: Once we have covered the concepts behind the MOP,
we will revisit Groovy builders to understand how they are implemented
using features from the MOP.

• ExpandoMetaClass: Finally, we will take a look at ExpandoMetaClass,
which is one of the most interesting Groovy classes as it provides the keys to
dynamically change the behavior of any existing class, including Java classes,
on the fly.

Power Groovy DSL Features

[140]

Named parameters
We have touched upon the concept of named parameters already. In a previous
chapter, we looked at how Groovy allows us to construct a POGO by using a
default built-in constructor that accepts a Map argument. We can construct a
POGO by passing an inline Map object to the constructor. Groovy uses the map
object to initialize each property of the POGO in turn. The map is iterated and the
corresponding setter is invoked for each map element that is encountered:

class POGO {
 def a = 0
 def b = 0
 def c = 0
}

given:
 def pogo1 = new POGO(a:1, b:2, c:3)
 def pogo2 = new POGO(b:2, c:3)
 def pogo3 = new POGO(b:2, a:3)
expect:
 pogo1.a == 1
 pogo1.b == 2
 pogo1.c == 3
and:
 pogo2.a == 0
 pogo2.b == 2
 pogo2.c == 3
and:
 pogo3.a == 3
 pogo3.b == 2

When we pass a Map object to a constructor, the parentheses [] can be left out. We
can also list the property values in any order we like. If a property is excluded, the
corresponding setter will not be called, so its default value will be preserved.

Groovy also allows the same parameter-passing scheme to be used with method
calls. If we invoke a method and pass a list of map elements in the same fashion, as
shown in the preceding code, Groovy will collect the map elements into a Map object
and pass this to the method as the first parameter. Parameters passed in this way
are generally known as named parameters. The key that we use for each parameter
provides a name for the parameter, which otherwise is anonymous.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[141]

def namedParamsMethod1(Map params) {
assert params.a == 1
assert params.b == 2
assert params.c == 3
true
}

expect: "We can pass named parameters in any order"
 namedParamsMethod1(a:1, b:2, c:3)
 namedParamsMethod1(b:2, c:3, a:1)
 namedParamsMethod1(c:3, a:1, b:2)

If the method has other parameters, Groovy allows the map entries to be placed
before or after the other parameters. The map entries will still get collected and
passed as the first argument:

def namedParamsMethod2(Map params, String param2, String param3) {
assert params.a == 1
assert params.b == 2
assert params.c == 3
assert param2 == "param2"
assert param3 == "param3"
true
}

expect: "We can mix named and regular parameter in any order"
 namedParamsMethod2(a:1, b:2, c:3, "param2", "param3")
 namedParamsMethod2("param2", b:2, "param3", c:3, a:1)
 namedParamsMethod2(c:3, "param2", a:1, "param3", b:2)

In fact, the map entries can be interspersed among the other parameters in any order
we like. Groovy will collect the map entries and pass them as the first parameter.
It will then scan the rest of the parameters from left to right and assign them to the
subsequent parameters of the method. We can also drop the method call parentheses,
which allows us to invoke the method call as follows:

expect: "We can leave out parentheses"
 namedParamsMethod2 a:1, b:2, c:3, "param2", "param3"
 namedParamsMethod2 "param2", b:2, "param3", c:3, a:1
 namedParamsMethod2 c:3, "param2", a:1, "param3", b:2

Power Groovy DSL Features

[142]

These features combine neatly together for use in a DSL. Consider a method call
to transfer funds from one account to another for a customer. The conventional
way to lay out parameters to a method is in the order of their importance from a
programming logic point of view. So we declare the customer parameter as the first
parameter, as this is the primary object that we are operating on. We follow this with
the accounts we are operating on, and finish up with the amount to transfer:

def transfer(customer, from_account, to_account, amount) {
 println """debiting ${amount} from ${from_account} account,
crediting ${to_account} account for ${customer}"""
}
transfer("Joe Bloggs", "checking", "savings", 100.00)

Reading the method call does not provide any immediate clarity as to the function
of all of the parameters. So we will only know for sure that savings is the receiving
account by checking the method documentation to see that the third parameter is the
receiving account. What if we make a small change to this method and have it accept
named parameters instead?

def transfer(transaction, amount) {
 println """debiting ${amount} from ${transaction.from} account,
crediting ${transaction.to} for ${transaction.for}"""
}

transfer 100.00, from: "checking", to: "savings", for: "Joe Bloggs"
transfer for: "Joe Bloggs", 200.00, from: "checking", to: "savings"

Now our method call is starting to look like English. We also have a good degree
of flexibility over the order in which we place the named parameters and where we
place the amount parameter, so if we like, we can turn the call into something that
looks like English:

transfer 100.00, from: "checking", to: "savings", for: "Joe Bloggs"

Named parameters in DSLs
Being able to clarify exactly what a parameter means is a very useful technique to use
in a DSL. Not only does it improve the readability of the DSL, but it can also remove
potential ambiguities. Looking back at our GeeTwitter DSL from the last chapter,
we had a sendMessage call, which sends a text message to a Twitter user. Both the
message parameter and the user id parameter were defined as strings, which of
course could lead to ambiguity in the calling sequence:

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[143]

static String sentMessage
static def sendMessage1(id, message) {
 sentMessage = "Sending (${message}) to ${id}"
}

given:
 sendMessage1 "GroovyDSL", "Hi from GeeTwitter"
expect: "message sent correctly"
 sentMessage == "Sending (Hi from GeeTwitter) to GroovyDSL"
when:
 sendMessage1 "Hi from GeeTwitter", "GroovyDSL"
then: "message sent incorrectly"
 ! (sentMessage == "Sending (Hi from GeeTwitter) to GroovyDSL")

The second invocation here would, of course, cause an exception in the real
GeeTwitter as we try to send a message to a user called "Hi from GeeTwitter"
instead of to GroovyDSL. A small change removes this ambiguity and improves the
readability of the DSL:

static def sendMessage2(Map params, message) {
 sentMessage = "Sending (${message}) to ${params.to}"
}
when:
 sendMessage2 to: "GroovyDSL", "Hi from GeeTwitter"
then: "message sent correctly"
 sentMessage == "Sending (Hi from GeeTwitter) to GroovyDSL"

when:
 sendMessage2 "Hi from GeeTwitter", to: "GroovyDSL"
then: "message sent incorrectly"
 sentMessage == "Sending (Hi from GeeTwitter) to GroovyDSL"

It might seem a little redundant or inefficient, from a programming point of view, to
package a single value in a map. However, even though we are only going to pass
the single value to a parameter along with a message parameter, naming this to
parameter adds significantly to the resulting DSL script in terms of legibility.

Power Groovy DSL Features

[144]

Command chains
We already knew that Groovy allows us to leave out parentheses when calling
methods. Another neat trick introduced in Groovy 1.8 is the ability to leave out the
dot when we chain method calls. Using this feature, we can further improve the
readability of our DSLs by adding constructs that mimic natural language. Take the
following chained method calls:

deposit (100.00).currency(USD).to(savings)

By leaving out the parentheses on these calls and the intervening dots we can express
this chain as follows:

deposit 100.00 currency GBP to savings

Building this mini DSL is relatively straightforward. First we need an enum for
currencies, which we statically import. We also define two method calls, convert
and deposit:

enum Currency { USD, GBP, EUR }

class Account {
 double balance
}

static def convert (currency, amount) {
 def result
 switch (currency) {
 case Currency.USD: result = amount
 break
 case Currency.GBP: result = amount * 1.3
 break
 case Currency.EUR: result = amount * 1.1
 }
 result
}

static def deposit (double amount) {
 [
 currency: { Currency currency ->
 [to: { account ->
 account.balance += convert(currency , amount)
 }
]

 }
]
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[145]

The breakdown of the calling sequence is then as follows:

• Calling deposit returns a Map with an entry currency, which is a closure
• Calling currency returns another Map with an entry to which is a closure

that can be called just like a method, as described earlier
• Calling to does the conversion based on the parameters passed to deposit

and currency and sets the balance on the Account passed to itself:

given:
Account savings = new Account()

when:
deposit (100.00).currency(USD).to(savings)
deposit 100.00 currency GBP to savings

then:
savings.balance == 230.0

Builders
Much of what we do in writing software involves construction or assembly of some
sort or other. It could be building a graphical user interface, constructing a file to be
saved on disk, or structuring a response to be sent to another system through a web
services request. A lot of coding effort is dedicated to getting the structure of what
we are building correct. Web pages need to be structured correctly in order to be
displayed in a browser. XML-based files and responses to service requests need to be
well-formed or they will cause validation exceptions. Building rich client UIs is an art
in itself, with each client framework—such as Swing or SWT—having its own arcane
API to work with.

Beyond the complexities of the structures that we build, the pattern of construction
and the order of initialization imposed by different APIs bring their own constraints.
This alone will often obfuscate the structure of what we are building by burying it
deep within boilerplate code. In addition to this, the classes of object that we need to
construct may be of a similar nature and have different means of construction.

Power Groovy DSL Features

[146]

The builder design pattern
It would be useful to have a means of constructing objects such that the method
of construction was hidden. Enter the builder design pattern. The concept of a
design pattern comes originally from the architectural profession in the late 1970s.
In building architecture, a design pattern refers to the reuse of design solutions
for similar problems. In office complexes, the locating of stairwells, elevators,
and bathrooms around central service columns is a typical design pattern.

Using such a design pattern, architects designing large office buildings can
quickly lay out floor after floor of the building by repeating the layouts around the
service columns on each floor. This leaves more time and effort to be expended on
developing the functional work areas and aesthetics of the building. This not only
benefits the architect but also benefits the user of the building.

No matter where we travel, whether it is to Bangkok, San Francisco, Paris, or
London, it's usually not too difficult to find a bathroom, presuming we can
remember how to find our way back to the elevator that we came up in.
When we do, we are benefiting from the application of a design pattern.

Design patterns are seldom invented. Instead, they are usually observed in existing
buildings and catalogued. Good design evolves over time and is repeated again and
again. By exploiting existing design patterns, the architect can rely on the experience
of generations of previous building projects and be sure that at least these elements
of the building will work as expected.

Design patterns began to be observed and catalogued in software engineering in
the late eighties. Ward Cunningham and Kent Beck wrote one of the first conference
papers on the subject at OOPSLA 1987. By 1994, the seminal work by Eric Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, also known as the Gang of Four—
Design Patterns: Elements of Reusable Object-Oriented Software, Addison Wesley—was
published, which catalogued over 20 reusable design patterns, including the Model
View Controller (MVC), and Factory and Builder patterns.

These authors were not claiming to have invented all of these patterns. For each of
the patterns, they listed source systems where the patterns could be observed in use.
Some came from ET++, an object-oriented framework developed by Gamma and
others at Taligent. Many of the patterns, including MVC and Builder, originated
from the Smalltalk language and framework.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[147]

In fact, I can claim to have come up with one of the patterns myself. In 1989, while
working for Glockenspiel on a Cross GUI class library for C++, I was struggling for
a way to accommodate multiple library implementations in a single class library
header file. I proposed a solution to the company's founder and C++ guru, John
Carolan. John immediately christened the pattern, the Cheshire Cat. The Bridge
pattern in the GOF book also quotes this name for the pattern.

Using Groovy builders
An important and powerful part of Groovy is its implementation of the builder
design pattern. We implement design patterns in Java via Java classes and interfaces.
The Groovy implementation of Builder goes beyond this by providing a mini DSL,
which appears to embed the building process right into the language.

This style of markup is known as GroovyMarkup, and the code looks more like a
customized markup script than a regular Groovy script. This is due to the clever
use of Groovy's Meta Object Protocol (MOP) and closures.

At first glance, Groovy's builders defy our understanding of how things should
work in an object-oriented language. We no longer seem to be creating objects and
invoking methods as we would expect. For this section, let's suspend our disbelief
and just enjoy the power that Groovy builders provide.

Here we will just try to understand how to use GroovyMarkup to build things. Later
on in the chapter, we will cover how the MOP works, and it will become clear what
tricks are being employed by the Groovy designers in order to give us a very neat
way of constructing complex objects.

The best way to illustrate the GroovyMarkup feature is by way of an example.
We'll start with something simple. Suppose that we need to export customer records
from our e-commerce package in such a way that they can be used to initialize the
customer database of a new CRM system that has been installed by us. The CRM
system accepts customer records formatted in XML with customer IDs, names, and
addresses. The XML required might look like this:

<customers>
 <customer id='1001'>
 <name firstName='Fred' surname='Flintstone' />
 <address street='1 Rock Road' city='Bedrock' />
 </customer>
 <customer id='1002'>
 <name firstName='Barney' surname='Rubble' />
 <address street='2 Rock Road' city='Bedrock' />
 </customer>
</customers>

Power Groovy DSL Features

[148]

Constructing this simple snippet of XML in Java requires numerous method calls to
create XML elements and to set the attributes of these elements. The nested structure
of the document would need to be explicitly constructed by appending some
elements as children of other elements. By the time that we are done coding, the
procedural nature of the construction process means that the code doing the markup
bears no resemblance to the end result XML.

MarkupBuilder
Consider the GroovyMarkup equivalent. In the following code, we use a Groovy
MarkupBuilder class to construct the same snippet of XML as in the previous
section. The xmlIsIdentical method uses XMLUnit to test whether both XML
snippets are the same:

given:
def writer = new StringWriter()
def builder = new groovy.xml.MarkupBuilder(writer)
when:

def customers = builder.customers {
 customer(id:1001) {
 name(firstName:"Fred",surname:"Flintstone")
 address(street:"1 Rock Road",city:"Bedrock")
 }
 customer(id:1002) {
 name(firstName:"Barney",surname:"Rubble")
 address(street:"2 Rock Road",city:"Bedrock")
 }
}
then:
 xmlIsIdentical (writer.toString(), "customers.xml")

The striking thing about the previous code snippet is that, unlike the Java code
required to do the same, this snippet is remarkably similar in structure to the XML
that is output. In this example, we are using the MarkupBuilder class from the
groovy.xml package. MarkupBuilder is one of several builder classes provided out
of the box as part of the Groovy JARs. MarkupBuilder can be used to effortlessly
build XML- and HTML-formatted output. What we are in fact looking at is a series of
nested closures, one within the other. The nesting of the closures exactly matches the
tree-like structure of the desired XML output.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[149]

Namespaced XML
What if we would like to create namespaced XML? In GroovyMarkup, tags conform
to the method call syntax. So how can we do that if namespace:tag is not a valid
Groovy method name? Fortunately, there is a way around this. In order to insert
the colon into a tag name, we simply surround the element name in quotes. Groovy
allows us to invoke a method by using a string in place of the method name,
so "myMethod"() is treated the same as myMethod():

given:
def writer = new StringWriter()
def xml = new groovy.xml.MarkupBuilder(writer)

def params = [:]

when:
params."xmlns:bk" = "urn:loc.gov:books"
params."xmlns:isbn" = "urn:ISBN:0-393-36341-6"

def bk_tag = "bk:book"
xml."bk:book"(params) {
 "bk:title"("Cheaper by the Dozen")
 "isbn:number"(1568491379)
}

then:
 xmlIsIdentical writer.toString(), "book1.xml"

Here we are using the strings' references to set the xmlns namespaces for bk and
isbn. Then we use strings to declare the element names in our markup. All of this
results in the following output:

<bk:book xmlns:bk='urn:loc.gov:books' xmlns:isbn='urn:ISBN:0-393-
36341-6'>
 <bk:title>Cheaper by the Dozen</bk:title>
 <isbn:number>1568491379</isbn:number>
</bk:book>

Power Groovy DSL Features

[150]

This technique is not limited to namespaces. We can use it anywhere that we need to
output a character in a tag name, which would otherwise not be valid as a Groovy
method name (for instance, hyphenated element names). Any Groovy string can
be used as an element name, so the following is also valid, where we use
${book_title} to paste the tag name into the markup from a local variable:

given:
def writer = new StringWriter()
def xml = new groovy.xml.MarkupBuilder(writer)

def book = "bk-book"
def book_title = "bk-title"

when:
xml."${book}" {
 "${book_title}"("Cheaper by the Dozen")
 "isbn_number"(1568491379)
}
then:
 xmlIsIdentical writer.toString(), "book2.xml"

The MarkupBuilder class will slavishly emit whatever we ask it to. In the previous
code snippet, we are creating namespaces by using standard markup with the
MarkupBuilder class. A more elegant way of creating namespaced XML is by using
the StreamingMarkupBuilder class, which has built-in support for namespaces.

StreamingMarkupBuilder decouples the output of the markup from the creation of
the markup closure. We then bind the closure to StreamingMarkupBuilder at the
time at which we want the output to take place:

given:
def xml = new groovy.xml.StreamingMarkupBuilder()

when:
def markup = {
 customers {
 customer(id:1001) {
 name(firstName:"Fred",surname:"Flintstone")
 address(street:"1 Rock Road",city:"Bedrock")
 }
 customer(id:1002) {
 name(firstName:"Barney",surname:"Rubble")
 address(street:"2 Rock Road",city:"Bedrock")
 }
 }
}

then:
 xmlIsIdentical xml.bind(markup).toString(), "customers.xml"

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[151]

Within the closure, we can reference a variable, mkp, which allows us to give
instructions to the builder in order to control XML generation. Two handy methods
we can invoke are xmlDeclaration(), which causes the XML declaration header to
be output, and declareNamespace(), which sets up a namespace:

given:
 def xml = new groovy.xml.StreamingMarkupBuilder().bind {
 mkp.xmlDeclaration()
 mkp.declareNamespace('bk':'urn:loc.gov:books')
 mkp.declareNamespace('isbn':'urn:ISBN:0-393-36341-6')

 bk.book {
 bk.title("Cheaper by the Dozen")
 isbn.number(1568491379)
 }
 }

expect:
 xmlIsIdentical xml.toString(), "book1.xml"

Once we have made the builder aware of our namespaces, we can utilize them in the
markup code by using suffix notation. So namespace.tag will be output in the XML
as namespace:tag, as follows:

<?xml version='1.0'?>
<bk:book xmlns:bk='urn:loc.gov:books' xmlns:isbn='urn:ISBN:0-393-
36341-6'>
 <bk:title>Cheaper by the Dozen</bk:title>
 <isbn:number>1568491379</isbn:number>
</bk:book>

The GroovyMarkup syntax
GroovyMarkup is nothing more than method call syntax combined with closures and
named parameters. But, in effect, these Groovy syntactical features are combined to
produce a new DSL syntax for GroovyMarkup with its own rules. Let's look in detail
at the syntax from the previous examples:

def customers = builder.customers {
…

Power Groovy DSL Features

[152]

To begin with, we define the root node of our XML by invoking
MarkupBuilder.customers() on the builder object. This causes a root
customers tag to be output into the XML stream and the code. The tag is not closed
off until the following closure is executed. This looks and behaves like a customer
method taking a closure as a parameter even though there is no such method.

Nested within the closure we come across more methods, such as calls to customer,
title, name, and address:

customer(id:1001) {
…

This method call will cause a new nested customer tag to be output into the XML
stream with an id attribute set to 1001. Once again, the tag is not closed off until the
closure is executed, during which more method-like calls are encountered:

title("Mr")
name(firstName:"Fred",surname:"Flintstone")
address(street:"1 Rock Road",city:"Bedrock")

No methods exist for customers, customer, title, name, or address.
MarkupBuilder, in conjunction with its base BuilderSupport class, uses the Groovy
MOP to make all of this work as if by magic. The beauty of this approach is how
intuitive the resulting code is, because it closely reflects the resulting markup. All we
need to remember is that pseudo-method call syntax will create a tag, and named
parameters will be inserted as attributes in the resulting output.

The parameters passed follow the same conventions that we discussed earlier in
relation to named parameters. In this case, all named parameters are collected and
become the attributes of the element. We should only pass one additional parameter,
which is used as the body of the tag or element.

GroovyMarkup and HTML
With MarkupBuilder, it's just as easy to build HTML pages. Here we generate a
simple HTML page:

given:
def writer = new StringWriter()
def html = new groovy.xml.MarkupBuilder(writer)

when:
html.html {
 head {
 title "Groovy Builders"

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[153]

 }
 body {
 h1 "Groovy Builders are cool!"
 }
}

then:
xmlIsIdentical writer.toString(), "simple.html"

In the next example, we build a more complex HTML page containing nested tables.
MarkupBuilder will close all tags correctly so that they are well-formed. A classic
mistake when working with nested tag formats is to misplace or unbalance the
closing of tags. The HTML <table> tag and its nested <tr> and <td> tags are
highly prone to error when hand-coded. Assume that we want to generate HTML to
display the names of the various Groovy builder and ConcreteBuilder classes in a
nested table.

The HTML to produce this table would be something like the following:

<html>
 <head>
 <title>Groovy Builders</title>
 </head>
 <body>
 <table style='border: 1px solid black;'>
 <tr>
 <th>Builder class</th>
 <th>Concrete class</th>
 </tr>
 <tr>
 <td>groovy.util.BuilderSupport</td>
 <td>
 <table>
 <tr>
 <td>groovy.util.AntBuilder</td>
 </tr>
 <tr>
 <td>groovy.xml.MarkupBuilder</td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>groovy.util.FactoryBuilderSupport</td>
 <td>

Power Groovy DSL Features

[154]

 <table>
 <tr>
 <td>groovy.util.NodeBuilder</td>
 </tr>
 <tr>
 <td>groovy.swing.SwingBuilder</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </body>
</html>

Although the preceding HTML code looks correct, one of the table tags is
incorrectly terminated as </td>. Displaying the preceding code in a browser would
show an extra layer of nesting in the table tag that was not intended. The same
HTML can be generated using MarkupBuilder, as shown in the following listing:

given:
def writer = new StringWriter()
def html = new groovy.xml.MarkupBuilder(writer)

when:
html.html {
 head {
 title "Groovy Builders"
 }
 body {
 table(style:"border: 1px solid black;") {
 tr {
 th "Builder class"
 th "Concrete class"
 }
 tr {
 td "groovy.util.BuilderSupport"
 td {
 table {
 tr {
 td "groovy.util.AntBuilder"
 }
 tr {
 td "groovy.xml.MarkupBuilder"
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[155]

 }
 }
 tr {
 td "groovy.util.FactoryBuilderSupport"
 td {
 table {
 tr {
 td "groovy.util.NodeBuilder"
 }
 tr {
 td "groovy.swing.SwingBuilder"
 }
 }
 }
 }
 }
 }
}
then:
xmlIsIdentical writer.toString(), "table.html"

In the Groovy version, all of the tags that are produced are guaranteed to be
correct with respect to nesting and balancing. The Groovy version also looks much
less cluttered and readable. In fact, it is impossible for us to make the same type of
errors with the Groovy version, as the compiler will insist that all parentheses are
properly balanced.

Using program logic with builders
So far we have just used Groovy builders as straightforward markup code. In spite of
the unusual syntax, GroovyMarkup programs are still just plain Groovy code, so there
is nothing stopping us from mixing the construction process with regular program
logic if we please. Here we iterate over a list of customer data while generating XML
from the customer records that we find:

given:
def writer = new StringWriter()
def builder = new groovy.xml.MarkupBuilder(writer)

def fred = new Customer(id:1001,firstName:"Fred",
surname:"Flintstone",
street:"1 Rock Road",city:"Bedrock")
def barney = new Customer(id:1002,firstName:"Barney",
surname:"Rubble",

Power Groovy DSL Features

[156]

street:"2 Rock Road",city:"Bedrock")
def customerList = [fred, barney]

when:
builder.customers {
 for (cust in customerList) {
 customer(id:cust.id) {
 name(firstName:cust.firstName,surname:cust.surname)
 address(street:cust.street, city:cust.city)
 }
 }
}

then:
xmlIsIdentical writer.toString(), "customers.xml"

Builders for every occasion
Out of the box, the Groovy libraries include a suite of builders for most of the
common construction tasks that we might encounter. Here is a list of some of them:

• MarkupBuilder: This we have already seen. It can be used to generate any
XML-style tagged output. Class: groovy.xml.MarkupBuilder.

• NodeBuilder: This is a useful builder for building tree-like structures of node
instances in memory. Class: groovy.util.NodeBuilder.

• DOMBuilder: This builder will construct a WC3 DOM tree in memory from
the GroovyMarkup that we provide. Class: groovy.xml.DOMBuilder.

• SAXBuilder: This is very similar to the DOMBuilder insofar as the end result
is a WC3 DOM in memory. The difference is that it works with an existing
SAX ContentHandler class and fires SAX events to it as the GroovyMarkup is
executed. Class: groovy.xml.SAXBuilder.

• JMXBuilder: Also in the same vein as AntBuilder is the JMXBuilder class,
which can be used to deploy JMX management beans by using simple
markup-style syntax. JMXBuilder is a Groovy-based DSL for declaratively
exposing services, POJOs, POGOs, and so on, via the Java Management
Extensions (JMX). Class: groovy.jmx.builder.JMXBuilder.

• SwingBuilder: Next we'll cover SwingBuilder in detail with
an example. This builder constructs Swing-based UIs. Class:
groovy.swing.SwingBuilder.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[157]

NodeBuilder
NodeBuilder is used to build tree structures of node instances in memory. We use
exactly the same GroovyMarkup syntax as before. Here we build up a tree structure
in memory from customer data, using the same structure as with MarkupBuilder.
All that needs to change to construct a node-based tree in memory is to replace the
builder instance created with an instance of NodeBuilder. Once the markup code has
been executed, the customers field contains the tree structure, which can be accessed
by using Groovy's XPath-like syntax, GPath:

given:
def builder = new groovy.util.NodeBuilder()

def fred = new Customer(id:1001,firstName:"Fred",
surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")
def barney = new Customer(id:1002,firstName:"Barney",
surname:"Rubble",
 street:"2 Rock Road",city:"Bedrock")
def wilma = new Customer(id:1003,firstName:"Wilma",
surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")
def betty = new Customer(id:1004,firstName:"Betty", surname:"Rubble",
 street:"2 Rock Road",city:"Bedrock")
def customerList = [fred, barney,wilma,betty]

when:
def customers = builder.customers {
 for (cust in customerList) {
 customer(id:cust.id) {
 name(firstName:cust.firstName,surname:cust.surname)
 address(street:cust.street, city:cust.city)
 }
 }
}

then:
customers.customer[0].'@id' == 1001
customers.customer[1].'@id' == 1002
customers.customer[0].address[0].'@street' ==
 customers.customer[2].address[0].'@street'
customers.grep{
 it.name.any{it.'@surname' == "Rubble"}
}.size == 2
customers.grep{
 it.name.any{it.'@surname' == "Rubble"}
}.address.every{ it.'@street'[0] == "2 Rock Road"}

Power Groovy DSL Features

[158]

Using GPath to navigate a node tree
We've used GPath in the preceding code to access the node structure created from
our markup. To make sense of how the GPath syntax works, we must visualize it as
a tree structure where customers is the root node. Node attributes are accessible as
map entries, so element.'@attribute' is used to access the attribute values:

assert customers.customer[0].'@id' == 1001
assert customers.customer[1].'@id' == 1002

The following is the root customers node. Each node can have 1 to n leaf nodes, so
customer is always returned as a list object even if only one item is contained in the
list. We access individual elements by using array syntax (customer[1]) but any list
method can be used. The following snippet will list the first names of all customers
in the tree:

customers.customer.each {
 println it.name[0].'@firstName'
}

As we index deeper into the tree, we still need to use array syntax to access the lower
nodes, even if the elements at these levels are singletons. Here we assert that Fred
and Wilma live at the same address:

assert customers.customer[0].address[0].'@street'
 == customers.customer[1].address[0].'@street'

Finally, we can use a more complex GPath query to assert that all the Rubbles live
at 2 Rock Road. This is quite a complex query, so we will decompose it, as shown
in the following snippet. First, we use grep on the root customers node to produce
a tree of all customers whose surname is Rubble. This tree should have two nodes:
one for Barney and one for Betty:

def rubbles = customers.grep{ it.name.any{it.'@surname' == "Rubble"}}

Now we can assert that every Rubble lives at 2 Rock Road:

assert rubbles.address.every{ it.'@street'[0] == "2 Rock Road"}

SwingBuilder
Most Java developers I know hate Swing UIs with a passion. The reason people
hate Swing is because of the APIs. Let's face it, Swing UIs are a chore to build and
maintain, due to the unwieldy nature of the Swing APIs.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[159]

Any Swing app I've ever worked on has been a mess of component initialization
code, intermingled with anonymous inner classes for event handling. Each Swing
component, however small or insignificant, has to be renewed and given a name.
Figuring out how all of the components nest together, when some such as button
groups and panels may not even be visible, is an endless chore.

The following is a UI built with SwingBuilder that puts a simple UI onto the
GeeTwitter searching DSL from the last chapter. You can see in the forthcoming
screenshot how the markup mirrors the actual layout in the UI. Closures are used in
place of anonymous inner classes for events such as actionPerformed on the Exit
menu. This took less than five minutes to throw together, and unlike a pure Swing
API version, it is production-ready as soon as we remove the Napkin Look and Feel
line from the code:

@Grab(group='net.sf.squirrel-sql.thirdparty-non-maven',
module='napkinlaf', version='[1.2,)')
import groovy.swing.SwingBuilder
import javax.swing.*
import java.awt.*
import net.sourceforge.napkinlaf.*

data = []

def results
swing = new SwingBuilder()
swing.lookAndFeel(new NapkinLookAndFeel())
frame = swing.frame(title:'Twitter Search') {
 menuBar {
 menu('File') {
 menuItem 'Exit', actionPerformed: { System.exit(0) }
 }
 }
 panel(layout: new BorderLayout()) {
 panel (constraints:BorderLayout.NORTH) {
 label 'Search for Tweets'
 textField(columns:10, actionPerformed: { event ->
 println "Search for Event ${event.source.text}"
 data = GeeTwitter.search(event.source.text)
 results.model = tableModel(list:data) {
 propertyColumn(header:'Sender',
 propertyName:'from',preferredWidth:20)
 propertyColumn(header:'Tweet',
 propertyName:'tweet',preferredWidth:140)
 }

Power Groovy DSL Features

[160]

 })
 }
 scrollPane (constraints:BorderLayout.SOUTH){
 results = table() {
 tableModel(list:[]) {
 propertyColumn(header:'Sender',
 propertyName:'from',preferredWidth:20)
 propertyColumn(header:'Tweet',
 propertyName:'tweet',preferredWidth:140)
 }
 }
 }
 }
}
frame.pack()
frame.show()

The GroovyMarkup that we use for SwingBuilder is pretty much identical to what
we've seen before, with a few differences. Unlike MarkupBuilder and NodeBuilder,
we can't simply invent tags to insert into GroovyMarkup, as this would not make
sense. The tags must correspond to real UI widgets or controls that can be placed
into the UI. In the preceding code, we use frame, menuBar, panel, and textField,
among others. There are other non-widget tags, such as tableModel, that must be
used in conjunction with a table tag and others.

In the preceding example, we start with a frame tag. The SwingBuilder class takes
care of creating a JFrame widget for this frame, and maintaining it. Any further
widgets declared in the nested closure later in this frame will be added to the frame.
Take the preceding scrollPane, for example. Widgets that are nested below this will
be added to the scrollPane, and so on. The nesting of the closure code that we use
to declare the components dovetails exactly with how these components are nested
in the UI. Declaring a widget returns the corresponding Swing widget; so the frame
variable in the preceding code contains a JFrame instance that allows us to call the
regular swing pack() and show() methods to display the UI.

SwingBuilder handles the Swing event loop and dispatches any event that occurs.
All we need to do is supply a closure for the actionPerformed attribute of any
widget that we want to provide event handling for. This is far neater than the
anonymous classes that regular Swing code is usually littered with.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[161]

The following result is a quick and nasty UI for Twitter searching:

Method pointers
Groovy allows you to assign a method to a closure by using the & syntax. The closure
returned is often referred to as a method pointer. Method pointers can be assigned
by dereferencing the method name from any object instance, for example:

given:
def list = ["A", "B", "C"]

when:
def addToList = list.&add

and:
addToList "D"

then:
list == ["A", "B", "C", "D"]

Power Groovy DSL Features

[162]

The difficulty with method pointers to instance methods is being sure what instance
the method pointer is referencing. In essence, an instance method pointer violates
the encapsulation rules for the object by passing control to an object that is outside
the direct control of a class. So I recommend caution when using them. However,
method pointers when applied to static methods can be a very useful way to create
DSL shortcut keywords.

Metaprogramming and the Groovy MOP
In a nutshell, the term metaprogramming refers to writing code that can dynamically
change its behavior at runtime. A Meta-Object Protocol (MOP) refers to the
capabilities in a dynamic language that enable metaprogramming. In Groovy,
the MOP consists of four distinct capabilities within the language: reflection,
metaclasses, categories, and expandos.

The MOP is at the core of what makes Groovy so useful for defining DSLs. The MOP
is what allows us to bend the language in different ways in order to meet our needs,
by changing the behavior of classes on the fly. This section will guide you through
the capabilities of MOP and, based on what we learn, we will later dissect some
builder code in order to understand how builders work under the covers.

Reflection
To use Java reflection, we first need to access the Class object for any Java object in
which we are interested through its getClass() method. Using the returned Class
object, we can query everything from the list of methods or fields of the class, to the
modifiers that the class was declared with. In the following code, we see some of the
ways that we can access a Class object in Java and the methods we can use to inspect
the class at runtime:

import java.lang.reflect.Field;
import java.lang.reflect.Method;

public class Reflection {
 public static void main(String[] args) {
 String s = new String();
 Class sClazz = s.getClass();
 Package _package = sClazz.getPackage();
 System.out.println("Package for String class: ");
 System.out.println(" " + _package.getName());
 Class oClazz = Object.class;
 System.out.println("All methods of Object class:");
 Method[] methods = oClazz.getMethods();
 for(int i = 0;i < methods.length;i++)
 System.out.println(" " + methods[i].getName());

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[163]

 try {
 Class iClazz = Class.forName("java.lang.Integer");
 Field[] fields = iClazz.getDeclaredFields();
 System.out.println("All fields of Integer class:");
 for(int i = 0; i < fields.length;i++)
 System.out.println(" " + fields[i].getName());
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
}

We can access the Class object from an instance by calling its Object.getClass()
method. If we don't have an instance of the class to hand, we can get the Class object
by using .class after the class name, for example, String.class. Alternatively, we
can call the static Class.forName, passing to it a fully qualified class name.

Class has numerous methods, such as getPackage(), getMethods(), and
getDeclaredFields() that allow us to interrogate the Class object for details about
the Java class under inspection. The preceding example will output various details
about String, Integer, and Double:

Power Groovy DSL Features

[164]

Groovy reflection shortcuts
Groovy, as we would expect by now, provides shortcuts that let us reflect classes
easily. In Groovy, we can shortcut the getClass() method as a property access
.class, so we can access the class object in the same way whether we are using
the class name or an instance. We can treat .class as a string and print it directly
without calling Class.getName(), as follows:

The variable greeting is declared with a dynamic type, but has the type
java.lang.String after the Hello string is assigned to it. Classes are first class
objects in Groovy so we can assign a string to a variable. When we do this, the object
that is assigned is of the type java.lang.Class. However, it describes the String
class itself, so printing will report java.lang.String.

Groovy also provides shortcuts for accessing packages, methods, fields, and just
about all the other reflection details that we need from a class. We can access these
straight off the class identifier, as follows:

println "Package for String class"
println " " + String.package
println "All methods of Object class:"
Object.methods.each { println " " + it }
println "All fields of Integer class:"
Integer.fields.each { println " " + it }

Incredibly, these six lines of code do all of the same work as the 30 lines in our
Java example. If we look at the preceding code, it contains nothing that is more
complicated than it needs to be. Referencing String.package to get the Java
package of a class is as succinct as you can make it. As usual, String.methods and
String.fields return Groovy collections, so we can apply a closure to each element
with the each method. What's more, the Groovy version outputs a lot more useful
detail about the package, methods, and fields.

When using an instance of an object, we can use the same shortcuts through the
class field of the instance:

given:
 def greeting = "Hello"
expect:
 greeting.class.package == String.package
 String.package.toString().contains "package java.lang"

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[165]

Expandos
An Expando is a dynamic representation of a typical Groovy bean. Expandos support
typical get and set style bean access but, in addition to this, they accept gets and
sets to arbitrary properties. If we try to access a non-existing property, the Expando
does not mind and, instead of causing an exception, it will return null. If we set a
non-existent property, the Expando will add that property and set the value. In order
to create an Expando, we instantiate an object of class groovy.util.Expando:

given:
 def customer = new Expando()

expect:
 customer.properties == [:]
 customer.id == null
 customer.properties == [:]

when:
 customer.id = 1001
 customer.firstName = "Fred"
 customer.surname = "Flintstone"
 customer.street = "1 Rock Road"

then:
 customer.id == 1001

 customer.properties == [
 id:1001, firstName:'Fred',
 surname:'Flintstone', street:'1 Rock Road']

The id field of customer is accessible on the Expando shown in the preceding
example even when it does not exist as a property of the bean. Once a property
has been set, it can be accessed by using the normal field getter, for example,
customer.id. Expandos are a useful extension to normal beans when we need
to be able to dump arbitrary properties into a bag and we don't want to write a
custom class to do so.

Power Groovy DSL Features

[166]

A neat trick with expandos is what happens when we store a closure in a property.
As we would expect, an Expando closure property is accessible in the same way as a
normal property. However, because it is a closure, we can apply function call syntax
to it to invoke the closure. This has the effect of seeming to add a new method on the
fly to the Expando:

customer.prettyPrint = {
 println "Customer has following properties"
 customer.properties.sort {it.key} .each {
 if (it.key != 'prettyPrint')
 println " " + it.key + ": " + it.value
 }
}

customer.prettyPrint()

Here we appear to be able to add a prettyPrint() method to the customer object,
which outputs to the console:

Customer has following properties

 surname: Flintstone

 street: 1 Rock Road

 firstName: Fred

 id: 1001

Categories
Adding a closure to an Expando to give a new method is a useful feature, but what
if we need to add methods to an existing class on the fly? Groovy provides another
useful feature—categories—for this purpose. A Category can be added to any class
at runtime, by using the use keyword.

We can create Category classes that add methods to an existing class. To create
a Category for a class, we define a class containing static methods that take an
instance of the class that we want to extend as their first parameter. By convention,
we name this parameter as self. When the method is invoked, self is set to the
object instance that we are extending. The Category can then be applied to any
closure by using the use keyword.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[167]

Here we create a CustomerPrinter class that pretty prints a customer object.
We can then make use of this class's methods in a use block and apply them to
a Customer object:

class Customer {
 int id
 String firstName
 String surname
 String street
 String city
}

class CustomerPrinter {
 static void prettyPrint(Customer self) {
 println "Customer has following properties"
 self.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' && it.key != 'class')
 println " " + it.key + ": " + it.value
 }
 }
}

given:
def fred = new Customer(id:1001,firstName:"Fred",
surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")
def barney = new Customer(id:1002,firstName:"Barney",
surname:"Rubble",
 street:"2 Rock Road",city:"Bedrock")

def customerList = [fred, barney]

when:
use (CustomerPrinter) {
 for (customer in customerList)
 customer.prettyPrint()
}
then:
 """Customer has following properties
 city: Bedrock
 firstName: Fred

Power Groovy DSL Features

[168]

 id: 1001
 street: 1 Rock Road
 surname: Flintstone
Customer has following properties
 city: Bedrock
 firstName: Barney
 id: 1002
 street: 2 Rock Road
 surname: Rubble""" == output()

Java libraries are full of classes that have been declared final. The library designers
in their wisdom have decided that the methods they have added are all that we will
ever need. Unfortunately, that is almost never the case in practice. Take the Java
String class, for example. There are plenty of useful string manipulation features
that we might like to have in the String class. Java has added methods progressively
to this class over time, for instance, match and split in Java 1.4, with replace and
format being added in Java 1.5.

If we needed these style methods before Sun got around to adding them, we could
not do it ourselves because of the final modifier. So the only option has been to use
classes from add-on libraries such as commons StringUtils. The Apache Commons
Lang component class contains a slew of useful classes that augment the basic
capabilities of Java classes, including BooleanUtils, StringUtils, DateUtils, and
so on. All of the util class methods are implemented as static, taking String as the
first parameter. This is the typical pattern used in Java when we need to mix in extra
functionality to an existing class:

@Grab(group='org.apache.commons', module='commons-lang3',
version='3.0')
import org.apache.commons.lang3.StringUtils;

public class StringSplitter {

 public static void main(String[] args) {
 if (!args) {
 System.out.println("USAGE : StringSplitter string
seperator");
 System.exit(0);
 }
 String [] splits = StringUtils.split(args[0], args[1]);

 for (int i = 0; i < splits.length; i++) {
 System.out.println("token : " + splits[i]);
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[169]

Conveniently, this pattern is the same as the one used in Groovy categories, which
means that the Apache Commons Lang Util classes can all be dropped straight into
a use block. So all of these useful utility classes are ready to be used in your Groovy
code as categories:

import org.apache.commons.lang.StringUtils

expect:
 use (StringUtils) {
 "org.apache.commons.lang3".split(".") ==
 ["org", "apache", "commons", "lang3"]
 }

You can also use the @Category annotation in association with
a class.

Traits
A recent and very useful addition to the Groovy language is the concept of a trait.
A trait is a reusable set of methods and properties that can be applied to any class
without the need for multiple inheritance. Earlier in the chapter, we implemented a
pretty print class for the Customer class. In the following example we implement the
PrettyPrintable class as a trait. This trait can be applied to any class to give it the
ability to pretty print its properties:

trait PrettyPrintable {
 void prettyPrint() {
 this.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' && it.key != 'class')
 println it.key + ": " + it.value
 }
 }

}
class Customer implements PrettyPrintable {
 int id
 String firstName
 String surname
 String street
 String city
}

Power Groovy DSL Features

[170]

given:
def fred = new Customer(id:1001,firstName:"Fred",
 surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")
def barney = new Customer(id:1002,firstName:"Barney",
 surname:"Rubble",
 street:"2 Rock Road",city:"Bedrock")

def customerList = [fred, barney]

when:
for (customer in customerList)
 customer.prettyPrint()
then:
 """city: Bedrock
firstName: Fred
id: 1001
street: 1 Rock Road
surname: Flintstone
city: Bedrock
firstName: Barney
id: 1002
street: 2 Rock Road
surname: Rubble""" == output()

MetaClass
In addition to the regular Java Class object that we saw earlier when looking at
reflection, each Groovy object also has an associated MetaClass object. All Groovy
classes secretly implement the groovy.lang.GroovyObject interface, which exposes
a getMetaClass() method for each object:

public interface GroovyObject {
 /**
 * Invokes the given method.
 */
 Object invokeMethod(String name, Object args);

 /**
 * Retrieves a property value.
 */
 Object getProperty(String propertyName);

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[171]

 /**
 * Sets the given property to the new value.
 */
 void setProperty(String propertyName, Object newValue);

 /**
 * Returns the metaclass for a given class.
 */
 MetaClass getMetaClass();

 /**
 * Allows the MetaClass to be replaced with a
 * derived implementation.
 */
 void setMetaClass(MetaClass metaClass);
}

Pure Java classes used in Groovy do not implement this interface, but they have a
MetaClass assigned anyway. This MetaClass is stored in the MetaClass registry.
The MetaClass of any class can be found by accessing its .metaClass property:

class Customer {
 int id
 String firstName
 String surname
 String street
 String city
}

// Access Groovy meta class
def groovyMeta = Customer.metaClass

// Access Java meta class
def javaMeta = String.metaClass

Metaclasses are the secret ingredients that make the Groovy language dynamic.
MetaClass maintains all of the metadata about a Groovy class. This includes all of its
available methods, fields, and properties. Unlike the Java Class object, the Groovy
MetaClass allows fields and methods to be added on the fly. So while the Java class
can be considered as describing the compile time behavior of the class, MetaClass
describes its runtime behavior. We cannot change the Class behavior of an object
but we can change its MetaClass behavior by adding properties or methods on
the fly.

Power Groovy DSL Features

[172]

The Groovy runtime maintains a single MetaClass per Groovy class, and these
operate in close quarters with the GroovyObject interface. GroovyObject
implements a number of methods, which in their default implementations are
just facades to the equivalent MetaClass methods. The most important of these to
understand is the invokeMethod() method.

Pretended methods – MetaClass.invokeMethod
An important distinction between Java and Groovy is that, in Groovy, a method call
never invokes a class method directly. A method invocation on an object is always
dispatched in the first place to the GroovyObject.invokeMethod() method of the
object. In the default case, this is relayed onto the MetaClass.invokeMethod()
method for the class and MetaClass is responsible for looking up the actual method.
This indirect dispatching is the key to how a lot of Groovy power features work as it
allows us to hook ourselves into the dispatching process in interesting ways:

class Customer {
 int id
 String firstName
 String surname
 String street
 String city

 Object invokeMethod(String name, Object args) {
 if (name == "prettyPrint") {
 println "Customer has following properties"
 this.properties.sort { it.key }.each {
 if (it.key != 'class')
 println " " + it.key + ": " + it.value
 }
 }
 }
}

given:
def fred = new Customer(id:1001,firstName:"Fred",
 surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")
def barney = new Customer(id:1002,firstName:"Barney",
 surname:"Rubble",
 street:"2 Rock Road",city:"Bedrock")

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[173]

def customerList = [fred, barney]

when:
for (customer in customerList)
 customer.prettyPrint()
then:
 """Customer has following properties
 city: Bedrock
 firstName: Fred
 id: 1001
 street: 1 Rock Road
 surname: Flintstone
Customer has following properties
 city: Bedrock
 firstName: Barney
 id: 1002
 street: 2 Rock Road
 surname: Rubble""" == output()

In the preceding code, we added a Customer.invokeMethod() method to the
Customer class. This allows us to intercept method invocations and respond to calls
to Customer.prettyPrint() even though this method does not exist. Remember
how in GroovyMarkup we appeared to be calling methods that did not exist? This is
the core of how GroovyMarkup works. The Customer.prettyPrint() method in the
previous code snippet is called a pretended method.

Understanding this, delegate, and owner
Like Java, Groovy has a this keyword that refers to the current or enclosing Java
object. In Java, we don't have any other context in which we can execute code except
in a class method. In an instance method, this will always refer to the instance
itself. In a static method, this has no meaning as the compiler won't allow us to
reference this in a static context.

In addition to the instance methods, Groovy has three additional execution contexts
to be aware of:

• Code running directly within a script where the enclosing object is the script
• Closure code where the enclosing object is either a script or an instance object
• Closure code where the enclosing object is another closure

Power Groovy DSL Features

[174]

In addition to the this keyword, Groovy has two other keywords that are referred
only in the context of a closure—owner and delegate:

• The owner keyword refers to the enclosing object, which in the majority
of cases is the same as this, the only exception being when a closure is
surrounded by another closure.

• The delegate keyword refers to the enclosing object and is usually the same
as owner except that delegate is assignable to another object. Closures relay
method invocations that they handle themselves back to their delegate
keywords. This is how the methods of an enclosing class become available to
be called by the closure as if the closure was also an instance method. We will
see later that one of the reasons builders work the way they do is because
they are able to assign the delegate of a closure to themselves.

The delegate keyword will initially default to owner,
except when we explicitly change the delegate keyword to
something else through the Closure.setDelegate method.

The following example illustrates this, owner, and delegate working under various
different contexts. This example is necessarily complex, so take the time to read and
understand it:

class Clazz {
 def method() {
 this
 }

 def methodDelegate() {
 delegate
 }

 def methodOwner() {
 owner
 }
 def closure = {
 [this, delegate, owner]
 }

 def closureWithinMethod() {
 def methodClosure = {
 [this, delegate, owner]
 }
 methodClosure()

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[175]

 }
}
given: "A class with an Instance method"
def clazz = new Clazz()

when: "In a class instance method 'this' is the "
def methodThis = clazz.method()

then:
methodThis == clazz

when: "we try to access delegate from a method"
def methodDelegate = clazz.methodDelegate()

then:
thrown(MissingPropertyException)
methodDelegate == null

when: "we try to access owner from a method"
def methodOwner = clazz.methodOwner()

then:
thrown(MissingPropertyException)
methodOwner == null

when: "we get this, delegate and owner for a closure"
def (closureThis, closureDelegate, closureOwner) = clazz.closure()

then: "this, delegate and owner are the class instance"
closureThis == clazz
closureDelegate == clazz
closureOwner == clazz

when: "get this, delegate and owner for a closure in method"
def (closureInMethodThis, closureInMethodDelegate,
 closureInMethodOwner) = clazz.closureWithinMethod()

then: """this, delegate and owner are the class instance not the
 enclosing closure"""
closureInMethodThis == clazz
closureInMethodDelegate == clazz
closureInMethodOwner == clazz
closureInMethodThis != clazz.closure
closureInMethodDelegate != clazz.closure
closureInMethodOwner != clazz.closure

Power Groovy DSL Features

[176]

Running the preceding code will output the following text:

Class method this is : class Clazz

Closure this is : class ConsoleScript1

Closure Closure this is : class ConsoleScript1

Method Closure this is : class Clazz

Script this is : class ConsoleScript1

So, the rules for resolving this, owner, and delegate in the various contexts are:

• In a class instance method, this is always the instance object. owner and
delegate are not applicable and will be disallowed by the compiler

• In a class static method, this, owner, and delegate references will be
disallowed by the compiler

• In a closure defined within a script, this, owner, and delegate all refer to
the Script object unless delegate has been reassigned

• In a closure within a method, this and owner refer to the instance object
of the enclosing class; as will delegate, unless it has been reassigned to
another object

• In a script, this is the Script object, and owner and delegate are
not applicable

How builders work
Earlier, when we looked at the MarkupBuilder code, the unfamiliar syntax must
have seemed strange. Now that we have an understanding of how the MOP and
pretended methods work, let's take a quick look again at some builder code and see
if we can figure out what might be happening. MarkupBuilder is derived from the
BuilderSupport class. When describing how MarkupBuilder works, I won't make a
distinction between BuilderSupport and MarkupBuilder. Most of the mechanisms
described here are in fact implemented by BuilderSupport and are shared with
other Builder classes:

def customers = builder.customers {
 customer(id:1001) {
 name(firstName:"Fred",surname:"Flintstone")
 address(street:"1 Rock Road",city:"Bedrock")
 }
 customer(id:1002) {
 name(firstName:"Barney",surname:"Rubble")
 address(street:"2 Rock Road",city:"Bedrock")
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[177]

No matter how far you look in the documentation for MarkupBuilder, you won't
find anything about it having a customers method. So what's happening when
we write:

def customers = builder.customers {
…?

The answer is that MarkupBuilder is pretending to have a method with the
signature: MarkupBuilder.customers(Closure c). In the next line of code,
things get a little more interesting. This line of code is defined within the body
of the closure itself:

customer(id:1001) {
…

To explain this, we need to understand how closures handle method calls. When a
closure encounters a method call that it cannot handle itself, it automatically relays
the invocation to its owner object. If this fails, it relays the invocation to its delegate.
Normally, the delegate would be the enclosing script or class, but MarkupBuilder
sets the delegate object to itself. The closure relays the customer method invocation
to MarkupBuilder, which has an invokeMethod() implementation that pretends to
have a method MarkupBuilder.customer(Map m, Closure c).

Method invocation and property lookup are governed by the resolve strategy of
the Closure. The resolve strategy tells Closure what objects it should look at when
attempting to resolve a method or property reference. By default, the resolve strategy
is set to OWNER_FIRST, which means that the first place we look is in owner. If this
lookup fails, then the search continues to the delegate object.

MarkupBuilder relies on the default resolve strategy, but we can change the resolve
strategy as the need arises. The full list of resolve strategies is as follows:

• OWNER_FIRST (the default): This resolves methods and properties in owner
first followed by delegate if not found.

• DELEGATE_FIRST: This resolves in delegate first and then searches owner if
not found.

• OWNER_ONLY: This resolves in owner only and doesn't search delegate.
• DELEGATE_ONLY: This resolves in delegate only with no search of owner.
• TO_SELF: This is a special case to allow getProperty of Closure itself to be

overridden. With this resolve strategy, the closure calls getProperty on itself
first before continuing the lookup through the normal lookup process.

Power Groovy DSL Features

[178]

Coming back to our markup processing, the next line of code is in the context of a
closure within a closure:

name(firstName:"Fred",surname:"Flintstone")

At this level of nesting, delegate would normally refer to the enclosing
script or instance object. Once again MarkupBuilder has reassigned delegate
to refer to itself. With this, Closure relays the invocation up to its delegate,
MarkupBuilder.invokeMethod() handles it and again pretends it has a
method MarkupBuilder.name(Map m, Closure c).

With each of these pretended methods, MarkupBuilder outputs a tag with the
name of the method and attributes set according to the named parameters, and
then calls the closure. As with most things in Groovy, building your own builder
is surprisingly easy when you know how to do it:

class PoorMansTagBuilder {
 int indent = 0
 Object invokeMethod(String name, Object args) {
 indent.times {print " "}
 println "<${name}>"
 indent++
 args[0].delegate = this // Change delegate to the builder
 args[0].call()
 indent--
 indent.times {print " "}
 println "</${name}>"
 }
}

given:
def builder = new PoorMansTagBuilder ()

when:
builder.root {
 level1{
 level2 {
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[179]

then:
 """<root>
 <level1>
 <level2>
 </level2>
 </level1>
</root>""" == output()

In order to illustrate the builder mechanism shown in the previous code snippet,
we are conveniently ignoring any parameter passing, and assuming that args just
contains a first parameter of the type Closure. However, this short example does
illustrate method pretending through the invokeMethod(), and method relaying by
assigning delegate.

ExpandoMetaClasses
We briefly touched on metaclasses when building our Twitter DSL in Chapter 4,
The Groovy Language. In the coming example, we've used String.metaClass to
dynamically add a method to the String class for Twitter searching. Let's look at
what is happening here:

String.metaClass.search = { Closure c ->
 GeeTwitter.search(delegate,c)
}

From the earlier section on expandos, we understand how an Expando allows us
to dynamically add a property to a class. That's all that is happening here. In the
preceding code, we are dynamically adding a property to MetaClass for String in
the same way as we added properties to Expando. This property happens to be a
Closure, and the object happens to be the MetaClass of String, so it has the effect
of adding a new method to the String class.

Adding a regular property to MetaClass can be achieved in the same way as
with expandos. There is only a single MetaClass per Groovy or Java class, so
this is useful only if we have a new property that is relevant across all instances
of a class. In practice, this will rarely happen. Apart from adding properties and
methods, there are a whole bunch of other interesting things that we can do with
ExpandoMetaClass. We will go through a selection of them here.

Power Groovy DSL Features

[180]

Replacing methods
The technique that we use to add a method can also be used to replace an existing
method. When doing so, we can subvert the existing logic of a class. Wouldn't it be
nice if we could change all bank managers' minds as easily as this?:

class BankManager {

 boolean approveLoan() {
 return false
 }
}

given:
def myBankManager = new BankManager()

expect:
myBankManager.approveLoan() == false

when:
BankManager.metaClass.approveLoan = { true }
myBankManager = new BankManager()

then:
myBankManager.approveLoan() == true

Any method can be overridden or added. This includes any of the operator methods,
such a plus(), minus(), multiply(), divide(), and so on. If need be, we can add
operator semantics to any class, even if we have not written it ourselves.

Adding or overriding static methods
To add or override a static method of a class, we just insert the static keyword
before the method name. In this example, we have a BusinessService class
with static methods. If we try to run with this service as a unit test, then the
remoteService object is not wired in and is null. We can get around this by
adding a isRemoteServiceLive method that returns true. This turns out to
be a great way to mock service methods in unit tests:

class BusinessService {
 static def remoteService
 static boolean isRemoteServiceLive() {
 remoteService.isLive()
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[181]

when:
 BusinessService.isRemoteServiceLive()
then:
 thrown NullPointerException

when:
 BusinessService.metaClass.static.isRemoteServiceLive =
{ true }
 def live = BusinessService.isRemoteServiceLive()

then:
 notThrown NullPointerException
 live == true

Dynamic method naming
We can use GStrings to name methods as we add or override them in a class. This
means that we can dynamically generate method names on the fly. In the following
example, we iterate all of the properties in the Customer class. We can exclude the
class and metaClass properties with the find operator it =~ /lass/ so that we
just add methods for the properties that we want:

class Customer {
 int id
 String firstName
 String surname
 String street
 String city
}

given:
def c = new Customer()
c.properties.keySet().findAll { !(it =~ /lass/)}.each {
 Customer.metaClass."idFor${it.capitalize()}" = { ->
 delegate."$it".toString().toLowerCase().tr(' ', '_')
 }
}
when:
def cust = new Customer(firstName:"Fred",
 surname:"Flintstone",
 street:"Rock Road",
 city:"Bedrock")

Power Groovy DSL Features

[182]

then:
cust.idForFirstName() == "fred"
cust.idForSurname() == "flintstone"
cust.idForStreet() == "rock_road"

Adding overloaded methods
Whenever we add a method to the ExpandoMetaClass that has the same signature
as an existing method, the original method is overridden. In the following snippet,
we can see that it is the last String blanked method that is in place after we override on
subsequent occasions:

given:
String.metaClass.blanks { delegate.replaceAll(/./) {'%'}}
String.metaClass.blanks { delegate.replaceAll(/./) {'@'}}
String.metaClass.blanks { delegate.replaceAll(/./) {'*'}}
expect:
"A String".blanks() == "********"

To add overloaded versions of methods, we can continue to add new methods.
As long as the signatures are different from the last each method, it will be
added as an overloaded method:

given:
String.metaClass.static.valueAndType = { double d ->
 "${d.class.name}:${valueOf(d)}"
}
String.metaClass.static.valueAndType = { float f ->
 "${f.class.name}:${valueOf(f)}"
}
String.metaClass.static.valueAndType = { int i ->
 "${i.class.name}:${valueOf(i)}"
}
String.metaClass.static.valueAndType = { long l ->
 "${l.class.name}:${valueOf(l)}"
}

expect:
String.valueAndType(1.0) == "java.lang.Double:1.0"
String.valueAndType(3.333f) == "java.lang.Float:3.333"
String.valueAndType(101) == "java.lang.Integer:101"
String.valueAndType(1000000L) == "java.lang.Long:1000000"

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

[183]

When we are overloading subsequent methods with different signatures, we can
make use of the append operator <<:

given:
 String.metaClass.static.valueAndType << { double d ->
 "${d.class.name}:${valueOf(d)}"
 }
 String.metaClass.static.valueAndType << { float f ->
 "${f.class.name}:${valueOf(f)}"
 }
 String.metaClass.static.valueAndType << { int i ->
 "${i.class.name}:${valueOf(i)}"
 }
 String.metaClass.static.valueAndType << { long l ->
 "${l.class.name}:${valueOf(l)}"
 }

 expect:
 String.valueAndType(1.0) == "java.lang.Double:1.0"
 String.valueAndType(3.333f) == "java.lang.Float:3.333"
 String.valueAndType(101) == "java.lang.Integer:101"
 String.valueAndType(1000000L) == "java.lang.Long:1000000"

Adding constructors
Constructors can be added to a class by using the constructor property of metaclass.
Just be wary when doing this so as not to call the default constructor. The mechanism
used by metaclass to call the constructor will cause a stack overflow, if you do:

given:
Customer.metaClass.constructor = {
 String first, String last -> new Customer(
 firstName:first,
 surname:last)
}

when:
def c = new Customer("Fred", "Flintstone")

then:
c.firstName == "Fred"
c.surname == "Flintstone"

Power Groovy DSL Features

[184]

Summary
We have covered a lot of ground in this chapter. We have now covered most of the
important features of the Groovy language, and looked in depth at how some of
these features can be applied to developing DSLs. We now have an appreciation of
what can be achieved by using features in the MOP, and how using the MOP enables
other powerful features, such as GroovyMarkup.

Using the MOP, we have learned how we can modify our program's behavior
at runtime. In the next chapter we will explore features in the Groovy language
that allow us to hook in the actual compilation process. We will see how AST
transformations allow us a much greater degree of control over our DSL by
manipulating our program code at compile time.

www.allitebooks.com

http://www.allitebooks.org

[185]

AST Transformations
In this chapter, we will take a look at Groovy abstract syntax tree (AST)
transformations. AST transformations are a mechanism for us to hook the
Groovy compilation process. Up to now, we have looked at Groovy's runtime
metaprogramming abilities. Here, we will look at compile time metaprogramming
and see how we can use AST transformations to build code on the fly during the
compilation process. This is a complex subject, for which we will focus on the
following aspects in detail:

• Local AST transformations: We will look at how we can use a local AST
transformation to implement an annotation

• Manipulating the AST: We will look at the various mechanisms for adding
code to our programs using the ASTNode APIs and the ASTBuilder class

• Global AST transformations: We will build one complete DSL based on a
Global AST transformation

• Compilation errors: We will learn how to add our own compilation errors
• Packaging an AST transformation: We will learn how to package an AST

transformation so that it can be shared

AST Transformations

[186]

What is an AST
The acronym AST is shorthand for the abstract syntax tree. During the compilation
process, the Groovy compiler groovyc will generate interim data structures that
represent the code that is being compiled. The main data structure that the complier
produces is the AST. The AST is quite literally an abstract syntax tree. In other
words, it is a tree structure in memory that describes the syntax of the code being
compiled. To illustrate this, let's take a simple example:

class Foo {
 def barValue

 def bar() {
 return barValue
 }
}

The compiler will parse this code and turn it into a tree structure to represent
the syntax of the code. At the top of the tree is a node, which represents the class
declaration. This node is represented by the Groovy AST class ClassNode. The class
node will have several child nodes of the type ConstructorNode, MethodNode,
FieldNode, and PropertyNode depending on what phase of compilation we are at.

The major elements of Groovy AST are represented by objects of the
type ASTNode and its subclasses. As you drill down the tree, you will
encounter elements that represent the expressions in the code represented
by the statement and its subclasses. You will encounter a lot of these
in the examples in this chapter. For more information, see the class
documentation for the ast package and its subpackages at http://
docs.groovy-lang.org/latest/html/api/org/codehaus/
groovy/ast/package-summary.html.

The method node for the bar method will have a block statement node, which
represents the block of code within the body of the method. As it happens, this
block of code is only a single statement, so the only child of the block statement
is a return statement node and the only child of the return statement is a variable
expression node.

The best way to explore the AST is via the groovyConsole tool. Type the preceding
code snippet into groovyConsole and view the AST in the AST viewer, accessible
via the script menu. By selecting the semantic analysis phase of compilation, we will
see the following tree of AST nodes are generated at this phase of compilation. More
and more detail is compiled into the class as the compiler reaches later phases. Let's
take a more detailed look at the phases of the Groovy compiler.

www.allitebooks.com

http://docs.groovy-lang.org/latest/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/latest/html/api/org/codehaus/groovy/ast/package-summary.html
http://docs.groovy-lang.org/latest/html/api/org/codehaus/groovy/ast/package-summary.html
http://www.allitebooks.org

Chapter 8

[187]

Compiler phases
As the compiler works through the different phases, it adds detail to the AST. In all
the examples we will work on in this chapter, we will have sufficient detail for our
transformations to work on in the semantic analysis phase of compilation. It is worth
understanding the compiler phases and what additional information is added to the
AST at each phase.

The AST viewer is a useful tool for exploring this. The preceding screenshot is the
panel where the AST tree is displayed; the AST viewer also maintains a source view.
This view is also augmented to reflect what nodes have been added to the AST. Try
switching phases in the view, and you will see this happen. Now, let's look at the
individual compiler phases:

• Initialization: In this phase, the compiler opens up all source files and
configures its environment. If we are using CompilerConfiguration with
the GroovyShell class, this is where that object is opened and interrogated.
You will notice in the AST viewer that the AST is empty at this point. AST
generation takes place later.

• Parsing: The Groovy grammar is used to produce a tree of tokens
representing the source code. The Groovy grammar is implemented using
Apache Antlr, see http://www.antlr.org. Note that the tokens generated
at this phase are not yet an AST, so the tree view in AST viewer will still
be empty.

http://www.antlr.org

AST Transformations

[188]

• Conversion: In this phase, the token tree is converted into an AST. This is
the very first time that we have access to an AST. In the AST viewer, we
will see an AST representation of the code for the first time when we select
this phase.

• Semantic analysis: The compiler performs consistency checks and validity
checks on the AST that cannot be detected by the grammar. This is generally
the first phase at which we would normally consider attaching our own AST
transformation. If we were to hook a transform into conversion for instance,
we risk operating on code that may fail the consistency and validity checks.
This is the first point at which we can be confident that the code being
compiled is syntactically correct. This is also the phase at which outside
references are resolved to classes, static imports and the like.

• Canonicalization: Access from inner classes to surrounding scope is
resolved. This also completes what are considered the frontend phases of the
compiler. The following phases are called the backend phases and are more
involved in generating the final byte code.

• Instruction selection: This is the point at which the instruction set is
selected. Java class files are only forward compatible. This means that
while a class compiled for a specific version of JVM will still work on later
versions the converse is not necessarily true. For instance, early prerelease
versions of JDK 5 implemented varargs, enums, and generics using the JDK
4 bytecode; however, the release version of the JDK implemented new class
file attributes, so classes compiled for JDK 5, which use these features, are
no longer backward compatible. This is the phase of the compilation process
that selects which bytecode instruction set to use. You will note in the AST
viewer that no new AST nodes are added at this point.

• Class generation: This is the point at which the final Java version of
the Groovy class is generated. In the AST viewer, you will see the AST
augmented with Groovy bean methods for property getter and setter
methods. You will also see the introduction of the metaClass property and
the invokeMethod method. It's also the first phase at which we can observe
the generation of the bytecode. In the AST viewer, select a method or
constructor and look at the bytecode tab.

• Output: As the name suggests, this is the phase at which the .class files are
written out to disk with the bytecode that has been generated.

• Finalization: This is the bookend to the initialization phase. Files are closed,
resources released, and other general housekeeping is performed. Nothing
new is added to the AST at this point.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[189]

Local AST transformations
When discussing AST transformations in Groovy, we refer to local and global AST
transformations. A local transformation is one that is targeted at a specific "local"
piece of code. Currently, the only way to tell the Groovy compiler to implement a
local transformation is to use an annotation. The annotation gives the compiler the
clue as to what part of the compiled code should be transformed. Annotations can be
placed next to any part of the Groovy source code, but are typically bound to a class,
field, or method.

Let's start out by implementing a very simple annotation based on an AST
transformation. Ultimately, we will evolve this example into an AST that implements
the pretty printing functionality we built back in Chapter 7, Power Groovy DSL
Features, as both an Expando closure method and via a trait. However, let's start
simple and just add a method to a class that prints a string.

The functionality we want to implement can be captured in the following Spock
specification. Assuming we have an annotation called @PrettyBasic, then adding
this annotation to a class as follows will add a prettyPrint method to the class:

@PrettyBasic class Basic {
}

given:
 def target = new Basic()

when:
 target.prettyPrint()
then:
 "I'm so pretty. Oh so pretty!" == output()

The examples in this chapter are relatively complex. In many cases,
you are seeing sections of class files described here rather than the
fully worked source. Many dependent imports are omitted for brevity
and long package names are excluded. You should download the
source pack instead of typing these examples in yourself. The source
pack contains the full sources and dependencies.

AST Transformations

[190]

So we are expecting a new method to be added that prints the expected string. Not
very useful for now, but let's see how we implement this annotation using an AST
transformation. We will start out by declaring an interface for the PrettyPrint
annotation itself as follows:

import org.codehaus.groovy.transform.GroovyASTTransformationClass
import java.lang.annotation.ElementType
import java.lang.annotation.Retention
import java.lang.annotation.RetentionPolicy
import java.lang.annotation.Target

@Target([ElementType.TYPE])
@Retention(RetentionPolicy.SOURCE)
@GroovyASTTransformationClass(["PrettyBasicASTTransformation"])
public @interface PrettyBasic {
}

This annotation interface uses several annotations to the compiler itself, to associate a
transformation with the @PrettyBasic annotation. The @Target annotation tells the
compiler that this particular transformation operates on types, so the transformation
will only be applied to these AST nodes during compilation. The @RetentionPolicy
annotation tells the compiler whether to retain the annotation in the class after
compilation. Our transformation only applies to the compilation phase, so we use
RetentionPolicy.SOURCE to indicate that it should be discarded after compilation.
We associate the implementing PrettyBasicASTTransformation class using,
@GroovyASTTransformationClass.

The transformation class itself is in the following code. We use the
@GroovyASTTransformation annotation to indicate that this is a class that
implements an AST transformation and specify which compiler phase that the
transformation should be applied to. In this case, we will select CompilePhase.
SEMANTIC_ANALYSIS, which is the earliest phase that we can apply a local
transformation.

To implement a transformation, we overload the visit method of
GroovyASTTransformation. As you read the following code, you will notice the
first lines are all defensive. Historically, the AST transformation aspects of Groovy
have changed a lot from language version to version. This can make your AST
transformations a little brittle on language upgrades. The convention has therefore
evolved to defensively program around any assumptions you intend to make
about what part of the AST you will be handed. We expect that the second AST
node we are handed will be a ClassNode object, and we will be calling addMethod
on it so that we ensure that only invocations that contain the expected nodes
are transformed:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[191]

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class PrettyBasicASTTransformation implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit source) {
 if (!nodes) return
 if (!(nodes[0] instanceof AnnotationNode)) return
 if (!nodes[1] && !(nodes[1] instanceof ClassNode)) return
 ClassNode classNode = nodes[1]

 def methodStatement = new ExpressionStatement(
 new MethodCallExpression(
 new VariableExpression("this"),
 new ConstantExpression("println"),
 new ArgumentListExpression(
 new ConstantExpression(
"I'm so pretty. Oh so pretty!")
)
)
)
 def methodNode = new MethodNode(
 'prettyPrint',
 Modifier.PUBLIC,
 null,
 new Parameter[0],
 null,
 methodStatement
)
 classNode.addMethod(methodNode)
 }
}

Once we have verified that we are dealing with a class node of the AST, it's time to
decide what we want to do with it. In this case, we will add a node below the class
node for a new method called prettyPrint. This method node (MethodNode class)
contains a single expression statement (the ExpressionStatement class), which in
turn is comprised of a method call expression (the MethodCallExpression class),
and so on.

In effect, what we are programmatically doing is building the AST nodes that would
represent the following code:

public void prettyPrint() {
 return this.println ("I'm so pretty, Oh so pretty!")
}

AST Transformations

[192]

This is not really what we want yet for a proper PrettyPrint transformation,
but it is a fully functioning AST transformation implementing an annotation
@PrettyBasic. If we apply this transformation to a class, we can see it in action.
The Spock test we wrote earlier should now be working.

Using ASTBuilder
In the previous example, we used methods on the AST nodes themselves such as
addMethod to build up the new code in the AST. This can get laborious if we try
and add any more sophisticated code. Even the simple prettyPrint method would
be quite difficult to implement with this mechanism. Fortunately, there are other
options that will make our lives a bit easier.

Build from code
Let's build another AST transformation, which uses a useful helper class ASTBuilder
to add the prettyPrint method to our class. Once again we will need to define an
interface for our annotation class and the AST transformation class itself:

@Target([ElementType.TYPE])
@Retention(RetentionPolicy.SOURCE)
@GroovyASTTransformationClass(["PrettySimpleASTTransformation"])
public @interface PrettySimple {
}

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class PrettySimpleASTTransformation implements ASTTransformation {

 void visit(ASTNode[] nodes, SourceUnit source) {
 ClassNode classNode = nodes[1]

 def astNodes = new AstBuilder().buildFromCode {
 this.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' && it.key != 'class')
 println it.key + ": " + it.value
 }
 }
 def methodStatement = astNodes[0]
 def methodNode = new MethodNode(
 'prettyPrint',
 Modifier.PUBLIC,
 null,
 new Parameter[0],

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[193]

 null,
 methodStatement
)
 classNode.addMethod(methodNode)
 }
}

The main difference you will notice here is the use of the ASTBuilder class to
help us build the method statement for our new method. In this case, we use the
buildFromCode method of ASTBuilder. This convenience function allows us to
convert a closure into the AST nodes we need. ASTBuilder will interrogate the
closure code and turn that into the equivalent nodes from the following code:

this.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' && it.key != 'class')
 println it.key + ": " + it.value
}

There are significant benefits to using this instead of the previous method. Firstly,
it is much clearer what code is being added by the transform. You don't need to
understand all the arcane ASTNode subtypes, and how they need to be structured.
You can already see whether your code is syntactically correct because the IDE
will show you. One disadvantage is, however, that not all code can be built using a
closure. For instance, you cannot formulate a class field expression using a closure.
It's perfect, however, for where you want to add a whole method block or to insert a
block of code into an existing method.

Build from Spec
The ASTBuilder class also provides a rich builder style DSL for building the AST.
In the next example, we will use ASTBuilder.buildFromSpec to build the entire
prettyPrint method node:

@Target([ElementType.TYPE])
@Retention(RetentionPolicy.SOURCE)
@GroovyASTTransformationClass(["PrettyAdvancedASTTransformation"])
public @interface PrettyAdvanced {

}

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class PrettyAdvancedASTTransformation implements ASTTransformation {

 void visit(ASTNode[] nodes, SourceUnit source) {
 if (!nodes) return

AST Transformations

[194]

 if (!(nodes[0] instanceof AnnotationNode)) return
 if (!nodes[1] && !(nodes[1] instanceof ClassNode)) return
 ClassNode classNode = nodes[1]

 def astNodes = new AstBuilder().buildFromSpec {
 method('prettyPrint', Opcodes.ACC_PUBLIC, String) {
 parameters {}
 exceptions {}
 block {
 owner.expression.addAll
new AstBuilder().buildFromCode {
 this.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' &&
it.key != 'class')
 println it.key + ": " + it.value
 }
 }
 }
 annotations {}
 }
 }
 def methodNode = astNodes[0]

 classNode.addMethod(methodNode)
 }

}

Using this AST DSL, you can build almost any AST element you need. One
disadvantage, however, is that the DSL is poorly documented, and it also tends to
be subject to change between major Groovy versions. The best way that I've found
of working with this DSL is to dig into the unit tests for the DSL itself. The tests
demonstrate most of the capabilities of the DSL and will give you an insight into how
to use them. See https://github.com/groovy/groovy-core/blob/master/src/
test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.
groovy.

Traits to the rescue
In the previous chapter, we encountered traits. We used a trait to apply pretty
printing capabilities to a class. To do this, we needed to have our class implement
the trait class. This means that pretty printing is a compile time dependency, which
means the trait needs to be added to the class in the source code. The big benefit of
the trait is the fact that we can neatly package the functionality we want to add into a
trait class.

www.allitebooks.com

https://github.com/groovy/groovy-core/blob/master/src/test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
https://github.com/groovy/groovy-core/blob/master/src/test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
https://github.com/groovy/groovy-core/blob/master/src/test/org/codehaus/groovy/ast/builder/AstBuilderFromSpecificationTest.groovy
http://www.allitebooks.org

Chapter 8

[195]

This is sort of what we are trying to do with our pretty print AST transformation.
AST transformations happen at compile time, so what if we could extend a class
with a trait as part of an AST transformation? This will save us a lot of AST node
manipulation in the transformation. Fortunately, we can actually do this as the
following example illustrates:

trait PrettyAwesomeTrait {
 void prettyPrint() {
 this.properties.sort { it.key }.each {
 if (it.key != 'prettyPrint' && it.key != 'class')
 println it.key + ": " + it.value
 }
 }
}

@Target([ElementType.TYPE])
@Retention(RetentionPolicy.SOURCE)
@GroovyASTTransformationClass(["PrettyAwesomeASTTransformation"])
public @interface PrettyAwesome {
}

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class PrettyAwesomeASTTransformation implements ASTTransformation,
CompilationUnitAware {

 def compilationUnit

 void visit(ASTNode[] nodes, SourceUnit source) {
 ClassNode classNode = nodes[1]

 def traitNode = ClassHelper.make(PrettyAwesomeTrait)
 if (!classNode.implementsInterface(traitNode)) {
 classNode.addInterface(traitNode)
 TraitComposer.doExtendTraits(
 classNode,source,compilationUnit)
 }
 }

 @Override
 void setCompilationUnit(CompilationUnit unit) {
 compilationUnit = unit
 }
}

AST Transformations

[196]

Here, we create a class node for PrettyAwesomeTrait using the ClassHelper class.
We don't want to add this trait if a class already extends it, so we check if the class
already implements PrettyAwesomeTrait before continuing. If it does not, then we
can programmatically add this interface to the class.

Because traits are not just a simple interface implementation, we also need to use
the new TraitComposer class from Groovy 2.4.0. TraitComposer has the method
doExtendTraits, which does all the heavy lifting for us to build the trait AST and
generate all the delegation code that implements the trait. TraitComposer needs
access to the CompilationUnit object, so we need to implement a new interface on
our transformation class CompilationUnitAware. This interface provides a hook
setCompilationUnit, which will be called by the compiler to give access to the
compilation unit object in our transform:

@PrettyAwesome
class Customer {
 int id
 String firstName
 String surname
 String street
 String city
}

given:
def customer = new Customer(id:1001,firstName:"Fred",
surname:"Flintstone",
 street:"1 Rock Road",city:"Bedrock")

when:
 customer.prettyPrint()
then:
"""city: Bedrock
firstName: Fred
id: 1001
street: 1 Rock Road
surname: Flintstone""" == output()

Now, we have a @PrettyAwesome annotation that works as expected, except that it
implements the prettyPrint method via trait. This is a really simple application
of a trait in an AST. However, I encourage you to think of traits as a means of
implementing AST transformations. Remember that unlike interfaces, traits are also
able to contain properties, so they can seriously reduce the effort in implementing an
AST transformation.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[197]

Global AST transformations
Next, we will look at a global AST transformation. Unlike the local transformations
we have just encountered, which are targeted at a specific part of the Groovy code, a
global transformation is invoked for all AST nodes in the compiled code. Let's take a
look at a fully worked global AST transformation example.

A finite state machine DSL
We will be a bit brave with this transformation. In fact, the transformed AST code
for this transformation will look nothing like the original compiled code. The goal of
this AST transformation is to provide a mini DSL for defining finite state machines.
The syntax we are aiming for takes its queue from Spock and uses labels and string
literals to be part of the DSL syntax.

Let's start with a simple state machine example, a light controlled by a toggle switch.
If the light is off and the switch is pressed, the light turns on and vice versa. Let's first
of all express this in pseudo code:

state: "OFF"
state: "ON"

event: "toggle"
 when: "ON"
 next = "OFF"
 when: "OFF"
 next = "ON"

The preceding pseudo code adequately expresses the state machine for a toggle
switch. There are two states, ON and OFF, and we can respond to one event, toggle.
The interesting thing about this pseudo code is that it is also valid Groovy syntax.
It's composed of some labels (state:, event:, when:), some literal strings ("ON",
"OFF", "toggle"), and some assignments to a variable (next = "ON").

As pure Groovy the preceding code is useless. Try pasting the preceding code into
groovyConsole and see what it does. It will run without error, but the only thing it
will report is that the result is "ON", which is the evaluated result of the last line of
code (next = "ON").

Let's dissect the code a little further. Labels such as state: can be placed before any
statement in Groovy. The only real use for a label in regular Groovy is as a means of
breaking and continuing nested loops. We won't go into that here, it's a feature that
is inherited from the Java language that allows you to build clever, but very difficult-
to-debug loops. The useful thing about it, from our point of view, is that as a result
of this syntax, we can usually stick a label next to almost any statement and then
reinterpret the syntax in an AST transformation.

AST Transformations

[198]

Similarly, placing a string literal in our code without an assignment is mostly a
useless exercise. Pretty much the only use that you can make of this construct is
to return an immutable string from a method or closure. However, with an AST
transformation, we can query the content of the string and turn it into a syntactical
element of a DSL.

The assignment to next in the preceding code example would result in a compile
error if it were in any other scope because it would be interpreted as an assignment
to an undeclared variable. However, within a Groovy script is considered to be an
assignment to an undeclared variable in the binding scope, so it is legal.

We have some syntactically legal Groovy pseudo code that expresses how we would
like a state machine to work. Compiled as it is, it does nothing useful. However,
potentially, there are enough clues in this code for a clever DSL to be able to do the
rest and transform this into something useful. Let's try doing this, but first let's look
at a real piece of Groovy code that implements the toggle light switch state machine.

The state machine pattern
There are many state machine patterns we could use varying from complex to
relatively simple. We will implement the toggle switch state machine in a simple
pattern of Groovy classes. Once we have this pattern working, we will use this as a
target end point for the state machine DSL once it is generated. The pattern we are
using is based on the state pattern from the book: Design Patterns, Elements of Reusable
Object-Oriented Software, Addison Wesley.

Design Patterns, Elements of Reusable Object-Oriented Software, Addison
Wesley written by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (ISBN: 0-201-63361-2).

What we will be aiming for is an AST transform that can parse the DSL at
compile time and generate the classes needed to implement this pattern. I find it
useful to build the target code that I expect from a transform first, so I have a full
understanding of what the expected transformed outcome should be. In fact, in the
example code pack, you will find three state machines implemented both in the
straight Groovy pattern and with the DSL.

Let's look at the first state machine in detail as a Groovy pattern implementation.
Our state machine has several elements as follows:

• State context: The context is a holder for the current state of the machine.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[199]

• Concrete state classes: We will have one concrete state class per available
state in the machine. Each state has an event handler method for each event
described in the machine. The state will respond to the event by setting the
context to the next state in the machine. Note that in a Java version of this
pattern, you would also have a State interface class. We don't need this
in Groovy.

• Client machine class: This is the client object for the state machine. All client
actions happen via this class. The client class will maintain one state context
object for the current state of the machine, and it will implement an event
handler method for each event in the machine.

Let's start by looking at the state context class. We declare one state property in the
class and set its initial value to the off state:

class StateContext {
 def state = new OffState(this)
}

We need one state class for each of the states represented in the machine, so we
implement OffState and OnState classes:

class OffState {
 def context
 OffState(context) {
 this.context = context
 }
 def toggle() {
 context.state = new OnState(context)
 }
 String toString() {
 "OFF"
 }
}

class OnState {
 def context
 OnState(context) {
 this.context = context
 }

AST Transformations

[200]

 def toggle() {
 context.state = new OffState(context)
 }
 String toString() {
 "ON"
 }
}

Finally, we need the client class, which implements the finite state machine:

class LEDToggle {
 def context = new StateContext()
 def toggle() {
 context.state.toggle()
 }
 String getState() {
 context.state
 }
}

With all this in place, we can start to write some Spock unit tests to prove the state
machine is working as expected:

given:
 def ledToggle = new LEDToggle()

expect:
 ledToggle.state == 'OFF'

when:
 ledToggle.toggle()
then:
 ledToggle.state == 'ON'

when:
 ledToggle.toggle()
then:
 ledToggle.state == 'OFF'

We have a basic state machine and some unit tests that prove it works as expected.
Now, it's time to try and implement an AST transform that converts our previous
state DSL into a working version of this pattern. The final proof that it is working is
when we can run these tests against a state machine generated from the DSL.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[201]

A state machine AST transformation
Unlike the previous examples, we won't need an annotation class for a global AST
transformation. AST transformation would get quite unwieldy if we tried to build
all the logic into the AST transformation class, so we separate out the responsibilities
into four classes:

• StateMachineASTTransformation: This is the GroovyASTTransfromation
class similar to the ones we already encountered in our annotation-based
examples.

• StateMachineParser: This class implements the GroovyClassVisitor
interface. This class uses a visitor pattern to allow us to work on any part
of the tree of AST nodes in our compiled source. The main responsibility of
this class is to produce a simple data model to store the key elements of the
state machine.

• StateMachineModel: This class stores the data model of the parsed state
machine. It describes the possible states, the initial state, the available events,
and the allowed transitions for each event.

• StateMachineBuilder: This class builds the new AST nodes we need to
implement the state machine pattern.

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class StateMachineASTTransformation implements ASTTransformation {
 def parser
 def builder

 void visit(ASTNode[] nodes, SourceUnit source) {
 if (!nodes) return
 if (!(nodes[0] instanceof ModuleNode)) return
 if (!source?.name?.endsWith('State.groovy')) {
 return
 }
 def model = new StateMachineModel()

 parser = new StatePatternParser(model)
 builder = new StatePatternBuilder(nodes, model)

 for (ClassNode classNode : nodes[0].classes) {
 classNode.visitContents(parser)
 }

 builder.buildStatePattern()

 }
}

AST Transformations

[202]

Global AST transformations are potentially expensive in terms of CPU resources.
The visit method of the global transformation will be called for every single AST
node it encounters during compilation. For this reason, we want to limit our
processing to just the module that contains our state machine DSL. In the preceding
example, we check that the file ends with State.groovy. Another valid approach
would be to limit the AST transformation to just sources from a particular source
folder. Alternatively, the Groovy compiler does allow us to use custom
file extensions.

The StateMachineASTTransformation class next creates an empty data model.
The data model object is populated during parsing by a StatePatternParser object.
Once the data model is populated, it will contain the list of states available in the
state machine along a list of all the available events and what transitions are possible
in response to these events:

class StateMachineModel {
 def states
 def events

 def StateMachineModel() {
 states = []
 events = [:]
 }
 def getInitialState() {
 states[0]
 }
 def addState(state) {
 if (!states.contains(state))
 states << state
 }
 def addEvent(event) {
 events["$event"] = [:]
 }
 def addTransition(event, transition, next) {
 events["$event"]["$transition"] = next
 }
 def getEvents() {
 events.keySet()
 }
 def getTransitionForState(event, state) {
 def transition = events["$event"]["_all"]
 if (!transition)
 transition = events["$event"]["$state"]
 transition
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[203]

The StateMachineModel class is really just a wrapper on some lists and maps that
contain a representation of the state machine. It has convenience methods for adding
the states, events, and transitions as they are encountered during parsing and for
accessing these while building the new AST nodes. Next, we will look at how the
parser builds the StateMachineModel object.

The StateMachineParser class is a concrete implementation of the
GroovyClassVisitor interface. The StateMachineASTTransformation.visit
method passes the parser each class node it finds to the visitContents method:

class StatePatternParser implements GroovyClassVisitor {
 def model
 def source

 StatePatternParser(stateMachineModel, sourceUnit) {
 this.model = stateMachineModel
 this.source = sourceUnit
 }
 @Override
 void visitClass(ClassNode node) {
 }
 @Override
 void visitMethod(MethodNode node) {
 // we only need this one
 }
 @Override
 void visitConstructor(ConstructorNode node) {
 }
 @Override
 void visitField(FieldNode node) {
 }
 @Override
 void visitProperty(PropertyNode node) {
 }
}

StateMachineParser must override all the visit methods available from
GroovyClassVisitor, but for our purposes, the only one we need to really
implement is visitMethod. This visitor will be invoked for each method that is
encountered in the class.

AST Transformations

[204]

In order to understand this code better, let's first remind ourselves of the syntax of
our state machine DSL. The DSL can represent several different elements of the state
machine as follows:

• States: The different states are declared with a label and a constant string.
So, we are looking in the AST for statements that are constant expressions
and have a label state:.

• Events: The events are declared with a label and string. So here, once again
we are looking for constant expressions that have a label event:.

• Transitions: For each event, we need to define some transitions. We can have
a default transition for an event, in which case the event: clause should
be followed immediately by an assignment to next. Otherwise, it should
be followed by one or more when: clauses, which define the individual
allowable transitions.

Our StateMachineParser.visitMethod method looks like this. The Groovy script
class that represents our DSL will have a run method, which represents the main
body of code in the script itself. We limit our AST parsing to this method since this is
where we expect to find the DSL code:

@Override
void visitMethod(MethodNode node) {
 if (node.name == "run") {
 def event = null
 def when = null
 collectStates(node)
 collectEvents(node)
 handleBaseErrors(node)
 node.code.statements.each { stmnt ->
 def param = getLabelParam(stmnt)

 switch (stmnt.statementLabel) {
 case 'event':
 event = param
 when = null
 break
 case 'when':
 handleWhenErrors(param, event, stmnt)
 when = param
 break
 default:
 if (event) {
 handleWhen(stmnt, event, when)
 } else {
 addError "Inappropriate syntax.",
 stmnt, source
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[205]

 }
 }
 }
}

The state machine DSL should contain at least two state declarations and at least one
event declaration to make sense, so we start by collecting this in the model from the
ModuleNode object. We do this by traversing all the statements in the ModuleNode
object and find all statements that meet the following criteria. The statement is a
constant expression, which has the label event for events or state for states:

def collectStates(MethodNode node) {
 collectLabeledConstantStrings(node, 'state').each { stmnt ->
 model.addState stmnt.expression.value.toString()
 }
}
def collectEvents(MethodNode node) {
 collectLabeledConstantStrings(node, 'event').each { stmnt ->
 model.addEvent stmnt.expression.value.toString()
 }
}
def collectLabeledConstantStrings(MethodNode node, label) {
 node.code.statements.findAll { stmnt ->
 stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof ConstantExpression &&
 stmnt.statementLabel &&
 stmnt.statementLabel == label
 }
}

Handling the transitions is a little more complex because statement ordering is
important. The visitMethod method iterates all statements in the MethodNode
object. If the statement we encounter is a labeled constant string, the getLabelParam
method will return the constant string. So, the value returned will be state, event,
when, or null, depending on whether we find a valid declaration or not:

def getLabelParam(stmnt) {
 if (stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof ConstantExpression &&
 stmnt.statementLabel
) {
 return stmnt.expression.value.toString()
 }
 null
}

AST Transformations

[206]

As we traverse the statements in the module, we also record the occurrence of
event: and when: clauses. This allows us to correctly handle the transition
statement when we encounter it. A transition is declared by assigning a state to
next, for example, next = "ON". The handleWhen method handles both the default
transition case where no when: clause is provided and the when: clause itself.

def handleWhen(statement, event, transition) {
 if (statement instanceof ExpressionStatement &&
 statement.expression instanceof BinaryExpression) {
 BinaryExpression expr = statement.expression
 def var = expr.leftExpression
 Token oper = expr.operation
 def state = expr.rightExpression

 if (var instanceof VariableExpression &&
 var.accessedVariable.name == 'next' &&
 oper instanceof Token &&
 oper.rootText == "=" &&
 state instanceof ConstantExpression
) {
 def next = state.value.toString()
 if (!model.states.contains(next))
 addError "Reference to non existent state",
 state, source
 if (event && transition) {
 model.addTransition event, transition, next
 } else {
 model.addTransition event, '_all', next
 }
 } else {
 handleBadWhenExpression var, expr, state
 }
 } else {
 addError "when: or next = 'state' is allowed here",
 statement, source
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[207]

Here, we are looking in the AST for a binary expression where the left operand is a
variable called next, the right operand is a constant and the operator is equals. If we
find code in the AST that matches this, then we add the appropriate transitions to the
model. In the preceding code you can clearly see how the AST is structured as a tree.
If we do find the expression we are looking for—that is, next = "ON", then this is
composed in the tree as follows:

ExpressionStatement next = "ON"
|_BinaryExpression next = "ON"
 |_VariableExpression next
 |_Token =
 |_ConstantExpression "ON"

Handling errors – compile errors
Even though state machine DSL written in Groovy is a mini language in its own
right. If we add inappropriate code into the source, it can have undesired effects.
It's also possible for many potential syntax errors to occur, which could cause
the transformed code to behave incorrectly or to fail to transform at all. As far
as possible, we should predict all these potential error conditions and respond
accordingly. The appropriate response in this case would be to generate compiler
errors with an appropriate message and identify the location in the code, which
is incorrect.

To help us with generating compiler errors, we are using a helper method in
the StateMachineParser class, addError. This method is borrowed from the
LogASTTransformation, which is part of the core Groovy sources. This helper
method will produce a compile error in the compiler output that looks just like a
regular groovyc compiler error:

def addError(String msg, ASTNode expr, SourceUnit source) {
 int line = expr.lineNumber
 int col = expr.columnNumber
 SyntaxException se =
 new SyntaxException(msg + '\n', line, col)
 SyntaxErrorMessage sem = new SyntaxErrorMessage(se, source)
 source.errorCollector.addErrorAndContinue(sem)
}

In the interest of brevity, this DSL example does not contain all the possible error
handling we could do. Here are some of the ones we do handle. I'm sure you can
think of more.

AST Transformations

[208]

We should have two or more states and at least one event declared. You will
also notice in the handleWhen method we encountered previously, we detect
if a nonexistent state is referenced and add an error for that:

def handleBaseErrors(node) {
 if (model.states.size() < 2)
 addError "State machine must have at least two states",
 node, source
 if (!model.events)
 addError "State machine must have at least one event",
 node, source
}

If we then build a toggle state machine that accidentally omits a state and then
references that state, we will cause two compile errors to be generated:

state: "ON"

event: "toggle"
 when: "ON"
 next = "OFF"

This will provide the following output:

ErrorState.groovy: -1: State machine must have at least two states

 @ line -1, column -1.

ErrorState.groovy: 7: Reference to non existent state

 @ line 7, column 16.

 next = "OFF"

 ^

Declaring a when: clause without a state, or with a nonexistent state, or failing to use
a String constant to represent, the state should cause an error:

def handleWhenErrors(state, event, statement) {
 if (!state)
 addError "Expected state value after when:",
 statement, source
 if (state && !model.states.contains(state))
 addError "Cannot transition from a non existant state",
 statement.expression, source
 if (!event)
 addError "when: must follow event:", statement, source
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[209]

state: "ON"

when: "ON"

event: "toggle"
 when:
 next = "ON"
 when: "OFF"
 next = "ON"

This will provide the following output:

ErrorState.groovy: 5: when: must follow event:

 @ line 5, column 7.

 when: "ON"

 ^

ErrorState.groovy: 9: Expected state value after when:

 @ line 9, column 9.

 next = "ON"

 ^

ErrorState.groovy: 10: Cannot transition from a non existant state

 @ line 10, column 11.

 when: "OFF"

 ^

Providing any expression for a transition other than one in the form
next = 'state' should cause an appropriate error:

def handleBadWhenExpression(next, expr, state) {
 def oper = expr.operation
 if (!next instanceof VariableExpression ||
 next.accessedVariable.name != 'next') {
 addError "assignment to next is only allowed",
 next, source
 } else if (oper instanceof Token || oper.rootText != "=") {
 addError "assignment operator is only allowed",
 expr, source
 } else if (!state instanceof ConstantExpression) {
 addError "assigning a valid state only allowed",
 state, source
 }

AST Transformations

[210]

}

state: "ON"
state: "OFF"

event: "toggle"
 when: "ON"
 prev = "OFF"
 when: "OFF"
 next * "OFF"

This will provide the following output:

ErrorState.groovy: 9: assignment to next is only allowed

 @ line 9, column 9.

 prev = "OFF"

 ^

ErrorState.groovy: 11: assignment operator is only allowed

 @ line 11, column 9.

 next * "OFF"

 ^

Building the new AST nodes
Once the StateMachineParser class has done its magic, we should have a valid
representation of the state machine in the StateMachineModel object. From this
model, we need to build a new implementation of the state machine pattern. This
will involve adding nodes to the AST for the various elements of the pattern.

We will need to generate a client class to implement the state machine itself. We
will need a state context class, and we will need a concrete state class for each of the
states. We also need to build methods to implement each of the events across all the
state classes and the client class and to handle all the individual state transitions that
are declared for each event.

We handle all of this in the StateMachineBuilder class. The StateMachineBuilder
class is initialized with the new StateMachineModel object we built during parsing.
It has a method buildStatePattern that does the work of building the pattern
classes, but this is subsequently broken down into smaller steps. We will look at
each step in detail:

class StatePatternBuilder {
 def model

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[211]

 ModuleNode moduleNode
 ClassNode classNode
 String className
 ClassNode contextClass
 String contextClassName

 StatePatternBuilder(ASTNode[] nodes, stateMachineModel) {
 this.model = stateMachineModel
 moduleNode = nodes[0]
 classNode = nodes[0].classes[0]
 className = nodes[0].classes[0].nameWithoutPackage
 }

 void buildStatePattern() {
 buildContextClass()
 updateClientClass()
 buildStateClasses()
 }
 void buildContextClass() {
 ….
 }
 void updateClientClass() {
 …
 }
 void buildStateClasses() {
 …
 }
}

The StateMachinePattern class is initialized with the newly created model and the
ASTNode object passed into the transform. For convenience, we extract some objects
from the AST and save them locally. This will save us dereferencing them from the
AST later. In the pattern, the one class that is referenced across all three components
of the pattern is the StateContext class, so this is the first thing we will build:

void buildContextClass() {
 def contextClassNode = new AstBuilder().buildFromString
 CompilePhase.SEMANTIC_ANALYSIS, true, """
class ${className}Context {
}
"""

 contextClass = contextClassNode[1]
 moduleNode.addClass(contextClassNode[1])

AST Transformations

[212]

 contextClassName = "${className}Context"

 contextClassNode[1].addProperty(
 new PropertyNode(
 "state",
 Modifier.PUBLIC,
 ClassHelper.DYNAMIC_TYPE,
 ClassHelper.make (contextClassName),
 new ConstructorCallExpression(
 ClassHelper.make(
 "${model.initialState}${className}"
),
 new ArgumentListExpression(
 new VariableExpression('this')
)
),
 null,
 null
)
)
}

The first thing you will notice here is we use ASTBuilder.buildFromString. This
is yet another mechanism in the ASTBuilder class that is available to us. Using
this method, we can formulate the code we need in text and pass it in. ASTBuilder
will take care of the parsing of this into whatever AST nodes it contains. In this
case, this is a ClassNode object for the context class. We then make use of this class
node with the regular APIs to add the state property, the StateContext class.
Note that the actual class name of the context class will be derived from the DSL
script class name. So, for instance, the toggle example will produce a class called
LEDToggleStateContext.

The reason we need to use the base APIs here is down to the code we need to
generate for the initialization of the state property. We need to add the expression
def state = new InitialState(this). The InitialState class will be the class
for whatever the initial state should be. In the case of the toggle switch, it will be
OFFState. The problem is that we don't have that class created anywhere yet. If
we tried to build the entire state context class using ASTBuilder.buildFromCode,
then we will get a class not found exception for InitialState.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[213]

What we have is a classic chicken and egg situation. There is nowhere in the pattern
that we can start where we will not encounter the need to reference another pattern
class that is not created yet. The solution that you are seeing in the preceding code is
where we use ClassHelper.make(String) to make a ClassNode, which references
the as yet uncompleted class. What we end up with at the end of this builder method
is an AST structure as follows for the state context class:

ClassNode class StateContext
|_PropertyNode def state
 |_ConstructorCallExpression new InitalState
 _ArgumentListExpression this

Our DSL does not have a specific means to declare an initial state, so
we just assume the first state encountered in the DSL will be the initial
default state. The StateMachineModel class implements this via the
getInitialState method.

This newly created ClassNode is added to the AST from the module. Now
we need a class to implement the client class for the state machine pattern.
We won't create a new class node for this. Instead, we will make use of the class
created by the compiler for the module. For instance, if our DSL code is in
LEDToggleState.groovy, we will already have a class LEDToggleState in the AST,
which is in fact the class that has the run method from which we parsed the state
machine code.

The next method we encounter in StateMachineBuilder is updateChildClass.
This method adds the elements necessary to the DSL class to turn it into the client
class of the state machine:

void updateClientClass() {
 buildClientContextProperty()
 buildClientStateGetter()
 buildClientEventMethods()
}

def buildClientContextProperty() {
 classNode.addProperty(
 new PropertyNode(
 "context",
 Modifier.PUBLIC,
 ClassHelper.make(contextClassName),
 ClassHelper.make(className),
 new ConstructorCallExpression(

AST Transformations

[214]

 ClassHelper.make(contextClassName),
 ArgumentListExpression.EMPTY_ARGUMENTS
),
 null,
 null
)
)
}

The first thing we need in the client class is a property to represent the context
object for the state machine. This property is a state context object, which will
always contain the current state of the machine. Next, we add a getter for the
current state of the machine:

def buildClientStateGetter() {
 def callGetContextState = new ExpressionStatement(
 new MethodCallExpression(
 new MethodCallExpression(
 new VariableExpression("context"),
 new ConstantExpression("getState"),
 ArgumentListExpression.EMPTY_ARGUMENTS
),
 "toString",
 ArgumentListExpression.EMPTY_ARGUMENTS
)
)

 classNode.addMethod(new MethodNode(
 "getState",
 Modifier.PUBLIC,
 null,
 new Parameter[0],
 null,
 callGetContextState
)
)
}

The getState method returns the state of the context object as a string.
The code we are looking to generate for the body of the methods therefore is
context.getState().toString(). In the AST, the nodes needed for the method
needs to be in the following structure:

MethodNode getState()
|_ExpressionStatement
 |_MethodCallExpression toString()
 |_MethodCallExpression getState()
 | |_VariableExpression context

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[215]

 | |_ConstantExpression getState
 | |_ArgumentListExpression
 |_ArgumentListExpression

Note how the toString() and getState() calls in the method body are nested.
The toString() method is called on the result of the getState() call. You can
imagine artificially adding scoping brackets around the code to reflect precedence of
method calling. Each of the following expressions is equivalent. The last expression
however best reflects how the individual expressions are structured in the AST. The
outer expressions will be at the top of the AST, whereas the inner expressions will be
nested in the following code:

context.state.toString()
(context).getState().toString()
((context).(getState)()).(toString)()

The last thing we need to do to the client class is add methods for each of the event
handlers. These event handler methods simply delegate calls to the equivalent event
handler in the current state so the body of a toggle() event handler method will just
be context.state.toggle():

def buildClientEventMethods() {
 for (event in model.events) {
 def methodStatement = new ExpressionStatement(
 new MethodCallExpression(
 new MethodCallExpression(
 new VariableExpression('context'),
 new ConstantExpression('getState'),
 ArgumentListExpression.EMPTY_ARGUMENTS
),
 new ConstantExpression("${event}"),
 ArgumentListExpression.EMPTY_ARGUMENTS
)
)
 def eventMethodNode = new MethodNode(
 "${event}",
 Modifier.PUBLIC,
 null,
 new Parameter[0],
 null,
 methodStatement
)
 classNode.addMethod(eventMethodNode)
 }
}

AST Transformations

[216]

This builder method is very similar to the buildClientStateGetter method. It
iterates all events in the model, creates the body of the method, then creates a new
method node with this body and adds it to the class node.

The final thing the StateMachineBuilder class needs to do is to create the state
classes themselves. We iterate each state in the model, create a state class, and add
event handlers for each event in the model:

def buildStateClasses() {
 for (state in model.states) {
 def stateNode = buildStateClass(state)
 for (event in model.events) {
 buildStateClassEventMethod(event, state, stateNode)
 }
 moduleNode.addClass(stateNode[1])
 }
}

Building the state class is very similar to building the state context class. We use
ASTBuilder.buildFromString and provide a completed class definition minus
the event methods:

def buildStateClass(state) {
 def stateClassNode = new AstBuilder().buildFromString
 CompilePhase.SEMANTIC_ANALYSIS, true, """
class ${state}${className} {
 def context
 ${state}${className}(context) {
 this.context = context
 }
 String toString() {
 "${state}"
 }
}
"""
 stateClassNode
}

Next, we add the event methods in the usual way. For the individual event methods
in states, we need to cater to the allowed transitions. If a state transition is allowed
for this state/event pair, then we need to insert the code for that as the method body:

def buildStateClassEventMethod(event, state, stateClassNode) {
 def methodStatement = null
 def nextState = model.getTransitionForState(event, state)
 if (nextState) {

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[217]

 methodStatement = new ExpressionStatement(
 new BinaryExpression(
 new PropertyExpression(
 new VariableExpression("context"),
 new ConstantExpression("state")
),
 new Token(Types.EQUALS, "=", -1, -1),
 new ConstructorCallExpression(
 ClassHelper.make("$nextState$className"),
 new ArgumentListExpression(
 new VariableExpression('context')
)
),
)
)
 }
 def eventMethodNode = new MethodNode(
 "${event}",
 Modifier.PUBLIC,
 null,
 new Parameter[0],
 null,
 methodStatement
)
 stateClassNode[1].addMethod(eventMethodNode)
}

The expression we need to add to an event method for a state transition must set the
state property of the context class to the next state. So, for instance, the toggle event
of an OFFState needs to be context.state = new ONState(context). We build
an AST structure as follows:

MethodNode toggle()
|_ExpressionStatement (expr)
 |_BinaryExpression (expr) = (expr)
 |_PropertyExpression (context).(state)
 | |_VariableExpression context
 | |_ConstantExpression state
 |_Token =
 |_ConstructorCallExpression new ONState
 |_ArgumentListExpression context

AST Transformations

[218]

Testing the state machine DSL
With our state machine complete, we hope now that it will work as well as the hand
crafted pattern, which fortunately it does. We can test that by modifying the Spock
test used for the original state pattern classes. All we need to do is change the class
name to the name of the DSL script:

given:
def ledToggle = new LEDToggleState()

expect:
ledToggle.state == 'OFF'

when:
ledToggle.toggle()
then:
ledToggle.state == 'ON'

when:
ledToggle.toggle()
then:
ledToggle.state == 'OFF'

However, what's even better is that we now have a reusable DSL for building state
machines. What would a regular ON/OFF light switch look like in this DSL?

state: "OFF"
state: "ON"

event: "switchOn"
 next = "ON"

event: "switchOff"
 next = "OFF"

Note here how we can omit the when: clause from the DSL because the next state
when we switch on is always on and when we switch off is always off. We can write
a test to confirm this also works as we expect it:

given:
 def ledSwitch = new LEDSwitchState()

expect:
 ledSwitch.state == 'OFF'

when:

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[219]

 ledSwitch.switchOn()
then:
 ledSwitch.state == 'ON'

when:
 ledSwitch.switchOn()
then:
 ledSwitch.state == 'ON'

when:
 ledSwitch.switchOff()
then:
 ledSwitch.state == 'OFF'

when:
 ledSwitch.switchOff()
then:
 ledSwitch.state == 'OFF'

Both these state machines use just two states. What if we have a more complex
state machine with multiple states, events, and transitions? The following is a state
machine that mimics the operation of an old cassette type tape machine:

state: "EMPTY"
state: "LOADED"
state: "RUNNING"
state: "PAUSED"

event: "load"
 when: "EMPTY"
 next = "LOADED"

event: "start"
 when: "LOADED"
 next = "RUNNING"
 when: "PAUSED"
 next = "RUNNING"

event: "pause"
 when: "RUNNING"
 next = "PAUSED"

event: "stop"
 when: "RUNNING"
 next = "LOADED"

AST Transformations

[220]

 when: "PAUSED"
 next = "LOADED"

event: "unload"
 when: "LOADED"
 next = "EMPTY"

Those old tape decks were quite stateful. You could only press pause if the tape
was running. You could only unload a tape if the tape was loaded but not running
or paused. There is a full state pattern version of the tape deck example in the
example code. Have a look; it has six classes and over a hundred lines of code. Yet
this complexity was all captured earlier in less than 25 lines of code. It also behaves
exactly as we expect. Here are just some of the allowed transitions in action. The
examples have a full test for them all:

given:
 def tape = new TapeDeckState()
expect:
 tape.state == 'EMPTY'

when:
 tape.load()
then:
 tape.state == 'LOADED'

when:
 tape.start()
then:
 tape.state == 'RUNNING'

when:
 tape.start()
 tape.pause()
then:
 tape.state == 'PAUSED'

when:
 tape.start()

when:
 tape.pause()
 tape.stop()
then:
 tape.state == 'LOADED'

www.allitebooks.com

http://www.allitebooks.org

Chapter 8

[221]

Compiling and packaging an AST
transformation
Within the code examples in this chapter, we have two categories of code,
the code implementing the AST transformations, for example, PrettyAwesome,
PrettyAwesomeASTTransformation, PrettyAwesomeTrait, and the code, which is
being transformed by the transform. However, when we try to run these examples,
we need to be aware of when in the compilation process each is used, so we can
package them appropriately.

The first thing to be aware of is that the AST transformation code is used in the
compilation process, and in effect, becomes an extension of the compiler. This means
that in order to use the AST transformation the compiler must already have access to
a compiled version of that code. So, we cannot simply have the AST transformation
code and the target class in the same source package and hope it will work. If we do
this, the AST transform will get compiled, but it will be invisible to the compiler at
that point and won't get applied to the target class.

If we take a look at the example code package, we can see how this is circumvented.
The example code is built using Gradle and has two distinct compilation tasks.
The first, compileGroovy compiles all sources in the src/main/groovy directories.
The second, compileTestGroovy compiles all sources in the src/test/groovy
directories.

For the purposes of the book examples, we only care if the AST transformations
are available in the test package. This means we can separate the two parts of
the code by placing the AST transformations in src/main and the target classes
in src/test. When we run the tests, the AST transformations are first compiled
by the compileGroovy task and then the target classes are complied by the
compileTestGroovy task at which point the AST transformations are available
for use.

When implementing your own AST transforms, you will want to package them
in such a way as they can be consumed as a dependency by your application. The
Groovy AST class files can be packaged into a separate JAR file. For a local AST, this
is all you need to do. For a global AST transformation, you need to tell the compiler
where to find your transformation. The compiler looks for the org.codehaus.
groovy.transform.ASTTransformation file in the META-INF/services directory
of your JAR file. This file should contain the fully qualified package and name of the
AST transformation class. So, for our state machine transformation, in the examples
pack this might be:

com.dearle.groovydsl.transforms.StateMachineASTTransformation

AST Transformations

[222]

We mentioned earlier that the Groovy compiler supports custom file extensions. If
we add a META-INF/services/org.codehaus.groovy.source.Extensions file to
our JAR with a list of file extensions we want to support, then the compiler will also
compile any files it finds with these extensions.

Summary
This chapter has been quite a deep dive into the relatively complex subject of AST
transformations. We've covered both local and global AST transformations and even
used AST transformation to build a mini DSL.

In the next chapter, we will look at some of the publicly available Groovy DSLs. We
will describe how to use them, but we will also be taking a critical view of how they
might be implemented given the knowledge we now have about the Groovy MOP
and Groovy AST transformations.

www.allitebooks.com

http://www.allitebooks.org

[223]

Existing Groovy DSLs
By now, we have covered a lot of ground in describing the DSL-enabling features
of Groovy. In this chapter, we will look at two of the existing Groovy DSLs that are
freely available for download. The purpose of this chapter is not to try to give a
comprehensive tutorial on either of them. We will explore each in turn in order to
understand how they work, but more importantly, we will go through them in order
to understand how they are implemented using the Groovy features and techniques
that we have covered in the book so far. In this chapter, we will discuss:

• Grails object relational mapping (GORM), which is a core component of the
Grails web application framework and uses DSL-style techniques to apply
persistence to regular Groovy classes. We will be looking at how GORM
decorates regular POGO classes to add persistence semantics to them.

• Spock, which is a behavior-driven development (BDD) tool. We have
already encountered Spock throughout the book. In this chapter, we will
look at how the Spock framework implements its DSL-style features.

Grails object relational mapping – GORM
The Grails framework is an open source web application framework built for the
Groovy language. Grails not only leverages Hibernate under the covers as its
persistence layer, but also implements its own object relational mapping layer for
Groovy, known as GORM. With GORM, we can take a POGO class and decorate
it with DSL-like settings in order to control how it is persisted. GORM can be
considered a DSL as it uses many of the cool DSL features that we have discussed
in previous chapters, in order to add its own mini dialect to Groovy in order to
implement persistence.

Existing Groovy DSLs

[224]

Grails programmers use GORM classes as a mini language for describing the
persistent objects in their application. In this section, we will do a whistle-stop tour
of the features of Grails. This won't be a tutorial on building Grails applications,
as the subject is too big to be covered here. Our main focus will be on how GORM
implements its object model in the domain classes.

Grails quick start
Before we proceed, we need to install Grails and get a basic app installation up and
running. We can use GVMTool to install Grails. Once it has been installed, navigate
to a workspace directory and issue the grails create-app command:

$gvm install grails 3.0.0.RC3$cd ~/workspace

$grails create-app GroovyDSL

cd GroovyDSL

grails run-app

This builds a Grails application tree called GroovyDSL under your current workspace
directory. If we now navigate to this directory, we can launch the Grails app. By
default, the app will display a welcome page at http://localhost:8080.

The example code already has a GroovyDSL Grails app created in the
GroovyDSL subdirectory.

The grails-app directory
The GroovyDSL application that we built earlier has a grails-app subdirectory,
which is where the application source files for our application will reside. We only
need to concern ourselves with the grails-app/domain directory for this discussion,
but it's worth understanding a little about some of the other important directories:

• grails-app/conf: This is where the Grails configuration files reside.
• grails-app/controllers: Grails uses a Model View Controller (MVC)

architecture. The controller directory will contain the Groovy controller code
for our UIs.

• grails-app/domain: This is where Grails stores the GORM model classes of
the application.

• grails-app/services: Any classes found here will be assumed to be
service beans.

• grails-app/view: This is where the Groovy Server Pages (GSPs), the Grails
equivalent to JSPs are stored.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[225]

Grails has a number of shortcut commands that allow us to quickly build out the
objects for our model.

In this section, we will take a whistle-stop tour through GORM. You
might like to dig deeper into both GORM and Grails yourself. You can
find further online documentation for GORM at https://grails.
github.io/grails-doc/latest/guide/GORM.html.

Building a GORM model
The grails command can be used as a shortcut to carve out GORM domain
classes. We can create a domain class for Customer by issuing the following
grails command from the GroovyDSL application directory:

grails create-domain-class Customer

This will create a stub Customer.groovy file in the grails-app/domain directory,
as follows:

class Customer {

package groovydsl

class Customer {

 static constraints = {
 }
}

If we add some fields to this class, we can peek into the database to see how GORM
automatically creates a table for this class:

class Customer {
 String firstName
 String lastName
 static constraints = {
 }
}

Now, if we restart Grails by issuing the grails run-app command, we can
inspect the resulting table. If we are running grails in development mode as
shown in the preceding code, we can access the H2 database console with
http://localhost:8080/dbconsole.

https://grails.github.io/grails-doc/latest/guide/GORM.html
https://grails.github.io/grails-doc/latest/guide/GORM.html

Existing Groovy DSLs

[226]

GORM has automatically created a customer table for us in the devDB database. The
table has two fields by default, for the row id and the object version. The two fields
we added to Customer have been mapped to the first_name and last_name fields
of type varchar(255) columns in the database.

Using domain classes
If the Customer class was a normal POGO class, this will only allow us to construct
it and interact with its properties at this point. However, Grails has added some
persistence methods to the Customer class. We won't build a full-blown Grails app
with controllers and views in this chapter, but we have several options for exercising
our GORM objects without that. The first is to use Groovy Console. To do so, we
need to launch it indirectly via the grails command:

$grails console

This will launch the groovyConsole app we've used before with the GORM objects
fully ready to use. I recommend this as a great way to explore your GORM objects
and see how they work. In keeping with the rest of the book, we will illustrate how
the GORM persistence methods work with a Spock test. We will want a Spock
integration test that actually uses GORM persistence rather that a unit test that uses
mocks. We can create a template integration test for the Customer class from the
grails command line:

$grails create-integration-test Customer

Next, we edit this to add some interactions with the GORM persistence model
for Customer:

@Integration
@Rollback
class CustomerSpec extends Specification {
 void "Gorm has added methods for persistence"() {
 given: "We save a domain object with save"
 def barney = new Customer(firstName: "Barney",
 lastName: "Rubble")
 barney.save()

 when: "we get it from the database"
 def fred = Customer.get(1)

 then:
 fred.firstName == "Barney"

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[227]

 when:
 fred.firstName = "Freddie"
 fred.save()

 def customers = Customer.list()

 then:
 customers[0].firstName == 'Freddie'
 }
}

The preceding example saves a new customer "Barney" to the database, gets the
customer object for "Fred", and updates the firstName field. The list method
returns all customers as a regular list collection.

Let's take a second to look at what Grails has done to our class. The Customer class
that we declared had no base class to inherit methods from, and it did not define
these methods. Grails has somehow used the features Groovy to add these methods.
Given what we know already from previous chapters, we can probably guess some
of the ways this might have been achieved.

We know that we can add methods to a class at runtime via metaClass.
So, this might be one approach:

Customer.metaClass.static.get = { ... }
Customer.metaClass.static.list = { ... }
Customer.metaClass.save = { ... }

Grails is built on top of Spring, so we could hook into the initialization of
ApplicationContext and enhance the Customer metaClass directly with the
properties and methods we need to implement persistence. An alternative approach,
as we have learned, is that we could use an AST transformation to add the individual
methods to the Customer class at compile time.

A third and better approach would be to declare a trait for persistence, which could
have the additional persistence properties we need such as ID and VERSION and the
additional persistence methods such as save(), list(), and get(). This trait could
then be added to the Customer class via a Global AST transformation.

Grails uses the convention that all classes in the grails-app/domain folder are
considered to be domain classes that should be persistent. So, if we were to use the
build system to compile all classes in the domain folder in one compilation task, and
if we were to apply a Global AST transformation during this compilation, then we
could enhance all the domain classes as we pleased.

Existing Groovy DSLs

[228]

So what does Grails actually do? The answer is all of the tasks mentioned earlier,
depending on which version of Grails you look at. The 1.x.x versions of Grails
took the metaClass approach and added methods at runtime into all the domain
classes. By version 2.x.x, some new requirements were being considered for GORM
within the Groovy eco system, including the ability to use GORM as a standalone
persistence layer outside Grails.

This led to the rewriting of the GORM enhancement methods so that GORM
persistence could be added to a class via an @Entity annotation. To do this, the
injection of the GORM operations such as count(), save(), get(), and so on were
refactored into an AST transformation.

In Grails 2.x.x the GORM operations, methods were fully implemented in a
standalone API class. At compile time, the AST transformations would take over and
clone the fully formed properties and methods from the AST nodes of the API class
and inject them into the domain classes. This is a common pattern that is used in the
2.x.x Grails sources to enhance all the Grails artifact classes. It saves building out
the AST manually using ASTBuilder or the AST APIs directly. In Grails 3.x.x, this
is being improved even further by turning these API classes into traits that can be
applied to the artifact classes via AST transformations.

Modeling relationships
Storing and retrieving simple objects is all very well, but the real power of GORM is
that it allows us to model the relationships between objects, as we will now see. The
main types of relationships that we want to model are associations, where one object
has an associated relationship with another, for example, Customer and Account;
composition relationships, where we want to build an object from subcomponents;
and inheritance, where we want to model similar objects by describing their
common properties in a base class.

Associations
Every business system involves some sort of association between the main business
objects. Relationships between objects can be one-to-one, one-to-many, or many-to-
many. Relationships may also imply ownership, where one object only has relevance
in relation to another parent object.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[229]

If we model our domain directly in the database, we need to build and manage
tables, and make associations between the tables by using foreign keys. For complex
relationships, including many-to-many relationships, we may need to build
special tables whose sole function is to contain the foreign keys needed to track
the relationships between objects. Using GORM, we can model all of the various
associations that we need to establish between objects directly within the GORM
class definitions. GORM takes care of all of the complex mappings to tables and
foreign keys through a Hibernate persistence layer.

One-to-one
The simplest association that we need to model in GORM is a one-to-one association.
Suppose our customer can have a single address, we will create a new Address
domain class using the grails create-domain-class command, as before:

class Address {
 String street
 String city
}

To create the simplest one-to-one relationship with Customer, we just add an
Address field to the Customer class:

class CustomerHasAddress {
 String firstName
 String lastName
 Address address
}

When we rerun the Grails application, GORM will recreate a new address table. It
will also recognize the address field of CustomerHasAddress as an association with
the Address class, and create a foreign key relationship between the customer and
address tables accordingly.

This is a one-directional relationship. We are saying that a Customer "has an"
Address but an Address class does not necessarily "have a" Customer.

We can model bi-directional associations by simply adding a Customer field to the
Address class. This will then be reflected in the relational model by GORM adding a
customer_id field to the address table:

class Address {
 String street
 String city
 CustomerHasAddress customer
}

Existing Groovy DSLs

[230]

These basic one-to-one associations can be inferred by GORM just by interrogating
the fields in each domain class. To denote ownership in a relationship, GORM uses
an optional static field applied to a domain class called belongsTo. Suppose we add
an Identity class to retain the login identity of a customer in the application. We
would then use:

class CustomerHasIdentity {
 String firstName
 String lastName
 Address address
 Identity identity
}

class Address {
 String street
 String city
}

class Identity {
 String email
 String password

 static belongsTo = CustomerHasIdentity
}

Classes are first-class citizens in the Groovy language. When we declare
static belongsTo = Customer, what we are actually doing is
storing a static instance of a java.lang.Class object for the Customer
class in the belongsTo field. Grails can interrogate this static field at load
time to infer the ownership relation between Identity and Customer.

Here we have three classes: CustomerHasIdentity, Address, and Identity.
CustomerHasIdentity has a one-to-one association with both Address and
Identity through the address and identity fields. However, the ident field is
"owned" by CustomerHasIdentity as indicated in the belongsTo setting. What this
means is that saves, updates, and deletes will be cascaded to identity but not to
address, as we can see in the following code. The addr object needs to be saved and
deleted independently of CustomerHasIdentity, but id is automatically saved and
deleted in sync with Customer:

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[231]

void "belongsTo causes cascaded delete"() {
 given:
 def addr = new Address(street:"1 Rock Road", city:"Bedrock")
 def id = new Identity(email:"email", password:"password")
 def fred = new CustomerHasIdentity(firstName:"Fred",
 lastName:"Flintstone",
 address:addr,identity:id)

 addr.save(flush:true, failOnError: true)

 expect: "Only an address is saved"
 CustomerHasIdentity.count() == 0
 Address.count() == 1
 Identity.count() == 0

 when:
 fred.save(flush:true, failOnError: true)

 then: "Customer is save and save was cascaded to Identity"
 CustomerHasIdentity.count() == 1
 Address.count() == 1
 Identity.count() == 1

 when:
 fred.delete(flush:true, failOnError: true)

 then: "Customer deleted an delete was cascaded to identity"
 CustomerHasIdentity.count() == 0
 Address.count() == 1
 Identity.count() == 0

 when:
 addr.delete(flush:true, failOnError: true)

 then: "Now everything is deleted"
 CustomerHasIdentity.count() == 0
 Address.count() == 0
 Identity.count() == 0
}

Existing Groovy DSLs

[232]

Constraints
You will have noticed that every domain class produced by the grails create-
domain-class command contains an empty static closure, constraints. We can
use this closure to set the constraints on any field in our model. Here, we apply
constraints to the e-mail and password fields of Identity. We want an e-mail field
to be unique, not blank, and not nullable. The password field should be 6 to 200
characters long, not blank, and not nullable:

class Identity {
 String email
 String password

 static constraints = {
 email(unique: true, blank: false, nullable: false)
 password(blank: false, nullable:false, size:6..200)
 }
}

From our knowledge of builders and the markup pattern, we can see that GORM
could be using a similar strategy here to apply constraints to the domain class. It
looks like a pretended method is provided for each field in the class that accepts a
map as an argument. The map entries are interpreted as constraints to apply to the
model field.

The builder pattern turns out to be a good guess as to how GORM is implementing
this. GORM actually implements constraints through a builder class called
ConstrainedPropertyBuilder. The closure that gets assigned to constraints
is in fact some markup style closure code for this builder. Before executing the
constraints closure, GORM sets an instance of ConstrainedPropertyBuilder
to be the delegate for the closure. We are more accustomed to seeing builder code
where the Builder instance is visible:

def builder = new ConstrainedPropertyBuilder()
builder.constraints {
}

Setting the builder as a delegate of any closure allows us to execute the closure as if it
was coded in the previous style. The constraints closure can be run at any time by
Grails, and as it executes ConstrainedPropertyBuilder, it will build a HashMap of
the constraints it encounters for each field.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[233]

We can illustrate the same technique by using MarkupBuilder. The Markup class in
the following code snippet just declares a static closure named markup. Later on, we
can use this closure with whatever builder we want, by setting the delegate of the
markup to the builder that we would like to use:

given:
Markup.markup.setDelegate(new groovy.xml.MarkupBuilder())

when:
Markup.markup() // Outputs xml

then:
"""<customers>
 <customer id='1001'>
 <name firstName='Fred' surname='Flintstone' />
 <address street='1 Rock Road' city='Bedrock' />
 </customer>
 <customer id='1002'>
 <name firstName='Barney' surname='Rubble' />
 <address street='2 Rock Road' city='Bedrock' />
 </customer>
</customers>""" == output()

One-to-many
A one-to-many relationship applies when an instance of class such as
CustomerWithInvoice is associated with many instances of another class.
For example, a customer may have many different invoices in the system,
and an invoice might have a sale order object for each line on the invoice:

class CustomerWithInvoice {
 String firstName
 String lastName
 static hasMany = [invoices:Invoice]
}

class Invoice {
 static hasMany = [orders:SalesOrder]
}

class SalesOrder {
 String sku
 int amount
 Double price
 static belongsTo = Invoice
}

Existing Groovy DSLs

[234]

To indicate the "has many" associations between Customer/Invoice and Invoice/
SalesOrder, we insert a static hasMany setting. We can also indicate ownership
by using the belongsTo setting. In the preceding example, a sales order line has
no relevance except on an invoice. We apply a belongsTo setting to bind it to the
invoice. The belongsTo setting will cause deletes to cascade when the owning
object is deleted. If an invoice is deleted, the delete will cascade to the sales order
lines. Invoice does not belong to Customer; so for auditing purposes, the invoice
object will not be automatically deleted even if the customer is removed.

From the Groovy DSL point of view, hasMany is just a static table containing a map
of IDs and Class objects. GORM can analyze this map at load time in order to create
the correct table mappings.

GORM will automatically take care of the mapping between the Customer, Invoice,
and SalesOrder classes by creating invoice_sales_order and customer_invoice
join tables.

Customer objects are linked to Invoice objects through the customer_invoice join
table. Invoices are linked to sales orders via the invoice_sales_order join
table, using foreign keys.

The hasMany setting is defined as a Map containing a key and class for each domain
object that is associated. For each hasMany key encountered on a domain class,
GORM will inject an addTo(key) method. This translates to an addToOrders
method, which is added to Invoice, as the key used was Orders and an
addToInvoices method is added to Customer. Invoking these methods will
automatically save an order or invoice in the database and also update the join
tables with the correct keys:

given:
def fred = new CustomerWithInvoices(firstName:"Fred",
lastName:"Flintstone")
fred.save(flush:true, failOnError: true)

expect:
CustomerWithInvoices.count() == 1
Invoice.count() == 0
SalesOrder.count() == 0

when:
def invoice = new Invoice()
invoice.addToOrders(new SalesOrder(sku:"productid01",
 amount:1, price:1.00))

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[235]

invoice.addToOrders(new SalesOrder(sku:"productid02",
 amount:3, price:1.50))
invoice.addToOrders(new SalesOrder(sku:"productid03",
 amount:2, price:5.00))

then: "Invoice or sales orders are not yet persisted"
CustomerWithInvoices.count() == 1
Invoice.count() == 0
SalesOrder.count() == 0

when:
fred.addToInvoices(invoice)
fred.save(flush:true, failOnError: true)

then: "Saving cascades to invoice and sales orders"
CustomerWithInvoices.count() == 1
Invoice.count() == 1
SalesOrder.count() == 3

Many-to-many
Many-to-many associations are rarer than any of the other associations, and can be
tricky to model. In GORM, all we need to do is to make the association bi-directional
and give ownership to one side by applying a belongsTo setting. GORM will take
care of the rest.

A tunes database needs to model the fact that artistes perform on many songs but
also that artistes collaborate on songs, so songs can have many artistes. Modeling
this in GORM is the essence of simplicity:

class Artist {
 String name
 static hasMany = [songs:Song]
}

class Song {
 String title
 static belongsTo = Artist
 static hasMany = [artists: Artist]
}

Existing Groovy DSLs

[236]

When maintaining a database, it does not matter whether we add songs to artistes or
artistes to songs—GORM will maintain both sides of the relationship:

given:
def richWoman = new Song(title:"Rich Woman")
def killingTheBlues = new Song(title:"Killing the Blues")

def jimmyPage = new Artist(name:"Jimmy Page")
def alisonKrauss = new Artist(name:"Alison Krauss")

when:
richWoman.addToArtists(jimmyPage)
richWoman.addToArtists(alisonKrauss)
jimmyPage.addToSongs(killingTheBlues)
alisonKrauss.addToSongs(killingTheBlues)

and:
jimmyPage.save()
alisonKrauss.save()

then:
["Rich Woman","Killing the Blues"] ==
 jimmyPage.songs.collect { it.title }
["Rich Woman","Killing the Blues"] ==
 alisonKrauss.songs.collect { it.title }

["Jimmy Page", "Alison Krauss"] ==
 richWoman.artists.collect { it.name }
["Jimmy Page", "Alison Krauss"] ==
 killingTheBlues.artists.collect { it.name }

We add both artistes to richWoman and then add killingTheBlues to both artistes.
We only need to save the artiste objects that are the owners of the relationships,
and all associations are preserved.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[237]

Composition
Composition is used when, instead of having separate tables for each business
object, we would like to embed the fields of a child object in the table of its parent.
In the previous one-to-one examples, it might be useful for us to have Address and
Identity classes to pass around in our Groovy code, but we may prefer the data for
these to be rolled into one database table. To do this, all we need to do is to add an
embedded setting to the Customer domain class, and GORM takes care of the rest:

class Customer {
 String firstName
 String lastName
 Address billing
 Address shipping
 Identity ident
 static embedded = ['billing','shipping','ident']
}

class Address {
 String street
 String city
}

class Identity {
 String email
 String password
}

We can see a useful application of embedding in the previous code snippet, where
we needed two addresses—one for billing and one for shipping. This does not
warrant a full one-to-many association between Customer and Address because
we only ever have the two addresses. The fields from Address and Identity get
mapped into columns in the customer table.

Existing Groovy DSLs

[238]

Inheritance
By default, GORM implements inheritance relationships with a table-per-hierarchy.
A class column in the table is used as a discriminator column:

class Account {
 double balance
}

class CardAccount extends Account {
 String cardId
}

class CreditAccount extends Account{
 double creditLimit
}

All of the properties from the hierarchy are mapped to columns in an account table.
Entries in the table will have the class column set to indicate what class the object in
the entry belongs to.

Mapping
We can use the mapping setting to apply a table-per-subclass strategy to inheritance
mapping. This will overcome the need to allow all properties to be nullable.
Mapping also allows us to map GORM domain classes onto a legacy database as it
gives us fine control over both table and column names in the relational model that
we map to:

class Account {
 double balance

 static mapping = {
 table "fin_account"
 balance column:"acc_bal"
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[239]

The mapping closure is implemented in Grails in a fashion very similar to
constraints. The mapping closure is executed, having set its delegate to an instance
of HibernateMappingBuilder. Within the closure code for mapping, we can use any
of the built-in methods to control how mapping should occur, or we can name the
column field itself for more fine-grained control over the mapping of a column. To
apply a table-per-subclass strategy and turn on caching, we can add the following:

static mapping = {
 tablePerSubclass = true
 cache = true
}

Querying
We've already seen in the examples some basic querying with list() and get().
The list method can be used with a number of named parameters that gives us finer
control over the result set returned:

// list all customers
Customer.list().each {
 println "${it.firstName} ${it.lastName}"
}
// List the first 10 customers
Customer.list(max:10).each {
 println "${it.firstName} ${it.lastName}"
}
// List the next 10 customers
Customer.list(max:10, offset:10).each {
 println "${it.firstName} ${it.lastName}"
}
// List all customers in descending order sorted by last name
Customer.list(sort:"lastName",order:"desc").each {
 println "${it.firstName} ${it.lastName}"

We've seen the get() method in action, which uses the database ID to return an
object. We can also use the getAll() method when we want to return more than
one object, as long as we have the IDs that we need:

def customers = Customer.getAll(2, 4, 5, 7)

Existing Groovy DSLs

[240]

Dynamic finders
GORM supports a unique and powerful query function through the use of dynamic
finders. A dynamic finder is a pretended method applied to a domain class, which
can return one or many queried objects. Finders work by allowing us to invent
method names, where the syntax of the query is bound into the method name.
All finders are prefixed by findBy or findAllBy:

// Find the first customer called Fred
def fred = Customer.findByFirstName("Fred")
// Find all Flintstones
def flintstones = Customer.findAllByLastName("Flintstone")
// Find Fred Flintstone
def fred_flintstoner = Customer.findByFirstNameAndLastName("Fred",
"Flintstone")

Finder names can also include comparators, such as Like, LessThan, and IsNotNull:

// Find all customers with names beginning with Flint
def flints = Customer.findAllByLastNameLike("Flint%")

We can include associations in queries. Here, we can find all invoices for Fred:

def fred = Customer.findByFirstNameAndLastName("Fred",
"Flintstone")
def invoices = Invoice.findAllByCustomer(fred)

Dynamic finders open up a huge range of possible finder methods that can be
used with a class. The more fields there are, the more possible finder methods
there are to match. Rather than trying to second-guess what all of the possible
combinations might be and adding them to the metaclass, GORM takes a
slightly different approach.

From Groovy 1.0, we can add a method called methodMissing to the MetaClass
object. This differs slightly from the invokeMethod call that we provided in previous
chapters because methodMissing is called as the last chance saloon before Groovy
throws a MethodMissingException, whereas invokeMethod will be called for every
method invocation.

In earlier version of Grails, it would add its own methodMissing implementation,
which catches all of the missing method invocations with the prefixes find
and findAll the first time that they occur. At this point, the actual method
implementations were registered in the metaClass, so subsequent calls to that finder
will not suffer the overhead. The later versions of Grails transform finders as they
are encountered in the code and turned them into individual Hibernate criteria
style queries.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[241]

GORM as a DSL
We've only scratched the surface of what can be done with GORM and Grails. For
a more comprehensive view of GORM, take the time to look at the Grails reference
at http://www.grails.org. What is most interesting about GORM in relation to
this book is how it achieves its goals through a suite of mini DSLs implemented in
Groovy. Domain classes could be designed and written by a database architect who
can also be insulated from the intricacies of the Groovy language.

Spock as a DSL
Test-driven development (TDD) has become an essential capability for software
developers over the past decade. TDD can mean different things to different
organizations. It can mean the adoption of a full-blown test first style of coding,
where unit tests are written before any functional code. It could just mean that you
write extensive unit tests for every piece of functional code in the system. It may or
may not mean the use of continuous integration builds that run a battery of unit tests
after each code check in. Whatever TDD means to your organization, the chances
are that flavors of xUnit test frameworks, including JUnit, WEBUnit, and HTTPUnit
have been essential tools in your software developer's arsenal for some considerable
time now.

The problem with xUnit-style testing is that these are all tools that are designed by
programmers, for programmers. Your QA staff might be familiar with running xUnit
tests and reporting on problems that they encounter, but they are less likely to be
involved in originating the code tests with these frameworks. Unit tests tend to be
written to test features at the class and method level rather than testing the intended
behavior of the software.

Two alternate models of testing—acceptance test-driven development (ATDD)
and behavior-driven development (BDD)—have been advocated, primarily
within the agile community, as a solution to this issue. The key to promoting
ATDD and BDD is the creation of tools that allow all of the stakeholders, including
developers, business analysts, and QA, to be able to use a common tool with a
common language. Testing begins with a specification of the intended behavior
for the software, which will be entered into the tool. This implies being able to
develop a specification in a language that can be written and understood by of
all the stakeholders, and not just the developers.

http://www.grails.org

Existing Groovy DSLs

[242]

The common language of ATDD and BDD revolves around defining behavior in
user-centric terms. Whether we are writing acceptance tests or defining behavior,
we end up using terms such as given, when, and then as follows:

• Given a precondition
• When certain actors perform certain actions
• Then we expect a predetermined result

Of course, this type of terminology is ripe for using a mini-language or DSL to define
the tests or behavior. And this is exactly what is happening. There are a plethora of
BDD style testing frameworks out there already, the most notable being RSpec,
a BDD-style framework implemented by using Ruby's dynamic features.

Spock
We have been using Spock BDD style syntax throughout the book to illustrate
the code examples. So, you are already well familiar with the given/when/then
semantics of BDD. I hope that using this syntax has brought clarity to the code
examples. In effect, the Spock DSL has become part of the primary narrative of
the book.

In Chapter 3, Essential Groovy DSLs, we took a detailed look at how to use Spock.
Now, we will take a look at how some of the DSL-like features of Spock are
implemented. First, let's recap on some key elements of a Spock specification.
For the purpose of this chapter, we will just focus on feature methods and blocks:

• Fixture methods: Fixture methods are to set up and teardown test data,
that is, setup(), cleanup(), setupSpec(), and cleanupSpec().

• Feature methods: A feature method in Spock is used to describe a single
test scenario. It can have any valid Groovy method name, but typically
by conventions, we use the Groovy; string as method name syntax, so the
method name also becomes part of the test documentation. The thing that
separates feature methods from other methods in Spock is the fact that they
contain blocks.

• Blocks: Blocks in Spock are the given, when, and then clauses of the BDD
semantics. They are denoted by an equivalent Groovy label, for example,
given:, when:, then:, followed by an optional descriptor string and any
number of code statements. The block is terminated by the next valid block
or at the end of the enclosing feature method.

• Helper methods: Any method that is not a fixture method or does not
contain any valid blocks is considered to be a helper method.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[243]

The following code is a simple Spock specification that tests some of the features of
the java.util.Stack class:

class ChapterNineSpec extends SpockScriptSpecification {
 def "initial size is zero"() {
 given:
 def stack = new Stack()
 expect: stack.size() == 0
 }

 def "pop from empty stack throws exception"() {
 given:
 def stack = new Stack()
 when: stack.pop()
 then: thrown(EmptyStackException)
 }

 def "peek from empty stack throws exception"() {
 given:
 def stack = new Stack()
 when: stack.peek()
 then: thrown(EmptyStackException)
 }

 def "after push size is one and we can peek"() {
 given:
 def stack = new Stack()

 when: stack.push("elem")

 then:
 stack.size() == 1
 stack.peek() == "elem"
 }
}

Existing Groovy DSLs

[244]

JUnit
The Spock test framework is built on top of the JUnit test framework. If we were
to rewrite the preceding feature method in a JUnit test case, it might look a little
like this:

public class ChapterNineTest extends TestCase {

 public void testStack() {
 Stack stack = new Stack();

 assert stack.size() == 0;
 stack.push("elem");
 assert stack.size() == 1;
 assert stack.peek().equals("elem");
 }
}

I've kept this simple as an old style JUnit test without annotations so that we can
start to use our knowledge of Groovy to imagine how a Spock-like DSL could be
achieved. It should be clear that the only way to achieve this would be by using a
Global AST transformation.

One possible way to achieve this using AST transformations would be to transform
the ChapterNineSpec class by extending it from TestCase. The feature method
would need to be transformed by creating a new method starting with test. Each of
the blocks would have to be cloned and injected into the new method in sequence
and each statement line in the then: block would need to have an AssertStatement
ASTNode object added to it.

In fact, this is not far removed from what Spock actually does do under the covers.
One important difference is that Spock does not actually try to transform the
Specification class into a test case class. This can be avoided because Spock
implements its own JUnit Runner class. This runner class understands how to
find each feature methods in turn and invokes it using Java reflection.

Spock creates a brand new feature method in the AST. It builds up the body of the
feature method from the blocks contained in the original Specification class,
and when it is done, it deletes the AST nodes for the original feature methods
from the AST.

www.allitebooks.com

http://www.allitebooks.org

Chapter 9

[245]

You can explore this a little yourself by launching a Spock test in the debugger of
your favorite IDE. Place a breakpoint on a line within the first feature method of
your spec. When the debugger hits the breakpoint, you will notice by looking at
the call stack that you are not in the feature method you defined in the test, but in a
method called $spock_feature_0_0. The Spock AST transformation has created this
new method for you.

Try stepping through the lines of code in a block. You will notice that the debugger
stays in sync. This is because Spock clones the original source location from the
original AST objects into the newly created ones. The ASTNode class has a method
specifically for doing this: ASTNode.setSourcePosition(ASTNode node). This is
an important feature to use if you are going to build an AST transformation-based
DSL, which you hope to behave well in a debugger.

Spock does a lot more sophisticated stuff than this under the covers. In fact, it is one
of the first DSLs produced in Groovy that exploited the AST transformations feature
when it was added to Groovy. I encourage you to explore the Spock sources. They
can be found on GitHub at https://github.com/spockframework/spock.

Summary
In this chapter, we looked at two existing Groovy DSLs that are in current use and
are free to download. GORM implements a full persistence layer over Hibernate that
layers over standard Groovy classes. GORM allows us to decorate a regular POGO
with settings for applying the most common associations and relationships that we
can expect in our object models.

Much of what GORM provides in terms of querying via dynamic finders requires a
Groovy-knowledgeable developer to appreciate and use them. However, the basic
object modeling semantics provided through the belongsTo, hasMany, and other
persistence settings could be used quite readily by a data-modeling architect who has
little or no knowledge of the Groovy language. The domain classes can be viewed
as an independent model specification language, which has the advantage of being
immediately usable by Groovy developers responsible for other parts of the system.

Spock brings BDD style specification-based testing to the Java/Groovy platform.
Each provides a means to write specifications by using given/when/then style
semantics that are easier to interpret than regular xUnit style testing frameworks.
The pseudo-English style syntax of this DSL should mean that the specifications
can be understood by business stakeholders even if they still need to be coded by a
Groovy-proficient developer.

https://github.com/spockframework/spock

Existing Groovy DSLs

[246]

Most importantly, in this chapter, we have seen how all of these projects exploit
different Groovy features in order to implement DSL-style structures and syntax.

In the next chapter we will cover the techniques that you can use to build your own
builder. In Chapter 7, Power Groovy DSL Features, we took a brief look at how builders
worked. In Chapter 10, Building a Builder, we will look in detail at how we can use
closures and the Groovy MOP to implement the Groovy builder pattern in our
own applications.

www.allitebooks.com

http://www.allitebooks.org

[247]

Building a Builder
Builders are a powerful feature of Groovy. The Groovy libraries contain an
expanding set of builders for everything from XML and HTML markup to
managing systems via JMX. Even so, you will always come across circumstances
where the semantics of a builder would be useful in your own application.

We've seen how to build a rudimentary builder using the Groovy MOP and
pretended methods, in Chapter 7, Power Groovy DSL Features. Thankfully, the Groovy
libraries provide us with an easier means of developing our own builders. In this
chapter, we will look at some of the ways in which we can use Groovy and the
MOP to create our own builder classes:

• To begin with, we will recap the Groovy features that enable the Groovy
builder pattern, in order to understand how they work

• We will look at how to build a rudimentary builder with features from the
Groovy MOP

• We will implement our own database seed data builder by using two of
the builder support classes provided in Groovy: BuilderSupport and
FactoryBuilderSupport

The builder code structure
The real beauty of Groovy's builder paradigm is the way in which it maps the
naturally nested block structure of the language to the construction process.

The process of defining parent-child relationships between objects through nested
code blocks is well-established through other markup languages, such as XML
and HTML.

Building a Builder

[248]

The transition from writing XML or HTML to the GroovyMarkup equivalent
is an easy one. To make use of a builder, we don't need to have an intimate
understanding of the Groovy MOP or of how the builder is implemented. We
just need to know how to write the builder code so that it conforms to the correct
language semantics. The code structure of the builder pattern relies on just a few
Groovy language features:

• Closure method calls: The distinctively nested block structure in the builder
pattern is facilitated by Groovy's special handling of closures when they are
passed as method parameters. This allows the closure block to be declared
inline after the other method call parameters.

• Closure method resolution: When a method is invoked within the body of a
closure and that method does not exist in the closure instance, Groovy uses
a resolve strategy to determine which object (if any) should be tried to locate
that method.

• Pretended methods: The Groovy MOP allows us to respond to method
calls that do not exist in a class—in other words, to "pretend" that these
methods exist.

• Named parameters: When we pass a Map parameter to a method, we can
declare the individual map elements alongside the other method parameters,
giving the effect of a named parameter list.

• Closure delegate: Changing the delegate of a closure allows another class
to handle its method calls. When we change the delegate to a builder class,
this allows the builder to orchestrate how the method calls are handled.

Closure method calls
When we declare a Groovy method that accepts a closure as its last parameter,
Groovy allows us to define the body of the inline closure immediately after the
method call containing the other parameters. A method call followed by an inline
closure block has all the appearance of being a named block of code. It's when we
nest these method calls within each other that we get the distinctive builder-style
code blocks.

This style of coding is not unique to builders. We can nest other method calls in the
same way. In the following example, we have three methods defined within a script:
method1(), method2(), and method3(). Nesting calls to these methods gives us
some code that is very similar to a builder block, but is not actually a builder block.
The cool thing about the builder pattern is that it uses this existing feature from the
language and turns it into a whole new coding paradigm.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[249]

The success of building our own builder class by using the Groovy MOP depends
largely on understanding the sequence in which these methods get called. The
output gives us an idea of what might be happening and what the true sequence of
events is. Let's decorate the code a little to show what is happening. The comments
show what scope we are running in:

 def method1(Map namedParams = [:], Closure closure = {}) {
 println "method1: $namedParams"
 closure.call()
 }
 def method2(Map namedParams = [:], Closure closure = {}) {
 println "method2: $namedParams"
 closure.call()
 }
 def method3(Map namedParams = [:], Closure closure = {}) {
 println "method3: $namedParams"
 closure.call()
 }

given:
method1(param: "one") { // Closure1 scope
 method2(greet: true) { // Closure2 scope
 method3 greeting: "hello"
 } // End Closure2
 method1(number: 123) { // Closure3 scope
 method1 (nestedcall: "nested") { // Closure4 scope
 method3 number: 10
 } // End Closure4
 } // End Closure3
} // End Closure1

expect:
"""method1: [param:one]
method2: [greet:true]
method3: [greeting:hello]
method1: [number:123]
method1: [nestedcall:nested]
method3: [number:10]""" == output()

Building a Builder

[250]

The main block of code runs within the scope of the script. Each inline closure is in
fact an anonymous instance of a Closure object. For the purpose of this exercise, we
will rename these instances from Closure1 to Closure4. The first call to method1()
occurs in the outer scope of the script, so we will expect this method to be passed to
the outer scope. The subsequent method calls all happen within the scope of one or
other of the anonymous closure instances, so we expect these methods to be invoked
on the individual closure instances.

The resolve strategy – OWNER_FIRST
The one problem with the expected flow in the previous example is that we know
that the closure instances don't implement the method1() to method3() methods.
So, we appear to be executing unimplemented methods. When Groovy makes a call
to a method on a closure, it does not always expect it to be present.

If a method is not present in the closure itself, Groovy will try to find it by
looking in the owner of the closure, or its delegate, or both. The order in which this
occurs is called the resolve strategy of the closure. The default resolve strategy is
OWNER_FIRST, which means that the owner of the closure will be queried first for the
method, followed by the delegate. If the owner of the closure happens to be another
closure, then the resolve strategy will continue its search for a match in the owner of
the owner and so on, until a match is found or the outer scope is reached.

The resolve strategy can be changed for a closure by calling
Closure.setResolveStrategy. We can change the resolve
strategy to any of the following self-explanatory strategies:
OWNER_FIRST, OWNER_ONLY, DELEGATE_FIRST, DELEGATE_ONLY,
and NONE.

Although the preceding sequence diagram reflects the first port of call for each
method invocation, what in fact happens is that the resolve strategy kicks in and
the method calls will percolate out through the closure instances. A match will
eventually be found in the outer scope, which is the only place where the actual
methods exist.

The insight that Groovy designers had when designing the builder pattern was that
this natural nesting of closures could be used to map to any construction process that
involved a parent-child type of relationship. Even without using a builder class, we
can nest closures' method calls to create a pseudo builder. In the next example, we
declare three methods that we can use to construct a rudimentary tree structure out
of map objects.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[251]

The root() method creates the initial tree map and inserts a root element into it. We
can nest as many levels deep as we like with the node() method as it will remember
its parent node and add sub nodes to it. The leaf() method is the only one to take a
value and it does not expect to be passed a closure, as it will create the leaf elements
in the tree structure:

def current
def root (Closure closure) {
 def tree = [:]
 def root = [:]
 tree["root"] = root
 def parent = current
 current = root
 closure.call()
 current = parent
 return tree
}

def node (key, Closure closure) {
 def node = [:]
 current[key] = node
 def parent = current
 current = node
 closure.call()
 current = parent
}

def leaf (key, value) {
 current[key] = value

}

given:
// pseudo builder code
def tree = root {
 node("sub-tree-1") {
 leaf "leaf-1", "leaf object 1"
 }
 node ("sub-tree-2"){
 node ("node-1"){
 leaf "leaf-2", "leaf object 2"
 }
 }

Building a Builder

[252]

}

expect:
tree == [
root: [
 "sub-tree-1": [
 "leaf-1": "leaf object 1"
],
 "sub-tree-2": [
 "node-1": [
 "leaf-2": "leaf object 2"
]
]
]
]

Pretended methods
Many Groovy builders rely on the ability to describe arbitrarily named elements.
When we make use of markup builders to generate XML, we need to be able to insert
whatever tag names are required to conform to the schema that we are using. Given
that elements are created in method calls, we also need to be able to make arbitrarily
named method calls during the markup process.

With Groovy, we can respond to methods that don't exist as concrete methods of a
class. The term we use for these types of methods is pretended methods. Groovy
provides two means for implementing a pretended method.

invokeMethod
The PoorMansTagBuilder class that we covered in Chapter 5, Groovy Closures,
uses invokeMethod as a means of pretending methods. The PoorMansTagBuilder
class works by handling all method calls to the builder, and invoking the closure
argument manually. With invokeMethod, we can respond appropriately to any
arbitrary method call. In this case, we output the appropriate XML tags:

class PoorMansTagBuilder {
 int indent = 0
 Object invokeMethod(String name, Object args) {
 indent.times {print " "}
 println "<${name}>"
 indent++
 args[0].delegate = this // Change delegate to the builder
 args[0].call()

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[253]

 indent--
 indent.times {print " "}
 println "</${name}>"
 }
}

This is a simple case that we are using just to illustrate the mechanism. Although the
technique works for simple cases, extending it to implement a more complete tag
builder will rapidly result in complex and hard to maintain code.

methodMissing
Since Groovy 1.5, an alternative to invokeMethod was provided. The
methodMissing mechanism differs slightly from invokeMethod, as it is only called
when a method call fails to be dispatched to any concrete method. To update the
PoorMansTagBuilder class for using methodMissing instead of invokeMethod, all
we need to do is replace the method name that we declare:

class PoorMansTagBuilder {
 int indent = 0
 def methodMissing(String name, args) {
 indent.times {print " "}
 println "<${name}>"
 indent++
 args[0].delegate = this // Change delegate to the builder
 args[0].call()
 indent--
 indent.times {print " "}
 println "</${name}>"
 }
}

given:
def builder = new PoorMansTagBuilder ()

when:
builder.root {
 level1{
 level2 {
 }
 }
}

Building a Builder

[254]

then:
 """<root>
 <level1>
 <level2>
 </level2>
 </level1>
</root>""" == output()

The closure delegate
Earlier, we looked at how to code a pseudo builder using methods declared within a
script. The resolve strategy in that example passed method calls in the nested closure
up to the owner of the closure. The builder block in the previous example is also
in the scope of a script. Let's decorate it as we did before, to identify the various
anonymous closure instances:

// method root() called on PoorMansTagBuilder
builder.root { // Closure1
 // method level1 called on Closure1 instance
 level1{ // Closure2
 // method level2 called on Closure2 instance
 level2 { // Closure3
 }
 }
}

The first method call to root() is made against the builder instance, so it will be
handled directly by PoorMansTagBuilder.methodMissing(). Nested method
calls will first be dispatched to the enclosing closure. The level1() and level2()
methods won't be found in the closure instances, so we would normally expect the
resolve strategy to dispatch these methods up the chain of owners until a method
is found. This normal dispatch chain would end up at the script instance, so these
methods would cause MethodMissingException to be thrown.

The secret of how this works is in the handling of the delegate for closure instances.
The builder block starts with a direct method call onto the builder instance,
builder.root(). The anonymous closure, Closure1, is passed as a parameter. The
call to root() will fail and fall through to methodMissing. In this simple example,
arg[0] is always the closure because we are not processing parameters on our
tags. A more sophisticated version will need to scan the parameters for the
closure instance.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[255]

At this point, we have access to the closure, so we can set its delegate to the
builder instance. Now, when the level1() and level2() calls are encountered,
the resolve strategy will try the owner first and then try the delegate as follows:

• The level1() call will not be resolved in Closure1. It won't be found in the
owner of Closure1, which is the script, but it will be resolved in the delegate,
which is the builder instance. PoorMansTagBuilder.methodMissing will
field the method and also set the delegate for the anonymous closure,
Closure2.

• The level2() call happens in the scope of Closure2, but will not be resolved
there. First, its owner, Closure1, will be tried, and then its delegate, which
once again is the builder instance.

BuilderSupport
Under the hood, all of Groovy's own Builders are implemented using the
invokeMethod or methodMissing methods and delegate techniques that we have
described in the previous section. We can choose to start creating our own builder
classes by using these features alone. Perhaps the biggest challenge when creating
a builder with these features alone is that the MOP concepts of pretended methods
and delegate handling don't fit well with the task at hand—namely, the construction
of complex objects. It would be nice to have APIs that reflected the task at hand in a
better way.

Thankfully, the complexities of managing invokeMethod or methodMissing calls
and figuring out who the delegate should be, are encapsulated into the builder
support classes provided in the Groovy packages. The most basic support class is
groovy.util.BuilderSupport.

BuilderSupport hook methods
BuilderSupport provides an interface to the building process that nicely mirrors the
node-based construction process on which most builder classes are based. Instead
of overriding invokeMethod as in the initial example, we will override the node
construction methods provided by BuilderSupport.

Building a Builder

[256]

These methods provide the hooks such that, instead of coding at the MOP level with
pretended method invocations and delegates, we can code with respect to the node
construction process. The important hook methods that we need to know about are
listed here. These methods encapsulate the building process out into node creation
style events that make far more sense from an object construction point of view.
Then, we never need to worry about pretended methods or delegates again:

• createNode(Object name)

• createNode(Object name, Object value)

• createNode(Object name, Map attributes)

• createNode(Object name, Map attributes, Objects value)

Called by BuilderSupport whenever a pretended method is encountered, the name
parameter contains the name of the pretended call. The responsibility of the hook is
to return a new object of a type appropriate to the method call. The specific hook to
be called depends on what parameters are passed to the method:

• nodeCompleted(Object parent, Object node): This is called after all of
the children of a node have been created

• setParent(Object parent, Object child): This is called after
createNode for each child node, in order to allow any parent-child
relationships to be established

BuilderSupport takes care of the nitty-gritty of handling pretended
methods for us. Had our PoorMansTagBuilder worked only for
parameter-less tags, BuilderSupport would have detected which type
of call was being made and called the appropriate createNode for us.
The setParent method is only called if a parent node exists.

How this all hangs together is best illustrated by way of an example. So, let's start by
creating a really dumb builder that just logs these methods as they are encountered.
This will give us a feel for the sequence in which the methods are called:

class LogBuilder extends BuilderSupport {
 def indent = 0
 def createNode(name){
 indent.times {print " "}
 println "createNode(${name})"
 indent++
 return name
 }
 def createNode(name, value){

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[257]

 indent.times {print " "}
 println "createNode(${name}, ${value})"
 indent++
 return name
 }
 def createNode(name, Map attributes){
 indent.times {print " "}
 println "createNode(${name}, ${attributes})"
 indent++
 return name
 }
 def createNode(name, Map attributes, value){
 indent.times {print " "}
 println "createNode(${name}, ${attributes}, ${value})"
 indent++
 return name
 }
 void setParent(parent, child){
 indent.times {print " "}
 println "setParent(${parent}, ${child})"
 }
 void nodeCompleted(parent, node) {
 indent--
 indent.times {print " "}
 println "nodeCompleted(${parent}, ${node})"
 }
}

To use this builder, all that we need to do is to construct one and start writing some
markup with it. Here we have some markup for building customer records, but
as this builder does not care what the method tags are, we could write whatever
markup we please:

given:
def builder = new LogBuilder()

def customers = builder.customers {
 customer{
 id(1001)
 name(firstName:"Fred",surname:"Flintstone")
 address("billing", street:"1 Rock Road",city:"Bedrock")
 address("shipping", street:"1 Rock Road",city:"Bedrock")
 }
}
expect:

Building a Builder

[258]

"""createNode(customers)
 createNode(customer)
 setParent(customers, customer)
 createNode(id, 1001)
 setParent(customer, id)
 nodeCompleted(customer, id)
 createNode(name, [firstName:Fred, surname:Flintstone])
 setParent(customer, name)
 nodeCompleted(customer, name)
 createNode(address, [street:1 Rock Road, city:Bedrock],
 billing)
 setParent(customer, address)
 nodeCompleted(customer, address)
 createNode(address, [street:1 Rock Road, city:Bedrock],
 shipping)
 setParent(customer, address)
 nodeCompleted(customer, address)
 nodeCompleted(customers, customer)
nodeCompleted(null, customers)""")""" == output()

We can see from the output exactly what the sequence of calling is, and what
parameters are being passed. We've used this simple example for illustrating how
the BuilderSupport class works, but it is actually a useful debugging tool in general
for using with any builder that's not behaving as expected. By replacing any existing
builder instance in your code with a LogBuilder class, it will output the construction
sequence for you, which may identify the problem.

From this output, we can trace the sequence in which the hooks are called. Nodes
are created from the top down. The createNode hook for the parent is called
first. The createNode hook for a child is called next, and setParent is called for
each individual child after both the parent and the child have been created. The
nodeCompleted hook is called only after all of the children have been created and
their parent-child relations are set.

The default implementation of BuilderSupport manages the current node cursor by
itself. Two additional hooks to consider are:

• setCurrent(Object current)

• Object getCurrent()

Certain builder implementations might want to manage the notion of a "current"
node object in order to maintain a cursor on the construction process. If so, both of
these hooks will need to be implemented.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[259]

Now that we understand the building mechanism, it is a trivial matter to change our
LogBuilder script to create some actual markup. Here, with a few modifications,
we can turn our script into PoorMansTagBuilder20:

class PoorMansTagBuilder20 extends BuilderSupport {
 def indent = 0

 def createNode(name){
 indent.times {print " "}
 println "<${name}>"
 indent++
 return name
 }
 def createNode(name, value){
 indent.times {print " "}
 println "<${name}>" + value
 indent++
 return name
 }
 def createNode(name, Map attributes){
 indent.times {print " "}
 print "<${name} "
 print attributes.collect {
 "${it.key}='${it.value}'"
 }.join(' ')
 println ">"
 indent++
 return name
 }
 def createNode(name, Map attributes, value){
 indent.times {print " "}
 print "<${name} "
 print attributes.collect {
 "${it.key}='${it.value}'"
 }.join(' ')
 println ">" + value
 indent++
 return name
 }
 void setParent(parent, child){
 // Don't care since we are just streaming to output
 }
 void nodeCompleted(parent, node) {
 indent--

Building a Builder

[260]

 indent.times {print " "}
 println "</${node}>"
 }

}

given:
def builder = new PoorMansTagBuilder20 ()

when:
builder.root {
 level1{
 level2 {
 }
 }
}

then:
 """<root>
 <level1>
 <level2>
 </level2>
 </level1>
</root>""" == output()

Once again, this is a simple implementation of a tag builder. We are making no
interpretation of the method tags that are being passed in, so for each createNode
call, all we do is output a <TAG> tag with parameters and attributes if necessary. The
setParent call is not relevant to us because we are just streaming output to standard
output. We will see in the next example where we need to implement this. Finally,
the nodeCompleted call just closes the </TAG> tag.

Now, we can apply this builder to the same customers markup script that we did
before, as follows. The only change required is to instantiate PoorMansTageBuilder20
in place of the original builder class.

As a markup builder, this falls well short of the features in the Groovy
MarkupBuilder class, but it does show just how easy it is to put together a quick
builder to fit the need of the day. Now, let's consider what we've learned, and look
at building something a little more useful.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[261]

A database builder
Every application that includes a database needs some means of setting up seed,
demo, or test data. I have worked on numerous enterprise applications during my
career and invariably the management of different datasets becomes as much of an
effort over time as the development of the application itself. In my own experience
of working with Independent Software Vendors (ISVs), whose applications need
to be deployed on multiple customer sites with multiple versions, the problem
becomes acute.

ISV companies often have competing needs for datasets. The sales organization
needs a predictable dataset for its demos to customers. The test department
needs datasets that allow them to test specific features of the application. Project
management requires specific seed data to be available, which is tailored to each
customer site prior to installation. With all of these competing requirements, the IT
department has a limited set of database instances available on which to install and
test all of these configurations.

There are various ways of managing datasets. The most common is to maintain
SQL scripts that take care of the database insertions. Building a simple database
will require multiple insertions into a multitude of tables. The SQL script needs to be
written in such a way as to maintain the integrity of foreign key references. It's not an
easy thing to do, and requires intimate knowledge of the schema.

Suppose we are working with a Grails application. Take for example the one-to-many
relationship we looked at in Chapter 6, Example DSL – GeeTwitter:

class Customer {
 String firstName
 String lastName
 static hasMany = [invoices:Invoice]
}

class Invoice {
 static hasMany = [orders:SalesOrder]
}

class SalesOrder {
 String sku
 int amount
 Double price
 static belongsTo = Invoice
}

Building a Builder

[262]

Grails has a migration plugin that can be installed. The migration tool will execute a
SQL update script to migrate our database between versions. To use the migrate tool
to add some simple test data for the preceding classes, we need to know how GORM
maps from the Groovy POGO objects to relational tables.

In Chapter 9, Existing Groovy DSLs, we also saw how these classes in fact map to
five tables in the relational database. There are three main tables that represent
the business objects (customer, invoice, and sales_order) and there are two
mapping tables used to manage the foreign key mappings (customer_invoice
and invoice_sales_order) that relate customers to invoices and invoices to
sales orders.

To set up a simple test case with one customer, one invoice, and three sales orders
would require nine insertions across these tables. Apart from being error prone
and difficult to maintain, the script will be incomprehensible to anyone who is not
intimately acquainted with SQL. What starts out as a simple data input spec for a
test case becomes a development task for a domain SQL expert who understands
the GORM mapping model.

An alternative to this approach is to use the GORM APIs to build the test data.
At least if we do this, then we don't have to concern ourselves with the foreign
key relationships between tables. The following script will set up our simple
dataset with one customer, one invoice, and three sales orders:

def fred = new Customer(firstName:"Fred", lastName:"Flintstone")

fred.save()

def invoice = new Invoice()

invoice.addToOrders(new SalesOrder(sku:"productid01", amount:1,
price:1.00))
invoice.addToOrders(new SalesOrder(sku:"productid02", amount:3,
price:1.50))
invoice.addToOrders(new SalesOrder(sku:"productid03", amount:2,
price:5.00))

fred.addToInvoices(invoice)

This is somewhat better than the SQL script approach, but it does impose a
procedural construction onto the data, where the test data is typically defined
declaratively. While I've used GORM to illustrate my point here, the same issues
will crop up with whatever persistence mechanism we use.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[263]

Ideally, we want to be able to describe our data in a declarative style. The syntax
of the data definition should match the structure of the resulting data as closely
as possible. This is an ideal situation in which to use a builder to take care of
construction. With a builder, it should be possible to create a declarative markup
style script for building datasets. The builder can take care of the complexities
of construction.

Let's first of all imagine how a builder for customers may look in use. We probably
want to handle multiple customers, so a top-level customers method is useful.
We could have multiple customer blocks nested in the following code. Nesting is a
good way of depicting ownership in a one-to-many relationship, so our Customers
markup would probably look something like the following:

builder.customers {
 customer{
 invoice {
 salesOrder()
 salesOrder()
 salesOrder()
 }
 }
}

We need to be able to set the fields for each entity as it is created. We could have a
pretended method for each field as follows:

builder.customers {
 customer {
 firstName("Fred")
 lastName("Flintstone")
 invoice {
 salesOrder {
 sku("productid01")
 amount(1)
 price(1.00)
 }
 salesOrder {
 sku("productid02")
 amount(2)
 price(1.00)
 }
 salesOrder {
 sku("productid03")

Building a Builder

[264]

 amount(3)
 price(1.00)
 }
 }
 }
}

This will work. However, it is not immediately clear to a reader of this script that
lastName is an object attribute and invoice is a new subsidiary object. A better option
is to set object attributes as mapped parameter values. The following script is far
clearer in its intent, so this is the one we will try to implement:

builder.customers {
 customer(firstName:"Fred",lastName:"Flintstone") {
 invoice {
 salesOrder(sku:"productid01", amount:1, price:1.00)
 salesOrder(sku:"productid02", amount:2, price:1.00)
 salesOrder(sku:"productid03", amount:3, price:1.00)
 }
 }
}

As it happens, the BuilderSupport hook methods and their calling sequence
work perfectly in step with the GORM APIs that we need in order to construct
our customer records:

• The createNode method will be called in the correct top down sequence,
allowing us to create the appropriate Customer, Invoice, or SalesOrder
class as required

• The setParent hook is called after both parent and child objects have
been constructed, allowing us to call Customer.addToInvoices or
Invoice.addToOrders when we need to

• The nodeCompleted hook can be used to intercept when an object needs to
be saved

The following code snippet contains a rudimentary builder class based on
BuilderSupport that constructs customer, invoice, and sales order objects through
GORM. The same style of builder could work equally well with whatever other
persistence method we choose:

class CustomersBuilder extends BuilderSupport {
 def createNode(name){
 Object result = null
 switch (name) {
 case "customer":

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[265]

 return new Customer(firstName:"", lastName:"")
 case "invoice":
 return new Invoice()
 case "salesOrder":
 return new SalesOrder(sku:"default",amount:1,price:0.0)
 }
 }
 def createNode(name, value){
 Object result = createNode(name)
 if (value instanceof Customer && result instanceof Invoice)
 value.addToInvoices(result)
 if(value instanceof Invoice && result instanceof SalesOrder)
 value.addToOrders(result)
 return result
 }
 def createNode(name, Map attributes){
 Object result = null
 switch (name) {
 case "customer":
 return new Customer(attributes)
 case "invoice":
 return new Invoice(attributes)
 case "salesOrder":
 return new SalesOrder(attributes)
 }
 }
 def createNode(name, Map attributes, value){
 Object result = createNode(name,attributes)
 if (value instanceof Customer && result instanceof Invoice)
 value.addToInvoices(result)
 if(value instanceof Invoice && result instanceof SalesOrder)
 value.addToOrders(result)
 return result
 }
 void setParent(parent, child){
 if (child instanceof Invoice && parent instanceof Customer)
 parent.addToInvoices(child)
 if (child instanceof SalesOrder && parent instanceof Invoice)
 parent.addToOrders(child)
 }
 void nodeCompleted(parent, node) {
 if (node != null)
 node.save()
 }
}

Building a Builder

[266]

Here, we have implemented all four createNode methods. The method tag is passed
as the name parameter to createNode. So, we construct a Customer, Invoice, or
SalesOrder object based on the tag that we are processing. We will allow a parent
object to be set in the value parameter to the method. This allows us to construct a
child object outside the scope of a parent, and set its parent later.

The setParent method takes care of adding invoices to customers, and sales orders
to invoices. Testing the instanceof both parent and child ensures that we don't
attempt to add an invoice if it is declared outside of the customer.

All that remains for nodeCompleted to do is to save the node object that we have
created to the database. When we put all of this together, we can make use of our
CustomerBuilder to build a simple test database as follows:

given:
def builder = new CustomersBuilder()

def customers = builder.customers {
 def fred = customer(firstName:"Fred",lastName:"Flintstone") {
 invoice {
 salesOrder(sku:"productid01", amount:1, price:1.00)
 salesOrder(sku:"productid02", amount:2, price:1.00)
 salesOrder(sku:"productid03", amount:3, price:1.00)
 }
 }
 def invoice2 = invoice(fred)

 salesOrder(invoice2, sku:"productid04", amount:1, price:1.00)
 salesOrder(invoice2, sku:"productid05", amount:1, price:1.00)
 salesOrder(invoice2, sku:"productid06", amount:1, price:1.00)
}

expect:
CustomerWithInvoices.count() == 1
Invoice.count() == 2
SalesOrder.count() == 6

By allowing a parent object to be passed as the value parameter, we have made
the markup script more flexible. As you can see from the preceding code, invoice
and salesOrder tags can be declared directly as children of a parent object, or they
can be declared independently. This gives us a bit more flexibility in what types of
mapping relationships we can support where ownership between parent and child
might be optional, or in more complex scenarios where many-to-many relationships
might need to be declared.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[267]

FactoryBuilderSupport
BuilderSupport is the base class for many of the builder classes provided in the
Groovy packages. As we can see from the previous examples, it is easy to work with.
We have built quite a useful database builder tool in relatively few lines of code.

However, one issue with BuilderSupport is that the hook functions are in effect
funnels for handling all of the possible tags that we might like to process in our
markup. In our CustomerBuilder, we are handling just four different tags.

This is not a realistic scenario for most database schemas. We could expect to have
dozens more tag types that we need to handle if we wanted to expand this example
into something that would work with a typical database schema for even a modestly
sized application. Funneling all of these tags into one createNode would create an
unwieldy mess of code:

def createNode(name){
 Object result = null
 switch (name) {
 case "customer":
 return new Customer(firstName:"", lastName:"")
 case "invoice":
 return new Invoice()
 case "sales_order":
 return new SalesOrder(sku:"default",amount:1,price:0.0)
 case "another_object":
 return new Something()
 …….. and more!
 }
}

Groovy provides a second builder support class that neatly overcomes this problem.
The groovy.util.FactoryBuilderSupport class is based on the factory pattern,
and delegates the handling of individual tag objects to Factory classes. Originally,
this support class was just provided as part of the SwingBuilder class. Since it
was clear that this was more generally useful, the code was then refactored to be
generally usable as a standalone Builder class. Since then, it has become the basis
for other builders, such as JmxBuilder, and is available to us for deriving our own
factory-based builders.

FactoryBuilderSupport works by orchestrating the construction process in concert
with Factory classes. When the FactoryBuilderSupport class encounters a method
tag, it constructs an appropriate Factory object to handle it. The factory provides
method hooks that implement the construction of the individual object and the
setting up of parent-child relationships between the objects.

Building a Builder

[268]

To implement a builder with the FactoryBuilderSupport class, we must first
declare a Factory class for each object type that we wish to process. Factory classes
are derived from the groovy.util.AbstractFactory class and need to overload
some or all of the following methods from the AbstractFactory class:

• newInstance: This method is called by FactoryBuilderSupport whenever
it wants an object of a particular type to be constructed. It is similar to
the createNode methods of BuilderSupport except that there is just one
newInstance method, which accepts all argument types regardless of
whether a value or attributes are supplied or not.

• onHandleNodeAttributes: This method allows the Factory class to take
over the management of attributes. It can stop the builder from processing
attributes by returning true.

• setParent and setChild: These methods provide hooks for managing the
parent-child relationships between objects.

• isLeaf: We set this method to return true if the method tag being handled
should be a leaf node and stops the builder treating any subsequent method
calls as object declarations.

• onNodeCompleted: This method is called when a node is completed, in
order to allow any finalization of the object to be performed. It is similar
to nodeCompleted in BuilderSupport.

To build a replacement for the CustomerBuilder class with
FactoryBuilderSupport, we first need to define Factory classes for each of the tag
methods that we need to process. The first of these is the customers tag, which is
straightforward enough. This tag does not cause any objects to be created, so all we
do is return the tag name as the object created:

public class CustomersFactory extends AbstractFactory {

 public boolean isLeaf() {
 return false
 }

 public Object newInstance(FactoryBuilderSupport builder,
 Object name, Object value, Map attributes
) throws InstantiationException, IllegalAccessException {
 return name
 }

}

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[269]

We then define a factory class for the customer object. The methods that we need to
implement are isLeaf (returns false), newInstance (to create the customer object),
and onNodeCompleted (to save it):

public class CustomerFactory extends AbstractFactory {

 public boolean isLeaf() {
 return false
 }

 public Object newInstance(FactoryBuilderSupport builder,
 Object name, Object value, Map attributes
) throws InstantiationException, IllegalAccessException {
 Customer customer = null
 if (attributes != null)
 customer = new Customer(attributes)
 else
 customer = new Customer()
 return customer
 }

 public void onNodeCompleted(FactoryBuilderSupport builder,
 Object parent, Object customer) {
 customer.save()
 }
}

The factory for invoices is equally straightforward. The only addition is that we
need to take care of the parent-child relationship between customer and invoice.
We do this by adding a setParent method, which will call addToInvoices on the
customer object if required. We also need to check the value parameter passed to
newInstance to see whether a parent is being set at this point:

public class InvoiceFactory extends AbstractFactory {

 public boolean isLeaf() {
 return false
 }

 public Object newInstance(FactoryBuilderSupport builder,
 Object name, Object value, Map attributes
) throws InstantiationException, IllegalAccessException {
 Invoice invoice = null
 if (attributes != null)
 invoice = new Invoice(attributes)

Building a Builder

[270]

 else
 invoice = new Invoice()
 if (value != null && value instanceof Customer)
 value.addToInvoices(invoice)
 return invoice
 }

 public void setParent(FactoryBuilderSupport builder,
 Object parent, Object invoice) {
 if (parent != null && parent instanceof Customer)
 parent.addToInvoices(invoice)
 }

 public void onNodeCompleted(FactoryBuilderSupport builder,
 Object parent, Object invoice) {
 invoice.save()
 }
}

The factory for sales orders is identical to invoices except that we now return true
from isLeaf because a sales order object will always be a leaf node in our tree:

public class SalesOrderFactory extends AbstractFactory {
 public boolean isLeaf() {
 return true
 }

 public Object newInstance(FactoryBuilderSupport builder,
 Object name, Object value, Map attributes
) throws InstantiationException, IllegalAccessException {
 SalesOrder sales_order = null
 if (attributes != null)
 sales_order = new SalesOrder(attributes)
 else
 sales_order = new SalesOrder()
 if (value != null && value instanceof Invoice)
 value.addToOrders(sales_order)
 return sales_order
 }

 public void setParent(FactoryBuilderSupport builder,
 Object parent, Object sales_order) {
 if (parent != null && parent instanceof Invoice)

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[271]

 parent.addToOrders(sales_order)
 }

 public void onNodeCompleted(FactoryBuilderSupport builder,
 Object parent, Object sales_order) {
 sales_order.save()
 }
}

All of the intelligence of how to orchestrate the construction process is encapsulated
in the FactoryBuilderSupport class. So, literally all we need to do for the whole
builder to work is to register the Factory classes with appropriate tag names:

public class CustomersFactoryBuilder extends FactoryBuilderSupport {
 public CustomersFactoryBuilder(boolean init = true) {
 super(init)
 }

 def registerObjectFactories() {
 registerFactory("customers", new CustomersFactory())
 registerFactory("customer", new CustomerFactory())
 registerFactory("invoice", new InvoiceFactory())
 registerFactory("sales_order", new SalesOrderFactory())
 }

}

FactoryBuilderSupport uses reflection at runtime to detect what registration
methods to run. By scanning the list of methods in the MetaClass instance
and looking for methods that begin with register, FactoryBuilderSupport
detects whether any additional registration methods are provided in the derived
builder class. In the preceding example, the only registration method added is
registerObjectFactories, but we could well have written code:

def registerCustomers() {
 registerFactory("customers", new CustomersFactory())
}

def registerCustomer() {
 registerFactory("customer", new CustomerFactory())
}

def regiaterInvoice() {
 registerFactory("invoice", new InvoiceFactory())

Building a Builder

[272]

}

def registerSalesOrder() {
 registerFactory("sales_order", new SalesOrderFactory())
}

FactoryBuilderSupport will detect all of these and run them in turn. Which
method you use is a matter of choice. The only issue that you need to be aware of is
that the registration methods will not be called in any predetermined order. If there
are dependencies in your registration code, then it's best to group these into a single
registration method.

To finish, we can drop this modified builder right where we previously used
CustomersBuilder, and it will work in the same way:

given:
def builder = new CustomersFactoryBuilder()

def customers = builder.customers {
 fred = customer(firstName:"Fred",lastName:"Flintstone") {
 invoice {
 sales_order(sku:"productid01", amount:1, price:1.00)
 sales_order(sku:"productid02", amount:2, price:1.00)
 sales_order(sku:"productid03", amount:3, price:1.00)
 }
 }
 invoice2 = invoice(fred)

 sales_order(invoice2, sku:"productid04", amount:1, price:1.00)
 sales_order(invoice2, sku:"productid05", amount:1, price:1.00)
 sales_order(invoice2, sku:"productid06", amount:1, price:1.00)
}

expect:
CustomerWithInvoices.count() == 1
Invoice.count() == 2
SalesOrder.count() == 6

In terms of management and maintenance, this version is far superior. Adding
capabilities now for new tables will simply involve writing a new Factory class
and registering it.

www.allitebooks.com

http://www.allitebooks.org

Chapter 10

[273]

Summary
In Chapter 7, Power Groovy DSL Features, we discussed how builders worked via
the Groovy MOP. In this chapter, we have taken a deeper look at how features of
the MOP are used to implement the builder pattern. We've looked at the language
features used to create a builder, and seen how they involve implementing
pretended methods and influence how methods calls are resolved. Implementing a
builder directly by using the MOP in this way focuses on the nuts and bolts of the
semantics of the builder, rather than the construction process.

In this chapter, we have seen how Groovy provides two useful support classes that
make it much simpler to implement our own builders than if we use the MOP. We've
seen how to use BuilderSupport and FactoryBuilderSupport to create our own
builder classes.

Using these support classes greatly simplifies the implementation of builders.
Hopefully, this will inspire you to see opportunities to develop your own
Groovy-based builders for you own applications. You can find the
full documentation for all of the classes that we covered here on the
Codehaus website. The Groovy document for the classes can be found
at http://groovy.codehaus.org/api/groovy/util/package-summary.html.

In the next chapter, we will make use of the techniques we learned here and build a
DSL that is heavily based on the builder pattern.

http://groovy.codehaus.org/api/groovy/util/package-summary.html

www.allitebooks.com

http://www.allitebooks.org

[275]

Implementing a Rules DSL
In this chapter, we will look at how we can use Groovy to build a DSL that is capable
of implementing business rules for an application. The example we will use is a
system for implementing rewards bonuses of various kinds as part of a promotions
system for an online broadband media provider.

Our provider hosts a service that allows users to view videos and play games online.
The provider needs to be able to deploy offers to his users rapidly and with the
minimum amount of development time. We will come up with a Groovy-based
DSL that expresses rewards in such a way that they can be rapidly developed and
deployed in a language that can also be understood by business stakeholders.

This DSL relies on a new concept that we have not covered yet, which is the use of
Groovy binding. To begin with, we will look at Groovy bindings—how they work
and how we can make use of them to improve our DSLs. We will cover a number of
useful techniques that make use of binding.

• Using the binding in combination with closures to introduce built-in methods
into a DSL

• Adding closures to the binding to implement structured named blocks in
a DSL

• How Boolean and other values added to the binding can be used to build
contextual data for a DSL

• How to return values and results from a DSL script

We will use all of these techniques in concert, and build a sample DSL step by step.

Implementing a Rules DSL

[276]

Groovy bindings
Every Groovy script has an associated binding object. The binding is where instances
of variables referenced within the script are stored. The binding is an instance of the
class groovy.lang.Binding, and we can access it in any script by referencing the
built-in variable binding, as the next example will show.

When we reference a previously undeclared variable in a script,
Groovy creates an instance of the variable in the binding. On
the other hand, variables that are defined within the script are
considered local variables and are not found in the binding. The
latter provides a convenient placeholder where Groovy can store
these variables. This also presents the DSL with an opportunity.
By manifesting variables in the binding, we can manipulate the
script with predefined values. By adding a closure to the binding,
we can provide built-in methods for the DSL.

In the following example, when we reference a new variable named count in a
script, we see how that variable is stored in the binding. If we explicitly declare the
variable local with def, we can use both variables interchangeably, but only count
is stored in the binding.

count = 1

assert count == 1
assert binding.getVariable("count") == 1
binding.setVariable("count" , 2)
assert count == 2
assert binding.getVariable("count") == 2

def local = count

assert local == 2
try {
 binding.getVariable("local")
 assert false
} catch (e) {
 assert e in MissingPropertyException
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[277]

Most of the examples we have encountered in the book are written to be
run as Spock tests. The next few examples in this chapter are best run
from the command line. You could also run this in the Groovy console
but the Groovy console maintains a single binding object. So, each time
you execute a script from the buffer, you are inheriting objects that were
probably stored there during the previous runs. The examples in this
chapter all assume a clean binding, so running successive examples in
groovyConsole will lead to unpredictable results.

The power of bindings with regard to their use in DSLs comes from the fact that we
can add a variable to the binding on the fly. If count does not exist as a variable in
the script, then it can be added by a call to setVariable, as follows:

binding.setVariable("count" , 1)

assert binding.getVariable("count") == 1

binding.setVariable("count" , 2)

assert binding.getVariable("count") == 2

The binding class also implements the property access APIs, such as setProperty,
getProperty, and getProperties. This means that the binding will allow bean-like
access, including the use of the subscript operator.

binding.count = 1

assert binding.getProperty("count") == 1

binding.setProperty("count" , 2)

assert binding.count == 2

These examples might look like a clumsy way of getting and setting variables in
a script, but the binding becomes really useful when we execute a script that we
have loaded. Here we set a property message in the binding and then use the
GroovyShell class to execute a script snippet that uses it.

def Binding binding = new Binding()

binding.message = "Hello, World!"

shell = new GroovyShell(binding)

shell.evaluate("println message")

Implementing a Rules DSL

[278]

This will output the string Hello, World! to the console. In other words, we have
managed to introduce a variable into this script called message that has the preset
value Hello, World.

Exploiting bindings in DSLs
There are numerous ways in which we can use bindings in our DSLs. In this section,
we will discover how to use closures in the binding to implement several different
DSL styles. We will also look at how simply adding properties to the binding can be
an effective way to augment a DSL with shorthand.

Closures as built-in methods
We can add any property to the binding. This includes properties of the type
Closure. If we add a closure to the binding then the binding variable can be
addressed as if it were a built-in method. Here we add a greet property to the
binding which acts as a greet method in the evaluated script.

def Binding binding = new Binding()

binding.greet = { subject ->
 println "Hello, $subject!"
}

shell = new GroovyShell(binding)
shell.evaluate("greet 'World'")

Closures as repeatable blocks
We've seen how using a closure within the binding can give the impression of having
built-in functions in our DSL. We can also use closures in the binding to allow a
nested block structure to be represented in the DSL. Using this style, we can repeat
a block multiple times within a single script. This is useful when we have a DSL that
needs to define multiple instances of the same entity or logic within the same script.
Take the following script example:

block {
 nestedBlock {
 }
}
block {
 nestedBlock {
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[279]

We can implement this structure by adding two closures to the binding called block
and nestedBlock. The block and nestedBlock closures accept a closure as their
only parameter. We saw in Chapter 5, Groovy Closures, how this is exactly the same
mechanism that is used to implement builders. The block and nestedBlock closures
need to manage their delegates in order to ensure that the expected binding scopes
are preserved.

binding.block = { closure ->
 def cloned = closure.clone()
 cloned.delegate = delegate
 this.enclosing = "block"

 println "block encountered"
 cloned()
}

binding.nestedBlock = { closure ->
 assert closure.delegate.enclosing == "block"
 def cloned = closure.clone()
 cloned.delegate = delegate
 this.enclosing = "nestedBlock"

 println "nested block encountered"
 cloned()
}

block {
 nestedBlock {
 }
}
block {
 nestedBlock {
 }
}

In these examples, we cloned the passed-in closure before changing the
delegate. This is considered the best practice with a DSL, in case the
original closure is also used externally. This is also advisable if we make
any changes to the closure resolve strategy.

Implementing a Rules DSL

[280]

By adding an enclosing property to the block and nestedBlock closures, we
ensure that nestedBlock is only allowed within block. Placing nestedBlock
outside of block will trigger the assertion. Running the original script with these
closures in the binding will give the following output:

block encountered

nested block encountered

Using a specification parameter
If we like, we can also use closures that take one or more parameters in addition to
the closure parameter; a common style, when using a structured block.

DSL, as mentioned earlier, is used to add a specification parameter to identify
individual blocks.

The implementation can choose to ignore this parameter, or it can be used as a means
of identifying the individual blocks.

binding.block = { spec, closure ->
 def cloned = closure.clone()
 cloned.delegate = delegate
 this.enclosing = "block"

 println "${spec} encountered"
 cloned()
}

binding.nestedBlock = { spec, closure ->
 assert closure.delegate.enclosing == "block"
 def cloned = closure.clone()
 cloned.delegate = delegate
 this.enclosing = "nestedBlock"

 println "${spec} encountered"
 cloned()
}

block ("first block") {
 nestedBlock ("first nested"){
 }
}
block "second block", {
 nestedBlock ("second nested"){
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[281]

This outputs:

first block encountered

first nested encountered

second block encountered

second nested encountered

In the previous code snippet, we see two styles of declaring a
specification parameter:

block ("spec") {
}
block "spec", {
}

The first uses the Groovy "function call" style, passing the closure after the method
parentheses. The second uses a parameter list, where one of the parameters is the
inline closure. Which one you choose is a matter of personal preference and style.

Some developers have a preference for the latter style in their examples. My own
personal preference is for the former, for the simple reason that it is easier for non-
technical users to grasp the necessity for a (something) {} syntax rather than a
something, {} syntax.

Closures as singleton blocks
The previous DSL style allows us to implement logic in repeatable named blocks.
A DSL script of this style could be run just once or many times. For instance, the
DSL could describe a set of business rules to be executed every time we encountered
a certain event. Sometimes we need a DSL to define logic that is only ever going to
be run once, or that needs to be stored and executed at will at some later date. In
this case, it may be better to limit the user to a single block instance, by having them
define the closure directly.

setup = {
 println "Initialized"
}

teardown = {
 println "finished"
}

Implementing a Rules DSL

[282]

Here we declare two named closures: setup and teardown. We can now provide
default implementations of setup and teardown in the runtime that we use to load
and evaluate this script:

def binding = new Binding()
binding.setup = {
 println "Setup block is missing"
 throw new Exception("Setup block is missing")
}

binding.teardown = {
 println "Teardown block is missing"
 throw new Exception("Teardown block is missing")
}

def shell = new GroovyShell(binding)
shell.evaluate(
"""setup = {
 'setup called'
 }
 teardown = {
 'teardown called'
 }
"""
)

setup = binding.setup
assert setup() == 'setup called'
// ... do something now and save teardown closure for later
teardown = binding.teardown
assert teardown() == 'teardown called'

For brevity, in some of the following examples, we will use
GroovyShell to evaluate our DSL scripts from GString. In most
real life DSL scenarios, you will want to externalize your DSL code.
GroovyShell can also be used to load and evaluate a script from a file.

An exception will be thrown if either setup or teardown has not been provided. This
is a useful tactic to use to ensure that one and only one block is executed from the
DSL. It also gives us control over the timing of when the blocks are actually executed.

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[283]

The only word of caution to heed is that while using both this style of block and the
previous in a single DSL, users will need to beware of the subtle difference between
block {} and block = {}. Groovy allows a user to specify either, and this can give
unexpected results that might be confusing to the general user.

Using binding properties to form context
Most DSLs need to have some predetermined knowledge of the domain within
which they operate. So, for instance, if we were to write a DSL that described the
rewards that a user might get for making purchases, it makes sense that the DSL
would have built-in access to the user's account details and his purchasing history,
rather than requiring complex lookups to be performed within the DSL.

The binding is the ideal place in which to store these details. Depending on the
sophistication of the DSL target audience, we could decide to embed existing domain
objects in the binding or, alternatively, we could look up or pre-calculate values that
make sense to the DSL, and embed these.

class Account {
 double spend = 11.00
 double balance = 100.00
 boolean active = true

 void credit (double value) {
 balance += value
 }
}
def binding = new Binding()
binding.reward = { closure ->
 closure.delegate = delegate
 closure()
}

binding.apply = { closure ->
 closure.delegate = delegate
 closure()
}

// lookup account in binding
def account = new Account()
binding.account = account
binding.monthSpend = account.spend
binding.credit = account.&credit

Implementing a Rules DSL

[284]

assert account.balance == 100.00

def shell = new GroovyShell(binding)
shell.evaluate(
""" reward {
 apply {
 if (account.active && monthSpend > 10.00)
 credit 5.00
 }
 }
"""
)

assert account.balance == 105.00

Here we embed an account object in the binding, along with a calculated value
for the user's monthly spend to date. We have also introduced a shortcut for the
account credit method, by including a closure called credit, which is taken
from the address of the Account.credit method.

Another useful technique is to predetermine states and boolean conditions, and
store them in appropriately named binding variables. For the rewards DSL, some
common tests that we might need to make are whether the account is active,
and whether the minimum spending threshold has been reached. Setting these
conditions into binding variables will further improve the readability of the DSL.

reward {
 apply {
 if (ACTIVE && REWARD_THRESHOLD_EXCEEDED)
 credit 5.00
 }
}

Storing and communicating results
Capturing the values of variables set in the DSL can also be done through the
binding. The delegate is set by each calling closure, so any variables defined in the
scope of the DSL blocks will be available as binding variables to the calling closures.

def binding = new Binding()
binding.outerBlock = { closure ->
 closure.delegate = delegate
 closure()
 println "outerBlock: " + binding.message

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[285]

}

binding.innerBlock = { closure ->
 closure.delegate = delegate
 closure()
 println "innerBlock: " + binding.message
}

def shell = new GroovyShell(binding)
shell.evaluate(
""" outerBlock {
 innerBlock {
 message = "Hello, World!"
 }
 }
"""
)
println "caller: " + binding.message

In the preceding example, the message variable is set in the innermost block of the
DSL, but we can reference it from the outer block closure, and also from the calling
script. Variables set like this in the binding are global to the script, so care must
be taken to initialize them to default values before referencing them. Otherwise,
subsequent blocks within the DSL will reuse the values. In the following code, the
Hello, World! message value is still set when the second outerBlock is evaluated:

outerBlock {
 innerBlock {
 message = "Hello, World!"
 }
}
outerBlock {
 println message
}

The output produced by this will not be what we expected. Setting a default
value for the message in the closure definition for binding.outerBlock will
overcome this.

inner: Hello, World!

outer: Hello, World!

Hello, World!

outer: Hello, World!

caller: Hello, World!

Implementing a Rules DSL

[286]

We know that closures and methods in Groovy will return a value even when no
return statement is used. The value returned is the result of the last statement
executed in the method or closure. We can exploit this in our DSLs. The value
returned from innerBlock in the preceding code is the result of message = "Hello,
World!"—in other words, the string "Hello, World!". We can define a closure that
captures a string value from the DSL, as follows:

binding.messageBlock = { closure ->
 closure.delegate = delegate

 binding.message = closure()
 println "messageBlock: ${binding.message}"
}

This allows us to define a message string by using the following DSL code:

 outerBlock {
 messageBlock {
 "Hello, World!... message"
 }
 }

Using this style, we can define a DSL block that expects a Boolean return value and
use it to define a conditional expression. Going back to the reward DSL we used
earlier, we could write the following conditional DSL code:

reward {
 appliesWhen {
 ACTIVE && REWARD_THRESHOLD_EXCEEDED
 }
}

We can document to our DSL users that appliesWhen declares a condition that must
be met if the reward between the curly braces is to be awarded.

Building a rewards DSL
The old adage that 80 percent of business comes from your existing customers
while 20 percent comes from new customers is as true today as it ever was. Every
business, at some point in time, considers offering incentives to its customers in
order to increase sales. Rewards can take the form of everything from the selective
discounting of end-of-line items, through buy-one-get-one-free promotions, to
customer loyalty points schemes.

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[287]

Marketers constantly devise new ways to promote products and services to
customers, but often the problem is that these promotions can be difficult to manage
when they need to be implemented in the various backend systems. Configuring
a reward could involve applying cross-cutting logic across several systems.
Developing and deploying a promotion can take weeks or months to complete,
while the marketing department wants to be able to respond to the conditions in
the market today.

In this next example, we will take an imaginary broadband service provider that
provides access to on-demand video and games content. We will devise a simple
Groovy-based DSL that expresses reward programs in simple-to-understand terms.
Although the DSL code is not going to be developed by a marketer, a marketer
should be able to understand what the code does simply by reading it. This DSL
also has the added benefit of being something that can be deployed directly. As such,
the DSL should be able to serve as both the specification and the implementation of
the reward.

Designing the DSL
Before attempting to design our DSL, it makes sense for us to review our business
domain and understand our requirements.

BroadbandPlus
Users of BroadbandPlus, our imaginary broadband service, can subscribe to
three levels of access: BASIC, PLUS, and PREMIUM. There is a range of content that a
subscriber can consume, including games, movies, and music. Each subscriber can
consume any mix of content up to the maximum allowed on their plan, after which
they need to pay for any additional content that they consume.

To simplify everything, we will track and allow the subscriber to pick and mix their
content. Each type of media consumed has an "access point" value, which is debited
from the user's account when they consume it. Each subscriber type is allocated a set
number of access points each month, based on their plan. The following table shows
how the access points structure works:

Subscription plan Monthly subscription Access points
Basic $9.99 120
Plus $19.99 250
Premium $39.99 550

Implementing a Rules DSL

[288]

Roughly speaking, an access point equates to 10 cents in value, so basic
subscribers are benefiting from a 20 percent bonus versus non-subscribers.
Moreover, plus subscribers get 25 percent extra while premium subscribers
get a whopping 37.5 percent.

Media Points Type of access Out of plan price
Movies
New Release 40 Daily $3.99
Other 30 Daily $2.99
Games
New Release 30 3 days access $2.99
Other 20 3 days access $1.99
Songs 10 Download 99c

Before consumption of any media is allowed, the system does a canConsume test.
This test is passed if the user has enough access points, or if access has been granted
already to the content and has not yet expired. If the canConsume test is passed,
access to the media is granted when the first consume call is made, otherwise the user
is prompted to approve the purchase of the media, followed by the consume call for
an authorized purchase.

From the point of view of our rewards program, the APIs that we need to be
concerned with are defined in the following stub class for BroadbandPlus:

class BroadbandPlus {

 boolean canConsume(subscriber, media) {
 }
 void consume(subscriber, media) {
 }
 void purchase(subscriber, media) {
 }
 void upgrade(subscriber, fromPlan, toPlan) {
 }

}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[289]

Reward types
We are in the business of encouraging the subscriber to continue to consume content
out of plan or to upgrade to a higher plan. So our rewards programs will offer
incentives that apply at the time of purchase or upgrade. Rewards usually consist
of allocating free points, but we also want to be able to offer free content or
extended access.

Our partners are the studios, game developers, and record labels that publish
our content. We don't mind what content the subscriber consumes so long as our
revenue comes in. As our partners get a revenue share based on which titles the
subscriber consumes, they will want to be able to sponsor promotions that target
specific content and specific publishers. In other words, these particular types of
targeted reward programs need to be activated at the point of consumption rather
than purchase.

Some examples of the types of rewards that we might like to deploy are:

• Consume any new release this week and get 10 free access points on
your account

• Earn 10 percent bonus points for every game purchased
• Watch any Disney movie for 25 percent off
• Upgrade from basic to plus and get 100 free access points on your account

The reward DSL
Taking all of this into account, we can make an attempt at writing a DSL.
The requirements that we have for our DSL can be summarized as follows:

• Rewards need to be triggered by different events in the system. These
events are consumption (when a user consumes a product—that is, watch
a movie, play a game, and so on), upgrades (when the user upgrades their
subscription plan), and purchases (any time that the user spends some cash).

• Rewards need to be based on one or more conditions, such as the user's
spending history or the type of media being consumed.

• Rewards can result in the granting of different benefits, for example free
access to a video, bonus points, and extended access.

Implementing a Rules DSL

[290]

Based on these requirements, and with an understanding of how we can structure a
DSL using closures and binding variables, we can make an attempt at how our DSL
might look.

onConsume = { // or on_purchase or on_upgrade
 reward ("Reward Description") {
 condition {
 // Condition(s) that need to apply
 }
 grant {
 // benefits that can accrue
 }
 }
}

We can implement the conditional nature of the preceding code snippet by using a
binding variable to collect the result of the condition block. The following closure
shows this in action. The condition closure collects the result of its own closure,
which in turn dictates whether the grant closure is invoked.

binding.condition = { closure ->
 closure.delegate = delegate

 binding.result = (closure() && binding.result)
}

binding.grant = { closure ->
 closure.delegate = delegate

 if (binding.result)
 closure()
}

If the target audience for this DSL were to be only software developers, then this
would be adequate. A single condition block returning a result could fully capture
the logic required to allow or disallow a reward. The problem with this is that
the only way to express multiple conditions is through Groovy conditional logic.
Programmers don't mind reading this, but other audiences for the DSL will quickly
get confused by the Groovy syntax involved. Groovy && and || operators, along
with the operator precedence rules, are not going to make for easy reading for the
general audience.

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[291]

Ideally, we want to have a single condition in each block, so we need to allow
multiple blocks, and provide an easy way to describe inclusive and exclusive
sets of conditions. Adding two more closures to the DSL gives us just that.

reward ("anyOf and allOf blocks") {
 allOf {
 condition {
 }
 ... more conditions
 }
 condition {
 }
 anyOf {
 condition {
 }
 +... more conditions
 }
 grant {
 }
}

Now we can have multiple condition blocks within a reward. All condition blocks
must be true for the reward to be granted. The allOf and anyof condition blocks
can each themselves contain multiple condition blocks. For an allOf condition block
to be true, all child conditions must be true. For an anyOf block to be true, at least
one of the child conditions must be true.

To implement this scheme, we need to tell the condition block whether it should
AND (&&) or OR (||) its result to the current condition of the expression. We shall
store the current status of the condition in a binding variable called result and
decide whether to && or || based on the status of the binding Boolean useAnd. To
begin with, for each reward we presume that the reward is passed, and set result
to true. We set the default operator to && by setting useAnd to true.

binding.reward = { spec, closure ->
 closure.delegate = delegate
 binding.result = true
 binding.useAnd = true
 closure()
}

binding.condition = { closure ->
 closure.delegate = delegate

Implementing a Rules DSL

[292]

 if (binding.useAnd)
 binding.result = (closure() && binding.result)
 else
 binding.result = (closure() || binding.result)
}

To implement the allOf closure block, we store the current states of result and
useAnd, before calling the child closure. We && or || the stored result with the new
result from the closure, giving us the new boolean state of the expression. The
starting presumption of an allOf block is that it is true. It will be set to false
if any one of the child conditions returns false.

binding.allOf = { closure ->
 closure.delegate = delegate
 def storeResult = binding.result
 def storeAnd = binding.and
 binding.result = true // Starting premise is true
 binding.and = true

 closure()

 if (storeAnd) {
 binding.result = (storeResult && binding.result)
 } else {
 binding.result = (storeResult || binding.result)
 }
 binding.and = storeAnd
}

The anyOf closure block is identical to allOf except that the starting presumption is
false. The operator that we now use is ||, so if any one of the child conditions returns
true, the overall result will be true.

binding.anyOf = { closure ->
 closure.delegate = delegate
 def storeResult = binding.result
 def storeAnd = binding.and

 binding.result = false // Starting premise is false
 binding.and = false

 closure()
 if (storeAnd) {
 binding.result = (storeResult && binding.result)
 } else {

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[293]

 binding.result = (storeResult || binding.result)
 }
 binding.and = storeAnd
}

This gives us a very flexible conditional logic that we can include in the DSL, which
is still very legible to a general audience. We can test the effectiveness of this with
a few assertions. The result binding variable is available to the DSL script, so we
can use that to assert that the result is as expected. Next we want try out some of the
ways to use our conditional DSL, but first let's put our DSL into a script that we can
run from the command line.

This script sets up our mini DSL by adding some closure to the binding. It then
invokes the reward script passed to it via the command line. We can test out the
validity of our conditional logic by passing some of the following conditional scripts:

• A reward defined without any conditions should always be true.
reward ("No conditions") {
 assert result == true
}

• With a single condition, the state of the reward is dictated by that
one condition.
reward ("One false condition") {
 condition {
 false
 }
 assert result == false
}

• By using allOf and anyOf combined with a condition, we can nest to any
depth without losing legibility.

reward ("nested anyOf and allOf conditions") {
 anyOf {
 allOf {
 condition {
 true
 }
 condition {
 false
 }
 }
 condition {
 false

Implementing a Rules DSL

[294]

 }
 anyOf {
 condition {
 false
 }
 condition {
 true
 }
 }
 }
 assert result == true
}

Handling events – deferred execution
Running this particular DSL from the command line is not particularly useful.
In order to be useful, our rewards DSL will eventually need to be hooked into the
runtime of our broadband provider's backend applications. Rewards need to be
applied as the result of different events in these systems. Some rewards will be
applied at the point of consumption of the individual media. Other rewards will be
applied at purchase time, and others when significant account events occur, such as
upgrading from one plan to another.

Placing all of the rewards in a single DSL script means that they will all be executed
in sequence when we load and evaluate the script. We could decide to separate
the rewards into three script files, one for each type of event. On each event being
triggered in the application, we would load and execute the appropriate reward
script; for a consumption event, we load the onConsume script, and so on. This would
work, but considering the amount of loading and parsing required for each event, it
could become a drag on performance.

There is an alternative approach that will allow us to keep all of the rewards in a
single script and also allow us to load the full script only once. Earlier on in this
chapter, we talked about using closures as a singleton. This means, having a single
instance of a named closure when the user supplies the implementation. We can
partition the rewards script into three possible sections by using this pattern.

onConsume = {
 reward {
 …
 }
 …
}
onPurchase = {
 reward {

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[295]

 …
 }
 …
}
onUpgrade = {
 …
}

By using this structure for the DSL, the loading and evaluating of the script simply
causes the three closure assignments to be executed. On completion of the evaluation
of the script, there will be three closure variables in the binding, which contain the
reward logic. This small change to the structure means that we can now load and
evaluate the script just once on initialization, and invoke the specific rewards for
consume, purchase, and upgrade as required.

Here we see how we can use GroovyShell to defer execution of a closure block:

def binding = new Binding()
binding.saved = {
}

binding.deferred = { closure ->
 closure.delegate = delegate
 closure()
}

def shell = new GroovyShell(binding)
shell.evaluate(
"""
saved = {
 println "saved"
 deferred {
 println "deferred"
 }
 }
"""
)
storeSaved = binding.saved

Implementing a Rules DSL

[296]

In the preceding snippet, the evaluate method of the DSL script will set saved to be
the closure that is provided within the script. We can store this in a closure variable
to be reused later. Evaluating the saved closure in GroovyShell once again gives us
the opportunity to set up the binding to support our DSL. Prior to calling saved() in
the evaluated script, we need to set its delegate. This ensures that the saved closure
inherits the binding that we pass into the script.

def binding = new Binding()

binding.saved = store_saved
binding.deferred = { closure ->
 closure.delegate = delegate
 closure()
}

def shell = new GroovyShell(binding)
shell.evaluate("saved.delegate = this; saved()")

We now have a means of stripping out the closures defined within the main script
and executing them at will.

Convenience methods and shorthand
The final piece of our DSL that we need to take care of is to add some convenience
methods and shorthand binding variables, in order to make the DSL more legible.
First, we add some actions to be taken when a reward is granted. In the case of our
rewards DSL, the actions that we want for now are the ability to extend access to a
video or game, or to add points to a subscriber's account.

In reality, we would implement many more of these, including granting access to
specific videos or games. The features that we can add to the DSL are limited only
by our imagination and the features provided in the backend systems that we are
working with. Most likely our DSL would evolve over time, with new action verbs
and other shorthand features being added.

binding.extend = { days ->
 def bbPlus = new BroadbandPlus()
 bbPlus.extend(binding.account, binding.media, days)
}
binding.points = { points ->
 binding.account.points += points
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[297]

We implement the extend action through a method call on the BroadbandPlus
service. The points action is just a shorthand way of updating the account points
value that is always in the binding. In this way, we can extend the vocabulary of the
DSL to include any actions that we might like to perform on the system.

We further improve the legibility of our scripts by adding some shorthand to be used
in conditionals. Common tests that we encounter when deciding to grant a reward
are the type of media being consumed or purchased, and whether it is a new release
or not. We add some shorthand to the DSL by including boolean binding variables
for these common conditions.

binding.is_new_release = media.newRelease
binding.is_video = (media.type == "VIDEO")

The offers
Putting all of these DSL features together, we now have a mini DSL that will allow us
to define how rewards should be granted to subscribers based on their consumption
and purchasing behavior. Earlier in the chapter, we listed some reward types that
we would like to support. Let's see now how well we can express those rewards by
using the DSL that we have just designed. If we've done our job well, the reward
DSL should be all we need to read to fully understand the intent and impact of
applying the reward.

onConsume = {
 reward ("Watch a Pixar Movie, get 25% extra points.") {
 allOf {
 condition {
 media.publisher == "Disney"
 }
 condition {
 isVideo
 }
 }

 grant {
 points media.points / 4
 }
 }
 reward ("Rent a new release, get extra night rental") {
 condition {
 isNewRelease
 }

Implementing a Rules DSL

[298]

 grant {
 extend 1
 }
 }
}

onPurchase = {
 reward ("Earn 10% bonus points on all games.") {
 condition {
 isGame
 }
 grant {
 points media.points / 10
 }
 }
}

onUpgrade = {
 reward ("Upgrade to PLUS and get 100 free points") {
 condition {
 toPlan == "PLUS"
 }
 grant {
 points 100
 }
 }
}

The RewardService class
We now have a very usable DSL design that can express the rewards as a script.
All that remains is to implement the means to integrate this DSL into our application.
It makes sense to package all of this functionality into a service class that can
be called by our application when needed. To do this, we provide a class called
RewardService.

The RewardService class provides a static method, loadRewardRules, that needs
to be called first, in order to initialize the rewards. This method takes care of the
initial loading of the rewards from the script file. Initial default implementations
of the onConsume, onPurchase, and onUpgrade closures are provided by the
RewardService class. Their only purpose is to provide a stub, which will be
called if any of these closures has not been provided by the DSL. Once loaded, the
RewardService class maintains static copies of the closure, to be called as needed by
the event hook methods.

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[299]

RewardService provides three event hook methods: applyRewardsOnConsume,
applyRewardsOnPurchase, and applyRewardsOnUpgrade. These hook methods are
to be called in response to consume, purchase, and upgrade events in the system.
The hook methods take care of preparing the binding with the necessary closures
and binding variables, before performing a deferred invocation of the onConsume,
onPurchase, or onUpgrade closures that were stored earlier. The convenience
methods prepareClosures and prepareMedia set up some of the common
binding variables, which implement our built-in action methods and other
boolean shorthands.

class RewardService {
 static boolean on_consume_provided = true
 def static onConsume = {
 on_consume_provided = false
 }
 static boolean on_purchase_provided = true
 def static onPurchase = {
 on_purchase_provided = false
 }
 static boolean on_upgrade_provided = true
 def static onUpgrade = {
 on_upgrade_provided = false
 }

 void prepareClosures (Binding binding) {
 binding.onConsume = onConsume
 binding.onPurchase = onPurchase
 binding.onUpgrade = onUpgrade
 binding.reward = { spec, closure ->
 closure.delegate = delegate
 binding.result = true
 binding.and = true
 closure()
 }
 binding.condition = { closure ->
 closure.delegate = delegate

 if (binding.and)
 binding.result = (closure() && binding.result)
 else
 binding.result = (closure() || binding.result)
 }

Implementing a Rules DSL

[300]

 binding.allOf = { closure ->
 closure.delegate = delegate
 def storeResult = binding.result
 def storeAnd = binding.and
 binding.result = true // Starting premise is true
 binding.and = true

 closure()

 if (storeAnd) {
 binding.result = (storeResult && binding.result)
 } else {
 binding.result = (storeResult || binding.result)
 }
 binding.and = storeAnd
 }

 binding.anyOf = { closure ->
 closure.delegate = delegate
 def storeResult = binding.result
 def storeAnd = binding.and

 binding.result = false // Starting premise is false
 binding.and = false

 closure()
 if (storeAnd) {
 binding.result = (storeResult && binding.result)
 } else {
 binding.result = (storeResult || binding.result)
 }
 binding.and = storeAnd
 }

 binding.grant = { closure ->
 closure.delegate = delegate

 if (binding.result)
 closure()
 }
 binding.extend = { days ->
 def bbPlus = new BroadbandPlus()
 bbPlus.extend(binding.account, binding.media, days)
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[301]

 binding.points = { points ->
 def bbPlus = new BroadbandPlus()
 binding.account.points += points
 }
 }
 void prepareMedia(binding, media) {
 binding.media = media
 binding.is_new_release = media.newRelease
 binding.is_video = (media.type == "VIDEO")
 binding.is_game = (media.type == "GAME")
 binding.is_song = (media.type == "SONG")
 }
 static void loadRewardRules() {
 Binding binding = new Binding()

 binding.onConsume = onConsume
 binding.onPurchase = onPurchase
 binding.onUpgrade = onUpgrade

 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate(new File("rewards/rewards.groovy"))

 onConsume = binding.onConsume
 onPurchase = binding.onPurchase
 onUpgrade = binding.onUpgrade
 }
 void applyRewardsOnConsume(account, media) {
 if (on_consume_provided) {
 Binding binding = new Binding()
 binding.account = account
 prepareClosures(binding)
 prepareMedia(binding, media)

 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate("on_consume.delegate = this;onConsume()")
 }
 }
 void applyRewardsOnPurchase(account, media) {
 if (on_purchase_provided) {
 Binding binding = new Binding()
 binding.account = account
 prepareClosures(binding)
 prepareMedia(binding, media)

Implementing a Rules DSL

[302]

 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate("on_purchase.delegate =
 this;onPurchase()")
 }
 }
 void applyRewardsOnUpgrade(account, plan) {
 if (on_upgrade_provided) {
 Binding binding = new Binding()
 binding.account = account
 binding.to_plan = plan
 binding.from_plan = account.plan
 prepareClosures(binding)

 GroovyShell shell = new GroovyShell(binding)
 shell.evaluate("on_upgrade.delegate = this;onUpgrade()")
 }
 }
}

The BroadbandPlus application classes
In order to show this DSL working, we need to flesh out some classes in order to
implement a rudimentary application skeleton for our imaginary BroadbandPlus
service. We won't scrutinize these classes in too much detail, as their main purpose is
to provide the hooks to exercise our DSL, and not to represent a working system.

To begin with, we need to define an Account class. The Account class maintains
the basic subscription details for a subscriber, including the plan he is on and his
remaining points for this period. It also maintains the current list of media that he
has access to. Once the consumption of an item starts, the media is added to this list,
along with an expiry date. The expiry date can be extended at any time by calling the
extendMedia method.

class Account {
 String subscriber
 String plan
 int points
 double spend
 Map mediaList = [:]
 void addMedia (media, expiry) {
 mediaList[media] = expiry
 }
 void extendMedia(media, length) {
 mediaList[media] += length
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[303]

 Date getMediaExpiry(media) {
 if(mediaList[media] != null) {
 return mediaList[media]
 }
 }
}

The Media class is used to describe individual items from the media catalog.
Properties of the class define its price and access points value, along with other
properties that help to categorize it, such as the media type (VIDEO, GAME, or SONG),
the publisher, and whether it is a new release or not.

class Media {
 String title
 String publisher
 String type
 boolean newRelease
 int points
 double price
 int daysAccess
}

The BroadbandPlus class implements the backend services that we expect, and
defines the APIs that we need to manage the consumption of media, purchasing,
and account upgrades. These APIs make calls to RewardService as required, in
order to apply the various rewards for onConsume, onPurchase, and onUpgrade.

The consume API will add the consumed media to the account's media list on the
first consumption. The purchase API adds the points value of the purchased media
to the account's points balance. Upgrade takes the current period balance into
account by simply adding the points difference between the original and
upgrade plans.

class BroadbandPlus {
 def rewards = new RewardService()

 def canConsume = { account, media ->
 def now = new Date()
 if (account.mediaList[media]?.after(now))
 return true

 account.points > media.points
 }
 def consume = { account, media ->
 // First consume add media to accounts access list

Implementing a Rules DSL

[304]

 if (account.mediaList[media.title] == null) {
 def now = new Date()
 account.points -= media.points
 account.mediaList[media] = now + media.daysAccess
 // Rewards only applied on first consumption
 rewards.applyRewardsOnConsume(account, media)
 }
 }
 def purchase = { account, media ->
 rewards.applyRewardsOnPurchase(account, media)
 account.points += media.points
 account.spend += media.price
 }
 def upgrade = { account, newPlan ->
 if (account.plan == "BASIC" && newPlan == "PLUS")
 account.points += 130
 if (account.plan == "BASIC" && newPlan == "PREMIUM")
 account.points += 430
 if (account.plan == "PLUS" && newPlan == "PREMIUM")
 account.points += 300

 rewards.applyRewardsOnUpgrade(account, newPlan)
 account.plan = newPlan
 }
 def extend = {account, media, days ->
 if (account.mediaList[media] != null) {
 account.mediaList[media] += days
 }
 }
}

Testing with Spock
Finally, we can test to see if our reward scripts are being triggered as expected, by
writing a Spock test specification for it. Here, we can verify that each individual
reward that we have defined is being triggered. We do this by setting up
consumption, purchase, and upgrade scenarios that we expect to trigger
the reward.

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[305]

In the setup method, we create an account object with a BASIC plan. We set up four
different media objects, and load the reward rules. We can assert that the outcome
was as expected. For instance, in the first test we consume a Disney video and assert
that the bonus points have been added. For completeness, we then consume a non-
Disney video and see that no bonus points have been added.

 def account
 def up
 def terminator
 def halo3
 def halo1
 def bbPlus

 def setup() {
 account = new Account(plan:"BASIC", points:120, spend:0.0)
 up = new Media(title:"UP", type:"VIDEO", newRelease:true,
 price:3.99, points:40, daysAccess:1,
 publisher:"Disney")
 terminator = new Media(title:"Terminator", type:"VIDEO",
 newRelease:false, price:2.99, points:30,
 daysAccess:1, publisher:"Fox")
 halo3 = new Media(title:"Halo III", type:"GAME",
 newRelease:true, price:2.99, points:30,
 daysAccess:3, publisher:"Microsoft")
 halo1 = new Media(title:"Halo", type:"GAME",
 newRelease:false, price:1.99, points:20,
 daysAccess:3,publisher:"Microsoft")
 bbPlus = new BroadbandPlus()
 RewardService.loadRewardRules()

 }
 def "Disney Reward programme is applied"() {
 expect:
 bbPlus.canConsume(account, up)
 account.points == 120

 when:
 def expected = account.points - up.points + up.points / 4
 bbPlus.consume(account, up)

Implementing a Rules DSL

[306]

 then:
 account.points == expected

 when:
 bbPlus.consume(account, terminator)

 then:
 account.points == expected - terminator.points
 }
 def "Rental extension reward"() {
 given:
 bbPlus.consume(account, up)
 bbPlus.consume(account, terminator)
 def now = new Date()
 expect: "Extension applied to Up but not Terminator"
 account.getMediaExpiry(up).after(now + 1)
 account.getMediaExpiry(
 terminator).after(now + 1) == false
 }
 def "Purchase reward applied to Games"() {
 expect:
 account.points == 120

 when:
 bbPlus.purchase(account, terminator)
 bbPlus.consume(account, terminator)
 then:
 account.points == 120
 when:
 bbPlus.purchase(account, halo1)
 bbPlus.consume(account, halo1)
 then:
 account.points == 122

 }

 def "Upgrade to plus reward"() {
 expect:
 account.points == 120

 when:
 bbPlus.upgrade(account, "PLUS")
 then: "Should have 250 for PLUS and 100 bonus"

www.allitebooks.com

http://www.allitebooks.org

Chapter 11

[307]

 account.points == 350

 when:
 bbPlus.upgrade(account, "PREMIUM")
 then: "Should have 550 for PREMIUM and 100 bonus"
 account.points == 650
 }

 def "Upgrade to premium reward"() {
 expect:
 account.points == 120

 when:
 bbPlus.upgrade(account, "PREMIUM")
 then: "Should have 550 for PREMIUM and 100 bonus"
 account.points == 650
 }

Running this test case should pass all of the tests. This would verify that all of
the rewards that we have deployed in the DSL are being activated as expected.
However, the final testUpgradeToPremiumReward fails. This reveals a flaw in
our reward logic. The conditions that we have used allow a bonus for upgrading
from BASIC to PLUS. If the subscriber then upgrades to PREMIUM, they keep the
bonus points. However, a subscriber upgrading from BASIC straight to PREMIUM is
disadvantaged by not receiving the bonus, which was not our intention.

onUpgrade = {
 reward ("Upgrade to PLUS and get 100 free points") {
 anyOf {
 condition {
 toPlan == "PLUS"
 }
 allOf {
 condition {
 toPlan == "PREMIUM"
 }
 condition {
 fromPlan == "BASIC"
 }
 }
 }
 grant {
 points 100
 }
 }
}

Implementing a Rules DSL

[308]

Changing the onConsume reward script fixes this anomaly. Running our tests again
will show them all passing as expected. So now we have a rewards DSL script with
a service class that implements it. We've hooked the rewards service into the domain
service so that it is triggered on the important events within the backend services.
We've tested out the rewards by using some test cases. We should now have a good
degree of confidence that, if BroadbandPlus was a real application service, our
reward programs would be getting called at the appropriate times.

Summary
We covered a lot of ground in this chapter. We took a look at Groovy bindings to
see how they can be used in our DSL scripts. By placing closures strategically in
the binding, we can emulate named blocks of code. We can also provide built-in
methods and other shorthand by including closures and named Boolean values in
the binding. These techniques can be used to great effect to write DSL scripts that can
be read and understood by stakeholders outside of the programming audience.

We've worked through a full implementation of a DSL for customer rewards by
using these techniques, and we've seen how such a DSL can be integrated into an
existing application. The reader should now have the confidence to start generating
their own domain-specific DSLs that implement features in a similar way and
integrate them into their own applications.

In the next and final chapter we will cover another fully worked DSL. The DSL
we will implement in Chapter 12, Integrating It All, will make full use of AST
transformations and will build on the techniques we covered in Chapter 8, AST
Transformations.

www.allitebooks.com

http://www.allitebooks.org

[309]

Integrating It All
In this final chapter, we will build a fully functioning DSL and integrate it into a
web application. In doing so, we will cover the issues you will encounter when
integrating your own DSLs into existing applications. The DSL we will look at is a
proof of concept DSL that implements a simple state machine style game engine with
server-side engine logic, which supports a HTML user interface.

• The DSL was written to support teaching Groovy, so we will start by
looking at how we can use DSL techniques to help with teaching
programming to kids

• We will see how those ideas evolved into the proof of concept game engine
DSL we will build in this chapter

• We will look at how we can structure the game engine as a pattern of Groovy
classes and then see how we can implement an AST transform to generate
that pattern

• We will see how we can integrate the DSL into a spring boot game server
with a MongoDB session store

• Finally, we will build a simple mobile UI for the game with HTML5 and
jQuery Mobile

Groovy as a teaching language
I've had the wonderful opportunity in the last year to be involved with the
CoderDojo Foundation via my local CoderDojo. CoderDojo is a global movement
of free volunteer-led, community-based programming clubs for young people at
https://coderdojo.com. I joined Wexford CoderDojo as a mentor in January 2015.

https://coderdojo.com

Integrating It All

[310]

The club was teaching a Java class to the more senior students who had already
graduated from Scratch and HTML. The mentors were struggling with teaching
Java to youngsters. The amount of ceremony needed to set up even a simple
HelloWorld.java class was hard for the kids to grasp. The fact that you need a class
and a main method and all those semicolons caused a lot of puzzled faces and most
of the classes were occupied with helping the kids correct simple syntax errors.

My immediate reaction was, "Ouch! I don't want to be teaching Java", so I suggested
we try Groovy instead. In that way, all we needed to do for a Hello World script was:

println "Hello, World!"

Which is what we did. It has turned out to be a great decision. By losing all the
extraneous Java syntax we have been able to focus on introducing basic programming
concepts in a far more natural order. Starting with variables, conditionals and looping,
we then introduced methods and classes only when there was a natural need to do so.

As soon as we started using Groovy, we also started seeing opportunities to use the
DSL features of the language to improve the experience for the kids. By building our
own script launcher we were able to add built-in features to the coding environment
that made life easier, for example:

• While Groovy has println as an easily accessible shortcut, there is no easy
way to accept input on the command line so we added readln and variants.

• We noticed that the stack traces and compile errors were confusing to the
kids so we captured those and simplified them.

• We added other goodies like a built-in banner method which produces ASCII
text using JFiglet:

banner "Groovy"

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[311]

Hiding complexity
Overall, what we found was that, by hiding some of the complexity inside a runtime
environment, the kids were able to focus on getting their own pieces of the code
to work. This turns out to fit well with what they would have experienced in the
other classes. Most would have started programming in the Scratch environment,
https://scratch.mit.edu/.

Scratch is a visual programming environment for kids where they can plug
together logic elements in a drag and drop editor. It's a visual DSL for kids.
When they arrive in the Groovy class they are used to having a lot of power at their
fingertips. HTML teaches them that syntax is important and that they need to be
careful about what they write, but it also gives them an expectation that they can
produce a rich user interface.

Entry into the Groovy room is supposed to be a graduation from the Scratch and
HTML world and it certainly is. It's the first introduction to proper programming
so to speak. Groovy, as we know it, is a lot simpler than Java and requires less
punctuation but it is still a step beyond either Scratch or HTML. We wanted to
avoid the trap whereby the Groovy class was considered too hard or too boring
because the kids did not get enough feedback for their efforts.

With this in mind, we began to take the approach that we would provide framework
classes as helpers for the kids. The more advanced students would be able to
help build the classes while the others were happy to be able to build programs
using them.

An ongoing theme during term was a project to build a functioning TicTacToe
program. This was a console-based program that started out just taking user input
to allow two players to play each other on the same computer. We then started to
introduce concepts that allowed the kids to write code to automate the game. By the
end, most of the students had understood the concepts and were able to write simple
player strategy classes like the following. These are actual classes developed by
Nathan and Eoghan, two of the CoderDojo Ninjas.

class NathanPlayer extends Bot {
def playRound(grid) {
 if (!Grid.isSolved(grid)) {
 if (Grid.canWin(grid,this.player))
 Grid.playWin grid, this.player
 else if (Grid.canBlock(grid, this.player))
 Grid.playBlock grid, this.player
 else if (Grid.canTakeCenter(grid, this.player))
 Grid.playCenter grid, this.player
 else if (Grid.canTakeCorner(grid, this.player))

https://scratch.mit.edu/

Integrating It All

[312]

 Grid.playCorner grid, this.player
 else
 Grid.playRandomCell grid, this.player
 }
 }
}
class EoghanPlayer extends Bot {
def playRound(grid) {
 if (!Grid.isSolved()) {
 if (Grid.canWin(grid, this.player))
 Grid.playWin grid, this.player
 else if (Grid.canBlock(grid, this.player))
 Grid.playBlock grid, this.player
 else if (Grid.canTakeCorner(grid, this.player))
 Grid.playCorner grid, this.player
 else if (Grid.canTakeCenter(grid, this.player))
 Grid.playCenter grid, this.player
 else
 Grid.playRandomCell grid, this.player
 }
 }
}

Not bad for 10-12 year olds! The preceding code represents two TicTacToe player
bots that implement Nathan and Eoghan's strategies for playing the game. The class
relies heavily on the Grid class, which was a boilerplate we provided. Nathan and
Eoghan would also have helped us flesh out this class. We discovered early on that
coding the methods to detect whether the grid was solved or to play a blocking mode
were beyond the skill level of most students. However most were able to work out
how to implement Grid.canTakeCenter, Grid.playCenter, Grid.canTakeCorner,
and Grid.playCorner.

A game DSL for kids
By the closing weeks of term 2 we had quite a nice console-based TicTacToe game
built. The first of the kids were starting to complete functioning strategy classes and
we could play two strategies against each other in an automated game. It was time
to up the ante. The challenge now was to find a way to allow the kids to get more
return for their efforts. If you asked them what they would like to build, games and
something running on a mobile ranked high on their lists.

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[313]

So this chapter is a response to that need. It's been coded part-time over a period of a
few weeks. What I'll present here is a work in progress and it is presented warts and
all. It is, however, a worthy illustration of a real life DSL integrated into lots of the
technologies you might end up using yourselves. Let's look at what the goals were
when writing this DSL and how they impacted the technology choices I made.

A game DSL – goals
• The first goal for this DSL was to get beyond the console-bound apps that

we had been building. Something that could work in conjunction with a
web-based UI would be good but ideally something that would allow a
mobile app as the UI would be best.

• We needed to build on the existing skills that the kids had acquired.
• There would need to be a very simple interaction between the game logic on

the one hand and the user interface on the other. The kids would need to be
able, in time, to work on both aspects.

• We used the Cloud9 online web-based IDE https://c9.io/. So we needed a
solution that would run on a remote workspace. The mentors typically used
a premium workspace account but the students worked on free accounts,
which limited their VMs to 512 MB RAM and 1 GB disk. Ideally, we wanted
to be able to run the environment and compile the DSL code on the student's
free accounts.

Architecture and technology choices
We needed a user interface technology that would be familiar to the kids and
support both web and mobile. A combination of HTML5 with jQuery mobile is what
I picked. jQuery mobile has a good page-oriented model for display purposes which
fits well with the page-oriented state model we will implement in the game DSL.

The page content needed to be dynamic based on the current game state, so some
sort of page templating engine was needed. Mustache.js is a good fit here. Mustache
templates are very close to pure HTML so the kids would be on familiar territory
when using them.

The UI works as a single-page app (SPI) and communicates with the game engine
backend via JSON AJAX calls. The game server is a Spring MVC app, which is
bootstrapped easily using Spring Boot and responds to all calls in JSONP.

https://c9.io/

Integrating It All

[314]

Events are received by the game server and dispatched to the game engine code,
which is generated from the DSL. The DSL itself is modeled on the state machine
DSL we built in Chapter 8, AST Transformations.

The game DSL includes the ability to define state variables. The current value of
these state variables is passed back to the UI after each event so that the UI can
update its state. Events are sent asynchronously so we need to persist some session
states between events. We do this in a MongoDB database which we access via
Spring Data mappings for MongoDB.

TicTacToe in a DSL
So let's look at some code. In this section we will look at the DSL representation of
a basic TicTacToe game. This DSL works in conjunction with the grid and player
classes we mentioned earlier to form the core game logic for the TicTacToe game.

When I build a relatively complex DSL like this one, which uses AST transforms,
I like to first get a non-DSL version working as a Java or Groovy implementation.
Let's first look at the TicTacToe DSL:

import com.dearle.game.engine.Grid

page: "welcome"
page: "players"
page: "roundX"
page: "roundO"
page: "gameover"

state:
 String playerX
 String playerO
 List players
 String winner
 def grid = [
 ' ', ' ', ' ',
 ' ', ' ', ' ',
 ' ', ' ', ' '
]

event: "game_start"
 players = getPlayers()
 page = "players"

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[315]

event: "select_players"
 playerX = event.playerX
 playerO = event.playerO
 page = "roundX"

event: "play_round"
 def player = getPlayer(event.player)

 player.playRound(grid)

 if (Grid.isSolved(grid)) {
 winner = event.player
 page = "gameover"
 } else {
 if (event.player == 'X') {
 page = "roundO"
 } else {
 page = "roundX"
 }
 }

event: "game_end"
 page = "welcome"

The preceding DSL models the basic states and events of the TicTacToe game.
We refer to the states as pages since it is easier to explain to the kids how a state
corresponds to a page in the game. The state of the game is represented by whatever
state variables are declared in the state: block of the DSL.

The basic game engine mechanism is simple enough. We declare the pages in the
game. A page could be a simple start page or a step in a game. We declare the state
variables that the game relies on. Then we declare the events that the engine can
respond to. The DSL writer codes the logic of the game in the event blocks. We can
optionally assign a new value to the built-in page state variable in the logic. This will
cause the game to transition to that page. If no assignment is made, then the game
continues on the same page.

Integrating It All

[316]

This particular game engine also has the concept of automated player bots built in.
The code in the event block can be any valid Groovy code. We can call the built-in
functions to get a list of players and any assignment to a built-in variable page is
assumed to represent a desired page transition in the game. The event block has an
implied event parameter, which will contain any parameters passed to it by the UI.
Before we look at the AST transformation that implements this DSL, let's first look at
a Groovy class pattern that implements the same logic. This pattern of classes is what
the AST transform will generate at compile time:

class GameEngineClient implements GameEngineTraits {
 def GameEngineClient() {
 }
 def GameEngineClient(session) {
 this.session = session
 }
 Map game_start(Object event = null, Object saved = null) {
 restoreSession('TicTacToeEngine', saved)
 session.page.game_start(event)
 session.asMap()
 }
 Map select_players(Object event = null, Object saved = null) {
 restoreSession('TicTacToeEngine', saved)
 session.page.select_players(event)
 session.asMap()
 }
 Map play_round(Object event = null, Object saved = null) {
 restoreSession('TicTacToeEngine', saved)
 session.page.play_round(event)
 session.asMap()
 }
 Map game_end(Object event = null, Object saved = null) {
 restoreSession('TicTacToeEngine', saved)
 session.page.game_end(event)
 session.asMap()
 }
}

This is the class that the game server will interact with. It is quite similar to the state
machine client class we encountered in Chapter 8, AST Transformations, LEDToggle.
The session serves the same role in the pattern as the StateContext class. However,
we are going to be persisting the context between events so the term session better
fits our understanding of that mechanism.

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[317]

Each event method takes an optional event parameter and an optional saved session
parameter. The type expected for each of these parameters is actually of the type
map, however it proved to be difficult to generate a method signature with generics
in the AST transform code, so I've used object instead which works fine.

The event method dispatches to the event handler in the current page object. It also
ensures that the session is restored first and it returns the session data as a map.
Persisting the session will be the responsibility of the game server, as we will
see later.

The GameEngineClient class will start out life in the DSL as the DSL script class.
We need to add some functionality to the class, such as the getPage method, a
restoreSession method and the session property itself. It makes our lives easier in
the AST transform if this is all packaged in a trait and we simply inject the trait into
the script class. We implement that trait here in the pattern to ensure it will work
as expected:

trait GameEngineTraits {
 def session

 def restoreSession(engine, sessionData = null) {
 if (!session)
 session = Class.forName("${engine}Session").newInstance()
 if(session && sessionData) {
 session.restoreSession(sessionData)
 }
 }

 String getPage() {
 session.page
 }
}

You will see a lot of code in the pattern version of the engine that seems unnecessary.
We have used reflection here to create an instance of the TicTacToeEngineSession
class. That is because this is what we will need to do in the code generated by the
AST. The GameEngineTraits class needs to be generic if we want to use it for
multiple game engines so it needs to generate the session class by name dynamically:

class TicTacToeEngineSession extends PersistableSession {
 def playerX
 def playerO
 def players
 def grid = [
 ' ',' ',' ',

Integrating It All

[318]

 ' ',' ',' ',
 ' ',' ',' '
]

 def TicTacToeEngineSession() {
 super()
 page = new WelcomePage(this)
 }
}

The TicTacToeEngineSession class will be generated based on the state
variables declared in the state block of the DSL. The session class extends a
PersistableSession class, which has methods for marshaling the current session
variables to and from a map. It also creates a unique session ID from a UUID:

class PersistableSession {
 def sessionId
 def page

 def PersistableSession() {
 sessionId = UUID.randomUUID().toString()
 }
 def restoreSession(Map saved) {
 saved.each { var ->
 if (this.properties.containsKey(var.key)) {
 if (var.key == 'page') {
 page = Class.forName("${saved.page.capitalize()}Page")
 .getDeclaredConstructor(Object.class)
 .newInstance(this)
 } else {
 this."${var.key}" = var.value
 }
 }
 }
 }
 Map asMap() {
 Map theMap = this.properties.clone()
 theMap.remove('class')
 theMap['page'] = this.page.toString()
 theMap
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[319]

The persisted version of the session saved pages as a string so you can see
that the class that represents a page is stored as a string in the saved map. The
restoreSession method creates a newInstance of the page class using reflection.
We also need to generate the default starting page in the TicTacToeEngineSession
constructor. By default, we use the first page as it occurs in the DSL as the start page.
Now, let's look at some of the page classes and event handlers:

class WelcomePage extends PlayerService {
 def session

 WelcomePage(context) {
 this.session = context
 setClosureDelegates()
 }
 def game_start = { Object event ->
 players = getPlayers()
 page = new PlayersPage(session)
 }
 def select_players = { Object event ->
 }
 def play_round = { Object event ->
 }
 def game_end = { Object event ->
 }
 def setClosureDelegates() {
 if (session) {
 game_start.delegate = session
 select_players.delegate = session
 play_round.delegate = session
 play_round.delegate = session
 }
 }
 String toString() {
 "welcome"
 }
}

There is a notable difference between this class and the state classes we implemented
in the state machine example in Chapter 8, AST Transformations. Here we use closure
instances as the event handler methods. We do this so that the event handler can
have the session object as its delegate.

Integrating It All

[320]

Looking back at the DSL code, you will note that the state: block where the
state variables are declared gets generated in the TicTacToeEngineSession class,
whereas the event handling code gets generated as part of the page class. We want
the event handling code to act like the state variables are in its local scope, which we
can achieve by using the delegate mechanism. We resolve this delegate relationship
in the setClosureDelegates method, which is called when the page is constructed.

Each page class extends PlayerService. There is a presumption in this game engine
that game rounds are played by automated player classes. The PlayerService class
provided some helper functions for accessing the available player bots. This is a test
version of the class designed to work with the Groovy pattern:

class PlayerService {

 def getPlayers() {
 [
 [playerClass: "NextFreeSpacePlayer"],
 [playerClass: "RandomPlayer"]
]
 }

 def getPlayer = { player ->
 def instance
 if (player == 'X')
 instance = Class.forName("${playerX}").newInstance()
 else
 instance = Class.forName("${playerO}").newInstance()
 instance.player = player
 instance
 }
}

Let's look in more detail at an event handler method. Here is an event handler block
from the DSL along with the event closure we expect to generate to implement it:

event: "play_round"
 def player = getPlayer(event.player)

 player.playRound(grid)

 if (Grid.isSolved(grid)) {
 page = "gameover"
 } else {
 if (event.player == 'X') {
 page = "roundO"

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[321]

 } else {
 page = "roundX"
 }
 }

 def play_round = { Object event ->
 def player = getPlayer(event.player)

 player.playRound(grid)

 if (Grid.isSolved(grid)) {
 page = new GameOverPage(session)
 } else {
 if (event.player == 'X') {
 page = new RoundOPage(session)
 } else {
 page = new RoundXPage(session)
 }
 }
 }

You will notice that, for the most part, the statement block from the DSL is replicated
as the statement block in the closure. The one exception is where we assign the page
property. This is transformed to a constructor call statement for the corresponding
page class. We will see later how to use GroovyCodeVisitor to achieve this.

All these classes together with the Grid class and some player classes make
a rudimentary game engine that implements an automated TicTacToe game
engine. Let's look at this engine in action with a very dumb player class. The
NextFreeSpacePlayer class just looks for the next available space in the grid and
selects it. Two of these players against each other will always guarantee a win for X
in the fourth round:

class NextFreeSpacePlayer extends Bot {
def playRound(grid) {
 if (!Grid.isSolved(grid)) {
 Grid.playNextFreeCell grid, this.player
 }
 }
}

Integrating It All

[322]

We can verify this with a Spock test:

given:
 def engine = new GameEngineClient()

expect:
 !engine.session
when:
 def savedSession = engine.game_start()
then:
 engine.session
 engine.page == 'players'
 engine.session.players.size() == 2
 engine.session.players[0].playerClass == 'NextFreeSpacePlayer'
 engine.session.players[1].playerClass == 'RandomPlayer'
when:
 engine = new GameEngineClient()
 savedSession = engine.select_players(
 [
playerX: 'NextFreeSpacePlayer',
playerO: 'NextFreeSpacePlayer'
],
 savedSession)
then:
 engine.page == 'roundX'
when:
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'X'], savedSession)
then:
 engine.page == 'roundO'
when:
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'O'], savedSession)
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'X'], savedSession)
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'O'], savedSession)
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'X'], savedSession)
 engine = new GameEngineClient()
 savedSession = engine.play_round([player: 'O'], savedSession)
then:
 engine.page == 'roundX'

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[323]

 // X O X
 // O X O
 // Expect next X play to win
when:
 engine = new GameEngineClient()
 engine.play_round([player: 'X'], savedSession)
then:
 engine.page == 'game_over'

We now have a Groovy class-based pattern, which implements our game engine.
The DSL will be implemented with an AST transform, which generates classes in
that pattern. So we can now focus on building the AST transform. We know we have
successfully built the AST transformation when the DSL version works with the
preceding test.

Implementing the AST transform
As with all the previous AST transforms, our work begins with writing an
ASTTransformation class:

@GroovyASTTransformation (phase = CompilePhase.SEMANTIC_ANALYSIS)
class GameEngineASTTransformation implements ASTTransformation,
 CompilationUnitAware {
 def parser
 def builder
 def compilationUnit

 void visit(ASTNode[] nodes, SourceUnit source) {
 if (!nodes) return
 if (!(nodes[0] instanceof ModuleNode)) return
 if (!source?.name?.endsWith('Engine.groovy')) {
 return
 }
 def gameEngineModel = new GameEngineModel()
 parser = new EnginePatternParser(gameEngineModel, source)
 builder = new EnginePatternBuilder(nodes,
 gameEngineModel, source, compilationUnit)

 for (ClassNode classNode : nodes[0].classes) {
 classNode.visitContents(parser)
 }
 builder.buildEnginePattern()
 }
 @Override

Integrating It All

[324]

 void setCompilationUnit(CompilationUnit unit) {
 compilationUnit = unit
 }
}

You will immediately notice the similarity between this transformation class and
the state machine transformation in Chapter 8, AST Transformations. We follow the
same steps as before. We first parse the AST nodes to build an interim model that
represents the game engine. We then use that model to build the game engine
pattern classes:

class GameEngineModel {
 def pages
 def events
 def stateDeclarations
 def eventStatements

 def GameEngineModel() {
 pages = []
 events = [:]
 stateDeclarations = []
 eventStatements = [:]
 }
 def getStartPage() {
 pages[0]
 }
 def addPage(page) {
 if (!pages.contains(page))
 pages << page
 }
 def addEvent(event) {
 events["$event"] = [:]
 }
 def getEvents() {
 events.keySet()
 }
 def addStateDeclaration(declaration) {
 stateDeclarations << declaration
 }
 def addEventStatement(event, stmnt) {
 if (!eventStatements["$event"])
 eventStatements["$event"] = []

 eventStatements["$event"] << stmnt
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[325]

There is not much to the game model class, as you can see in the preceding code.
While parsing, we build a list of the pages declared in the DSL, and a map of the
events declared. We also capture all the statements declared in the state variables
block and in each of the event blocks. This aspect of the AST transform is new.

In the state machine DSL, the model was more of a specification language. This DSL
contains actual executable code and variable declarations that we need to handle.
While parsing, we don't need to do any transformation of this code, we just need to
capture it in the correct blocks so we can make use of it later.

The parser class EnginePatternParser handles this by scanning the DSL run
method for labeled statements. Anything after a state: or event: is labeled
up until the next labeled block is collected and stored in the model:

@Override
void visitMethod(MethodNode node) {
 if (node.name == "run") {
 collectPages(node)
 collectEvents(node)
 collectStateVariables(node)
 collectEventMethodBodies(node)
 }
}
def collectStateVariables(node) {
 def collecting = false
 node.code.statements.each { stmnt ->
 if (!collecting && isStateBlock(stmnt))
 collecting = true

 if (collecting && isNonStateBlock(stmnt)) {
 collecting = false
 }

 if (collecting) {
 if (isDeclarationExpression(stmnt)) {
 model.addStateDeclaration stmnt
 } else {
 addError "Declarations only allowed in state block",
 stmnt, source
 }
 }
 }
}
boolean isStateBlock(Statement stmnt) {
 stmnt instanceof ExpressionStatement &&

Integrating It All

[326]

 stmnt.statementLabel &&
 stmnt.statementLabel == 'state'
}
boolean isNonStateBlock(Statement stmnt) {
 stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof ConstantExpression &&
 stmnt.statementLabel &&
 (stmnt.statementLabel == 'page' ||
 stmnt.statementLabel == 'event' ||
 stmnt.statementLabel == 'when')
}
boolean isDeclarationExpression(Statement stmnt) {
 stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof DeclarationExpression
}

Only declaration expressions are allowed in the state: block of the DSL. If we
encounter anything else, we raise a compile error via the addError method.
Collecting the event: blocks is more straightforward. We just add each
statement we encounter to the model:

def collectEventMethodBodies(node) {
 def collecting = false
 def event
 node.code.statements.each { stmnt ->
 if (!collecting && isEventBlock(stmnt)) {
 collecting = true
 event = getLabelParam(stmnt)
 return
 }
 if (collecting && isNonEventBlock(stmnt)) {
 collecting = false
 }
 if (collecting && isEventBlock(stmnt)) {
 event = getLabelParam(stmnt)
 }
 if (collecting) {
 model.addEventStatement event, stmnt
 }
 }

}
boolean isEventBlock(Statement stmnt) {
 stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof ConstantExpression &&

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[327]

 stmnt.statementLabel &&
 stmnt.statementLabel == 'event'
}
boolean isNonEventBlock(Statement stmnt) {
 stmnt instanceof ExpressionStatement &&
 stmnt.expression instanceof ConstantExpression &&
 stmnt.statementLabel &&
 (stmnt.statementLabel == 'page' ||
 stmnt.statementLabel == 'when' ||
 stmnt.statementLabel == 'state')
}

Building the game engine pattern
Once the parser has completed its work, we should have a full representation of the
game engine in the GameEngineModel class. We next set about generating the classes
of the game engine from this model. The EnginePatternBuilder class takes over at
this point:

class EnginePatternBuilder {
 def model
 ModuleNode moduleNode
 ClassNode classNode
 String className
 ClassNode contextClass
 String sessionClassName
 def sourceUnit
 def compilationUnit

 EnginePatternBuilder(ASTNode[] nodes, model, source, comp) {
 this.model = model
 moduleNode = nodes[0]
 classNode = nodes[0].classes[0]
 className = nodes[0].classes[0].nameWithoutPackage
 this.sourceUnit = source
 this.compilationUnit = comp
 }

 void buildEnginePattern() {
 buildSessionClass()
 updateClientClass()
 buildPageClasses()
 removeMethods()
 }

……..
}

Integrating It All

[328]

Our starting point with this AST transformation will be a single Groovy script class
containing the DSL code. We know from earlier chapters that this means we will
have an existing class with the same name as the script file. So if we start out with
a file named Engine.groovy, we will find that the DSL script has a class in it
called engine.

That class will already have several methods and constructors in it. By the end of the
transformation process, the only part of the original class that we will make use of is
its default constructor. By the end of the transformation process, we will have added
a constructor and event methods to the original script class. We will have changed
the class so it implements a trait and we will have added several other classes to
the module.

The first step is to add the session class since this is referenced extensively in the rest
of the generated code. At this point in the book, the mechanism for constructing code
with the AST APIs should be familiar to you so I won't describe every aspect in detail
unless it is a feature we have not encountered already.

In Chapter 8, AST Transformations, the simple state pattern we implemented did
not have any methods with more than a single line of code. We were therefore
able to represent each method body with a single ExpressionStatement object.
The constructor method in the generated session class has two lines, so we
use a BlockStatement object to represent the code part of the constructor. A
BlockStatement object is simply constructed from an array of statements and a
scope object:

void buildSessionClass() {
 def sessionClassNode = new AstBuilder().buildFromString
 CompilePhase.SEMANTIC_ANALYSIS, true, """
class ${className}Session extends PersistableSession{
}
"""

 contextClass = sessionClassNode[1]
 moduleNode.addClass(sessionClassNode[1])
 sessionClassName = "${className}Session"

 def blockStatement = new BlockStatement([
 new ExpressionStatement(
 new ConstructorCallExpression(
 ClassHelper.make(
 PersistableSession.class
),
 ArgumentListExpression.EMPTY_ARGUMENTS
)

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[329]

),
 new ExpressionStatement(
 new BinaryExpression(
 new VariableExpression("page"),
 new Token(Types.EQUALS, "=", -1, -1),
 new ConstructorCallExpression(
 ClassHelper.make(
 "${model.startPage}Page"
),
 new ArgumentListExpression(
 new VariableExpression('this')
)
),
)
)
],
 new VariableScope()
)

 def constructorNode = new ConstructorNode(
 Modifier.PUBLIC,
 [] as Parameter [],
 [
 ClassHelper.make(Exception, false),
 ClassHelper.make(IOException, false)
] as ClassNode [],
 blockStatement
)
 sessionClassNode[1].addConstructor(constructorNode)

 // Add Properties for each variable declaration in the DSL
 model.stateDeclarations.each { stmnt ->
 def statePropertyNode = new PropertyNode (
 stmnt.expression.variableExpression.name,
 Modifier.PUBLIC,
 stmnt.expression.variableExpression.type,
 ClassHelper.make("${className}Session"),
 stmnt.expression.rightExpression,
 null,
 null
)
 sessionClassNode[1].addProperty(statePropertyNode)
 }
}

Integrating It All

[330]

We start off the preceding code by creating a new AST node for the session class. We
build the constructor code block and create a ConstructorNode for the class. Finally,
we use the state variable declarations we found while parsing the state: block to
add properties to the class to represent each state variable. This newly created class is
added to the original ModuleNode object for the DSL script.

Next we work on the script class itself. We add a new constructor to it, change it so it
implements the trait, GameEngineTraits and adds the event handling methods to it:

void updateClientClass() {
 addGameEngineTraits()
 buildGameEngineConstructor()
 buildClientEventMethods()
}

def addGameEngineTraits() {
 def traitNode = ClassHelper.make(GameEngineTraits)

 if (!classNode.implementsInterface(traitNode)) {
 classNode.addInterface(traitNode)
 }
}

def buildGameEngineConstructor() {
 def constructorStatement = new ExpressionStatement(
 new BinaryExpression(
 new PropertyExpression(
 new VariableExpression("this"),
 new ConstantExpression("session")
),
 new Token(Types.EQUALS, "=", -1, -1),
 new VariableExpression("session")
)
)
 def constructorNode = new ConstructorNode(
 Modifier.PUBLIC,
 [
 new Parameter(
 ClassHelper.make(Object, false), "session")
] as Parameter [],
 [
 ClassHelper.make(Exception, false),
 ClassHelper.make(IOException, false)
] as ClassNode [],

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[331]

 constructorStatement
)
 classNode.addConstructor(constructorNode)
}

Most of the preceding code should be familiar to you. The one aspect we have
not come across before is the construction of the parameter declaration for the
constructor. Earlier in the chapter, I mentioned the difficulties in generating a map as
a parameter to a method. The parameter class constructor requires a ClassNode as its
first argument and the recommended method for creating one of these for an existing
object is to use the ClassHelper.make method. Unfortunately, this does not seem
to work successfully when you try to create a ClassNode for a generic type such
as map.

The same issue occurred when trying to generate the event methods in the following
code. The compromise I settled on was to declare these parameters as an object but to
treat them as map. Here we create block statements for each event method with the
lines of code from the class pattern:

def buildClientEventMethods() {
 for (event in model.events) {
 def blockStatement = new BlockStatement([
 new ExpressionStatement(
 new MethodCallExpression(
 new VariableExpression("this"),
 new ConstantExpression("restoreSession"),
 new ArgumentListExpression(
 [
 new ConstantExpression(className),
 new VariableExpression("sessionData")
]
)
)
),
 new ExpressionStatement(
 new MethodCallExpression(
 new MethodCallExpression(
 new VariableExpression('session'),
 new ConstantExpression('getPage'),
 ArgumentListExpression.EMPTY_ARGUMENTS
),
 new ConstantExpression("${event}"),
 new ArgumentListExpression(
 new VariableExpression('event')
)

Integrating It All

[332]

)
),
 new ExpressionStatement(
 new MethodCallExpression(
 new VariableExpression('session'),
 new ConstantExpression('asMap'),
 ArgumentListExpression.EMPTY_ARGUMENTS
)
)
],
 new VariableScope()
)
 def eventMethodNode = new MethodNode(
 "${event}",
 Modifier.PUBLIC,
 null,
 [
 new Parameter(
 ClassHelper.make(Object, false),
 "event",
 new ConstantExpression(null)
),
 new Parameter(
 ClassHelper.make(Object, false),
 "sessionData",
 new ConstantExpression(null)
)
] as Parameter[],
 null,
 blockStatement
)
 classNode.addMethod(eventMethodNode)
 }
}

That concludes the modification we need to make to the engine class. The final part
of the pattern we need to generate is the page classes. We create a new page class for
each page in the engine DSL:

def buildPageClasses() {
 for (page in model.pages) {
 def pageNode = buildPageClass(page)
 for (event in model.events) {
 buildPageClassEventClosure(event, page, pageNode)
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[333]

 moduleNode.addClass(pageNode[1])
 }

}

Much of the code for building these classes will be familiar already.
One new construct we encounter is the generation of the conditional. The
setClosureDelegates method that is added to the class has a conditional block
based on the value of the session property. This is built with an IfStatement
object that accepts a BooleanExpression object as the condition, and two
BlockStatements for the if block and the else block. A basic if statement is
constructed as an IfStatement with an EmptyStatement as the else block:

def buildPageClass(page) {
 def pageClassNode = new AstBuilder().buildFromString
 CompilePhase.SEMANTIC_ANALYSIS, true, """
class ${page}Page extends com.dearle.game.engine.ast.PlayerService{
 def session
 ${page}Page(session) {
 this.session = session
 setClosureDelegates()
 }
 String toString() {
 "${page}"
 }
}
"""
 def closureDelegateStatements = [
 new ExpressionStatement(
 new BinaryExpression(
 new PropertyExpression(
 new VariableExpression("getPlayer"),
 new ConstantExpression("delegate")
),
 new Token(Types.EQUALS, "=", -1, -1),
 new VariableExpression("session")
)
)]
 for (event in model.events) {
 def closureDelegateStatement = new ExpressionStatement(
 new BinaryExpression(
 new PropertyExpression(
 new VariableExpression("$event"),
 new ConstantExpression("delegate")
),

Integrating It All

[334]

 new Token(Types.EQUALS, "=", -1, -1),
 new VariableExpression("session")
)
)
 closureDelegateStatements << closureDelegateStatement
 }

 def blockStatement = new BlockStatement(
 closureDelegateStatements, new VariableScope())

 def methodBody = new IfStatement(
 new BooleanExpression (
 new BinaryExpression(
 new VariableExpression("session"),
 new Token(Types.COMPARE_NOT_EQUAL, "!=", -1, -1),
 new ConstantExpression(null)
)
),
 blockStatement,
 EmptyStatement.INSTANCE
)

 def eventMethodNode = new MethodNode(
 "setClosureDelegates",
 Modifier.PUBLIC,
 null,
 [] as Parameter[],
 null,
 methodBody
)

 pageClassNode[1].addMethod(eventMethodNode)
 pageClassNode
}

Finally, we need to add the event handling closures to the page classes. These
are constructed as PropertyNode objects where the assignment expression is a
ClosureExpression. The closure is constructed with a BlockStatement object into
which we place the original statements parsed from the event: block in the original
DSL script:

def buildPageClassEventClosure(event, page, stateClassNode) {
 def eventStatements = []
 model.eventStatements["$event"].each {
 eventStatements << it

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[335]

 }

 def blockStatement = new BlockStatement(
 eventStatements as Statement [],
 new VariableScope()
)

 PageAssignmentTransformer pageAssignmentTransformer =
 new PageAssignmentTransformer(model, sourceUnit)
 blockStatement.visit(pageAssignmentTransformer)

 def closureExpression = new ClosureExpression(
 [
 new Parameter(
 ClassHelper.make(Object, false),
 "event")
] as Parameter[],
 blockStatement
)
 closureExpression.variableScope = new VariableScope()

 def closurePropertyNode = new PropertyNode(
 "${event}",
 Modifier.PUBLIC,
 ClassHelper.DYNAMIC_TYPE,
 ClassHelper.make("${page}Page"),
 closureExpression,
 null,
 null
)

 stateClassNode[1].addProperty(closurePropertyNode)
}

When a page is assigned in the DSL, we need to transform this assignment from a
constant string assignment to a constructor call for the corresponding page class:

// And assignment like this in the DSL
page = "Welcome"
// Becomes this in the pattern
page = new WelcomePage(session)

Integrating It All

[336]

These assignments can occur anywhere within the event: block code. This means
they could be nested deep within the AST nodes we have saved. We have a
convenient method for finding each of them so we can transform them.

Once we have created a new BlockStatement object out of event statements, we can
visit all of the AST nodes in the block using the GroovyCodeVisitor class. To do so,
we need to implement our own visitor class:

class PageAssignmentTransformer extends CodeVisitorSupport {
 def model
 def source

 PageAssignmentTransformer(model, source) {
 this.model = model
 this.source = source
 }

 @Override
 void visitBinaryExpression(BinaryExpression expr) {
 def var = expr.leftExpression
 Token oper = expr.operation
 def page = expr.rightExpression

 if (var instanceof VariableExpression &&
 var.accessedVariable.name == 'page' &&
 oper instanceof Token &&
 oper.rootText == "=" &&
 page instanceof ConstantExpression
) {
 def next = page.value.toString()
 if (!model.pages.contains(next)) {
 addError "Reference to non existent state",
 page, source
 } else {
 expr.rightExpression = new ConstructorCallExpression(
 ClassHelper.make("${next}Page"),
 new ArgumentListExpression(
 new VariableExpression('session')
)
)
 }
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[337]

The PageAssignmentTransformer class extends CodeVisitorSupport and
overrides the visitBinaryExpression method. CodeVisitorSupport has methods
for every type of statement and expression you could possibly encounter. As it
happens, the only type of expression we care about is BinaryExpression where
the left expression is the page variable and the right is a constant.

We can therefore target all the places where the statement page = constant occurs.
We can then make a direct assignment to rightExpression and replace the constant
with the appropriate ConstructorCallExpression for a page class.

Apart from some cleanup to remove the unwanted methods from the engine class,
that is the full AST transformation completed.

Testing the DSL
In theory, we should now be able to make use of the game engine DSL. Let's see if
the original Spock test will still work if we convert it using the DSL instead of the
pattern classes. To do so, we need to load the DSL code from somewhere:

given:
 CompilerConfiguration config = new CompilerConfiguration()
 config.addCompilationCustomizers(
 new ASTLogCompilationCustomizer(
 CompilePhase.SEMANTIC_ANALYSIS,
 System.out
))
 GroovyClassLoader classLoader = new GroovyClassLoader(
 this.class.classLoader, config)
 engineClass = classLoader.parseClass(
 new File("pathto/TicTacToeEngine.groovy"))
 def gameEngine = engineClass.newInstance()

expect:
 !gameEngine.session

when:
 def savedSession = gameEngine.game_start()
then:
 gameEngine.session
 gameEngine.page == 'players'
 gameEngine.session.players.size() == 2

Integrating It All

[338]

In order to create an instance of the game engine class, we use GloovyClassLoader.
parseClass to parse the class from a local file. If the AST transform is available
in the compiler's classpath, that's all we need to do to cause the DSL script to be
transformed. For a simple DSL implementation, such as the state machine DSL in
Chapter 8, AST Transformations, this is all we need to do:

GroovyClassLoader classLoader = new GroovyClassLoader()
 stateMachineClass = classLoader.parseClass(
 new File("pathto/SomeState.groovy"))
 def stateMachine = stateMachineClass.newInstance()

Class loading issues
All the dependent classes created in this DSL are generated in the original
script model for the state machine DSL. So it is entirely self-contained in the
parsed module. The game engine DSL makes use of existing classes such as
PersistableSession, PlayerService and the trait GameEngineTraits. These
classes need to be resolved on the class path when the AST transform is generating
code that depends on them.

We can resolve this by creating the GroovyClassLoader with a parent ClassLoader
and any class reference that the compiler cannot resolve in the GroovyClassLoader
will be delegated to the parent class loader seeking a reference. The three classes we
need are already in the class path of the Spock specification via the ast.jar file, we
will see how this is built in a moment. We can get hold of the default class loader for
the specification via the test specification's own class, which is referenced in the test
via this.class.classLoader.

When we are building our own AST transformations, it is important to understand
that the transformation itself becomes part of the compilation process. The transform
won't work if you put the AST transformation sources into your main application
code because the transform is compiled at the same time as the application.

We managed to avoid this issue in the Chapter 8, AST Transformations examples. All
the AST examples in the Chapter 8, AST Transformations exercise were transforms via
Spock tests. The transforms were compiled to classes in the Gradle compile phase
and then made use of in the testCompile phase.

Gradle subprojects
In order to make use of the game engine AST transform, we will need to compile
it into a separate JAR file which is made available in the classpath when we
compile the main application code. A handy way to do this is via a Gradle
multi-project build.

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[339]

The example code for this chapter can be found in the TicTacToe directory of the
source pack. There are two subdirectories in here, www which contains the HTML5
UI which we will discuss later, and server which contains the game server and DSL
sources. The server directory contains a Gradle build script build.gradle.

Underneath server there is another subdirectory ast, this is where the sources for the
AST transformation lives. It also contains a build.gradle, which is configured to
build a JAR distribution of the game engine AST transformation:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile "org.codehaus.groovy:groovy-all:2.4.3"
 testCompile "org.spockframework:spock-core:0.7-groovy-2.0"
}

This will build a JAR file for the AST in server/ast/build/libs/ast.jar.
The server build.gradle consumes this JAR as a project dependency with the
following entry in its dependencies:

dependencies {
 compile project(':ast')
}

With this build structure in place, Gradle will ensure that the JAR containing the AST
is built first and made available at compile time for the server. The tests for the server
and the AST can be run via Gradle on the command line:

$gradle clean test

Debugging
Debugging an AST transform can be difficult at the best of times. Attaching a
debugger via Eclipse or IntelliJ is possible. However, in the early stages of DSL
development, I find that the simplest solution is just to put some logging into your
AST transform code. You can dump what the DSL is doing at any point in time.

There is one aspect of DSL development that is particularly difficult to debug. That
is when your transform has finished and produced an end set of transformed classes,
but now these classes don't behave as expected. You don't have the code for these
classes to debug them because you generated them dynamically in the transform.

Integrating It All

[340]

Ideally you want to be able to visualize the code you have just generated. In the
above Spock test, you will notice that I've added a CompilationConfiguration
class with a CompilationCustomizer to the GroovyClassLoader class. This
compilation customizer uses a visitor, AstNodeToScriptVisitor, that is part of
the groovyConsole sources. This visitor traverses the generated ASTNode tree and
generates a text view of the generated code:

class ASTLogCompilationCustomizer extends CompilationCustomizer {
 final PrintStream out

 ASTLogCompilationCustomizer(CompilePhase compilePhase,
 PrintStream out) {
 super(compilePhase)
 this.out = out
 }
 void call(SourceUnit source, GeneratorContext context,
 ClassNode classNode) throws CompilationFailedException {
 StringWriter writer = new StringWriter()
 new AstNodeToScriptVisitor(writer).visitClass(classNode)
 out.println writer
 }
}

Running the tests will produce an HTML report in the server/build/reports/tests
directory. There is a link in the report to the standard output from the test, which
contains the pretty printed version of the generated code. This is tremendously
useful when debugging the generated output from an AST transformation.

The game server
Now we will look at building a simple game server that exploits the DSL. The
server is built upon Spring MVC using Spring Boot which is a convention over
configuration version of the Spring framework that allows you to get up and
running quickly—http://projects.spring.io/spring-boot/.

The server responds to HTTP requests via AJAX and returns JSONP. Each response
will contain the latest version of the game engine state along with a session ID and
the name of the next page to go to in the UI. In between requests, the session state is
stored in a MongoDB collection. Let's look at the Gradle file that builds this server:

buildscript {
 repositories {
 jcenter()
 maven { url "http://repo.spring.io/libs-release" }
 }

www.allitebooks.com

http://projects.spring.io/spring-boot/
http://www.allitebooks.org

Chapter 12

[341]

 dependencies {
 classpath (
 "org.springframework.boot:spring-boot-gradle-plugin:1.2.3.RELEASE"
)
 classpath (
 'com.sourcemuse.gradle.plugin:gradle-mongo-plugin:0.1.0'
)
 }
}

apply plugin: 'spring-boot'
apply plugin: 'mongo'
apply plugin: 'groovy'

repositories {
 jcenter()
 maven { url 'http://repo.spring.io/release' }
}

dependencies {
 compile project(':ast')
 compile "org.codehaus.groovy:groovy:2.4.3"
 compile "org.springframework.boot:spring-boot-starter-web"
 compile (
 "org.springframework.boot:spring-boot-starter-data-mongodb"
)
 testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
 testCompile "org.mongodb:mongo-java-driver:2.12.0"
}

As usual, configuring a project with the Gradle DSL is surprisingly easy. All we need
to do is apply the plugins for Spring Boot and Mongo and supply the dependencies
for the libraries. Running Gradle will cause all the dependent components to be
installed. You don't even need to install a MongoDB database since the Mongo
plugin will create an embedded MongoDB instance for you. To start the embedded
MongoDB, just issue the following Gradle command:

$gradle startMongo

Now we can start the Spring Boot server and try out some responses:

$gradle clean run

Integrating It All

[342]

This starts the server on localhost port 8080 so we can use curl to get a response to
the game start event, as follows (alternatively, just enter the URL into a browser):

$ curl http://localhost:8080/tictactoe/game_start

{

 "grid": [

 " ",

 " ",

 " ",

 " ",

 " ",

 " ",

 " ",

 " ",

 " "

],

 "page": "players",

 "players": [

 {

 "name": "Next Free Space Player",

 "playerClass": "NextFreeSpacePlayer"

 },

 {

 "name": "Random Blocking Player",

 "playerClass": "RandomBlockingPlayer"

 },

 {

 "name": "Random Player",

 "playerClass": "RandomPlayer"

 }

],

 "sessionId": "81a6db09-fb78-485f-8cca-3b5e69e5a0df",

}

Response is cleaned up and formatted. If you are running
on Mac OS X or Linux and have Python installed, try piping
output to:
python –mjson.tool

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[343]

Integrating with Spring Boot server
Spring Boot application startup is via the main method of a class. You can put
this main method in any class you like. You can build a functioning Spring Boot
application with a single controller class that has a main method. A common
convention, however, is to create a separate application class that contains the
main method, which is what we have done here:

@EnableAutoConfiguration
@ComponentScan("com.dearle.game.engine.tictactoe")
class Application {
 static void main(String[] args){
 new SpringApplication(Application).run(args)
 }
}

In the main method, we create the SpringApplication class and run it. The
configuration of components is made easy by using the @ComponentScan annotation,
which tells Spring Boot to search in the tictactoe package for component classes.

It is important that you only have one main method in the application
JAR. If you include any DSL script classes in the JAR they will also have
a main method. This is why the DSL AST transform takes care to remove
the script main as part of the transformation.

The main work of the server is performed by a single controller class. The component
scan will discover that GameEventController has the @RestController annotation
which means that this controller is prepared to handle web requests.

I mentioned earlier that Spring Boot takes convention over configuration. The
@AutoWired annotation informs Spring to create a bean for GameSessionRepository
and GameEngineService and the instance into the controller. No further
configuration is required:

@RestController
class GameEventController {
 @Autowired
 GameSessionRepository sessionRepo
 @Autowired
 GameEngineService engineService

 @RequestMapping(value = "/{game}/{event}",
 produces = MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody

Integrating It All

[344]

 Map event(@PathVariable String game,
 @PathVariable String event,
 @RequestParam Map params) {
 def session = null
 if (params.sessionId)
 session = sessionRepo.findBySessionId(params.sessionId)

 def client = engineService.getEngineInstance(this, game)
 def state = client."${event}"(params, session?.cache)

 if (session) {
 session.cache = state
 } else {
 session = new GameSession(
 sessionId: session.sessionId, cache: state)
 }

 sessionRepo.save(session)
 session.cache
 }
}

Events can arrive asynchronously to the server and we need to be able to maintain
the game state for a player between requests. The event detects if a session already
exists and creates one if it does not. It then uses GameEngineService to get a game
engine client instance to which it delegates the event handling. The latest values for
the state are returned by the DSL handler and saved. Finally, the update state is sent
back as part of the response body. Let's see how all this works.

Controller annotations
This controller has a single action method for event. The @RequestMapping
annotation tells Spring to map any two-part URL requests to the event controller
method. The two @PathVariable annotations on the method parameters for game
and event ensure that the first part of the URL is passed to the action as the game
parameter, and the second as the event. So the URL http://localhost:8080/
tictactoe/play_round will be mapped to a call to GameEngineController with
the statements, game = 'tictactoe' and event = 'play_round'.

We can control how single parameter values are passed with a @RequestParam
annotation. Using the @RequestParam string foo would allow us to map the request
parameter foo to a named method parameter. When we declare @RequestParam as
a map, as is the previous case, all the request parameters are marshaled into a single
parameter called params.

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[345]

The @ResponseBody annotation will mean the result returned by the event action is
automatically placed in the HTTP response body. The @RequestMapping annotation
indicates that this action produces MediaType.APPLICATION_JSON_VALUE.
Combined, these annotations will ensure that the map that is returned is
converted to its corresponding JSON structure.

JSONP
If we were to serve the UI for this server from the same domain then this would be
adequate for most purposes. We will be building an embedded mobile client which
means that the UI will be served from the phone's own storage whereas the JSON
will be served from the Spring Boot app. Some browsers will enforce a same origin
policy and will not allow this. We circumvent this problem by using JSONP instead
of JSON.

JSONP is an alternative format to JSON whereby the returned value is a JavaScript
function call passing the JSON as a parameter. The snippet below shows a simple
piece of JSON and the JSONP equivalent:

//JSON
{ id: '123' }
//JSONP
callback({ id: '123' })

For a more detailed explanation of the JSONP mechanism, see http://json-p.org/.
All we need to know is how to generate this format in the response body.
AbstractJsonpResponseBodyAdvice is available in Spring 4.1. We extend this class
and annotate it with the @ControllerAdvice annotation. ControllerAdvice is a
mechanism in Spring for adding additional default functionality such as common
exception handlers to all controllers. In this case, we are adding JSONP capabilities to
all controllers:

@ControllerAdvice
public class JsonpAdvice extends AbstractJsonpResponseBodyAdvice {
 public JsonpAdvice() {
 super("callback");
 }
}

http://json-p.org/

Integrating It All

[346]

Loading the DSL
The transformed DSL classes need to be in the application class path so that the
game engine controller can delegate events to them. For this particular DSL, it
is a requirement that the DSL can be loaded from a source external to the game
server. This is so that the game server, which is not intended to be modified, can be
packaged as an application runtime while the game engine DSL can be maintained in
a separate source.

The DSL classes need to have access to the application class path when loaded.
We also want to minimize the amount of parsing that occurs. This implies creating
a GroovyClassLoader that is shared somehow.

Spring components are, by their nature, singletons. We can create a
GameEngineService class and annotate it with @Component. The classLoader
property in the service is initialized only once. We use getEngineInstance as a
factory method which will parse the DSL and return an engine instance:

@Component
class GameEngineService {

 GroovyClassLoader classLoader

 def getEngineInstance(obj, engine) {
 if (!classLoader) {
 classLoader = new GroovyClassLoader(
 obj.class.classLoader)
 }
 def clazz = classLoader.loadedClasses.find {
 it.name == "${engine}"
 }
 if (!clazz) {
 clazz = classLoader.parseClass(
 new File("engines/${engine}/Engine.groovy"))
 }

 clazz.newInstance()
 }
}

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[347]

Spring Data mapping for MongoDB
In between event requests, we store the latest state of the DSL state variables. These
variables can be any fundamental type or a collection of fundamental type objects.
Basically, anything that can be marshaled into and out of JSON as is. We therefore
need to also have a storage mechanism that allows arbitrary data to be stored.

MongoDB turns out to be a natural fit for this. Mongo is a JSON document store
and is schemaless, meaning that we don't have to describe the structure of the data
we store. Spring also has a powerful set of libraries that allow it to integrate easily
with a Mongo database. This is the entire configuration we need to get working with
Mongo using the Spring Data Mongo libraries. First we declare MongoConfig, which
configures Spring to use the TicTacToe database:

@Configuration
class MongoConfig extends AbstractMongoConfiguration {
 @Override
 String getDatabaseName() {
 "tictactoe"
 }

 @Override
 Mongo mongo() throws Exception {
 new MongoClient()
 }
}

A MongoDB database can contain multiple JSON document collections. In our case,
we only need one. Here we declare a Spring Data mapping repository for storing the
game sessions. Based on the Spring Boot convention over configuration principles,
this class declaration will automatically make use of a collection called GameSession.
Spring Data also automatically generates the findBySessionId method to query
GameSession objects by sessionId:

interface GameSessionRepository
 extends MongoRepository<GameSession, BigInteger> {
 GameSession findBySessionId(String sessionId)
}

Integrating It All

[348]

All that remains is for us to declare the GameSession document class, which becomes
the data access object for the GameSession collection. GameSession has a database
ID, which will be generated by Mongo, a sessionId which we generate on the fly as
a stringified UUID, and it has a map in which the game session state will be stored:

@Document
class GameSession {
 @Id BigInteger id
 String sessionId
 Map cache
}

Surprisingly, that's all the code it takes to build our game server. All that remains is
to build a simple UI that can use it.

The Game UI
The nature of the game engine we have built is similar to a state machine. Pages
represent the different states so, as we move from state to state, we move from page
to page in the UI. We started out with the ambition of building a mobile app to work
with this DSL and it turns out that the jQuery mobile framework actually works very
well with this notional page model.

With jQuery mobile, we build a single page app, which contains individual "pages".
The pages are declared as div element's with a data-role attribute of "page". Here
is the play round page of our TicTacToe game. You will notice that the content div
element is empty. This will be filled in dynamically from a template as the game is
being played:

<div data-role="page" id="roundX" class="engine-page grid-page">
 <div data-role="header" id="header">
 <h1>Play Round</h1>
 </div><!-- /header -->

 <div role="main" class="ui-content" id="content">
 </div><!-- /content -->
 <div data-role="footer" id="footer" data-position="fixed">
 <div data-role="navbar">

 Play X

 </div><!-- /navbar -->
 </div><!-- /footer -->
</div><!-- /page -->

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[349]

The footer of the page contains a link, which calls a JavaScript function. This function
matches the play_round event in the DSL and causes an AJAX call to be made to the
game server. When we get a response from the server, we read the page transition it
returns in the response and we display that page:

function playRound(player) {
 var params = {
 sessionId: session.sessionId,
 player: player
 }
 event('play_round', params);
}
function event(event, params) {
 var url = "http://localhost:8080/tictactoe/" +
 event +
 "?callback=?";
 if (session.sessionId != null) {
 params.sessionId = session.sessionId;
 }
 $.getJSON(url, params, function(response) {
 session = response;
 if (response.page != "players") {
 $("#" + response.page + " .ui-content").html(
 Mustache.render(
 MustacheTemplates[response.page], response));
 $("#" + response.page).trigger("pagecreate");
 } else {
 session.sessionId = ""
 }
 $.mobile.changePage("#" + response.page,
 { transition: "slide" });
 });
}

The content section of each page is generated dynamically using MustacheTemplate
like the following one. The state variables transmitted from the server in JSON are
passed to the template so that we can reference any of the variables that were
defined in the DSL by name. For example, grid.0 references the grid[0] value
from the DSL:

MustacheTemplates.roundX = [
 "<div class='grid'>",
 "<h1 class='cell'>{{grid.0}}</h1>",
 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.1}}</h1>",
 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.2}}</h1>",
 "<div class='horz-separator'></div>",
 "<h1 class='cell'>{{grid.3}}</h1>",

Integrating It All

[350]

 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.4}}</h1>",
 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.5}}</h1>",
 "<div class='horz-separator'></div>",
 "<h1 class='cell'>{{grid.6}}</h1>",
 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.7}}</h1>",
 "<div class='vert-separator'></div>",
 "<h1 class='cell'>{{grid.8}}</h1>",
 "</div>"
].join("\n");

Put this all together and we have a playable TicTacToe game for mobile devices. I
wrote this DSL as a proof of concept to see if a usable DSL could be written for kids
to program with.

In terms of hitting our original goals for the DSL, we have achieved a lot of them.
At the close of the term we had the kids' own player bots playing each other in the
mobile app shown in the following image:

www.allitebooks.com

http://www.allitebooks.org

Chapter 12

[351]

The DSL abstracts out a lot of the complexity for the kids. A normal application with
a mobile frontend and a JSON backend would have a lot of framework code to be
written for it to work, particularly in the area of data binding.

With this DSL, the kids can just declare their state variables in the DSL and
the values of these variables surface with the same names in the UI as part of
MustacheTemplates. The data binding is all handled by the code generated in the
DSL. I'm hoping that in the coming terms it will be possible for them to use the skills
that they have acquired to build their own game engines with the DSL. I'm looking
forward to evolving this DSL in the future.

Summary
The game engine DSL we built in this chapter was clearly designed with teaching
Groovy in mind. However, I also have to admit to a certain amount of contrivance in
how it was built. I had also been looking for a good example DSL to use as the final
example in this book and I hope this one hit the mark on both counts. The integration
problems we needed to solve to get this simple DSL up and running will, I think, be
similar to the ones you will face in your own projects.

We have made use of and built on a lot of the concepts in the book. I hope you have
had some fun along the way and learned a lot of new things. The journey is not over,
however. The next steps are up to you. Happy DSL building!

www.allitebooks.com

http://www.allitebooks.org

[353]

Index
Symbol
@Grab annotation

reference 118

A
abstract syntax tree. See AST
acceptance test-driven development

(ATDD) 241
Apache Antlr

URL 187
assert keyword 61
association relationships

about 229
constraints 232, 233
many-to-many associations 235, 236
one-to-many association 233, 234
one-to-one association 229, 230

AST
about 186
compiler phases 187

ASTBuilder
about 192
build from code 192, 193
build from Spec 193, 194
traits to rescue 194-196
using 192

autoboxing 62

B
basic concepts, Gradle

build scripts 34
dependencies 42
tasks 35

behavior-driven
development (BDD) 241

binding 276
bindings, exploiting in DSLs

about 278
binding properties, using to

form context 283, 284
closures, as built-in methods 278
closures, as repeatable blocks 278-280
closures, as singleton blocks 281, 282
results, communicating 284-286
results, storing 284-286
specification parameter, using 280, 281

blocks 44, 45
boilerplate

removing 125, 126
builder code structure

about 247, 248
closure delegate 248, 254
closure method calls 248-250
closure method resolution 248
named parameters 248
pretended methods 248, 252
resolve strategy 250

builders
about 145, 247
builder design pattern 146
DOMBuilder 156
Groovy builders, using 147, 148
GroovyMarkup syntax 151, 152
JMXBuilder 156
MarkupBuilder 148, 156
namespaced XML 149-151
NodeBuilder 156, 157

[354]

program logic, using with 155
SAXBuilder 156
SwingBuilder 156
working 176-179

BuilderSupport
about 255
database builder 261-266
hook methods 255-260

built-in methods
adding 132-136

built-in tasks, Gradle tasks
about 39
dependencies 40
projects 40
tasks 40
wrapper 40

C
closure parameters

about 97, 98
closures, implementing in Java 101, 102
curried parameters 103, 104
default parameter values 101
doCall method 99, 100
multiple parameters, passing 101
zero parameters, enforcing 98

closure return values 104
closures, as method parameters

about 88, 89
method parameters, as DSL 89, 90
parameters, forwarding 90, 91

closure scope
about 105-107
closure composition 108
closure memoization 110
closure trampoline 109
delegate variable 108
owner variable 108
this variable 108

closures, Groovy
about 14, 86, 122
calling 92, 93
collection methods 87, 88
implicit doCall method 94
markup 16-18

operator overloading 15
optional syntax 15, 16
regular expression support 15

Cloud9
URL 313

CoderDojo
URL 309

collections
about 77
lists 78, 79
maps 80, 81
ranges 77, 78

command chains 144, 145
command-line interface

adding 131
CompilationConfiguration object

reference 133
compiler phases, AST

about 187
canonicalization 188
class generation 188
conversion 188
finalization 188
initialization 187
instruction selection 188
output 188
parsing 187
semantic analysis 188

composition relationship 237
control structures

about 70
Elvis operator 72, 73
Groovy Truth 71, 72
loops 76
spaceship operator 74, 75
switch statement 76
ternary operator 72-74

cURL
about 115
URL 115

curried closures 103
curried parameters 103
currying 103
Cygwin

about 23
URL 23

www.allitebooks.com

http://www.allitebooks.org

[355]

D
document type definition (DTD) 3
domain-specific language (DSL)

about 2, 3
design 8
evolution of programming languages 3
external, versus internal DSLs 9
for process engineers 6, 7
implementation 9
language-oriented programming 5
operator overloading 10, 11
stakeholder participation 8
users 6

DSL, designing
BroadbandPlus 287, 288
BroadbandPlus application classes 302, 303
convenience methods 296, 297
deferred execution 294
events, handling 294-296
offers 297
reward DSL 289-293
RewardService class 298-302
reward types 289
shorthand features 296, 297
testing, with Spock 304-307

dynamic finders 240

E
Eclipse plugin 41
Enterprise Java Beans (EJB) 3
ExpandoMetaClasses

about 179
constructors, adding 183
dynamic method naming 181
methods, replacing 180
overloaded methods, adding 182
static methods, adding 180
static methods, overriding 180

EXTended Operations Language (EXTOL) 7

F
FactoryBuilderSupport

about 267-272
isLeaf 268
newInstance 268

onHandleNodeAttributes 268
onNodeCompleted 268
setChild 268
setParent 268

feature methods 43
fields 46
fixture blocks 49
fixture methods

about 46
cleanup() 46
cleanupSpec() 46
setup() 46
setupSpec() 46

fourth-generation language (4GL) 5

G
game DSL

architecture 313
AST transform, implementing 323-326
class loading issues 338
controller annotations 344
debugging 339
DSL, loading 346
DSL, testing 337, 338
for kids 312, 313
game engine pattern, building 327-337
game server 340, 341
game UI 348-351
goals 313
Gradle subprojects 338
JSONP 345
Spring Boot server,

integrating with 343, 344
Spring Data mapping, for MongoDB 347
technology 313, 314
TicTacToe 314-323

GeeTwitter class
fleshing out 128, 129

global AST transformations
about 197
AST nodes, building 210-217
compile error 207-209
compiling 221, 222
errors, handling 207-210
finite state machine DSL 197, 198
packaging 221, 222

[356]

state machine AST transformation 201-207
StateMachineASTTransformation 201
StateMachineBuilder 201
state machine DSL, testing 218-220
StateMachineModel 201
StateMachineParser 201
state machine pattern 198-200

GORM
about 223
grails-app directory 224, 225
Grails quick start 224
querying 239
relationships, modeling 228
URL 225

GORM model
building 225, 226
domain classes, using 226-228

Gradle
about 2
basic concepts 34
installing 33, 34
reference, for installation packages 34
testing, Spock used 49
URL 2

Gradle build scripts 34
Gradle DSL

URL 50
Gradle Groovy plugin 40
Gradle projects 34
Gradle tasks

about 35
actions, adding 35-37
built-in tasks 39
default tasks 37
plugins 40
repositories 41
task dependencies, creating 38

Grails
download link 95

grails-app directory
about 224
grails-app/conf 224
grails-app/controllers 224
grails-app/domain 224
grails-app/services 224
grails-app/view 224

grails command 225

Grails object relational
mapping. See GORM

Groovy
about 11
closures 14, 85
compatible, with JVM 12
download link 23
installing, from binaries 23, 24
installing, with GVM 21, 22
language features 13
running 24

Groovy, as teaching language
about 309, 310
complexity, hiding 311, 312

GroovyBeans 59
Groovy bindings

about 276-278
exploiting, in DSLs 278

groovyc command 31
Groovy compiler 31
groovyConsole 29, 30
Groovy Eclipse

about 32
URL 32

Groovy enVironment Manager. See GVM
Groovy IDE

about 31
Eclipse 32
IntelliJ IDEA 32
NetBeans 31
Spring STS 32

Groovy improvements
about 122
friends, finding 122-124

Groovy language
about 51
assertions 61
autoboxing 62
closures 69, 70
collections 77
control structures 70
methods 67, 68
module structure 51-53
operators 82
regular expressions 64-66
shorthand features 53
strings 63

www.allitebooks.com

http://www.allitebooks.org

[357]

Groovy language features
about 13
native support, for lists and maps 13
static and optional typing 13

GroovyMarkup
about 151, 152
and HTML 152-155

Groovy Script class
reference 132

Groovy script engine 25-27
Groovy searching 124
Groovy Server Pages (GSPs) 224
groovysh command 28
Groovy shell 28, 29
GVM

about 22
installing 22
installing, on Windows 22
URL 22

H
helper methods 47, 48
hook methods, BuilderSupport

createNode method 264
nodeCompleted hook 264
setParent hook 264

I
IDEA plugin 40
implicit doCall method 94
Independent Software Vendors (ISVs) 261
inheritance, relationships

about 238
mapping 238, 239

IntelliJ IDEA 32

J
Java Management Extensions (JMX) 156
Java Virtual Machine (JVM) 1
JDeveloper 32
JEdit 32
JSONP

about 345
URL 345

JUnit 244, 245

L
local AST transformations

about 189
implementing 189-191

M
many-to-many association 235, 236
MarkupBuilder 148
Meta Object Protocol (MOP)

about 147, 162
categories 166-169
delegate keyword 174-176
Expando 165
Groovy reflection shortcuts 164
MetaClass 170-172
MetaClass.invokeMethod 172, 173
owner keyword 174-176
reflection 162, 163
this keyword 173, 176
traits 169

metaprogramming 162
methodMissing 253
method pointers 161, 162
Model View Controller (MVC) 146, 224

N
named closure field

finding 95, 96
named parameters

about 61, 139-142
in DSLs 142, 143

NetBeans
about 31
URL 31

NodeBuilder
about 157
GPath, used for navigating node tree 158

null safe dereference operator 83

O
one-to-many association 233, 234
one-to-one association 229, 230
operators

about 82

[358]

null safe dereference operator 83
operator overloading 84
spread 82
spread-dot 82, 83

P
plugins, Gradle tasks

about 40
Eclipse plugin 41
Gradle Groovy plugin 40
IDEA plugin 40

POGO (Plain Old Groovy Object) 59
PoorMansTagBuilder class 252
pretended methods

about 252
invokeMethod 252
methodMissing 253

programming languages
fourth-generation language (4GL) 5
evolution 3
general-purpose languages 4
third-generation language (3GL) 5

Q
querying, GORM

about 239
dynamic finders 240
GORM, as DSL 241

R
range of values

defining 77
refactoring 126-128
regex find operator 64
regex match operator 64
regex pattern operator 64
relationships

about 228
associations 228
composition 228, 237
inheritance 228, 238

resolve strategy 250

rewards DSL
building 286
DSL, designing 287

RVM (Ruby Version Manager) 21

S
Scratch

URL 311
search

improving 130
shebang scripts 27
shorthand features, Groovy language

about 53
default visibility 54
dynamic types 57
GroovyBeans 59, 60
implicit imports 54
optional dot in method chains 56, 57
optional parentheses 55, 56
optional return keyword 57, 58
optional semicolon 54, 55
properties 59

single page app (SPI) 313
Spock

about 42, 223, 242, 243
as DSL 241, 242
blocks 242
feature methods 242
fixture methods 242
helper methods 242
JUnit 244, 245
URL 50
used, for testing Gradle 49

Spock specification structure
about 43
blocks 43-45
feature methods 43
fields 43, 46
fixture methods 43-47
helper methods 43, 47

Spock tests
about 42
fixture blocks 49

www.allitebooks.com

http://www.allitebooks.org

[359]

given 42
then 42
when 42
where blocks 48

spread-dot operator 82, 83
spread operator 82
Spring STS

about 32
URL 32

state machine DSL
events 204
states 204
transitions 204

strategies, builders
DELEGATE_FIRST 177
DELEGATE_ONLY 177
OWNER_FIRST 177
OWNER_ONLY 177
TO_SELF 177

SwingBuilder 139, 158-160

T
test-driven development (TDD) 241
TextMate 32
third-generation language (3GL) 5
Twitter

about 113, 114
URL 115

Twitter4J
URL 117

Twitter4J Java APIs
direct message 119
following 121, 122
searching 120, 121
tweeting 118
using 117

Twitter APIs
URL 115
working with 114-117

U
UltraEdit 32

V
virtual machine (VM) 11

W
where blocks 48
Windows Installer

URL 24

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to DSLs and Groovy
	DSL – a new name for an old idea
	The evolution of programming languages
	General-purpose languages
	Spreadsheets and 4GLs

	Language-oriented programming
	Who are DSLs for?
	A DSL for process engineers
	Stakeholder participation

	DSL design and implementation
	External versus internal DSLs
	Operator overloading

	Groovy
	A natural fit with the JVM
	Groovy language features
	Static and optional typing
	Native support for lists and maps

	Closures
	Groovy operator overloading
	Regular expression support
	Optional syntax
	Groovy markup

	Summary

	Chapter 2: Groovy Quick Start
	Installing Groovy with GVM
	Installing GVM
	Installing GVM on Windows

	How to find and install Groovy from binaries
	Running Groovy
	The Groovy script engine – groovy
	Shebang scripts
	The Groovy shell – groovysh
	The Groovy console – groovyConsole
	The Groovy compiler – groovyc

	The Groovy IDE and editor integration
	NetBeans
	Eclipse
	Spring STS
	IntelliJ IDEA
	Other IDEs and editors

	Summary

	Chapter 3: Essential Groovy DSLs
	Installing Gradle
	Gradle basics
	Gradle build scripts
	Gradle tasks
	Adding actions to tasks
	Default tasks
	Creating task dependencies
	Built-in tasks and plugins
	Repositories

	Dependencies

	Spock tests
	Given, when, then
	Spock specification structure
	Feature methods
	Blocks
	Fields
	Fixture methods
	Helper methods
	Where blocks
	Fixture blocks
	Testing Gradle using Spock

	Further reading
	Summary

	Chapter 4: The Groovy Language
	Introducing the Groovy language
	The module structure
	Groovy shorthand
	Implicit imports
	Default visibility, optional semicolon
	Optional parentheses
	The optional dot in method chains
	Dynamic types
	The optional return keyword

	Assertions
	Autoboxing
	Strings
	Regular expressions
	Methods and closures
	Control structures
	Groovy Truth
	Ternary and Elvis operators
	Spaceship and Elvis operators
	The switch statement
	Loops

	Collections
	Ranges
	Lists
	Maps

	Operators
	Spread and spread-dot
	Null safe dereference
	Operator overloading

	Summary

	Chapter 5: Groovy Closures
	What is a closure?
	Closures and collection methods
	Closures as method parameters
	Method parameters as DSL
	Forwarding parameters

	Calling closures
	The implicit doCall method

	Finding a named closure field
	Closure parameters
	Enforcing zero parameters
	Parameters and the doCall method
	Passing multiple parameters
	Default parameter values
	Implementing closures in Java
	Curried parameters

	Closure return values
	The closure scope
	The this, owner, and delegate variables
	Closure composition
	Closure trampoline
	Closure memoization

	Summary

	Chapter 6: Example DSL – GeeTwitter
	Twitter
	Working with the Twitter APIs
	Using Twitter4J Java APIs
	Tweeting
	Direct messages
	Searching
	Following

	Groovy improvements
	A Groovier way to find friends
	Groovy searching

	Removing the boilerplate
	Refactoring
	Fleshing out GeeTwitter
	Improving search

	Adding a command-line interface
	Adding built-in methods
	Summary

	Chapter 7: Power Groovy DSL Features
	Named parameters
	Named parameters in DSLs

	Command chains
	Builders
	The builder design pattern
	Using Groovy builders
	MarkupBuilder

	Namespaced XML
	GroovyMarkup syntax

	GroovyMarkup and HTML
	Using program logic with builders
	Builders for every occasion
	NodeBuilder

	SwingBuilder
	Method pointers
	Metaprogramming and the Groovy MOP
	Reflection
	Groovy reflection shortcuts

	Expandos
	Categories
	Traits
	Metaclass
	Pretended methods – MetaClass.invokeMethod

	Understanding this, delegate, and owner

	How builders work
	ExpandoMetaClasses
	Replacing methods
	Adding or overriding static methods
	Dynamic method naming
	Adding overloaded methods
	Adding constructors

	Summary

	Chapter 8: AST Transformations
	What is an AST
	Compiler phases
	Local AST transformations
	Using ASTBuilder
	Build from code
	Build from Spec
	Traits to the rescue

	Global AST transformations
	A finite state machine DSL
	The state machine pattern
	A state machine AST transformation
	Handling errors – compile errors
	Building the new AST nodes
	Testing the state machine DSL
	Compiling and packaging an AST transformation

	Summary

	Chapter 9: Existing Groovy DSLs
	Grails object relational mapping – GORM
	Grails quick start
	The grails-app directory
	Building a GORM model
	Using domain classes

	Modeling relationships
	Associations
	Composition
	Inheritance

	Querying
	Dynamic finders
	GORM as a DSL

	Spock as a DSL
	Spock
	JUnit

	Summary

	Chapter 10: Building a Builder
	The builder code structure
	Closure method calls
	The resolve strategy – OWNER_FIRST

	Pretended methods
	invokeMethod
	methodMissing

	The closure delegate

	BuilderSupport
	BuilderSupport hook methods
	A database builder

	FactoryBuilderSupport
	Summary

	Chapter 11: Implementing a Rules DSL
	Groovy bindings
	Exploiting bindings in DSLs
	Closures as built-in methods
	Closures as repeatable blocks
	Using a specification parameter
	Closures as singleton blocks
	Using binding properties to form context
	Storing and communicating results

	Building a rewards DSL
	Designing the DSL
	BroadbandPlus
	Reward types
	The reward DSL
	Handling events – deferred execution
	Convenience methods and shorthand
	The offers
	The RewardService class
	The BroadbandPlus application classes
	Testing with Spock

	Summary

	Chapter 12: Integrating It All
	Groovy as a teaching language
	Hiding complexity

	A game DSL for kids
	A game DSL – goals
	Architecture and technology choices
	TicTacToe in a DSL
	Implementing the AST transform
	Building the game engine pattern
	Testing the DSL
	Class loading issues
	Gradle subprojects

	Debugging
	The game server
	Integrating with Spring Boot server
	Controller annotations
	JSONP

	Loading the DSL
	Spring Data mapping for MongoDB
	The Game UI

	Summary

	Index

