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Preface
Haskell is an elegant language. It allows us to express in code exactly what we mean, 
in a clean and compact style. The nice features, including referential transparency 
and call-by-need evaluation, not only help the programmer be more efficient, but 
also help Haskell compilers to optimize programs in ways that are otherwise plain 
impossible. For example, the garbage collector of GHC is notoriously fast, not least 
thanks to its ability to exploit the immutability of Haskell values.

Unfortunately, high expressivity is a double-edged sword. Reasoning the exact 
order of evaluation in Haskell programs is, in general, not an easy task. A lack of 
understanding of the lazy call-by-need evaluation in Haskell will for sure lead 
the programmer to introduce space leaks sooner or later. A productive Haskell 
programmer not only has to know how to read and write the language, which is a 
hard enough skill to achieve in itself, they also need to understand a new evaluation 
schema and some related details. Of course, in order to not make things too easy, 
just knowing the language well will not get you very far. In addition, one has to be 
familiar with at least a few common libraries and, of course, the application domain 
itself.

This book will give you working knowledge of high-performance Haskell 
programming, including parallelism and concurrency. In this book, we will  
cover the language, GHC, and the common libraries of Haskell.

What this book covers
Chapter 1, Identifying Bottlenecks, introduces you to basic techniques for optimal 
evaluation and avoiding space leaks.

Chapter 2, Choose the Correct Data Structures, works with and optimizes both 
immutable and mutable data structures.
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Chapter 3, Profile and Benchmark to Your Heart's Content, profiles Haskell programs 
using GHC and benchmarking using Criterion.

Chapter 4, The Devil's in the Detail, explains the small details that affect performance 
in Haskell programs, including code sharing, specializing, and simplifier rules.

Chapter 5, Parallelize for Performance, exploits parallelism in Haskell programs using 
the RePa library for data parallelism.

Chapter 6, I/O and Streaming, talks about the pros and cons of lazy and strict I/O in 
Haskell and explores the concept of streaming.

Chapter 7, Concurrency Performance, explores the different aspects of concurrent 
programming, such as shared variables, exception handling, and software-
transactional memory.

Chapter 8, Tweaking the Compiler and Runtime System, chooses the optimal compiler 
and runtime parameters for Haskell programs compiled with GHC.

Chapter 9, GHC Internals and Code Optimizations, delves deeper into the compilation 
pipeline, and understands the intermediate representations of GHC.

Chapter 10, Foreign Function Interface, calls safely to and from C in Haskell using GHC 
and its FFI support.

Chapter 11, Programming for the GPU with Accelerate, uses the Accelerate library to 
program backend-agnostic GPU programs and executes on CUDA-enabled systems.

Chapter 12, Scaling to the Cloud with Cloud Haskell, uses the Cloud Haskell ecosystem 
to build distributed systems with Haskell.

Chapter 13, Functional Reactive Programming, introduces three Haskell FRP libraries, 
including Elerea, Yampa, and Reactive-banana.

Chapter 14, Library Recommendations, talks about a catalogue of robust Haskell 
libraries, accompanied with overviews and examples.

What you need for this book
To run most examples in this book, all you need is a working, relatively recent, 
installation of GHC and some Haskell libraries. Examples are built for nix-like 
systems, although they are easily adapted for a Windows machine.



Preface

[ xiii ]

The recommended minimum version for GHC is 7.6. The Haskell libraries needed 
are introduced in the chapters in which they are used. In Chapter 4, The Devil's in 
the Detail, we use the Haskell Stack tool to perform some tasks, but it isn't strictly 
required, although it is recommended to install Stack.

In Chapter 11, Programming for the GPU Using Accelerate, executing the CUDA 
versions of examples requires a CUDA-enabled system and the installation of the 
CUDA platform.

Who this book is for
To get the most out of this book, you need to have a working knowledge of  
reading and writing basic Haskell. No knowledge of performance, optimization,  
or concurrency is required.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

mySum [1..100]
    = 1 + mySum [2..100]
    = 1 + (2 + mySum [2..100])
    = 1 + (2 + (3 + mySum [2..100]))
    = ...
    = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0))) 

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

mySum [1..100]
    = 1 + mySum [2..100]
    = 1 + (2 + mySum [2..100])
    = 1 + (2 + (3 + mySum [2..100]))
    = ...
    = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0)))
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Any command-line input or output is written as follows:

> let xs = enumFromTo 1 5 :: [Int]

> :sprint xs

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking 
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
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You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by entering 
the book's name in the Search box. Please note that you need to be logged in to your 
Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Haskell-High-Performance-Programming. We also have 
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/HaskellHighPerformanceProgramming_
ColorImages.pdf.

https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


[ 1 ]

Identifying Bottlenecks
You have probably at least once written some very neat Haskell you were very 
proud of, until you test the code and it took ages to give an answer or even ran out of 
memory. This is very normal, especially if you are used to performance semantics in 
which performance can be analyzed on a step-by-step basis. Analyzing Haskell code 
requires a different mental model that is more akin to graph traversal.

Luckily, there is no reason to think that writing efficient Haskell is sorcery known 
only by math wizards or academics. Most bottlenecks are straightforward to identify 
with some understanding of Haskell's evaluation schema. This chapter will help 
you to reason about the performance of Haskell programs and to avoid some easily 
recognizable patterns of bad performance:

• Understanding lazy evaluation schemas and their implications
• Handling intended and unintended value memoization (CAFs)
• Utilizing (guarded) recursion and the worker/wrapper pattern efficiently
• Using accumulators correctly to avoid space leaks
• Analyzing strictness and space usage of Haskell programs
• Important compiler code optimizations, inlining and fusion

Meeting lazy evaluation
The default evaluation strategy in Haskell is lazy, which intuitively means that 
evaluation of values is deferred until the value is needed. To see lazy evaluation 
in action, we can fire up GHCi and use the :sprint command to inspect only the 
evaluated parts of a value. Consider the following GHCi session:

> let xs = enumFromTo 1 5 :: [Int]
> :sprint xs
xs = _
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> xs !! 2
3
> :sprint xs
xs = 1 : 2 : 3 : _

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Haskell-High-Performance-
Programming. We also have other code bundles from our rich 
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out! 

Underscores in the output of :sprint stand for unevaluated values. The enumFromTo 
function builds a linked list lazily. At first, xs is only an unevaluated thunk. Thunks 
are in a way pointers to some calculation that is performed when the value is needed. 
The preceding example illustrates this: after we have asked for the third element 
of the list, the list has been evaluated up to the third element. Note also how pure 
values are implicitly shared; by evaluating the third element after binding the list 
to a variable, the original list was evaluated up to the third element. It will remain 
evaluated as such in memory until we destroy the last reference to the list head.

The preceding figure is a graphical representation of how a list is stored in memory. 
A T stands for a thunk; simple arrows represent pointers.

The preceding scenario is otherwise identical to the previous one, but now the list is 
polymorphic. Polymorphic values are simply functions with implicit parameters that 
provide the required operations when the type is specialized.

https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Be careful with :sprint and ad hoc polymorphic values! For 
example, xs' = enumFromTo 1 5 is by default given the type 
Num a => [a]. To evaluate such an expression, the type for a 
must be filled in, meaning that in :sprint xs', the value xs'  
is different from its first definition. Fully polymorphic values such 
as xs'' = [undefined, undefined] are okay.

A shared value can be either a performance essential or an ugly space leak. Consider 
the following seemingly similar scenarios (run with ghci +RTS -M20m to not throttle 
your computer):

> Data.List.foldl' (+) 0 [1..10^6]
500000500000

> let xs = [1..10^6] :: [Int]
> Data.List.foldl' (+) 0 xs
<interactive>: Heap exhausted;

So what happened? By just assigning the list to a variable, we exhausted the heap of 
a calculation that worked just fine previously. In the first calculation, the list could 
be garbage-collected as we folded over it. But in the second scenario, we kept a 
reference to the head of the linked list. Then the calculation blows up, because the 
elements cannot be garbage-collected due to the reference to xs.

Writing sum correctly
Notice that in the previous example we used a strict variant of left-fold called foldl' 
from Data.List and not the foldl exported from Prelude. Why couldn't we have 
just as well used the latter? After all, we are only asking for a single numerical value 
and, given lazy evaluation, we shouldn't be doing anything unnecessary. But we can 
see that this is not the case (again with ghci +RTS -M20m):

> Prelude.foldl (+) 0 [1..10^6]
<interactive>: Heap exhausted;

To understand the underlying issue here, let's step away from the fold abstraction for 
a moment and instead write our own sum function:

mySum :: [Int] -> Int
mySum     [] = 0
mySum (x:xs) = x + mySum xs



Identifying Bottlenecks

[ 4 ]

By testing it, we can confirm that mySum too exhausts the heap:

> :load sums.hs
> mySum [1..10^6]
<interactive>: Heap exhausted;

Because mySum is a pure function, we can expand its evaluation by hand as follows:

mySum [1..100]
    = 1 + mySum [2..100]
    = 1 + (2 + mySum [2..100])
    = 1 + (2 + (3 + mySum [2..100]))
    = ...
    = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0)))

From the expanded form we can see that we build up a huge sum chain and then 
start reducing it, starting from the very last element on the list. This means that we 
have all the elements of the list simultaneously in memory. From this observation, 
the obvious thing we could try is to evaluate the intermediate sum at each step. We 
could define a mySum2 which does just this:

mySum2 :: Int -> [Int] -> Int
mySum2 s []     = s
mySum2 s (x:xs) = let s' = s + x in mySum2 s' xs

But to our disappointment mySum2 blows up too! Let's see how it expands:

mySum2 0 [1..100]
    = let s1 = 0 + 1 in mySum2 s1 [2..100]
    = let s1 = 0 + 1
          s2 = s1 + 2
          in mySum2 s2 [2..100]
    ...
    = let s1 = 0 + 1
          ...
          s100 = s99 + 100
          in mySum2 s100 []
    = s100
    = s99 + 100
    = (s89 + 99) + 100
    ...
    = ((1 + 2) + ... ) + 100
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Oops! We still build up a huge sum chain. It may not be immediately clear that this is 
happening. One could perhaps expect that 1 + 2 would be evaluated immediately as 
3 as it is in strict languages. But in Haskell, this evaluation does not take place, as we 
can confirm with :sprint:

> let x = 1 + 2 :: Int
> :sprint x
x = _

Note that our mySum is a special case of foldr and mySum2 corresponds to foldl.

Weak head normal form
The problem in our mySum2 function was too much laziness. We built up a huge chain 
of numbers in memory only to immediately consume them in their original order. The 
straightforward solution then is to decrease laziness: if we could force the evaluation 
of the intermediate sums before moving on to the next element, our function would 
consume the list immediately. We can do this with a system function, seq:

mySum2' :: [Int] -> Int -> Int
mySum2' []     s = s
mySum2' (x:xs) s = let s' = s + x
                       in seq s' (mySum2' xs s')

This version won't blow up no matter how big a list you give it. Speaking very 
roughly, the seq function returns its second argument and ties the evaluation of its 
first argument to the evaluation of the second. In seq a b, the value of a is always 
evaluated before b. However, the notion of evaluation here is a bit ambiguous, as  
we will see soon.

When we evaluate a Haskell value, we mean one of two things:

• Normal Form (NF): A fully evaluated value; for example when we show a 
value it will eventually be fully evaluated

• Weak Head Normal Form (WHNF): Evaluated up to the first data 
constructor. seq evaluates its argument to WHNF only

Consider the following GHCi session:

> let t = const (Just "a") () :: Maybe String
> :sprint t
t = _
> t  `seq` ()
> :sprint t
t = Just _
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Even though we seq the value of t, it was only evaluated up to the Just constructor. 
The list of characters inside was not touched at all. When deciding whether or not 
a seq is necessary, it is crucial to understand WHNF and your data constructors. 
You should take special care of accumulators, like those in the intermediate sums 
in the mySum* functions. Because the actual value of the accumulator is often used 
only after the iterator has finished, it is very easy to accidentally build long chains of 
unevaluated thunks.

We could have annotated strictness more cleanly with the strict cousin of 
($), the ($!) operator: mySum2' s (x:xs) = mySum2' xs $! s + x.

($!) is defined as f $! x = x `seq` f x.

Folding correctly
Now going back to folds, we recall that both foldl and foldr failed miserably, 
while (+) . foldl' instead did the right thing. In fact, if you just turn on 
optimizations in GHC then foldl (+) 0 will be optimized into a tight constant-
space loop. This is the mechanism behind why we can get away with Prelude.sum, 
which is defined as foldl (+) 0.

What do we then have the foldr for? Let's look at the evaluation of foldr f a xs:

foldr f a [x1,x2,x3,x4,...]
    = f x1 (foldr f a [x2,x3,x4,...])
    = f x1 (f x2 (foldr f a [x3,x4,...]))
    = f x1 (f x2 (f x3 (foldr f a [x4,...])))
    …

Note that, if the operator f isn't strict in its second argument, then foldr does not 
build up chains of unevaluated thunks. For example, let's consider foldr (:) [] 
[1..5]. Because (:) is just a data constructor, it is for sure lazy in its second (and 
first) argument. That fold then simply expands to 1 : (2 : (3 : ...)), so it is the 
identity function for lists.

Monadic bind (>>) for the IO monad is another example of a function that is lazy in 
its second argument:

foldr (>>) (return ()) [putStrLn "Hello", putStrLn "World!"]
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For those monads whose actions do not depend on later actions, (that is, printing 
"Hello" is independent from printing "World!" in the IO monad), bind is non-strict 
in its second argument. On the other hand, the list monad is an example where bind 
is generally non-strict in its second argument. (Bind for lists is strict unless the first 
argument is the empty list.)

To sum up, use a left-fold when you need an accumulator function that is strict in 
both its operands. Most of the time, though, a right-fold is the best option. And with 
infinite lists, right-fold is the only option.

Memoization and CAFs
Memoization is a dynamic programming technique where intermediate results are 
saved and later reused. Many string and graph algorithms make use of memoization. 
Calculating the Fibonacci sequence, instances of the knapsack problem, and many 
bioinformatics algorithms are almost inherently solvable only with dynamic 
programming. A classic example in Haskell is the algorithm for the nth Fibonacci 
number, of which one variant is the following:

-- file: fib.hs

fib_mem :: Int -> Integer
fib_mem = (map fib [0..] !!)
  where fib 0 = 1
        fib 1 = 1
        fib n = fib_mem (n-2) + fib_mem (n-1)

Try it with a reasonable input size (10000) to confirm it does memoize the 
intermediate numbers. The time for lookups grows in size with larger numbers 
though, so a linked list is not a very appropriate data structure here. But let's ignore 
that for the time being and focus on what actually enables the values of this function 
to be memoized.

Looking at the top level, fib_mem looks like a normal function that takes input, 
does a computation, returns a result, and forgets everything it did with regard to its 
internal state. But in reality, fib_mem will memoize the results of all inputs it will 
ever be called with during its lifetime. So if fib_mem is defined at the top level, the 
results will persist in memory over the lifetime of the program itself!

www.allitebooks.com

http://www.allitebooks.org
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The short story of why memoization is taking place in fib_mem stems from the fact 
that in Haskell functions exist at the same level with normal values such as integers 
and characters; that is, they are all values. Because the parameter of fib_mem does 
not occur in the function body, the body can be reduced irrespective of the parameter 
value. Compare fib_mem to this fib_mem_arg:

fib_mem_arg :: Int -> Integer
fib_mem_arg x = map fib [0..] !! x
  where fib 0 = 1
        fib 1 = 1
        fib n = fib_mem_arg (n-2) + fib_mem_arg (n-1)

Running fib_mem_arg with anything but very small arguments, one can confirm it 
does no memoization. Even though we can see that map fib [0..] does not depend 
on the argument number and could be memorized, it will not be, because applying 
an argument to a function will create a new expression that cannot implicitly have 
pointers to expressions from previous function applications. This is equally true with 
lambda abstractions as well, so this fib_mem_lambda is similarly stateless:

fib_mem_lambda :: Int -> Integer
fib_mem_lambda = \x -> map fib [0..] !! x
  where fib 0 = 1
        fib 1 = 1
        fib n = fib_mem_lambda (n-2) + fib_mem_lambda (n-1)

With optimizations, both fib_mem_arg and fib_mem_lambda will get rewritten into 
a form similar to fib_mem. So in simple cases, the compiler will conveniently fix our 
mistakes, but sometimes it is necessary to reorder complex computations so that 
different parts are memoized correctly.

Be wary of memoization and compiler optimizations. GHC performs 
aggressive inlining (Explained in the section, Inlining and stream fusion) 
as a routine optimization, so it's very likely that values (and functions) 
get recalculated more often than was intended.

Constant applicative form
The formal difference between fib_mem and the others is that the fib_mem is 
something called a constant applicative form, or CAF for short. The compact 
definition of a CAF is as follows: a supercombinator that is not a lambda abstraction.  
We already covered the not-a-lambda abstraction, but what is a supercombinator?



Chapter 1

[ 9 ]

A supercombinator is either a constant, say 1.5 or ['a'..'z'], or a combinator 
whose subexpressions are supercombinators. These are all supercombinators:

\n -> 1 + n
\f n -> f 1 n
\f -> f 1 . (\g n -> g 2 n)

But this one is not a supercombinator:

\f g -> f 1 . (\n -> g 2 n)

This is because g is not a free variable of the inner lambda abstraction.

CAFs are constant in the sense that they contain no free variables, which guarantees 
that all thunks a CAF references directly are also constants. Actually, the constant 
subvalues are a part of the value. Subvalues are automatically memoized within the 
value itself.

A top-level [Int], say, is just as valid a value as the fib_mem function for holding 
references to other values. You should pay attention to CAFs in your code because 
memoized values are space leaks when the memoization was unintended. All code 
that allocates lots of memory should be wrapped in functions that take one or more 
parameters.

Recursion and accumulators
Recursion is perhaps the most important pattern in functional programming. 
Recursive functions are more practical in Haskell than in imperative languages,  
due to referential transparency and laziness. Referential transparency allows the 
compiler to optimize the recursion away into a tight inner loop, and laziness means 
that we don't have to evaluate the whole recursive expression at once.

Next we will look at a few useful idioms related to recursive definitions: the  
worker/wrapper transformation, guarded recursion, and keeping accumulator 
parameters strict.

The worker/wrapper idiom
Worker/wrapper transformation is an optimization that GHC sometimes does, 
but worker/wrapper is also a useful coding idiom. The idiom consists of a (locally 
defined, tail-recursive) worker function and a (top-level) function that calls the 
worker. As an example, consider the following naive primality test implementation:

-- file: worker_wrapper.hs

isPrime :: Int -> Bool
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isPrime n
    | n <= 1    = False
    | n <= 3    = True
    | otherwise = worker 2
       where
         worker i | i >= n       = True
                  | mod n i == 0 = False
                  | otherwise    = worker (i+1)

Here, isPrime is the wrapper and worker is the worker function. This style has two 
benefits. First, you can rest assured it will compile into optimal code. Second, the 
worker/wrapper style is both concise and flexible; notice how we did preliminary 
checks in the wrapper code before invoking the worker, and how the argument n is 
also (conveniently) in the worker's scope too.

Guarded recursion
In strict languages, tail-call optimization is often a concern with recursive functions. 
A function f is tail-recursive if the result of a recursive call to f is the result. In a lazy 
language such as Haskell, tail-call "optimization" is guaranteed by the evaluation 
schema. Actually, because in Haskell evaluation is normally done only up to WHNF 
(outmost data constructor), we have something more general than just tail-calls, 
called guarded recursion. Consider this simple moving average implementation:

-- file: sma.hs
sma :: [Double] -> [Double]
sma (x0:x1:xs) = (x0 + x1) / 2 : sma (x1:xs)
sma         xs = xs

The sma function is not tail-recursive, but nonetheless it won't build up a huge  
stack like an equivalent in some other language might do. In sma, the recursive call 
is guarded by the (:) data constructor. Evaluating the first element of a call to sma  
does not yet make a single recursive call to sma. Asking for the second element 
initiates the first recursive call, the third the second, and so on.

As a more involved example, let's build a reverse polish notation (RPN) calculator. 
RPN is a notation where operands precede their operator, so that (3 1 2 + *) in RPN 
corresponds to ((3 + 1) * 2), for example. To make our program easier to understand, 
we wish to separate parsing the input from performing the calculation:

-- file: rpn.hs
data Lex = Number Double Lex
         | Plus Lex
         | Times Lex
         | End

lexRPN :: String -> Lex
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lexRPN = go . words
  where go ("*":rest) = Times (go rest)
        go ("+":rest) = Plus (go rest)
        go (num:rest) = Number (read num) (go rest)
        go         [] = End

The Lex datatype represents a formula in RPN and is similar to the standard list 
type. The lexRPN function reads a formula from string format into our own datatype. 
Let's add an evalRPN function, which evaluates a parsed RPN formula:

evalRPN :: Lex -> Double
evalRPN = go []
  where
    go stack (Number num rest)
       = go (num : stack) rest
    go (o1:o2:stack) (Plus rest)
       = let r = o1 + o2 in r `seq` go (r : stack) rest
    go (o1:o2:stack) (Times rest)
       = let r = o1 * o2 in r `seq` go (r : stack) rest
    go [res] End
       = res

We can test this implementation to confirm that it works:

> :load rpn.hs
> evalRPN $ lexRPN "5 1 2 + 4 * *"
60.0

The RPN expression (5 1 2 + 4 * *) is (5 * ((1 + 2) * 4)) in infix, which is indeed 
equal to 60.

Note how the lexRPN function makes use of guarded recursion when producing 
the intermediate structure. It reads the input string incrementally and yields 
the structure an element at a time. The evaluation function evalRPN consumes 
the intermediate structure from left to right and is tail-recursive, so we keep the 
minimum amount of things in memory at all times.

Linked lists equipped with guarded recursion (and lazy 
I/O) actually provide a lightweight streaming facility – 
for more on streaming see Chapter 6, I/O and Streaming.
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Accumulator parameters
In our examples so far, we have encountered a few functions that used some kind 
of accumulator. mySum2 had an Int that increased on every step. The go worker 
function in evalRPN passed on a stack (a linked list). The former had a space leak, 
because we didn't require the accumulator's value until at the end, at which point it 
had grown into a huge chain of pointers. The latter case was okay because the stack 
didn't grow in size indefinitely and the parameter was sufficiently strict in the sense 
that we didn't unnecessarily defer its evaluation. The fix we applied in mySum2' was 
to force the accumulator to WHNF at every iteration, even though the result was not 
strictly speaking required in that iteration.

The final lesson is that you should apply special care to your accumulator's 
strictness properties. If the accumulator must always be fully evaluated in order to 
continue to the next step, then you're automatically safe. But if there is a danger of 
an unnecessary chain of thunks being constructed due to a lazy accumulator, then 
adding a seq (or a bang pattern, see Chapter 2, Choose the Correct Data Structures) is 
more than just a good idea.

Inspecting time and space usage
It is often necessary to have numbers about the time and space usage of Haskell 
programs, either to have an indicator of how well the program performs or to 
identify unnecessary allocations. The GHC Runtime System flag -s enables  
printing allocation and garbage-collection statistics when the program finishes.

Let's try this with an example program, which naively calculates the covariance  
of two lists:

-- file: time_and_space.hs
import Data.List (foldl')

sum' = foldl' (+) 0

mean :: [Double] -> Double
mean v = sum' v / fromIntegral (length v)

covariance :: [Double] -> [Double] -> Double
covariance xs ys =
    sum' (zipWith (\x y -> (x - mean xs) * (y - mean ys)) xs ys)
    / fromIntegral (length xs)

main = do
    let xs = [1, 1.1 .. 500]
        ys = [2, 2.1 .. 501]
    print $ covariance xs ys
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To enable passing options for the Runtime System, we must compile with -rtsopts:

$ ghc -rtsopts time_and_space.hs

For the time being, we ignore optimizations GHC could do for us and compile the 
program without any:

$ ./time_and_space +RTS -s

20758.399999992813

     802,142,688 bytes allocated in the heap

       1,215,656 bytes copied during GC

         339,056 bytes maximum residency (2 sample(s))

          88,104 bytes maximum slop

               2 MB total memory in use (0 MB lost due to  
     fragmentation)

                                     Tot time (elapsed)  Avg pause  Max 
pause

  Gen  0      1529 colls,     0 par    0.008s   0.007s     0.0000s    
0.0004s

  Gen  1         2 colls,     0 par    0.001s   0.001s     0.0003s    
0.0006s

  INIT    time    0.000s  (  0.000s elapsed)

  MUT     time    1.072s  (  1.073s elapsed)

  GC      time    0.008s  (  0.008s elapsed)

  EXIT    time    0.000s  (  0.000s elapsed)

  Total   time    1.083s  (  1.082s elapsed)

  %GC     time       0.8%  (0.7% elapsed)

  Alloc rate    747,988,284 bytes per MUT second

  Productivity  99.2% of total user, 99.3% of total elapsed
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On the first line of output from the Runtime System, we see that we allocated over 
800 megabytes of memory. This is quite a lot for a program that only handles two 
lists of 5,000 double-precision values. There is definitely something in our code that 
could be made a lot more efficient. The output also contains other useful information, 
such as the total memory in use and, more importantly, some statistics on garbage 
collection. Our program spent only 0.8% of time in GC, meaning the program was 
doing productive things 99.2% of the time. So our performance problem lies in the 
calculations our program performs themselves.

If we look at the definition of covariance, we can spot the many invocations to mean 
in the argument lambda to zipWith: we actually calculate the means of both lists 
thousands of times over. So let's optimize that away:

covariance' :: [Double] -> [Double] -> Double
covariance' xs ys =
    let mean_xs = mean xs
        mean_ys = mean ys
        in
    sum' (zipWith (\x y -> (x - mean_xs) * (y - mean_ys)) xs ys)
    / fromIntegral (length xs)

With covariance' we get down to three megabytes of allocation:

       3,263,680 bytes allocated in the heap

         915,024 bytes copied during GC

         339,032 bytes maximum residency (2 sample(s))

         112,936 bytes maximum slop

               2 MB total memory in use (0 MB lost due to fragmentation)

     Tot time (elapsed)  Avg pause  Max pause

  Gen  0         5 colls,     0 par    0.002s   0.002s     0.0003s    
0.0005s

  Gen  1         2 colls,     0 par    0.001s   0.001s     0.0005s    
0.0010s

  INIT    time    0.000s  (  0.000s elapsed)

  MUT     time    0.003s  (  0.003s elapsed)

  GC      time    0.003s  (  0.003s elapsed)

  EXIT    time    0.000s  (  0.000s elapsed)

  Total   time    0.008s  (  0.006s elapsed)
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  %GC     time      35.3%  (44.6% elapsed)

  Alloc rate    1,029,648,194 bytes per MUT second

  Productivity  63.1% of total user, 79.6% of total elapsed

That's over a 250-fold decrease in heap allocation! With the new version, we now 
have a considerable amount of time going to GC, about a third. This is about as 
good as we can get without enabling compiler optimizations; if we compile with 
-O, we would get to under two megabytes of heap allocation. And if you tried the 
original covariance performance with optimizations on, you should get exactly the 
same performance as with the newer hand-optimized variant. In fact, both versions 
compile to the same assembly code. This is a demonstration of the sophistication of 
GHC's optimizer, which we will take a deeper look at in a later chapter.

GHCi tip:
By setting +s in the interpreter, you can get time and space statistics 
of every evaluation, which can be handy for quick testing. Keep in 
mind though that no optimizations can be enabled for interpreted 
code, so compiled code can have very different performance 
characteristics. To test with optimizations, you should compile  
the module with optimizations and then import it into GHCi.

Increasing sharing and minimizing allocation
In the covariance example, we observed that we could improve code performance 
by explicitly sharing the result of an expensive calculation. Alternatively, enabling 
compiler optimizations would have had that same effect (with some extras). Most of 
the time, the optimizer does the right thing, but that is not always the case. Consider 
the following versions of rather a silly function:

-- file: time_and_space_2.hs

goGen        u = sum [1..u] + product [1..u]
goGenShared  u = let xs = [1..u] in sum xs + product xs

Try reasoning which of these functions executes faster. The first one builds two 
possibly very large lists and then immediately consumes them, independent of each 
other. The second one shares the list between sum and product.
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The list-sharing function is about 25% slower than the list-rebuilding function. 
When we share the list, we need to keep the whole list in memory, whereas by just 
enumerating the elements we can discard the elements as we go. The following table 
confirms our reasoning. The list-sharing function has a larger maximum residency in 
system memory and does more GC:

U = 10000 Time Allocated 
heap

Copied 
during GC

Maximum 
residency

Total 
memory

Time in 
GC

goGen 0.050ms 87 MB 10 MB 0.7 MB 6 MB 60%
goGenShared 0.070ms 88 MB 29 MB 0.9 MB 7 MB 70%

Recall that, in the covariance example, the compiler automatically shared the values 
of sin x and cos x for us when we enabled optimizations. But in the previous example, 
we didn't get implicit sharing of the lists, even though they are thunks just like the 
results of sin x and cos x. So what magic enabled the GHC optimizer to choose the 
best sharing schema in both cases? The optimizer is non-trivial, and unfortunately, 
in practice it's not feasible to blindly rely on the optimizer always doing "the right 
thing." If you need to be sure that some sharing will take place, you should test it 
yourself.

Let's go back to our previous example of sum and product. Surely we could do 
better than spending 60% of the time in GC. The obvious improvement would be to 
make only one pass through one list and calculate both the sum and product of the 
elements simultaneously. The code is then a bit more involved:

goGenOnePass u = su + pu
  where
    (su, pu) = foldl f (0,1) [1..u]
    f (s, p) i = let s' = s+i
                     p' = p*i
                     in s' `seq` p' `seq` (s', p')

Note the sequential use of seq in the definition of goGenOnePass. This version has a 
much better performance: only 10% in GC and about 50% faster than our first version:

U = 10000 Time Allocated 
heap

Copied 
during GC

Maximum 
residency

Total 
memory

Time in GC

GoGenOnePass 0.025ms 86 MB 0.9 MB 0.05 MB 2 MB 10%

The takeaway message is that once again algorithmic complexity matters more than 
technical optimizations. The one-pass version executed in half the time of the original 
two-pass version, as would be expected.
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With the Bang Patterns (BangPatterns) language extension 
(available since GHC 6.6) the f binding could have been written more 
cleanly as f (!s, !p) i = (s + i, p * I) with very slightly 
degraded performance (0.7%). Annotating a binding with a bang 
means that evaluation of that binding will be bound to the evaluation 
of its surrounding tuple.

Compiler code optimizations
Haskell compilers perform aggressive optimization transformations on code. GHC 
optimization passes are highly sophisticated, so much that one rarely needs to worry 
about performance. We have seen some of the effects of ghc -O1 in our examples so 
far; in all cases,-O1increased performance relative to no optimizations, or -Onot, and 
in some optimizations passes were the difference between constant and exponential 
complexity.

Inlining and stream fusion
GHC performs aggressive inlining, which simply means rewriting a function 
call with the function's definition. Because all values in Haskell are referentially 
transparent, any function can be inlined within the scope of its definition. Especially 
in loops, inlining improves performance drastically. The GHC inliner does inlining 
within a module, but also to some extent cross-module and cross-package.

Some rules of thumb regarding inlining:

• If a definition is only used once, and isn't exported, it will always be inlined.
• When a function body is small, it will almost certainly be inlined no matter 

where or how often it is used.
• Bigger functions may be inlined cross-module. To ensure that foo is always 

inlined, add a {-# INLINE foo #-} pragma near the definition of foo.

With these easy rules, you rarely need to worry about problems from bad inlining. 
For completeness's sake, there is also a NOINLINE pragma which ensures a definition 
is never inlined. NOINLINE is mostly used for hacks that would break referential 
transparency; see Chapter 4, The Devil's in the Detail.

Another powerful technique is stream fusion. Behind that fancy name is just a bunch 
of equations that are used to perform code rewriting (see Chapter 4, The Devil's in the 
Detail for the technicalities).
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When working with lists, you may be tempted to rewrite code like this:

map f . map g . map h

Rather than to use intermediate lists:

map (f . g . h)

But there is no other reason than cosmetics to do this, because with optimizations 
GHC performs stream fusion, after which both expressions are time- and space-
equivalent. Stream fusion is also performed for other structures than [], which we 
will take a look at in the next chapter.

Polymorphism performance
In principle, (ad hoc) polymorphic programs should carry a performance cost. To 
evaluate a polymorphic function, a dictionary must be passed in, which contains 
the specializations for the type specified on the caller side. However, almost 
always GHC can fill in the dictionary already at compile time, reducing the cost of 
polymorphism to zero. The big and obvious exception is code that uses reflection 
(Typeable). Also, some sufficiently complex polymorphic code might defer the 
dictionary passing to runtime, although, most of the time you can expect a zero cost.

Either way, it might ease your mind to have some notion of the cost of dictionary 
passing in runtime. Let's write a program with both general and specialized 
versions of the same function, compile it without optimizations, and compare 
the performance. Our program will just iterate a simple calculation with double-
precision values:

-- file: class_performance.hs

class Some a where
    next :: a -> a -> a

instance Some Double where
    next a b = (a + b) / 2

goGeneral :: Some a => Int -> a -> a
goGeneral 0 x = x
goGeneral n x = goGeneral (n-1) (next x x)

goSpecialized :: Int -> Double -> Double
goSpecialized 0 x = x
goSpecialized n x = goSpecialized (n-1) (next' x x)

next' :: Double -> Double -> Double
next' a b = (a + b) / 2
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I compiled and ran both versions separately with their own main entry points using 
the following command lines:

ghc class_performance.hs

time ./class_performance +RTS -s

On my machine, with 5,000,000 iterations, the general version does 1.09 GB of 
allocation and takes 3.4s. The specialized version does 1.01 GB of allocation and runs 
in about 3.2s. So the extra memory cost was about 8%, which is considerable. But by 
enabling optimizations, both versions will have exactly the same performance.

Partial functions
Here's a puzzle: given the following definition, which is faster, partial or total?

partialHead :: [a] -> a
partialHead (x:_) = x

totalHead :: [a] -> Maybe a
totalHead []    = Nothing
totalHead (x:_) = Just x

partial = print $ partialHead [1..]

total = print $ case totalHead [1..] of
                  Nothing -> 1
                    Just n -> n

The total variant uses a head that wraps its result inside a new data constructor, 
whereas the partial one results in a crash when a case is not matched, but in 
exchange doesn't perform any extra wrapping. Surely the partial variant must be 
faster, right? Well, almost always it is not. Both functions have exactly the same time 
and space requirements.

Partial functions are justified in some situations, but performance is rarely if ever one 
of them. In the example, the Maybe-wrapper of total will have a zero performance 
cost. The performance cost of the case analysis will be left, however, but a similar 
analysis is done in the partial variant too; the error case must be handled anyway, 
so that the program can exit gracefully. Of course, even GHC is not a silver bullet 
and you should always keep in mind that it might miss some optimizations. If you 
absolutely need to rely on certain optimizations to take place, you should test your 
program to confirm the correct results.
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Summary
In this chapter, we learned how lazy evaluation works, what weak head normal 
form is, and how to control it by increasing strictness with different methods. We 
considered the peculiarities of right-fold, left-fold, and strict left-fold, and in which 
situations one fold strategy works better than another. We introduced the concept of 
CAF along with memoization techniques, utilized the worker/wrapper pattern, and 
used guarded recursion to write clean and efficient recursive programs.

We used the :sprint command in GHCi to inspect unevaluated thunks and the 
Runtime System option -s to inspect the heap usage and GC activity of compiled 
programs. We took a look at inlining, stream fusion, and the performance costs of 
partial functions and polymorphism.

In the next chapter, we will take a look at other basic data and control structures, 
such as different array structures and some monads. But first, we will learn about 
the performance semantics of Haskell data types and related common optimization 
techniques.
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Choosing the Correct  
Data Structures

Perhaps the next most important topic in Haskell performance after lazy evaluation 
is data structures. I say the next most important because although data structures 
form a wider area than lazy evaluation, the unique performance aspects of lazy 
evaluation should deserve more attention. Still, structuring data efficiently is a must 
for performance, and in Haskell this often requires taking laziness into account, too.

Haskell gives the programmer lots of variety and clutches to structuring data, 
ranging from low-level primitives to ingenious, purely functional data structures. 
The traditional (re-)implementation costs associated with quick'n'dirty versus 
highly optimized solutions are really low in Haskell, and therefore there are even 
fewer reasons for complex premature optimizations in Haskell than in many other 
languages.

This chapter will help you to understand the performance semantics of Haskell 
values in general and to write efficient programs for processing numbers, text, and 
arbitrary data in different classic container data types. By the end of this chapter, 
you will know how to choose and design optimal data structures in applications. 
You will be able to drop the level of abstraction in slow parts of code, all the way to 
mutable data structures if necessary.

This chapter will cover the following points:

• Datatype design: boxed and unboxed, strict fields and unpacking fields
• Efficiently processing numeric, binary, and textual data
• Using common sequential, tabular, and mapping container data types
• Employing mutable state in Haskell: IO and ST monads
• Monad and monad transformer performance
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Annotating strictness and unpacking 
datatype fields
Recall that in the previous chapter, we used seq to force strict evaluation. With the 
BangPatterns extension, we can force functions arguments. Strict arguments are 
evaluated WHNF just before entering the function body:

{-# LANGUAGE BangPatterns #-}

f !s (x:xs) = f (s + 1) xs
f !s      _ = s

Using bangs for annotating strictness in fact predates the BangPatterns extension 
(and the older compiler flag -fbang-patterns in GHC 6.x). With just plain 
Haskell98, we are allowed to use bangs to make datatype fields strict:

> data T = T !Int

A bang in front of a field ensures that whenever the outer constructor (T above) is in 
WHNF, the inner field is as well in WHNF. We can check this:

> T undefined `seq` ()
*** Exception: Prelude.undefined

There are no restrictions to which fields can be strict, be it recursive or polymorphic 
fields, although it rarely makes sense to make recursive fields strict. Consider the 
fully strict linked list:

data List a = List !a !(List a)
            | ListEnd

With this much strictness, you cannot represent parts of infinite lists without always 
requiring infinite space. Moreover, before accessing the head of a finite strict list 
you must evaluate the list all the way to the last element. Strict lists don't have the 
streaming property of lazy lists.

By default, all data constructor fields are pointers to other data constructors or 
primitives, regardless of their strictness. This applies to basic data types Int, Double, 
Char, and so on, which are not primitive in Haskell. They are data constructors over 
their primitive counterparts Int#, Double#, and Char#:

> :info Int
data Int = GHC.Types.I# GHC.Prim.Int#
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There is a performance overhead, the size of pointer dereference between types, 
say, Int and Int#, but an Int can represent lazy values (called thunks), whereas 
primitives cannot. Without thunks, we couldn't have lazy evaluation. Luckily, GHC 
is intelligent enough to unroll wrapper types as primitives in many situations, 
completely eliminating indirect references.

The hash suffix is specific to GHC and always denotes a primitive type. The GHC 
modules do expose the primitive interface. Programming with primitives, you 
can further micro-optimize code and get C-like performance. However, several 
limitations and drawbacks apply, which we shall consider in Chapter 4, The Devil's in 
the Detail.

Unbox with UNPACK
The most powerful trick available to make efficient datatypes in Haskell is to unpack 
their fields, also known as unboxing. Those terms are almost synonymous; unboxing 
means very generally peeling off layers of indirection, while unpacking refers to 
methods of unboxing in GHC. An unpacked field is no longer a pointer to a data 
constructor. Instead, the value is stored in memory next to the constructor, where the 
pointer to a value (or a thunk) is normally stored.

Use the {-# UNPACK #-} pragma before a field to unpack it. An unpacked field must 
also be strict, that is, prefixed with a bang, otherwise it could be a pointer to a thunk, 
and there would be no way to know whether the value is evaluated or not.

The preceding diagram illustrates how a value such as T (1 + 2) would be 
represented in memory given different definitions for T. Without strictness annotation, 
the field points to a thunk. When the field is strictly defined, the contents will be 
calculated, but the field is still a pointer to the value.

In the unpacked version, the contents of field are stored in place of the pointer.
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Note that, if compiled with -O and above optimization level, there is an error in the 
image, as an optimization passed in GHC automatically unpacks strict fields when 
possible. The strict field version then produces exactly the code of the version with 
explicit unpacking. However, in performance-critical datatypes, and especially 
in library code, it is good practice to use explicit unpacking, because automatic 
unboxing isn't always a good idea.

There are some restrictions to which kinds of values can be declared unpacked. Most 
importantly, sum types, parametrically polymorphic values, and functions are ruled 
out. So these are all invalid data declarations:

data S = S {-# UNPACK #-} !(Maybe Int)  -- invalid!

data F = F {-# UNPACK #-} !(Int -> Int) -- invalid!

data P a = P {-# UNPACK #-} !a          -- invalid!

On the other hand, these are valid:

data T = T {-# UNPACK #-} !(Int, Int)

data R a = R { field_a :: a
             , field_t :: {-# UNPACK #-} !T
             }
data GADT a where
  Empty :: GADT ()
  Some  :: a - > {-# UNPACK #-} !Int - > Some Int

That last type requires enabling the GADTs extension, for general algebraic 
datatypes.

Then how about this one?

data W = W {-# UNPACK #-} !Int {-# UNPACK #-} !W

It compiles just fine. W is not a sum type nor polymorphic, so it will be unpacked. But 
you cannot actually do anything with W – it's impossible to construct values of type 
W: W 1 undefined as they will produce an error, while let w = W 1 w produces a 
loop! So as a corollary of other requirements of unboxing, we have that inductive 
fields cannot be unpacked.

Now let's find out the effect of unpacking on performance in a tight loop with the 
following little program:

-- file: strict_and_unpacked.hs

{-# LANGUAGE BangPatterns #-}
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data PairP = PairP Int Int deriving (Show)

data PairS = PairS !Int !Int deriving (Show)

data PairU = PairU {-# UNPACK #-} !Int {-# UNPACK #-} !Int deriving 
(Show)

iter :: Int -> (a -> a) -> a -> a
iter end f x = go 0 x
    where go !n x | n < end   = go (n + 1) $! f x
                  | otherwise = x

With 1000 iterations of a function that does simple arithmetic on the fields, we obtain 
the following heap usage for the different data types:

PairP 370 KB
PairS 50 KB
PairU 50 KB

The difference is very big indeed! But do note that unboxing doesn't always increase 
performance. For example, consider a record with a lot of fields. If those fields 
contain large chunks of unboxed data, then to make a copy of the record would 
mean duplicating all of that unboxed data too. Comparing to if those fields were 
lazy, that is, represented by pointers, we would only need to make copies of those 
pointers.

Using anonymous tuples
Tuples may seem harmless at first; they just lump a bunch of values together. But 
note that the fields in a tuple aren't strict, so a two-tuple corresponds to the slowest 
PairP data type from our previous benchmark.

If you need a strict Tuple type, you need to define one yourself. This is also one more 
reason to prefer custom types over nameless tuples in many situations. These two 
structurally similar tuple types have widely different performance semantics:

data Tuple = Tuple {-# UNPACK #-} !Int {-# UNPACK #-} !Int
data Tuple2 = Tuple2 {-# UNPACK #-} !(Int, Int)

If you really want unboxed anonymous tuples, you can enable the UnboxedTuples 
extension and write things with types, like (# Int#, Char# #). But note that 
a number of restrictions apply to unboxed tuples, as to all primitives. The most 
important restriction is that unboxed types may not occur where polymorphic 
types or values are expected, because polymorphic values are always considered as 
pointers.
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Performance of GADTs and branching
Generalized algebraic datatypes are great. Existential quantification, which is more 
or less, comes with GADTs, but it's relatively easy to destroy performance with 
existential quantification.

Consider the following slightly contrived GADT, capable of representing all integral 
types and Chars:

-- file: gadts.hs

{-# LANGUAGE GADTs #-}

data Object a where
    Number :: Integral a => a -> Object a
    Character :: Char -> Object Char

Turns out, this datatype is quite benign. The following two folds, when compiled 
with at least-O, have exactly the same performance:

    foldl (+) 0 [1..1000000 :: Int]

    foldl (\a (Number b) -> a + b) 0
          [ Number x  | x <- [1..1000000 :: Int] ]

But this is an extremely simplified example, where GHC in fact discards our 
intermediate Number constructors altogether and just produces a tight loop over 
integers. And due to the extra type information present in the GADT, we can switch 
the function we fold into:

f :: a -> Object a -> a
f a x = case x of
            Character _ -> a
            Number n -> a + n

GHC would inline f and specialize it with type Int → Object Int → Int, learn 
that branch Character is never reached in the specialized version, discard it, and 
we'd end up with the same tight loop. Which is pretty nice!

But if we add an extra constructor to Object:

Number' :: Integral a => a -> Object a

And add an extra branch to f:

case x of
    …
    Number' n -> a - n
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Then GHC will be forced to consider two branches, right? Well in general, the 
answer would be yes. But in our simple example, GHC will still happily produce the 
same tight loop. What is happening is that GHC fuses the list of Object values from 
the list comprehension, learning that no values are constructed with the Number' 
constructor, inferring that the new branch is still redundant.

But if we forced either the folding function or the object list and its elements to not 
inline (with NOINLINE or producing the objects elsewhere), or indeed constructed 
values with multiple constructors, then GHC would be forced to consider all type-
correct branches.

So, in general, GADTs are optimized pretty well. But what about existentials? 
Consider using this ObjectE instead of Object:

data ObjectE where
    NumberE :: Integral a => a -> ObjectE

Here we're just saying that we don't care which number type a given object is, only 
that it has an Integral instance. But if we compare the performance of this fold over 
[ObjectE]:

foldl (\a (NumberE b) -> a + fromIntegral b) 0
    [ NumberE x | x <- [1..1000000 :: Int] ]

To the performance of a similar fold over [Object Int], the numbers are as follows:

• [Object Int]: 51 KB allocated and execution time about 5ms
• [ObjectE]: 32,000 KB allocated and execution time about 30ms

That is, because of an existential, our program got six times slower, and additionally 
started allocating space linear to input size. What exactly is going on here?

The problem is that by wrapping our numbers inside an existential, we are 
deliberately forgetting the type. The type class constraint lets us retain some 
information, but with an extra cost of a layer of indirection. Existentials force this 
indirection to persist through all GHC optimizations, and that's why our code was 
so slow. Furthermore, with that added indirection, GHC can no longer unbox our 
numbers as efficiently, which explains the extra allocations we observed.

The lessons here are that existentials have an overhead, and that extra type 
information available in GADTs helps not only the programmer, but also the 
compiler, by opening up extra possibilities for optimizations. GADT's are useful  
and fast, while existentials are just useful.

www.allitebooks.com
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Handling numerical data
Like all general-purpose programming languages, Haskell too has a few different 
number types. Unlike other languages, the number types in Haskell are organized 
into a hierarchy via type classes. This gives us two things:

• Check sat compiletime we aren't doing anything insane with numbers
• The ability to write polymorphic functions in the number type with enhanced 

type safety

An example of an insane thing would be dividing an integer by another integer, 
expecting an integer as a result. And because every integral type is an instance of the 
Integral class, we can easily write a factorial function that doesn't care what the 
underlying type is (as long as it represents an integer):

factorial :: Integral a => a -> a
factorial n = product [1..n]

The following table lists basic numeric types in Haskell:

Type Size
Int Signed integers, machine-dependent
Word Unsigned integers, machine-dependent
Double Double-precision floating point, machine-dependent
Float Single-precision floating point, machine-dependent
Integer Arbitrary precision integers
Integral a => Ratio a Rational numbers (Rational = Ratio Integer)
Int/Word{8,16,32,64} Signed (Int) or unsigned (Word) integers with fixed 

size(from 8 to 64 bits)
RealFloat a => Complex a Complex numbers
HasResolution a => Fixed 
a

Arbitrary size, fixed-precision numbers (a represents 
precision, like E0, E1, and so on)

Apart from Integer and its derivatives, the performance of basic operations is very 
much the same. Integer is special because of its ability to represent arbitrary-sized 
numbers via GNU Multiple Precision Arithmetic Library (GMP). For its purpose, 
Integer isn't slow, but the overhead relative to low-level types is big.

Because of the strict number hierarchy, some things are a bit inconvenient. However, 
there are idiomatic conventions in many situations. For example:

• Instead of fromIntegral . length, use Data.List.genericLength
• Instead of 1 / fromIntegral (length xs), write 1 % length xs
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• Use float2Double and double2Float from GHC.Float to convert between 
Floats and Doubles

Loops that use intermediate numbers usually benefit from strictness annotations. 
GHC often unboxes strict number arguments, which leads to efficient code. Strict 
arguments in non-recursive functions, however, are usually not a good idea, 
resulting in longer execution times due to suboptimal sharing.

GHC flags that often give better performance for number-heavy code include -O2, 
-fexcess-precision, and -fllvm. The last flag compiles via LLVM, which requires 
the LLVM libraries installed (and currently (GHC 7 series) only version 3.5 is 
supported).

Handling binary and textual data
The smallest piece of data is a bit (0 or 1), which is isomorphic to Bool (True or 
False). When you need just one bit, a Bool should be your choice. If you need a few 
bits, then a tuple of Bools will fit the purpose when performance is not critical. A 
[Bool] is sometimes convenient, but should only be chosen for convenience in some 
situations.

For high-performance binary data, you could define your own data type with strict 
Bool fields. But this has an important caveat, namely that Bool is not a primitive but 
an algebraic data type:

data Bool = False | True

The consequence is that you cannot unpack a Bool similar to how you could an Int or 
Double. In Haskell, Bool values will always be represented by pointers. Fortunately 
for many bit-fiddling applications, you can define a data type like this:

data BitStruct = BitStore !Bool !Bool !Bool

This will get respectable performance. However, if you need a whole array of bits it 
quickly becomes inconvenient to define a field per bit.

Representing bit arrays
One way to define a bit array in Haskell that still retains the convenience of Bool is:

import Data.Array.Unboxed
type BitArray = UArray Int Bool
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This representation packs 8 bits per byte, so it's space efficient. See the following 
section on arrays in general to learn about time efficiency – for now we only note that 
BitArray is an immutable data structure, like BitStruct, and that copying small 
BitStructs is cheaper than copying BitArrays due to overheads in UArray.

Consider a program that processes a list of integers and tells whether they are even 
or odd counts of numbers divisible by 2, 3, and 5. We can implement this with simple 
recursion and a three-bit accumulator. Here are three alternative representations for 
the accumulator:

-- file: bitstore.hs 

{-# LANGUAGE BangPatterns #-}

import Data.Array.Unboxed
import Data.Bits (xor)
type BitTuple = (Bool, Bool, Bool)
data BitStruct = BitStruct !Bool !Bool !Bool deriving Show
type BitArray = UArray Int Bool

And the program itself is defined along these lines:

go :: acc -> [Int] -> acc
go acc              []     = acc
go (two three five) (x:xs) = go ((test 2 x `xor` two)
(test 3 x `xor` three)
(test 5 x `xor` five)) xs

test n x = x `mod` n == 0

I've omitted the details here. They can be found in the bitstore.hs file.

The fastest variant is BitStruct, then comes BitTuple (30% slower), and BitArray is the 
slowest (130% slower than BitStruct). Although BitArray is the slowest (due to making 
a copy of the array on every iteration), it would be easy to scale the array in size or 
make it dynamic. Note also that this benchmark is really on the extreme side; normally 
programs do a bunch of other stuff besides updating an array in a tight loop.

If you need fast array updates, you can resort to mutable arrays discussed later on. It 
might also be tempting to use Data.Vector.Unboxed.Vector Bool from the vector 
package, due to its nice interface. But beware that that representation uses one byte 
for every bit, wasting 7 bits for every bit.
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Handling bytes and blobs of bytes
The next simplest piece of information after bits is a byte, which is eight bits. 
In Haskell, the Word8 type represents a byte. Often though, whole words are 
more useful. The Word type has the same size as Int, defined by the underlying 
architecture. Types Word16, Word32, and Word64 consist of respective numbers  
of bits.

Like a bit array, a byte array could be represented as a UArray. But a more standard 
solution is to use ByteString from the bytestring package. The bytestring 
package uses a blazingly fast pointer representation internally, while the API looks 
just like the API for standard lists.

Let's test how fast it really is:

-- file: bytestring-perf.hs

import qualified Data.ByteString as B
import System.IO (stdin)

go :: Int -> Int -> IO Int
go 0 s = return $! s
go n s = do bs <- B.hGet stdin (1024 * 1024)
            go (n-1) $! B.length bs + s

main = go 2048 0 >>= print

This program reads two gigabytes of binary data from its standard input in one 
megabyte chunks and prints the total of bytes read. Test it with this:

$ ghc -rtsopts -O bytestring-perf.hs

$ time ./bytestring-perf +RTS -s < /dev/zero

On my machine, the program takes 0.25 seconds and allocates about 2.1 gigabytes in 
heap – meaning there was hardly any space overhead from our use of ByteString 
and speed was respectable as well.

The Data.ByteString.ByteString datatype is strict, meaning that all bytes of a 
ByteString will be in memory. The Data.ByteString.Lazy module defines its own 
ByteString, which is lazy:

data ByteString = Empty
                | Chunk {-# UNPACK #-} !S.ByteString ByteString
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Note that you can unbox strict ByteStrings in your 
own data types as well.

Using lazy ByteStrings, we could rewrite our program as follows:

-- file: bytestring-lazy-perf.hs

import qualified Data.ByteString.Lazy as B
import qualified Data.ByteString as S
import System.IO (stdin)

size = 2048 * 1024 * 1024

go :: Int -> [S.ByteString] -> Int
go s (c:cs) | s >= size = s
            | otherwise = go (s + S.length c) cs

main = do
    bs <- B.hGetContents stdin
    print $ go 0 (B.toChunks bs)

This program has very similar memory footprint to the strict ByteString version, but is 
about 20% slower. That slowdown comes from different chunk sizes. hGetContents 
uses a hard-coded chunk size of 32 KB (described in the documentation of ByteString). 
In our previous example, we used a chunk size of 1024 KB, which is a better fit when a 
lot of bytes are read in. If you changed the chunk size of the strict program variant to 
32 KB, the difference between the strict and lazy variants would be negligible, though 
lazy ByteStrings produce more GC traffic.

Thanks to lazy ByteStrings, we could use hGetContents to get an infinite ByteString 
and turn our loop into a pure function. Pure code is in general more valuable than 
just raw performance.

Starting with bytestring 0.10.0.0, the Data.ByteString.Short module provides 
byte arrays with zero memory overhead. A normal ByteString has a memory 
overhead of a few Word, and a ByteString, once allocated, cannot be moved by GC. 
This means that multiple small ByteString could contribute to heap fragmentation, 
or wasted space. ShortByteString, on the other hand, can be moved by GC, but their 
API is not nearly as complete as the ByteString API, and should only be used for 
internal optimization.
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Working with characters and strings
The standard Char data type is defined to hold any character of the ISO 10646 
character set. Char represents every character with 31 bits.

The text representation chosen in Prelude and base libraries is String = [Char]. 
This representation has the convenient property that an understanding of, and 
operations on, lists carries over to Strings. Furthermore, it's trivial to write programs 
that process infinite data sequentially without any extra libraries.

Other than being convenient for the programmer, linked lists have a huge overhead, 
making them ill-suited for high performance string processing. Furthermore, String 
isn't totally Unicode-correct because some strings' lengths depend on their case.

We could fix performance with a UArray ix Char. However, this still wouldn't get 
us Unicode-correctness.

The bytestring package provides a simple 8-bit character interface for ByteStrings 
in separate Char8 modules (one for strict and lazy ByteStrings), which may 
sometimes be all you need if you are sure you're working with 8-bit (ISO 8859) 
encoded strings.

Using the text library
The library of choice for general text processing nowadays is text. Its API is 
designed to resemble String functions, but is faster and Unicode-correct. The Text 
datatype stores values UTF-16 encoded. That's 16 bits for most characters and 32 bits 
for obscure characters. Compare this to 31 bits in a Char.

Note that due to the different representations, there is an overhead 
when converting Strings and Texts. It doesn't always make sense to 
convert from String to Text or vice versa.

Similar to the bytestring library, the text library provides strict and lazy variants 
under different modules. I/O operations with strict and lazy Text are provided 
under corresponding modules.

Unlike the bytestring library, the text library uses internally an array representation 
and employs a technique called stream fusion to eliminate the need for intermediate 
values. Basically this means that pipelines such as T.length . T.toUpper . T.init 
will be optimized into a single loop over the input value when optimizations are 
enabled. Functions that are fused away are indicated in the documentation of text with 
the phrase Subject to fusion.
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The text-icu package provides bindings for the mature International Components 
for Unicode (ICU) library on top of text.

Builders for iterative construction
Builder abstractions can be used to efficiently compose multiple small chunks into 
one big ByteString, Text, or even String. The text and bytestring packages provide 
modules, Data.ByteString.Builder and Data.Text.Lazy.Builder, which define 
Builder types that compose as monoids.

Say we have a data type, Tree, defined by:

data Tree = Tree !(Int, Tree) !(Int, Tree)
          | Leaf !ByteString

We want a ByteString serialization of Tree values, so that for an example value  
(this requires enabling the OverloadedStrings extension):

Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))

This encodes as [1:"one",2:[3:"three",4:"four"]].

We can accomplish this with the following function:

-- file: builder-encoding.hs

import Data.ByteString (ByteString)
import qualified Data.ByteString.Builder as B
import Data.Monoid ((<>))
import System.IO (stdout)

encodeTree :: Tree -> B.Builder
encodeTree (Tree (l1, t1) (l2, t2)) = B.charUtf8 '['
    <> B.intDec l1 <> B.charUtf8 ':'<> encodeTree t1
    <> B.charUtf8 ','
    <> B.intDec l2 <> B.charUtf8 ':'<> encodeTree t2
    <> B.charUtf8 ']'
encodeTree (Leaf bs) = B.charUtf8 '"'
    <> B.byteString bs <> B.charUtf8 '"'

I also added a main to test the encoder:

main = B.hPutBuilder stdout $ encodeTree $
    Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))
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The ByteString Builder skips all unnecessary intermediate data structures. A ready 
Builder value can be rendered as a lazy ByteString, meaning it can be consumed 
lazily. So it's completely possible to create even infinite ByteStrings with Builder. 
As a final bonus, if you are writing the resulting ByteString into a Handle, you can 
use hPutBuilder, which puts the result straight in the handle's buffer, skipping all 
intermediate allocations.

The Data.Text.Lazy.Builder API is similar to the ByteString Builder API. The 
biggest difference is that text Builders can be constructed only from Chars, and lazy 
and strict Texts, so they're clearly fit for textual data only.

Builders for strings
Strings are only lists of characters, and lists admit a rather elegant Builder type:

type Builder = [Char] -> [Char]

Turning a String into a Builder is accomplished by applying concatenation 
partially, and to execute the Builder we just apply it to the empty list,[]:

string :: String -> Builder
string str = (str ++)
toString :: Builder -> String
toString b = b []

With this representation, builders are concatenated with normal function 
composition (.). Now we can write the previous tree-encoding example using our 
string builder:

-- file: string-builder.hs

data Tree = Tree !(Int, Tree) !(Int, Tree)
          | Leaf !String

encodeTree :: Tree -> Builder
encodeTree (Tree (l1, t1) (l2, t2)) =
    string "[" . string (show l1) . string ":" . encodeTree t1 .
    string "," . string (show l2) . string ":" . encodeTree t2 . 
string "]"
    encodeTree (Leaf str) = string "\"" . string str . string "\""

main = putStrLn $ toString $ encodeTree $
Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))
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It's not hard to see that this builder also creates its result lazily. Coincidentally, the 
standard Show type class defines its serializations via:

type ShowS = String -> String

This is exactly the same as our Builder.

Handling sequential data
The standard list,[], is the most used data structure for sequential data. It has 
reasonable performance, but when processing multiple small values, say Chars,  
the overhead of a linked list might be too much. Often, the convenient nature of []  
is convincing enough.

The wide range of list functions in Data.List are hand-optimized and many are 
subject to fusion. List fusion, as it is currently implemented using the foldr/build 
fusion transformation, is subtly different from stream fusion employed in ByteString 
and Text (concatMap is a bit problematic with traditional stream fusion). Still, the 
end result is pretty much the same; in a long pipeline of list functions, intermediate 
lists will usually not be constructed.

Say we want a pipeline that first increases every element by one, calculates 
intermediate sums of all elements up to current element, and finally sums all 
elements. From the previous chapter, we have learned to write optimally strict 
recursive functions, so we end up with the following implementation:

-- file: list-fusion.hs

inc :: [Int] -> [Int]
inc (x:xs) = x + 1 : inc xs
inc     [] = []

summer :: Int -> [Int] -> [Int]
summer a (x:xs) = let r = a + x in r `seq` r : summer r xs
summer _     [] = []

main = print $ sum $ summer 0 $ inc [1..100000]

If you run this program, you will find out that it allocates a whopping 24 megabytes 
of heap space and does quite a lot of GC, being productive only about 80% of the 
time. The problem here is that our pipeline is constructing a 100,000-element list 
three times over, which is quite expensive.
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Sure, we could write our pipeline as a single fold, but that would be harder to extend 
or maintain. A much better option is to use the map and scanl functions, which are 
subject to fusion:

print $ sum $ scanl (+) 0 $ map (+1) [1..100000]

This version is not only much shorter than the original, but faster and allocates heap 
for only 6.5 megabytes, which is very close to just allocating 100,000 64-bit integers 
(6.1 megabytes).

The lesson here is that for fusion to kick in, library functions and higher-order 
functions should be preferred over custom recursive functions. This holds for every 
library that provides fusion: lists, text, bytestring, and others.

Using difference lists
We already met a difference list in the String builder section, which was a function 
from String to String, or from list of characters to list of characters. String builder is 
an example of a difference list. Generalizing over the element type (Char), we obtain 
the general definition of difference lists.

Here is a definition of difference lists wrapped in a new type and conversion 
function from and to a list:

-- file: dlist.hs

newtype DList a = DList ([a] -> [a])

fromList :: [a] -> DList a
fromList xs = DList (xs ++)

toList :: DList a -> [a]
toList (DList list) = list []

We can't use function composition to compose DList directly, so we give DList a 
monoid instance:

instance Monoid (DList a) where
    mempty = DList id
    mappend (DList x) (DList y) = DList (x . y)

You might also want to consider using the DList package from 
the Hackage archive in your own code, instead of rolling your own 
difference list.
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Difference list performance
Composing difference lists with (.) instead of lists directly with (++) can be magnitudes 
faster when there is lots of appending. (++) associates to right, so the following:

a ++ b ++ c ++ d

Will parse as:

a ++ (b ++ (c ++ d))

And by the definition of (++), each of a, b, c, and d are traversed only once. But if 
instead we first appended b to a, then c, and then d, the result would associate to left:

((a ++ b) ++ c) ++ d

This will unnecessarily build lots of intermediate thunks. If instead we used 
difference lists and appended them with (.), the result would look like this:

(a ++) . ((b ++) . ((c ++) . (d ++))) $ []

This would reduce to:

a ++ ((b ++) . ((c ++) . (d ++)) $ [])

And so on, turning (++) right-associative again.

Difference list with the Writer monad
A difference list is often a much better choice as the logging type in a Writer monad. 
Here is a simple benchmark of using lists versus difference lists:

-- file: dlist.hs

import Control.Monad.Writer

type DListWriter = Writer (DList Int)
type ListWriter  = Writer [Int]

action :: Int -> ListWriter ()
action 15000 = return ()
action n     = action (n + 1) >> tell [n]

action' :: Int -> DListWriter ()
action' 15000 = return ()
action' n     = action' (n + 1) >> tell (fromList [n])
main = do
    forM (snd $ runWriter (action 1)) print -- []
    forM (toList $ snd $ runWriter (action' 1)) print -- DList
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The list-based version starts printing the numbers at an almost readable speed and 
gradually gains speed, while the difference list-based version spits out numbers 
immediately.

Using zippers
Another neat pattern that uses lists is the zipper. The core idea is that of focusing on 
some element, that is, viewing the structure from different angles. For simplicity, 
we'll consider only the list zipper here, though zippers can be defined for trees or 
actually any data structure. For lists, we can define a zipper as:

-- file: zipper.hs 

type Zipper a = ([a], [a])

The idea here is that we have split the actual list in two right before the element we 
are focusing on. Elements that precede the focused element are kept in the first list, 
while the focused element and the elements that follow it are kept in the second list. 
Furthermore, the first list is in reverse order relative to the order of the actual list. 
The following diagram illustrates this:

It's easy to define operations for moving the focus forwards or backwards:

forward, backward :: Zipper a -> Zipper a
forward  (xs, y:ys) = (y:xs, ys)
backward (x:xs, ys) = (xs, x:ys)

The get function yields the element under focus, and set replaces the focused 
element:

get :: Zipper a -> a
get (_, y:_) = y

set :: a -> Zipper a -> Zipper a
set x (xs, _:ys) = (xs, x:ys)
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Accessing both ends fast with Seq
The Data.Sequence module (from the containers package) provides a general-
purpose sequential data structure Seq, characterized by its O(1) inserts and deletes at 
both ends of the sequence. General indexing is of the same complexity as indexing in 
a Map.

Seq is a purely functional data structure (based on non-trivial structures called finger 
trees) and also quite fast. If you need fast indexing and inserting in both ends of a 
sequence, then Seq is one of the easiest and fastest options you have.

Say we are observing sensor events, and would like to keep a buffer of the latest n 
events only. Using Seq, we can easily create such a circular buffer, which supports 
O(1) inserts, as follows:

-- file: circular.hs

import Data.Sequence as Seq
import Data.Foldable (toList)

data Circular a = Circular !Int (Seq.Seq a)

We will use the Integer in Circular to store the maximum size. Then we'll need a 
way to create an empty buffer and a way to extract the current contents from the 
buffer:

create :: Int -> Circular a
create n = Circular n Seq.empty

values :: Circular a -> [a]
values (Circular _ s) = toList s

That was pretty simple. Appending a new observation is almost as easy too, except 
that we must handle possible buffer overflow:

observe :: Circular a -> a -> Circular a
observe (Circular n s) x
    | Seq.length s < n   = Circular n $ s  |> x
    | _ :< s'<- viewl s = Circular n $ s' |> x

The viewl and viewr functions are used to inspect the first and last, or left-most and 
right-most, elements of a Seq:

data ViewR a = EmptyR | Seq a :> a
data ViewL a = EmptyL | a :< Seq a
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We can confirm that our buffer works as expected:

> :load circular.hs
> values $ foldl' observe (create 7) [1..10000000 :: Int]
[9999994,9999995,9999996,9999997,9999998,9999999,10000000]

If you compile that fold with optimizations and inspect the heap profile with +RTS 
-s, you would find out that processing 10 million observations with buffer size of 7 
spends about 3.5% time in GC, clocks in with 2.3 GB of heap allocation, and on my 
machine completes in under 350ms.

So at least we have acceptable speed. However, for a buffer size of 7 elements we 
could have probably done better with an unboxed array or vector and a simple 
linear-time (in buffer size) observe function. But with bigger buffer sizes, linearity 
will be costly and Seq will clearly dominate.

In the following graph, I have plotted heap allocation when folding 10 million 
integers with different buffer sizes:

We see that after the buffer size is larger than about 10 elements, the amortized 
constant time operations of Seq start to pay off. Note that there are size ranges 
where heap usage doesn't really change at all – and such ranges become even longer 
when buffer size gets larger! With small buffer sizes, overhead from modifying the 
internal finger-trees is far greater than added value. There is even a peak at buffer 
size 3, implying that it would be more efficient to represent size 3 as 4. This is also 
a consequence of the underlying finger-trees, which behave sub optimally in such 
small sizes.
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Note that if we make the sequence field in the Circular datatype strict (or almost 
equally, replace ($) with ($!) in observe), then performance would actually decrease 
by about 10%. This is very much counterintuitive, because we will anyways always 
need to evaluate the sequence to WHNF. Let me paraphrase this in a way that's 
easier to explain: why does deferring the evaluation of a Seq from the constructing 
site onto the consuming site have such a big impact?

Once again, the answer boils down to a combination of usual optimizations in GHC, 
namely inlining and rewriting. Seq is based on finger-trees and has an interesting 
structure and many operations that are often inlined all the way to our own 
functions that use Seq operations. Now if we enforce strictness in something that 
the GHC inliner rewrites to something completely different, we are limiting code 
transformations that GHC could otherwise perform with full laziness.

Handling tabular data
If you need O(1) general indexing, a table-like data structure is virtually your only 
option. The Haskell report specifies the array package, which provides tables 
indexed by anything with an instance for a Ix typeclass.

Immutable arrays come in two flavors (we'll discuss mutable arrays later):

• Data.Array.Array: Immutable arrays of boxed values
• Data.Array.Unboxed.UArray: Immutable arrays of unboxed values

A common use case for Immutable arrays is memoization. For example, a table of 
Fibonacci numbers could be constructed as follows:

-- file: fib-array-mem.hs
import Data.Array

fib :: Int -> Array Int Integer
fib n = arr where
  arr = listArray (1,n) $ 1 : 1 : [ arr!(i-2) + arr!(i-1) 
                                  | i <- [3..n] ]

We can also index by a tuple, which gives the array extra dimensions. The symmetric 
Pascal matrix will serve as an example:

pascal :: Int -> Array (Int, Int) Integer
pascal n = arr where
  arr = array ((1,1),(n,n)) $
    [ ((i,1),1) | i <- [1..n] ] ++
    [ ((1,j),1) | j <- [1..n] ] ++
    [ ((i,j),arr!(i-1,j) + arr!(i,j-1)) | i <- [2..n], j <- [2..n] ]
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These self-referential definitions look very nice, and with arbitrary-sized integers the 
performance is pretty much as good as it could be.

But what if we only needed a table of the first 90 Fibonacci numbers? The 90th 
Fibonacci number fits into an Int64, so we could switch to that and use UArray 
instead of Array. But then we could not have had the nice self-referential definition, 
because array construction would block trying to index its unfinished self. In this 
case, you should build the list so that it doesn't reference the array, or convert the 
boxed array into an unboxed array via an intermediate list:

toUArray :: (Ix i, IArray UArray e) => Array i e -> UArray i e
toUArray a = listArray (bounds a) (elems a)

This conversion comes at the cost of an intermediate list, though.

The array package is quite low-level, but the speed will be there at the cost of doing 
a lot of index fiddling yourself. For multi-dimensional arrays, much of that index-
fiddling is unfortunately unavoidable. But for single-dimensional arrays, there is a 
better choice.

Using the vector package
The Data.Vector modules in the vector package provide sweet and speedy high-
level Int-indexed arrays, implemented on top of Data.Array. They too come in 
boxed and unboxed flavors.

The sweetness of vector is in the API, which is loaded with higher-order functions, 
convenient helpers, monad-lifted operations, and of course all the common 
operations for list-like structures.

The speed comes once again from fusion; in terms of raw speed, operations on 
vector have an upper bound set by arrays that vectors use internally. However, a 
sufficiently large composition of vector operations will almost always outperform a 
similar naive array-based program.

Say we have a sensor from which we have stored numeric observations at different 
times, and now we want to analyze that data. For performance, we choose to use 
unboxed vector for storing the data in memory. Also, we import randomIO for testing 
purposes:

-- file: vector-testing.hs

import qualified Data.Vector.Unboxed as U
import System.Random (randomIO)
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A neat thing about unboxed Vectors is that unboxed vectors support tuple-valued 
elements. Internally, they are represented with two vectors. This defines some types:

type Obs = U.Vector (TimeStamp, Double)

type TimeStamp = Int

We can extract the value Vector of our observation vector using U.unzip in constant 
time and no copying:

-- | O(1)
values :: Obs -> U.Vector Double
values obs = snd (U.unzip obs)

Note that U.map snd would be bad, because mapping constructs a new vector,  
in general.

Now let's try something more interesting: a windowing function, which gives us the 
slice between two timestamps. The following implementation of a window function is 
linear in time and constant in space:

-- | O(n+m), no copying.
window :: TimeStamp -> TimeStamp -> Obs -> Obs
window from until v =
    let (_, start)   = U.span ((< from) . fst) v
        (between, _) = U.span ((<= until) . fst) start
        in between

We could improve this by a more involved binary search, for example. But for 
demonstration, I used just U.span, which also does no copying by reusing the 
original vector. Because the time step between two observations (TimeStamps) can 
be arbitrary, logarithmic time complexity is the best we could get.

Implementing value average is straightforward:

-- | O(n)
average :: Obs -> Double
average obs = U.sum (values obs) / fromIntegral (U.length (values  
obs))

Let's test out the performance by generating a data set of a million random 
observations and then calculating averages at different windows:

main = do
    obs <- U.generateM (1024 ^ 2) $ \i -> randomIO >>= \v -> re 
turn (i, v)
    print $ average $ window 1 (1024 ^ 2) obs
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    print $ average $ window 2 (1023 ^ 2) obs
    print $ average $ window 3 (1022 ^ 2) obs
    print $ average $ window 4 (1021 ^ 2) obs

Compile and run with Runtime System statistics:

$ ghc -rtsopts -O vector-testing.hs && time ./vector-testing +RTS -s

[...]

2,090,993,872 bytes allocated in the heap

341,188,752 bytes copied during GC

59,032,744 bytes maximum residency (7 sample(s))

2,863,512 bytes maximum slop

138 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed)  Avg pause  Max pause

Gen  0      4003 colls,     0 par    0.372s   0.372s     0.0001s    
0.0013s

Gen  1         7 colls,     0 par    0.177s   0.177s     0.0253s    
0.0447s

INIT    time    0.000s  (  0.000s elapsed)

MUT     time    1.426s  (  1.428s elapsed)

GC      time    0.548s  (  0.548s elapsed)

EXIT    time    0.006s  (  0.006s elapsed)

Total   time    1.983s  (  1.983s elapsed)

%GC     time      27.7%  (27.7% elapsed)

Alloc rate    1,465,833,131 bytes per MUT second

Productivity  72.3% of total user, 72.3% of total elapsed

Wow, this looks pretty bad: lots of GC, only 70% productivity, and a 60-megabyte 
memory footprint! The data itself is only 16 megabytes on a 64-bit machine, which 
implies that a lot of unnecessary things are going on.
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Turns out, optimization level -O is insufficient for lots of important optimizations to 
kick in. Switching to -O2 gives significant improvements:

$ ghc -rtsopts -O2 vector-testing.hs && ./vector-testing +RTS -s

[..]

1,862,402,704 bytes allocated in the heap

818,920 bytes copied during GC

16,779,344 bytes maximum residency (2 sample(s))

2,070,704 bytes maximum slop

19 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed)  Avg pause  Max pause

Gen  0      3576 colls,     0 par    0.014s   0.014s     0.0000s    
0.0000s

Gen  1         2 colls,     0 par    0.001s   0.001s     0.0006s    
0.0010s

INIT    time    0.000s  (  0.000s elapsed)

MUT     time    1.227s  (  1.229s elapsed)

GC      time    0.016s  (  0.015s elapsed)

EXIT    time    0.001s  (  0.001s elapsed)

Total   time    1.247s  (  1.245s elapsed)

%GC     time       1.3%  (1.2% elapsed)

Alloc rate    1,517,508,130 bytes per MUT second

Productivity  98.7% of total user, 98.9% of total elapsed

With -O2, we got down to 1.3% GC and 19 megabytes of memory footprint. For even 
better results, we could combine with optimizations for numerical code.

It's certainly a good idea to always use -O2 for production and 
performance testing, especially for vector code. Compile times will 
be significantly longer, however, so in development -O or even no 
optimization passes at all is advisable.
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Handling sparse data
Vectors and arrays are excellent for dense data, that is, when you're not doing inserts 
in between elements, and the range of indices is reasonable. But if you need, for 
example, inserts and indexing in arbitrary indices, a tabular structure won't perform 
well. In such cases, you need some sort of a map or similar structure.

Haskell doesn't have any sparse structures built-in, nor does the Haskell report 
define any. This has some nice consequences:

• Keeps the core language small
• Gives Haskellers complete freedom over the implementation
• Allows writing code that doesn't care much about the specific underlying 

data structure

There are many excellent libraries, implementing a wide range of sparse data 
structures, in Hackage, not to mention type classes capturing general properties 
of those structures. Unfortunately, the ecosystem is a bit too scattered, so it is 
sometimes hard to determine which library would give the best performance, 
cleanest code, and most flexibility, or whether the package is maintained.

Using the containers package
The go-to package for immutable sparse data structures is containers. It provides 
reasonably efficient implementations for maps and sets, very basic tree and graph 
structures, and the sequence mentioned previously. The structures are purely 
functional, which is a nice property in itself, encouraging us to write code in a 
functional style:

Ord a => Data.Map.{Lazy,Strict}.Map k v
Ord a => Data.Set.Set a

Data.IntMap.{Lazy,Strict}.IntMap v
Data.IntSet.IntSet a

Data.Tree.Tree a
Data.Graph.Graph = Array Int [Int]
Data.Sequence.Seq a

However, you shouldn't expect these structures, say Map, to perform equally with 
traditional imperative-style structures (hashmaps), especially when used more or 
less imperatively. The Map from containers is based on binary trees. IntMap, 
which constrains its keys to Ints, uses Patricia trees and is considerably more efficient 
than Map Int.
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The imperative map implementation is usually a hash table because of its O(1) 
lookups compared to the O(log n) of tree-based maps. However, hash tables rely on 
mutable state, and so are not so convenient in functional settings.

Functional structures have their unique advantages:

• Updates reuse parts of the previous structure, so keeping older versions 
lying around is cheap

• Automatic thread-safety

Furthermore, with lazy evaluation, a map lazy in its values allows for an intuitive 
memoization pattern:

-- file: map-fib.hs

import Data.IntMap as IM

fib :: Int -> IntMap Int
fib n = m where
    m = IM.fromList $ (1,1) : (2,1) :
        [ (i, IM.findWithDefault 0 (i-1) m + IM.findWithDefault 0 (i-
2) m)
        | i <- [3..n] ]

Unless you need to have thunks as values, you should use the strict 
variants of Map and IntMap for efficiency.

Using the unordered-containers package
The containers package requires an Ord instance from the keys in a Map and from 
values in a Set. For string-valued data this is problematic, because a comparison 
might be too expensive. And for some data, an Ord instance is an impossibility:

Hashable k => Data.HashMap.Lazy.HashMap k v
Hashable k => Data.HashMap.Strict.HashMap k v
Hashable a => Data.HashSet.HashSet

The unordered-containers package provides pure functional hash maps and 
sets, requiring a Hashable instance. The same performance considerations apply to 
HashMap and HashSet as the data structures from containers: they are persistent in 
nature but won't beat mutable-state variants in terms of raw speed.
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Ephemeral data structures
Lazy evaluation, functional code, and persistent data structures are nice and all, 
but they are not meant to wholly replace imperative strict evaluation, imperative 
code, and ephemeral structures. Nor vice versa. Instead, all complement each 
other. Although the default evaluation in Haskell is strict and a functional style is 
strongly encouraged, Haskell is more than capable of providing for programming in 
imperative style:

"In short, Haskell is the world's finest imperative programming language."

                          – Simon Peyton Jones (in his paper Tackling the Awkward Squad)

Imperative programming calls for sequential processing. In Haskell, we tackle 
sequential steps with monads. The monad of choice for ephemeral data structures is 
IO or ST. ST (for state threads) behaves a bit more nicely than IO in that you cannot 
launch missiles from ST. An ST action can be executed in pure code, or converted to 
an IO action:

import Control.Monad.ST

runST :: (forall s. ST s a) -> a
stToIO :: ST RealWorld a -> IO a

The s type variable in ST actions can be largely ignored. It is only used to separate 
the states of separate ST actions.

The ST monad comes in two flavors, strict (Control.Monad.ST) and lazy (Control.
Monad.ST.Lazy). The lazy ST monad executes only actions whose values are 
required. The following code works with a lazy ST monad, but not with a strict one:

st :: Int
st = runST $ do
    mapM_ return [1..]
    return 9001

Unless you need lazy semantics, strict ST will be faster.

Mutable references are slow
Data.IORef and Data.STRef are the smallest bits of mutable state ; they are, 
references to mutable variables, one for IO and other for ST. There is also a Data.
STRef.Lazy module, which provides a wrapper over strict STRef for lazy ST.
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However, because IORef and STRef are references, they imply a level of indirection. 
GHC intentionally does not optimize them away, as that would cause problems in 
concurrent settings. For this reason, IORef or STRef shouldn't be used like variables 
in C, for example. Performance will for sure be very bad.

Let's verify the performance hit by considering the following ST-based sum-of-range 
implementation:

-- file: sum_mutable.hs

import Control.Monad.ST
import Data.STRef

count_st :: Int -> Int
count_st n = runST $ do
    ref <- newSTRef 0
    let go 0 = readSTRef ref
        go i = modifySTRef' ref (+ i) >> go (i - 1)
    go n

And compare it to this pure recursive implementation:

count_pure :: Int -> Int
count_pure n = go n 0 where
    go 0 s = s
    go i s = go (i - 1) $! (s + i)

The ST implementation is many times slower when at least -O is enabled. Without 
optimizations, the two functions are more or less equivalent in performance; there 
is similar amount of indirection from not unboxing arguments in the latter version. 
This is one example of the wonders that can be done to optimize referentially 
transparent code.

Using mutable arrays
To get rid of indirection when it isn't desired, mutable arrays from the array 
package can be used. Those too live either in IO or ST, but unlike references arrays 
can contain unboxed values. The main mutable array modules and types are:

• Data.Array.IO: Mutable boxed (IOArray) and unboxed arrays (IOUArray) 
in IO

• Data.Array.ST: Mutable boxed (STArray) and unboxed arrays (STUArray) 
in ST

• Data.Array.Storable: Mutable arrays in contiguous memory 
(StorableArray)
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The purpose of StorableArray is to serve as a convenient medium for interfacing 
with C. In general, it is a bit slower than the others. We'll consider StorableArray in 
Chapter 10, Foreign Function Interface.

Using STUArray we can write sum-of-range, which is as efficient as the optimized 
pure function:

-- file: sum_array_mutable.hs

{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.ST
import Data.Array.ST

count_stuarray :: Int -> Int
count_stuarray n = runST $ do
    ref <- newArray (0,0) 0 :: ST s (STUArray s Int Int)
    let go 0 = readArray ref 0
        go i = do s <- readArray ref 0
                  writeArray ref 0 $ s + i
                  go (i-1)
    go n

The obvious caveat here is that the code is more involved:

• Had to use an array for a single variable
• Needed an explicit type signature for the intermediate array (the array 

interface is highly overloaded, for better or worse)
• Needed to enable FlexibleContexts so that go type-checks (due to the s 

type parameter in ST)

The advantage of mutable arrays is that they are pretty low-level. It's trivial to reason 
about the time and space usage of strict array code.

Using mutable vectors
Roman Leshchinskiy's wonderful vector package provides a mutable API. Similar 
to immutable, the mutable API is charged with stream fusion as well. Furthermore, 
mutable and immutable vectors are tightly entwined, so sometimes conversions from 
one to the other can be done in place.
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When working with mutable vectors, the types can seem a bit baffling. The Data.
Vector.Mutable and Data.Vector.Unboxed.Mutable modules each define two 
types, IOVector and STVectors, which are analogous to mutable array types. 
However, IOVector and STVector are just synonyms defined in terms of a more 
general type, MVector s:

type IOVector   = MVector RealWorld
type STVector s = MVector s

MVector is the sole mutable (boxed) vector type; the immediate benefit is that fewer 
API functions need to be overloaded via an adhoc type class, yielding very good type 
inference. All of the mutable vector API is written in terms of MVector, for example:

slice :: Int -> Int -> MVector s a -> MVector s a

Operations that must mutate the vector are wrapped in the underlying monad (IO or 
ST). Thus, type signatures of mutating operations are a bit more involved:

read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
write :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> 
m ()

These operations execute in a monad, m, capable of primitive state-transformer 
actions. So the monad must be IO, ST, or some monad transformer stack with IO  
or ST at the bottom. That's the PrimMonad m =>… part.

The PrimState m might be baffling if you're not very familiar with associated types. 
Associated types are like ordinary class functions, but lifted to type-level:

class Monad m => PrimMonad m where
    type PrimState m

instance PrimMonad IO where
    type PrimState IO = RealWorld

instance PrimMonad (ST s) where
    type PrimState (ST s) = s

So respectively for IO and ST, we have:

MVector (PrimState m) a === MVector RealWorld a = IOVector a
MVector (PrimState m) a === MVector s a         = STVector s a

Associated types are not rocket science. Unfortunately, function arrow syntax for 
type level functions does not exist in Haskell, so syntax is a little funny.
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Unboxed mutable vectors work the same way as boxed mutable vectors. The only 
addition is an Unbox a => constraint on the element (and the unboxed MVector is a 
type-family instead of a datatype). Unbox comes with instances for primitive types 
and tuples (and it is possible to add your own instances), and is also a requirement in 
the immutable unboxed API.

Bubble sort with vectors
Bubble sort is not an efficient sort algorithm, but because it's an in-place algorithm 
and simple, we will implement it as a demonstration of mutable vectors:

-- file: bubblesort.hs

import Control.Monad.ST
import Data.Vector as V
import Data.Vector.Mutable as MV
import System.Random (randomIO) -- for testing

The (naive) bubble sort compares values of all adjacent indices in order, and swaps 
the values if necessary. After reaching the last element, it starts from the beginning 
or, if no swaps were made, the list is sorted and the algorithm is done:

bubblesortM :: (Ord a, PrimMonad m)
            => MVector (PrimState m) a -> m ()
bubblesortM v = loop where

    indices = V.fromList [1 .. MV.length v - 1]

    loop = do swapped <- V.foldM' f False indices – (1)
              if swapped then loop else return () – (2)

    f swapped i = do                              – (3)
        a <- MV.read v (i-1)
        b <- MV.read v i
        if a > b then MV.swap v (i-1) i >> return True
                 else return swapped

At (1), we fold monadically over all but the last index, keeping state about whether 
or not we have performed a swap in this iteration. If we had, at (2) we rerun the  
fold ; if not, we can return. At (3) we compare an index and possibly swap values.

We can write a pure function that wraps the stateful algorithm:

bubblesort :: Ord a => Vector a -> Vector a
bubblesort v = runST $ do
    mv <- V.thaw v
    bubblesortM mv
    V.freeze mv
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V.thaw and V.freeze (both O(n)) can be used to go back and forth with mutable 
and immutable vectors.

Now, there are multiple code optimization opportunities in our implementation 
of bubble sort. But before tackling those, let's see how well our straightforward 
implementation fares using the following main:

main = do
    v <- V.generateM 10000 $ \_ -> randomIO :: IO Double
    let v_sorted = bubblesort v
        median   = v_sorted ! 5000
    print median

We should remember to compile with -O2. On my machine, this program takes 
about 1.55s, and Runtime System reports 99.9% productivity, 18.7 megabytes 
allocated heap and 570 kilobytes copied during GC.

So now with a baseline, let's see if we can squeeze more performance from vectors. 
This is a non-exhaustive list:

• Use unboxed vectors instead. This restricts the types of elements we 
can store, but it saves us a level of indirection. Down to 960ms and 
approximately halved GC traffic.

• Large lists are inefficient, and they don't compose with vectors stream fusion. 
We should change indices so that it uses V.enumFromTo instead (alternatively 
turn on OverloadedLists extension and drop V.fromList). Down to 360ms 
and 94% less GC traffic.

• Conversion functions V.thaw and V.freeze are O(n), that is, they modify 
copies. Using in-place V.unsafeThaw and V.unsafeFreeze instead 
is sometimes useful. V.unsafeFreeze in the bubblesort wrapper is 
completely safe, but V.unsafeThaw is not. In our example, however, with 
-O2, the program is optimized into a single loop and all those conversions get 
eliminated.

• Vector operations (V.read, V.swap) in bubblesortM are guaranteed to never 
be out of bounds, so it's perfectly safe to replace these with unsafe variants 
(V.unsafeRead, V.unsafeSwap) that don't check bounds. Speed-up of about 
25 milliseconds, or 5%.

To summarize, applying good practices and safe usage of unsafe functions, our 
Bubble sort just got 80% faster. These optimizations are applied in the bubblesort-
optimized.hs file (omitted here).
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We noticed that almost all GC traffic came from a linked list, which was constructed 
and immediately consumed. Lists are bad for performance in that they don't fuse like 
vectors. To ensure good vector performance, ensure that the fusion framework can 
work effectively. Anything that can be done with a vector should be done.

As a final note, when working with vectors (and other libraries) it's a good idea to 
keep the Haddock documentation handy. There are several big and small performance 
choices to be made. Often the difference is that of between O(n) and O(1).

Working with monads and monad stacks
Monads are very useful abstractions, and like any sufficiently complex abstraction, 
many monads too incur some overhead. Two notable exceptions are IO and ST, 
which are eliminated during compilation. A single simple monad such as Reader 
or Writer has very minimal overhead, but monad stacks can incur unfortunate 
slowdowns. In most cases, the convenient nature of programming in a monad stack 
far outweighs the small overhead, because cost centers are rarely located in monad 
operations (excluding IO and ST).

If you have an expensive subroutine in a State monad, it might be 
possible to convert it to ST for a big speedup. However, State is 
more expressive than ST so conversion is not always feasible.

The list monad and its transformer
The monad instance of lists admits attractive backtracking. For example, consider 
special Pythagorean triplets from Project Euler problem 9: find three natural numbers 
a < b < c such that a^2 + b^2 = c^2 and a + b + c = n, where n = 1000 (there exists exactly 
one such triplet). A naive implementation using the list monad can be given as 
follows:

-- file: backtracking-list.hs

import Control.Monad (guard)

special_pythagorean :: Int -> [(Int,Int,Int)]
special_pythagorean n = do
    a <- [1     .. n]
    b <- [a + 1 .. n]
    c <- [b + 1 .. n]
    guard (a + b + c == n)
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    guard (a ^ 2 + b ^ 2 == c ^ 2)
    return (a, b, c)

main = print $ head $ special_pythagorean 1000

Algorithmically, this solution is pretty bad. But the implementation itself is fairly 
efficient. GHC is smart enough to optimize all intermediate lists away, producing a 
program with three nested loops. Most values get unboxed, too.

Previously we observed that lists don't perform well if used like lists and arrays 
are used in imperative languages, that is, treating them as just some list-like values. 
Instead, in a functional style, lists are more useful when used as a control structure. 
Indeed, the list monad goes by another name, the stream monad. If you ever take 
a look at how stream fusion in bytestring, vector, text, or built-in iterators in 
imperative languages such as Python and Java are implemented, what you'll find is 
just a linked list in disguise.

The list monad can be turned into a monad transformer, named ListT, albeit it is 
tricky to get right. A correct implementation can be found in the list-t package.

With ListT, we can add streaming to any monad. For example, we could implement 
a random noise generator with a repeating pattern and random delays with a ListT 
IO. First, some imports:

-- file: noise.hs

import ListT                      -- package list-t
import System.Random              -- package random
import Control.Monad.Trans (lift) -- package mtl
import Control.Concurrent (threadDelay)

We write the noise generator to take the pattern as an argument:

noise :: [Double] -> ListT IO Double
noise pat = do
    pat'<- ListT.repeat pat
    x     <- ListT.fromFoldable pat'
    lift $ do delay <- randomIO
              threadDelay (mod delay 300000)
              randomRIO (x - 0.5, x + 0.5)

main = let generator = noise [1,5,10,5]
        in ListT.traverse_ print generator
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Monadic code in ListT looks just like monadic code in [], with the addition of 
interleaved IO actions via lift. In main, we create a generator and consume it one 
element at a time. The next item is generated only when it is really required, hence 
we don't loop indefinitely but recurse productively.

In the list-t package, there is a MonadPlus instance for Monad m => ListT m. 
MonadPlus gives us the empty list (mzero) and list concatenation (mplus) lifted to 
ListT m for any monad m. Of course, we can also use other generic combinators, for 
example, to make derived generators:

Control.Monad.mfilter (> 5) (noise [1,5,10,5])

Control.Monad.liftM (+) (noise [1,2,3]) (noise [7,6,8])

However, that second example is a bit questionable, because it incurs random delays 
from both generators sequentially.

Free monads
Another general example of data as a control structure is the Free monad:

data Free f a = Pure a
              | Free (f (Free f a))

The key observation is that if f is a (law-abiding) functor, then Free f is 
automatically always a monad.

With Free, we can define embedded languages in Haskell quite conveniently. 
Let's take a silly example: a language capable of reading and writing strings, and 
launching missiles, that is, to perform arbitrary I/O actions. We could write an 
abstract datatype like so:

data Language = Write String Language
              | Read (String -> Language)
              | Missiles (IO ()) Language 
              | End

Then, expressions could be written like so:

Write "Launch?"
   (Read (\s -> if s == "y" then Missiles launch End
                            else Write "No launch" End))
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But this doesn't look very nice. Certainly not nearly as readable as direct Haskell.  
We could roll our own parser, but fortunately there is Free:

-- file: free.hs
{-# LANGUAGE DeriveFunctor #-}
import Prelude hiding (read)
import Control.Monad.Free -- package free

We begin our Free adventure with that preamble. Free will capture the recursive 
nature in our Language datatype for us when we write it as:

data Language next = Write String next
                   | Read (String -> next)
                   | Missiles (IO ()) next
                   deriving (Functor)
type Program = Free Language

We need DeriveFunctor to derive the Functor instance. Alternatively, we could 
have written it by hand. To lift statements in our language to the free monad 
Program, we write the following definitions:

read :: Program String
read = liftF (Read id)

write :: String -> Program ()
write string = liftF (Write string ())

missiles :: IO () -> Program ()
missiles io = liftF (Missiles io ())

With these statements, we can write programs in monadic style in our Program 
monad. The following example program repeatedly asks for a command until 
receiving a "launch" command, after which it launches some missiles and exits 
gracefully:

program :: Program Int
program = do
    write "Waiting for command (launch)"
    input <- read
    case input of
        "launch" -> do missiles $ putStrLn "Missiles launched!"
                       return 0
        _        -> do write $ "Unknown command: " ++ input
                       program



Chapter 2

[ 59 ]

An interpreter for this Free language is implemented very similarly, as in the case of 
a direct ADT:

interpret :: Program a -> IO a
interpret (Pure res)     = return res
interpret (Free program) = case program of
    Write string next -> putStrLn string >> interpret next
    Read go           -> getLine >>= interpret . go
    Missiles m next   -> m >> interpret next

Note that nothing prevents us from writing a safe interpreter that doesn't launch 
missiles, or an interpreter that doesn't live in the IO monad. Using Free, we got 
monadic do-syntax for free, as well as all standard monad machinery in our little 
embedded language. Also, similarly to ListT, there is a FreeT monad transformer, 
with which side-effects in arbitrary inner monads can be allowed inside the 
embedded language.

Working with monad transformers
In general, monads from the transformers package behave very nicely. Overhead is 
pretty much predicted by the number of layers in the stack. Monadic functions inline 
well and GHC is able to do lots of optimizations. The monad transformer library 
(mtl) isn't much worse nowadays, but the extra flexibility in mtl doesn't always come 
for free.

If you need to speed up a monad stack, you might want to consider unrolling it. 
The RWS monad/transformer from mtl is an example of unrolling. RWS combines 
Reader, Writer, and State on a single level:

RWS r w s a                        ~  r -> s -> (a, s, w)
ReaderT r (StateT s (Writer w)) a  ~  r -> s -> ((a, s), w)

Composing monads and side-effects efficiently is ongoing research. Also, new 
approaches such as extensible effects have emerged, but speed remains an issue.

Speedup via continuation-passing style
Implementing monads in continuation-passing style (CPS) can have very good 
results. Unfortunately, no widely-used or supported library I'm aware of would 
provide drop-in replacements for ubiquitous Maybe, List, Reader, Writer, and State 
monads.
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It's not that hard to implement the standard monads in CPS from scratch. For 
example, the State monad can be implemented using the Cont monad from mtl as 
follows:

-- file: cont-state-writer.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.State.Strict
import Control.Monad.Cont

newtype StateCPS s r a = StateCPS (Cont (s -> r) a)
deriving (Functor, Applicative, Monad, MonadCont)

instance MonadState s (StateCPS s r) where
    get   = StateCPS $ cont $
\next curState → next curState curState

    put newState = StateCPS $ cont $
\next curState → next () newState

runStateCPS :: StateCPS s s () -> s -> s
runStateCPS (StateCPS m) = runCont m (\_ -> id)

In case you're not familiar with the continuation-passing style and the Cont monad, 
the details might not make much sense: instead of just returning results from a 
function, a function in CPS applies its results to a continuation. So in short, to 
"get" the state in continuation-passing style, we pass the current state to the "next" 
continuation (first argument) and don't change the state (second argument). To 
"put,"we call the continuation with the unit (no return value) and change the state to 
a new state (second argument to next).

StateCPS is used just like the State monad:

action :: MonadState Int m => m ()
action = replicateM_ 1000000 $ do
    i <- get
    put $! i + 1

main = do
    print $ (runStateCPS action 0 :: Int)
    print $ (snd $ runState action 0 :: Int)
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That action operation is, in the CPS version of the state monad, about 5% faster and 
performs 30% less heap allocation than the state monad from mtl. This program is 
limited pretty much only by the speed of monadic composition, so these numbers 
are at least very close to the maximum speedup we can have from CPSing the state 
monad. Speedups of the writer monad are probably near these results.

Other standard monads can be implemented similarly to StateCPS. The definitions 
can also be generalized to monad transformers over an arbitrary monad (a la 
ContT). For extra speed, you might wish to combine many monads in a single CPS 
monad, similarly to what RWST does.

Summary
We began this chapter with GHC primitives such as Int# and figured out the effects 
of strictness and unpacking annotations (bangs and UNPACK-pragmas) in data type 
definitions. We noted that tuples are lazy and that Bool is an algebraic data type, 
but we also noted that arrays and vectors represent Bool intelligently as single bits 
internally.

Then we considered working with numeric, binary, and textual data. We witnessed 
the performance of the bytestring, text, and vector libraries, all of which get 
their speed from fusion optimizations, in contrast to linked lists, which have a huge 
overhead despite also being subject to fusion to some degree. However, linked 
lists give rise to simple difference lists and zippers. The builder patterns for lists, 
bytestring, and text were introduced. We discovered that the array package is 
low-level and clumsy compared to the superior vector package, unless you must 
support Haskell 98. The Map type in containers was a binary tree, whereas some 
hashing-based (functional) implementations resided in unordered containers. We 
used the IO and ST monads to program with mutable state. Finally, we touched 
upon the subject of side-effect composition.

In the next chapter, we will profile and benchmark Haskell code using the GHC 
profiler and criterion. Our aim is to identify space leaks and cost centers. We will 
learn how to structure and annotate programs for easy profiling.
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Profile and Benchmark  
to Your Heart's Content

So far we haven't used much else but heap usage statistics to gauge the performance 
of Haskell programs. For a quick overview of the overall performance of a program, 
a simple +RTS -s is often sufficient. However, often it is necessary to know which 
parts of the code specifically are taking up the most time and space.

In this chapter we extend our toolset with more sophisticated profiling and 
benchmarking facilities. We will learn to inspect and set cost centres, to benchmark 
robustly when semantics are mostly lazy. Finally we'll also look at monitoring 
performance while the program is still running.

• Profiling time, allocation and space usage
• Profiling the heap: break-downs and subset selection
• Benchmarking Haskell programs with the criterion library
• Monitoring still-executing programs in real-time with ekg

Profiling time and allocations
Profiling in the presence of lazy evaluation does not differ much from profiling 
always-strict programs. The profiler that comes with GHC assigns time and space 
usages to cost centres. Cost centres annotate expressions, and can be set either 
manually or automatically by GHC. Cost centres can occur enclosed in other cost 
centres recursively, forming cost centre stacks. All time and space costs accumulate 
in each enclosing cost centre.
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Cost centres can be set manually via annotations, or automatically by GHC via 
compiler flags. Depending on how often the cost centre is entered, the choice of 
cost centre can have a big impact on overall execution time. Fortunately, allocation 
profiling is not affected by chosen cost centers.

Setting cost centres manually
Let's start our profiling journey with a basic example. The following program  
uses the simple moving average function we wrote in the first chapter:

-- file: prof-basics.hs

sma :: [Double] -> [Double]
sma (x0:x1:xs) = (x0 + x1) / 2 : sma (x1:xs)
sma         xs = xs

main =
    let a = [1..1000000]
        b = sma a
        c = sum b
        in print c

We compile and execute this program with Runtime System statistics but no 
profiling yet, to see what the performance is without any overhead from profiling:

ghc -O -rtsopts prof-basics.hs

./prof-basics +RTS -s
5.000009999995e11

264,106,248 bytes allocated in the heap
255,768 bytes copied during GC
44,312 bytes maximum residency (2 sample(s))

...

INIT    time    0.000s  (  0.000s elapsed)
MUT     time    0.105s  (  0.105s elapsed)
GC      time    0.002s  (  0.002s elapsed)
EXIT    time    0.000s  (  0.000s elapsed)
Total   time    0.111s  (  0.108s elapsed)

From the statistics output, we learn that our program executes in about 110ms and 
allocates 260 Megabytes of heap.
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We would now like to know which of the parts a, b, or c is consuming the most 
resources. To do this, we can set cost centres with {-# SCC identifier #-} 
pragmas and so modify our main accordingly:

main =
    let a = {-# SCC "list-" #-} [1..1000000]
        b = {-# SCC "sma-"  #-} sma a
        c = {-# SCC "sum-"  #-} sum b
        in print c

SCC stands for Set Cost Centre. To enable profiling support, we must compile with 
the -prof flag and also enable the -p Runtime System option:

ghc -fforce-recomp -O -rtsopts -prof prof-basics.hs

./prof-basics +RTS -s -p
5.000009999995e11

440,172,808 bytes allocated in the heap
377,968 bytes copied during GC
46,040 bytes maximum residency (2 sample(s))
...

INIT    time    0.000s  (  0.000s elapsed)
MUT     time    0.169s  (  0.173s elapsed)
GC      time    0.003s  (  0.003s elapsed)
RP      time    0.000s  (  0.000s elapsed)
PROF    time    0.000s  (  0.000s elapsed)
EXIT    time    0.000s  (  0.000s elapsed)
Total   time    0.175s  (  0.177s elapsed)

Using ghc -fforce-recomp forces re-compilation. This is useful when changing 
compiler flags but not touching the source code itself. Normally GHC will look at the 
source code files, and if they haven't changed since the last compilation, GHC won't 
recompile.

Immediately we notice the overhead from profiling: the number of allocations 
nearly doubled and execution time also increased from 110ms to 180ms. Also, in the 
statistics there are two new lines: time spent in RP and time spent in PROF. However, 
those are both zero and the overhead is accumulated in MUT, where the meat of our 
program is.
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We note that compiling with profiling adds overhead to all code. Also, it doesn't 
matter whether we used the -p Runtime System flag or not; the overhead is inherent 
in the program itself when we ask to compile with profiling support.  
For this reason, one should compile with profiling only when actually profiling.

By default, -p writes the profiling report into a file named <program>.prof, in  
this case prof-basics.prof. The contents of that file are:

prof-basics +RTS -s -p -RTS

total time  =        0.17 secs   (170 ticks @ 1000 us, 1 processor)

total alloc = 264,104,200 bytes  (excludes profiling overheads)

COST CENTRE MODULE  %time %alloc

list-       Main     72.9   63.6

sma-        Main     22.9   36.3

sum-        Main      4.1    0.0

individual     inherited

COST CENTRE MODULE      no.    entries  %time %alloc   %time  %alloc

MAINMAIN                 47      0      0.0    0.0     100.0  100.0

CAF  Main                93      0      0.0    0.0     100.0  100.0

list- Main               96      1      72.9   63.6    72.9   63.6

sma-  Main               95      1      22.9   36.3    22.9   36.3

sum-  Main               94      1      4.1    0.0     4.1    0.0

CAF   GHC.IO.Handle.FD   90      0      0.0    0.0     0.0    0.0

CAF  GHC.IO.Handle.Text  88      0      0.0    0.0     0.0    0.0

CAF  GHC.Conc.Signal     85      0      0.0    0.0     0.0    0.0

CAF  GHC.Float           84      0      0.0    0.0     0.0    0.0

CAF  GHC.IO.Encoding      2      0      0.0    0.0     0.0    0.0

CAF  GHC.IO.Encoding.Iconv 62    0      0.0    0.0     0.0    0.0

The report contains lots of useful information:

• First, the profiling report conveniently gives us the amount of allocations 
excluding profiling overheads, which unsurprisingly is exactly what we 
observed compiling without profiling support.
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• Second, the cost centres that accrued individual costs are listed. In this case, 
this is all of our manually set cost centres.

• Lastly, the hierarchy of all cost centres are listed. GHC assigns by default 
one top-level cost centre stack, named Constant Applicative Form (CAF), 
for every module. We see that in addition to Main.CAF, some GHC-internal 
module CAFs are also exposed.

• Both individual and accumulated (inherited) costs are shown.

There are also other Runtime System flags besides -p that control time and allocation 
profiling. To get a complete list, we can do executable +RTS -?. Sometimes more 
detailed information can be useful. The extra Runtime System options for time and 
allocation profiling are:

executable:  -p  Time/allocation profile (output file  
  <program>.prof)
executable:  -P  More detailed Time/Allocation profile
executable:  -Pa Give information about *all* cost centres

We can reduce allocations in our sma function with seq:

sma :: [Double] -> [Double]
sma (x0:x1:xs) = let r = (x0 + x1) / 2 in r `seq` r : sma (x1:xs)
sma         xs = xs

Profiling this stricter version of the program, we now get slightly improved 
performance. The important bits of the report are:

total time  =        0.16 secs   (160 ticks @ 1000 us, 1  
  processor)

total alloc = 232,104,232 bytes  (excludes profiling overheads)

COST CENTRE MODULE  %time %alloc

list-       Main     80.6   72.4

sma-        Main     16.9   27.6

sum-        Main      2.5    0.0

Including profiling overheads, we shaved off some 10% of the time, and allocations 
in sma dropped from 36.3% to 27.6%. (The real speed-up is probably somewhat  
more, because the number of entered cost centres didn't change, meaning the 
profiling overhead probably stayed the same. That constant factor eats into the 
percentage increase.)



Profile and Benchmark to Your Heart's Content

[ 68 ]

Setting cost centres automatically
It's not necessary to add cost centres manually with SCC annotations. The GHC  
flag -fprof-auto adds an SCC annotation for us for every binding that is not 
marked INLINE. Be warned though that automatic cost centres might increase  
the profiling overhead a lot! Of course, the same applies to manual cost centres,  
but those are easier to control.

This is what our cost centres would have looked like (with the original lazy sma)  
if we had not specified any cost centres manually:

ghc -O prof-basics.hs -prof -fprof-auto

./prof-basics +RTS -p

total time  =        0.17 secs   (168 ticks @ 1000 us, 1 processor)

total alloc = 264,104,296 bytes  (excludes profiling overheads)

COST CENTRE MODULE  %time %alloc

main.a      Main     77.4   63.6

sma         Main     20.2   36.3

main.c      Main      2.4    0.0

individual     inherited

COST CENTRE MODULE no.     entries  %time %alloc   %time %alloc

MAIN        MAIN   47           0    0.0    0.0   100.0  100.0

main        Main   95           0    0.0    0.0     0.0    0.0

CAF         Main   93           0    0.0    0.0   100.0  100.0

main        Main   94           1    0.0    0.0   100.0  100.0

main.a      Main   99           1   77.4   63.6    77.4   63.6

main.b      Main   97           1    0.0    0.0    20.2   36.3

sma         Main   98     1000000   20.2   36.3    20.2   36.3

main.c      Main   96           1    2.4    0.0     2.4    0.0
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Here we note a few differences from manual cost centres:

• -fprof-auto added cost centres for a, b, and c, but also the sma  
function binding. We see that we entered a total of 1,000,000 times  
into the sma function.

• The costs associated with sma are now included in the sma function, instead 
of the binding where we added the manual cost centre. But the accumulated 
costs in the binding haven't changed.

Prior to GHC 7.4.1, -fprof-auto was known as -auto-
all, which is apparently still recognized, at least in the 
GHC 7 series, but deprecated nonetheless.

Within the strict sma, the added r binding will get assigned a cost centre:

individual     inherited

COST CENTRE MODULE no.    entries  %time %alloc   %time %alloc

CAF         Main  93         0      0.0    0.0   100.0  100.0

main        Main  94         1      0.0    0.0   100.0  100.0

main.a      Main  99         1      69.4   72.4   69.4  72.4

main.b      Main  97         1      0.0    0.0    27.1  27.6

sma         Main  98      1000000   26.5   27.6   27.1  27.6

sma.r       Main  100     999999    0.6    0.0    0.6   0.0

main.c      Main  96         1      3.5    0.0    3.5   0.0

That new cost centre adds so much overhead when invoked a million times that 
time-wise we don't see any improvement over the lazy version when compiled with 
profiling. However, allocations aren't affected.

What if we had both automatic and manual cost centres for the a, b, and c bindings? 
The profiling overhead would have increased even more. In fact, it would have 
increased so much that the strict version is 10% slower than the lazy one when 
profiling!

The takeaway here is that not much can be deduced from profiling just time. 
Allocation profiling is more valuable because profiling doesn't interfere with the 
amount of allocations done (apart from doing its own allocation and subsequently 
subtracting those in the report).
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With -O and higher, GHC routinely lifts constant expressions to the toplevel, but  
this is not normally reflected in the cost centre stack. With the -fprof-cafs flag, we 
ask GHC to assign individual cost centres to CAFs lifted to the toplevel. The upside of 
-fprof-cafs is that the profiling report then more closely resembles the real structure 
of the program, the cost centre stacks don't get so deep, and profiling overheads 
reduce. The downside is that one might need to take a look at the Core (obtained via 
-ddump-simple) in order to figure out what the lifted CAFs correspond to.

Installing libraries with profiling
Profiling programs that depend on extra modules requires that those modules were 
built with profiling support. The libraries that come with Haskell Platform have 
been built with profiling. Some distributions have enabled profiling in their Haskell 
packages and some provide the profiling libraries in separate packages.

Haskell libraries that you have installed via cabal-install, or stack, do not in general 
have profiling enabled. To profile code that uses such libraries, it is necessary to re-
install them with profiling. One can also create a cabal sandbox, which we will not 
cover here.

Enabling profiling for dependencies using stack is easy:

stack build --executable-profiling –-library-profiling

Stack conveniently re-builds all necessary packages that didn't previously have 
profiling enabled.

Using cabal-install re-installs is more tedious. The fastest and most 
straightforward way is to enable library-profiling: True in your ~/.cabal/
config, remove ~/.ghc, and then install packages you want to use.

Debugging unexpected crashes with profiler
The Runtime System features the -xc flag, which shows the current cost centre stack 
when an exception is raised. GHC 8 is the earliest release where actual callstack 
information is available. In earlier versions, we can simulate callstacks with cost 
centres to trace the sources of unexpected exceptions.

Consider the following silly program:

-- file: crash.hs

f = head
g = f . tail
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h = g . tail

main = print $ h [1,2]

Obviously this program will raise a runtime exception. Let's look at the cost  
centre stack:

ghc -prof -fprof-auto crash.hs
[1 of 1] Compiling Main             ( crash.hs, crash.o )
Linking crash ...

./crash +RTS -p -xc
*** Exception (reporting due to +RTS -xc): (THUNK_1_0), stack  
  trace:
GHC.List.CAF
--> evaluated by: Main.g,
called from Main.h,
called from Main.main,
called from Main.CAF
--> evaluated by: Main.main,
called from Main.CAF
crash: Prelude.head: empty list

The cost center stack prints with the most recent entry first. We can trace the error 
to definition g, but not further into f, where the erroneous call to head is. This is 
because, for GHC, f is the same as head, and therefore f doesn't get a cost centre of 
its own. In fact, it isn't possible to even have a cost centre for f with an explicit Set 
Cost Centre (SCC) annotation. If we had written f x = head x, then f would have 
been assigned a cost centre.

Heap profiling
From the profiling report (+RTS -p) we were able to infer how much different cost 
centres allocated space, along with a rough estimate of time spent in cost centres in 
total during the program's lifetime. What if we wanted to see how space usage varies 
across that lifetime? That would be useful to pinpoint space leaks that manifest 
themselves only at certain events.

GHC includes a heap profiler, which put simply snapshots heap usage at small fixed 
intervals and generates a time-dependent report in the form of a .hp file. To enable 
the heap profiler for an executable, the same -prof flag for GHC is enough. Some 
limited heap profiling is also supported when compiled without profiling. The same 
cost centres used for time and allocation profiling are also used for heap profiling, if 
the heap profile is generated or narrowed down based on cost centres.
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To extract a heap report, we need to use some of the -h family of Runtime System 
options. Those options are as follows:

-h<break-down> Heap residency profile (hp2ps) (output file  
  <program>.hp)
   break-down: c = cost centre stack (default)
               m = module
               d = closure description
               y = type description
               r = retainer
               b = biography (LAG,DRAG,VOID,USE)

A subset of closures may be selected thusly:

-hc<cc>,...  specific cost centre(s) (top of stack only)
-hC<cc>,...  specific cost centre(s) (anywhere in stack)
-hm<mod>...  all cost centres from the specified modules(s)
-hd<des>,... closures with specified closure descriptions
-hy<typ>...  closures with specified type descriptions
-hr<cc>...   closures with specified retainers
-hb<bio>...  closures with specified biographies  
  (lag,drag,void,use)

This help message is quite dense. Basically, there are two separate concepts:  
break-down and closure subset selection.

The break-down subset defines the kinds of thing we associate heap residencies 
with. That is, the space taken by heap objects is accumulated in one of the following:

• cost centres (-hc): Pin-point heap residency to automatic or manual (SCC) 
cost centers.

• per-module (-hm): Pin-point residency to Haskell modules.
• closure descriptions (-hd): Constructors and GHC internals.
• Type description (-hy): Types such as Double, String, Maybe, and so on. 

Unknown and polymorphic types are given some approximation.
• Retainers (-hr): We'll discuss retainers shortly.
• Biography (-hb): The state a heap object is in, also discussed later.

The usual strategy is to break the heap profile down by cost centres (-hc). The 
complementary concept to heap break-down is closure subsets. By restricting 
profiling to some subsets of closures, we can narrow down the parts of the program 
we are actually interested in. The same options apply for subset selection as for 
break-down.
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There can be only one break-down option, but multiple closure subset selections. 
With break-down, we choose the level at which we wish to inspect the program; with 
closure subsets, we define the parts of the program we are interested in.

For example, this combination will generate a heap profile broken down by cost 
centres in the Main module of all values of type Double:

+RTS -hc -hmMain -hyDouble

You can also compile without profiling and still use the -h Runtime System  
option, at least with a recent GHC. This eliminates the profiling overhead, leaving 
only minimal overhead from taking residency samples from the heap, but then  
the profiler options are limited to a -h only. When profiling is disabled, a -h  
(long form -hT) is pretty much identical to -hd when profiling is enabled.

Cost centre-based heap profiling
Let's take a real example of heap profiling. The following program calculates the 
Taylor polynomial of degree 800 for the sin function. The approximation is given by 
this formula:
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This is implemented by this program:

-- file: heap-profiling.hs

sin' :: Double -> Double
sin' x = go 0 x where
  go n x
    | n > precision = x
    | otherwise     = go (n + 1) $ x +
        (-1) ** n * x ** (2 * n + 1) / factorial (2 * n + 1)

  precision = 800

  factorial n = product [1..n]

main = print $ sum $ map sin' [0,0.1..1]
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To extract a heap profile of this program, we compile it with:

ghc -rtsopts -prof -fprof-auto heap-profiling.hs

./heap-profiling +RTS -hc -i0.05

The -i0.05 flag sets the interval we want to sample the heap. By default, this is 0.1 
seconds. We halve it for our program to extract enough details.

By default, when just -h is given, the heap profile is generated based on cost centres 
(-hc). The report is written in this case to a file named heap-profiling.hp. It is 
hard to deduce anything meaningful from the .hp file directly. Instead, GHC comes 
with a binary called hp2ps, which produces nice graphs from heap profile reports. 
We can generate a PostScript file from a .hp file with hp2ps:

hp2ps -c -d -e8in heap-profiling.hp

I included some additional arguments there to make the output more readable:

• Colorized output with -c
• Sorting by standard deviation (-d) will push more static bars to the bottom of 

the graph
• The Encapsulated PostScript option (-e) will output in portrait mode  

(the default is landscape)

The graph is written in a file called heap-profiling.ps. It looks like this:
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We see 11 spikes from 11 invocations of sin'. Due to the sampling interval, the spikes 
are not exactly even, and you might get fewer than 11 spikes on your machine. Crank 
up the sampling interval if there aren't enough details visible. If we decreased the 
interval a lot, we would see a lot more details. But this increases overhead, and finer 
details are not always better because they can obscure the bigger picture.

Looking at this graph, we can rest assured that our program isn't leaking memory 
over time. However, when we think about the space complexities of calculating a 
factorial or a series expansion (a sum, basically), those are constant-space. So our 
program is behaving suboptimally.

The problems in our program should be pretty easy to spot now. First, our factorial 
function is based on product, which, similar to sum, requires at least optimization-
level -O to act in constant-space. The other thing is that, in go, the argument x is non-
strict, which results in a chain of thunks being built.

With -O, strictness analyzer is smart enough to fix both of these problems. But if  
we don't want to rely on optimizer magic, we could fix our program with a bang  
and a strict fold:

-- file: heap-profiling-optimized.hs
{-# LANGUAGE BangPatterns #-}

import Data.List (foldl')

sin' :: Double -> Double
sin' x = go 0 x where
  go n !x
    | n > precision = x
    | otherwise     = go (n + 1) $ x +
        (-1) ** n * x ** (2 * n + 1) / factorial (2 * n + 1)

  precision = 800

  factorial n = foldl' (*) 1 [1..n]

main = print $ sum $ map sin' [0,0.1..1]
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The optimized program produces a solid heap profile. The pinned data is data that 
the garbage collector cannot touch. Primitive data types are allocated pinned. From 
the new heap profile we can infer that we are not doing unnecessary allocations 
anymore:

Objects outside the heap
The heap profiler cannot catch all data. Data allocated in the C land belongs to 
this category. The internal representation of a ByteString type is such that some 
allocations happen outside what is reachable for the heap profiler. This can be 
puzzling, as the following example illustrates.

A simple key-based encryption schema is obtained by taking a key k of length n and 
plain text of any length. Split the plain text into chunks, p0…pm, each with length n, 
truncating the last chunk. The first cipher text block is given by b0 = k `xor` p0, and for 
the rest, bn = b{n-1} `xor` pn.

In Haskell, one way to implement this cipher is:

-- file: encryption.hs

import qualified Data.ByteString as B
import Data.Bits (xor)
import System.Environment (getArgs)
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encrypt :: B.ByteString -> B.ByteString -> B.ByteString
encrypt key plain = go key plain
  where
    keyLength = B.length key

    go k0 b
        | B.null b  = B.empty
        | otherwise =
            let (b0, bn) = B.splitAt keyLength b
                r0       = B.pack $ B.zipWith xor k0 b0
                in r0 `B.append` go b0 bn

Here we just loop over the ByteString type, split it into two halves, the first of 
which is of the same size as our key (or less if we have reached the end of the 
ByteString type). We XOR the first half and the key (the first round) or previous 
chunk (subsequent rounds). This becomes a chunk of output. Splitting a ByteString 
type is O(1), and I intentionally included some naive O(n) appending and 
intermediate lists there.

Decryption is symmetric to encryption. Here is the implementation:

decrypt :: B.ByteString -> B.ByteString -> B.ByteString
decrypt key plain = go key plain
  where
    keyLength = B.length key

    go k0 b
        | B.null b  = B.empty
        | otherwise =
            let (b0, bn) = B.splitAt keyLength b
                r0       = B.pack $ B.zipWith xor k0 b0
                in r0 `B.append` go r0 bn

Now let's see how well our implementation performs. Here's a simple main program 
that reads the key and input data from files:

main = do
    [action, keyFile, inputFile] <- getArgs
    key <- B.readFile keyFile
    input <- B.readFile inputFile
    case action of
        "encrypt" -> B.writeFile (inputFile ++ ".out") $ encrypt  
          key input
        "decrypt" -> B.writeFile (inputFile ++ ".out") $ decrypt  
          key input

www.allitebooks.com
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Let's compile with profiling and optimizations:

ghc -O -rtsopts -prof -fprof-auto encryption.hs

To test at a good enough scale, I used a key size of 1 MB and plain text size of 24 MB. 
Those can be generated as random samples:

dd if=/dev/urandom of=key.bin bs=1M count=1

dd if=/dev/urandom of=plain.bin bs=1M count=24

Then run the program and convert the heap report into a graph:

./encryption +RTS -h -RTS encrypt key.bin plain.bin

hp2ps -c -e8in encryption.hp

(Note that, when reproducing this graph yourself, you might need to play with the 
interval setting to get similar granularity. For instance, try a slightly bigger value, for 
example -i0.005.)

This profile is quite peculiar. Those spikes are attributed to what is happening with 
B.pack $ B.zipWith … as that naively constructs from two ByteString a third 
ByteString via an intermediate list (which isn't optimized away in this case). But  
it doesn't make sense that there needs to be about 80 MB allocated simultaneously; 
there's a key of size 1 MB, one 24 MB plain text, and then the resulting ciphertext, 
also with size of 24 MB, so a total of about 30 MB is unknown. What is that extra?
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Doing the math from the graph, we see that, for every 1 MB of output ciphertext 
produced, an extra 1 MB is allocated. The culprit is B.append and non-tail non-
productive recursion.

When we call B.append, it will evaluate its first argument to whnf, collapsing the 
list representation and allocating the first 1 MB. Evaluating its second argument will 
allocate the next 1 MB. But the catch is that B.append is a copying operation, so it 
also allocates the 1 MB for the output in addition. Both the output and the blocks will 
be allocated until the final output ciphertext can be constructed, resulting in twice as 
much space used as necessary.

A better option, as discussed in the previous chapter, is to use the Data.
ByteString.Builder module to produce the output. The necessary changes are 
minimal. An implementation of the encryption step is given here:

-- file: encryption-optimized.hs

import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Builder as Builder
import Data.Bits (xor)
import System.Environment (getArgs)

encrypt :: B.ByteString -> B.ByteString -> B.ByteString
encrypt key plain = L.toStrict $ Builder.toLazyByteString $ go key  
plain
  where
    keyLength = B.length key

    go k0 b
        | B.null b  = mempty
        | otherwise =
            let (b0, bn) = B.splitAt keyLength b
                r0       = mconcat $ map Builder.word8 $ B.zipWith xor 
k0 b0
                in r0 `mappend` go b0 bn
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The heap profile is now very concise, as shown in the following screenshot:

This is about as good as we can get with strict ByteStrings. Of course, the schema 
allows for streaming so using lazy ByteStrings would be more appropriate.

Retainer profiling
Retainer profiling (+RTS -hr) is designed to help track down space leaks.  
The retainer profiler breaks down the heap by retainer sets. The system stack, 
thunks, and explicitly mutable objects are retainers. All live objects are retained  
by one or more retainer objects.

Let's take an example:

let xs = [1..100000]
    a  = sum xs

Here a is a retainer for xs. xs is not yet nothing but an unevaluated, cheap thunk (as 
is a). If we asked for length xs, forcing the evaluation of xs, then xs becomes a large 
evaluated structure in the heap, which is retained by a. The retainer profiler spots 
such retaining and reports a as a retainer for a lot of data. Of course, if we evaluated 
a to WHNF, then it would stop being a retainer, because constructors  
are not retainers.
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Let's take another illustratives example and actually do some retainer profiling.  
The following performs two calculations on two distinct lists:

-- file: mean.hs

mean  xs = sum xs / fromIntegral (length xs)

sumlg xs = sum (map log xs)

main = do
    print $ mean [1..1000000]
    print $ sumlg [1..1000001]

Asking for a retainer profiling, we need to compile with profiling, execute with the 
Runtime System flag -hr, and finally generate a graph from the heap profile:

ghc -rtsopts -prof -fprof-auto mean.hs

./mean +RTS -hr -i0.02

hp2ps -e8in -c mean.hp

Looking at the program and the heap profile graph, the shape looks like what one 
would expect with no optimizations enabled: first, the first list is fully evaluated 
and retained as a whole, and then discarded as we have retrieved its mean. Then a 
similar process takes place for the second list. What is not quite clear though is what 
the (2)SYSTEM and (9)SYSTEM mean retainer sets are.
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When we look at the graph more closely, we see that those system-things become 
retainers after the heap usage at our mean and sumlg functions have peaked, 
implying that our functions have pretty much done their work. After the peak, the 
list is consumed and it is up to the garbage collector to dispose of the list. There is 
a slight delay there, which is why the list shows up in a SYSTEM retainer before it is 
garbage-collected.

The retainer sets are numbered. A dump of all retainer sets is written to the file 
<program>.prof. The retainer sets in the graph correspond to these lines in that file:

SET 76 = {<Main.sumlg,Main.main,Main.CAF>}
SET 8 = {<Main.mean,Main.main,Main.CAF>}
SET 2 = {<SYSTEM.SYSTEM>}
SET 9 = {<SYSTEM.SYSTEM>, <Main.mean,Main.main,Main.CAF>}

We see that the retainers are given as cost centre stacks. This is crucial when 
pinpointing retainers to correct calle-sites.

Recall the ByteString encryption example from before. What would the retainer 
profile for that unoptimized program look like? Much to our surprise, it is in  
crucial ways different from the cost centre-based heap profile. Look at this:

Only some spikes (from the intermediate list) – where are the large ByteStrings? 
There sure were some in the other heap profile!
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This is a shortcoming of the heap profiler, or a consequence of the foreign pointer 
representation used in the bytestring library. The retainer profiler is unable to follow 
ByteStrings to their retainers, and in fact it isn't a given that the cost centre-based report 
is always totally correct either. This is something that needs to be kept in mind when 
using libraries, such as bytestring, that use foreign pointers in their data structures.

It is a good idea to always check the Runtime System memory statistics with +RTS 
-s, as that will always give exact memory usage.

Biographical profiling
The last kind of break-down we can ask from GHC is the biographical breakdown. 
Biographical profiling sorts heap objects into four categories:

• State LAG: From creation of the object to its first use
• State USE: From first use of the object until its last use
• State DRAG: From final use of the object until the last reference is dropped
• State VOID: Object is never used in its lifetime

Here's an example biographical profile of the ByteString encryption program from 
before. Like in the retainer profile, here too the big ByteStrings are not shown. The 
now familiar spikes are shown as lagging, as expected of a large list that is constructed 
and then consumed. Then some big data structures seem to show up at the end of the 
program execution. Something that is used and something that is lagging:
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I used the following Runtime System options in generating this graph:

./encrypt key.bin plain.bin +RTS -hb -i0.002

Again, experiment with the interval setting to find the correct granularity on your 
machine.

Looking at this graph, it's hard to say much about anything. A more useful use case 
for biographical profiling is to use biographical data in the subset selection, and 
break-down using some other criteria, such as cost centres.

A usual example would be to find cost centres that produce heap objects in DRAG  
or VOID states. This is achieved with:

program +RTS -hc -hbdrag,void

Then we could find retainers for those cost centres with the +RTS -hr -hccc1,cc2, 
and so on program. Note that GHC cannot currently do both biographical and 
retainer profiling simultaneously, so +RTS -hr -hbdrag,void is unfortunately  
not allowed.

Benchmarking using the criterion library
Profiling aside, benchmarking the time a calculation takes to perform is a direct 
indicator of real-world performance. Benchmarking Haskell applications is pretty 
much dominated by the criterion library. There is a system called nofib, which is 
used to benchmark GHC itself, but for applications criterion is superior. Criterion 
even produces interactive web pages describing the results of benchmarks, which  
is a nice feature.

This text is written for criterion-1.1.1.0. Obviously, the criterion package needs  
to be installed:

cabal install criterion       # or: stack install criterion

A criterion benchmark suite is created as a normal Haskell program. An example  
is this:

–– file: benchmark.hs

import Criterion.Main
import Data.List (foldl')

main = defaultMain [
  bgroup "sum" [ bench "sum"    $ whnf sum            [1..1000000]
    , bench "foldr"  $ whnf (foldr (+) 0)  [1..1000000]
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    , bench "foldl"  $ whnf (foldl (+) 0)  [1..1000000]
    , bench "foldl'" $ whnf (foldl' (+) 0) [1..1000000]
  ]
]

What is going on here is that:

• We imported Criterion.Main, which imports the most used criterion 
functions.

• We used Criterion.Main.defaultMain as our program, giving it a list  
of type [Benchmark].

• With bgroup :: String → [Benchmark] → Benchmark we defined a group 
of sum benchmarks.

• For whnf :: (a → b) → a → Benchmarkable we gave different 
implementations of sum to create something benchmarkable for us. Like the 
name suggests, the result b is evaluated to WHNF, which marks the end of 
the benchmark run.

• With bench :: String → Benchmarkable → Benchmark we defined 
benchmarks from something benchmarkable, giving them some descriptive 
names.

When we compile with optimizations and run this program, we get the  
following results:

benchmarking sum/sum
time                 309.2 ms   (281.0 ms .. 344.2 ms)
0.996 R²   (0.983 R² .. 1.000 R²)
mean                 310.4 ms   (300.6 ms .. 316.5 ms)
std dev              9.535 ms   (4.148 ms .. 12.65 ms)
variance introduced by outliers: 16% (moderately inflated)

benchmarking sum/foldr
time                 66.14 ms   (62.61 ms .. 69.17 ms)
0.994 R²   (0.988 R² .. 0.998 R²)
mean                 67.27 ms   (65.21 ms .. 71.28 ms)
std dev              4.686 ms   (2.113 ms .. 7.483 ms)
variance introduced by outliers: 17% (moderately inflated)

benchmarking sum/foldl
time                 318.8 ms   (276.3 ms .. 365.7 ms)
0.988 R²   (0.939 R² .. 1.000 R²)
mean                 315.6 ms   (294.8 ms .. 329.6 ms)
std dev              23.17 ms   (9.738 ms .. 32.22 ms)
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variance introduced by outliers: 18% (moderately inflated)

benchmarking sum/foldl'
time                 20.16 ms   (20.10 ms .. 20.22 ms)
1.000 R²   (1.000 R² .. 1.000 R²)
mean                 20.17 ms   (20.14 ms .. 20.25 ms)
std dev              110.4 μs   (47.27 μs .. 202.3 μs)

No-one is surprised to see that foldl' is fast or that foldr is not too far behind. But 
recall how in the first chapter we noted that sum [1..n] and similarly foldl (+) 0 
[1..n] were equivalent to foldl' (+) 0 [1..n]. So why are these now so much 
slower in our benchmark?

Simply because whnf by design doesn't inline sum or foldl cannot be optimized: 
they're forced to consider the list as a black box. This forces the benchmark situation 
to be such that the benchmarkable function cannot make assumptions about its 
argument at compiletime, often simulating the real use case.

But inlining is often crucial for performance, so you shouldn't blindly perform 
microbenchmarks on, for example, parts of vector code that as a whole would be 
largely fused away.

To confirm our suspicion, let's add a few more benchmarks where the list is now 
inside the benchmarkable function:

bgroup "foldl"
[ bench "_"  $ whnf (\_ -> foldl (+) 0 [1..1000000])  
  undefined
, bench "()" $ whnf (\() -> foldl (+) 0 [1..1000000]) ()
, bench "num"  $ whnf (\n -> foldl (+) 0 [1..n]) (1000000)
, bench "num (strict)"  $ whnf (\n -> foldl' (+) 0 [1..n])  
  (1000000)
]

Running the benchmarks now with HTML output (benchmark – output results.
html) we get a webpage which, among benchmark-specific analysis, contains  
this graph:
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Now we see clearly that, when the list is generated within the benchmarkable 
function, foldl is equivalent to foldl'. And if we defined the list as a constant 
within the function, then GHC deduces that it is a constant and lifts it into a CAF 
which is memoized, resulting in a sum implementation that sums a million elements 
in a few petty nanoseconds.

Benchmark results should be taken with a grain of salt, especially ones that seem too 
fast. It is hardly ever trivial to guess which expressions are optimized into what. The 
rule of thumb is that, when the result of the benchmarkable function depends on 
the environment (the second argument to whnf), then the time taken to evaluate the 
result will resemble the real cost.

Apart from evaluation to WHNF, other benchmarkable things supported by 
criterion are:

nf :: NFData b => (a → b) → a → Becnhmarkable
nfIO :: NFData a => IO a → Benchmarkable
whnfIO :: IO a → Benchmarkable

So there is another pure benchmark, something that requires the result to be some 
NFData, and IO action variants for both pure benchmarks.

NFData stands for Normal Form Data, which is a stronger notion than Weak Head 
Normal Form. In normal form, the structure is fully evaluated, meaning there are 
no unevaluated thunks, even deep down the structure. NFData is provided by the 
deepseq package. The only method in the NFData typeclass is rnf :: a → (), 
implementations of which are just recursive calls to rnf and seq. Starting with GHC 
7.2, instances can be derived for anything for which the Generic typeclass (from 
GHC.Generics) is derived. Refer to the documentation of the deepseq package for 
the details.

With normal form, we can benchmark the total evaluation of big algebraic data 
structures such as trees. However, it should be kept in mind that, in real scenarios, 
it is rarely the case that a big lazy structure needs to be evaluated fully. What this 
means is that such a benchmark doesn't accurately describe real amortized execution 
times.

Criterion works so that it executes a benchmark for a few different numbers of 
iterations. For a well-behaving, predictable benchmarkable function or action, 
execution times increase linearly when the number of iterations increases. Criterion 
uses linear regression to measure this, giving an ordinary least-squares regression 
estimate for a single execution, R2 goodness-of-fit of the regression, along with mean 
execution time and standard deviation.
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A general guideline for reading results from a criterion benchmark is to look at 
whether R2 is close to 1. If it's much less than 1, it means that either there's something 
wrong with the benchmark itself or that indeterminism in the benchmarkable thing 
is producing a lot of deviation in single execution times. The ordinary least squares 
regression estimate is probably closer to the expected execution time than the mean 
execution time is, because outside disturbances in the benchmarking environment 
can result in outliers that affect the mean more than the regression estimate.

Although the default regression predicts execution time from iterations, other 
combinations are possible with the --regress criterion command line argument 
or the respective regressions config field, regressions. For example, --regress 
allocated:iters performs a regression of allocations given iterations. Extra 
regressions produce additional output, such as:

allocated:           1.000 R²   (1.000 R² .. 1.000 R²)
iters              23.999     (23.995 .. 24.004)
y                  275.081    (-20091.728 .. 19504.093)

Another R2 goodness-of-fit is given for the regression, along with the slope and 
y-intercept of the fitted line. Like many other regression metrics, measuring 
allocations from within the program requires enabling the Runtime System 
parameter +RTS -T. Refer to the criterion documentation to learn about other 
available regression metrics.

The criterion library is designed such that it should be relatively easy to adapt it 
to cover wildly different use cases. All necessary datatypes and utility functions 
are exported and all exported identifiers are extensively documented. JUnit-style 
reporting is also supported.

Profile and monitor in real time
The heap profile report file <program>.hp is generated as the program executes, so 
it's perfectly fine to take a snapshot of the file at any time and visualize it with hp2ps, 
even if the program is still busy executing. Because very basic heap profiling (-hT) 
is possible without having compiled with profiling support, it is possible to produce 
running heap profiles with a very small overhead.

Increasing the sample interval -i to something relatively big, such as a couple of 
seconds, it is very feasible to extract heap profiles from long-running programs even 
in production environments.
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A quick-and-dirty trick that isn't for the light-hearted is the -S Runtime System 
option. This option prints garbage collector statistics every time a cleanup takes 
place, in realtime. This includes bytes allocated, bytes copied, bytes live, time 
elapsed, and how long the garbage collector took. To make some sense of the output, 
it might make sense to limit the number of generations in the garbage collector to 1 
(the default is 2). So +RTS -S -G1.

Monitoring over HTTP with ekg
We are now familiar with profiling and benchmarking applications executing locally. 
We also know how to extract garbage collector information from programs running 
locally, but what if the program was running on a server? Things are no longer so 
convenient.

It would be nice to be able to monitor the performance of programs running on 
servers in realtime, and perhaps to store performance history in some timeseries 
database for later investigations.

A package called ekg provides a ready solution for the first wish, namely real-time 
monitoring, and also a quite mature set of features for collecting statistics from 
Haskell programs. It provides a REST API out-of-the-box, which can be used to  
fetch data into time-series databases.

The first step with a new library is again to install it. This also installs the ekg-core 
library, which contains metrics. The ekg library provides the monitoring application:

cabal install ekg

Now we get to an example. A silly example, but still an example: a program 
that repeatedly asks for a number and prints the factorial of that number. For 
some reason or other, we want to monitor the performance of our command-line 
application via HTTP. Implementing this program is very straightforward:

-- file: ekg-fact.hs

{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad
import System.Remote.Monitoring

main = do
    forkServer "localhost" 8000
    forever $ do
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        input <- getLine
        print $ product [1..read input :: Integer]

Adding real-time monitoring over HTTP to our command-line program was a matter 
of adding one import and one extra line in main. When compiling, we should enable 
the -T Runtime System option to enable ekg to collect GC statistics. It is also a good 
idea to enable at least -O. On multithreaded systems, we may likely also want a 
threaded runtime, so that the program doesn't need to share the same system core 
with the monitoring subsystem. All in all, we have:

ghc -O -threaded -rtsopts -with-rtsopts='-N-T' ekg-fact.hs

ekg-fact

Now we can open a browser at http://localhost:8000 and get a real-time view of 
the performance of our program. A portion of the page is shown here:

It's possible to add our own metrics for ekg to monitor. As an example, let's add to 
our program a metric that counts the number of factorials we have calculated:

{-# LANGUAGE OverloadedStrings #-}
module Main where

import Control.Monad
import System.Remote.Monitoring
import System.Metrics
import qualified System.Metrics.Counter as Counter
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main = do
    server <- forkServer "localhost" 8000
    factorials <- createCounter "factorials.count"
                                (serverMetricStore server)
    forever $ do
        input <- getLine
        print $ product [1..read input :: Integer]
        Counter.inc factorials

First we needed to import metric modules from the ekg-core package. Then we 
created a new Countertype metric with createMetric. After calculating a factorial, 
we increase that counter by one.

The JSON API that comes with ekg is quite simple. We can retrieve all metrics by just 
requesting the root with content-type JSON:

curl -H "Accept: application/json" http://localhost:8000

{
  "ekg": {
  "server_timestamp_ms": { "type": "c", "val": 1460318128878 }
},
"rts": {
  "gc": {
    "gc_cpu_ms": { "type": "c", "val": 624 },
[…]

If we are only interested in one metric, say our new factorials.count metric, we 
can only request it specifically, like so:

curl -H "Accept: application/json"  
http://localhost:8000/factorials/count
{"type":"c","val":12}

It's not hard to imagine integrating ekg-monitoring to time series databases. Using 
the REST API is straightforward, but the ekg library is so flexible that a push-model 
wouldn't be too hard either.
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Summary
We started this chapter by profiling programs by cost centres, which can be set 
automatically (-fprof-auto) or manually (SCC-annotations). We learned that there 
is overhead in profiling, which is why execution times are an inaccurate metric when 
profiling. Allocations remained a good measure of performance in any case. We used 
the heap profiler to produce informative graphs about memory usage over time, and 
to spot unwanted allocations and retainers.

We explored different options in the GHC heap profiler: break-downs and subset 
selections, both of which draw more or less from the same pool of parameters. The 
default break-down was by cost not yet finished.

Finally, we looked at two additional libraries, criterion for benchmarking and ekg 
for monitoring. In discussing criterion, we stumbled upon the concept of normal 
form, which will also come up later on when we discuss parallelism. Adding 
real-time graphical garbage garbage collector monitoring via HTTP to a Haskell 
application was a real breeze with ekg, and the library fully supports custom metrics 
and extending the monitoring system.

In the next chapter, we will pull everything together from these first three chapters 
and discuss some of the fine details of developing Haskell at scale: structuring bigger 
projects using cabal and stack. We will look at some less common performance tricks 
such as lazy patterns and rewrite rules, revisit and introduce some concepts such as 
inlining and specializing, and briefly discuss practical type-level programming.
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The Devil's in the Detail
In this chapter, we pull together knowledge and techniques from previous chapters 
and learn to apply those techniques in large and complex projects. In particular, we 
will use cabal-install and stack to help us cope with multi-file projects and even 
projects with multiple subprojects. We learn how, and especially how not, to throw 
and recover from exceptions in Haskell.

Having good test coverage is as important in a Haskell project as it is in projects 
written in any other language. But because Haskell's type-system is so expressive, 
the number of necessary test cases is greatly reduced. Also, new extensions for the 
type-system in GHC are constantly being experimented with. Consequently, there 
is a bunch of language extensions considered more or less experimental, and some 
extensions are just not enabled by default yet in the current standard (Haskell 2010).

This chapter concludes the first part of this book. Already from the three previous 
chapters, you are well equipped to create and optimize programs in vanilla Haskell 
and to use some high-quality libraries effectively. After this chapter, you will know 
how to structure Haskell projects of any size, handle exceptions correctly, and 
test code. In addition, we will look at the usual use cases for some new language 
extensions. The following topics will be covered in this chapter:

• Structuring larger projects using cabal-install and stack
• Writing tests for Haskell code
• Throwing errors and handling exceptions
• Best practices, tips, and tricks for writing robust, predictably fast Haskell
• Going beyond Haskell 2010 with modern language features
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The anatomy of a Haskell project
A typical Haskell project consists of one or several of the following sections:

• Library (modules); A no-brainer for library authors. But most applications 
are also structured so that most code resides in distinct modules.

• One or more executables.
• Tests and benchmarks.
• Other source files and assets.

All of these are supported by Cabal. Starting with a new project from scratch, we can 
use cabal init to create a .cabal file with basic information such as the package 
name and maintainer details already filled in. Moreover, if you already have a bunch 
of Haskell source files in your working directory, then Cabal will add those to the 
.cabal file and even guess package dependencies for you.

The structure often found in projects that have both a library and an executable is to 
place library code and the executable's source files under different subdirectories. If 
we have a single library module, dubbed Lib, and a main, the structure would be:

some-package/
   src/Lib.hs
   app/main.hs

This is assuming the file contents are:

-- file: some-package/src/Lib.hs

{-# LANGUAGE OverloadedStrings #-}
module Lib where
import Data.ByteString as B
import qualified Data.ByteString.Char8 as C8
foo :: B.ByteString -> IO ()
foo = C8.putStrLn . B.append "foo"

-- file: some-package/app/main.hs

{-# LANGUAGE OverloadedStrings #-}
import Lib
main = foo "bar"
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Invoking cabal init -n –is library under some-package, will create a .cabal file 
for us. The generated file looks like this (omitting some uninteresting lines):

-- Initial some-package.cabal generated by cabal init.  For further
-- documentation, see http://haskell.org/cabal/users-guide/

name:                some-package
version:             0.1.0.0
license:             BSD3
license-file:        LICENSE
build-type:          Simple
-- extra-source-files:  
cabal-version:       >=1.10

library
  exposed-modules:     Lib
  -- other-modules:       
  -- other-extensions:    
  build-depends:       base >=4.8 && <4.9, bytestring >=0.10 &&  
    <0.11
  hs-source-dirs:      src
  default-language:    Haskell2010

We notice a few things here. Firstly, the build-type is Simple. This holds for almost 
every package, so no need to worry about it. Then we have an extra-source-files 
field. In this field, we can list the non-Haskell, non-C source files required to build 
the package, and files that should be distributed with the package (such as a README).

Next, we have a section labeled as library. There can be only one library section 
per package. The library section is usually of most interest, because that's where 
all the interesting code is located. There are other parameters besides the ones listed 
here, but those most often used are:

• default-language: The language standard used in this package (currently 
either Haskell 98 or Haskell 2010).

• build-depends: Other packages this package depends on and their accepted 
version ranges.

• exposed-modules: Modules that are exposed for users of the library.
• other-modules: Modules that are hidden from users of the library. Unless 

it breaks internal consistency, it is advised to export internal modules too, 
because it is hard to predict all possible use cases of a library.

• hs-source-dirs: The directory under which module files are located.
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Now that we can build the library, we need to tell Cabal how to build the executable 
as well. Unfortunately, current cabal init will not add both library and executable 
definitions for us, so we need to write one of them manually. Fortunately, a minimal 
executable section is only four lines appended to our .cabal file:

executable foo
  main-is:             app/main.hs
  build-depends:       base, some-package
  default-language:    Haskell2010

A single package can provide multiple executables, which is why we had to specify 
a name for it (foo). Then we need to specify which file contains main (app/main.hs) 
and the dependencies. Note that we had to explicitly depend on our package (some-
package) to use our library modules. Last, the default-language needs also be 
specified for executables.

At this point, we can use cabal build to build both the library and executable,  
use cabal install to install the executable(s) under ~/.cabal/bin, create a 
Hackage-ready source distribution with cabal sdist, and so on.

Useful fields and flags in cabal files
We can specify many other things in the cabal file as well. For example, in our 
example package, we had the OverloadedStrings extension enabled in all files. 
We could make this a default by adding the following line to the library and 
executable sections:

default-extensions: OverloadedStrings

It is also good practice to list conditionally used extensions (via LANGUAGE pragmas) 
in the other-extensions field.

Any cabal file section can be disabled by setting its buildable field to false,  
for example:

executable foo-win
  buildable: False
  […]

Cabal supports conditionals and a few built-in functions such as os(name), meaning 
we can, for example, conditionally enable some sections (or set any fields for that 
matter). The preceding code would be better written as:

executable foo-win
  if !os(windows)
    buildable: False
  […]
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But note that the following would not work. The executable wouldn't be built  
under any conditions:

executable foo-win
  buildable: False
  if os(windows)
    buildable: True
  […]

The reason is that, in a technical sense, Cabal doesn't override a field when the same 
field has been declared multiple times. Instead, the occurrences are combined and, 
for one reason or an other, False takes precedence over True in cabal flags.

The combination of list-like fields such as build-depends, default-extensions, 
and so on is simply the union of all declarations. To build a Lib.Windows module 
only when building for a Windows machine, we could do this:

library
  exposed-modules: Lib
  build-depends: base <4.9, transformers >= 0.3 && < 0.6
  if os(windows)
    exposed-modules: Lib.Windows
    build-depends: transformers < 0.5

Note that we were able to tighten the version bounds within a conditional block. On 
the other hand, it is not possible to loosen bounds; bounds are simply concatenated, 
so the final bounds for transformers become >=0.3 && <0.6 && <0.5.

In addition to built-in functions, cabal supports defining flags within the cabal file 
itself. Package flags can be used in conditionals. To define a development flag, we 
add a new flag section into the cabal file:

flag development
  description: Enable development features
  default: False

The new flag can now be used, for example, in conjunction with the ghc-options 
field to enable profiling in development mode:

library
  […]
  if flag(development)
    ghc-options: -prof -fprof-auto
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A detail that's good to keep in mind if you're conditioning on build-depends or 
*-extensions with a flag is that by default Cabal will resolve on flags when looking 
for a plausible build plan. First Cabal tries the default flag value(s) and if that fails,  
it tries to negate flags until a build plan is found. If this behavior is not desired,  
a manual: True field can be added for the flag.

Flags are explicitly enabled via the -f argument for configure and its super 
commands:

cabal configure -fdevelopment

cabal install -f-development

The former enables the development flag, while the latter disables it.

Test suites and benchmarks
Cabal supports declaring test and benchmark suites within a cabal file. These are 
defined as sections, like executables. Examples of both are:

test-suite test-props
  type:           exitcode-stdio-1.0
  main-is:        properties.hs
  hs-source-dirs: tests
  build-depends:  base, some-package

benchmark bench-foo
  type:           exitcode-stdio-1.0
  main-is:        benchmarks.hs
  hs-source-dirs: tests
  build-depends:  base, some-package, criterion

Like executables, both test and benchmark suites require an identifier. It's possible 
to define multiple test-suites and benchmarks with different names. The usual 
usage of cabal test-suites and benchmarks consists of the exitcode-stdio-1.0 
type, which requires a main-is field, and basically just tells Cabal that, to run this 
test or benchmark, the accompanying program should be executed and the exit code 
inspected. If the program exits cleanly, the suite finished successfully.

And, just like the other sections, tests and benchmarks must have their build-
depends explicitly listed. This is sometimes quite annoying, if the list of 
dependencies is the same for the library and its test-suite. Unfortunately, there is 
no simple solution to avoid this duplication.
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If you only need to test the public API, then it makes sense for the test-suite to 
depend only on the base and the library. But often the internals need testing, in 
which case the only option is to list the often almost identical lists of dependencies. 
Many times, the version bounds are left out from the test-suite, because the 
library's dependencies already enforce those.

To run tests and benchmarks, we invoke cabal as:

cabal configure --enable-tests --enable-benchmarks

cabal build

cabal test

cabal bench

If you want try these commands now, create dummy tests/
properties.hs and tests/benchmarks.hs files with a 
main in them. We'll look at testing a bit later in this chapter.

Using the stack tool
Since its release in Spring 2015, the stack tool and stackage.org service by FP 
Complete have provided a lovely solution for the notorious "Cabal Hell" problems. 
In many ways, the stackage ecosystem is superior to cabal, or cabal with sandboxing. 
The core feature of stack is internally consistent releases of Haskell packages and 
reusable builds, along with many other cool features such as managing GHC 
versions and building Docker images.

As an aside, the notorious challenge with Haskell package management, relative to 
package management in many other languages, is mostly blamed on cross-module 
inlining – it's impossible for two different versions of the same package to coexist in 
the same dependency graph.

In normal Haskell development, transitioning from a cabal-based workflow to a 
stack-based one is for the most part as simple as changing all occurrences of cabal 
commands for stack commands. The subcommands and arguments don't need 
touching. For example, cabal test translates to stack test, cabal install to 
stack install, and so on.

Stack does not subsume cabal; in fact, the only feature of cabal-install that is 
wholly subsumed by stack is sandboxing. Otherwise, stack just calls out to cabal with 
some extra arguments. This also means that the cabal files are just as important with 
or without stack.

stackage.org
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To use stack to build our toy project we cabalized previously, we need to create a 
stack.yaml file for it. This is accomplished with stack init:

stack init --prefer-lts

That --prefer-lts is optional, and just tells stack to choose a long-term support 
snapshot of Haskell packages from stackage as the basis of the project. Our stack.
yaml file now looks something along these lines:

# For more information, see: http://docs.haskellstack.org/en/stable/
yaml_configuration.html

resolver: lts-5.11

packages:
- '.'

extra-deps: []

flags: {}

The syntax is just normal YAML syntax. On the first non-comment line, we specify 
the resolver (lts-5.11). This is a snapshot of popular and maintained packages 
guaranteed to work together. On the next line, we specify which cabal packages 
belong to this project. In this case, it's just the current directory ('.').

Often a project needs to use packages that are outside the stackage snapshot. Using 
the extra-deps array, we can augment the snapshot with arbitrary packages from 
Hackage. The catch here is that we need to specify explicit versioning, for example:

extra-deps:
- acme-missiles-0.3

With the flags section, we tell stack to build packages with specific values of cabal 
flags. For example, we can enable the development flag in our project by default:

flags:
  some-package:
    development: true

For more configurables and stack commands, refer to the stack manual at  
http://docs.haskellstack.org/en/stable/README.

http://docs.haskellstack.org/en/stable/README
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Multi-package projects
When a project evolves into something bigger and complexity increases, it 
sometimes makes sense to split the project into multiple cabal packages. The Cabal 
infrastructure doesn't care how you organize your packages, as long as every cabal 
file is named by the project (the name field within the file) and resides in a directory 
with no other cabal files.

In general, two tactics are seen in the wild to organize multi-package projects 
(assuming a version control system):

• Separate repositories for every package, possibly with a super-repository that 
links to single repositories (for example with Git submodules)

• A catch-em-all mega-repository with subdirectories for every package

The choice is largely dependent on the nature of the project and people's preferences. 
In the end, the workflows in both organization schemas are very similar. The 
packages can be installed individually using cabal-install or declared in stack.
yaml packages field. For example, the Yesod framework is structured as a mega-
repository and the accompanying stack.yaml looks like this:

resolver: lts-5.6
packages:
  - ./yesod-core
  - ./yesod-static
  - ./yesod-persistent
  - ./yesod-form
  - ./yesod-auth
  - ./yesod-test
  - ./yesod-bin
  - ./yesod
[…]

More information on cabal and stack can be found in their manuals. Also, the 
stackage.org site has pointers to many useful pieces of information. In the next 
section, we will leave structuring concerns behind and get back to coding instead.

Erroring and handling exceptions
Haskell very intentionally does not have a null/None/nil value like many 
popular languages have, both strongly typed (Java) or not (Perl). Null values are 
exceptionally bad for program safety. Null values are not expressed in types, giving 
nulls no choice but to hide from the unsuspecting programmer and pop into sight in 
production.

stackage.org
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Nulls are one of the main causes of bugs and security holes in today's software, 
which is why Haskell has opted for a no-null policy. This might sound restrictive at 
first, but actually the alternative representations for possibly failing computations in 
Haskell are various and rich.

First, there are infinite ways to embed the possibility of failing into the datatype: 
Maybe, Either, YourAwesomeDataType, and so on.

Second, with the wonderfully extensive abstraction machinery in Haskell we can 
compose and recover from failing situations on a very high level. Although these 
functors, monoids, monads, and whatnots have scarily abstract names "borrowed" 
from Category Theory, a branch of very abstract mathematics, their incarnations in 
Haskell are easy to grasp and their benefits are many.

The worst way to handle any error in Haskell is to use error or undefined. Undefined 
particularly should almost always be considered heresy – error is always better 
because at least an error message can be given. Both error and undefined indicate an 
anomalous program state, from which recovery should not be attempted. Moreover, 
they are pure and asynchronous; a nightmare for referential transparency.

Handling synchronous errors
The exceptions interface shipped with GHC is in the Control.Exception module. 
All exceptions (including error and undefined) are represented as a SomeException, 
which is a datatype defined as:

data SomeException = forall e. Exception e => SomeException e

Different exceptions are defined as their own datatypes, such as:

data IOException
data AssertionFailed = AssertionFailed String
data PatternMatchFail = PatternMatchFail String
data ErrorCall = ErrorCall String -- when called error

Unlike some other languages, Haskell does not have any built-in try…catch style 
constructs to handle exceptions. Instead, exceptions are thrown and handled with 
just normal functions.

Synchronous errors in the IO monad are thrown with throwIO :: Exception e => 
e → IO a. This is the best option to fail when working in IO, because the exception is 
guaranteed to be thrown at that point in the IO action.

Because there are no special try…catch style constructs in Haskell, for better or 
worse we can get creative with patterns for catching and recovering from errors.  
For example, using catch is rarely the best or even a good option.
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Often we want to perform some action to acquire a resource, such as a file handle; 
do something with that resource; and release the resource when we are done or an 
exception was raised in the middle. We capture this pattern in a single  
function, bracket:

bracket :: IO a → (a → IO b) → (a → IO c) → IO c

bracket openFile closeFile (\fileHandle → doSomething)

In other situations, we want to only perform some cleanup action after a 
computation has finished, no matter what happened. For this we have:

finally :: IO a → IO b → IO a

Sometimes we would like to perform a computation but not really do anything with 
the exception yet – just return it for later inspection further down the program. For 
this we have try, which wraps the result in an Either:

try :: Exception e => IO a → IO (Either e a)

Despite it being convenient to catch virtually all exceptions, this sort of catching 
should be handled with great care. Especially if you are retrying a computation 
when it raises an exception, you shouldn't blindly discard all exceptions and try 
again; what if the user wants to abort and your program ignores the UserInterrupt 
exception? Or the operating system wants to kill your program gracefully, but your 
program ignores that wish too? Only catch exceptions you are prepared to handle!

Also, catching multiple exceptions does not require catching all exceptions. Using 
catches and multiple different Handler exceptions from one computation can be 
handled differently:

catches :: IO a → [Handler a] → IO a

data Handler a = forall e. Exception e => Handler (e → IO a)

An example of handling user interruption differently from an IO exception is:

catches someComputation
    [ Handler $ \UserInterrupt -> handleUserInterrupt
    , Handler $ \(e :: IOException) -> handleIOException ]

Note that, although exception handlers can be chained with multiple catch 
statements, the semantics are different from using a single catch, in that, in chained 
invocations of catch, previous handlers could throw exceptions that get caught in 
the next handlers.
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The exception hierarchy
What is common for all exceptions is that they all must implement Show and 
Exception, the latter of which is given by:

class (Typeable e, Show e) => Exception e where
  toException :: e → SomeException
  fromException :: SomeException → Maybe e

It is possible (and you are encouraged) to define your own exception types. The 
simplest custom exception would be:

data MyException = MyException deriving (Show, Typeable)
instance Exception MyException

Looking at the Exception class, it would seem like the toException would be 
redundant – it has exactly the same signature as the SomeException constructor has.

The point in calling the SomeException constructor via toException is that, this 
way, arbitrary hierarchies of exceptions can be built. What is meant by exception 
hierarchy is that, when exceptions A and B are under C, we can create exception 
handlers for only A, only B, or both A and B as only C.

Say we are building an application that we would like to throw exceptions in some 
situations. Furthermore, we want to catch some of those exceptions within the 
application, while some application exceptions should be caught further up.

We start with an exception type that will represent all application exceptions. Our 
SomeApplicationException resembles the root SomeException type, in that both 
just wrap some other (ad hoc polymorphic) exception:

-- file: errors.hs
data SomeApplicationException =
    forall e. Exception e => SomeApplicationException e
    deriving Typeable

instance Show SomeApplicationException where
    show (SomeApplicationException e) =
        "application: " ++ show e

instance Exception SomeApplicationException

In all, three things are going on here:

• We derived a Typeable instance for our custom exception type. This is 
necessary for coercion to and from SomeExceptions.

• We wrote a Show instance for the type. Because our exception is now an 
existential, we cannot derive Show.
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• We added an instance for Exception. The default implementations of the 
methods will suffice here.

Next, say our application includes some sub-procedures we call workers. These 
workers can fail and throw exceptions. We would like to separate these worker 
exceptions from other exceptions in our application, but still have it so that catching 
application exceptions catches worker exceptions as well.

To achieve that, we again create a new exception type and make it an instance of 
Typeable, Show, and Exception. But this time, the Exception instance is more 
involved:

data WorkerException = WorkerException String deriving (Show,  
  Typeable)

instance Exception WorkerException where
    toException = toException . SomeApplicationException
    fromException x = do
        SomeApplicationException e <- fromException x
        cast e

What is going on in that instance is that toException first wraps the worker 
exception into an application exception, and dually in fromException, we coerce  
to an application exception and then inside of that into a worker exception.

Now we can throw a WorkerException, and it will get caught by a worker  
exception handler, an application exception handler, and a generic 
(SomeException) handler:

> let worker = throwIO $ WorkerException "flood"

> catch worker (\e@(WorkerException _) -> print e)
WorkerException "flood"

>     catch worker (\e@(SomeApplicationException _) -> print e)
application: WorkerException "flood"

Handling asynchronous errors
Exceptions thrown with throwIO are always synchronous – they are thrown at 
exactly that point in the computation. Exceptions thrown with throw :: Exception 
e => e → a are always asynchronous – they are thrown when and where an 
attempt to evaluate the result a is made. The error and undefined functions are 
specializations of throw.
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Asynchronous exceptions are particularly vicious in a purely functional language, 
because the code or thread that raises the exception depends on where and when 
an expression is evaluated, and evaluation can be deferred indefinitely. Raising 
exceptions from pure code should be avoided in general; for instance, total functions 
should be preferred to partial functions in most cases.

It is impossible to catch any exceptions from pure code. All catching must happen 
in either IO or STM monads (or monad stacks with either IO or STM at the bottom). 
Catching asynchronous exceptions in IO is no different from catching synchronous 
exceptions. But care must be taken that the computation from which exceptions are 
caught really raises the exception and doesn't only defer it in a thunk.

For example, this does not make sense:

> catch (return $ head []) (\(SomeException _) -> return 0)
*** Exception: Prelude.head: empty list

The exception is not raised within the computation, but it's returned from it and 
raised outside the catch. On the other hand, if we force the evaluation within the 
computation, the exception is raised within the catch:

> catch (evaluate $ head []) (\(SomeException _) -> return 0)
0

Throw and catch in other monads besides IO
The Control.Exception family of throw and catch functions is limited to living 
in IO. This is not really a problem for throwing exceptions in monad stacks over 
IO (we can use lift) or in failure monads such as [], Maybe, or Either. However, 
because the exception handler callback in Control.Exception.catch and others is 
also limited to IO, it means we can't utilize other parts of the monad stack within the 
handler.

Instead of writing manual reconstructions for the monad stack from IO, a better 
option is to use the exceptions package. The exceptions package generalizes 
throw and catch for monad stacks via type-classes:

class Monad m => MonadThrow m where
  throwM :: Exception e => e → m a

class MonadThrow m => MonadCatch m where
  catch :: Exception e => m a → (e → m a) → m a

Instances are provided in particular for monad transformers from the mtl package. 
Many convenient utility functions are also provided; see the documentation of the 
Control.Monad.Catch module from the exceptions package.
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Also, a special CatchT monad transformer and a Catch monad are provided by 
exceptions. CatchT and Catch can be used for mocking exception throwing and 
catching in pure code. Note that catching is limited to exceptions thrown via throwM, 
because "real" exceptions thrown with throw can only be caught in impure code.

Writing tests for Haskell
There are many libraries for testing Haskell code. Besides classic unit tests with HUnit 
and spec testing in Ruby-style with Hspec, we can verify properties using SmallCheck 
and QuickCheck with exhaustive and randomized test cases, respectively.

Property checks
With QuickCheck we can test properties in a randomized fashion. We don't need to 
generate the test cases ourselves, as QuickCheck takes care of that. Here's a quick 
example of testing a simple arithmetic property:

stack ghci --package QuickCheck

> import Test.QuickCheck as QC

> QC.quickCheck $ \x y -> x > 0 ==> x + y >= y

All testable properties in QuickCheck are given as instances of the Testable class. 
As a quick reference, the core interface looks like this:

quickCheck :: Testable prop => prop → IO ()

class Testable prop where […]

instance Testable Property
instance Testable Bool
instance (Arbitrary a, Show a, Testable prop) => Testable (a →  
  prop)

The last instance is perhaps most interesting. That's what allows us to test functions 
of variadic arguments directly with QuickCheck, like in our example.

QuickCheck generates test cases via the Arbitrary class. Instances for all the  
core types are given, provided they're sensible. Test case generators live in the  
Gen monad. Here is an example for clarification purposes:

class Arbitrary a where
    arbitrary :: Gen a
    shrink :: a → [a]
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data D2 = D2 Double Double deriving (Eq, Show)

instance Arbitrary D2 where
  arbitrary = do
    x ← arbitrary
    y ← arbitrary
    return (x, y)

If you need more exhaustive checking than random test cases, then SmallCheck is 
a better choice. SmallCheck provides quantifiers, so we can express things such as 
"forall x exists y" and so forth. Here is an example GHCi session using SmallCheck:

stack ghci --package smallcheck

> import Test.SmallCheck as SC

> smallCheck 2 $ forAll $ \x -> exists $ \y -> x + y > (x :: Int)

Completed 22 tests without failure.

Like QuickCheck, SmallCheck supports testing properties as variadic functions. The 
smallCheck function requires an extra argument as its first argument, namely the 
depth of generated test cases. If the test case has a reasonably bounded search space, 
such as Booleans, then it's possible to set the max depth to maxBound. SmallCheck 
then does an exhaustive check for the property.

For the simple cases, SmallCheck works a lot like QuickCheck. The default 
quantification context is forAll, which resembles that of QuickCheck. However,  
the test cases of QuickCheck are much better optimized for inexhustive testing, 
covering most usual corner cases, and QuickCheck automatically attempts to shrink 
the size of counter-examples.

Unit testing with HUnit
Sometimes it is more interesting or just easier to write the test cases yourself. 
Although you can write some testing in IO using QuickCheck, the HUnit package is 
more suited for that too:

stack ghci --package HUnit

> import Test.HUnit as HU

> let mytests = test $ do { x <- getLine; assert (x == "success") }

> runTestTT mytests

success

Cases: 1  Tried: 1  Errors: 0  Failures: 0
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The Testable class of testable properties in HUnit is slightly different from that of 
QuickCheck and SmallCheck. In particular, it's a lot simpler:

class Testable t where
    test :: t → Test

instance Testable Test
instance Testable t => Testable [t]
instance Assertable t => Testable (IO t)

One of the two main ways to build test cases in HUnit is to write them as IO actions 
that result in something Assertable. There is a Bool instance for Assertable, 
meaning that you can return a Boolean indicating the success or failure of the 
test case. However, it's more informative to perform asserts with explicit failure 
messages and just return unit, (), which is also an instance of Assertable.

The other way if there's no need to perform IO is to use one of the (seemingly) pure 
assertion functions:

[1,2,3] ~=? sort [2,1,3] :: Test
sort [2,1,3] ~?= [1,2,3] :: Test

Internally (~=?) and (~?=) live in IO, thus they're not really pure. They are 
counterparts for (@=?) and (@?=) that return Assertion, that is, IO ().

Test frameworks
To use either property checking (QuickCheck/SmallCheck) or unit testing (HUnit) in 
the test suite of an application, the use of a test framework simplifies things. A good 
test framework should also support some sort of resource management. Currently 
there are two main choices for a test framework in Haskell: Hspec and Tasty.

Hspec is based on RSpec for Ruby, and Hspec tests look deceptively similar to 
RSpec. The Hspec library provides only the framework, leaving testing itself to 
any of the testing libraries discussed so far. The introduction and resource guide 
for Hspec at http://hspec.github.io is comprehensive and beginner-friendly. 
Integrations and extensions to Hspec are provided for many libraries.

The other of the two big test frameworks for Haskell, Tasty, is relatively new and 
is designed to be extremely extensible. Aside from having integrations for all the 
main testing libraries, Tasty supports integrating Hspec tests directly as Tasty tests. 
The excellent documentation for Tasty is maintained at http://documentup.com/
feuerbach/tasty.

http://hspec.github.io
http://documentup.com/feuerbach/tasty
http://documentup.com/feuerbach/tasty
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GHC also supports program coverage reporting. To extract a coverage report from 
running an arbitrary Haskell program (such as a test suite), the program must be 
compiled with -fhpc. Or, if using cabal, configure with --enable-coverage. If 
using stack, build with --coverage.

When you run a program with coverage reporting, a <program>.tix file is 
generated. GHC comes with the hpc command-line utility, which is used to inspect, 
combine, and do coverage reporting with .tix files. The hpc utility needs to know 
where source code files to the program are located. The easiest way to jump through 
the necessary hoops is to use stack hpc instead. To generate a report both in 
terminal and HTML outputs from a foo.tix file, we can just execute:

$ stack hpc report foo.tix 

Generating combined report

100% expressions used (4/4)

100% boolean coverage (0/0)

     100% guards (0/0)

     100% 'if' conditions (0/0)

     100% qualifiers (0/0)

Trivia at term-level
In this section, we look at lazy patterns, using the magic hash, controlling inlining 
and using rewrite rules. These are small things used rarely in applications, but 
nevertheless are very convenient where applicable.

We'll start with lazy patterns. Where strict pattern annotations use bangs and mean 
"Evaluate this argument to WHNF immediately," lazy pattern annotations use tildes 
and imply "Don't even bother pattern-matching unless a binding is really requested." 
So this errors:

> let f (a,b) = 5

> f undefined

*** Exception: Prelude.undefined

But with a lazy pattern match, we are all okay:

> let f ~(a,b) = 5

> f undefined

5
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A more realistic use case for lazy patterns is the classic server-client setting. The 
client makes requests sequentially and can change the request based on previous 
responses. We can express this in Haskell elegantly with just linked lists. The server 
is slightly simpler than the client: it just applies a computation on every request  
– it is a map or a fold. The following server expects a number as the request and 
responds with the square of that number:

-- file: lazypat.hs
server :: [Int] -> [Int]
server (y:ys) = process y : server ys
  where process n = n ^ 2

The client is slightly more involved, because of the initial request it has to make.  
This is also where a lazy pattern match will come in handy, as we will see soon.  
But first, let's try it without. This client function is otherwise similar to the server,  
but it also takes the next (initial) request as an argument:

client :: Int -> [Int] -> [Int]
client initial (x:xs) = initial : client (next x) xs
  where next n = n `mod` 65534

Now, we need just "tie the knot" between requests and responses, client and server. 
This happens like so:

requests :: [Int]
requests = client initial responses
    where initial = 2

responses :: [Int]
responses = server requests

But our program has a slight problem. Our client will never get to make even a  
single request!

To see why our program deadlocks, we should look at the client: it pattern-matches 
on the responses before producing the first request. The easiest fix in this case is to 
use a lazy pattern on the responses:

client :: Int -> [Int] -> [Int]
client initial ~(x:xs) = initial : client (next x) xs
  where next n = n `mod` 65534

With that fix, we can now observe requests and responses as expected:

> :load lazypat.hs

> take 10 responses

[4,16,256,65536,4,16,256,65536,4,16]
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With :sprint, we can inspect requests made and responses:

> :sprint responses

responses = 4 : 16 : 256 : 65536 : 4 : 16 : 256 : 65536 : 4 : 16 :

            _

> :sprint requests

requests = 2 : 4 : 16 : 256 : 2 : 4 : 16 : 256 : 2 : 4 : _

Coding in GHC PrimOps
When the speed of some hopefully small piece of code is extremely critical and 
nothing else seems to help, one way to speed it up if using GHC is to code that 
code in raw primitives. PrimOps in GHC are built into the compiler and are always 
identified by a hash suffix on both type and term levels.

Primitives are defined in the ghc-prim package, but it is recommended to not use 
the ghc-prim package directly and instead import the GHC.Exts module from base. 
Also, to use any PrimOps, we need to enable the MagicHash language extension, 
and the UnboxedTuples extension is needed for primitive tuples.

Let's take a worked example upfront: an array that supports compare-and-swap 
(CAS) operations on its elements. As our first take, we'll deliberately use the IO 
constructor directly to show that IO in Haskell is really not that magical after all. 
Here we go:

-- file: primops.hs

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.Exts
import GHC.Types (IO(IO))

data CASArrayIO a = CASArrayIO (MutableArray# RealWorld a)

Here we enabled some extensions, imported the officially supported primops 
module GHC.Exts, and for demonstration the IO constructor from ghc-prim:GHC.
Types. Then we defined a data type for CAS arrays.
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That RealWorld argument looks much less cryptic when we consider the definition 
of IO, which is simply a newtype:

newtype IO a = IO
    (State# RealWorld -> (# State# RealWorld, a #))

So under the hood, IO actions are a lot like the state monad: a state of type 
RealWorld is carried over to the next step, though RealWorld is never constructed 
and it exists only at compile time.

We want operations to create, read, and of course compare-and-swap for our CAS 
arrays. The respective primitive functions on MutableArray# for our operations are:

newArray#
  :: Int# -> a 
     -> State# s -> (# State# s, MutableArray# s a #)

readArray#
  :: MutableArray# s a-> Int# 
     -> State# s -> (# State# s, a #)

casArray# 
  :: MutableArray# s a -> Int# -> a -> a 
     -> State# s-> (# State# s, Int#, a #)

We realize that, instead of using the monadic IO interface for threading RealWorld, 
we can also pass them manually and construct IO actions with the IO constructor. 
So, by just following the types, we devise the following definition for the create 
operation:

newCasArray :: Int -> a -> IO (CASArrayIO a)
newCasArray (I# n) a = IO $ \st0 ->
    let (# st1, arr #) = newArray# n a st0
        in (# st1, CASArrayIO arr #)

It's a bit noisy but still understandable. Read is shorter:

readCas :: CASArrayIO a -> Int -> IO a
readCas (CASArrayIO arr) (I# n) = IO $ readArray# arr n

But how about the cas operation? Quite involved:

cas :: Ord a => CASArrayIO a -> Int -> a -> IO a
cas (CASArrayIO arr) (I# n) a = IO $ \st0 ->
    let (# st1, c #) = readArray# arr n st0        -- 1
        a' = if a > c then a else c                –- 2
        (# st2, r, b #) = casArray# arr n c a' st1 -- 3
        in (# st2, b #)                            -- 4
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Step by step, this works as follows:

1. Read the current value at the specified location into c.
2. Compare c and the specified new value, a, and determine which of them 

comes first; place that to a'.
3. Swap the value at the specified location with a'; if it still equals c, read in step.
4. Return the current value at the specified location.

The only problem with using primitives like this is that we need to take care of 
threading the state correctly at every primitive operation. This produces a lot of 
noise, like in the cas function. Fortunately, a lot of this can be abstracted with 
the help of the primitive package. The primitive package defines a type class 
PrimMonad along with instances for IO, ST, and monad transformers from the 
transformers package:

class Monad m => PrimMonad m where
  type PrimState m
  primitive 
    :: (State# (PrimState m) → (# State# (PrimState m), a #)) 
       → m a

The associated type PrimState in PrimMonad is just RealWorld for anything IO-
based, and for ST s it is the s. The primitive function is merely a generalization of 
the IO constructor we used previously. Rewriting our cas function with primitives, 
we import Control.Monad.Primitive and then define:

cas' :: Ord a => CASArrayIO a -> Int -> a -> IO a
cas' (CASArrayIO arr) (I# n) a = do
    c <- primitive $ readArray# arr n
    let a' = if a > c then a else c
    primitive $ \st →
        let (# st', _, b #) = casArray# arr n c a' st
            in (# st', b #)

Control inlining
The inliner in GHC is pretty well optimized for lots of different situations, but 
sometimes a bit more control over inlining is desired. GHC supports a number of 
pragmas and options for controlling inlining:

• INLINE and NOINLINE: Respectively, always or never inline a definition.
• INLINABLE: Consider the definition for inlining despite its size. Normally, 

GHC might mark some definitions as no-inline because of their big size.
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Inlining is simply replacing a term in the caller-site with that term's definition itself. 
In general, this increases code size when a term is used more than once, but the GHC 
inliner is optimized to keep the increase to a minimum. In practice, the only situation 
where use of NOINLINE is justified is when unsafePerformIO is used to build top-
level shared variables, if you're really desperate for smaller code size in, for example, 
embedded systems or tweaking rewrite rules.

An explicit INLINE makes the most sense for large definitions that really should be 
inlined for performance reasons. For example, a huge vector transformation would 
likely benefit from further fusion when inlined. An explicit INLINE might be required 
for such huge computation.

Some special quirks are related to inlining. Firstly, GHC only inlines a definition 
when it is fully applied to its arguments. Consider these seemingly identical 
definitions:

{-# INLINE s #-} 
s x y z = x z (y z) 

{-# INLINE s' #-}
s' x y = \z → x z (y z)

The first one would inline only after being applied to three arguments. The second 
one inlines when applied to two.

Using rewrite rules
Another powerful optimization step along with inlining is rule-based rewriting. 
Rewrite systems are what enable speed in Haskell lists and libraries such as vector, 
text, and bytestring.

Rules tell the GHC optimizer to rewrite certain code fragments with something else. 
Rules allow us to write things like this:

-- file: lem-rewrite.hs
lem x = x || not x
{-# RULES "lem/tautology" forall a. lem a = True #-}

The name of the rule is mandatory and comes after RULES. But there is a problem 
with such a rule. If we attempt to compile it, we'll get a warning:

lem-rewrite.hs:3:11: Warning:
    Rule "lem/tautology" may never fire
      because 'lem' might inline first
    Probable fix: add an INLINE[n] or NOINLINE[n] pragma on 'lem'
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This gets us right into the fragile nature of rewrite rules. Rules interact with inlining 
so that getting rules to fire correctly is tricky. The suggestion is to add either INLINE 
or NOINLINE pragma (with a phase control number), which seems odd; why would 
an INLINE pragma change the inlining behavior of such a small function? It gets 
inlined anyway, right?

Where INLINE further enhances a small definition is that it tells GHC to at least 
retain a copy of the definition as we wrote it (its RHS). Without an INLINE pragma, 
a definition that isn't exported is completely erased early on in compilation. The 
INLINABLE pragma works similarly to INLINE in this case, retaining both the 
optimized and original RHS.

In this case, it would actually be enough to export lem by adding a module signature 
such as module Main (lem) where. The default module definition when none is 
given is module Main (main) where. The other (better) option is to use an explicit 
INLINE or NOINLINE pragma.

Specializing definitions
Overloading a function via a type-class enforces a level of indirection in the form of 
a lookup dictionary. If some of the overloaded versions are heavily used, it might 
make sense to specialize that version of the function at the expense of slightly 
increased code size.

GHC can be asked to create specialized versions of type-class overloaded definitions 
with SPECIALIZE pragmas. Given an overloaded function such as:

lookup :: Ord key => [(key, v)] → key → v

We can ask GHC to create a version of lookup for (Int,Int) valued keys with:

{-# SPECIALIZE lookup :: [((Int,Int), v)] → v → (Int,Int) → v #-}

In effect, a specialized version is copied from the original definition at compile time 
and rewrite rules are generated  that ensure usages where the key type is decidedly 
always (Int,Int) are specialized. Those rules can also fire after inlining and other 
rewrites have taken place.

It's also possible to write rewrite rules that specialize a generic function with 
some completely different user-defined function (from a different module even). 
For example, we might have a UserKey type, for which comparisons via Ord are 
particularly inefficient when doing a lookup. So we have devised a custom function 
for doing lookups based on UserKey:

lookupByUser :: [(UserKey, v)] → v → UserKey → v
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Now instead of replacing every instance of lookup with our lookupByUser in the 
code base, we could provide a rewrite rule that does it for us. This has the added 
effect of hiding the implementation detail. The rule itself looks like this:

{-# RULES "lookup/lookupByUser" lookup = lookupByUser #-}

This rule fires when types match in the call-site.

To inspect which rules fired, compile with -ddump-
rule-firings. To see which rules were defined in 
the compiled modules, compile with -ddump-rules.

Phase control
The part in GHC that performs optimizations based on inlines, rewrites, and 
specializations, among others, is known as the simplifier. The simplifier consists of a 
number of phases and each phase consists of multiple iterations. By default, there are 
three phases numbered 2, 1, and 0. The phase number decreases between runs. In a 
single phase, optimizations associated with that phase are run repeatedly until a fixed 
point.

All of the INLINE pragmas, RULES, and SPECIALIZE pragmas support phase control 
in the form of a [N] or [~N] suffix, where N is some phase number (0, 1, 2). The first 
form means the simplification is in effect in phase N and onwards. The second form 
with a tilde means the simplification is active up to, but not including, phase N.

Restricting simplifications to certain phases makes sense mainly in two situations. 
The first one is to prevent inlining from happening before certain rule rewrites 
take place. The second, when a rewrite in an earlier phase, which might subject the 
definition for fusion, if not fused results in slower code than the unfused version. To 
counter this, we can add a rule that fires only at the last phase, and which undoes the 
first rewrite. (The first rewrite should also be restricted to earlier phases.)

Trivia at type-level
The more expressive the types are, the more safety we can ensure at compile-time. 
What's more, expressive types serve as documentation that is always up-to-date.
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Phantom types
A type that has type variables on the left-hand side that do not appear on the right-
hand-side at all is called a phantom type. Such type variables are a cheap, in fact free, 
technique to guarantee correctness in multiple situations. An example from base 
is Data.Fixed, in which the precision of fixed-precision arithmetic is encoded in a 
phantom type.

An extremely useful class of phantom types is obtained in conjunction with 
Generalized Algebraic Data Types (GADT). As a little silly example, consider:

-- file: gadts.hs
{-# LANGUAGE GADTs #-} 
 
data Value a where
    Boolean :: Bool -> Value Bool
    Not     :: Value Bool -> Value Bool
    Numeric :: Num a => a -> Value a
    Sum     :: Num a => Value a -> Value a -> Value a

The first two constructors allow us to build values that contain single Booleans or 
Boolean values, but not, for example, negations of numeric values. The last two 
constructors allow single numbers as numeric values and sums of numeric values, 
but not sums of Booleans, or a Boolean and a number.

In effect, we can express any value as a forall a. Value a: Boolean values as Value 
Bool, numeric values as Num a => Value a, floating point values as Float a => 
Value a, and so on.

A common pattern is to define custom types with no inhabitants and use those as 
type arguments for phantom types.

Functional dependencies
Although functional dependencies (fundeps) are nowadays subsumed by associated 
types, fundeps might be a bit easier to grasp. So let's learn by example what fundeps 
are all about!

Say we are working with textual data: Strings, Text, and ByteStrings. But we 
would really like to not care about the actual datatype when we are indexing, for 
example. To solve this problem, we come up with a type class that provides a single 
overloaded function, index, that knows how to index into any container. So the code 
we write looks like this:

-- file: fundeps.hs
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
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{-# LANGUAGE FunctionalDependencies #-}

import qualified Data.Text as T
import qualified Data.ByteString as BS
import Data.Word (Word8)

class Index container index elem where
    index :: container -> index -> elem

instance Index String Int Char where
    index = (!!)

instance Index T.Text Int Char where
    index = T.index

instance Index BS.ByteString Int Word8 where
    index = BS.index

We load this up in GHCi and confirm that it works. But when we get into actually 
using our new shiny Index class, we bump into lots of ambiguous type errors!

> index ("foo" :: String) 0

<interactive>:74:1:

    Could not deduce (Num index0)

    from the context (Num index, Index String index elem)

      bound by the inferred type for 'it':

                 (Num index, Index String index elem) => elem

      at <interactive>:74:1-26

    The type variable 'index0' is ambiguous

And GHC is completely right here. Although we hadn't given any instances other 
than Index String Int Char for String-containers, we cannot be sure that someone 
won't do that in some other module, for example.

With functional dependencies, we can rule out some instances and thus improve 
type inference. For our Index, the container type decides the type of its elements, 
so we would augment the class head with | container → elem. Thus we have:

class Index container index elem | container -> elem where
    index :: container -> index -> elem



The Devil's in the Detail

[ 120 ]

We could also, if desired, have written container → elem index to say that the 
container decides both element and index types, or container index → elem for 
container and index together deciding the type of element. The latter would be 
useful to allow instances such as Index String (Int, Int) String, that is, using 
a range as the index to return a substring.

Type families and associated types
An associated type can be used everywhere a functional dependency can be used. 
An implementation of our Index class using an associated type for the element is:

-- file: associated.hs
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE TypeFamilies #-}

import qualified Data.Text as T
import qualified Data.ByteString as BS
import Data.Word (Word8)

class Index container index where

    type Elem container

    index :: container -> index -> Elem container

instance Index String Int where

    type Elem String = Char

    index = (!!)

instance Index T.Text Int where

    type Elem T.Text = Char

    index = T.index

instance Index BS.ByteString Int where

    type Elem BS.ByteString = Word8

    index = BS.index

Note that the element is no longer a type parameter, like in the fundep case, but an 
associated type delimited by Elem. Elem can be thought of as a type-level function; 
when we say type Elem container, we mean that instances of this class must define a 
type into which container maps. The result of that type is denoted by Elem container.
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The idea of type-level functions applies to type families as well, of which  
associated types are just a special case. The Elem type could be expressed as  
a standalone type family:

-- file: datafamilies.hs
type family Elem container
type instance Elem String = Char
type instance Elem T.Text = Char

The type families considered so far have actually been type synonym families. Data 
families are also supported, both associated and standalone. For data families, the 
right-hand side is not a synonym but an actual datatype declaration. For example, 
we could define a type function that maps tuples to their strict representations:

-- file: datafamilies-closed.hs
data family TStrict a

data instance TStrict (a, b) = TStrict2 !a !b
data instance TStrict (a, b, c) = TStrict3 !a !b !c 
[…]

The main advantage of data families versus type synonym families is that data 
families are always injective. In our example, each strict tuple is thus associated 
with exactly one tuple. Injectivity allows us to recover type information for better 
type inference and more importantly allows some programs not possible with type 
synonym families.

The final quirk regarding standalone type and data families is that a data family is 
either open or closed. In an open type family, new instances can be defined wherever 
the family is in scope, and also in different modules. But all instances of a closed 
type family must be specified in a where clause right after declaring the family. Strict 
tuples as a closed type family would look like this:

data family TStrict a where
    TStrict (a, b) = TStrict2 !a !b
    TStrict (a, b, c) = TStrict3 !a !b !c
    […]

Useful GHC extensions
We have already used a number of extensions available in GHC, such as 
MultiParamTypeClasses, TypeFamilies, FlexibleInstances, and so on. The nice 
thing about most extensions in GHC is that, if you accidentally try to use a language 
feature that is behind an extension, GHC gives you a hint about which extension you 
forgot.
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In this last section, we'll look at some more useful extensions available in reasonably 
modern GHC. There are other extensions, of course, and this is just a glimpse. For 
an exhaustive list of currently supported extensions, see the Language.Haskell.
Extension module from the Cabal library.

Monomorphism Restriction
Some of the most confusing type errors originate from the monomorphism 
restriction (MR). Consider this program:

-- file: mr.hs
main = do
    let f = (1 +)
    print $ f (6   :: Int)
    print $ f (0.1 :: Double)

The most general type for f would be Num a => a → a. But due to MR, the inferred 
type is monomorphic in a. The error message we get if we attempt to compile 
the program is "Couldn't match expected type 'Int' with actual type 'Double'". 
Monomorphic type is inferred from context. In our case, f gets type Int → Int, 
because that is its first usage. If the type cannot be inferred from the context, then the 
monomorphic type is chosen in line with the type defaulting rules.

Strangely enough, if we instead let f x = (1 + x), then MR won't kick in and the 
program compiles just fine. In this regard, function syntax is very much different 
from pattern syntax (f = \x → 1 + x).

Monomorphism restriction has been on by 
default in compiled code, and off in GHCi, since 
GHC 7.8.1.

The motivation for MR is that in some cases it prevents a computation from being 
performed twice. Consider this:

let len = Data.List.genericLength [1..1000]
print (len, len)

With MR, len gets the monomorphic type Num a => a with a instantiated to Integer. 
This is ideal as len gets memoized. However, if MR didn't monomorphize the type, 
len would have the polymorphic type Num a => a, meaning that evaluating len 
requires passing in a dictionary for a, preventing memoization.

If requiring a type signature for polymorphic bindings is not desirable, MR can be 
disabled with the NoMonomorphismRestriction language extension.
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Extensions for patterns and guards
The GHC extension ViewPatterns allows arbitrary functions (views) in patterns. The 
advantage of view patterns over guards is more concise code in some cases. Consider 
this funky function:

funky xs | 0 <- length xs = "Empty list!"
         | 4 <- last   xs = "Ends in four!"
         | n <- sum    xs = "Sum is " ++ show n

We can write this more clearly with view patterns:

-- file: viewpatterns.hs
{-# LANGUAGE ViewPatterns #-}

funky (length -> 0) = "Empty list!"
funky (last   -> 4) = "Ends in four!"
funky (sum    -> n) = "Sum is " ++ show n

Note that we didn't need to bind the argument (xs) to a variable at all.

Our definition of funky, which uses pattern matching inside guards, was originally 
enabled by an extension known as PatternGuards, nowadays turned on by default.

A relatively new extension related to patterns is PatternSynonyms (available in 
GHC 7.8 and later). Like the name suggests, with PatternSynonyms we can make 
synonyms for patterns. Pattern matching on a pattern synonym works just like 
pattern matching on a real constructor.

Pattern synonyms are declared using a new top-level pattern keyword. For example, 
consider a program that extensively uses structures of type (Bool, Bool, Bool, 
Bool) to represent bit arrays of length 4, and that we rarely need to look at more 
than one bit at a time. So, instead of laying out the whole structure every time:

fun bits | (b1,b2,b3,b4) ← bits = …

We can define pattern synonyms that extract specific bits from the structure:

-- file: patternsynonyms.hs
{-# LANGUAGE PatternSynonyms #-}

pattern B1 a <- (a,_,_,_)
pattern B2 a <- (_,a,_,_)
pattern B3 a <- (_,_,a,_)
pattern B4 a <- (_,_,_,a)
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These synonyms can be used like this:

fun (B1 True) = 1
fun (B2 True) = 2
fun (B3 True) = 3
fun (B4 True) = 4

Pattern synonyms are identifiers just like types and constructors, meaning that they 
can occur in export and import lists.

The final pattern-related extension we shall consider is ScopedTypeVariables. 
Normally in Haskell, all type variables in a type signature are instantiated fresh, 
meaning that all type variables will be implicitly for-alled.

Scoped type variables are useful when we would like to write explicit type 
signatures for polymorphic function bindings within another polymorphic function. 
In the following function, it is impossible to give go a type signature without scoped 
type variables.

-- file: scoped-type-variables.hs
{-# LANGUAGE ScopedTypeVariables #-}

fun :: forall a b. (a -> b) -> [a] -> [a] -> ([b], [b])
fun f xs ys = let go :: [a] -> [b]
                  go = map f
                  in (go xs, go ys)

Note that explicit forall; without it, type variables a and b would still be in scope 
only in the signature for fun.

Strict-by-default Haskell
Two of the new features added in GHC 8.0.1 are the Strict and StrictData 
extensions, that change Haskell from a lazy-by-default language into a strict-by-
default language (on a per-module basis).

When StrictData is in effect, fields in the data declaration are considered as if they 
had a strictness annotation (!) in front, unless the field is explicitly set to lazy with 
the laziness annotation (~):

data S = S a   -- 1 

data S = S !a  -- 2
data S = S ~a  -- 3
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Under normal circumstances, (1) is interpreted as (3), but under StrictData  
it is interpreted as (2). Writing laziness annotations is not allowed unless  
StrictData is enabled.

On the other hand, the Strict extension adds a bang to all pattern bindings 
everywhere in the module. With Strict in effect, normal irrefutable patterns, ~(x,y), 
become just lazy patterns. Irrefutable patterns can be recovered with ~(~(x,y)).

Summary
We began this chapter by looking at what Haskell projects usually consist of and 
how Cabal and stack are used to manage project complexity and dependencies. We 
glanced at the basic usage of main test libraries and frameworks for Haskell and how 
they can be integrated into a cabalized project. We learned how to handle errors and 
exceptions. Even more importantly, we learned how to not do errors; why prefer 
throwIO over error (or throw)? Why are asynchronous errors so vicious in lazy 
semantics?

In the latter part of this chapter, we explored some Haskell trivia and techniques 
specific to GHC: lazy patterns, coding with GHC primitives (the magic hash), 
inlining, writing rewrite rules, using phantom types, fundeps, type families, the 
monomorphism restriction, and some useful GHC extensions. Now you should 
be able to both read and write cabal files, devise test suites with test libraries 
(QuickCheck, SmallCheck, and HUnit) and test frameworks (Hspec, Tasty), and 
throw and catch exceptions correctly; you should also have absorbed some trivia 
about Haskell and GHC.

In the next chapter, we will look at parallelization and RePa, a Haskell library for 
high-performance parallel array programming.
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Parallelize for Performance
Nowadays, as single processor cores are not getting much faster, CPU manufacturers 
instead keep increasing the number of cores in processors, implying that high-
performance programs must accordingly exploit more and more parallelism to keep 
up with this breadth-wise hardware development.

Turns out, one of Haskell's strongest aspects, referential transparency, is very 
valuable for parallelization. Automatically knowing that some distinct expressions 
won't interact with each other means they are safe to execute simultaneously. 
Note that parallelism is very different from concurrency, which usually refers to 
interacting processes (they aren't necessarily executed in parallel).

In this chapter, we will cover what the Haskell ecosystem currently has to offer for 
parallelism: a powerful parallel runtime system, fairly high-level abstractions for 
parallel evaluation, data parallel programming, and diagnostic tools for parallel 
programs. The learning objectives for this chapter are to have an overview of the 
parallel runtime system, parallelizing Haskell programs and profiling them:

• Parallelizing plain Haskell programs using either Eval strategies  
or par schedules

• Learning about the parallel runtime system and sparks
• Using RePa for data parallel programming
• Inspecting parallel performance using ThreadScope
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Primitive parallelism and the Runtime 
System
In Haskell, parallel execution (of pure values) boils down to evaluating thunks into 
WHNF simultaneously. The GHC primitive we can use to annotate parallelism is 
called par, exported from the Control.Parallel module in the parallel package:

par :: a → b → b

Note that par has exactly the same type as seq, which is used to control strictness. 
So whereas a `seq` b ensures that a is evaluated when b is evaluated, a `par` b 
evaluates a in parallel with b.

Let's start with a simple example. Everyone's favorite naive Fibonacci function 
appears again. This time, however, we will be calculating multiple Fibonacci 
numbers simultaneously. The following program prints Fibonacci numbers between 
37 and 40:

-- file: fib.hs
fib :: Int -> Int
fib n
  | n <= 1 = 1
  | otherwise = let a = fib (n - 1)
                    b = fib (n - 2)
                    in a + b

main = print $
  let x = fib 37
      y = fib 38
      z = fib 39
      w = fib 40
      in (x,y,z,w)

Note that there are no parallelism annotations yet, just plain lazily evaluated 
expressions. Compiling with the normal non-parallel runtime, we'll get the following 
performance:

$ ghc -O2 -with-rtsopts="-s" parallel-fib.hs

$ ./parallel-fib

  Total   time    4.285s  (  4.285s elapsed)
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The threaded runtime is enabled by passing the -threaded flag to GHC. The 
Runtime System flag -N<n> controls how many system threads the Runtime System 
uses. We test the performance on a machine with four cores:

$ ghc -O2 -threaded -with-rtsopts="-s -N4" fib.hs 
$ ./fib

  Total   time   11.204s  (  3.892s elapsed)

  Productivity  99.7% of total user, 287.2% of total elapsed

What we see here is that the elapsed time, also known as wall-clock time, perhaps 
got a bit smaller, but the user time, CPU time, almost tripled. Also note 287.2% 
of total elapsed; if your program had utilized all four cores to the max, that 
percentage will have been closer to 400%. And, actually, if we execute the program 
multiple times we would sometimes observe this behavior and on other occasions 
the same behavior as with the non-parallel version. This is because of subtle things 
that happen inside the parallel runtime system.

It's unlikely that the threaded runtime would have actually parallelized our 
thunks of fib expressions. In general, it is impossible to know whether it is 
actually beneficial to evaluate thunks in parallel, because expressions can share 
subexpressions, and moving data between threads is expensive.

To tell GHC to evaluate our fib thunks in parallel, we can use par and pseq, which 
is semantically like seq but is subtly different when it comes to parallelism. The 
parallelized program looks like this:

    let x = fib 37
        y = fib 38
        z = fib 39
        w = fib 40
    in x `par` y `par` z `par` w `pseq` (x, y, z, w)

With this our program now performs better on four cores:

Total   time    6.698s  (  1.739s elapsed)

Productivity  99.9% of total user, 384.7% of total elapsed

That's roughly 2.5 times faster with four cores as opposed to with just one core. 
However, we were running four cores; why wasn't the speed four times greater?

Remember that the naive Fibonacci algorithm grows exponentially in time, so 
the largest evaluation actually dominates the runtime of our program. We didn't 
parallelize the calculation itself, and calculating the 40th Fibonacci number takes 
about 1.7 sec, which is the best we could hope for when each individual Fibonacci 
number is still calculated sequentially.
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Spark away
The technique used in the parallel runtime to distribute work between processors 
works via units of work called sparks. The Runtime System contains a spark pool, 
from which it distributes work to vacant processor cores. What happens in par x y 
is that a pointer to x is pushed into the spark pool.

The -s statistics show for our naive Fibonacci the following line:

SPARKS: 3 (3 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

This says that our program generated three sparks (from three calls to par), the 
evaluation of which was entirely initiated from the spark pool by the Runtime System 
(converted). Other things that can happen for a spark in a spark pool include:

• Overflowed: The spark was not added into the spark pool, because the pool 
was at its maximum capacity.

• Dud: When the argument to par is already evaluated, it's counted as dud. 
The spark pool is not touched at all.

• GC'd: Before the spark got evaluated, it was garbage-collected and removed 
from the spark pool.

• Fizzled: Evaluation was triggered by the program; that is, the work was not 
distributed directly by the Runtime System.

Sparking is relatively cheap, as it's only a pointer assignment. However, it's not 
free. Consider parallelizing the naive Fibonacci by calculating each recursive call in 
parallel:

let a = fib (n - 1)
    b = fib (n - 2)
    in a `par` b `par` a + b

This hurts performance, because we now create millions of sparks mostly of small 
pieces of work. But if we limit sparking to larger recursive calls where n > 25, we get 
a finer work distribution but not too many sparks:

fib n
    | n <= 1 = 1
    | n <= 25 = fib (n - 1) + fib (n - 2)
    | otherwise = let a = fib (n - 1)
                      b = fib (n - 2)
                      in a `par` b `par` a + b

This reduces the runtime to about 1.4 sec, which is a bit over three times faster than 
the one-core version. Considering overheads and other load on my machine, that's a 
pretty good speedup.
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Subtle evaluation – pseq
Remember that pseq we used a little while ago? This is different from the earlier 
seq in that pseq is strict only its first argument, whereas seq is strict in its both 
arguments. In normal usage, this doesn't make a difference.

However, the strictness analyzer in GHC infers from a `seq` b that it doesn't make 
any difference whether a is evaluated before b or vice versa; therefore it is possible 
that the expression becomes b `seq` a `seq` b. This would be a problem with 
parallelism. Consider this, for example:

(a `par` b) `seq` (a + b)

GHC might turn this into:

(a + b) `seq` (a `par` b) `seq` (a + b)

Here, parallelism would be destroyed. Using pseq instead of seq prevents GHC 
from inferring this.

When in doubt, use the force
In our Fibonacci examples, we were parallelizing computations that returned Ints. 
Such basic structures are completely evaluated by seq. par always evaluates its 
first argument to WHNF, although we often want to evaluate bigger structures in 
parallel. The cleanest way to evaluate structures completely is to use force from the 
deepseq package:

Control.DeepSeq.force :: NFData a => a → a

The force function evaluates (sequentially) its argument to Normal Form (NF).

Note, however, that there is a great difference between these expressions:

a `par` b `pseq` (a, b)
force (a, b) `par` (a, b)

The first one evaluates a in parallel with b, whereas the second one would evaluate a 
and b sequentially.

Now that we are familiar with sparks and the two parallelization primitives, par 
and pseq, we can start building abstractions to help us be more expressive about 
parallelism in our programs.
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The Eval monad and strategies
The first abstraction we will look at is the Control.Parallel.Strategies module 
from the parallel package. The core Strategy API consists of the following:

data Eval a
instance Monad Eval

type Strategy a = a → Eval a

runEval :: Eval a → a

using :: a → Strategy a → a

rseq :: Strategy a
rdeepseq :: NFData a => Strategy a
rpar :: Strategy a

The principle is to use using or runEval to evaluate a lazy data structure in parallel, 
using some strategy. Essentially we have separated the algorithm (a lazy data 
structure) from the parallel evaluation (a strategy).

As a simple example, consider calculating the minimum and maximum elements of 
many lists in parallel. We write an algorithm, which doesn't encode any parallelism, 
called minmax:

-- file: rows.hs
import Control.Parallel.Strategies
minmax :: [Int] -> (Int, Int)
minmax xs = (minimum xs, maximum xs)

Then we have a list of lists (matrix) and a list of minimums and maximums 
(minmaxes):

matrix = [ [1..1000001], [2..2000002], [3..2000003]
         , [4..2000004], [5..2000005], [6..2000006]
         , [7..2000007] ]
minmaxes = map minmax matrix

Then, when we are about to evaluate the results, we apply a strategy to parallelize 
the evaluation:

print (minmaxes `using` parTraversable rdeepseq)

What happens here is that:

• We used parTraversable to evaluate the elements of a list in parallel
• In every parallel evaluation, we use the rdeepseq strategy to evaluate the 

element fully
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Strategies work in conjunction with lazy data structures. The level of granularity at 
which a strategy can define parallelism is limited by the data structure. Arbitrary 
complex lazy data structures can have similarly complex strategies completely 
separated from the algorithm that builds the structure. However, data dependencies 
in the algorithm limit the possible benefits of applying parallel strategies, because 
copying data between threads is not free.

Directly using the Eval monad, we can express arbitrarily complex strategies. 
Consider these three strategies for evaluating a two-tuple:

strat1 (a, b) = do
  x ← rpar a
  y ← rpar b
  return (x, y)

This variant creates sparks for both elements and returns immediately. The elements 
might get evaluated by some thread:

strat2 (a, b) = do
  x ← rpar a
  y ← rseq b
  return (x, y)

This variant creates a spark for the first element and evaluates the second element 
before returning. The first element might or might not be evaluated by then (by some 
other thread):

strat3 (a, b) = do
  x ← rpar a
  y ← rseq b
  rseq a
  return (x, y)

This third variant creates a spark for the first element, evaluates the second element, 
and before returning also ensures that the first element has been evaluated. If it 
wasn't evaluated between sparking it and evaluating the second element, it is 
evaluated sequentially here.

Though it is possible to interleave the algorithm with an Eval computation, it is 
usually clearer to annotate parallelism with using and or other combinators within 
the algorithm, not the other way around. There useful strategy combinators in 
Control.Parallel.Strategies to encourage this.
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One such function is parListChunk, which splits a list into chunks of a given size 
and evaluates those chunks in parallel. This is usually called static partitioning. Often 
it is better to divide the work into smaller units and leave the hard job of assigning 
the work to the scheduler in the Runtime System. We already used this tactic in the 
naive Fibonacci case, where we created lots of sparks and let the Runtime System 
scheduler decide on which cores the work happens.

The benefit from avoiding static partitioning is that programs with granular (but not 
too granular) sparks scale to multiple cores and thus require less fine-tuning by the 
programmer. The challenge is to aim for small units of work in sparks, but not too 
small, so that overhead from the spark pool is kept to minimum.

Composing strategies
The encouraged pattern for using strategies is to compose them by parameterization. 
Most strategies take other strategies as arguments, such as:

evalList :: Strategy a → Strategy [a]
parList :: Strategy a → Strategy [a]

evalTuple2 :: Strategy a → Strategy b → Strategy (a, b)

All strategy combinators also have eval and par variants, the first of which 
evaluates the parts of a structure sequentially, and the second in parallel. The 
parameters define strategies with which to evaluate the parts.

The composition of strategies analogous to function composition is dot:

dot :: Strategy a → Strategy a → Strategy a

As one could guess, the strategy s2 `dot` s1 first applies the strategy s1 and then 
strategy s2.

How do we write a strategy that evaluates elements of a list in parallel, but returns 
only after all elements have been fully evaluated? The solution is:

rdeepseq `dot` parList rdeepseq

When writing strategies for custom data types, a most useful combinator is 
rparWith:

rparWith :: Strategy a → Strategy a
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This is like (rpar `dot`), except more efficient. In essence, it combines a given 
strategy with an rpar so that the parameter strategy is applied within the parallel 
evaluation. For a custom two-tuple, we could write the following strategy 
combinatory, which evaluates the two parts in parallel according to some strategies:

-- file: tuple-par.hs
data T a b = T !a !b

parT :: Strategy a -> Strategy b -> Strategy (T a b)
parT sa sb (T a b) = do
  a' <- rparWith sa a
  b' <- rparWith sb b
  return (T a' b')

When writing strategies, it's important to understand how the lazy evaluation model 
works in order to not shoot yourself in the foot. It's not too hard to write incorrect 
strategies that don't retain references correctly. Particular things to keep in mind are 
as follows:

• rpar (f x): not binding the result and using it later is very bad (the newly-
created thunk just gets garbage-collected). Always bind and use the result!

• rpar x: not binding the result is OK, as long as x is used later on.
• rparWith strat x: This is also OK, as long as x is used later on.

For big custom data types, it might not be feasible or desired to write custom strategy 
combinators. In such cases, building the structure inside Eval can be the most elegant 
solution. Especially if elements of the computation are not dependent on each other, 
writing the computation in applicative style is very concise. For example:

data A = A Int Bool [Double] String

buildPar :: A
buildPar = runEval $
  Record <$> rpar toInt
         <*> rpar toBool
         <*> evalList rpar toList
         <*> rpar toString

Here all fields and even the elements of the list are all evaluated in parallel.  
The parallelization is completely transparent to the caller of buildPar.
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Fine-tune granularity with chunking and 
buffering
As we have seen, creating sparks in slightly excessive amounts produces good results, 
because the runtime can assign work to free cores at a finer granularity. However, we 
also witnessed that too much granularity will hurt performance because of overheads. 
So often, a problem in parallelizing boils down to limiting granularity.

In general, dividing the problem space into chunks and parallelizing the evaluation 
of chunks instead of single problems is the classic strategy to reduce granularity.  
A convenient combinator in Control.Parallel.Strategies does just this for lists.  
It's called parListChunk:

parListChunk :: Int → Strategy a → Strategy [a]

The first argument defines the chunk size. Its use is straightforward:

[ fib n | n ← [1..30] ] `using` parListChunk 6 rseq

This evaluates chunks of six consecutive elements sequentially, and all chunks  
in parallel.

But what about when a list is used as a stream? We wouldn't want to sacrifice the 
nice streaming property of lazy lists when parallelizing its evaluation. We want to 
buffer the list up to some depth in parallel, consume some portion from the start,  
and then continue evaluation further.

Such a rolling buffer is implemented by the evalBuffer and parBuffer strategies in 
Control.Parallel.Strategies, the former for sequential buffering and the latter 
for parallel. These strategies work nicely even with infinite lists. Consider this list:

xs = [ fib n | n ← [1..] ] `using` parBuffer 6 rseq

Here, evaluating xs to Weak Head Normal Form triggers the parallel evaluation 
of elements up to the 7th element. Evaluating the second element triggers the 
evaluation of the 8th element, the third the 9th, ad infinitum.

The Par monad and schedules
The parallel package restricts us to expressing our computations as lazy data 
structures. Moreover, such computations must always be pure, so no parallel IO is 
possible. Sometimes this isn't feasible and we would like to express more control. 
Somewhat inherently, more control implies less expressiveness. This trade-off is 
made in the monad-par package.
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The core interface in Control.Monad.Par consists of:

data Par a  -- instance Monad
runPar :: Par a → a
fork :: Par () → Par ()

The monad-par library defines its own context for computations, namely Par.  
The second important operation, next to executing the computation via runPar, 
 is fork, which forks a computation so it happens in parallel.

Communication between computations in Par happens via IVar:

data IVar a
new :: Par (IVar a)
get :: IVar a → Par a
put :: NFData a => IVar a → a → Par ()

To run two computations, c1 and c2, in parallel and return their results in a tuple, 
we would write:

-- file: ivar-testing.hs
import Control.Monad.Par

f :: (NFData a, NFData b) => a -> b -> (a, b)
f c1 c2 = runPar $ do
  i1 <- new
  i2 <- new
  fork $ put i1 c1
  fork $ put i2 c2
  r1 <- get i1
  r2 <- get i2
  return (r1, r2)

What happens here is:

• We create two empty Ivars, i1, and i2 (new)
• We fork two computations that put their results into corresponding Ivars 

(fork $ put …)
• We wait for both results (get) and then return them

Note that, once an IVar has been filled (with put), it may not be emptied nor its 
contents swapped. So the computation model in Par is similar to the lazy evaluation 
in Haskell itself: a reduction graph, directed and acyclic. This time however, we are 
reducing IVars and not Haskell values (thunks), which gives us a little better control 
over evaluation.
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With IVars, we are being more explicit about when evaluation happens. Calls to 
put guarantee that all values in IVars are evaluated to normal form. However, we 
still can't control the flow exactly; a forked Par action may be executed anywhere 
between the call to fork and get, which requires a value from a forked Par. But with 
pure values, the result is always deterministic.

The dataflow-style of parallel programming that monad-par encourages is better 
suited for some applications, whereas the strategy-style parallel evaluation of lazy 
data structures is better for others.

spawn for futures and promises
You might be familiar with the concept of a future or promise from other 
programming languages. In essence, we can think of IVar as a future or promise that 
the value will be calculated at the latest when it is required.

The monad-par package supports future- or promise-style parallel programming 
via the spawn function. The spawn function takes a computation and immediately 
returns the result wrapped in IVar:

spawn :: NFData a => Par a → Par (IVar a)

For the moment, consider a situation where we have four computations A, B, C, and 
D. Some of them depend on the result of others, conforming to this graph:

We see that B and C could execute in parallel. To express this in the Par monad,  
we can write:

-- file: spawn.hs
computation :: A -> (A -> B) -> (A -> C) -> (B -> C -> D) -> Par D
computation fa fb fc fd = do
  av <- newFull fa               -- (1)
  bv <- spawn $ do fb <$> get av -- (2)

  cv <- spawn $ do fc <$> get av -- (3)

  b <- get bv                    -- (4)
  c <- get cv
  return (fd b c)                -- (5)
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• First, at (1) we make sure that the first computation A is fully performed. 
newFull creates IVar and fills it with a fully evaluated value.

• At (2) and (3), we have spawned two computations to run in parallel.  
One calculates B and the other C.

• At (4), we now wait for both B and C to complete.
• Finally, at (5) we perform the last computation D.

Non-deterministic parallelism with ParIO
What if the computations A, B, C, and D involved IO? The IO module from monad-
par, Control.Monad.Par.IO, provides another monad for parallel IO: ParIO.

ParIO is largely similar to Par, except that it allows lifting IO operations into it. IO 
also brings with it some non-determinism over pure Par.

With ParIO, we cannot use the same functions that worked with pure Par. We need 
to use the overloaded API from the abstract-par package. The function names stay 
the same with the overloaded API, so it's no big deal – really a drop-in replacement 
(for pure Par too).

Let's see how we would write our A, B, C, D computation in terms of IO actions.  
The required imports change from one import to three:

import Control.Monad.IO.Class
import Control.Monad.Par.IO
import Control.Monad.Par.Class

From the first module, we need only liftIO to perform IO actions in ParIO. The 
second module gives us the ParIO type. The last one is the overloaded Par API.

The computation itself doesn't change much:

-- file: spawnio.hs
computationIO
  :: IO A -> (A -> IO B) -> (A -> IO C) -> (B -> C -> IO D)
   -> ParIO D
computationIO fa fb fc fd = do
  av <- newFull =<< liftIO fa
  bv <- spawn $ liftIO . fb =<< get av

  cv <- spawn $ liftIO . Fc =<< get av

  b <- get bv
  c <- get cv
  liftIO (fd b c)
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Basically we just plugged in some liftIO here and there. Bear in mind that the only 
order enforced on IO actions is due to calls to put and get; an IO action may be 
performed whenever all IVar data dependencies before it have been met. So when 
doing impure parallelism, ensure that I/O actions interact with each other only via 
IVars to prevent unexpected behavior.

Diagnosing parallelism – ThreadScope
Next we will look at a program visualization tool, ThreadScope. Install the 
threadscope executable with:

stack install threadscope

To extract the eventlog that ThreadScope uses from a Haskell program, we need  
to compile with -eventlog and execute with the -l Runtime System option. 
Running the program then generates a program.eventlog file, which ThreadScope 
reads. In a convenient single recipe, we lay out these commands:

ghc -O2 -threaded -eventlog -with-rtsopts="-N -l" program.hs

./program

threadscope program.eventlog

ThreadScope provides a graphical user interface. The opening view shows processor 
core utilization. An example view from some eventlog is:
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Along with total utilization, we can see the work split on all processors (four in this 
case). What we also see in this graph, below each core utilization, is that there is GC 
activity. The program actually pauses quite often just to do GC for a split second. 
Sometimes such scenarios might require further investigation. In this case, the 
application in question is the parallelized naive Fibonacci program from before and 
this GC activity was to be expected.

Other things that ThreadScope shows us include the spark pool sizes over the 
program's lifetime. For example:

This is again data from the naive Fibonacci program. Most of the time there's some 
work available for all cores, which is good. The graph is rather rough because of the 
exponential nature of the algorithm, so this is about as good a spark rate as we can 
reasonably expect.

Data parallel programming – Repa
Repa (regular parallel) is a Haskell library providing regular parallel arrays. Repa 
performs very well in image processing, for example. Doing computations on large 
data structures in parallel is Repa's specialty. Repa is installed with:

stack install repa
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The parts on Repa in this chapter are written for version 3.4.0.2 of the Repa library. 
The main interface is exported by the Data.Array.Repa module.

At first glance, the library perhaps looks a bit complex. For instance, the parallel sum 
function has this daunting type signature:

sumAllP 
  :: (Shape sh, Source r a, Elt a, Unbox a, Num a, Monad m) 
  => Array r sh a -> m a

Repa uses a lot of classes to overload functionality over different types of array.  
The type of immutable arrays in Repa contains three type variables:

data Array r sh e

Here, r defines representation, sh defines shape, and e defines the array elements' 
type. For example, a one-dimensional array of unboxed Int is given by:

Array U DIM1 Int

Mutable arrays in Repa can be represented by another type, MVec r e. The difference 
with immutable arrays is that mutable arrays don't have a defined shape; they're 
always linear or one-dimensional. But rarely is it necessary to use explicitly mutable 
arrays thanks to Repa's fusion system.

Playing with Repa in GHCi
Let's fire up GHCi to get the hang of the Repa library. A one-dimensional array of 
unboxed Ints is constructed from a list with the fromListUnboxed function:

> import Data.Array.Repa as Repa 
> let x = fromListUnboxed (ix1 3) [0, 1, 2 :: Int]
> :t x
x :: Array U DIM1 Int

Many definitions from Repa overlap with definitions from Prelude, so we want a 
shorthand qualifier for the Repa library. Then, when building a list, note that we 
had to provide fromListUnboxed with the exact size or shape of the resulting array. 
The recommended way to construct shape definitions is with the ix1, ix2, and ix3 
functions.
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Repa arrays are shape-polymorphic, but not shape-agnostic; Repa is actually quite 
strict about aligning shapes correctly in computations. On the type level, we are 
guaranteed that the number of dimensions will match or else there will be a type 
error. Constructing two-dimensional arrays is straightforward:

> let y = fromListUnboxed (ix2 2 2) [1, 1, 1, 0 :: Int]
> y
AUnboxed ((Z :. 2) :. 2) [1,1,1,0]

Here, we witness the show instance for unboxed arrays. Conforming read instances 
are of course also provided. The specialized data type under the array abstraction 
leaks a little, in a sense. AUnboxed is the concrete data type for unboxed vectors 
whereas array r sh e is in fact an (associated) type family, or in clearer terms just 
a function on the type level. So although array is not really a data type itself, in 
practice it can be thought of as one.

We can retrieve the shape of any Repa array as a value with the extent function:

> extent y
(Z :. 2) :. 2

Indexing into Repa arrays happens with the (!) operator. The index is given as a 
shape of the same type as the array's extent. For instance:

> y ! ix2 1 0
1

Mapping and delayed arrays
We can map over the elements in the functor style with Repa.map:

map :: (Shape sh, Source r a) → (a → b) → Array r sh a → Array D  
  sh b

Looking at the type of map, we see that, whatever representation the argument array 
uses, the representation of the resulting array is always D for delayed. In the delayed 
array representation, each element is given as a function in a sense. Indexing works 
normally for delayed arrays (the work related to calculating the  
element is done on-demand):

> Repa.map (+10) x ! ix1 1
11

There aren't show/read instances for delayed arrays, however. The advantages of 
explicitly delayed evaluation are mostly related to fusing workers in optimization.
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To evaluate a delayed array such as Repa.map returns, we use either computeP or 
computeS. The former evaluates elements in parallel and the latter sequentially:

computeP :: Monad m => Array r1 sh e → m (Array r2 sh e)
computeS :: Array r1 sh e → Array r2 sh e

Type classes were omitted for clarity. What we see is that the parallel computeP has 
to execute in some monad. computeP ensures parallel evaluation has been completed 
at a certain point of monadic computation. In effect, nested data parallelism is not 
supported by Repa.

As for the monad to use with computeP, it really does not matter that much, as long 
as it conforms to the monad laws of course. We can ditch the monad after finishing 
computation:

> let [r] = computeP (Repa.map (+10) x) :: [Array U DIM1 Int]
> r
AUnboxed (Z :. 3) [10,11,12]

Here we used the list monad, but could have used IO or ST as well.

Reduction via folding
Many array reductions are easily expressed as a fold. The foldS/foldP functions are 
used for sequential and parallel folding over the innermost dimension. The resulting 
dimension is one rank lower:

> :t foldP
foldP
  :: (Monad m, Shape sh, Source r a, Unbox a, Elt a) =>
    (a -> a -> a) -> a -> Array r (sh :. Int) a -> 
    m (Array U sh a)
> foldP (+) 0 y
AUnboxed (Z :. 2) [2,1]

To reduce all dimensions flat into a single scalar, use the foldAllS/foldAllP 
functions. The parallel sum of all elements could be implemented as foldAllP (+) 
0. Take care that, if using parallel folding, the combiner function is associative and 
the starting element is neutral; for a parallel fold to be parallel, Repa needs to use the 
starting element multiple times to calculate sub-folds in different threads.

To fold over other dimensions, we should first transform the array's shape so that 
the foldable dimension is lowest. In Repa, reshaping arrays is usually done in place 
by index-space transformations. To swap the lowest two dimensions around without 
copying, the convenience function transpose is provided:

transpose
  :: (Shape sh, Source r e) =>
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    Array r ((sh :. Int) :. Int) e -> Array D ((sh :. Int) :. Int) e

> foldP (+) 0 (transpose y)
AUnboxed (Z :. 2) [2,1]

Swapping arbitrary dimensions or indeed arbitrarily mapping indices is called 
backpermuting in Repa. For instance, swapping the highest dimension with the 
lowest dimension of a three-dimensional array can be done like this:

> let z = fromListUnboxed (ix3 3 2 1) [1, 2, 3, 4, 5, 6 :: Int]
> let z' = backpermute (ix3 1 2 3) (\(Z :. a :. b :. c) -> ix3 c b a) 
z
> computeS z' :: Array U DIM3 Int
AUnboxed (((Z :. 1) :. 2) :. 3) [1,3,5,2,4,6]

A couple of specialized folds are provided, namely for sum (sumS/sumP/sumAllS/
sumAllP) and element equality (equalsP/equalsS).

Manifest representations
So far, we have met unboxed and delayed array representations. Unboxed arrays 
belong to something called manifest representations. Representations are where the 
array is stored as if it is in memory, that is, not ad-hoc via mapping functions , which 
delayed arrays are.

If the array elements cannot be unboxed, then we would have to use boxed arrays 
(V) that present a level of indirection. Boxed arrays perform worse than unboxed, so 
unboxed arrays should always be preferred if possible.

When working with arrays, boxed or not, the deepSeqArray function 
may come in handy to ensure complete evaluation of an array data 
structure. An easy trap is when a call to computeP is deferred so that 
its evaluation is triggered by another computeP later. Attempting to 
evaluate multiple computeP at the same time produces a runtime error. 
Best practice would be to evaluate all computeP in the same monad.

The third manifest representation in Repa is B for strict ByteStrings. The  
advantage of Array B sh Word8 over Array U sh Word is that B-arrays can be 
turned into ByteStrings and vice versa in O(1). The conversion functions can be  
found separately in the Data.Array.Repa.Repr.ByteString module, not exported 
by Data.Array.Repa:

module Data.Array.Repa.Repr.ByteString
fromByteString :: Shape sh => sh → ByteString → Array B sh Word8
toByteString :: Array B sh Word8 → ByteString
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The ByteString representation can be used to manipulate textual data in 
tabular form efficiently. But remember to ensure that you only need to 
consider 8-bit characters. ByteString is not really a textual representation.

The fourth and final manifest representation, F, considers foreign memory buffers in 
the C heap just like ByteStrings do, but generalized for other values besides Word8. 
This representation is only relevant if your code interfaces with foreign code.

Delayed representation and fusion
Along with manifest representations are delayed representations. The first delayed 
representation, D, presents elements as functions from indices to elements. Most 
combinators in Repa return arrays in a delayed representation. This is because we 
can eliminate a lot of intermediate arrays, for instance, mapping twice like in:

computeS . Repa.map (+ 1) . Repa.map (* 2)

Like we would expect from other fusion frameworks, this fuses into a tight loop.  
The intermediate delayed array is certainly eliminated when compiling. In a way, the 
fusion framework in Repa gives us more control over when fusion happens. This is 
nice because it makes it easy to predict the performance of Repa programs. Although 
our code looks like we are operating on immutable arrays, constructing them over 
and over again, in practice correctly written Repa programs will optimize very nicely 
into fast code.

Using computeS/computeP quite often requires an explicit type 
signature, because the target array is polymorphic in its representation 
(either unboxed array, boxed array, or foreign buffer). Usually 
unboxed array is the desired choice, for which more specific functions, 
computeUnboxedP and computeUnboxedS, provide specialized  
type readily.

Indices, slicing, and extending arrays
Index types in Repa are defined as:

data Z
data tail :. head = !tail :. !head

Convenient type synonyms and smart constructors are provided for dimensions up 
to five:

type DIM0 = Z
type DIM1 = DIM0 :. Int
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…
type DIM5 = DIM4 :. Int

ix1 :: Int → DIM1
…
ix5 :: Int → Int → Int → Int → Int → DIM5

However, Repa has full support for arrays of an arbitrary but finite number of 
dimensions, if there's ever need for such arrays.

The Shape type class captures properties of an array's extent and its dimensions. 
For instance, the number of dimensions of a shape can be retrieved with the rank 
function and the overall count of elements with the size function. See the Data.
Array.Repa.Shape module for all supported operations.

Index space transformations readily defined include imposing a new shape on an 
array element regardless of its original shape with reshape, appending two arrays by 
appending their lowest dimensions together with (++), and transposing dimensions 
with transpose. We can extract a sub-range with the extract function:

> y
AUnboxed ((Z :. 2) :. 2) [1,1,1,0]

> computeS $ extract (ix2 1 1) (ix2 1 1) y :: Array U DIM2 Int
AUnboxed ((Z :. 1) :. 1) [0]

The extend and slice functions involve some type families in their type signatures. 
At first these look complicated:

> :t extend
  :: (Slice sl, Shape (SliceShape sl), Shape (FullShape sl),
    Source r e) =>
    sl -> Array r (SliceShape sl) e -> Array D (FullShape sl) e

> :t slice
slice
  :: (Slice sl, Shape (FullShape sl), Shape (SliceShape sl),
    Source r e) =>
    Array r (FullShape sl) e -> sl -> Array D (SliceShape sl) e

Ouch, how do you read these things? Let's write signatures for extend and slice 
without all the details:

extend :: sl → Array r (SliceShape sl) e → Array D  
  (FullShape sl) e
slice :: Array r (FullShape sl) e → sl → Array D (SliceShape sl) e
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Now concentrate on that sl type variable; both extend and slice take such a type 
as one of their two arguments, the other one being an array. Then we have two type-
level functions (type families): FullShape and SliceShape.

Now things are a little clearer. extend takes a slice of an array (of shape SliceShape 
sl) and produces a full array (of shape FullShape sl); for slice, the shapes are the 
other way around.

Then the sl thing? It's called slice specification. Intuitively, the end result depends 
on how we are slicing the array (or extending a slice, in the case of extend). 
SliceShape is the (type-level) function that tells us the shape based on the slice 
specification. FullShape gives the original array's shape (result array in the case of 
extend).

Recall that Repa defines dimensions inductively with the (:.) type constructor. So 
the shape of three-dimensional arrays is:

DIM3 ~ (((Z :. Int) :. Int) :. Int)

The slice and full shapes are given as type families with these instances:

type instance FullShape (sl :. All) = FullShape sl :. Int
type instance FullShape (sl :. Int) = FullShape sl :. Int
type instance FullShape (Any sh) = sh
type instance FullShape Z = Z

type instance SliceShape (sl :. All) = SliceShape sl :. Int
type instance SliceShape (sl :. Int) = SliceShape sl
type instance SliceShape (Any sh) = sh
type instance SliceShape Z = Z

There are two new data types: Any and All. These are both nullary constructors. 
Now, for a slice specification to be sensible its FullShape and SliceShape should be 
of the form Z :. Int … :. Int. Clearly, all shapes are also slice specifications. The 
slice shape of DIM3 reduces as follows:

Z :. Int :. Int :. Int   -- SliceShape (sl :. Int) = SliceShape sl
Z :. Int :. Int
Z :. Int                 -- SliceShape Z = Z
Z

The FullShape function is just the identity.

This slice retains the structure of all other dimensions but the lowest; for the lowest 
dimension, it takes the first index and ignores all others. Thus its SliceShape is one 
rank lower.

Any :. (0 :: Int)
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This one slices along the second lowest dimension:

Any :. (0 :: Int) :. All

For instance:

> z
AUnboxed (((Z :. 3) :. 2) :. 1) [1,2,3,4,5,6]
> computeS $ slice z (Any :. (0 :: Int) :. All) :: Array U DIM2  
  Int
AUnboxed ((Z :. 3) :. 1) [1,3,5]

When writing the slice specification, first consider the lowest dimension. Should 
all elements be included, or just the element at one index? If all, the last constructor 
is All. If a certain index, write an Int. Then consider the next lowest dimension: 
should all indices (All) or just a certain index be considered? That's the second last 
constructor. The highest dimensions that should be preserved should be written off 
with a single Any constructor.

Whereas in slicing All and Any preserve the structure and indices drill-down, in 
extending All and Any still preserve the structure but each index number defines a 
new dimension at the position where it appears. The new dimensions replicate the 
contents of the supplied array:

> x
AUnboxed (Z :. 3) [0,1,2]
> computeS $ extend (Any :. (2::Int)) x :: Array U DIM2 Int
AUnboxed ((Z :. 3) :. 2) [0,0,1,1,2,2]
> computeS $ extend (Any :. (2::Int) :. All) x :: Array U DIM2 Int
AUnboxed ((Z :. 2) :. 3) [0,1,2,0,1,2]
> computeS $ extend (Any :. (2::Int) :. (2::Int)) x :: Array U  
  DIM3 Int
AUnboxed (((Z :. 3) :. 2) :. 2) [0,0,0,0,1,1,1,1,2,2,2,2]

Convolution with stencils
In image processing, among other applications, the convolution operation (*) is used. 
Discrete convolution is defined by:

(A * K)(x, y) = sum_i sum_j A(x + i, y + j) K(i, j)

Here A is the array (image) and K is a stencil, basically a small matrix.



Parallelize for Performance

[ 150 ]

Let's consider a simple example. A 5x5 grayscale image is given by this matrix:

1 1 1 1 1
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

And the following stencil extracts the feature of horizontal lines:

0 0 0
1 1 1
0 0 0

To represent the stencil in Repa, we'll use a quasi-quoter that comes with Repa, 
[stencil2|...|]. We will need these imports:

-- file: stencil.hs
{-# LANGUAGE QuasiQuotes #-}

import Data.Array.Repa as Repa
import Data.Array.Repa.Stencil
import Data.Array.Repa.Stencil.Dim2

For now, we'll build the image from a function with fromFunction:

image :: Array D DIM2 Double
image = fromFunction (ix2 5 5) $
    \(Z :. x :. y) -> if x == 2 || y == 2 then 1 else 0

As for the stencil, we can use the ready stencil framework present in Repa and 
construct something with type Stencil:

stencil :: Stencil DIM2 Double
stencil = [stencil2| 0  0  0
                     1  1  1
                     0  0  0 |]

The convolution operation simply overlays the stencil over each pixel in the image 
and produces a new value for that pixel by calculating sum of the elementwise 
product with the stencil. The mapStencil2 function does exactly this:

mapStencil2
  :: Source r a =>
    Boundary a -> Stencil DIM2 a -> Array r DIM2 a -> 
      Array PC5 DIM2 a
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The Boundary argument defines what happens at pixels on the edges, where the 
stencil goes over the boundaries of the image. Three popular options are available:

data Boundary a = BoundFixed !a 
                | BoundConst !a 
                | BoundClamp

BoundClamp assigns edge pixels the same values as in the original image, 
BoundConst treats points outside the image as having been given a constant value, 
and BoundFixed assigns a fixed value where the stencil cannot be fully applied.

The representation of the result array, PC5, is also delayed in nature. It is something 
called a partitioned array. Although it is a detail that we don't need to worry about,  
the compute functions understand it. The convolution is then produced by:

computeP $ mapStencil2 (BoundConst 0) stencil image
  :: IO (Array U DIM2 Double)

This produces an array that looks like this:

3 3 3 3 3
0 1 1 1 0
3 3 3 3 3
0 1 1 1 0
0 1 1 1 0

Now if we applied a filter, like this:

Repa.map (\x -> if x >= 3 then 1 else 0)

The resulting image would contain only the horizontal line in the input image:

1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

This is the basic idea behind edge detection. And what's more, it scales to larger 
images performantly and will automatically scale to however many processors  
are available.

Cursored and partitioned arrays
Although we just concluded it isn't necessary to acknowledge the existence of 
the PC5 array representation that the stencil transformation produced, that isn't 
completely correct. The distinction between bare delayed (D) and cursored/
partitioned (C, P) representations makes a difference in certain applications.
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To see the need for exposing this difference in the API, let's continue with our 
convolution example by extending it with one more edge detector. Can you guess 
what kind of a pattern this stencil detects?

stencil' :: Stencil DIM2 Double
stencil' = [stencil2| -1  1 -1
                      -2  1 -2
                      -1  1 -1 |]

Yes, it detects vertical lines not intersected by anything.

Applying this and our previous stencil separately with some appropriate 
normalizing thresholds we get:

st1, st2 :: Array D DIM2 Double
st1 = Repa.map (\x -> if x >= 3 then 1 else 0) $
      mapStencil2 BoundClamp stencil image

st2 = Repa.map (\x -> if x >= 1 then 1 else 0) $
      mapStencil2 BoundClamp stencil' image

Both of these have the same shape and type: Array D DIM2 Double. Combining 
these to one image and computing the result look like this:

> import Data.Bits ((.|.))
> computeUnboxedP (zipWith (.|.) st1 st2)

The result is this:

1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

Now, looking at Repa.map again, we note that it always produces a delayed array, 
which wraps every element into its own function. This is suboptimal when we have 
partitioned our array such that sets of indices share computations (the Repa stencils 
did that).

To open up more possibilities for compile-time optimizations, we should use 
structured versions of smap and szipWith. These functions preserve the partitioning 
and cursoring and let us benefit from index sharing. With these changes, the types 
change a little, but not much:

st1, st2 :: Array PC5 DIM2 Int
st1 = smap (\x -> if x >= 3 then 1 else 0) $
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      mapStencil2 BoundClamp stencil image

st2 = smap (\x -> if x >= 1 then 1 else 0) $
      mapStencil2 BoundClamp stencil' image

> print $ computeUnboxedS $ szipWith (.|.) st1 st2

Writing fast Repa code
There are numerous tricks for writing fast and well-parallelizing code with Repa. 
Enumerating from most important to least important, we have:

• Vectorize: Work the algorithm such that as much as possible is done with 
array operations. Use unboxed arrays unless you have a good reason not to.

• Compute only where necessary: The more delayed arrays there are, the 
more fusion will likely take place and the produced code will be faster. 
Unless not evaluating would take up too much memory, it is usually best to 
defer it further. Computation usually creates a new manifest array.

• Parallelize with optimal granularity: Using parallel computeP, foldP, 
and others is faster on bigger arrays or with a bigger bunch of work; for 
little work, computeS and foldS have less overhead. The lack of nested 
parallelism encourages us to lift parallelism to the top level for best effect.

• Compile with optimizations, threaded and with LLVM: A good base set 
of flags for Repa programs in production is -Odph -threaded -rtsopts 
-fllvm -fno-liberate-case -optlo-O3.

• Bang everything: All lazy arguments and data type fields should be strict.
• Inline extensively: The fusion system relies heavily on worker functions 

getting inlined. Instead of cluttering your code with INLINE pragmas, 
consider compiling with these flags -funfolding-use-threshold1000 
-funfolding-keenness-factor1000. They tell GHC to inline everything. 
This might increase binary sizes considerably, so these flags should probably 
be enabled on a per-module basis (using the OPTIONS_GHC pragma).

• Use unsafe versions of Repa functions: The function unsafeIndex and 
others from Data.Array.Repa.Unsafe should be preferred when correctness 
is guaranteed. These unsafe variants don't do bounds-checking and cause 
undefined behavior if used incorrectly. Therefore, unsafe functions shouldn't 
be used when developing or testing code.
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Additional libraries
There are a number of libraries that complement Repa:

• repa-devil: Load and write arrays as image files. Apparently this has been 
deprecated in favor of the friday and friday-devil libraries.

• repa-io: Load and write arrays in bitmap, binary, ASCII matrix, and vector 
formats.

• repa-algorithms: Quite performant implementations of algorithms for 
matrix operations, Fourier transform, randomized arrays, and more flexible 
convolution functions.

• repa-stream and repa-flow: Data-parallel streaming libraries built on top 
of Repa.

Example from image processing
We'll conclude this chapter with a full-blown example of image processing with 
Repa. We will do letter recognition from images with convolution. For the sake of 
demonstration, we'll restrict ourselves to well-defined black-and-white images with 
text in a pixel-correct font that is assumed to be known. The image we will try to 
read letters from is this:

To simplify things even further, we'll assume that the text is oriented exactly 
horizontally.

Next, we will proceed to load the image from the file, identifying letters and then 
text. Then we will test and evaluate the performance and see if we can squeeze in 
some optimizations.

To follow along, write the code into a Haskell source code file by copying as we go 
forward. First, these are a bunch of imports we will be using:

-- file: letterrec.hs
{-# LANGUAGE QuasiQuotes #-}

import Data.Array.Repa as Repa
import Data.Array.Repa.Algorithms.Convolve
import Data.Array.Repa.IO.BMP
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Loading the image from file
We have a few options for how to read an image file into a Repa array. One is the 
repa-devil library (which has now been deprecated in favor of friday/friday-
devil). Here we will operate on just BMP images using the repa-io library. So make 
sure that library is installed:

stack install repa-io

We'll represent pixels as single Doubles that represent luminance:

type Image r = Array r DIM2 Double

Reading in an image is simple. In addition, we'll have to convert RGB values to 
luminance. Luckily, this problem is solved by Pixel.doubleLuminanceOfRGB8. The 
final problem is that readImageFromBMP from repa-io builds the array so that the 
lowest pixels are at the top of the array. This is fixed by a mirror function. Our read 
action becomes:

readImage :: FilePath -> IO (Image U)
readImage fp = do
  result <- BMP.readImageFromBMP fp
  return $! computeS $ mirror $ case result of
    Left err -> error "readImage: Failed to load image from  
      file"
    Right array -> Repa.map Pixel.doubleLuminanceOfRGB8 array

mirror :: Image D -> Image D
mirror img = backpermute (extent img) 
  (\(Z :. x :. y) -> ix2 (mx - 1 - x) y) img
  where Z :. mx :. _ = extent img

Note that I used ($!) instead of ($). This way, if the image file was faulty, we get an 
error before readImage IO action completes. With lazy return, the error would be 
silently propagated to wherever the returned Image D thunk is next requested.

We computed the result here instead of returning a delayed array because the 
convolution operation we'll be using expects an unboxed array as input.

Identifying letters with convolution
Next for the convolution. We'll implement recognition for three letters: a, b, and c. 
We make stencils for each letter. But using the stencils in the repa library is not an 
option this time, because letter b is larger than 7x7 in our font, which is the upper 
bound on stencil size in Data.Array.Repa.Stencil.
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To represent larger than 7x7 stencils, we'll again resort to repa-algorithms, 
specifically the Data.Array.Repa.Algorithms.Convolve module. The function 
we'll be using is convolveP. Specialized for our Image type, we have:

convoleP 
  :: Monad m => 
    (DIM2 → Double) → Image U → Image U → m (Image U)

This convolution represents the stencil as an unboxed array too. The first argument is 
used to decide what happens at the edges.

The stencils for letters a, b, and c in our font are therefore:

sta, stb, stc :: Image U
sta = fromListUnboxed (ix2 6 5)
    [ -1,  1,  1,  1, -1
    , -1, -1, -1, -1,  1
    , -1,  1,  1,  1,  1
    ,  1, -1, -1, -1,  1
    ,  1, -1, -1, -1,  1
    , -1,  1,  1,  1,  1 ]

stb = fromListUnboxed (ix2 8 5)
    [  1, -1, -1, -1, -1
    ,  1, -1, -1, -1, -1
    ,  1,  1,  1,  1, -1
    ,  1, -1, -1, -1,  1
    ,  1, -1, -1, -1,  1
    ,  1, -1, -1, -1,  1
    ,  1, -1, -1, -1,  1
    ,  1,  1,  1,  1, -1 ]

stc = fromListUnboxed (ix2 6 5)
    [ -1,  1,  1,  1, -1
    ,  1, -1, -1, -1,  1
    ,  1, -1, -1, -1, -1
    ,  1, -1, -1, -1, -1
    ,  1, -1, -1, -1,  1
    , -1,  1,  1,  1, -1 ]

To use these to recognize letters, for each letter and corresponding stencil we apply 
convolution and read from the result where the stencil matched exactly. Matching 
exactly means that, for every 1, there is a 1 in the input image and, for every -1, there 
is a 0 in the input image.
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The following function takes a letter stencil and input image and creates a two-
dimensional character array of found matches with the size the same as the input 
image:

match 
  :: Monad m => Char -> Image U -> Image U -> m (Array D DIM2  
    Char)
match char stencil image = do
  let
    threshold = sumAllS (Repa.map (max 0) stencil) – 0.1

  res <- convolveP (const 0) stencil image
  return $! Repa.map 
    (\x -> if x > threshold then char else '\NUL') res

First we calculated the threshold value from the stencil. The 0.1 is there to 
accommodate for inaccuracy from the bitmap (white pixels aren't exactly 1).

Next we apply convolution. Finally, we convert elements that are above the threshold 
into characters. Others are set to null characters. We return this (delayed) array.

At this point, we can fire up GHCi and see if we match letters:

> :load letterrec.hs

> img <- readImage "image.bmp"

> res <- match 'a' sta img

> filter (/= '\NUL') $ toList $ computeUnboxedS res

"aa"

Yep, seems to work correctly. Repeat for other characters to verify further, if you wish.

Let's add one more letter, d. We note that d is exactly a flipped b in our font, so we 
can get away with just this:

std :: Image U
std = computeUnboxedS . transpose . mirror $ transpose stb

Extracting strings from an image
Now for the final feature: combining letter recognizers into a complete string 
recognizer.

The recognizer takes an image as input, so:

recognize :: Monad m => Image U -> m String
recognize img = do
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Then we execute matches for all letters we recognize:

let recs = [ match c st img
  | (c, st) ←[ ('a', sta), ('b', stb),  
    ('c', stc), ('d', std) ] ]

  letters <- sequence recs

Here, recs is a list of computations that produce arrays. To execute them, we used 
sequence. Now letters is a list of arrays. Then, to combine them, we'll just apply an 
element-wise maximum over them all:

  combined <- computeUnboxedP $ foldl1 (Repa.zipWith max)  
    letters

Then, to also accommodate for line-endings, we turn all left-most elements into 
newline characters. This is safe, because those are always NUL characters (our 
convolution always sets edges to zero). The final step is to convert the array into a list 
and, strip nulls and excess line endings; then recognition is complete!

let Z :. _ :. my = extent combined

  lineEnds = Repa.traverse combined id $ \f ix@(Z :. _ :. y)  
    ->
  if y == my - 1 then '\n' else f ix

    return $! unlines . words $ filter (/= '\NUL') $ toList  
      lineEnds

The very last thing to do is test it. Here's a main that does this:

main = do
  img <- readImage "image.bmp"
  str <- recognize img
  putStr str

And a quick testing at GHCi makes it clear that our recognizer works:

> :load letterrec.hs

[1 of 1] Compiling Main             ( letterrec.hs, interpreted )

Ok, modules loaded: Main.

> main

bcdc

abca
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Testing and evaluating performance
Now it's time to see how our recognizer performs. For testing purposes, I tiled our 
test image 5,000 times into a single image (size 3550x2100 pixels, 21.3 MB).

The first try was with a non-threaded runtime and no special optimizations:

ghc -rtsopts -O3 letterrec.hs

./letterrec +RTS -s

  7,323,831,024 bytes allocated in the heap

  4,803,680 bytes copied during GC

  268,385,496 bytes maximum residency (9 sample(s))

  4,978,072 bytes maximum slop

  342 MB total memory in use (27 MB lost due to fragmentation)

   Tot time (elapsed)  Avg pause  Max pause

  Gen  0     13281 colls,     0 par    0.045s   0.044s     0.0000s    
0.0001s

  Gen  1         9 colls,     0 par    0.016s   0.016s     0.0018s    
0.0146s

  INIT    time    0.000s  (  0.000s elapsed)

  MUT     time    9.158s  (  9.172s elapsed)

  GC      time    0.061s  (  0.059s elapsed)

  EXIT    time    0.015s  (  0.015s elapsed)

  Total   time    9.238s  (  9.246s elapsed)

  %GC     time       0.7%  (0.6% elapsed)

  Alloc rate    799,722,664 bytes per MUT second

  Productivity  99.3% of total user, 99.3% of total elapsed

Now we have a baseline from which we can try to get faster. Next, let's see how well 
parallelization affects the results. Compile with a threaded runtime and run on three 
system cores:

ghc -rtsopts -threaded -O3 letterrec.hs

./letterrec +RTS -N4 -s
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The main differences from a non-threaded runtime were: elapsed time reduced to 
4.4s (speedup by a factor of 2) and the memory footprint went up a little, due to more 
work being done simultaneously.

Let's next add LLVM into the mix. With LLVM, we should use -Odph instead, 
because it enables better optimizations for Repa and LLVM code:

ghc -rtsopts -threaded -Odph -fllvm -optlo-O3 -fno-liberate-case

  -funfolding-use-threshold1000 -funfolding-keeness-factor1000

./letterrec +RTS -N4 -s

This cuts down runtime to about 3.8s (speedup factor of 2.5).

Last, let's see if we could still have added some code-level optimizations. There are a 
few things we could do. But most of the time is spent in convolveP, which is largely 
out of our control. Anyway, we could:

• Add bangs to all function arguments and use explicit INLINE pragmas
• Use unsafeTraverse and unsafeBackpermute instead of traverse and 

backpermute

Together, these account for about 3%-better performance in our program. If we 
had implemented more of the labor and not just handed all the heavy lifting to 
convolveP, inlining and unsafe functions would make for a bigger difference.

A better alternative to blindly cluttering code with bangs and pragmas is as usual to 
profile the program to find the bottlenecks. For instance, the ThreadScope profile of 
our program looks like this:
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What we see in the middle are the four convolution passes. Together they make up 
about 1.5 seconds or 45% of the total runtime.

The first 0.8 seconds are spent in loading and processing the input image. Much of 
it is sequential. With the extra-large image, it seems like our program could benefit 
from using computeP in readImage instead of computeS.

That one second after convolution passes is probably spent combining the character 
arrays into one. Even though we simply fold sequentially, Repa manages to squeeze 
in a lot of parallel processing when we just wrapped the thing in computeP. We 
didn't even need to use a real parallel fold (for lists).

Finally, the last 0.8 seconds are spent in constructing the output string… Er, I mean 
it's spent doing GC. Once again a linked list performs badly. For better performance, 
we should switch to a more memory-friendly representation instead.

Summary
Now we have crammed in how parallelism is done in Haskell and an overview of 
the threaded runtime. We parallelized pure and lazy data structures with strategies 
and Eval (the parallel package). For more control and parallelism in IO, we had 
to resort to schedules and Par (the monad-par package). We dived into data-parallel 
programming with Repa and even wrote a string recognition program with it.

We learned to use the event log and ThreadScope to diagnose the parallel 
performance of Haskell programs. Things to keep in mind when parallelizing 
programs are: use good granularity, not too much overhead but not too much 
sequential processing either; compile with flags optimized for parallelism, especially 
with Repa; and profile and diagnose before applying transformations at the code 
level.

In the next chapter, we will look at stream processing in Haskell: I/O, networking, 
and streaming libraries such as conduits and pipes. Lazy I/O, combined with 
interacting with networks, produces nightmarish bugs and sadly it's not easy to 
get right every time. And the consumer and producer types in some libraries we 
will look at are scary for sure – but this is just to prevent you from writing incorrect 
programs!
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I/O and Streaming
I/O in Haskell is a source of confusion for many. The I/O functions in the base 
library are lazy and allow the interleaving of I/O side effects with pure code. This 
produces weird errors at runtime or, even worse, just incorrect behavior without 
errors. On the other hand, interleaved side-effects allow easy file processing in 
constant space, among other things. Fortunately, more robust alternatives for 
streaming have been proposed and implemented as libraries.

In this chapter, we will learn to use some of the most popular streaming libraries. 
But before that, we will tear down problems with lazy I/O, because it's still often the 
easiest and most elegant way to do I/O. We will also consider an alternative to lazy 
I/O, strict I/O.

The I/O we do in this chapter consists of standard input and output, file handles, 
and network sockets. These cover almost all I/O that's possible in Haskell (we don't 
do foreign interfaces in this chapter). Resource management is closely related to I/O 
and so that will be covered too. We will also cover perhaps the most widely seen 
specific kind of data output ever: writing logs and log files from applications. We 
will look at the following topics:

• Working with lazy I/O: recognizing and avoiding problems
• Taking care of freeing resources and using ResourceT
• Working with streaming libraries: io-streams, pipes, and conduit
• Adding logging abilities to Haskell applications: fast-logger and monad-

logger
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Reading, writing, and handling resources
Although it's a common joke that because Haskell is a pure language, we couldn't 
observe its effects, Haskell actually has very powerful and sophisticated facilities for 
interacting with the outside world. Besides reading and writing to files and network 
sockets, I/O affiliates to managing resources that provide for input and output.

In this section, we will first point out laziness in Haskell I/O, doing networking with 
low-level sockets, and consider managing handles and resources.

Traps of lazy I/O
Lazy I/O allows pure functions to be interleaved with I/O actions arbitrarily. 
It is important to know when an I/O action defers its action part for later. To 
demonstrate how easy it is to fall prey to lazy I/O, consider this innocent-looking file 
manipulation procedure:

-- file: readwrite.hs

main = do
    writeFile "file.txt" "old"
    old <- readFile "file.txt"
    writeFile "file.txt" "new"
    putStrLn old

However, running this code produces an error at runtime:

readwrite.hs: file.txt: openFile: resource busy (file is locked)

The culprit is readFile, which is lazy in its return value: reading the file begins only 
when we demand the results. That would happen on the last line. But readFile 
does set a lock on the file in the Runtime System immediately, leading to writeFile 
failing.

Here's another example, using withFile from System.IO to manage the file resource 
as a file handle:

-- file: readwithfile.hs

import System.IO

main = do
    old <- withFile "file.txt" ReadWriteMode hGetContents
    putStrLn old
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This time, the runtime error message has more information, as it is associated with a 
handle instead of a file:

readwithfile.hs: file.txt: hGetContents: illegal operation (delayed read 
on closed handle)

What's worse, because I/O operations in the base library work with strings, it 
wouldn't even be enough to seq the result. We would have to do something like seq 
(last string).

On the other hand, lazy IO and strings allow us to program input and output 
streams in a similar way to streaming with pure lists. For example, the echo program 
in Haskell is simply:

-- file: echo.hs 

main = getContents >>= putStr

Or using the interact combinator:

main = interact id

File handles, buffering, and encoding
The Handle data type is used by Runtime System to manage reading and writing 
from and to filesystem objects. Standard input, output, and error channels are also 
handles. These handles are exported in System.IO as stdin, stdout, and stderr, 
respectively. For convenience, basic reading, writing, and appending functions 
are defined that hide handle opening and closing under the hood. These functions 
correctly close the handle or Handle? make consistent globally even when exceptions 
are raised.

When working with Handles directly, you are responsible for closing every handle 
you open. Best practice is to use utility functions, such as withFile, that correctly 
close handles even in the case of exceptions. With openFile, you are responsible 
to call hClose on the Handle that openFile returns, preferably using finally or 
bracket from the Control.Exception module. An example use of bracket is in the 
withFile combinator, which we could equally implement ourselves as:

-- file: bracket.hs

import Control.Exception
import System.IO hiding (withFile)

withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
withFile file mode go = bracket (openFile file mode) hClose go
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Buffering is also controlled via Handles. The preferable buffering mode depends on 
the application. Three different buffering modes are supported:

• BlockBuffering: This is the fastest buffering mode with least overhead, best 
suited for high-bandwidth applications.

• LineBuffering: Input and output is handled one line at a time. Best-suited for 
terminal applications.

• NoBuffering: Input and output is handled one word or character at a time. 
This is the only choice for highly interactive terminal programs, for example. 
The overhead is very big when processing large amounts of data with no 
buffering.

Basic I/O operations don't bother defining standard buffering modes and instead 
depend on default buffering of the operating system.

Most of the time the defaults are reasonably sane, such as block-buffering for files 
and line-buffering for terminal applications. But this isn't always the case: if your 
application depends on a specific buffering mode, you should set it yourselves 
with hSetBuffering. For example, to ensure that a terminal application uses line-
buffering for both input and output in all cases, we should do something like the 
following:

-- file: interact.hs
import Data.Char (toUpper)
import System.IO

main = do
    hSetBuffering stdin LineBuffering
    hSetBuffering stdout LineBuffering
    interact (map toUpper)

Alongside buffering, text encoding is also a property of handles in text mode. By 
default, files are always in text-mode and only opened in non-text or binary mode 
with openBinaryFile. Encoding is controlled with hSetEncoding (from System.
IO) and, just like with buffering modes, the default encoding depends on the 
underlaying system's configuration. To set standard input encoding to utf-8, use:

hSetEncoding stdin utf8 :: IO ()

Binary I/O
Using handles in binary mode with functions from System.IO is slightly 
cumbersome because the interface is low-level, based on pointers (Ptr a).  
The bytestring package is usually a better option for binary I/O.
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Recall that ByteStrings came in two flavors: strict and lazy. Both have their own I/O 
interfaces using respective ByteString variants. The I/O interface with bytestring 
is named consistently with the string IO interface, using exactly the same names, 
such as getLine, getContents, interact, readFile, writeFile, and so on.

Before we do I/O with ByteStrings though, we should ensure that the handle 
we are using is in binary mode. Functions such as withBinaryFile and 
openBinaryFile take care of this for us. But stdin, stdout, and stderr are by 
default in text-mode and should be set to binary mode with hSetBinaryMode. 
This ensures that no special encoding takes place and no newline translation is 
performed.

Recall the echo program (echo.hs) we wrote a few pages ago? There is a small 
problem with that implementation: with binary files, end-of-line and end-of-file 
characters could clutter output in the case of non-textual data. So in a correct echo 
program, we should set both stdin and stdout to binary mode at startup.

The strict ByteString from Data.ByteString is always a single, fully evaluated, 
strict byte array. This is to be expected from a strict data structure. But what is not 
so obvious is that I/O operations with strict ByteStrings are also strict. So the write-
read-write program that failed with lazy string or String? make consistent globally 
IO will work fine with strict ByteString IO:

-- file: readwrite-bs.hs
{-# LANGUAGE OverloadedStrings #-} 

import qualified Data.ByteString as B

main = do 
    B.writeFile "file.txt" "old"
    old <- B.readFile "file.txt"
    B.writeFile "file.txt" "new"
    B.putStr old

Note that if you are relying on ASCII encoding with ByteStrings then, as usual, you 
should probably be using the Text data type instead. However, the Data.ByteString.
Char8 module provides functions for interpreting ByteStrings as ASCII. Functions 
such as hPutStrLn (relies on newline character) belong strictly to the Char8 module.

As a consequence of strictness, it's not possible to stream with strict ByteStrings like 
it is with lazy strings. Fortunately, lazy ByteString works much the same way as 
String. The API is very similar too.
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Implementing the echo program correctly with lazy ByteStrings, we write:

-- file: echo-lbs.hs

import System.IO
import qualified Data.ByteString.Lazy as L

main = do
    hSetBinaryMode stdin True
    hSetBinaryMode stdout True
    L.getContents >>= L.putStr

Note that for lazy ByteStrings, there's also a corresponding lazy Char8 module, 
Data.ByteString.Lazy.Char8 for ASCII-dependent functions.

Textual I/O
Although String is a perfectly fine datatype to use in non-critical applications and for 
small strings, they're horribly space-inefficient for large strings and not completely 
Unicode-correct. The Text data types, strict and lazy, from the text package are a lot 
better datatypes for larger strings.

The IO functions for Texts are again named just like IO functions for Strings and 
ByteStrings, but for some reason IO functions are in their own modules named Data.
Text.IO and Data.Text.Lazy.IO.

I/O performance with filesystem objects
Let's for a moment consider the performance impact of using different datatypes for 
I/O: String, strict and lazy ByteString, and strict and lazy Text. We'll benchmark by 
processing 512 MB of zeroes with different implementations of echo. All programs 
were compiled with -O3. The tests were run as:

dd if=/dev/zero of=/dev/stdout bs=1M count=512 | ./echo +RTS -s

The results are tabled as:

Datatype Time taken Heap 
allocations

Copied in GC Memory in 
use

String 18.4 seconds 22, 000 MB 1, 000, 000 kB 1 MB
ByteString 
(lazy)

7 seconds 550 MB 110 kB 2 MB

ByteString 
(strict)

8 seconds 1, 000 MB 6, 100 kB 1,100 MB
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Datatype Time taken Heap 
allocations

Copied in GC Memory in 
use

Text (lazy) 17 seconds 32, 000 MB 31, 000 kB 1 MB
Text (strict) 21 seconds 33, 000 MB 56, 000 kB 2,900 MB

In terms of time taken, String isn't too bad. But GC traffic is orders of magnitude 
larger than with any other datatype. Not surprisingly, the most efficient 
representations are ByteStrings. Also notable is that there is a considerable memory 
overhead in producing a large strict Text, but the lazy Text is clearly a better option 
than String overall.

Sockets and networking
The Network.Socket module from the network package exposes the C socket API 
unclear?. The more recent socket package takes a more type-safe approach than the 
network package. Using either package is straightforward when there is knowledge 
of network programming in general; the interested reader might consider picking up 
a favorite networking book, as this isn't one.

Acting as a TCP/IP client
Using the network package, the function connectTo can be used to open a Handle to 
a remote endpoint:

connectTo :: HostName → PortID → IO Handle

For example, we could make a HTTP request directly with a TCP socket in GHCi:

> import System.IO
> import Network

> h <- connectTo "google.com" (PortNumber 80)
> hPutStr h "GET / HTTP/1.1\nHost: www.google.com\n\n"
> hGetContents h

"HTTP/1.1 200 OK\r\nDate: Sat, 07 May 2016 13:19:47 GMT\r\nExpires: 
-1\r\nCache-Control: private, max-age=0\r\nContent-Type: text/html; 
charset=ISO-8859 …

Note that, because connectTo returns a handle, we could just as well use hPutStr 
and other handle functions from bytestring or text libraries. The same points 
about buffering discussed previously in Handle's apply here as well: for interactive 
applications, you should probably set the Handle to line-buffering (the default is 
block-buffering).
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Unfortunately, the network package is potentially confusing to navigate: while the 
C socket API is exported as is in Network.Socket, the Network module exports a 
slightly higher-level but much restricted API that supports only TCP/IP.

Using the Network.Socket module is more laborious and error-prone than using the 
higher-level Network module. Instead of connectTo, we would create a socket with 
correct parameters and then bind an address to it. The connectTo from previous 
example becomes then:

> import Network.Socket

> s <- socket AF_INET Stream defaultProtocol
> addrInfos <- getAddrInfo Nothing (Just "google.com") (Just "80")
> connect s (addrAddress (head addrInfos))

To read and write to such an opened socket, we could call socketToHandle on s to 
obtain a Handle on the Socket and use it with System.IO, bytestring, or text. 
Alternatively, we could use the send and recv functions directly on the Socket. 
Those use Strings, however. A third similarly fast option is the Network.Socket.
ByteString module that provides send and recv functions for ByteStrings. (There 
are actually two modules: one for strict and other for lazy ByteString socket IO.)

Acting as a TCP server (Unix domain sockets)
How about being at the other endpoint of a TCP connection, that is, accepting 
requests instead of making them? With the easy Network API, we would create a 
Socket with listenOn and then accept requests

listenOn :: PortID → IO Socket
accept :: Socket → IO (Handle, HostName, PortNumber)

However, for more control, we should use the slightly lower-level Socket interface.

Let's take an example of Inter-process Communication (IPC) using Unix domain 
sockets. The following therefore applies only on Unices, but is easy to adapt to others 
by using the AF_INET socket family.

This server program opens a Unix domain socket ./echo.socket and echoes back 
everything it receives:

-- file: socket-echo.hs

import Control.Exception
import Network.Socket

server = bracket
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    (socket AF_UNIX Stream defaultProtocol)
    close
    (\s -> do
        bind s (SockAddrUnix "./echo.socket")
        listen s 1
        (conn, _) <- accept s
        talk conn)
  where
    talk s = do r <- recv s 1024
                putStrLn r
                send s r
                talk s

There are quite a few steps in this simple socket server:

1. Create a socket (Socket) with the correct family (AF_UNIX), type (Stream) 
and protocol number (defaultProtocol = 0).

2. Bind an address ("./echo.socket") to the socket.
3. Start listening for incoming connections.
4. Accept a connection and bind it to a variable (conn :: Socket).
5. Communicate with the new connection (talk).

This program only serves the first inbound client. In a real application, we would 
likely want to serve multiple clients simultaneously. This would mean to forkIO a 
new thread for every new connection from accept.

Also note that, for demonstration, I've excluded all error handling, except freeing the 
socket at the end of program. Almost all of the socket functions might throw errors, 
though not all recoverable.

Unix domain sockets are not automatically removed. On the server, 
one would probably want to try deleting the socket file at startup if 
it exists.

The corresponding client program is similar except simpler (here I've omitted even 
closing the socket, assuming that the socket will persist over the lifetime of the 
client):

client = do
    s <- socket AF_UNIX Stream defaultProtocol
    connect s (SockAddrUnix "./echo.socket")
    send s "ping"
    pong <- recv s 1024
    putStrLn pong

When running server and client in separate terminals, they both print ping and exit.
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Raw UDP traffic
So far we have used exclusively the network package and TCP. To demonstrate 
UDP, we'll switch to the socket package. The main difference between these 
libraries lies in the socket datatype. The socket library's socket has three additional 
type variables to encode the family, type, and protocol of the socket:

data Socket family type protocol

Also the socket function now takes no arguments but we should encode 
information in an explicit type signature. So, to create a UDP socket we would write:

socket :: IO (Socket Inet Datagram UDP)

Some function names have changed in version 0.6 of socket relative to earlier 
versions. The following applies for version 0.6 of the socket library.

Because of the extensible design of the socket library, it is split into multiple smaller 
modules. The unfortunate consequence of this is that we need quite a few imports for 
even small programs. For a UDP echo server-client pair, we'll use this preamble:

-- file: socket-udp.hs
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad (forever)
import System.Socket
import System.Socket.Protocol.UDP (UDP)
import System.Socket.Type.Datagram (Datagram)
import System.Socket.Family.Inet 
    (Inet, SocketAddress(..), inetLoopback)

UDP is a simpler protocol than TCP, namely we don't need to listen to and accept 
requests, and so the server program is considerably simpler:

server = do
    s <- socket :: IO (Socket Inet Datagram UDP)
    bind s (SocketAddressInet inetLoopback 3003)
    forever $ do
        (msg, addr) <- receiveFrom s 1024 mempty
        sendTo s msg mempty addr

Note that I've again excluded all error handling; at least the socket should be freed 
after use (with close and bracket). Otherwise the socket will leak memory!
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The client program is also simplified somewhat in UDP:

client = do
    s <- socket :: IO (Socket Inet Datagram UDP)
    connect s (SocketAddressInet inetLoopback 3003)
    send s "ping" mempty
    receive s 1024 mempty >>= print

Note that it wouldn't be mandatory to connect; we could instead specify the 
destination in sendTo just like we needed to in the server program. This is all  
due to the stateless nature of UDP.

Networking above the transport layer
Instead of working directly in the lower levels of abstraction like TCP, higher-level 
interfaces are provided by numerous libraries.

The network-transport library defines an abstract API for endpoint-to-endpoint 
communication. Additional libraries implement the API for different transports: 
network-transport-tcp for TCP and network-transport-zeromq for ZeroMQ 
transports.

For networking in the application level, there are many specialized libraries; 
search for them in Hackage by application name or refer to Chapter 14, Library 
Recommendations.

Managing resources with ResourceT
Remember when we were creating sockets, it was important to always close them 
after use (so that they wouldn't leak memory)? So far we have usually wrapped 
every socket, or resource, in a bracket (except when we were just lazy and testing). In 
larger applications, there are larger amounts of resources that should be free at some 
point. It quickly becomes cumbersome to always bracket everything.

As usual with Haskell, abstracting resource handling with a monad (transformer) 
turns out to work quite well. One such monad transformer is ResourceT m a from the 
resourcet package.

With ResourceT, we are no longer required to nest resource allocations with brackets. 
Instead, we can perform allocate in ResourceT to obtain a resource and register 
a release action for it that will be performed last when the ResourceT finishes. 
allocate has the following type:

allocate 
  :: MonadResource m => IO a → (a → IO ()) → m (ReleaseKey, a)
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Now consider allocating two resources, two file handles: one to read from and 
another to write to. We could write two nested brackets as such:

import Control.Exception 
import System.IO

copy_bracket :: IO ()
copy_bracket =
    bracket (openFile "read.txt" ReadMode) hClose $ \f1 →
    bracket (openFile "write.txt" WriteMode) hClose $ \f2 →
        hGetContents f1 >>= hPutStr f2

We can rewrite this using ResourceT as:

-- file: resourcet.hs

import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Resource
import System.IO

copy_resourcet :: ResIO ()
copy_resourcet = do
    (_, f1) <- allocate (openFile "read.txt" ReadMode) hClose
    (_, f2) <- allocate (openFile "write.txt" WriteMode) hClose
    liftIO $ hGetContents f1 >>= hPutStr f2

ResIO is just a synonym for ResourceT I/O. Note that there is less nesting and more 
monadic binding in this version, which is better for composability. To execute a 
ResIO, we need to use run ResourceT to convert it into an I/O:

main = runResourceT copy_resourcet

The first element in return tuple of allocate is of type ReleaseKey. We can use this to 
deallocate the resource early, using release :: MonadIO m => ReleaseKey → m 
().

Bottom line is that ResourceT greatly simplifies composing resource-allocating and 
-deallocating actions (by adding a monadic allocation interface) and also makes it 
easy to interleave resource allocation with effects from other monads (by being a 
transformer).
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Streaming with side-effects
Lists are pure, but the streaming property is still useful also in impure I/O settings. 
Although lazy I/O has its share of problems, it isn't the only streaming I/O 
technique in Haskell. It's fully possible to use explicit buffers, for example, to read 
and process iteratively using the low-level functions in System.IO. This program 
uses a pointer to an integer to stream random numbers from `

-- file: ptr.hs 
 
import System.IO
import Foreign.Ptr (Ptr)
import Foreign.Storable (Storable(sizeOf, peek))
import Foreign.Marshal (alloca)

main = withBinaryFile "/dev/random" ReadMode $ alloca . process
  where
    process :: Handle -> Ptr Int -> IO ()
    process h ptr = go where
      go = do
          count <- hGetBuf h ptr (sizeOf (undefined :: Int))
          if count > 0
              then do num <- peek ptr
                      print num
                      go
              else return ()

As can be seen, this program is pretty verbose. The same program could perhaps be 
written in C more concisely, and that's because Haskell isn't designed for fiddling 
with pointers and memory areas – though it's fully possible. Put more favorably, 
Haskell encourages thinking more (and more) in the abstract.

That's all about Foreign modules for now (we'll meet them again in more depth in 
the FFI chapter). From now on, we'll focus on streaming abstractions other than lazy 
I/O, of which there are many.

Choosing a streaming library
Streaming frameworks in Haskell have come a long way along the years, starting 
with lazy I/O. The problem with lazy I/O is foremost unpredictable resource 
handling, and that there is little control over when given effects happen precisely, 
because effects are interleaved with pure code. This allows for elegant code in small 
scale, but it becomes hard to control effects in larger scale.
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In the 00s, work by Oleg Kiselyov initiated a surge of streaming libraries. Some of 
the first ones published on Hackage were iteratee, enumerator, and iterIO at the 
turn of 2010. Instead of imperatively using buffers for streaming data, iteratee-
based I/O abstracts such patterns in composable monadic actions. Unlike lazy I/O, 
iteratee based I/O is strict (in I/O, at least).

Nowadays, the libraries most seen in use with new code include pipes, conduit, 
and io-streams. pipes and conduit evolved simultaneously and hence they have a 
lot of overlap in their feature sets. Later versions of conduit actually featured a heavy 
internal redesign largely influenced by pipes. For those interested in such things, 
it's worth mentioning that the types and most functions in pipes have been checked 
using Coq (a theorem proving system) to ensure that the implementation is a law-
abiding category.

An unfortunate feature of both conduit and pipes is their type framework: the 
types are hard to wrap one's head around even for a seasoned Haskeller. On the 
other hand, io-streams library has its focus on user-friendliness with its simple 
types (and is restricted to I/O).

Both pipes and conduits are very flexible, but if you're really sure you need even 
more control and more abstractions over your streams in the form of networked 
stream transducers, perhaps you should take a look at the machines library by 
Edward Kmett.

In this section, we'll first introduce io-streams and then pipes and conduits.

Simple streaming using io-streams
The io-streams package defines two data types dubbed "smart handles" to 
represent streams:

data InputStream c
data OutputStream c

There are exactly three primitive functions on smart handles. They are:

read   :: InputStream c → IO (Maybe c)
unRead :: c → InputStream c → IO ()
write  :: Maybe c → OutputStream c → IO ()

In other words, we can read elements from an InputStream or push items back into 
an InputStream; or we can write an element into an OutputStream. A Nothing is 
used to signal end-of-file in both read and write.
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This set of three primitives is both powerful and easy to grasp. Though the io-
streams package provides lots of useful combinators, they're all implemented in 
terms of the primitives. Using higher-level combinators often makes code more 
concise, of course, but it isn't mandatory.

Let's see what we can accomplish with io-streams. But first: how to construct 
streams? There are two such functions, one for input and other for output streams:

makeInputStream  :: IO (Maybe a)      → IO (InputStream a)
makeOutputStream :: (Maybe a → IO ()) → IO (OutputStream a)

Here again, Nothing represents end-of-file. New input streams can be built from an 
IO action that is performed to generate next element and output streams are built 
from a consuming IO action that takes the input element as argument.

Creating input streams
Now we are ready to build some streams. The first stream we build will be one that 
generates random numbers. First things first, here are some imports we'll use in this 
example:

-- file: io-streams.hs

import Data.IORef (newIORef, readIORef, writeIORef)
import Control.Monad.IO.Class (liftIO)
import System.Random (randomIO)

import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S

If we were to use makeInputStream, we see that there's no built-in way to store state 
between yielded elements. This means we have to resort to imperative state, such 
as IORef. Here's an implementation of a random stream using an IORef to store the 
count of numbers left to produce:

randomInputStreamRef :: Int -> IO (InputStream Double)
randomInputStreamRef count = do
    ref <- newIORef count
    S.makeInputStream $ do
        n <- readIORef ref
        if n <= 0
            then return Nothing
            else do writeIORef ref $! n - 1
                    r <- randomIO
                    return (Just r)
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Unfortunately, this is quite verbose, but this is Haskell. Surely we could do better, 
right? Of course! One option is to use the Generator monad, which provides a 
yield operation and MonadIO instance. This stream is equivalent to our IORef-based 
stream:

randomInputStreamGen :: Int -> IO (InputStream Double)
randomInputStreamGen count = S.fromGenerator (go count)
  where
    go :: Int -> Generator Double ()
    go 0 = return ()
    go n = liftIO randomIO >>= S.yield >> go (n – 1)

Or, if it suits your fancy, we could write a stream as an anamorphism, known also as 
unfold. The relevant io-stream combinator is:

unfoldM :: (b → IO (Maybe (a, b))) → b → IO (InputStream a)

With the unfoldM combinator, we get yet another way of expressing a random stream:

randomInputStreamAna :: Int -> IO (InputStream Double)
randomInputStreamAna count = S.unfoldM go count
  where
    go 0 = return Nothing
    go n = randomIO >>= \r -> return (Just (r, n – 1))

However, note that there is a slight overhead in these abstractions. In a quick and 
controversial benchmark, I observed that timewise the differences are negligible 
(with n = 500, 000), though some differences in heap usage were observable:

• The Generator-based random stream used about 6% more heap than the 
IORef-based stream

• The anamorphism/unfold-based stream used about 12% more heap than the 
IORef-based stream

It isn't strictly necessary to create IO actions that yield next values to create input 
streams. Input (and output) streams can be generated via various other methods, 
including:

• From a list: S.fromList :: [c] → IO (InputStream c)
• From files (see module System.IO.Streams.File)
• From ByteStrings (see module System.IO.Streams.ByteString)
• From Vectors (see module System.IO.Streams.Vector)
• From Handles (see module System.IO.Streams.Handle)
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• From Sockets (see module System.IO.Streams.Network)
• From output of external processes (see module System.IO.Streams.

Process)

Using combinators and output streams
The toList function can be used to convert any input stream into a list. Testing our 
random streams, we fire up GHCi:

> :load io-streams.hs

> randomInputStreamAna 3 >>= S.toList

> [0.1745076027065504,0.9856406364162231,0.653112050978402]

Mapping is a basic stream transformation:

> randomInputStreamAna 3 >>= S.map (*10) >>= S.toList

[6.09571320125644,5.815660274344739,0.23496022064959265]

With the fold function from io-streams we can fold over an input stream, 
producing a single value:

> randomInputStreamAna 3 >>= S.fold (+) 0

1.6587768967308916

Handling exceptions and resources in streams
Handling exceptions when using io-streams is exceptionally simple: just handle 
them normally in I/O with machinery from Control.Exception. It's important to 
catch exceptions where it makes sense, that is, whether inside a computation of an 
input stream or an exception from stream creation action (IO (InputStream a)).

As an example of the former scenario, catching within a stream computation, we'll 
create a stream which produces output by performing element-wise division on two 
input streams. Division by zero is not well defined, so we'll want to omit such results 
from the output stream. Here's the combinator:

-- file: io-streams-exceptions.hs

import Control.Exception
import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S

divideBy :: InputStream Int -> InputStream Int
         -> IO (InputStream Int)
divideBy as bs = S.makeInputStream go
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  where
    go = do
        ma <- S.read as
        mb <- S.read bs
        case (ma, mb) of
            (Just a, Just b) ->
                (return $! Just $! div a b)
                `catch`
                (const go :: ArithException -> IO (Maybe Int))
            _ -> return Nothing

So we read one element from each stream, divide them, and return the result, except 
when the division raises an exception, which we'll catch and proceed to reading the 
next two elements, without producing any output yet.

Note that it's important we fully evaluate the result Int on the right-hand side of 
catch – otherwise the error would propagate to wherever we demand that Int 
(which can be practically anywhere, or nowhere if it's never needed).

We can test that our stream works correctly with:

main = do x <- S.fromList [0..4]
          y <- S.fromList [1,0,0,2]
          divideBy x y >>= S.toList >>= print

This prints [0,1].

The other strategy to error handling is to intentionally propagate the error up to 
what will call read on the stream. In this scenario, it's also important to raise the 
exception in the IO monad, not deferring it in a yielded thunk. For example, this is 
not good:

> s <- S.makeInputStream (return (Just undefined))

Calling read on such a stream won't fail, that is, this won't catch the exception:

> S.read s `catch` (\(e::SomeException) -> print "catched" >>  
  return Nothing)
Just *** Exception: Prelude.undefined

Note that extra care needs to be taken because results are wrapped in Maybe's.  
Even these won't fail within the yielding computation:

S.makeInputStream (return $! Just undefined)
S.makeInputStream (return (Just $! undefined))

But this one does fail at first read:

S.makeInputStream (return $! Just $! undefined)
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This demonstration is slightly contrived: as usual with exceptions, it's almost always 
better to use throwIO instead of error/undefined when failing in the IO monad.

What comes to the Generator monad? Unfortunately, exceptions cannot be caught 
there. The most important consequence is that resources should never be allocated 
in that of the Generator. Of course, singular IO actions that both acquire and free 
resources are excluded from this, as well as IO actions that catch exceptions from 
within themselves.

An example of parsing using io-streams and 
attoparsec
As an example of both io-streams and the parsing library attoparsec for which 
io-streams provide bindings, in this section we'll build a chat log parser that works 
over streams. The log file format we shall consider looks like:

-- file: messages.log 

[00:50] <Seneca> It is the power of the mind to be unconquerable
[05:03] <Leibniz> The monad here is nothing but a simple substance 
which enters into compounds
=== Erin enters the chat
[00:01] <Erin> Warriors should suffer their pain silently

Though the content itself is quite arbitrary, the log file is line-based and on each line 
there is either a message or a notification. Notifications start with ===, and messages 
follow the general format: [time] <person> message.

The first thing we'll need (after some imports) is some datatypes to express the 
content. We write the following:

-- file: io-streams-parser.hs

{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid ((<>)) 
import Control.Applicative ((<|>))
import Data.ByteString (ByteString)
import Data.Attoparsec.ByteString.Char8 as PC8

import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S
import System.IO.Streams.File (withFileAsInput)
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import System.IO.Streams.Attoparsec (parserToInputStream)

data Line = Notification ByteString 
          | Message Time User ByteString deriving Show

type Time = ByteString
type User = ByteString

Self-explanatory so far! Now for the parser, or parsers. We'll start with simple ones: 
parsers for timestamps and persons or users. Using applicative syntax, we can write 
these concisely as:

timeParser :: Parser Time
timeParser = char '[' *> takeWhile1 (/= ']') <* char ']'
    <* PC8.takeWhile (== ' ')

userParser :: Parser User
userParser = char '<' *> takeWhile1 (/= '>') <* char '>' 
    <* PC8.takeWhile (== ' ')

The (p *> q) combinator simply applies parser p, discards its results, and proceeds 
to apply parser q. The (<*) combinator is like (*>) but takes results only from the 
first argument instead. The parser primitives char and takeWhile come from the 
attoparsec library. Both (*>) and (<*) are infixl, meaning they associate to the left 
and so the whole parser can be read from left to right. The final result is where a (*>) 
is followed by a (<*).

Parser for a line is slightly more involved:

lineParser, messageParser, notificationParser :: Parser Line

lineParser = messageParser <|> notificationParser

notificationParser = string "=== "
    *> (Notification <$> PC8.takeWhile (/= '\n'))

messageParser = Message <$> timeParser 
                        <*> userParser 
                        <*> PC8.takeWhile (/= '\n')

The (p <|> q) combinator tries to apply parser p, and if it fails, proceeds with q.

We can verify that our parsers work, in GHCi:

> :load io-streams-parser.hs 

> > parseOnly lineParser "[time] <user> a message"
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Right (Message "time" "user" "a message") 

> parseOnly lineParser "=== notification"
Right (Notification "notification")

Now that we have our parser, we should hook it up into a stream. The input stream 
we'll be using comes from a file. Our output stream will print messages into standard 
output, discarding everything else.

As is customary in io-streams, Nothing values represent end-of-file. So we need 
one last parser. One that tries reading a next line, returning nothing when reaching 
the end-of-file:

logParser :: Parser (Maybe Line)
logParser = (endOfInput *> pure Nothing) <|>
    (fmap Just lineParser <* PC8.takeWhile (== '\n'))

Then the output stream: this time, we'll use the OutputStream type and some funny 
operators:

lineOutputStream :: IO (OutputStream Line)
lineOutputStream = S.contramapMaybe f =<< S.ignoreEof S.stdout
  where
    f (Message _ _ msg) = Just (msg <> "\n")
    f _                 = Nothing

The two funny operators here are S.contramapMaybe and S.ignoreEof. The 
first one maps a function (f) over the values before feeding them into the output 
stream, discarding Nothings (like mapMaybe from Data.Maybe). The S.ignoreEof 
on S.stdout prevents io-streams from closing standard output when a Nothing 
is encountered. Normally io-streams closes Handles in output streams when a 
Nothing is encountered in the stream.

Now we can write the main program itself:

main = withFileAsInput "messages.log" $ \is -> do
    lines <- parserToInputStream logParser is
    outs <- lineOutputStream
    S.connect lines outs

The parserToInputStream function builds an input stream from repeatedly 
applying our logParser parser. The S.connect is a utility function which combines 
an input stream with an output stream. We can confirm our program does what we 
intended:

> :load io-streams-parser.hs
> main
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It is the power of the mind to be unconquerable
The monad here is nothing but a simple substance which enters into 
compounds
Warriors should suffer their pain silently

Streaming using pipes
The next streaming library we'll consider is pipes. Now we have only one stream 
type compared to two types in io-streams, but that is a considerably more 
complicated type:

data Proxy a' a b' b m r

Now skim your eyes for a while and unsee a' and b'. Then Proxy would be 
something that takes in values of type a and produces output values of another type 
b while performing effects in some monad m. The r type variable is just the result 
type of the monad.

The a' and b' exist for bidirectional communication along pipelines and aren't often 
needed. For convenience, pipes provides some type synonyms that simplify pipes 
types a lot. Three most used of those are:

type Producer' b m r
type Consumer' a m r
type Pipe a b m r

Type variables correspond to variables in Proxy. Omitted type variables are not 
relevant here now.

The primitives in (unidirectional) pipes are reduced to two, contrary to three, for io-
streams. They're called await and yield:

await :: Monad m => Consumer' a m a
yield :: Monad m => b -> Producer' b m ()

The types actually tell precisely what these functions do. await returns a value 
that was yielded from the input-side of a pipe in the monad (the first and last type 
variables are unified). yield takes as argument a value of type that is unified with 
the output-side's type and passes it forward in the stream.

We can say that consumers await whereas producers yield. Now note that Pipe is a 
strictly more general type than consumers or producers. So pipes can both yield and 
await.
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Here is one example of each, producer, consumer and pipe:

-- file: pipes.hs

import Control.Monad
import System.Random (randomIO)
import Pipes

randoms :: Producer' Int IO ()
randoms = forever (liftIO randomIO >>= yield)

taking :: Monad m => Int -> Pipe a a m ()
taking 0 = return ()
taking n = await >>= yield >> taking (n - 1)

printing :: Show a => Consumer' a IO ()
printing = forever (await >>= liftIO . print)

Composing and executing pipes
There's one more type synonym of Proxy we'll need to introduce. It's a pipe that 
neither yields nor awaits, called Effect:

type Effect' m r

We need this to understand how to execute pipes. The relevant function is:

runEffect :: Monad m => Effect m r → m r

Combining a producer with a consumer using the (>->) operator yields an Effect. 
Here's an effect combining our previous examples:

effect :: Effect IO ()
effect = randoms >-> taking 5 >-> printing

We can run this effect with runEffect:

> :load pipes.hs
> runEffect effect
4486626397489119841
571690255473717323
-8556621642364119471
-1668223325432668307
-4935317933637218898
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For loops and category theory in pipes
The (>->) combinator is really more general than this and works with almost any 
two instances of Proxy:

(>->)
  :: Monad m =>
     Proxy a' a () b m r 
  -> Proxy () b c' c m r -> Proxy a' a c' c m r

This looks really similar to normal function composition, (.), if we just forget about 
other type variables than a, b, and c:

(.) :: (b → c) → (a → b) → (a → c)

Indeed, (>->) even forms a category with the identity pipe cat, like (.) forms a 
category with the identity function id. A category must satisfy the category laws, 
identity, and associativity:

     id . f = f                   cat >-> f = f
     f . id = f                   f >-> cat = f
(f . g) . h = f . (g . h)   (f >-> g) >-> h = f >-> (g >-> h)

This is relevant mostly because pipes draw its elegance from category theory. 
Though by no means is it required from the programmer using the library to know 
category theory.

pipes provides a combinator for, which can be used to transform producers:

randomsPositive :: Producer' Int IO ()
randomsPositive = for randoms (\r → when (r > 0) (yield r))

There's also a synonym for for: (~>). for too forms a category, with yield as the 
identity.

randoms ~> (\r → when (r > 0) (yield r))

Then we have the (>~) combinator. Note the symmetry with (~>). Whereas (~>) 
transformed yields, (>~) transforms awaits. It's useful to supply the same expression 
to a consumer:

> runEffect $ lift getLine >~ taking 5 >-> printing

(>~) forms a category together with await.
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Handling exceptions in pipes
Similar to io-streams, it isn't possible to catch exceptions in a Proxy. However, 
pipes is polymorphic in the base (m) monad, so within a lifted computation, 
exceptions can be caught even "outside" IO if using lifted-base. If the base monad 
is IO, then normal machinery from the exceptions package would be sufficient to 
catch exceptions.

A useful idiom is to wrap the lifted computation in a try, effectively "lifting" the 
exception to the pipeline as an Either:

-- file: pipes-exceptions.hs

import Control.Exception
import Pipes
import GHC.IO.Exception (IOException(..))

tolerantStdinLn :: Producer' String IO ()
tolerantStdinLn = do
    x <- lift $ try readLn
    case x of
        Left e@IOError{} -> return ()
        Right ln -> yield ln >> tolerantStdinLn

Strengths and weaknesses of pipes
The pipes philosophy is pretty much elegance first, as we have witnessed in its 
category-theory-inspired operators. There's also one relatively new feature in 
pipes that we haven't touched (and won't): bidirectional flow. This is related to the 
additional type variables in the Proxy type. With bidirectional flow, pipes admits 
for generator and iteratee design patterns, making requests and responses in 
addition to normal data flow.

Unlike io-streams that worked over IO, pipes works over arbitrary monads, which 
is definitely a plus. However, exceptions must be caught within computations in the 
inner monad. For one, in io-streams, we could resume a stream from where it left 
after handling exceptions raised from a stream, but with pipes, it isn't possible to 
resume a pipeline. On the other hand, pipes is declarative and doesn't require an IO 
action to build a pipeline.
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Streaming using conduits
Starting with conduit version 1.0.0.0, the core library design is just like that of the 
pipes Proxy type with bidirectional flow removed. The core conduit type is called 
ConduitM:

data ConduitM i o m r

What comes to conduit's type synonyms compared to pipes synonyms: producers 
are now sources, pipes are conduits and consumers are sinks:

type Source    m o
type Conduit i m o
type Sink    i m   r

The operator that chains conduits together is (=$=). The ($$) operator connects source 
with sink, evaluating the conduit, along with side-effects:

(=$=) :: Monad m
      => Conduit a m b → ConduitM b c m r → ConduitM a c m r
($$)  :: Monad m
      => Source m a → Sink a m b → m b

There's considerably less noise in conduit type signatures because of the absence of 
bidirectional flow.

In conduit versions before 1.0.0.0, there were different datatypes for 
sources, conduits, and sinks. In this design, two more operators were 
needed for connecting (($=) and (=$)). These are no longer necessary.

Here's a simple conduit program. This implements the exact same randoms program 
from the pipes section:

-- file conduit.hs

import Control.Monad
import Control.Monad.IO.Class (liftIO)
import Data.Conduit
import System.Random (randomIO)

randoms :: Source IO Int
randoms = forever (liftIO randomIO >>= yield)

taking :: Monad m => Int -> Conduit a m a
taking 0 = return ()
taking n = do x <- await
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              case x of
                  Nothing -> return ()
                  Just y -> yield y >> taking (n - 1)

printing :: Show a => Sink a IO ()
printing = do x <- await
              case x of
                  Nothing -> return ()
                  Just y -> liftIO (print y) >> printing

main :: IO ()
main = randoms =$= taking 5 $$ printing

This is substantially longer because the await primitive of conduits returns its result 
wrapped in Maybe, as in io-streams. Instead of writing every conduit program 
with the primitives, it is best practice to utilize functions from additional conduit 
modules (and libraries) beyond Data.Conduit, such as the following:

• Data.Conduit.List (conduit) provides list-like combinators for conduits
• Data.Conduit.Combinators (conduit-combinators) replaces the 

functionality of Data.Conduit.List and enforces conduit best practices
• The conduit-extra package provides additional modules for textual and 

binary data, parsing, and so on, similar to io-streams
• Conduit (conduit-combinators) is a convenience module which re-exports 

lots of useful conduit-related machinery

Handling resources and exceptions in conduits
The main advantage of conduits over pipes is that handling resources and 
exceptions is built into the ConduitM type.

Resource handling is generalized via ResourceT. This instance allows us to use 
ResourceT machinery within any conduit whose inner monad allows it to:

instance MonadResource m => MonadResource (ConduitM i o m)

Exception handling is lifted to conduits using the extensible extensions library:

instance MonadThrow m => MonadThrow (ConduitM i o m)
instance MonadCatch m => MonadCatch (ConduitM i o m)
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With conduits, we have combinators such as bracket lifted to conduits:

bracketP :: MonadResource m
   => IO a → (a → IO ()) → (a → ConduitM i o m r)
   → ConduitM i o m r

And also catch lifted to conduits:

catchC :: (MonadBaseControl IO m, Exception e)
  => ConduitM i o m r → (e → ConduitM i o m r) → ConduitM i o m r

Resuming conduits
It is possible to feed some source into a sink, using the ($$+), process, until the 
sink has finished and then save the source at where it left, turning Source into a 
ResumableSource. ResumableSources can be passed around freely and used almost 
like normal sources later with ($$++):

($$+)  :: Monad m
       => Source m a -> Sink a m b
       -> m (ResumableSource m a, b)

($$++) :: Monad m 
       => ResumableSource m a -> Sink a m b
       -> m (ResumableSource m a, b)

For an example, consider this Source which yields consecutive numbers from zero:

counter :: Source IO Int
counter = go 0
  where go n = yield n >> go (n + 1)

With ResumableSources, we can use this as a source of unique identifiers, for 
example. Here's an illustrating GHCi session:

> (resume,_) <- counter $$+ taking 5 =$= printing
0
1
2
3
4
> resume $$++ taking 3 =$= printing
5
6
7
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ResumableSources can also be converted into normal sources with unwrapResumable. 
ResumableSources give us back the nice feature that was built into io-streams and 
that was lost in pipes, namely first-class streams. But one thing is still missing which is 
related to exceptions.

When an exception was raised inside an io-stream stream, it would propagate 
upward, but leave the stream in the state it was at before raising the exception. To 
copy this behavior in conduits, we would catch exceptions in conduit/sink and end 
computation. Then, as the pipeline stops accepting input, use ($$+) to convert the 
source into an ResumableStream.

Logging in Haskell
A final thing we'll consider is more related to I/O than streaming: logging in Haskell 
applications. Logging is important in any sufficiently important application.

In a small scale, a list- or DList-based WriterT monad is often all that is needed: it's 
simple and potentially pure (if the underlying monad is pure). However, on a bigger 
scale it doesn't make sense to store messages in an internal pure data structure. 
Instead, it's most efficient to write them to disk (or over a network) immediately 
(likely still using a buffer, though).

Furthermore, it would be nice if the logging functionality could be decoupled from 
other application code, even reused between different applications.

A popular solution which provides just that kind of decoupling is the monad-
logger library. It uses a library called Fastlogger, which provides logging that 
scales in multicore environments. Most notoriously, FastLogger is used in the Web 
Application Interface (WAI) package used by many high-performance Haskell web 
frameworks and applications.

Logging with FastLogger
The core datatype in FastLogger is LoggerSet, whose constructors are not exposed. 
Internally, it holds multiple loggers, one for each OS thread (-N<x>). A LoggerSet is 
built with one of the smart constructors:

newFileLoggerSet   :: BufSize -> FilePath -> IO LoggerSet
newStdoutLoggerSet :: BufSize -> IO LoggerSet
newStderrLoggerSet :: BufSize -> IO LoggerSet

Log messages are written to that of a LoggerSet using pushLogStr(Ln):

pushLogStr :: LoggerSet → LogStr → IO ()



I/O and Streaming

[ 192 ]

The LogStr datatype is also abstract (constructors not exposed). LogStr construction 
is overloaded via type class ToLogStr, provided with default instances for textual 
data:

class ToLogStr msg where
    toLogStr :: msg → LogStr

instance ToLogStr String
instance ToLogStr ByteString
instance ToLogStr Text
instance toLogStr LogStr

Here's a GHCi session to demonstrate usage:

> import System.Log.FastLogger
> logger <- newStdoutLoggerSet defaultBufSize
> pushLogStr logger (toLogStr "a log message")
a log message

It's encouraged to create your own log message datatype and write custom instances 
for ToLogStr (inductively utilizing existing instances). For performance reasons, it's 
better to specialize your logging functions to avoid ToLogStr dictionary-passing, as 
in pushLogStr.

Note that FastLogger provides the bare minimum needed for efficient logging: 
monomorphic file and stream loggers and a simple overloaded interface for building 
log messages. On top of this, it's easy to build other mechanisms, such as custom log 
messages and logging functions.

More abstract loggers
Version 2.4.4 of FastLogger had some new functionality. Among others, a new type 
alias was introduced: when we partially apply pushLogStr with a LoggerSet, we 
get the extremely simple yet powerful FastLogger function:

type FastLogger = LogStr → IO ()

Now, instead of using LoggerSets directly, we can step up abstractions one notch. 
The withFastLogger function takes an argument of type LogType, with which we 
can build many kinds of loggers:

withFastLogger :: LogType → IO (FastLogger → IO a) → IO a
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This function takes care of closing the LoggerSet correctly, so you don't need to 
worry about leaking loggers. The second argument is a callback which can make use 
of the logger function. The different constructors of LogType initialize different kinds 
of loggers. In addition to stdout, stderr, and file logging, it becomes trivial to create 
file-rotating loggers:

data LogType
  = LogNone
  | LogStdout BufSize
  | LogStderr BufSize
  | LogFileNoRotate FilePath BufSize
  | LogFile FileLogSpec BufSize
  | LogCallback FastLogger (IO ())

Timed log messages
It's often very useful to have timestamps in log messages. However, in high-
performance applications with high-frequency logging, date rendering becomes a 
bottleneck, unless we cache rendered dates. Fortunately, FastLogger (versions later 
than 2.4.4) comes with a solution for date caching that only renders dates at most 
once per second. Timed FastLoggers have the type:

type TimedFastLogger = (FormattedTime → LogStr) → IO ()

Timed loggers are created with the withTimedFastLogger function:

withTimedFastLogger
  :: IO FormattedTime -> LogType -> (TimedFastLogger -> IO a) ->  
    IO a

The first argument requires an IO action to return formatted time (ByteString), which 
we should build with newTimeCache:

newTimeCache :: TimeFormat -> IO (IO FormattedTime)

Just an IO action within an IO action. This is used as in:

> getTimeStamp <- newTimeCache "%Y-%m-%d %H:%M"
> getTimeStamp
"2016-05-11 15:02"

To attach timestamps into log messages, we need a log function which formats the 
timestamp. Here's one for logging events of type String:

logFormat :: String -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> toLogStr msg
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Now let's put everything together into a complete program that logs something 
nonsensical (yet true). Let's try a top to bottom approach. We wish to write log 
messages with a simple IO action taking only our log message (String) as its 
argument. This is easily expressed as:

-- file: fastlogger.hs
{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid
import System.Log.FastLogger

type MyLogger = String -> IO ()

app :: MyLogger -> IO ()
app log = do
    log "Haskell is fun"
    log "and logging is fun too!"

Now we only need the main that executes our application, supplying it with an 
appropriate logger. There is nothing new in the function body that follows – I have 
just combined everything we discussed so far about (timed) logging and formatting:

main = do
    getTimeStamp <- newTimeCache "%Y-%m-%d %H:%M"
    withTimedFastLogger getTimeStamp (LogStdout defaultBufSize) $
        \logger -> app (logger . logFormat)

logFormat :: String -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> toLogStr msg <> "\n"

Just to confirm everything works as it should:

> :load fastlogger.hs
[1 of 1] Compiling Main             ( fastlogger.hs, interpreted )
Ok, modules loaded: Main.
> main
2016-05-11 16:20: Haskell is fun
2016-05-11 16:20: and logging is fun too!

So what did we gain from using FastLogger? We wrote about four lines, but in 
those four lines we got all these:

• Timestamped log messages with a timestamp cache.
• Custom timestamp and log message formatting.
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• Completely decoupled setup and configuration of logging from the 
application code.

• If you wanted to, the log function could be hidden in a Reader monad and 
write a log action, thus eliminating the need to pass the log function around. 
In fact, this pattern is already captured in the monad-logger library.

Monadic logging
In MonadLogger, logging functions are polymorphic in the MonadLogger class. 
You can either define an instance for your application monad, or use the add-on 
LoggingT transformer:

class Monad m => MonadLogger m where
   monadLoggerLog :: ToLogStr msg => Loc → LogSource → LogLevel

instance MonadIO m => MonadLogger (LoggingT m)
[…]

Instances for transformer stacks from mtl/transformers, conduits, and pipes are also 
provided out of the box for MonadLogger.

Here's an example monadic logger program, that does nothing else but logs 500,000 
lines (for no particular reason):

-- file: logging-t.hs

{-# LANGUAGE TemplateHaskell #-}

import Data.Text (pack)
import Control.Monad
import Control.Monad.Logger

app :: LoggingT IO ()
app = replicateM_ 500000 ($(logInfo) (pack "msg"))

main = runStdoutLoggingT app

See that, with help from LoggingT, we got rid of a lot more boiler-plate than with 
using fast-logger. What's nice is that we actually got a new feature: the template 
Haskell function $(logInfo) logs the code file and line number the log message 
originated from! This is very valuable in debugging.
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Customizing monadic loggers
If the default log message format of MonadLogger is not enough, it is fully 
customizable via the monadLoggerLog class method. As an illustration, let's add 
timestamps to our log messages using monadic logging. MonadLogger really works 
only with monads, so we need to create one. Actually, let's make one from scratch: we 
only need access to a logger function in our monad, so this App monad will suffice:

-- file: monadlogger.hs
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveFunctor #-}

import Control.Monad.Logger
import Data.Monoid
import System.Log.FastLogger

type MyLogger = LogStr -> IO ()

newtype App a = App { unApp :: MyLogger -> IO a }
                deriving (Functor)

This will actually turn out to be an exercise in writing Functor-Applicative-Monad 
instances (neither Applicative nor Monad can be derived in this case). If you'd like a 
challenge, try writing the instances yourself now! Or just read on:

instance Applicative App where
    pure x = App $ \_ -> pure x
    App f <*> (App g) = App $ \log -> f log <*> g log

instance Monad App where
    App f >>= g = App $ \log -> do r <- f log
                                   unApp (g r) log

Now, we're not really interested in source file positions in our log messages, because 
it simplifies the MonadLogger instance a bit, as can be seen:

instance MonadLogger App where
    monadLoggerLog _ _ _ msg = App $ \log -> log (toLogStr msg)

Now we need a test application and a main (and a timestamped log message 
formatting function). With slight alterations, we reuse those we defined in our 
FastLogger example:

app :: App ()
app = do
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    logInfoN "Haskell is fun"
    logInfoN "and logging is fun too!"

logFormat :: LogStr -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> msg <> "\n"

main = do
    getTimeStamp <- newTimeCache "%Y-%M-%d %H:%m"
    withTimedFastLogger getTimeStamp (LogStdout defaultBufSize) $
        \logger -> unApp app (logger . LogFormat)

All that is left to do is testing, so here we go:

> :load monadlogger.hs
[1 of 1] Compiling Main  ( monadlogger.hs, interpreted )
Ok, modules loaded: Main.

> main
2016-05-11 16:10: Haskell is fun
2016-05-11 16:10: and logging is fun too!

Now we can conclude our application does what we expected it to do. Logging in 
Haskell is indeed fun and easy.

Summary
In this chapter we have covered the advantages and disadvantages of lazy I/O and 
its alternatives: strict I/O and some streaming solutions. We learned to connect to 
remote network endpoints as clients and to write own network servers in Haskell. 
We also learned that acquired I/O resources such as handles and sockets must 
always be freed. For this, we considered two main solutions: functions such as 
bracket and the ResourceT monad transformer.

After reading this chapter you should now understand and be able to use lazy I/O 
without surprising memory leaks and correctly release all acquired resources as well 
as exceptions. You know and can use three streaming libraries: rudimentary io-
streams, elegant pipes, and industrial conduits. You are also bound to enjoy doing 
logging from your Haskell programs with FastLogger and monads with monad-
logger.

In the next chapter, we will focus on concurrent programming in Haskell. Light-
Lightweight GHC threads give a lot of flexibility for the concurrent programmer, 
and software transactional memory provides an easy-to-use framework for handling 
critical sections in a more abstract fashion.
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Concurrency and 
Performance

Writing concurrent programs that are correct is hard: subtle race conditions, 
resources blocked by another thread, asynchronous exceptions, and so on. Basically, 
a lot can go wrong. Remember that, whereas parallelism points to execution model 
(multiple threads running simultaneously), concurrency is more like a paradigm: 
multiple threads working together, intertwined. However, concurrent threads are 
often run in parallel for responsiveness and performance reasons.

In this chapter, we will write concurrent Haskell programs making use of light-
weight threads and type-safe concurrency primitives like MVars. For complex 
programs, we will learn to build atomic transactions with Software Transactional 
Memory (STM).

We will consider some models for concurrent programming: asynchronous 
workers and actors. And although asynchronous exceptions are usually to be 
avoided (like those from calls to error/undefined), asynchronous exceptions are 
useful for notifying one thread from another. Finally, we'll look at working with 
lifted concurrency operations to other monads besides IO, which can be extremely 
convenient sometimes.

We will cover:

• Becoming familiar with light-weight threads, primitive concurrency 
functions, and mutable variables

• Building complex atomic transactions using Software Transactional Memory
• Using the Async API for concise asynchronous processing
• Lifting concurrency operations and exception handling using MonadBase and 

MonadBaseControl
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Threads and concurrency primitives
One of the basic forms of concurrent programming involves sharing read-write data 
between threads. Usually data is shared via references. From fastest to most flexible, 
the three types of mutable references in Haskell are IORef, MVar, and STM. All three 
can be used, at least to some extent, in a thread-safe manner. We start our concurrent 
journey with a simple reference, IORef, and work our way to arbitrarily complex 
transactions using STM.

Threads and mutable references
The most basic reference type in Haskell is IORef. The core IORef API is compact, 
one datatype and a few atomic operations:

module Data.IORef

data IORef a

newIORef :: a → IO (IORef a)
readIORef :: IORef a → IO a
writeIORef :: IORef a → a → IO ()
modifyIORef :: IORef a → (a → a) → IO ()
atomicModifyIORef :: IORef a → (a → (a, b)) → IO b

IORef is always full, that is, there is always a value to be read without blocking. 
They're just simple mutable references. IORef is very fast. They're the fastest option 
when all you need is a single mutable reference and no locking. If you need more 
complexity than that, you shouldn't be using an IORef.

Now that we have shared memory (IORef), we need ways to program interleaved 
threads that can use the shared memory. The most important module for working 
with threads in Haskell is Control.Concurrent, and the most important function is 
forkIO:

forkIO :: IO () → IO ThreadId

A thread is simply an IO () action, like the main program is an IO (). With forkIO, 
we can make any IO () execute in its own thread. Calls to forkIO return 
immediately and give us a ThreadID that identifies the newly forked thread.

The following program illustrates forking and mutable references. It prints multiple 
instances of a and b in some order for a split second:

-- ioref.hs

import Data.IORef
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import Control.Concurrent

fun ref c = do
    x <- readIORef ref
    writeIORef ref c
    putStr x
    fun ref c

main = do
    ref <- newIORef "a"
    forkIO $ fun ref "a"
    forkIO $ fun ref "b"
    threadDelay 5000

We can run this via runhaskell ioref.hs. The output pattern looks like 
aabababababa and so on and is around 200 characters long. Note carefully that we 
didn't bother killing the child threads; in Haskell, when the main thread exits, all 
child threads will die too. However, we did use threadDelay, which blocks the 
current thread for a given number of microseconds.

While our program was multi-threaded, we were actually running it in a single 
Operating System (OS) thread. The single-threaded Runtime System always uses 
just one OS thread, but features a scheduler of its own for light-weight threads.

Light-weight threads are cheaper than OS threads: a smaller memory footprint, very 
cheap to create and destroy, and they share the same heap objects with other light-
weight threads in the same Haskell program.

Actually runhaskell didn't bother compiling our program, but merely interpreted 
it. If we compile the program and run the compiled version, still in a single 
OS thread, the output would look like abaaaaaaaaaaaaaa…, with the b thread 
sometimes not getting a second chance to execute at all within the split second.

In a compiled single-threaded program, the runtime tries to avoid excess context-
switching. The interpreted version executed more like one step at a time, using a 
different scheduler. Because of this, it is often insufficient to test concurrent programs 
only interactively (in GHCi or via runhaskell), because scheduler semantics are 
different to compiled programs.



Concurrency and Performance

[ 202 ]

Avoid accumulating thunks
Even mutable references are not safe from the unfortunate consequences of 
lazy evaluation; it's deceptively easy to accidentally accumulate a big chain of 
unreferenced thunks in an IORef, because modifyIORef is not strict in its second 
argument. A classic example is using IORef as a counter:

import Control.Monad (replicateM_)
import Data.IORef

main = do
    counter <- newIORef 0
    replicateM_ 10000000 (modifyIORef counter (+1))
    print =<< readIORef counter

This will probably finish cleanly, but requires almost 1 gigabyte of memory.

It's up to you to ensure that you don't leak memory in values you write into IORef. 
Depending on the datatype, if evaluation to Weak Head Normal Form is enough 
then the strict version of modifyIORef, modifyIORef', is a clean and concise option.

Atomic operations with IORefs
All of the operations for IORef are atomic as such, but it's hard if not impossible 
to make combinations of atomic operations on IORefs remain atomic. One atomic 
operation on IORefs, however, provides a little more flexibility than others:

atomicModifyIORef :: IORef a → (a → (a, b)) → IO b

Essentially, atomicModifyIORef allows us to read the value of an IORef and write a 
new value based on the old value, ensuring that no other thread could read or write 
the value in between. A strict variant is also available: atomicModifyIORef'.

An example use case would be a unique identifier supply. When drawing a new 
identifier from a IORef Int, we need to fetch the current one and then atomically 
update the supply. The newUID function below is thread-safe:

-- file: ioref-supply.hs

import Data.IORef

type Supply = IORef Int

createSupply :: IO Supply
createSupply = newIORef 0

newUID :: Supply -> IO Int
newUID supply = atomicModifyIORef' supply $ \uid -> (uid + 1, uid)
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This is about as far as we can reasonably get atomically using plain IORef. Next we'll 
look at a more practical concurrency primitive, MVar.

MVar
Mvar is a box that may be full or empty. It supports the atomic operations takeMVar 
and putMVar, which empty and fill the box, respectively. The core API is referenced 
here. Many utility functions are omitted:

module Control.Concurrent.MVar

data MVar a

newMVar :: a → IO (MVar a)
takeMVar :: MVar a → IO a
putMVar :: MVar a → a → IO ()

MVar is slightly slower than IORef, but more flexible. For instance, it's trivial to 
reserve a shared resource to be used only by one thread at a time:

-- file: mvar-reserve.hs

import Control.Exception (bracket)
import Control.Concurrent (forkIO)
import Control.Concurrent.MVar

printing lock str =
    bracket (takeMVar lock)(\i -> putMVar lock $! i+1)(\_ -> print 
str)

main = do
    lock <- newMVar () :: IO (MVar ())
    forkIO $ printing lock "output a"
    forkIO $ printing lock "output b"
    forkIO $ printing lock "output c"
    takeMVar lock >>= print

The preceding program prints three lines from three different threads and finally 
outputs the number of printed lines. By taking the contents lock MVar each time 
before printing, and putting something back after each print, we ensure that 
printing is never inlined:

"output a"
"output b"
"output c"
4
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Without the lock, we would very likely witness output like:

"outpu"t"o ouaut"tp
puutt bc""

Notice that we used bracket to ensure that we don't reserve the lock indefinitely in 
case an exception is thrown. This function takes three arguments. The first argument 
acquires a resource (takeMVar), the second releases it (putMVar) and the third does 
something with the resource between acquire and release. bracket ensures that the 
resource is released if an exception is raised.

The Runtime System is smart enough that, in simple cases, it can recognize when the 
program is waiting indefinitely and kill the thread with a thread blocked indefinitely 
in an MVar operation exception. But if you have many threads, it is possible to 
deadlock your program with an empty MVar. Also a full MVar can block, because 
putMVar will wait until the MVar is empty before filling it.

Like IORef, MVar is lazy in its contents and it's important to ensure that no thunk 
chain in an MVar clutters the heap of your program.

MVars are fair
MVar has some nice properties. For instance, it's guaranteed that when multiple 
threads are sleeping, blocked on same MVar, none of the threads can be blocked 
indefinitely. In practice, the threads are woken up in the order they are blocked.  
The wakeup and taking of the MVar is a single atomic operation.

Another feature of MVar is that it's not susceptible to reordering by the underlying 
processor architecture; for IORef, it's possible that reads get moved to be performed 
before writes:

writeIORef ref1 True
x <- readIORef ref2

These lines would probably get swapped around on an x86 system, where loads 
(read) can move ahead of stores (write). This is problematic when references are used 
from multiple threads. MVar is thus a more suitable synchronization primitive than 
IORef.

For what it's worth, the atomicModifyIORef and 
atomicWriteIORef operations resist described reordering.
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MVar as a building block
Many concurrent data structures in base and elsewhere use MVar as their building 
blocks. For instance, semaphores (Control.Concurrent.QSem) and channels 
(Control.Concurrent.Chan) are built with MVars.

Building your own data structures with MVar isn't hard. Let's build an unbounded 
FIFO queue with non-blocking enqueue and dequeue operations. This is like the 
Chan type in Control.Concurrent.Chan, but more inefficient.

We'll represent our FIFO as two lists. The first list represents the head of the queue, 
with the head element being the next element to read. The second list represents the 
tail of the queue, the head element being the newest enqueued element:

ioref-counter.hs
-- file: mvar-queue.hs

import Control.Concurrent.MVar

data Queue a = Queue (MVar [a]) (MVar [a])

newQueue :: IO (Queue a)
newQueue = Queue <$> newMVar [] <*> newMVar []

The enqueue operation is straightforward: we just need to cons(:)an element to the 
second list:

enqueue :: Queue a -> a -> IO ()
enqueue (Queue _ ys_var) x = modifyMVar_ ys_var (return . (x :))

I've used the modifyMVar_ utility function, which puts the original contents back to 
the MVar in the case of an exception:

modifyMVar_ :: MVar a → (a → IO a) → IO ()

We can also return a result with the modifyMVar function, which we'll use shortly 
too:

modifyMVar :: MVar a → (a → IO (a, b)) → IO b

Dequeueing is more complex. Now we uncons the first list. If that list is empty, 
we need to reverse the second list and insert it into the first list, at the same time 
emptying the second list. In the code, we have:

dequeue :: Queue a -> IO (Maybe a)
dequeue (Queue xs_var ys_var) = modifyMVar xs_var $ \xs_q ->
    case xs_q of
        x : xs -> return (xs, Just x)
         [] -> modifyMVar ys_var $ \ys_q ->
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            return $ case reverse ys_q of
                 [] -> ([], ([], Nothing))
                 x : xs -> ([], (xs, Just x))

Usually we only take the first MVar. If we need to reverse the tail, we take the second 
list too, momentarily locking both MVars.

We can now witness that our queue works as it should:

> q <- newQueue :: IO (Queue Int)
> enqueue q 1
> enqueue q 2
> enqueue q 3
> enqueue q 4
> dequeue q
Just 1
> dequeue q
Just 2
> dequeue q
Just 3
> dequeue q
Just 4
> dequeue q
Nothing

A better FIFO implementation is already provided by the Control.Concurrent.
Chan module, which also supports channel duplication. Next we'll have multiple 
actors reading and writing from each other via a broadcast channel.

Broadcasting with Chan
The Chan datatype resembles our queue a lot. The core API is:

module Control.Concurrent.Chan

data Chan a

newChan :: IO (Chan a)
writeChan :: Chan a → a → IO ()
readChan :: Chan a → IO a
dupChan :: Chan a → IO (Chan a)

The only addition is dupChan, which creates a copy of the channel such that reads 
and writes to either the original or the copy appear in both. The duplicated channel 
starts empty, though.
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The client function that follows takes its integer identifier and a read-and-write 
channel. It responds to messages of the form request <myid> with a response 
<myid> in the same channel:

-- file: chan-actors.hs

import Control.Monad
import Control.Concurrent
import Control.Concurrent.Chan

client :: Int -> Chan String -> IO ()
client i chan = go where
    go = do input <- readChan chan
            if input == ("request " ++ show i)
                then writeChan chan ("response " ++ show i)
                else return ()
            go

The following main, written compactly with monad utility functions, forks three 
clients with different identifiers. A single channel is duplicated for each client,  
so that every client receives all messages:

main = do
    chan <- newChan
    chans <- replicateM 3 (dupChan chan)
    zipWithM_ (\i c -> forkIO $ client i c) [1..] chans

    forM_ [1..3] $ writeChan chan . ("request " ++) . show
    getChanContents chan >>= mapM_ print . filter (isPrefixOf  
"response")

The getChanContents function turns the channel contents into a lazy streaming list. 
Unlike hGetContents, which returns a finite list when the file handle returns EOF, 
getChanContents builds a really infinite list. When we run this program, we see the 
following output:

"response 1"
"response 3"
"response 2"
chan-actors: thread blocked indefinitely in an MVar operation

The "thread blocked indefinitely in an MVar operation" exception above comes 
from one of the client threads. The Runtime System detects that after call to 
getChanContents, all threads are waiting on the same Chan and throws anexception. 
It isn't possible to close a Chan; it will remain open forever.
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Software Transactional Memory
Software Transactional Memory (STM) is the highest-level general concurrency 
abstraction we will consider. STM provides composable atomic transactions, 
meaning we can combine reads, writes, and other operations in multiple memory 
locations into single atomic operations. Transactions can be aborted or retried.

An STM transaction lives in the STM monad:

data STM a
instance Monad STM

Transactions are performed with the atomically function:

atomically :: STM a → IO a

Another important primitive is the retry function, which aborts the current 
transaction and retries it when some of its dependencies have changed (in some 
other transaction in another thread):

retry :: STM a

Basic transactional variables are provided by the STM package itself. Advanced 
structures are provided by additional packages. The following are provided in 
stm:Control.Concurrent.STM:

• TVar: A shared memory location analogous to IORef, but transactional
• TMVar: Mutable variable analogous to IORef
• TChan: Channels analogous to Chan from base
• TQueue: Faster channels without support channel duplication
• TBQueue: Bounded and non-duplicable channels
• TArray: Transactional arrays analogous to arrays from the array package

Some more transactional datatypes are provided by the stm-containers and stm-
chans packages.

STM example – Bank accounts
We can represent account balance as a TVar:

-- file: tvar-account.hs

import Control.Concurrent.STM
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type Balance = Int
type Account = TVar Balance

createAccount :: Balance -> STM Account
createAccount = newTVar

The basic operations that can be done on accounts are withdraw and deposit. 
Implemented as STM transactions, we get the following transactions:

withdraw account amount = do
    balance <- readTVar account
    if balance - amount < 0
        then retry
        else writeTVar account $! balance - amount

deposit account amount = do
        balance <- readTVar account
        writeTVar account $! balance + amount

Our accounts can't go negative. Therefore, withdrawals will wait until the balance 
becomes available. Retrying inside a transaction will restart the STM transaction at 
the beginning, but only after the variable (account) has been touched by some other 
transaction. It won't wait in a busy loop or anything.

We can compose withdrawal and deposit to create a transfer transaction, which 
transfers a given amount from one account to another:

transfer from to n = do
    withdraw from n
    deposit to n

Note how easily we composed two atomic operations into one atomic operation. STM 
makes sure that all modifications made in an incomplete transaction are discarded. 
Furthermore, because of atomicity, it is guaranteed that nothing else could update 
the contents of any variable that is used during the transaction.

This is guaranteed to execute atomically, no matter how many threads try to 
withdraw from the account in one moment. For an example of usage, here we 
transfer from one account to another:

acc1 <- atomically $ createAccount 5
acc2 <- atomically $ createAccount 3
atomically $ transfer acc1 acc2 2
atomically (readTVar acc1) >>= print
atomically (readTVar acc2) >>= print
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There is a small overhead in using TVar or TMVar instead of MVar, so if performance 
is critical and no complex logic is involved, an MVar (or even IORef) might be more 
suitable than STM.

But there are also two even more important caveats that TMVar have over MVar. One 
is that TMVar isn't fair; it might take an indefinite time for some thread to unblock on 
a contended TMVar. Another caveat is due to overhead from STM, a simple takeTMVar 
might not be single-wakeup like a takeMVar is, which is a big penalty for highly-
contended mutable variables.

Alternative transactions
There is an operation that allows us to combine transactions, such that if the first one 
does not yield a result but would wait, we can try another transaction. The operation 
is orElse:

orElse :: STM a → STM a → STM a

This is exactly the (<|>) operation from Alternative class, which STM implements.

For instance, to withdraw from a fallback account if the primary one doesn't have 
enough balance, we have the following transaction:

import Control.Applicative

withdraw' :: Account -> Account -> Balance -> STM ()
withdraw' primary secondary amount =
    withdraw primary amount <|> withdraw secondary amount

Exceptions in STM
Because STM is not I/O nor are I/O actions liftable to STM, we cannot use throwIO to 
throw exceptions within an STM transaction. We could use throw or error, but those 
are asynchronous and don't guarantee ordering respective to other STM operations, 
like throwIO does for IO.

The correct way to throw exceptions from STM is throwSTM:

throwSTM :: Exception e => e → STM a

And to catch exceptions within STM, we can use catchSTM:

catchSTM :: Exception e => STM a → (e → STM a) → STM a



Chapter 7

[ 211 ]

Alternatively, the MonadThrow/MonadCatch classes from the exceptions package 
capture correct throw and catch functions for STM among other monads.

Runtime System and threads
The GHC Runtime System comes in two flavors: threaded and non-threaded. For 
truly single-threaded applications, it's usually better to use the default non-threaded 
runtime, because there's more overhead in the threaded one. The non-threaded 
runtime features a scheduler for light-weight GHC threads (created via forkIO), 
providing for single-threaded concurrent programming.

Usually though, a concurrent program benefits from being multi-threaded – that is, 
using multiple CPU capabilities triggered via the -N<n> RTS flag when compiled 
with -threaded. The Runtime System creates one system thread for every capability 
and schedules light-weight threads to run in parallel on its system threads.

An important caveat with the non-threaded runtime is that if a light-weight thread 
has blocked a system call, the whole program will block. On the threaded runtime, 
GHC can schedule light-weight threads to run on other system threads while the 
other thread is blocked on a system call.

In Haskell, threads are identified by their ThreadId. One is returned by forkIO to 
the main thread, and the current ThreadId can be retrieved with myThreadId. We 
can use this ThreadId to throw exceptions from any thread to any other thread 
asynchronously, using throwTo:

throwTo :: Exception e => ThreadId → e → IO ()

The killThread function throws a ThreadKilled exception to the target thread. 
The forkIO function discards the ThreadKilled exception (also the exceptions 
BlockedIndefinitelyOnMVar and BlockedIndefinitelyOnSTM):

-- file: forking.hs
-- outputs nothing
test1 = do
    tid <- forkIO $ threadDelay 100000000
    killThread tid

-- outputs exception: Prelude.undefined
test2 = do
    tid <- forkIO $ undefined
    killThread tid

If you need to catch all exceptions from a thread, use forkFinally:

forkFinally :: IO a → (Either SomeException a → IO ()) → IO ThreadId
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In Haskell, when the main thread exits, all child threads are killed as well. Often it's 
useful to wait for all threads to exit, or inform some other thread when a thread dies. 
For this, forkFinally is the perfect utility:

-- waits for the child thread to exit
test3 = do
    mvar <- newEmptyMVar
    tid <- threadDelay 5000000 `forkFinally` \_ -> putMVar mvar ()
    takeMVar mvar

Masking asynchronous exceptions
It's possible to mask asynchronous exceptions for a short period of time using 
Control.Concurrent.mask. When a thread is in a masked state, no asynchronous 
exception will be raised as long as the thread does not block, or is uninterruptible.  
In principle, atomic operations such as operations on IORef, operations on MVar  
that don't block, and STM transactions that don't use retry won't be interruptible.  
The masked IO action is provided with a restore function, which restores the 
masked state to what it was outside the mask:

mask :: ((forall a. IO a → IO a) → IO b) → IO b

The restore function is the only way to restore to an unmasked state in a current 
thread. If mask is called from an already masked context, then its restore function 
won't unmask exceptions. Furthermore, new threads created via forkIO inherit the 
masked state of their parent, though it's possible to use forkIOWithUnmask to create 
a new thread with a restore function that unmasks exceptions in the child thread:

forkIOWithUnmask :: ((forall a. IO a → IO a) → IO ()) → IO ThreadId

To ensure that, in a new thread, an exception handler is established and executed 
despite asynchronous exceptions in a masked state while the main body is executed 
in an unmasked state, the pattern we would use is:

mask_ $ forkIOWithUnmask $ \unmask →
    catch (unmask main_body) exception_handler

The mask_ function is like mask but without a restore function.

Note that this is subtly different from using forkFinally, because forkFinally 
does not unmask exceptions in the main body if they were masked in the main 
thread.

If you cannot be sure of the enclosing masking state, use forkIOWithUnmask  
(usual in library code).
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If you need to mask exceptions around an interruptible operation, then this can 
be done with uninterruptibleMask. Be warned though, it's easy to render your 
program unkillable if the masked operation blocks for whatever reason.

Asynchronous processing
Executing asynchronously involves forking a computation to execute in another  
thread and right after continuing to do other things. In interactive applications, it 
is often useful to execute things in the background, in order not to block the user 
interface for too long. Usually we want to use the results from the asynchronous 
worker thread once it has finished. Sometimes we wish to cancel a long-running 
asynchronous computation, in order not to leave unwanted jobs lying around.

Although it is totally possible to create asynchronous jobs with waits and cancels 
using MVar and perhaps STM, the Async API in the async package provides much 
nicer solutions.

But first, to be convinced there's nothing magical in the Async API abstraction, we'll 
build something with just MVar and STM. So, forking multiple asynchronous threads 
and waiting for their results is trivial with a few instances of MVar: just create an 
MVar for every worker and make the workers put their results into one of the MVar 
locations. Then, in the main thread, take each of the result MVar:

-- file: mvar-async.hs

import Control.Concurrent

doAsync :: MVar a -> IO a -> IO ThreadId
doAsync mvar job = forkIO $ do
    r <- job
    putMVar mvar r

main = do
    mvars <- sequence [newEmptyMVar, newEmptyMVar]
    sequence [ doAsync mvar getLine | mvar <- mvars ]
    results <- mapM takeMVar mvars
    print results
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This works, but only as long as the asynchronous job does not throw an error. If 
the thread errors then the MVar is left empty, leading to our program failing with a 
BlockedIndefinitelyOnMVar exception. To fix this, we need to install an exception 
handler that puts something into the MVar before the worker thread exits. This 
improved version handles that:

doAsyncSafe :: MVar (Either SomeException a) -> IO a -> IO ThreadId
doAsyncSafe mvar job = mask_ $ forkIOWithUnmask $ \unmask ->
    do { r <- unmask job; putMVar mvar (Right r) }
    `catch` \e -> putMVar mvar (Left e)

This also ensures that the worker thread isn't disrupted by asynchronous exceptions 
at any point, except for the asynchronous job itself, by using forkIOWithUnmask.

Let's take another case: waiting for either one of two jobs to complete. One solution 
would be to use just one MVar and the tryPutMVar function in order to not block if 
the other thread already filled the MVar.

Another solution involves STM. The obvious benefit to using STM is that this solution 
composes seamlessly with other STM transactions. The following implementation of 
eitherOr utilizes the STM primitive orElse to obtain a result when either of two jobs 
return:

-- file: stm-either.hs

import Control.Concurrent
import Control.Concurrent.STM

eitherOr :: IO a -> IO b -> IO (Either a b)
eitherOr job_a job_b = do
    a <- doAsyncSTM job_a
    b <- doAsyncSTM job_b
    atomically $ fmap Left (takeTMVar a) `orElse` fmap Right (
    takeTMVar b)

doAsyncSTM :: IO a -> IO (TMVar a)
doAsyncSTM job = do
    tmvar <- newEmptyTMVarIO
    forkIO $ do r <- job
            atomically $ putTMVar tmvar r
    return tmvar



Chapter 7

[ 215 ]

I have omitted exception handling for clarity. Basically we just wait for one of two 
TMVar variables to fill. But what if we would like to cancel one computation once 
the other finishes? After all, it's not good to leave threads lying around, as running 
threads cannot be garbage-collected. We would need to throw a ThreadKilled 
exception (using killThread) or something similar to cancel a job.

Using the Async API
Instead of explicitly keeping track of and managing all our asynchronous threads, we 
can utilize the Async API to do the hard lifting for us. For instance, the withAsync 
combinator provides automatic cancellation:

withAsync :: IO a → (Async a → IO b) → IO b

In withAsync action (\a -> inner), the asynchronous job action is coupled 
with the computation inner such that if inner finishes (with an exception or 
otherwise), the asynchronous thread is killed if it is still running.

The Async type represents an asynchronous job. It encapsulates the ThreadId and 
means to wait or poll the job's result (or a raised exception). To create an Async 
without automatic cancellation, use async:

async :: IO a → IO (Async a)

One of the simplest operations on an Async is to wait for its result:

wait :: Async a → IO a

But we can also do more, like wait for one of multiple Async to complete, and 
automatically cancelling all others when one finishes, by using waitAnyCancel:

waitAnyCancel :: [Async a] → IO (Async a, a)

We can also wait for Async within an STM transaction using waitSTM :: Async a → 
STM a.

Async example – Timeouts
Let's take a concrete example using the Async API. Say we need to write a command-
line interface that reads lines of user input, but times out if the user hasn't finished 
the line within five seconds. After the timeout, the prompt is reset.
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One way to write this program is using withAsync, as follows:

-- file: async-cli.hs

import Control.Monad (forever)
import Control.Concurrent
import Control.Concurrent.Async

main = forever $
    withAsync getLine $ \userInput ->
    withAsync (threadDelay 5000000) $ \timeOut -> do
        res <- waitEither userInput timeOut
        case res of
            Left input -> print input
            Right _ -> putStrLn "Timeout!"

We use waitEither to wait for either of two Asyncs to complete. If a line was 
received, then we print the line; and if a timeout was reached instead, we print 
Timeout!. Finally, the other Async is cancelled.

Note that in this case what we do after one of the Asyncs has completed executes 
fast (just print a line). But if it was something more complex, like if we wanted to 
continue to some other part of the program, we should cancel the other Async before 
continuing there. Instead of cancelling manually, we can rewrite our program such 
that we exit both withAsync actions before processing the result. This ensures that 
neither Async is left running:

main2 = forever $ do
    res <- withAsync getLine $ \userInput ->
           withAsync (threadDelay 5000000) $ \timeOut ->
           waitEither userInput timeOut
    case res of
        Left input -> print input
        Right _ -> putStrLn "Timeout!"

It turns out our res computation is already captured by the race combinator in the 
async library:

race :: IO a → IO b → IO (Either a b)

We can rewrite our program using race, yielding very concise code:

main3 = forever $ do
res <- getLine `race` threadDelay 5000000
case res of
Left input -> print input
Right _ -> putStrLn "Timeout!"
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The race combinator is not only more concise but quite a bit faster too; Async relies 
on STM to provide the flexibility, but race can be (and is) implemented using MVar and 
throwTo. As an exercise for the reader, consider how you would implement race using 
MVar and throwTo, such that the other computation gets killed when the first finishes.

Composing with Concurrently
The async library provides two types: the Async type we have already met and a 
type called Concurrently:

newtype Concurrently a = Concurrently { runConcurrently :: IO a }
instance Applicative Concurrently
instance Alternative Concurrently
instance Monoid a => Monoid (Concurrently a) -- since 2.1.0

Values of type Concurrently are built simply by wrapping an IO action with 
the exposed constructor. The magic of Concurrently lies in its Applicative, 
Alternative, and Monoid instances. These instances allow composing actions 
concurrently by either waiting for results from all actions (Applicative, Monoid)  
or either of multiple options (Alternative).

So, to compose either of two alternatives, use (<|>):

-- file: concurrently.hs

import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async

lineOrTimeOut :: Concurrently (Either String ())
lineOrTimeOut =
    Concurrently (fmap Left getLine) <|>
    Concurrently (fmap Right (threadDelay 5000000))

And to compose many into one, use (<*>) and (fmap/(<$>)):

threeLines :: Concurrently (String, String, String)
threeLines = (,,)
    <$> Concurrently getLine
    <*> Concurrently getLine
    <*> Concurrently getLine
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To get the result of Concurrently, apply runConcurrently and execute the 
resulting IO action:

> runConcurrently lineOrTimeOut 
Right ()

The number of concurrent threads can be determined from the number of 
Concurrently constructors there are. Wrapping and composing IO actions this way 
using Concurrently has many nice properties:

• There is no need for any special combinators, just the full power of the 
Functor, Applicative, and Alternative classes

• Composition using the Alternative instance ensures that unused actions 
get cancelled

• Composition using Applicative instance ensures that all results are waited 
for before returning, and makes it hard to forget about concurrent jobs

Lifting up from I/O
In real-world applications, it's quite usual for much of the code base to live 
in monads or monad stacks. In such situations, concurrency operations from 
Control.Concurrent become challenging, because they all are monomorphic in 
IO. Sometimes this isn't much of a problem, because we can use liftIO from the 
MonadIO class to lift arbitrary IO actions.

But MonadIO leaves two important cases uncovered. The first one is about other base 
monads besides IO, such as STM. Though more limited in its use cases, it's sometimes 
desired to have a monad stack on top of STM. The other case is about exception 
handling, for which MonadIO is quite insufficient; all of Control.Exception is 
monomorphic in IO, meaning a lot of plumbing if they are used within a monad stack.

In this chapter, we'll look at some solutions to both cases. Another thing that's 
often desired, and which we'll cover first, is top-level mutable references. In some 
languages these are called globals, and though they're often shunned, Haskell kind 
of supports them but in a way that's more useful.

Top-level mutable references
All references (IORef, MVar, TVar) are created in the IO or STM monad. It is possible 
to escape IO using unsafePerformIO, and it's safe to do so when used correctly.  
One such safe use is at top-level accompanied with a NOINLINE pragma:
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-- file: top-level.hso
import Data.IORef
import System.IO.Unsafe (unsafePerformIO)

globalVariable :: IORef String
globalVariable = unsafePerformIO (newIORef "")
{-# NOINLINE globalVariable #-}

It's important to set the variable to non-inlinable, because if it inlines, a new IORef 
might get created on reference. Equally important is to ensure the top-level variable 
has a monomorphic type. For instance, this is bad:

globalVar :: Num a => IORef a
globalVar = unsafePerformIO (newIORef 0)

Even if globalVar is not inlined, it now represents a function (with an implicit class 
dictionary parameter). Effectively this means that a new IORef is created every time 
we reference globalVar.

When it comes to transactional variables in STM, it should be noted that atomically 
cannot be used inside unsafePerformIO (weird things will happen). Instead, the IO 
variations should be used, such as newTVarIO which lives in IO and can be used with 
unsafePerformIO. The same considerations about inlining and monomorphic typing 
apply for transactional top-level variables as well.

Lifting from a base monad
The transformers library provides the MonadIO class to lift from base IO. With base 
we mean the bottom monad of a monad transformer stack. The transformers-base, 
library, on the other hand, provides a MonadBase class to lift from an arbitrary base:

class MonadBase b m | m → b where
    liftBase :: b a → m a

Type variable b represents the base (for example, IO) and m is the monad to lift 
operations to. For MonadBase IO, liftBase is equivalent to liftIO. The benefits of 
MonadBase are mostly in its other base instances, such as STM or ST. For instance, if 
we were writing complex STM transactions and wanted to wrap some common data 
with a Reader monad on top of STM:

-- file: transactionm.hs

import Control.Monad.Base
import Control.Monad.Trans.Reader
import Control.Concurrent.STM

type TransactionM a = ReaderT String STM a
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To lift STM transactions to TransactionM, we could use Control.Monad.Trans.
lift. But if the stack was bigger, we would end up doing lift . lift . lift 
or similar, and if we instead had our TransactionM be a newtype, it would be 
impossible to lift STM operations into it using lift. By using liftBase, we can 
circumvent both of these restrictions, because a single liftBase will lift through an 
arbitrary stack as long as the base monad is sitting at the bottom.

The newtype case is straightforward; we can derive the instance for MonadBase:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype TransactionM' a = TransactionM' (ReaderT String STM a)
    deriving ( Functor, Applicative, Monad
            , MonadReader String, MonadBase STM )

If on the other hand you don't need the full power of STM, then the stm-lifted 
library provides basic atomic operations such as readTVarIO, dupTChanIO, and so 
forth on transactional variables lifted into MonadIO.

Lifting base with exception handling
Lifting operations using MonadBase was very similar to MonadIO, just more general 
in the base monad. But lifting operations from Control.Concurrent is trickier. 
For instance, how do we lift forkIO into, say, WriterT Int IO? We have to decide 
what happens with the added state from the transformers. In the case of forkIO, 
that's simple: just duplicate the current state into the new thread. But how about an 
exception handler of catch?

catch :: Exception e => IO a → (e → IO a) → IO a

A generalized version of catch provided by the lifted-base package has this 
signature:

module Control.Exception.Lifted

catch :: (MonadBaseControl IO m, Exception e)
    => m a → (e → m a) → m a

Like MonadBase, MonadBaseControl is a type class that allows lifting operations 
from the base monad. As the name implies, MonadBaseControl adds something 
extra to the lifting. The type class definition is also entirely different from 
MonadBase:

class MonadBase b m => MonadBaseControl b m | m → b where
  type StM m a :: *
  liftBaseWith :: (RunInBase m b → b a) → m a
  restoreM :: StM m a → m a
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Fortunately, it isn't necessary to understand how this class works in order to use 
MonadBaseControl; in terms of user interface, it looks just like MonadBase (or indeed 
MonadIO).

But what is useful to understand is the main implication of MonadBaseControl, 
namely that it saves the added monadic state (as a value of associated type StM m 
a) and uses this saved state to run computations such as the exception handler in 
catch. This means that the computation in an exception handler is executed using 
the monadic state before calling catch. What's more, the monadic state from a 
computation that throws an exception is also discarded.

Apart from generalizing Control.Concurrent and Control.Exception with 
module names suffixed with Lifted, in the lifted-base library there are 
generalized versions of some other modules in base as well, including, for example, 
Data.IORef.Lifted. Some functions generalize well with just MonadBase IO, and 
those are left as such. Others that require monadic state controlling are marked with 
MonadBaseControl in their type signatures.

Because of the associated type in MonadBaseControl class, making an instance for 
a newtype is substantially harder than MonadBase. Sadly, GHC won't derive any 
instances for classes with associated types, and the higher-order class functions sure 
aren't making our lives any easier.

For reference, here's an example of a manually-written derived instance for a 
newtyped monad stack:

-- file: newtype-monadbasecontrol.hs

newtype Handler a = Handler
    { unHandler :: LoggingT (StateT HandlerState (ReaderT Config IO)) 
a
    } deriving ( ... )

instance MonadBaseControl IO Handler where
    type StM Handler a = StM 
      (LoggingT (StateT HandlerState (ReaderT Config IO))) a

    liftBaseWith f = Handler $ liftBaseWith $ \q -> f (q . unHandler)

    restoreM = Handler . RestoreM
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Summary
In this chapter, we started by looking at light-weight threads and forkIO. Closely 
related to this, we looked at mutable references IORef and MVar in concurrent 
settings. Atomic operations on those reference types were quite limited, which is 
why we next dived into STM for arbitrarily complex transactions. Then we considered 
a nice higher-level abstraction over an asynchronous program, the Async API. One of 
the main benefits of using Async is easy and automatic cancellation of asynchronous 
jobs. Finally, we lifted concurrency operations into complex monad stacks.

In the next chapter, we will take a deeper look at the Runtime System, scheduling, 
and garbage collection. We will look at what options there are to tweak both the 
compiler and the Runtime System. We will learn how the GHC compilation pipeline 
works and how to read the intermediate core language that GHC produces just 
enough to spot possibly missed optimizations.
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Tweaking the Compiler and 
Runtime System (GHC)

In the previous chapter, we got programmed concurrent applications and used 
the related powerful features of GHC. Next we concentrate on tuning GHC and its 
Runtime System. For the best performance, it's necessary to tune the compiler and 
Runtime System according to the application's specific needs. For instance, heavy 
number crunching benefits greatly from a different compilation path using LLVM, 
at the expense of longer compilation times and portability. There are lots of useful 
options, tricks, and tweaks available in GHC that we will look at in this chapter.

This chapter attempts to highlight the most important flags and options in GHC 
and RTS. It's not meant to be a substitute for GHC UserGuide, which is much more 
comprehensive. Instead, we cover options in a systematic and easy-to-follow way, 
starting with compiler options and proceeding with Runtime System options.

At the end of this chapter, the reader will understand the big picture of compiler 
phases in GHC and the most important options that affect compilation, optimization, 
code generations, linking, and preprocessing in GHC. The reader will be familiar 
with the Runtime System, its scheduler, green threads, memory management, and 
the garbage collector. We will mention some important configuration options that 
affect Runtime System performance or enable tracing features.

An additional Haskell feature more or less related to GHC is Safe Haskell, which 
helps programmers in trusting libraries to do what they promise. In essence, 
Safe Haskell enforces referential transparency: a Safe Haskell module cannot use 
unsafePerformIO, for example. In this chapter, we will learn how Safe Haskell can 
help in trusting code and validating it We will take a look at the following topics:.

• Compiling and linking with GHC
• Configuring and tuning GHC and the Runtime System
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• Compiling safely with Safe Haskell
• Understanding memory management, GC, and scheduler in Runtime System

Using GHC like a pro
The Glasgow Haskell Compiler is a mighty beast. It's a product of almost three 
decades of active development and innovation. The lead developers have, for a 
long time, been Simon Peyton Jones and Simon Marlow. The compiler is written 
in Haskell itself, though the Runtime System is written in C and C--. GHC is open 
source and licensed under a permissive three-clause BSD license.

To be able to effectively use the compiler, it's necessary to understand the big steps 
GHC performs when compiling Haskell code. GHC consists of a front end, back end 
and something that goes in-between.

The GHC front end performs type-checking and type inference, after which Haskell 
code is transformed into an intermediate language called Core. Core is like Haskell 
but syntactically simpler. Much of GHC's magic happens as code transformations 
from Core to Core: strictness analysis, optimization, rewrite rules, inlining, automatic 
unboxing of arguments, and so on.

The GHC backend takes Core code and turns it into machine code. Core is first 
transformed into another intermediate language called STG (short for Spineless 
Tagless G-machine) which is essentially a language for expressing graph reduction. 
Then, STG is transformed into C--. Finally, C-- is either directly converted into 
machine code using GHC's native code generator, converted to LLVM code for 
compilation with LLVM, or printed as C code to be compiled with GCC. However, 
the C route is generally deprecated and is not included in usual builds of GHC  
(it may still be used for cross-compiling).

Next, we will consider the most important GHC flags and common use cases.  
For a complete overview, consult the GHC UserGuide.

Operating GHC
There are a few ways GHC can be invoked.

The most basic form is ghc program.hs. This compiles a single-module Haskell 
program. To compile a multi-module program, that is, one that consists of multiple 
.hs files, use ghc --make Main.hs. The --make flag tells GHC to automatically 
resolve dependent source files from module declarations and to compile them.
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module A where
import B
import C

# files: A.hs, B.hs, C. hs

ghc --make A.hs

The multi-module mode of GHC has advantages as opposed to a hand-crafted 
Makefile: automatic dependency resolution, cached compilation and parallel 
compilation using the -j<n> flag. Most of the time though Cabal and cabal-
install are used in developing multi-module projects, which takes care of calling 
GHC with --make and possibly -j.

Other GHC modes of operation are interactive, expression evaluation, and runghc. 
The interactive mode (flag -i) is exactly just GHCi, while expression evaluation (flag 
-e <expr>) is like the interactive mode, but executes just one Haskell expression 
given as a command-line argument. The runghc executable that ships with GHC 
evaluates a whole Haskell module in the interactive mode:

$ runghc <<<'main = putStrLn "Hello World"'

Hello World

Multiple options that affect GHC's behavior can be useful in Haskell development. 
For instance, in some cases GHC doesn't automatically detect that something that 
affects the resulting program has changed, and GHC doesn't trigger recompilation 
as it should. Experimenting with different optimization flags is one such scenario. 
In such cases, the flag -fforce-recomp is useful. It forces recompilation of target 
modules.

When doing type-error-driven development, some people prefer seeing the top-most 
error first. By default, GHC prints errors in the order it encounters them, leading to 
the latest printed error being bottom-most. The-freverse-errors flag reverses this 
order.

Flags related to a warning that GHC produces are especially useful. It's good practice 
to always develop with -Wall to get warned about a lot of possible problems in code, 
such as unused variables, inexhaustive case matches, and more.

Use -Werror to turn all warnings into errors. This flag is useful for addressing all 
warnings in a large codebase, but it isn't advisable to use -Werror by default because 
it can unnecessarily break builds with different tool or library versions. Combine 
-Werror with -fforce-recomp to not silently suppress warnings with cached 
module builds.

If using stack, the --pedantic option executes GHC with -Wall -Werror.
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Circular dependencies
Without doubt, every Haskell programmer has bumped into a circular dependency 
problem. Circular dependencies are not directly supported by GHC, due to the way 
the Haskell module system works. There is limited support for mutually recursive 
modules in GHC, but they should be avoided if at all possible. There is no support 
for mutually recursive packages, which means that mutually recursive modules 
make it impossible to reasonably split a project into separate packages later.

To demonstrate that mutually recursive modules are possible, consider these cyclic 
modules:

module B where
    import A (a)
    b = a ++ "b"

module A where
    import B (b)
    
    a = "a"
    main = print b

Attempting to compile this is futile:

$ ghc --make A.hs

Module imports form a cycle:

        module 'A' (A.hs)

        imports 'B' (./B.hs)

  which imports 'A' (A.hs)

However, with a few additions we can make this cycle compile. First, we need to 
create a B.hs-boot file which holds an abbreviated version of module B. Essentially, 
we need to lay out exposed data types and function signatures. We don't need to 
give function definitions:

-- file: B.hs-boot

module B where
    b :: String

Then we need to break the cycle by adding a SOURCE pragma to where we import B, 
in module A:

module A where
    import {-# SOURCE #-} B (b)
    ...
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In big projects with a lot of isolation in modules, it might become painfully hard to 
design module dependencies so that there are no cycles. Fortunately, most of the 
time that extra work will pay off as better design.

Adjusting optimizations and transformations
A big section of GHC's Haskell compilation pipeline is code transformations from 
Core to Core. GHC performs strictness analysis on Core to compile functions with 
strict arguments more efficiently, because, for instance, strict arguments can be safely 
unboxed. The inliner reduces indirection in the program, and GHC's inliner is quite 
aggressive. A plethora of individual optimizations are performed if enabled. Rewrite 
rules written by library authors express algebraic properties that help the compiler to 
identify and eliminate expensive identities.

GHC does not try to optimize your code unless a -O[<n>] flag is specified. There 
are two good reasons for this default. Firstly, compilation with optimizations takes 
considerably longer, which makes it less suitable for fast iteration. Secondly, code 
transformations are not always benign; if the sophisticated heuristics guess wrong, 
the result is slower or even incorrect code. Even supposedly benign optimizations 
enabled by -O might produce slowdown in some corner cases, though such cases are 
rare. First observing performance without optimizations gives a baseline from which 
to start optimizing.

The state hack
Some optimizations jeopardize performance more easily than others. One 
particularly nasty effect is observed when the heuristics of an optimization called 
state hack makes a bad guess. In state hack, GHC attempts to optimize "stateful" 
computations such as IO or ST that carry a state token by eta-expansion; by assuming 
that an IO () computation is only performed once, we can transform (representing 
IO with RealWorld → (RealWorld, a)) the following:

foo a = let b = … in
  \w1 -> let (w2, ()) = action1 b w1
          (w3, ()) = action2 w2
          in (w3, ())

The following version uses just one function call, instead of a nested lambda. This is 
a much faster call:

foo a w1 = let b = …
              (w2, ()) = action1 b w1
              (w3, ()) = action2 w2
            in  (w3, ())
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However, if we are executing an action (foo a) multiple times, where a is fixed, and 
computing b is expensive, the latter version will exhibit a massive slowdown due to 
calculating b again every time!

The state hack heuristics are quite good in newer GHCs and it's hard to find a case 
where a slowdown is perceived. However, if you think that state hack is slowing 
down your code, give it a try and compile with -O -fno-state-hack.

Floating lets in and out
Other optimizations that interact with let bindings are -ffloat-in and -ffull-
laziness, the latter of which would perhaps be better described as "float-out 
Both are enabled by -O. Floating lets bindings nearer their use site and possibly 
eliminates unnecessary allocations when the code branches, so that the binding ends 
up never being used. On the other hand, floating outwards with what is called full-
laziness transformation tries to increase sharing and so might also increase memory 
residency.

Full laziness does not compose well with unsafePerformIO tricks. For a while now, 
imagine this unsafeVar in scope:

-- file: full-laziness.hs

import Control.Monad
import Control.Concurrent.MVar
import System.IO.Unsafe

unsafeVar :: a -> MVar a
unsafeVar i = unsafePerformIO (newMVar i)
{-# NOINLINE unsafeVar #-}

These are both bad, that is, they produce only a single MVar:

let xs = replicate 10 (unsafeVar 1)
xs ← replicateM 10 (return (unsafeVar 1))

But by using forM and compiling with -O0, this one produces 10 distinct MVars:

xs <- forM [1..10] $ \_ -> return (unsafeVar 1)

The preceding however breaks under -O, because the unsafeVar is floated up, 
producing code like this:

    xs <- let x = return (unsafeVar 1) in forM [1..10] $ \_ -> x
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Turning off full laziness via -fno-full-laziness will make this code correct 
again. Another way to circumvent full laziness is to artificially force a call to 
unsafePerformIO to depend on the inner context. In our example, we could do this:

xs <- forM [1..10] $ \i -> return (unsafeVar' i 1)

unsafeVar' :: b -> a -> MVar a
unsafeVar' _ i = unsafePerformIO (newMVar i)
{-# NOINLINE unsafeVar' #-}

However, this kind of code, using unsafePerformIO for no real reason, shouldn't 
be written unless there is a real reason for masquerading IO computations as pure 
values.

Eliminating common subexpressions
Here's another thing to be wary of with unsafe tricks: the Common Subexpression 
Elimination optimization (CSE). Take this code:

-- file: cse.hs
main = do
    let a = unsafeVar 5
        b = unsafeVar 5
    takeMVar a
    takeMVar b

Again, all is well under -O0. But with -O, which enables -fcse, GHC will infer that a 
= b, producing code akin to:

main = do
    let a = unsafeVar 5
    takeMVar a
    takeMVar a

With the -fno-cse flag, we can make this work. Note that CSE is not beneficial in 
general. We might end up retaining a big thunk for long periods, whereas without 
CSE it could be allocated anew once needed. However, a much bigger concern for 
CSE is inductive datatypes such as linked lists. For instance, with too eager CSE, this 
program would blow up in memory (lists get floated out into a single list, retained 
between calls to sum):

main = do
  print $ sum [1..10000000]
  print $ sum [1..10000000]
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Liberate-case duplicates code
Liberate-case is one of those transformations that generates more code. Actually, in 
unfortunate cases, it can cause an explosion in code size. That is because liberate-case 
always creates new code. For instance, consider this function:

-- file: liberate-case.hs

option = ('a', 'b')

fun x = case option of
             (a, _) -> a : fun x

If this recursive function is compiled without liberate-case optimization, then 
fun ends up doing a pattern match on every recursive evaluation. Because option 
occurs free in fun, it would be enough to pattern match it only once because its value 
wouldn't change from one recursive iteration to the next. Liberate-case would unroll 
the definition of the recursive function fun once and eliminate free terms, producing 
code equivalent to:

fun x = case option of
        (a, _) -> a : (let f x' = a : f x' in f x)

Although liberate-case was useful in this simple example, sometimes we just don't 
want it. Notably, the liberate-case transformation does not interact too well with a 
rules-based fusion. It can lead to lots of duplicated code, especially when combined 
with keen inlining. A lot of duplication in Core implies a harder time for other 
optimizations, thus hurting performance. For instance, the authors of the Repa 
library suggest using -fno-liberate-case.

Compiling via the LLVM route
The LLVM compilation route should be preferred over the default native code 
generator when performance matters. LLVM is an intermediate representation at the 
level of assembly code. LLVM is more recent and provides more opportunities for 
optimizations at the lowest level.

Generated LLVM code from GHC is in practice always at least as fast as, and usually 
faster than, whatever the native code generator produces. The main downside of 
LLVM is that it's slower to compile than using the native code generator, which 
makes a big difference in slowing down development cycles.

To choose the LLVM route, say -fllvm to GHC. Because LLVM has its own 
optimization flags that are different from GHC's, it makes sense to pass -optlo-O3 
to GHC, which in turn passes -O3 to LLVM , which enables some optimizations in 
LLVM's intermediate representation.
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GHC has rough support for Single Instruction, Multiple Data (SIMD) instructions 
in the form of GHC primitives defined in GHC.Prim module. They only work if using 
the LLVM backend. As of now, the representation is quite limited and their use 
cases questionable. However, in principle, substantial work libraries such as vector 
could in the future be made to use SIMD instructions. For the time being, SIMD 
is not explicitly used in the Haskell ecosystem, though intermediate LLVM might 
incorporate some optimizations that use SIMD.

Linking and building shared libraries
By default, GHC statically links Haskell libraries to executables it produces. 
This means that an executable built with GHC is usually compatible in a similar 
environment which has no Haskell-specific libraries installed. It is possible to link 
Haskell libraries dynamically using the-dynamic flag to save disk space.

GHC is also able to produce regular shared objects with the-shared flag to be used 
from C, for instance. For shared objects, it's also best to give a GHC flag -fPIC, to 
generate position-independent code.

While Haskell libraries are normally linked statically, non-Haskell libraries are 
usually linked dynamically. GHC uses the system linker to link with non-Haskell 
libraries, and we can pass it arguments via GHC with the-optl prefix. So the GHC 
option -optl-static will link other non-Haskell libraries statically. Static linking 
may help with portability.

The GHC Runtime System, which is necessary to execute Haskell programs built 
with GHC, is configured at linking time. Multiple flags control the Runtime System 
that gets linked into an executable: -threaded links with the multi-core version 
of Runtime System that can run on multiple OS threads;-with-rtsopts=<opts> 
specifies RTS flags at link time;-debug enables additional debug event output from 
RTS (configured further via RTS flags); and -eventlog enables event tracing (for 
ThreadScope).

The -rtsopts={none,some,all} linker flag controls which Runtime System flags 
can be given for the executable itself via +RTS. By default this is some, which enables 
some safe options. Simple -rtsopts enables all configurable options (the exact set of 
options depend on the given GHC flags), identical to -rtopts=all.
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Preprocessing Haskell source code
GHC supports using the C preprocessor (CPP) on Haskell source files. CPP is a 
simple macro language which enables conditional computation and macros. It is not 
enabled by default but is behind the language extension -XCPP. It is advisable to only 
use the C preprocessor for conditional compilation, that is, do not define constants 
using CPP.

The problem with CPP is that it is not type-checked and that it understands C, but 
not Haskell. CPP easily messes up Haskell code by expanding macros in string 
literals and comments, changing significant whitespace and identifiers containing ' 
or # characters. In particular, multi-line string literals almost certainly won't work 
with most C preprocessors.

Acceptable use cases for CPP in Haskell are:

• Compiling differently for different operating systems
• Compiling for different versions of libraries for backwards-compatibility
• Disabling or enabling some features in production versus development 

versions

CPP is used with GHC just like it is used with C. Macros can be defined from the 
command-line using -D and undefined using -U flags for GHC, just like with C. For 
example, the following program only prints when -DDEVELOPMENT is given for GHC:

-- file: cpp.hs

{-# LANGUAGE CPP #-}

main = do
#ifdef DEVELOPMENT
    print "just debugging"
#endif
    return ()

CPP flags can be hidden behind Cabal flags in a cabal file, using the ghc-options 
field to conditionally pass CPP options:

flag development
  description: Turn on development settings
  default: False

library
  if flag(development)
    ghc-options: -DDEVELOPMENT
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GHC also supports arbitrary custom preprocessors. Use the-F flag to tell GHC 
to preprocess and -pgmF=<executable> to tell it which program to use as the 
preprocessor. Preprocessing can be enabled on a per-module basis using the {-# 
OPTIONS_GHC -F #-} pragma. The preprocessor program itself could be defined,  
for example, in a cabal file.

Enforcing type-safety using Safe Haskell
Safe Haskell is an effort to help running untrusted code safely. It's a pretty unique 
thing, though it is still bit rough around the edges. The main purposes of Safe 
Haskell include to machine-check untrusted code, define a safe subset of Haskell that 
cannot use unsafe functions, call foreign C, or hang the system.

Safe Haskell contains language extensions (-XSafe, -XTrustworthy, and -XUnsafe) 
and the compiler flag -fpackage-trust. Safe Haskell marks every module either 
Safe, Trustworthy, Unsafe, or Safe-Inferred. Only modules that are either Safe or 
Safe-Inferred are machine-checked to use only safe language. However, safe modules 
may still use modules that don't fit to only safe language. This leads us to transitive 
trust, which we will look at in a moment.

Any module can be marked Trustworthy, which is essentially the library author 
promising that the exposed API is safe, although internally it might not be. It's now 
up to the user to decide whether to trust the author and thus the library.

Enabling any of the Safe Haskell extensions enables one new language feature, the 
safe import keyword:

{-# LANGUAGE Unsafe #-}
import safe qualified Data.List as List

A module imported with safe guarantees that the imported module is trusted at 
compile-time. Trust is determined differently, whether the-fpackage-trust flag is 
in effect or not. For "safe" imports, it holds that:

• -fno-package-trust: Module is trusted if it is not marked unsafe.
• -fpackage-trust: Module is trusted if it's marked Safe or Safe-Inferred,  

or Trustworthy with the module's package trusted in the package db.  
All transitive dependencies must also be trusted.

These points hold for all imports for a module that is -XSafe. For such modules, 
the language is restricted: everything unsafe is banned. Some surprising things are 
considered unsafe in Safe Haskell, including generalized newtype deriving, template 
Haskell, overlapping instances, rewrite rules, and Typeable.
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If a library author wants to use unsafe language features but still make the library 
available to Safe Haskell, she/he marks the library as Trustworthy. This doesn't 
restrict the language, but gives the library user an option to trust. Local packages are 
marked trusted using ghc-pkg trust <package>-<version>.

Safe Haskell does not protect from malicious code being run at compile-time. 
For example arbitrary executables could be called during compilation as custom 
preprocessors. Safe Haskell does not even aim to protect from compile-time issues. 
The solution for that is to build with isolated privileges.

Tuning GHC's Runtime System
GHC's Runtime System is not something that could be called elegant, consisting 
of 50,000 lines of C and C-- (a C-like language) code that does a lot of managerial 
things to execute compiled Haskell programs. The RTS is responsible for managing 
exceptions, implementing GHC's primitive functions (those suffixed with a magic 
hash), and scheduling light-weight threads. Memory management, profiling 
facilities, and STM are all implemented in RTS, and more.

How is this relevant to a Haskell programmer? Knowing the scope and limitations 
of the RTS is one thing. Also, the RTS isn't so much a black box; it can provide 
useful feedback about running programs, such as memory usage, garbage-
collection statistics, profiling information, and so forth. Many aspects of the RTS are 
configurable via flags, whose optimization is necessary to max out performance. 
Different applications utilize the RTS in wildly different ways.

Runtime System flags are set at program startup:

./program +RTS opts -RTS

Using -RTS is optional, marking the end of Runtime System options and the 
continuation normal program arguments.

One thing that rarely crosses one's mind is that, because GHC is built with GHC 
itself, all discussions about the Runtime System apply to GHC itself. You can pass 
Runtime System options to the compiler with +RTS just like to any normal Haskell 
program.

If you wish to specify RTS options to the program being compiled, use the GHC flag 
--with-rtsopts.
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Scheduler and green threads
GHC implements light-weight threads, commonly known as green threads. These 
threads use less memory than traditional operating system threads and are thus 
lighter to schedule. Threads are represented by Thread State Objects (TSOs). In 
Haskell, ThreadId corresponds to a TSO:

data ThreadId
    -- instance Eq, Ord, Show

Each TSO has a stack allocated with it. The default stack size is 1 kilobyte (controlled 
via the RTS flag -ki). TSOs are garbage-collected. Usually, TSOs are retained by a 
capability's run queue. Capability is a GHC name for an operating system thread the 
RTS is running. Each capability has its own run queue. In other situations, TSOs are 
retained in waiting lists on a concurrency variable such as an MVar.

Most of the memory overhead in a green thread comes from the stack size (1k). 
Reducing this to smaller values via the-ki RTS option might improve performance 
when spawning a lot of very small threads frequently. Conversely, lots of fat threads 
may benefit from bigger values.

When using the threaded runtime, the most important RTS option is -N<n>. This 
option controls the number of capabilities in use, loosely corresponding to the 
number of cores. On systems with more than two cores, it's rarely useful to set -N 
even to the number of cores on the system, because there are likely other programs 
running on your system that may hinder the RTS scheduler's performance. The 
number of capabilities can also be changed from code using setNumCapabilities.

Sparks and spark pool
Remember how we used Control.Parallel.par for requesting parallel evaluation? 
What the par operator actually does is that it allocates a spark in a capability's spark 
pool. Sparks are really cheap, because they're just pointers in a circular buffer. Valid 
sparks are pointers to unevaluated thunks – work that could be performed.

A spark is turned into a green thread when there are no threads in the run queue. 
Also, the scheduler tries to share sparks with other idle capabilities. This is 
important, because usually sparks are added to the spark pool of the currently 
executing capability which might be reserved for a long time. It is more efficient 
for each capability to have their own spark pool than a global spark pool, because a 
global pool would require acquiring a lock before adding sparks.
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Bounded threads and affinity
Normal green threads (created with forkIO) may get transferred at almost any time 
from one capability to another. Usually, this is not a problem. In fact, most of the 
time automatic migration results in very good performance. There are, however, two 
special cases where forkIO might be insufficient.

The first case is merely an optimization: sometimes it may be possible to get better 
performance by fixing threads to capabilities; for example, you are sure that threads 
interact in such ways that they shouldn't migrate between capabilities. These 
should be extremely rare cases; carelessly fixing capabilities can result in degraded 
performance. Nonetheless, using forkOn it's possible to fix a thread's capability:

forkOn :: Int → IO () → IO ThreadId

Another case that's more common is related to foreign calls to or from C. Some 
foreign calls depend on OS-thread-local state. This means that a thread that's 
interfacing with a C library which depends on thread-local state (OpenGL, for 
example), should use the forkOS function instead. A thread forked with forkOS is 
bounded to an operating system thread – a bounded thread:

forkOS :: IO () → IO ThreadId

In particular, the main program is always a bounded thread. Unbounded threads 
usually yield better concurrency performance than bounded threads, which is why 
it's discouraged to do lots of work in the main thread in a concurrent program. 
Instead, fork worker threads using forkIO or use runInUnboundThread (a 
runInBoundThread exists, too).

Indefinite blocking and weak references
The BlockedIndefinitely family of exceptions come with a detail that's not 
immediately apparent. In principle, a thread will not receive an exception of the 
blocked indefinitely kind as long as some other thread is holding a reference that 
could be used to unblock the thread. In the case of BlockedIndefinitelyOnMVar, 
one such reference is the MVar itself; we can unblock a takeMVar with a putMVar in 
another thread (or the other way around).

The nitty-gritty detail is, however, that just a reference to a ThreadId is enough to 
prevent blocked indefinitely exceptions from being thrown. After all, we could throw 
arbitrary asynchronous exceptions (including ThreadKilled) to the blocked thread 
using throwTo.
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To keep a reference to a ThreadId and still allow that thread to receive blocked 
indefinitely exceptions, we can make a weak reference to the ThreadId instead of 
a direct reference. The following program doesn't retain a reference to the ThreadId 
but just a Weak ThreadId, resulting in the child thread dying:

-- file: weak-threadid.hs

import Control.Concurrent
import Control.Concurrent.MVar

main = do
    tid <- forkFinally (do { var <- newEmptyMVar
                           ; takeMVar (var :: MVar ())
                           }) print >>= mkWeakThreadId
    threadDelay 10000000
    print =<< deRefWeak tid

This outputs thread blocked indefinitely in an MVar operation, perhaps surprisingly 
followed by a Just value. The doRefWeak function de-references a weak reference, 
returning nothing if the value had been GC'd, or otherwise the value wrapped 
in Just. In this case, the garbage-collector hadn't yet collected the unnecessary 
ThreadId.

Heap, stack, and memory management
Due to immutability, Haskell programs produce lots of memory traffic. Or, in 
garbage-collection terms, a lot of garbage is produced. However, immutability 
greatly simplifies garbage collector implementation and enhances its performance. 
The key trick used by memory management in Haskell is from the following 
observation: a value can never refer to values newer than itself, nor can it refer later 
because values are immutable.

GHC's GC is generational. Newer data is subject to garbage collection in the first 
generation. If data survives the first GC generation, it's retained in the second 
generation. By default there are two generations. New data is first allocated in the 
allocation area (default size 512 KB). When the allocation area is filled, the first 
generation of GC is performed (minor GC). Only live data is kept and retained in the 
main memory. Everything else just gets removed.

Almost all Haskell data lives in the heap: data constructors and fields, functions, 
thunks, mutable and transactional variables (STM), TSOs, and so on. Types that can 
be inhabited by bottom (_|_), undefined, must be represented by a pointer. Such 
types are called lifted. In general, types that are represented by pointers are called 
boxed types. Boxed unlifted types exist too.
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We can control minimum and maximum heap size with the RTS options -H and 
-M, for example,-H1G. The Runtime System will allocate more space for the heap as 
it grows in size (as long as it doesn't grow over the maximum size specified by -M, 
which is unlimited by default). The benefit of specifying a larger starting size for the 
heap is that there's less need for re-allocation. If the program's memory usage varies 
a lot over time, it improves overall performance to specify a bigger base heap size.

Heap usage is profilable, as discussed in the previous chapter on profiling. There's a 
technical overhead in heap profiling that's accumulated in every heap object as some 
extra fields. Profiling tooling subtracts that memory overhead exactly in reporting, 
but some programs' performance might be drastically degraded under heap 
profiling.

Evaluation stack in Haskell
In traditional, eagerly-evaluated languages, when an exception occurs often, a call 
stack is printed, which shows the stack of functions or methods that were called to 
produce the error. In Haskell, with lazy evaluation, there's no need to keep track of 
a call stack (though in newer versions of GHC there's some support for call stacks to 
help debugging partial functions).

There is, however, something called stacks in the Runtime System. Instead of functions 
or methods, these stacks hold pattern matches; they're sort of evaluation stacks. When 
a thread is evaluating a thunk, there's a stack associated with the evaluation. This is 
where stack overflows occur in Haskell, for example, in a non-strict left-fold. In a less 
dramatic, more common case, a stack is filled with a lot of case expressions, just to be 
collapsed later on – a classic space leak.

Noticing space leaks in the stack is a tricky business. Often big stacks are evaluated 
before being exhausted, but still consume unnecessary amounts of resources. It's 
possible to limit the maximum size of one thread's stack using the RTS option -K, 
for instance,-K1k. The default limit is 80% of physical memory. Often big stacks are 
perfectly valid, which is why this approach doesn't always work.

Tuning the garbage collector
Along with memory management in Haskell comes the garbage collector.  
It's multi-threaded (when using the threaded runtime) and generational. Lots  
of GC options are tunable. It is also in the GHC developer's interests to experiment 
with different GC settings, to see what works best in a lazy and pure language.
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Generational garbage collectors sort live objects into different generations, from 
newest to oldest. Newer generations get collected more frequently than older 
generations. Because Haskell is pure, generational garbage collection is easy to 
implement. In fact, GHC implements multi-generational GC, and the number of 
generations is fully configurable using the RTS option -G<n>. The default number 
of generations is 2. A maximum number that's still sensible is around 4; otherwise, 
oldest generations practically never get collected.

Some of the most useful GC flags are -A<size> and -n<size>. The former controls 
allocation area size, and the latter divides the allocation area into chunks of a 
specified size. The advantage of chunking the allocation area is evident in multi-core 
environments. By default, there's no chunking and the first core to fill its allocation 
area triggers GC over all cores, even if the other cores still have plenty of allocation 
area left. With chunking, the core is given a new chunk instead.

For instance, to set the allocation area to 64 megabits and chunk it into sizes of 4 
megabits, set -A64m -n4m. Remember that chunking is only advantageous when 
running in parallel.

The garbage collector copies by default, which means that data is copied from the 
allocation area to some fresh memory block. It is possible to instead enable the 
compacting algorithm for the oldest generation with the-c flag. The compacting 
algorithm is most useful when there's a good ratio (say 30%) of live data to heap size.

Parallel GC
GC options related to parallelism are -qg<gen> and -qb<gen>. The former enables 
parallel GC in generations gen and higher (default: 0). The latter enables load-
balancing in generations higher than gen (default: 1). Omitting gen turns off parallel 
GC or load balancing completely.

Even if your program is completely sequential, it might benefit from parallel GC 
depending on heap size and GC utilization. For a sequential program, it's probably a 
good idea to use parallel GC only in generations 1 and higher, because generation 0 
is highly sequential anyway, so extra overhead hurts performance.

Parallel GC load balancing is, by default, enabled only for generations 1 and higher. 
Migrating GC work from one core to another requires data copying, which hurts 
locality in a fast-paced generation 0. For a parallel program where threads don't 
interact much with each other (that is, a web server), it might be beneficial to disable 
load balancing altogether (using -qb).
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Profiling and tracing options
We have already used many of the profiling and tracing options in RTS. Most 
extensively, we've used the -s[<file>] statistics summary flag to get a nice 
summary about bytes allocated, bytes copied during GC, maximum residency, 
and so forth. The uppercase variant -S[<file>] prints more information, giving 
information about every GC event as they happen:

Alloc    Copied     Live     GC     GC      TOT      TOT  Page Flts

bytes     bytes     bytes   user   elap     user     elap

521128    161784    161776  0.000  0.000    0.005    0.001    0    1  
(Gen:  0)

523608    322720    322864  0.001  0.001    0.006    0.003    0    0  
(Gen:  0)

523608    483888    483864  0.001  0.001    0.007    0.004    0    0  
(Gen:  1)

523600    322280    645000  0.000  0.000    0.008    0.005    0    0  
(Gen:  0)

...

This (-S) is probably way too much detail though.

And if even -s is too much, if you'd like to see just a one-line summary at program 
termination, use -t[<file>]:

<<ghc: 1532385248 bytes, 2925 GCs, 76266654/408929240 avg/max bytes 
residency (17 samples), 860M in use, 0.000 INIT (0.000 elapsed), 0.901 
MUT (0.901 elapsed), 3.265 GC (3.268 elapsed) :ghc>>

Using -t in combination with --machine-readable produces a nice map-like 
structure that's easy to read using Prelude.read or similar. The following is an 
example output from a program run with +RTS -t --machine-readable:

 [("bytes allocated", "1532385248")

 ,("num_GCs", "2925")

 ,("average_bytes_used", "76266654")

 ,("max_bytes_used", "408929240")

 ,("num_byte_usage_samples", "17")

 ,("peak_megabytes_allocated", "860")

 ,("init_cpu_seconds", "0.000")

 ,("init_wall_seconds", "0.000")

 ,("mutator_cpu_seconds", "0.898")

 ,("mutator_wall_seconds", "0.898")
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 ,("GC_cpu_seconds", "3.269")

 ,("GC_wall_seconds", "3.272")

 ]

Finally, the -T flag makes statistics accessible using methods from the GHC.Stats 
module. We used this flag in Chapter 3, Profile and Benchmark to Your Heart's Content, 
where we hooked the ekg performance monitoring library to our program.

Tracing using eventlog
The eventlog contains information about scheduler events, GC events, sparks, 
and user-defined events. To generate an eventlog from a program, compile it with 
-eventlog and supply -l<flags> for the RTS. The flags are optional– refer to the 
GHC UserGuide for what is configurable. The eventlog is written to the program.
eventlog file in binary format. The tool that you'll most likely want to inspect the 
eventlog with is ThreadScope, as discussed in Chapter 3, Profile and Benchmark to Your 
Heart's Content.

The eventlog is used for performance profiling. It's possible to emit your own events 
from code. Using the eventlog for event messaging, instead of plain trace debugging, 
means that the eventlog can show more information about which processor cores 
thunks were evaluated or actions performed with. Use Debug.Trace.traceEvent 
and traceEventIO to emit eventlog events.

Options for profiling and debugging
Profiling and options for profiling have been discussed extensively in Chapter 3, 
Profile and Benchmark to Your Heart's Content. Most options require compiling with 
profiling support, except one, which generates a very basic heap profile in file 
program.hp: -hT. Use hp2ps to render the report as a nice PostScript graph.

For profiling and debugging multithreaded programs, the RTS clock interval 
option -V<secs> is of special interest. Setting -V0 effectively makes the scheduler 
deterministic. The RTS will be doing a lot more context-switching, but everything 
is deterministic. Eliminating non-determinism is really useful for debugging 
concurrent applications. For instance, determinism ensures reads and writes in 
concurrent threads are always performed in the same order.

Summary of useful GHC options
The last part of this chapter collects options for GHC and the Runtime System into a 
concise reference. Let's start off with GHC.
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Basic usage
These are some of the most often used general flags related to compilation with GHC:

• --make: Compile a multi-module program
• -j<n>: Parallel compilation
• -i, -e, runghc: Interactive and evaluation modes
• -fforce-recomp: Force recompilation
• -Wall: Turn on all code-level warnings
• -Werror: Turn all warnings into errors
• -freverse-errors: Print top-most error last

The LLVM backend
The LLVM route is the preferred compilation path for numeric code. It requires the 
LLVM libraries and a compatible system. The flags used to enable LLVM are:

• -fllvm: Compile via LLVM
• -optlo-O3: Enable optimizations in the LLVM backend

Turn optimizations on and off
GHC has a sophisticated optimization pipeline. Every optimization can be turned on 
and off separately, but that's rarely necessary. Good default sets of optimizations are 
enabled with the -O family of flags:

• -O: Standard set of benign optimizations (same as -O1)
• -Odph, -O2, -O3: Enable more optimizations
• -fno-state-hack: Disable the state hack optimization
• -ffloat-in, -ffull-laziness: Let-floating in and out
• -fno-cse: Disable common subexpression elimination (CSE) optimization

Configuring the Runtime System  
(compile-time)
The following flags affect the Runtime System that is linked to the program.  
The Runtime System has configurable flags of its own, discussed later on:
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• -threaded: Link with threaded Runtime System
• -with-rtsopts=<opts>: Specify RTS flags at link time
• -debug: Enable additional RTS debug events
• -eventlog: Enable event tracing for ThreadScope
• -rtsopts={none,some,all}: Enable configuring RTSoptions via ./

program +RTS

• -static, -dynamic: Link Haskell libraries statically or dynamically (default: 
-static)

• -shared -fPIC: Build a shared object
• -optl-static: Link non-Haskell libraries statically

Safe Haskell
These are flags for controlling Safe Haskell compilation:

• -XSafe, -XTrustworthy, -XUnsafe: Enable Safe Haskell extensions
• -fpackage-trust: Refuse compiling untrusted code

Summary of useful RTS options
The following sections describe flags for controlling the Runtime System's behavior. 
The exact set of flags available depend on how the Runtime System was configured 
(via GHC flags).

Scheduler flags
The number of capabilities (OS threads) to use is controlled with N<n>:. This can be 
changed with setNumCapabilities. (default: 1)

Memory management
These are flags for controlling used heap and stack size:

• -H<size>: Minimum heap size (default: 0)
• -M<size>: Maximum heap size (default: unlimited)
• -ki<size>: Minimum stack size (default: 512k)
• -K<size>: Maximum stack size (default: 80% system memory)
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Garbage collection
These are flags for controlling the generational garbage collector:

• -G<n>: Number of GC generations (default: 2)
• -qg<gen>: Minimum generation to apply parallel GC to (default: 0)
• -qb<gen>: Minimum generation in parallel GC to apply load-balancing 

(default: 1)
• -c: Enable compacting algorithm for oldest generation

Runtime System statistics
These are flags for collecting statistics from GHC Stats and the eventlog:

• -t[<file>], -s[<file>], -S[<file>]: Output to file or stderr
• -T: Enable statistics collection via GHC.Stats
• -t[<file>] --machine-readable: Output summary in machine-readable 

format
• -l<flags>: Gather an eventlog (for ThreadScope)

Profiling and debugging
These are flags to generate the heap profile from Haskell programs:

• -hT: Basic heap profile; render using hp2ps
• -h*: Heap profiling options (require compiling with profiling support)
• -V0: Eliminate non-determinism in parallel programs

Summary
In this chapter, we have discussed the easiest way to increase GHC Haskell's 
performance: tweaking compiler and Runtime System flags. Enabling optimizations, 
compiling via LLVM, and enabling LLVM optimizations is a quick route to a usually 
very respectable performance. Although most of the time GHC's sophisticated, 
heuristic optimizations produce faster code, this is not always the case. Some 
optimizations produce slow and even incorrect code under certain situations. Unsafe 
functions in particular interact badly with many optimizations. Furthermore, eager 
inlining may produce very big binaries.
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We discussed features in the Runtime System and how to enable and configure 
them. Light-weight (green) threads were cheap, scheduled by RTS, and enabled easy 
concurrent evaluation via sparks, but were limited with regard to foreign system 
calls. The parallel and generational garbage collector also had multiple tunable 
parameters to experiment with.

In the next chapter, we will learn to read GHC's intermediate language, Core. 
It allows us to observe whether the optimizer did the right thing. For example, 
unboxing is explicit in Core.
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GHC Internals and  
Code Generation

In the previous chapter, we learned to tweak options in GHC and Runtime System. 
In this chapter, we will dive into GHC's internal language, Core. We will learn to 
read Core and to spot possible problems in Core. Such problems arise when, for 
instance, the strictness analyzer left an argument lazy and boxed, while it would 
have been a lot more performant to make it strict and unboxed. We can basically just 
read such situations from Core, because strictness is explicit and unboxed arguments 
are always output with hashes.

Recall that the hash suffix is referred to as the magic hash in Haskell. Magic hashes 
mark primitive functions and types (those provided by GHC itself). We call these 
primops. In this chapter, we will learn to program with primops directly. Sometimes 
raw primop programming is an easy way to get reliably good performance. Also, 
a lesser-known fact is that GHC supports some SIMD operations via the LLVM 
backend. As of now, SIMD support is not complete and not as powerful as it 
could be, but still useful at a small scale. We'll use SIMD as an example of primop 
programming.

Our third main topic is meta-programming using Template Haskell and datatype 
generic programming using GHC Generics. Generic programming in Haskell is quite 
pleasant and, what's even better, in principle comes with a zero runtime overhead. 
Template Haskell is really powerful, albeit slightly verbose. Like, with great power 
comes great responsibilities, meta-programming should always be the last resort!
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In this chapter, we will cover the following topics:

• Making sense of the Core language
• Programming with GHC primitives
• Using GHC Generics to write data-type-generic code
• Meta-programming with Template Haskell

Interpreting GHC's internal 
representations
The first internal representation in GHC is Core, the second one is STG, and the 
third one Cmm. Both Core and STG are very functional, while Cmm is an imperative 
language which resembles C a lot. In this section we will learn to read GHC Core and 
to spot possible performance problems that might otherwise be hard to spot.

Reading GHC Core
Core is the intermediate language within GHC. Nearly all optimizations GHC 
does are only program transformations from Core to Core. Reading Core is pretty 
straightforward for anyone who has read Haskell. For the most part, Core is just let 
bindings, pattern matches, and function applications. The challenge is in naming 
conventions, because Core can be quite a noisy code. Following this is a (recursive) 
function definition in Core (with added line numbering):

1 Rec {
2 foo_rjH
3 foo_rjH =
4   \ ds_d1ya ->
5     case ds_d1ya of wild_X5 { I# ds1_d1yb ->
6     case ds1_d1yb of _ {
7       __DEFAULT ->
8         * $fNumIntwild_X5 (foo_rjH (- $fNumIntwild_X5 (I#  
1)));
9       1 -> I# 1
10     }
11     }
12 end Rec }
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The Haskell function definition from which this Core was generated is given in the 
following code block. Core can be inspected by giving the GHC flag -ddump-simpl, 
and optionally also -dsuppress-all. The flag -dsuppress-all discards parts of 
Core that are usually just extra noise:

foo :: Int -> Int
foo 1 = 1
foo n = n * foo (n – 1)

We note a few things about Core:

• Recursive bindings are explicit. Top-level recursive definitions are wrapped 
inside a Rec block, as seen earlier.

• Names of functions have added identifiers in them, while variable names are 
some generated gibberish.

• Function arguments are desugared into lambdas and all function application 
is prefix (no infix). Look at, for instance, the applications of * and -.

• Pattern matches are desugared into simple case expressions.
• Boxing is explicit, note, for example, the usage of Int's constructor I#.

Recursive bindings are defined via a letrec block, which actually corresponds to 
Haskell's let block. That is because all Haskell let blocks are by default recursive; 
that is, the name on the left-hand side is in scope in its right-hand side.

Some identifiers in Core are named anew (ds_d1ya instead of the original n), others 
have added suffixes (foo_rjH instead of foo) and finally there are some totally new 
identifiers from optimization transformations in Core that weren't visible in the 
original Haskell code. But all in all, the correspondence between Haskell and Core is 
usually easy to see.

Let's look at some more complex Core next. The following Haskell main function is 
simple and straightforward:

main = do
    line <- getLine
    print $ foo (read line)

Its unsuppressed Core is printed as follows:

main :: IO ()
[GblId, Str=DmdType]
main =
  >>=
    @ IO
    GHC.Base.$fMonadIO
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    @ String
    @ ()
    getLine
     (\ (line_aqk :: String) ->
        print
            @ Int
            GHC.Show.$fShowInt
            (foo_rjH (read @ Int GHC.Read.$fReadIntline_aqk)))

:Main.main :: IO ()
[GblId, Str=DmdType]
:Main.main = GHC.TopHandler.runMainIO @ () main

Firstly, we note that our main using do notation was desugared to use just monadic 
bind (>>=). Now, recall that the general type signature of monadic bind is:

(>>=) :: Monad m => m a → (a → m b) → m b

There are three type variables (in order of occurrence): m, a and b. We can read from 
Core what we saw earlier that m is specialized to IO, a to String and b to (), as 
expected. Type specializations are notated using the @ symbol:

  >>=
    @ IO
    GHC.Base.$fMonadIO
    @ String
    @ ()

Some GHC-internal implementation details also "leak" into the Core dump, like GHC.
Base.$fMonadIO. Usually these are not relevant to the programmer. This particular 
term ($fMonadIO) is the monad type-class dictionary for the IO type. In Core, 
the type-class dictionaries are represented in the same way that normal function 
arguments are.

We see also that there are two top-level definitions of something main. The lower one 
is an actual entry point, namely :Main.main (the default module name is Main, when 
none is given in the Haskell file).

Between the functions' type signatures and the definitions between brackets, there 
is a set of flags assigned by GHC for that definition. These flags are used to control 
various optimizations.
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Spineless tagless G-machine
STG is the representation after Core and before Cmm. It is simpler than Core and 
functional. GHC dumps STG by flag -ddump-stg. Our foo function corresponds to 
the following STG syntax:

foo_rjH =
    sat-only \r srt:SRT:[rjH :-> foo_rjH, rlI :-> $fNumInt]  
      [ds_s1yw]
        case ds_s1yw of wild_s1yx {
          I# ds1_s1yy ->
              case ds1_s1yy of _ {
                __DEFAULT ->
                    let {
                      sat_s1yC =
                          \u srt:SRT:[rjH :->foo_rjH, rlI :-> 
                            $fNumInt] []
                            let {
                              sat_s1yB =
                                  \u srt:SRT:[rlI :-> $fNumInt] []
                                    let { sat_s1yA = NO_CCS  
                                      I#! [1];
                                    } in  - $fNumIntwild_s1yx 
                                      sat_s1yA;
                              } in  foo_rjH sat_s1yB;
                    } in  * $fNumIntwild_s1yxsat_s1yC;
                  1 -> I# [1];
              };
        };

STG is quite different from Haskell syntactically. Lambdas have the unconventional 
form:

\r srt:SRT:[rjH :->foo_rjH, rlI :-> $fNumInt] [ds_s1yw]

After the backhash, you can see that there is one of the three flags: re-entrant (r), 
updatable (u), or single-entry (s). The arguments to the lambda are at the very end 
between brackets using normal list syntax.

Updatable lambdas are such that, after evaluation, their contents can be rewritten 
by the results. The thunks correspond to updatable lambdas. The lambdas that take 
arguments are usually re-entrant, meaning their results can't be memorized similarly.

In STG, constructor applications such as I# [1] are always written fully saturated.  
A saturated application means that all arguments are given in the argument list. The 
partial constructor applications are converted into lambdas in STG.
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Now, because we didn't compile with optimizations, GHC didn't bother with a 
strictness analysis and thus our foo is suboptimal. There is unnecessary boxing, 
which is not too hard to see from this cleaned version of foo function's STG:

foo_rjH = \r [ds_s1yw] =
    case ds_s1yw of wild_s1yx {
        GHC.Types.I# ds1_s1yy ->
            case ds1_s1yy of _ {
                __DEFAULT ->
                    let {
                      sat_s1yC = \u []
                          let {
                              sat_s1yB = \u []
                                  let {
                                      sat_s1yA = I#! [1];
                                  } in  - wild_s1yxsat_s1yA;
                          } in foo_rjHsat_s1yB;
                    } in * wild_s1yxsat_s1yC;
                1 ->GHC.Types.I# [1];
            };
    };

Here, we can see that arguments to * always get fully evaluated. But GHC 
pedantically creates thunks for both arguments. The second argument, sat_s1yC, 
which corresponds to foo (n-1) is a thunk and so is sat_s1yB, which corresponds 
to the expression (n-1).

Compiling with optimizations (-O) the generated STG is much simpler:

$wfoo =
    \r srt:SRT:[] [ww_s4wx]
        case ww_s4wx of ds_s4wy {
            __DEFAULT ->
                case -# [ds_s4wy 1] of sat_s4wz {
                    __DEFAULT ->
                        case $wfoosat_s4wz of ww1_s4wA {
                            __DEFAULT -> *# [ds_s4wyww1_s4wA];
                        };
                };
            1 -> 1;
        };

This version of foo doesn't generate any intermediate thunks. In fact, look at the new 
name: $wfoo. This indicates that foo now operates on unboxed values. Indeed, there 
is no unwrapping or wrapping of I# values.
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Primitive GHC-specific features
All strictly GHC-specific functionality is contained in GHC.* module. The GHC.Exts 
module is of particular interest. The GHC.Prim module (re-exported by GHC.Exts) 
exports core primitives in GHC.

For a while now, GHC has shipped with primitives for SIMD processor instructions. 
These are available when compiling via the LLVM backend (-fllvm).

SIMD stands for Single Instruction, Multiple Data. It basically means performing 
the same operation on a whole vector of machine numbers at the cost of performing 
that operation on just one number. SIMD vector types can be found in the GHC.Prim 
module. The specialized vectors are named like Int8X16#, which stands for an Int8 
vector of length 16. DoubleX8# stands for a vector of eight double precision values:

data Int8X16#
data DoubleX8#

These types are primitive and there are no exposed constructors.

To create vectors that can be used with SIMD instructions, we have two basic 
options. The first one is to use one of the broadcast functions like:

broadcastDoubleX8# :: Double# → DoubleX8#

These broadcast functions create vectors with all elements initialized to the given 
value.

The other option is to pack the vectors from unboxed tuples:

packDoubleX4# :: (#Double#, Double#, Double#, Double##) ->DoubleX4#

There also exist unpack functions that go the other way around, from SIMD vectors 
to unboxed tuples.

Because the SIMD types are unlifted (marked with a #), we cannot have polymorphic 
functions over them. So, there is a function for every pair of operation and SIMD 
vector types. Fortunately, these functions are named predictably. Operations that are 
supported for SIMD vectors are:

packSXN#   :: (# ... #) ->SXN#
unpackSXN# :: SXN# -> (# S, ... #)

insertSXN# :: SXN# -> S# -> Int# ->SXN#

negateSXN# :: SXN# ->SXN#
plusSXN#   :: SXN# ->SXN# ->SXN#
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minusSXN#  :: SXN# ->SXN# ->SXN#
timesSXN#  :: SXN# ->SXN# ->SXN#

divideSXN# :: SXN# ->SXN# ->SXN#
quotSXN#   :: SXN# ->SXN# ->SXN#
remSXN#    :: SXN# ->SXN# ->SXN#

Basic arithmetic operations are therefore supported. All operations are element-wise. 
In addition to those shown previously, operations are provided to read and write 
SIMD vectors from primitive arrays (ByteArray# and MutableByteArray#) and 
addresses (Addr#).

The GHC primitive SIMD interface is a bit cumbersome because it is given on top 
of the primitives. However, if one is desperate to speed up that manual SIMD 
vectorization, one would usually require total control over strictness and the 
program flow.

Kinds encode type representation
Kinds are like types for types. For instance, lifted inhabitable types have the kind *, 
like:

'c' :: Char :: *
Just 1 :: Maybe Int :: *

Type constructors, on the other hand, contain the arrow symbol. The following 
example will help clear things out:

Maybe :: * -> *
Either :: * -> * -> *

Unlifted types are of the # kind:

'c'# :: Char# :: #

Starting with GHC 8, types and kinds have been unified. There's now a single 
indexed type of types:

data TYPE a :: RuntimeRep -> *
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Datatype generic programming
GHC Generics provide a nice interface for datatype generic programming. The core 
idea is that every datatype is representable as a sum of products. The GHC.Generics 
module defines a small sufficient set of datatypes. The unit type represents 
constructors with no arguments:

data U1 p = U1 -- unit

The V1 datatype, on the other hand, represents types with no constructors (empty):

data V1 p -- empty

Sums and products are represented respectively by the following types:

(:+:) f g p = L1 (f p) | R1 (g p) -- sum
(:*:) f g p = f p :*: g p         -- product

The sum types with more than two constructors are represented by the recursive 
application of (:+:), and it's a similar case for the product types.

The K1 datatype acts as a container for values (of type c):

newtype K1 i c p = K1 { unK1 :: c } -- container

The final datatype is a metadata wrapper:

newtype M1 i t f p = M1 { unM1 :: f p }  -- metadata wrapper

The Generic type class glues arbitrary Haskell datatypes to their representations 
with the types that were mentioned earlier. The (associated) type family Rep maps 
datatypes to their generic representations:

class Generic a
  type Rep a :: * -> *
  from :: a -> Rep a x
  to :: Rep a x -> a

For example, the instance for Either boils down roughly to the following:

type instance Rep (Either a b) = K1 R a :+: K1 R b

However, since there is metadata attached to subexpressions, the real instance is, in 
fact can be seen here:

type instance Rep (Either a b)
  = M1 D D1Either
      (M1 C C1_0Either (M1 S NoSelector (K1 R a))
        :+:
      M1 C C1_1Either (M1 S NoSelector (K1 R b)))
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Furthermore, GHC.Generics defines type synonyms D1 = M1 D, C1 = M1 C, and S1 
= M1 S, which ultimately helps a bit with readability.

At first glance, it isn't obvious how class functions from and to are useful. The key 
is to exploit the fact that these represent something and are supposed to be some 
constructions of the building blocks—V1, U1, (:*:), (:+:), K1, M1—and nothing else, 
except some other types wrapped within K1's. This fact now enables us to create fully 
datatype generic functions—just overload it over the six generic constructors.

Working example – A generic sum
For the sake of an example, let's create a generic numeric sum traversal function and 
call it gsum. We will accomplish this via two type classes, GSum and GSum':

-- file: gsum.hs

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeOperators #-}

import GHC.Generics

class GSum' f where
    gsum' :: f p -> Double

class GSum a where
    gsum :: a -> Double

    default gsum :: (Generic a, GSum' (Rep a)) => a -> Double

    gsum = gsum' . from

GSum' will handle calculating the sum in the case of the GHC.Generics 
representation, while GSum will handle the any cases of other types. The magic 
that will help us save a lot of boilerplate is the highlighted default implementation 
for GSum. Its type is restricted so that the argument must have a Generic instance, 
which is auto-derivable for all Haskell types, and also a GSum' instance for the type's 
representation in Generics.

Let's first add some base cases for numeric values:

instance GSum Double where
    gsum = id
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instance GSum Int where
    gsum = fromIntegral

instance GSum Integer where
    gsum = fromInteger

Double, Int, and Integer are now the atoms that add to the sum. Next, we will 
make GSum work over any data structure that consists of these atoms at "leaves". We 
will achieve this by adding GSum' instances for the types of Generic's representation: 
V1, U1, (:*:), (:+:), K1, and M1.

The GSum' instance for the empty datatype (V1) is trivial; there are no values of the 
empty type, so this case is not actually usually even reached:

instance GSum' V1 where
    gsum' _ = undefined

The nullary case is also easy. There are no numbers contained in nullary leaves.  
So a 0 is appropriate, as in the following code block:

instance GSum' U1 where
    gsum' U1 = 0

Next, we take a look at some interesting cases: sums and products. For sum types we 
just branch out and apply gsum' inductively. For products we apply gsum' to both, 
and sum the results into the following code block:

instance (GSum' f, GSum' g) => GSum' (f :+: g) where
    gsum' (L1 x) = gsum' x
    gsum' (R1 y) = gsum' y

instance (GSum' f, GSum' g) =>GSum' (f :*: g) where
    gsum' (x :*: y) = gsum' x + gsum' y

In the container (K1) or our leaf case, we need more information than GSum' can 
give us. We need to convert the contained value into a Double. These are the base 
cases we defined instances of GSum for, so we apply gsum (instead of gsum') to the 
contained value at leaves:

instance GSum c => GSum' (K1 i c) where
    gsum' (K1 x) = gsum x

Finally, the metadata (M1) case is just an unwrapping that discards metadata 
information:

instance GSum' f => GSum' (M1 i t f) where
    gsum' (M1 x) = gsum' x
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With all this in place, it's now trivial to add instances of GSum for any Haskell type 
that is also an instance of Generic.

For our own types, we can derive both Generic and GSum. This requires enabling the 
DeriveGeneric and DeriveAnyClass extensions. For instance:

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}

data T a b = TA a | TB b | TAB a b
         deriving (Generic, GSum)

For the existing datatypes, we can enable the StandaloneDeriving extension and 
list the instances we want:

{-# LANGUAGE StandaloneDeriving #-}

deriving instance (GSum a, GSum b) =>GSum (Either a b)
deriving instance (GSum a, GSum b) =>GSum (a, b)

Let's load our code into GHCi and test that gsum works as we intended it to:

> :load gsum.hs

>gsum 5

5.0

>gsum ( (TAB 1 2, TAB 5 8) )

16.0

>gsum (TA 42 :: T Int Int)

42.0

With quite minimal boilerplate, we managed to create an extendable datatype 
generic sum function. Everything we did was safe and checked by the type checker 
at compile time; there was no need for any kind of dynamic typing.

The runtime cost of the GHC Generic representation is 0: there is usually no 
overhead for GHC Generics, because the Rep type representation is erased at compile 
time, unlike the reflection in Java, which has a considerable runtime cost.
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Generating Haskell with Haskell
If the power of GHC Generics is not enough, that is, you really need to generate code 
that isn't derivable from the structure of datatypes, the solution you're looking for 
is Template Haskell (TH). TH is much more sophisticated than the C preprocessor. 
With TH, one basically has the full power of Haskell at one's disposal for code-
generation. Like Haskell, Template Haskell will not compile unless it produces at 
least syntactically correct code.

Code generation should be used sparingly. It is easy to write highly unmaintainable 
code using Template Haskell. On the other hand, code generation can be an easy 
route for incorporating non-trivial domain-specific optimizations into a Haskell 
program. Most often though, Template Haskell is used mostly to replace boilerplate 
code by code that generates that boilerplate.

Template Haskell code lives in the Q monad. Take a look at the following code block:

-- module Language.Haskell.TH

data Q a

-- instances include: Monad, MonadFail, Quasi

In the Language.Haskell.TH module, the core algebraic datatypes that are able 
to represent Haskell syntax tree are also defined—declarations (Dec), expressions 
(Exp), patterns (Pat), and types (Typ). These are the four top-level terms that can be 
constructed and plugged in as source code for the compiler to process.

Interpolating template values is called splicing. The splicable expression must live 
in the Q monad and return a top-level term of correct type. The correct term type 
depends on the splicing context. Following this is an example each of an expression, 
declaration, pattern, and type expressed as template values:

module MySplices where

-- Expression: literal 1
myExp :: Exp
myExp = LitE (IntegerL 1)

-- Declaration: n = 1
myDec :: Dec
myDec = ValD (VarP (mkName"n")) (NormalBmyExp) []

-- Pattern: (1, 2)
myPat :: Pat
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myPat = TupP [LitP (IntegerL 1), LitP (IntegerL 2)]

-- Type: Maybe Int
myType :: Type
myType = AppT (ConT (mkName"Maybe")) (ConT (mkName"Int"))

The Language.Haskell.TH module documentation conveniently gives examples 
for each constructor and their meaning. The constructor naming convention is also 
convenient; all constructors of Exp end in E, for example (LitE for literals, VarE for 
variables, LamE for lambdas, and so forth).

Splicing with $(…)
Now that we know how to write expressions using the algebraic datatypes, we can 
use the $(…) splice operator to insert these values into our source code. We also need 
to lift pure terms into the Q monad using pure. Here are examples of contexts where 
splicing is applicable:

-- file splice-testing.hs
{-# LANGUAGE TemplateHaskell #-}

import MySplices

two :: Int
two = $(pure myExp) + $(pure myExp)

-- n = 1
$(pure [myDec])

f :: (Int, Int) -> String
f $(pure myPat) = "1 and 1"
f _        = "something else"

mint :: $(pure myType)
mint = Just two

A few points to note:

• It is a type error trying to splice expression Q Exp where a pattern Q Pat 
splice is expected.

• For convenience, top-level Dec splices are actually required to be a list of 
definitions or Q [Dec]. That's why we wrapped myDec into a singleton list.
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• We intentionally defined our terms (myExp, myDec, myPat, and myType) 
in a separate module than to where we spliced them into. This is strictly 
necessary due to GHC's stage restriction: only definitions imported from 
other modules can be used inside a splice expression.

If you are wondering what GHC spliced, you can use the -ddump-splices flag when 
compiling:

$ ghc --make -ddump-splices splice-testing.hs

[1 of 2] Compiling MySplices        ( MySplices.hs, MySplices.o )

[2 of 2] Compiling Main             ( splice-testing.hs, splice- 
testing.o )

splice-testing.hs:7:9-18: Splicing expression

    pure myExp ======> 1

splice-testing.hs:7:25-34: Splicing expression

    pure myExp ======> 1

splice-testing.hs:10:3-14: Splicing declarations

    pure [myDec] ======> n = 1

splice-testing.hs:16:11-21: Splicing type

    pure myType ======> Maybe Int

splice-testing.hs:13:5-14: Splicing pattern

    pure myPat ======> (1, 2)

Names in templates
In our declaration, we used the mkName :: String → Name function to create a 
Haskell identifier:

myDec = ValD (VarP (mkName "n")) (NormalB myExp) []

The mkName function sort of lifts the given string into a variable name in the meta 
program. The name is dynamic in the sense that the value it references to when 
spliced is the closest in scope. Names from mkName are resolved like any other 
Haskell bindings. This illustrates mkName:

n = 5
main = print $(pure $ VarE $ mkName "n")
    where n = 1

This prints 1, because the where clause is closer to the splice.
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Often it is convenient to have uncapturable names. For this, there is function 
newName:

newName :: String -> Q Name

This one now lives in the Q monad, unlike mkName which was pure. Every name's 
generated with newName is uncapturable. For example, this program won't compile 
because the newName is not in scope:

main = print $(fmap VarE (newName "n"))
  where n = 1

Another way to generate names is to lift them from Haskell-land. Single-quote prefix 
lifts names for values:

right, left, pi' :: Name
right = 'Right
left  = 'Left
pi' = 'pi

Double-single quotes lift type names instead:

either :: Name
either = ''Either

The reason we need to use different quote-styles for values and types is because in 
Haskell, types and values, including type constructors, have their own namespaces. 
We need to somehow indicate to which namespace we are referring.

Smart template constructors
For every datatype constructor (LitE, ValD, and others) there is a "smart" constructor 
(litE, valD, and others) whose result and (most) arguments have been lifted to the 
Q monad. This is often convenient, because sub-expressions don't then need to be 
explicitly sequenced with monadic bind.

ValD :: Pat -> Body -> [Dec] -> Dec
valD :: PatQ -> BodyQ -> [DecQ] -> DecQ

PatQ is just a synonym for Q Pat.
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The constN function
The normal const function takes two arguments and returns the first while ignoring 
a second argument. Now, we would like to have a set of constN functions for many 
N, which take N+1 arguments, return the first argument and ignore all the others.  
The type signatures should look like the following:

const1 :: a -> b -> a
const2 :: a -> b -> c -> a
const3 :: a -> b -> c -> d -> a
…

The constN function here creates a definition for such const variant for given N:

module ConstSplices where

import Language.Haskell.TH

constN :: Int -> Q Dec
constN nth = do
    expr<- constExp nth
    let name = mkName $ "const" ++ show nth
    return $ FunD name [ Clause [] (NormalB expr) [] ]

constExp :: Int -> Q Exp
constExp nth = do
    a <- newName"a"
    return $ LamE (VarP a : replicate nth WildP) (VarE a)

A few things to note:

• We use mkName to create a capturable name for const1, const2, and so on.
• The constExp splice uses newName instead to name the first argument (a) of a 

lambda. Effectively, this turns into \a _ … _ -> a.

To generate function declarations constN for N upto 15, we would write at top-level:

$(forM [1..15] constN)

But we could also generate them on demand using constExp:

putStrLn $ $(constExp 2) "Hello!" () 42
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Lifting Haskell code to Q with quotation 
brackets
Whereas $(…) splices Q along with values into a source code, it's dual [|...|] 
(Oxford brackets) turns source code into Q values:

idExp :: Q Exp
idExp = [| \x -> x |]

Note that:

$( [| e |] ) == e

There are different brackets for quoting expressions [e|…|], patterns [p|…|], 
declarations [d|…|], and type[t|…|]. A [|…|] is equal to writing [e|…|].

It's perfectly fine to splice within a quotation:

$([| $(constExp 2) 'a' |]) 'b' 'c'

Launching missiles during compilation
It's possible to embed arbitrary IO actions into the Q monad using runIO:

runIO :: IO a -> Q a

An IO action could be used to embed a compilation timestamp as a constant or to 
source another file. For example, the source for a program written in an embedded 
domain specific language (DSL) could be read in at compile time and the 
corresponding Haskell code generated.

Although contrived, you could even read a line from standard input during splicing:

$(fmap (LitE . StringL) $ runIOgetLine)

Reifying Haskell data into template objects
Given a name, we can retrieve some information about the term itself using reify.

reify :: Name -> Q Info

Because type and constructor names may overlap, it is advised to use reify in 
conjunction with lookupTypeName or lookupValueName which lookup identifiers in 
correct namespaces:

lookupTypeName  :: String -> Q (Maybe Name)
lookupValueName :: String -> Q (Maybe Name)
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Or, if you're certain that the name is (or should be) in scope, use the single quote 
notation:

reify 'value
reify ''Type

Reification is very useful, for instance, base code generation on a datatype. It's much 
like GHC Generics but with more flexibility. Common use cases are: defining class 
instances or completely new boilerplate functions for the datatype. For example, the 
lens library provides TH splices to generate lenses (a generalization of getters and 
setters) for user-defined datatypes.

Deriving setters with Template Haskell
When you declare a record in Haskell, the only way to update one of the fields then 
is to use the record syntax. For instance, we have the  following user datatype:

data User = User
    { firstName :: String
    , lastName  :: String
    , age       :: Int
    } deriving Show

To update the age field of the user, we would write:

let user' = user { age = newAge }

But if we wanted to, we could write a setter function for a field:

age' :: User -> Int -> User
age' u newAge = u { age = newAge }

let user' = age' user newAge

Writing a setter for every field of every type would be laborious to say the least. 
Fortunately, we can automate the process by using a little Template Haskell.

setterDec :: Name -> Q Dec
setterDec nm = do
    let nmD = mkName $ nameBase nm ++ "'"-- (2)

    nmV<- newName"val"
    nmP<- newName"p"

    let pat  = [VarPnmV, VarPnmP]                        -- (3)
        body = NormalB $ RecUpdE (VarEnmP) [ (nm, VarEnmV) ] -- (4)

    return $ FunDnmD [ Clause pat body [] ]               --(1)
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At (1), we build a function definition (FunD) named field' for a given field. 
The name is specified at (2) using mkName from the field name that is given as 
an argument to our setterDec template function. Note that a function may have 
multiple definitions with different patterns, therefore the second argument to FunD is 
a list of clauses.

In lines (3) and (4), we have defined arguments to our setter function (new field 
value and the object itself). The arguments val and p are given new unique names 
using newName. The record update itself is encoded in a record update expression 
using the RecUpdE constructor.

To create setters for every field of a datatype at once, we can write another template 
function:

deriveSetters :: Name -> Q [Dec]
deriveSetters nm = do
    TyConItyCon<- reify nm                             -- (1)
    case tyCon of
        DataD _ nm tyVarscs _ -> do                      -- (2)
            let fieldsTypes = nub (concatMaprecFieldscs) -- (3)
            forMfieldsTypes $
                \(nm, ty) ->setterDec nm                   -- (5)
  where
    recFields (RecC _ xs) =                              -- (4)
        map (\(var,_,ty) -> (var, ty)) xs

Here we now use reify to fetch information about the identifier. We are assuming 
that the identifier points to a type constructor, TyConI(1). Further, it should be a 
datatype, a DataD(2), as opposed to a newtype or type synonym for instance.

The magic of this template function happens at (3) when we get a list of record 
field names and their types that appear in the datatype. The list of fields in a single 
record (RecC) is retrieved at (4). A datatype can have multiple constructors with 
differing record fields, so we need to concatenate them all into a list and then remove 
duplicates with nub.

Finally at (5), we loop over unique record field names and create a setter definition 
for each record field using our setterDec template function.

Testing this out for our user datatype, we would use this splice at top-level:

deriveSetters ''User
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Using -ddump-splices, we can confirm that the generated code is as we intended it 
to be:

$ ghc -ddump-splices reify-example.hs

[2 of 2] Compiling Main             ( reify-example.hs, reify- 
example.o )

reify-example.hs:13:1-20: Splicing declarations

    deriveSetters''User

  ======>

    firstName'val_a450p_a451 = p_a451 {firstName = val_a450}

    lastName'val_a452p_a453 = p_a453 {lastName = val_a452}

    age'val_a454p_a455 = p_a455 {age = val_a454}

There are three setter functions, as expected!

Note that, in this case we used about two dozen lines for two template functions 
in exchange of three one-liners. This isn't exactly what one could call good pay-off; 
much more the opposite. However, if we had tens of record fields as opposed to just 
three, which would often be the case, then the template solution starts to look viable.

Quasi-quoting for DSLs
One last feature of GHC closely related to Template Haskell is quasi-quoted expressions. 
Recall that the Oxford bracket notation [e|...|] enabled us to "un-quote" Haskell 
expressions into their object representation in the template datatypes (Exp, Dec,  
and so on).

This "un-quoting" of Haskell expressions is extendable to arbitrary syntax inside the 
brackets. More formally this is called quasi-quoting and quasi-quoters are defined as 
QuasiQuoter:

data QuasiQuoter = QuasiQuoter
    { quoteExp  :: String → Q Exp
    , quotePat  :: String → Q Pat
    , quoteType :: String → Q Type
    , quoteDec  :: String → Q Dec
    }

That is, depending on the splicing context quasi-quoter is a function from String to 
a syntax tree.
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Quasi-quoters are generally used together with the datatype class and utility 
functions such as dataToExpQ (GHC 7), or the little more convenient liftData 
(starting with GHC 8):

dataToExpQ :: Data a => (Data b => b → Maybe (Q Exp)) → a → Q Exp 
liftData :: Data a => a → Q Exp

The liftData function is equivalent to dataToExpQ applied to (const Nothing) – 
the first argument is there just to provide an option to override some constructor's 
representation.

Data is a derivable class when using the DeriveDataTypeable GHC extension. Thus, 
essentially, if we have a parser for an arbitrary datatype, and so we can convert it 
to a quasi-quoter with almost no effort. Shown here is a really quick illustration of a 
quasi-quoter for matrices [[Double]]:

module MatrixSplice where

import Language.Haskell.TH.Quote

matrix :: QuasiQuoter
matrix = QuasiQuoter { quoteExp = dataToExpQ (\_ -> Nothing) .  
parse }

parse :: String -> [[Double]]
parse = map (map read . words) . filter (/= "") . lines

Now we can write matrices with minimum syntax directly into a Haskell source file. 
Here are some examples:

-- file compact-matrix.hs
{-# LANGUAGE QuasiQuotes #-}
import MatrixSplice

m1, m2 :: [[Double]]

m1 = [matrix|
  1 2
  2 1
|]

m2 = [matrix|
  1.5 4.2 5
  5.5 4.1 4
  4.5 4 1 6
|]
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Note that parse could produce values of any type, as long as the value has a 
data instance. Quasi-quoting makes Haskell an even more friendly platform for 
embedded domain-specific languages, because it allows the seamless integration of 
the actual syntax of a custom language with the host language.

Summary
We started this chapter from GHC internal representation Core. We looked at the 
differences in Core syntax as opposed to Haskell syntax, among them explicit boxing, 
recursive bindings, explicit specialization and the passing of class dictionaries. Next, 
we took a glance at STG, the next internal representation after Core that's even 
simpler. Then we considered how GHC exposes its primitives: magic hash, unlifted 
types, and the unlifted kind.

Our second subject was code generation with GHC using GHC Generics. The 
essential idea with Generics is to represent every datatype as a sum of products 
using a handful of indexed datatypes (:+:, :*:, and so on). It then becomes easy to 
write general functions over all datatypes by converting to or from the general sum-
of-products representation. Then we looked at full-blown code generation using 
Template Haskell, which enabled us to generate code, declarations and expressions 
by directly manipulating the program's abstract syntax tree.

In the next chapter we will be interacting with other languages from within Haskell, 
and interacting with Haskell from within other languages. It turns out that Haskell 
is surprisingly mature in this respect: the C foreign function interface is very robust 
and tooling is good. Going the other way around, GHC is able to compile Haskell 
into a shared object callable from other languages.
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Foreign Function Interface
In the previous chapter, we learned how the GHC code generator works and how to 
dig deeper into the compiler pipeline when necessary. In this chapter we will learn 
to interface with C from Haskell, and with Haskell functions from C. The foreign 
function interface (FFI) is part of the Haskell language report. The tooling for 
binding into shared libraries and also for compiling Haskell into shared libraries is 
quite mature. In this chapter we will cover the fundamentals of the FFI: importing 
and exporting functions, marshalling data, invoking the Haskell runtime from C,  
and building shared libraries with Haskell.

One of Haskell's strongest points compared to many languages is in fact the FFI: it's 
relatively easy to integrate parts written in Haskell to programs written in C or the 
other way around. By extension, integrating Haskell with other languages by going 
through the C level is also not too hard. Building a shared library (a shared object or 
a DLL) with Haskell and GHC is quite easy:

• Calling C functions from Haskell and Haskell functions from C
• Using Haskell to build a shared library and using the library from C
• Marshalling pointers and data through the FFI between C and Haskell

From Haskell to C and C to Haskell
A classic usage of the FFI is calling C functions from Haskell. So let's start with that. 
Consider that you wrote a function in C, for instance the recursive nth Fibonacci 
number like the fib.c file here:

/* file: fib.c */

int fib_c(int num)
{
  if (num <= 2)
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  {
    return 1;
  }
  else
  {
    return(fib_c(num - 1) + fib_c(num - 2));
  }
}

Although naive, this implementation is still faster than the Haskell equivalent.

Now, to call this fast naive fib_c function from Haskell, at its simplest we could just 
add the following line to a Haskell source file and then we would have a fib_c :: 
Int → Int Haskell function:

-- file: ffi-fib.hs

foreign import ccall
  fib_c :: Int -> Int

main = print $ fib_c 20

The only FFI-specific thing here is foreign import. Note that, with some 
earlier versions of GHC, it was necessary to explicitly enable the FFI with 
-XForeignFunctionInterface.

To compile this program, we should give both the Haskell and C source file to GHC:

$ ghc ffi-fib.hs fib.c

[1 of 1] Compiling Main         ( ffi-fib.hs, ffi-fib.o )

Linking ffi-fib ...

$ ./ffi-fib

6765

Common types in Haskell and C
However, there's one problem in our binding: the Haskell Int type isn't guaranteed 
to match C's int type. In general, the types could have different sizes. The FFI 
specification explicitly addresses this problem by requiring Haskell implementations 
to provide a set of Haskell types that correspond to C types.

Haskell wrappers for common C types are defined in Foreign.C.Types. For 
instance, the int C type is CInt in Haskell, unsigned long in C is CULong in Haskell, 
and so on.
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So to ensure correctness on all architectures, we should have written this instead:

foreign import ccall fib_c :: CInt -> CInt

A common pattern that is often used in Haskell bindings is to use C types in internal 
bindings and then expose wrappers that convert between C and Haskell types (such 
as fromIntegral for converting between Int and CInt).

Conversely, common Haskell types have corresponding C types defined in the 
header file HsFFI.h, which is distributed along with GHC. For instance, the Haskell 
Int type corresponds to HsInt in C, and the Haskell type Ptr is represented by 
HsPtr in C.

Using the Haskell types on the C side is also an option. We just need to include the 
Haskell FFI header file to use them:

/* file: hs-fib.c */

#include <HsFFI.h>

int fib_c(HsInt num)
{
...
}

Importing static functions and addresses
The complete syntax for importing C definitions to Haskell-land is:

foreign import <callconv> [safe/unsafe] "<impent>"
    <variable> :: <type>

Let's see this syntax in more detail:

• For C binding, the calling convention <callconv> should be set to ccall, as 
we did in our previous example. Other calling conventions include stdcall 
for Win32 API bindings, and cplusplus for C++ calling convention.

• By default foreign calls are marked safe. Marking an import unsafe reduces 
the overhead of calling an external entity, but unsafe calls cannot call back to 
the Haskell system. Such callbacks are rather rare, so unsafe imports are used 
often.

• In the impent we define what we wish to import from the C side. If omitted, 
it defaults to <variable>. For instance, our fib_c function from earlier 
corresponds to impent "fib_c".
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• <variable> :: <type> just defines how the import looks in Haskell. Note 
that GHC does zero sanity checking on what you give it as a type. If the 
Haskell type doesn't align with the C-side definition, a segmentation fault 
awaits. The types don't need to match exactly though: for instance a Bool is  
a perfectly fine int.

The impent is actually a bit more complex. The complete syntax is given by:

impent → "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"

There are three main alternatives: static, dynamic, or wrapper. Static function 
import ("static [cid]") is the default behavior. To import a static address, the 
identifier cid should be preceded with an ampersand (&). Typing static in the 
impent is only necessary when importing C identifiers named dynamic or wrapper. 
Optionally, we can specify the exact header file chname from which the identifier to 
import (cid) is searched for.

Consider this C source file, defining a static function called update and a static 
address named c_var:

/* file: c_var.c */

int c_var = 0;

void update() {
  c_var = 42;
}

To use these two identifiers from Haskell, we import the variable with type Ptr 
CInt and update with type IO (). Note that any static function can be imported 
either as a pure function or as an IO action. It is left up to the binding author to 
choose how to import a definition, because there is no systematic way to know 
whether a given C function is pure or not!

-- file: ffi-c-var.hs

import Foreign.C (CInt)
import Foreign.Ptr (Ptr)
import Foreign.Storable (peek)

foreign import ccall unsafe "&" c_var :: Ptr CInt
foreign import ccall unsafe update :: IO ()

main = do peek c_var >>= print
          update
          peek c_var >>= print
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Let's compile this program and verify it works correctly:

$ ghc ffi-c-var.hs c_var.c

[1 of 1] Compiling Main             ( ffi-c-var.hs, ffi-c-var.o )

Linking ffi-c-var …

$ ./ffi-c-var

0

42

Now we know how to import static functions and variables that we have defined  
by ourselves in C source files.

To import a definition from an arbitrary header file, we should specify the header 
in the foreign import statement. For instance, to import the sin function from the 
math.h library:

-- file: ffi-math-h.hs
foreign import ccall unsafe "math.h sin"
   csin :: Double -> Double

foreign export ccall
   fun :: Int -> Int -> Int

This is really all that is required to import identifiers from system-wide C library 
headers. Such a definition can be compiled with just ghc source.hs.

Exporting Haskell functions
Exporting Haskell functions for use in C is as easy as importing functions from C. 
Here is a simple example that exports the Haskell function fun:

-- file: FunExport.hs 
module FunExport where

foreign export ccall
    fun :: Int -> Int -> Int

fun :: Int -> Int -> Int
fun a b = a ^ 2 + b

Compiling this in GHC:

$ ghc -c FunExport.hs

GHC generates an object file FunExport.o and a header file FunExport_stub.h, 
effectively with the contents:

extern HsInt fun(HsInt a1, HsInt a2);
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To call Haskell directly from C means that we need a main function in C. Then we 
need to initialize the Haskell system by ourselves using hs_init(). Here is an 
example C program that does that and then calls our Haskell fun function:

/* file: fun_export.c */

#include <stdio.h>
#include "FunExport_stub.h"

int main(int argc, char *argv[]) {
  hs_init(&argc, &argv);
  printf("%d\n", fun(1, 2));
  hs_exit();
}

To compile this C program we should not use a C compiler directly; instead we 
use GHC. The reason for this is that GHC is more knowledgeable about how 
the program should be linked, specifically the Haskell parts of it. The following 
command line creates a dynamically linked executable named fun_export, with the 
Haskell parts linked statically.

$ ghc --make -no-hs-main fun_export.c FunExport.o -o fun_export

$ ./fun_export

3

It's important to call hs_init() before using any identifiers from Haskell-land, and 
to terminate it when no longer needed with hs_exit(). Otherwise the program will 
segfault.

Remember to enable optimizations for both Haskell 
and C when compiling for production! In our preceding 
example we would have used, for example, ghc -c -O2 
FunExport.hs for the first and ghc -optc-O … for the C 
second step.

Compiling a shared library
Given a Haskell source file, say FunExport.hs, we can create a shared library 
libfunexport.so with the following GHC command line:

ghc --make -dynamic -shared -fPIC FunExport.hs -o libfunexport.so
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All flags, except perhaps -fPIC, are necessary to successfully build a shared library 
(at least with GHC 7 series and GHC 8.0.1). The most important flag is -shared, 
which specifies that we want to build a shared library. Unfortunately, GHC does 
not as yet support building the base libraries with -fPIC, which is a requirement for 
embedding into a shared object. Thus we need to link the shared object dynamically 
with -dynamic.

A similar command on a Windows machine can be used to build a DLL instead of a 
.so file. Just replace the.so suffix with .dll.

To compile and link a (C) program that uses the shared library, we need to jump 
through some extra hoops. A complete command line that takes a C source file 
(fun_export.c) that uses identifiers from the header file (FunExport_stub.h), links 
against a shared library (libfunexport.so), and uses GCC to compile a dynamically 
linked executable could look like the following:

gcc fun_export.c -o main \

-I /usr/lib/ghc-7.10.3/include \
-L. -L/usr/lib/ghc-7.10.3/rts \
-lHSrts-ghc7.10.3 -lfunexport \
-Wl,-rpath=/usr/lib/ghc-7.10.3/rts -Wl,-rpath='$ORIGIN'

The first line is self-explanatory. The -I flag specifies where to find the HsFFI.h 
header file. The -L flags specify where the Haskell Runtime System library and our 
own shared library are located. With the -l flags we are linking against the RTS and 
our own library.

On the last lines, the -Wl,-rpath=… flags specify additional runtime search paths 
for the executable. These are necessary so that the libraries can be found when the 
executable is to be run if they are located in non-standard paths. Special $ORIGIN 
refers to the directory name of the executable.

It's also possible to dynamically load (as opposed to link) a shared library from 
program code. The following is an example of a dynamic loading library funexport 
in C:

/* file: dyn_fun_export.c */

#include <stdio.h>
#include <dlfcn.h>

int main(intargc, char *argv[]) {
  void *dl = dlopen("./libfunexport.so", RTLD_LAZY);

  void (*hs_init)(int *argc, char **argv[]) = dlsym(dl,  
    "hs_init");
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  hs_init(&argc, &argv);

  int (*fun)(int a, int b) = dlsym(dl, "fun");
  printf("%d\n", fun(1, 2));
}

When compiling this, we only need to link against dl to gain access to dynamic 
loading:

gcc dyn_fun_export.c -o main -ldl

We also need to slightly modify our Haskell shared library to make it suitable for 
dynamic loading. The problem is that we still need the Haskell Runtime System,  
but by default it is not linked to a Haskell shared library. We need to specifically 
request that when building the shared library with -lHSrts-ghc7.10.3.

ghc --make -dynamic -shared -fPIC FunExport.hs -o libfunexport.so 
-lHSrts-ghc7.10.3

With this, the shared library is pretty much self-contained and can be loaded 
dynamically.

Function pointers and wrappers
Importing static functions was easy, but how about dynamic functions and function 
pointers? In Haskell, function pointers are represented by the datatype FunPtr. To 
import a function pointer into Haskell-land, we do the following:

-- file: ffi-funptr.hs

import Foreign.Ptr (FunPtr)

foreign import ccall"math.h & cos"
    p_cos :: FunPtr (Double -> Double)

We need the ampersand and a FunPtr return type. It's also possible for a C function 
to return a function pointer, in which case we could leave the ampersand out and 
import the function statically. In any case the result is a FunPtr return type in 
Haskell-land.

To convert a FunPtr return type into a Haskell function to call it, we need to jump 
through an extra hoop. Specifically, we must ask the FFI to generate a call routine  
for our specific function type using the dynamic impent. In this case that type is 
Double -> Double, so we write:

foreign import ccall "dynamic"
   mkF :: FunPtr (Double -> Double) -> (Double -> Double)
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The impent is purely semantic: there is no need to define anything else to generate 
the call routine. Now we can apply mkF to our function pointer and get an ordinary 
Haskell function:

ghci> (mkF p_cos) pi

-1.0

The "dual" of dynamic is wrapper. Wrappers turn Haskell functions into FunPtr to 
be passed into the foreign side:

foreign import ccall "wrapper"
   toF :: (Double -> Double) -> IO (FunPtr (Double -> Double))

Note that creating a foreign function pointer from a Haskell function must be an 
IO action. The types for dynamic and wrapper types must conform to the general 
formulas (for some Haskell function f):

dynamic: FunPtr f -> f
wrapper: f -> IO (FunPtr f)

Haskell callbacks from C
Using FFI wrappers and function pointers we can easily pass Haskell functions as 
callbacks to foreign functions. Consider wanting to call this C function, which takes a 
function pointer as its first argument:

/* file: callbacks-procedure.c */

void procedure(void (*callback)(double), double n) {
  callback(n * 3);
}

Here is an example Haskell program that calls procedure:

-- file: callbacks.hs

import Foreign.Ptr (FunPtr)

foreign import ccall safe      -- (1)
procedure :: FunPtr (Double -> IO ()) -> Double -> IO ()

foreign import ccall"wrapper" -- (2)
toCallback :: (Double -> IO ()) -> IO (FunPtr  
  (Double -> IO ()))

printRes :: Double -> IO ()    -- (3)
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printRes x = putStrLn $ "Result: " ++ show x

main = do
cont <- toCallback printRes -- (4)
procedure cont 5            -- (5)
procedure cont 8            --

Tearing this down, we have:

• At (1) we import the procedure as a normal FFI function. Note that we must 
import it safe – if it is imported unsafe, our program will crash at runtime 
with the helpful error message:
callbacks: schedule: re-entered unsafely.
Perhaps a 'foreign import unsafe' should be 'safe'?

• At (2) we create the wrapper to wrap a Haskell function as a function 
pointer that can be passed to procedure.

• At (3) we use the pure Haskell callback function (printRes). In this case, it 
is an I/O action with () result type; IO () corresponding to void * on 
the C side.

• At (4) we wrap our callback into a function pointer.
• At (5) are two example calls for procedure from Haskell main.

So, using arbitrary Haskell functions as callbacks to foreign calls is very easy. The 
only necessary boilerplate is creating an FFI wrapper corresponding to the callback 
function's type, and wrapping callbacks as function pointers before passing them to 
the procedure.

Data marshal and stable pointers
The Haskell types Ptr a and FunPtr a represent pointers in foreign, raw memory 
(outside the Haskell heap). Relevant operations on foreign pointers are provided by 
the Storable type class, which has instances for primitive marshallable data types. 
A third pointer type is StablePtr a, which is a pointer to an object in the Haskell 
heap.

On top of passing primitive values and pointers through the FFI, almost arbitrary 
data can be marshalled between Haskell and C (and by extension other languages) 
relatively easily.
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Allocating memory outside the heap
A centric type-class in marshalling is Foreign.Storable.Storable. Storable types 
must provide a length, byte alignment, and the methods peek and poke:

class Storable a where
  sizeOf :: a ->Int
  alignment :: a ->Int
  peek :: Ptr a -> IO a
  poke :: Ptr a -> a -> IO ()
  …

Primitive allocation routines are located in the Foreign.Marshal.Alloc module. 
Normal dynamic allocations are provided for using malloc and also alloca, which 
allocates a block of memory used locally. Using alloca we don't need to take care 
of freeing allocated memory, because the combinator does it for us once the local 
computation finishes:

malloc :: Storable a => IO (Ptr a)
alloca :: Storable a => (Ptr a → IO b) → IO b

Haskell lists are usually represented as arrays in C. To convert between a linked 
list in Haskell and an array in C, we can use the Foreign.Marshal.Array module. 
Methods are once again overloaded over Storable, as in:

newArray :: Storable a => [a] → IO (Ptr a)
peekArray :: Storable a => Int → Ptr a → IO [a]

Strings in Haskell are also linked lists, but in C they're null-terminated consecutive 
blocks of memory. Convenience routines for working with this translation are 
located in the Foreign.C.String module.

Pointing to objects in the heap
Haskell values in foreign code are represented by stable pointers, StablePtr a.  
A special pointer type is needed for values in Haskell due to GC: normally GC could 
and does collect or move objects in the heap, changing their memory location. But 
values pointed to by stable pointers don't get collected or relocated. Thus, stable 
pointers are ideal for passing Haskell values into C and back.

Stable pointers support these operations: create, de-ref and free. From the type 
signatures we can infer that a StablePtr pointer can really point to Haskell values  
of any (concrete) type:

newStablePtr   :: a -> IO (StablePtr a)
deRefStablePtr :: StablePtr a -> IO a
freeStablePtr  :: StablePtr a -> IO ()
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On the C side very little can be done with a StablePtr pointer. The HsStablePtr 
pointer is merely guaranteed to be a valid pointer, within the Haskell runtime, that is 
once derefenced with deRefStablePtr. The pointed value will be retained by GC at 
least until freeStablePtr is called.

Marshalling abstract datatypes
Any Haskell datatype can be made marshallable by giving it a Storable instance. 
Instead of writing the instance by hand, accommodating for correct alignment in the 
corresponding C structs and so forth, we can automate a lot of the process using the 
hsc2hs tool.

For instance, consider having the following C header file and custom struct:

// file: struct-marshal-c.h

typedefstruct {
  int a;
  double b;
} Some;

The corresponding Haskell datatype and (pseudo-)Haskell source file that will 
contain the Storable instance starts with:

-- file: struct-marshal.hsc

#include <struct-marshal-c.h>

import Foreign.Storable

data Some = Some { a :: Int, b :: Double }

Note the .hsc extension and an #include directive. We are going to preprocess this 
file with hsc2hs, which calculates size and alignments for the marshal.

A quick note before going forward: on GHC 8 the following macro is already present 
in hsc2hs, but for the GHC 7 series we need to define the alignment macro by 
ourselves. On GHC 8 the following is unnecessary:

#let alignment t = "%lu", (unsigned long)offsetof(struct {char  
  x__; t (y__); }, y__)
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Now we can write the Storable instance:

instance Storable Some where
   sizeOf _ = (#size Some)
   alignment _ = (#alignment Some)
   peek ptr = Some <$> (#peek Some, a) ptr
                   <*> (#peek Some, b) ptr
   poke ptr some = do
      (#poke Some, a) ptr (a some)
      (#poke Some, b) ptr (b some)

Note the use of # macros. These will be expanded by running hsc2hs:

hsc2hs -I. struct-marshal.hsc

hsc2hs generates a struct-marshal.hs file that is now valid Haskell and can be  
fed into GHC.

Using a pre-processor is highly recommended when creating Haskell bindings to C 
libraries. In addition to hsc2hs there is another preprocessor called c2hs. These have 
many overlapping features but each has some unique characteristics as well.

Marshalling in standard libraries
The core Haskell container libraries (bytestring, vector, text, and others) include 
good support for efficient marshalling of their datatypes through the FFI.

All ByteString values are actually already stored outside the Haskell heap, which 
means that foreign code can read and write a ByteString with zero copying needed. 
However, such interoperability is deemed unsafe because it easily breaks referential 
transparency. That is why these fast marshalling functions are placed in the Data.
ByteString.Unsafe module. Slower but safer marshal alternatives are in the Data.
ByteString module.

The vector package deals with marshalling by providing custom vector types with 
storable instances in the Data.Vector.Storable package. This representation is 
slightly slower than using pure unboxed vectors, but is the vector type of choice if 
marshallability is required.

Finally, the text package contains a Data.Text.Foreign module which provides 
conversion functions. Marshalling unicode-correct text between C is not trivial in 
every case, so Text marshal is a bit more complicated.
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Summary
In this chapter we have imported C functions as Haskell functions, exported Haskell 
functions as C functions, passed pointers (both foreign and stable) and data through 
the FFI, built a shared library with Haskell, and used hsc2hsto to write a Storable 
instance for a custom datatype. You have learned to invoke the FFI from both the C 
and the Haskell side and to manage memory in both the Haskell heap and the lower-
level memory area also used by C.

The next chapter will be about another implementation-level concept like the FFI: 
GPU-programming using Haskell. Graphics processors are much better suited for 
highly parallel number-crunching applications, which is the reason for the GPU's 
popularity in high-performance numeric computing. An excellent Haskell library, 
Accelerate, defines a language that greatly simplifies usually mundane and hard 
GPU programming. In addition, Accelerate is backend-agnostic: the same code 
could run on any hardware solution (CPU/LLVM, CUDA, OpenCL, and others) 
given a suitable backend implementation.
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Programming for the  
GPU with Accelerate

In recent years, Graphics Processing Units (GPUs) have become prominent 
hardware in areas other than just plain graphics applications. This practice is 
known as General-Purpose Computing On Graphics Processing Units (GPGPU). 
Due to their ability to perform highly parallel computations much more efficiently 
compared to a CPU, the GPU is often utilized, for instance, in machine-learning 
applications. The GPU is specialized to perform certain kinds of vectorized 
computations extremely efficiently. It's not nearly as flexible as a CPU is. Single cores 
in a GPU are far less powerful than CPU cores, but there are hundreds of smaller 
cores in a GPU.

Due to their parallel nature, GPUs use wildly different instruction sets than, say, the 
x86. The two dominant ways of writing programs that run on the GPU are Nvidia's 
proprietary CUDA platform and OpenCL, which is an open source framework and 
standard for writing programs that run on heterogeneous hardware (CPU, GPU, DSP, 
FPGA, and others). Both CUDA and OpenCL are designed to work with low-level 
imperative languages: CUDA for C, C++, and Fortran, while OpenCL defines its own 
C-like language.

The Haskell library Accelerate is a high-level EDSL for writing programs that execute 
on the GPU. Accelerate is fully backend-agnostic: the same Accelerate program 
can be turned into a CUDA application, executed using the reference interpreter 
on the CPU, and translated into an OpenCL application, a Repa application, an 
LLVM application, or indeed extended with your own backend. Currently, only the 
interpreter and CUDA backend are considered mature.
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In this chapter, we will learn to write high-performance programs with Accelerate 
and to run them on the GPU. Although first we test our programs using the reference 
interpreter. The chapter will cover the following topics:

• Writing in the core Accelerate language, operations, and expressions
• Running on CUDA and writing efficient high-level GPU programs
• Using Accelerate's extra features: tuples, reductions, and backend foreign 

functions

Writing Accelerate programs
Accelerate arrays are indexed by similar data types with Repa arrays, in other words, 
snoc-style lists:

data Z
data tail :. head = tail :. head

Like Repa, type synonyms are provided for Accelerate indices:

type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
...

The Accelerate array type is Array sh e. We can build accelerated arrays from lists 
with fromList:

> import Data.Array.Accelerate as A
> fromList (Z :. 5) [1..5]
Array (Z :. 5) [1,2,3,4,5]

Now let's try to do something with an Array: reverse it. Accelerate provides the 
function reverse, but it has this slightly daunting type signature:

reverse :: Elt e => Acc (Vector e) -> Acc (Vector e)

And if we try to apply reverse to an array directly, we are greeted with a type-
mismatch error:

> A.reverse (fromList (Z :. 5) [1..] :: Array DIM1 Int)

<interactive>:24:12:
    Couldn't match expected type 'Acc (Vector e)'
                with actual type 'Array DIM1 Int'
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The problem is that reverse expects its argument to be a vector wrapped within 
an accelerated computation: Acc (Vector e). Acc type marks an accelerated 
computation that produces a value of the given type. Vector is just a synonym for 
a one-dimensional array. Accelerate provides a function to use bare arrays within 
computations, aptly named use:

use :: Arrays arrays => arrays -> Acc arrays

The reverse function also unsurprisingly returns Acc, an accelerated computation, 
so we need also some way to run such accelerated computation. One run function is 
provided by another module: Data.Array.Accelerate.Interpreter. Yet another 
run is provided by the accelerate-cuda package, which we'll meet shortly. For 
now let's use the interpreter:

Data.Array.Accelerate.Interpreter.run :: Arrays a => Acc a → a

The Arrays type-class is used to overload over arrays and tuples of arrays.

Now we have all the pieces needed to reverse an accelerated array, so let's test it out:

>I.run $ A.reverse (use $ fromList (Z :. 5) [1..5]) :: Array DIM1 Int
Array (Z :. 5) [5,4,3,2,1]

Kernels – The motivation behind explicit use 
and run
Let's step back and think for a moment. Why did the Accelerate library designers 
decide that reverse and many other operations should take in and produce arrays 
inside some Acc context? In theory, the API could be completely transparent without 
exposing the internal Acc context at all.

The reason stems from how the GPU interacts with rest of the computer. The 
memory of a GPU is separate from the system RAM. This means that every array 
and indeed computation we wish to perform on the GPU must be loaded into the 
GPU memory from system memory. Loading stuff into or from the GPU is highly 
inefficient, so we would like to avoid doing it in excess.

In the lower-level (CUDA and OpenCL) frameworks, we would not only load data 
(arrays) explicitly but also define the computing kernels (computations) explicitly. In 
Accelerate, we load data explicitly but kernel-loading is largely abstracted away. The 
Acc datatype is in fact a sort of AST that is turned into code that is then compiled by 
an Accelerate backend (CUDA, for instance).
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The trick that Accelerate employs is that its kernels are created on demand. In 
addition, for acceptable performance, it's necessary to memoize often-used kernels 
so that they're loaded only once. Memoization is the part where we as library users 
need to be conscious, because if we write code that doesn't reuse kernels enough, 
it really hurts performance. Arguably, solving this problem perfectly on the library 
side, even in Haskell, would be akin to solving the halting problem.

The rule of thumb for performance would be to always pass changing arguments 
inside accelerated arrays (Acc). Accelerate also provides some debugging tools to 
diagnose kernel-sharing problems. But for now we won't delve into optimizations 
and instead use Accelerate for getting things done.

Working with elements and scalars
The Accelerate API builds upon arrays: nearly everything is an array. This is 
understandable, because the GPU also operates on arrays. This doesn't mean we 
would need to throw away convenience of scalars. After all, scalars are just zero-
dimensional arrays:

type Scalar e = Array DIM0 e

For convenience, Accelerate has its own expression language for manipulating 
scalars. An expression is represented by the abstract data type:

data Exp t

There's a plethora of related type-classes and instances for Exp. Most notably, if t is 
some Haskell numeric type, then Exp inherits its numeric nature via the classes Num, 
Floating, and Fractional.

To construct values in the expression language, we can use lift:

> lift (42 :: Int) :: Exp Int
42

If the value is truly constant (and an instance of the Elt type-class of array element 
types), constant is also an option:

constant :: Elt t => t -> Exp t

The expression language is closely tied to Acc. Once something is in Exp, we can't  
get it out without run. We can't evaluate Exp scalars directly. For that we need unit:

unit :: Elt e => Exp e -> Acc (Scalar e)
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Once again, the GPU revolves around arrays so we needed a zero-dimensional array. 
So, all in all, the following conversions are possible:

> let a0 = 42        :: Int
> let a1 = lift a0   :: Exp Int
> let a2 = unit a1   :: Acc (Scalar Int)
> let a3 = run a2    :: Scalar Int
> indexArray a3 Z    :: Int
42

There's yet one more operation, the dual of unit, which turns an accelerated scalar 
array into an expression:

the :: Elt e => Acc (Scalar e) -> Exp e

The following figure sums up the transformations between the Haskell, Exp,  
and Acc worlds:

Int

Exp Int

ACC (Scalar Int)

lift

Unit the

Scalar Int

run

Haskell

Expression

Language

Accelerate

Language

We can do basic arithmetic in the expression language:

> lift (1 :: Int) + lift (2 :: Int) :: Exp Int
3

Exp occurs where the Accelerate API expects or produces scalar values: indexing, 
mapping, array construction by element, and so forth. There is only a very small set 
of API operations that don't live in the Acc context. For instance, indexArray works 
on plain arrays, but not on arrays inside Acc. The (!) function does indexing within 
Acc, and produces an expression as opposed to a plain element:

(!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix -> Exp e
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Rudimentary array computations
Besides initializing accelerated arrays from Haskell lists using fromList, using 
the generate routine, we can initialize an array in parallel within an accelerated 
computation:

generate
  :: (Shape ix, Elt a) =>
     Exp ix -> (Exp ix -> Exp a) -> Acc (Array ix a)

Again, nearly everything is wrapped within an Exp or Acc. Note that functions 
cannot be expressions: we couldn't have an Exp (ix → a). And if we had just (ix 
→ a), then for every element the Haskell runtime and thus CPU would need to be 
bothered, which is exactly what we want to avoid in GPU programming.

But how would we build a function of the required type Exp ix -> Exp a? Or 
more precisely, what can we do with a value, say, Exp DIM2? One thing we can do 
is index other arrays with it using (!). But what if we needed separate access to the 
components of the wrapped DIM2? We can't directly pattern-match, because Exp 
doesn't allow it. What we need is the unlift function:

unlift :: Unlift c e => c (Plain e) -> e

Contrary to its name, unlift is not exactly the dual of lift, which brings Haskell 
values into the Exp language. unlift can only bring back a small subset of values, 
specifically singleton types such as Z or (:.). Applied to an Exp DIM2, unlift gets 
specialized into the following:

unlift :: Exp DIM2 → Z :. Exp Int :. Exp Int

We can break up the dimensions of an Exp DIM2, but we cannot escape the 
expression language itself (without run). Usually this is exactly what you want, 
though, because most operations expect an Exp value anyways. The following code 
uses generate together with unlift to generate an array that is a combination of 
two arrays:

> let as = lift $ fromList (Z :. 3) [1..] :: Acc (Array DIM1 Int)
> let bs = lift $ fromList (Z :. 2) [100,100] :: Acc (Array DIM1 Int)

> run $ generate (index2 3 2)
   (\ix -> let Z :. x :. y = unlift ix
           in as A.!! x + bs A.!! y)
Array (Z :. 3 :. 2) [101,101,102,102,103,103]
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Unsurprisingly, the map function on accelerated arrays operates on expressions:

A.map
  :: (Shape ix, Elt a, Elt b) =>
     (Exp a -> Exp b) -> Acc (Array ix a) -> Acc (Array ix b)

But a little crazy type won't stop us from doing simple things simply:

> run $ A.map (^2) as
Array (Z :. 3) [1,4,9]

Example – Matrix multiplication
Let's now use what we have learned so far and implement matrix multiplication with 
Accelerate. An approach which we will try first uses generate to produce the result 
matrix. So, let's start with a simple preamble:

-- file: matrix.hs

{-# LANGUAGE TypeOperators #-}

import Data.Array.Accelerate as A

type Matrix = Array DIM2 Double

The implementation with generate is relatively straightforward:

matProduct :: Acc Matrix -> Acc Matrix -> Acc Matrix
matProduct a b = let

    -- (1)
    Z :. mx :. _ = unlift (shape a) :: Z :. Exp Int :. Exp Int
    Z :. _ :. my = unlift (shape b) :: Z :. Exp Int :. Exp Int

    -- (2)
    in generate (index2 mx my) $ \ix ->
        let Z :. x :. y = unlift ix :: Z :. Exp Int :. Exp Int
            s1 = lift (Z :. x :. All)
            s2 = lift (Z :. All :. y)
            -- (3)
            in the $ A.sum $ A.zipWith (*) (slice a s1) (slice b s2)

At (1), we get the size of the result matrix. At (2), we would produce the matrix by 
mapping a function (3) over every individual index (in parallel). The function at (3) 
uses slice to get the row and column needed to compute a value at the given index. 
Then we use A.sum and to produce an expression.
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But it turns out this implementation will not work.

The Haskell type-checks and compiles, but the Accelerate program will not work; we 
are greeted with an error message akin to the following:

*** Exception: Cyclic definition of a value of type 'Exp' (sa = 7)

This is one of Accelerate's ways of telling that you have (possibly) attempted to 
employ nested parallelism – which is not supported by Accelerate or the GPU.

Using the generate function, it's really easy to encode nested parallelism. The reason 
is that generate itself is parallel, so the supplied function must not be parallel. In 
our function, we are using the to produce an Exp from an accelerated computation, 
and then perform the computation in parallel; thus, we have nested parallelism.

To work around the limitations, we need to be clever. We can't express ourselves 
with generate. The goal should be to vectorize the algorithm altogether, because 
performing vectorized operations is what GPUs are extremely fast at. In general, we 
should avoid producing single scalar values (like generate function argument of 
generate) and operate on whole arrays instead.

A known vectorized version of matrix multiplication uses a third dimension to 
encode fold (sum). An implementation is given in the following section. Perhaps 
surprisingly, the vectorized version is more readable than the naive version. But it's 
not so easy to wrap one's head around:

matProduct :: Acc Matrix -> Acc Matrix -> Acc Matrix
matProduct a b = let

    Z :. mx :. _ = unlift (shape a)  :: Z :. Exp Int :. Exp Int
    Z :. _ :. my = unlift (shape b)  :: Z :. Exp Int :. Exp Int

    aRep = A.replicate (lift $ Z :. All :. my  :. All) a
    bRep = A.replicate (lift $ Z :. mx  :. All :. All) (A.transpose b)

    in A.fold (+) 0
        $ A.zipWith (*) aRep bRep

Note that A.zipWith zips element-wise in a linear fashion, while A.fold reduces the 
lowest dimension only. A.sum would be inappropriate here, because A.sum would 
produce a scalar. Indeed, a vectorized solution is not always imminent. But the 
benefit of vectorization is huge on highly parallel GPUs.
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Flow control and conditional execution
In general, conditional if-then-else and similar constructs don't compose well 
with parallel execution. As a rule of thumb, conditionals should be kept to a 
minimum, but often some flow control is still needed.

In the Exp world, we have some unsurprising combinators. Here is the classic 
conditional, or if-then-else:

cond :: Elt t => Exp Bool -> Exp t -> Exp t -> Exp t

Here is its infix form:

(?) :: Elt t => Exp Bool -> (Exp t, Exp t) -> Exp t

This is a while construct:

while :: Elt e => (Exp e -> Exp Bool) -> (Exp e -> Exp e) -> Exp e  
  -> Exp e

The cond and while operators also have variants lifted to the Acc world, named 
acond (infix (?|)) and awhile:

acond :: Arrays a => Exp Bool -> Acc a -> Acc a -> Acc a

(?|) :: Arrays a => Exp Bool -> (Acc a, Acc a) -> Acc a

awhile
  :: Arrays a =>
     (Acc a -> Acc (Scalar Bool)) -> (Acc a -> Acc a) -> Acc a -> Acc 
a

Inspecting generated code
Accelerate programs are turned into an intermediate language, which is understood 
by Accelerate backends such as the interpreter or the CUDA backend. We can  
inspect the intermediate code easily via some handy Show instances in Accelerate.  
In particular, all Acc arr values can be shown. We can try that in GHCi:

> A.map (^2) (lift (fromList (Z:.3) [1..] :: Array DIM1 Int)) 

let a0 = use (Array (Z :. 3) [1,2,3])
in map (\x0 -> x0 * x0) a0
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Exps are showable, and so are functions that take only Acc or Exp values as 
arguments:

> A.map (^2) :: Acc (Array DIM2 Int) -> Acc (Array DIM2 Int)

\a0 -> map (\x0 -> x0 * x0) a0

Looking at the generated code is one way of debugging Accelerate programs. If the 
generated code doesn't look right, the problem is likely in our code, not the backend. 
Even an attempt at showing can produce a runtime error, like sometimes happens 
when nested parallelism is encoded unintentionally.

Running with the CUDA backend
To compile using the CUDA backend, we should install the accelerate-
cuda package from Hackage. Also required is the CUDA platform. Refer to the 
accelerate-cuda package documentation and CUDA platform documentation for 
further information:

cabal install accelerate-cuda -fdebug

The Haskell dependencies require some additional tools in scope, including alex, 
happy, and c2hs. Install those first if necessary. The debug flag gives our Accelerate 
CUDA programs some additional tools. There's no extra runtime cost versus no 
debug flag. The additional flags could interfere with the user program, though.

In principle, the only necessary code change for using the CUDA backend instead 
of the interpreter is to import the run function from Data.Array.Accelerate.CUDA 
instead of the Interpreter module:

import Data.Array.Accelerate.CUDA

The program below executes our matrix product of 100x100 matrices on the GPU 
using CUDA. Note that swapping back to the interpreter is a matter of swapping out 
CUDA for interpreter in the corresponding import statement. Indeed, with CPP, it is 
easy to put the choice behind a compile-time cabal flag as well:

-- file: matrix-cuda.hs

{-# LANGUAGE TypeOperators #-}

import Data.Array.Accelerate as A
import Data.Array.Accelerate.CUDA

type Matrix = Array DIM2 Double
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matProduct = ...

main = let
    mat :: Matrix
    mat = fromList (Z :. 100 :. 100) [1..]

    res = run $ A.sum $ matProduct (lift mat) (lift mat)

   in print res

Assuming CUDA and the corresponding libraries are installed, we can compile  
the program like any other Haskell program. Note that all Accelerate programs  
must be linked with the threaded GHC runtime:

ghc -threaded -O2 matrix-cuda.hs 

[1 of 1] Compiling Main     ( matrix-cuda.hs, matrix-cuda.o )

Linking matrix-cuda ...

We execute the resulting binary normally. The matrix product is calculated rather 
fast, using the GPU:

./matrix-cuda

Array (Z) [2.5088563200314e13]

Debugging CUDA programs
When accelerate-cuda is compiled with -fdebug, some extra options are available 
in compiled GPU programs. A full list is maintained in the accelerate-cuda 
package documentation. The following are a handful of useful flags:

• -ddump-cc: Dump information about CUDA kernel compilation and 
execution

• -ddump-exec: Dump CUDA kernels before execution
• -fflush-cache: Delete CUDA kernel disk cache

The additional output from our matrix product example program looks like  
the following:

./matrix-cuda -ddump-cc

0.09:cc: initialise kernel table

0.09:cc: persist/restore: 4 entries

0.09:cc: found/persistent

0.10:cc: found/persistent
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0.10:cc: found/persistent

0.10:cc: entry function 'fold' used 40 registers, 0 bytes smem, 0 bytes 
lmem, 0 bytes cmem

    ... multiprocessor occupancy 78.1% : 1600 threads over 50 warps in 25 
blocks

0.10:cc: entry function 'foldAll' used 16 registers, 0 bytes smem, 0 
bytes lmem, 0 bytes cmem

    ... multiprocessor occupancy 100.0% : 2048 threads over 64 warps in 2 
blocks

0.10:cc: entry function 'foldAll' used 16 registers, 0 bytes smem, 0 
bytes lmem, 0 bytes cmem

    ... multiprocessor occupancy 100.0% : 2048 threads over 64 warps in 2 
blocks

Most of the time, we are executing with multiprocessor occupancy of 100%, which is 
really good. It's an indicator we are utilizing the full capabilities of the GPU.

Accelerate caches the CUDA kernels under a .accelerate directory under your 
home directory. When executing an Accelerate program for the first time, we spend 
a lot of time producing the kernels – in our small example, this accounted for about 
1.5 extra seconds for just three kernels on my system. On consecutive executions, 
however, the kernels are pulled from the cache.

Use -fflush-cache to clear the cache before execution. To inspect only the executed 
kernels, pass -ddump-exec.

If the program is repeatedly producing new kernels when you think some previously 
used kernel could be reused, this can be spotted in the debug output.

More Accelerate concepts
So far, we have considered accelerated arrays and expressions. These are the 
primitives that Accelerate builds upon. On top, we have a bunch of functional 
machinery to help us express ourselves in accelerated computations: zips and unzips, 
reductions, permutations, stencils, and so forth. The complete API is documented 
in the accelerate package. In this section, we consider using some of the most useful 
parts of this machinery.
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Working with tuples
GPUs don't allow array nesting or tuples as elements of an array. Nested arrays can 
be somewhat mimicked with higher-dimensional arrays. And it might not come 
as a surprise that Accelerate supports tuples as elements of an array. Internally, 
arrays with tupled elements are represented as tuples of arrays, but this is strictly an 
implementation detail. For the programmer, it really looks like we are working with 
tupled elements, which is sometimes very convenient.

With zip and unzip, we can (de)construct tupled elements within accelerated 
arrays with zero runtime cost. A tuple array could be used to represent an array of 
imaginary numbers, or instances.

The lift and unlift functions translate between tuple expressions and tuples of 
expressions. For instance, these are valid type specializations of lift and unlift:

lift :: (Exp Int, Exp Int) -> Exp (Int, Int) 

unlift :: Exp (Int, Int) -> (Exp Int, Exp Int)

lift and unlift work with Acc in place of Exp too.

Regarding performance, it doesn't matter whether there is a tuple of expressions 
(Exp) or an expression of tuples. They have pretty much the same internal 
representation and will produce the same program.

Folding, reducing, and segmenting
Accelerate provides familiarly named fold and fold1, but unlike those versions of 
these functions in Data.List, the Accelerate ones fold over the innermost dimension 
only, so they can be used to reduce the rank of an array by one. To fold along all 
dimensions producing a scalar, functions like foldAll and fold1All can be used.

What's different versus Data.List style folds is that Accelerate's folds always 
proceed in parallel. This means that the folding function must be associative. To 
do sequential fold with Accelerate, we would need to use sfoldl, also from the 
Accelerate library. Note that slfold only reduces along the innermost slice:

sfoldl :: _ => (Exp a → Exp b → a)
  → Exp a
  → Exp sh
  → Acc (Array (sh :. Int) b)
  → Exp a
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The slice is specified by an argument of type Exp sh. There is no ready-made 
solution for folding over a whole dimension or all dimensions sequentially. It is not  
a common need to fold a multi-dimensional array non-associatively, and a sequential 
fold of a big array isn't very efficient on a GPU due to the lack of parallelism.

One more folding variant provided by Accelerate operates on segments:

type Segments i = Vector i

Segments are how nested one-dimensional arrays can be represented in Accelerate:  
a segment array gives the lengths of successive logical sub-arrays within an array.  
The foldSeg and fold1Seg functions fold over each logical sub-array, producing  
an array with the same dimensionality but with the logical sub-arrays reduced.

Accelerated stencils
Stencils pop up in many applications. We have covered the basics of stencils in the 
Chapter 5, Parallelize for Performance. Now we will promptly consider how the stencil 
system present in Accelerate is used, and its limitations.

The core function stencil has a predictable signature:

stencil
  :: (Stencil ix a stencil, Elt b) =>
      (stencil -> Exp b)
      -> Boundary a -> Acc (Array ix a) -> Acc (Array ix b)

Note the Stencil type-class. It's multi-parameter with parameters for the shape, 
element type, and stencil type. For a one-dimensional array, the corresponding 
stencil is a tuple of its elements:

Stencil DIM1 e (Exp e, Exp e, Exp e)

For a two-dimensional array, we have tuples of tuples of elements; for instance,  
a 3x3 stencil would be as follows:

Stencil DIM2 e ( (Exp e, Exp e, Exp e)
, (Exp e, Exp e, Exp e)
, (Exp e, Exp e, Exp e))

We could nest tuples even further for higher-dimensional arrays. Provided Stencil 
instances are inductive on the array shape, so arbitrary ranks are supported. 
Furthermore supported are tuples of 3, 5, 7, and 9 elements.
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The meat of a stencil application lies in the stencil function, that has the type (for 
some Stencil is a stencil):

stencil → Exp b

This is perhaps a more powerful way to represent stencils than Repa's element-wise 
multiplication. Nevertheless, expressing a 3x3 stencil that detects horizontal lines 
using a threshold of 0.5 is expressed easily:

stFun ( (x1, x2, x3)
    , (y1, y2, y3)
    , (z1, z2, z3) ) = y1 >* 0.5 &&*
                       y2 >* 0.5 &&*
                       y3 >* 0.5 ? (1, 0)

Accelerate also supports binary stencils, via the function stencil2. Binary stencils 
operate on two images, combining them neighborhood-wise. A binary stencil 
function would have the following type:

stencil :: stencil → stencil → Exp b

The boundary argument is very similar to how it is in Repa. The benefit of using 
Accelerate instead of Repa for stencils is, of course, higher parallelism. For bigger 
images or arrays, Accelerate can easily be many times faster on a GPU than Repa  
on a CPU.

Permutations in Accelerate
A permutation is an array transformation which reorders the elements, possibly 
replacing some with new elements and maybe altering the shape. Accelerate 
provides combinators for both forward and backward permutations. In a forward 
permutation, indices are mapped from the input array to the output array. Going 
backward, output array indices define input indices.

Reverse and transpose are examples of permutations. These two are provided 
by Accelerate by default. Generic forward permutation is called permute while 
backward permutation is backpermute.
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Using the backend foreign function interface
Not every Accelerate backend is built even. Some backends provide routines that 
others don't that are a lot faster due to specialized hardware, for instance. Accelerate 
provides a thin layer for embedding backend-specific alternatives in accelerated 
computations. The FFI consists of two embedding functions (contexts omitted for 
clarity):

foreignAcc :: _ =>
  ff acc res → (Acc acc → Acc res) → Acc acc → Acc res

foreignExp :: _=>
  ff e res → (Exp e → Exp res) → Exp e → Exp res

The first argument in both foreignAcc and Exp is a value of a type defined by the 
backend. For instance, accelerate-cuda provides CUDAForeignAcc and *Exp 
datatypes that can be used to construct wrappers for CUDA-specific functions.

For example, CUDA has a fast float-specialized exponentiation __expf. We can 
easily access this faster primitive from Accelerate, although it's not provided by 
the Haskell library. What's nice is that by doing so we don't necessarily lock our 
program for CUDA only. The foreignExp wrapper expects a generic fallback as its 
second argument, which is expected to be slower, but works on any backend:

fexp :: Exp Float → Exp Float 
fexp = foreignExp (CUDAForeignExp [] "__expf") exp

Summary
Now we have learned to write programs with Accelerate that run using the 
interpreter, and to compile and run them on CUDA-enabled GPUs. We know that 
Accelerate uses a code generator of its own internally. We understand it's crucial to 
write code that can efficiently reuse cached CUDA kernels, because their compilation 
is very expensive. We also learned that tuples are a free abstraction in Accelerate, 
although GPUs themselves don't directly support tupled elements.

In the next chapter, we will dive into Cloud Haskell and distributed programming 
using Haskell. It turns out Haskell is a pretty well-suited language for programming 
distributed systems. Cloud Haskell is an effort that streamlines building distributed 
applications, providing an abstraction over the network layer, among other things.
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Scaling to the Cloud  
with Cloud Haskell

In this chapter, we will look at how distributed systems programming fits with 
Haskell. The motivation behind distributed systems is multifaceted. On one 
end, there is more computing power available with multiple physical machines. 
Then there are other resources besides computing power: storage space, network 
bandwidth, and other devices. Yet another advantage of proper distributed systems 
is resilience. With a growing number of machines, there are a growing number of 
failure points. A proper distributed system should be able to operate under arbitrary 
process failures.

Cloud Haskell is a relatively new but mature platform that's modelled from Erlang's 
wonderful execution model. Cloud Haskell brings distributed processes and process 
management to Haskell with modular network transport and fine-grained message 
and channel-based communication.

In this chapter, we will explore the Cloud Haskell platform. No deep knowledge 
about distributed systems is required. A general notion of a distributed system is 
enough. We will do basic message-passing, work with typed channels, and send and 
receive both data and closures of arbitrary data, including functions and procedures. 
We will look at the facilities for handling distributed failure in Cloud Haskell, that is, 
linking and monitoring processes. By the end of this chapter, you will be able to use 
Cloud Haskell to build your distributed system.

The chapter will cover the following topics:

• Launching Cloud Haskell nodes and processes
• Message-passing and typed channels
• Using closures to pass arbitrary data between machines
• Handling failure, linking processes together, and process monitoring
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Processes and message-passing
The maze of packages around Cloud Haskell may seem daunting. But to get started, 
we really need just two packages: distributed-process and distributed-
process-simplelocalnet. The former package implements the core features of 
Cloud Haskell: nodes, processes, serialization, and message-passing. In particular,  
it doesn't provide any implementation for communication between nodes. That's 
what the latter package is for.

Cloud Haskell is modular in its communication layer. The distributed-process-
simplelocalnet package provides simple, zero-configuration networking for Cloud 
Haskell nodes. It uses UDP broadcasting for node discovery, which is adequate 
for our testing purposes in this section. So let's get started. At the time of writing, 
distributed-process version 0.6.4 is the newest, so we'll be using that:

stack install --resolver lts-6.7 distributed-process distributed-process-
simplelocalnet

The most important Cloud Haskell concept and type is Process:

data ProcessId
 
data Process
-- instance Monad, MonadIO, MonadMask

Cloud Haskell processes are lightweight threads that aren't necessarily executed  
on the local machine. ProcessId uniquely identifies a process across the distributed 
system, and Process in turn corresponds to a ThreadId on the machine it is 
executing on.

All code that somehow interacts with the Cloud Haskell API lives in the Process 
monad. It has a MonadIO instance as well as MonadMask (and MonadThrow/
MonadCatch) instances, so Process can be used almost always where plain IO  
would be used.

Creating a message type
Let's now build a summer process that repeatedly takes in numbers from other 
processes, adds them to an internal counter, and responds to every number with the 
updated counter value. The first thing we need to write is a datatype that describes 
the messages that are passed in and out of such a summer process.

The basic API functions for message-passing in Control.Distributed.Process 
(from distributed-process) that we will be using are as follows:

send   :: Serializable a => ProcessId → a → Process ()
expect :: Serializable a => Process a
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Messages are overloaded over the Serializable class. Serializable is 
implemented by every type with Binary and Typeable instances, in turn both of 
which are derivable. Still, we end up with quite a lot of code, because Binary is 
"derivable" only via GHC Generics:

import Data.Binary   (Binary)
import Data.Typeable (Typeable)
import GHC.Generics  (Generic)

data SummerMsg = Add Int ProcessId
              | Value Int
              deriving (Show, Typeable, Generic)

instance Binary SummerMsg

Note that we included a ProcessId in the Add constructor. The idea is that the 
process which sends an Add message will include its own ProcessId in it so that the 
summer process knows where to send its Value reply.

Creating a Process
The next step is to write Process code for the summer. Using expect to get a message 
and send for replies, this is a straightforward task:

import Control.Distributed.Process

summerProc :: Process ()
summerProc = go 0
  where
    go s = do msg@(Add num from) <- expect
              say $ "received msg: " ++ show msg
              let s' = s + num
              send from (Value s')
              go s'

The say function is for debug purposes. By default, it outputs a string to standard 
error stream, but implementation varies depending on the Cloud Haskell transport 
layer used.
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Spawning and closures
The forkIO equivalent for Cloud Haskell processes is spawn. Because a Process 
doesn't necessarily run on the machine or node that spawns it, spawn takes a NodeId 
as its argument:

spawn :: NodeId -> Closure (Process ()) -> Process ProcessId

A node is a machine or capability that is able to run Processes. If we just want 
to fork a Process to run on the local machine, we can get the local NodeId with 
getSelfNode.

Notice also that spawn takes a Closure type, not Process directly. This makes sense, 
because Process is akin to IO and we couldn't just transfer an arbitrary IO action 
from one machine to another. A Closure is a serializable form of arbitrary data or 
actions. To create closures, Cloud Haskell provides some Template Haskell magic 
that generates special remote tables for arbitrary serialization.

To make our summerProc :: Process () spawnable, we create a remote table of it 
with the remotable TH splice:

remotable ['summerProc]

Among other things, remotable creates a new top-level definition __remoteTable. 
We'll need to provide this to the transport backend so that the backend can use it to 
map definitions to closures and back, and more. In general, a module that contains 
definitions should have one remotable splice, with all remotable definitions from 
that module listed.

To then create a closure, we use mkStaticClosure:

$(mkStaticClosure 'summerProc) :: Closure (Process ())

There is also mkClosure, which creates closures with one argument. Given f :: a → 
b, we have the following:

$(mkClosure 'f) :: a → Closure b

Now, for demonstration, we can create a process that spawns a summer process and 
interacts with it. Here we go:

[…]
import Control.Distributed.Process.Closure 
 
summerTest :: Process ()
summerTest = do
    node<- getSelfNode
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    summerPid<- spawn node $(mkStaticClosure 'summerProc)

    mypid<- getSelfPid

    send summerPid (Add 5 mypid)
    send summerPid (Add 7 mypid)

    Value n <- expect
    say $ "updated value: " ++ show n
    Value n'<- expect
    say $ "updated value: " ++ show n'

We use getSelfNode and getSelfPid to get the NodeId and ProcessId for the 
current process. We use spawn to create a new process from a closure, which gives us 
the ProcessId of the newly made process. We send messages to that, which in turn 
replies to us.

The final thing that's missing is the backend that initializes nodes and manages 
processes.

Running with the SimpleLocalNet backend
The SimpleLocalNet backend is easy to use, because it only requires a simple local 
network, something that all machines should have. Let's start with an example. 
Here's a main that executes the summerTest process from the previous section:

import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet
[…]

main :: IO ()
main = do
    backend<-initializeBackend "localhost" "9001"  
        (__remoteTable initRemoteTable)
    startMaster backend $ \_ -> summerTest

There are two important functions: initializeBackend and startMaster. The 
former basically creates a new local node with some additional information (backend 
:: Backend). The Backend type is also part of the SimpleLocalNet backend.

The third argument to initializeBackend is of type RemoteTable: this is related 
to the remotable TH splice we saw previously. The __remoteTable definition that 
remotable generates is of type RemoteTable → RemoteTable. This is so that we can 
combine multiple remote tables with plain function composition. initRemoteTable 
is the "unit" of RemoteTables (an empty table).
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The startMaster function is an auxiliary function which starts a process on a new 
node it creates in the network. There's also a startSlave function, which starts a 
slave node with no running processes yet. The second argument to startMaster is 
of the following type:

[NodeId] → Process ()

So, for convenience, startMaster automatically discovers every slave node in the 
network before starting the process. For now, we'll only use one node on our local 
machine (localhost) at port 9001. Note that we could run multiple nodes on the same 
machine at the same port – Cloud Haskell backends should be considered as merely 
media where nodes live and communicate. From the application side, once we have 
a NodeId, it doesn't make a difference how the node is connected to the network. The 
backend used guarantees that messages flow between nodes.

Now let's compile and run our main and summer processes:

stack --resolver lts-6.7 ghc -- -threaded first-example.hs

./first-example

… pid://localhost:9001:0:11: received msg: Add 5  
  pid://localhost:9001:0:10

… pid://localhost:9001:0:11: received msg: Add 7  
  pid://localhost:9001:0:10

… pid://localhost:9001:0:10: updated value: 5

… pid://localhost:9001:0:10: updated value: 12

(Timestamps omitted for lack of space.)

Everything is as expected! Now we know how to create and execute processes using 
the simple localnet backend, and to send and receive messages between processes.

Using channels
While plain message-passing using expect and send works fine, it has some caveats. 
The biggest one is that all messages from all processes go to the same queue. This has 
two unfortunate implications. First, expect has to search the queue every time for a 
matching message. Second, we cannot know from which client the message came, or 
if it is even relevant anymore.
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Cloud Haskell provides an abstraction called typed channels to overcome these 
difficulties. A channel consists of a SendPort and a ReceivePort that are connected 
to provide unidirectional communication using sendChan and receiveChan:

newChan :: (Typeable a, Binary a) => Process (SendPort a, ReceivePort 
a)

receiveChan :: (Typeable a, Binary a) => ReceivePort a -> Process a

sendChan :: (Typeable a, Binary a) => SendPort a -> a -> Process ()

Because SendPort is Serializable, we can send them using send. This way, it 
is easy to establish bidirectional communication between a client and server, for 
instance. What's more, the channel is only valid through the lifetime of SendPort 
and corresponding ReceivePort. Messages can be put into the channel only after the 
channel's creation, unlike with plain messaging, where messages flow as long as the 
process is alive. Typed channels enable easy encapsulation.

Let's see a small example of using channels. We'll continue using a simple summer 
process just to emphasize Cloud Haskell features. First, a fairly minimal set of 
pragmas and imports:

-- file: client-server.hs
{-# LANGUAGE BangPatterns #-}

import Control.Monad
import Control.Distributed.Process
import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet

This time around, we will spawn clients that take a port to send numbers into.  
The client is a simple one-liner:

client :: SendPort Double -> Process ()
client sendport = forM_ [1..100] (sendChan sendport)

And here is the master process:
master :: Process ()
master = do
    ports<- replicateM 100 $ do               -- (1)
        (sendport, recvport) <- newChan
        _pid <- spawnLocal (client sendport)
        return recvport

    port<- mergePortsRR ports                 -- (2)

    let loop !s = do                           -- (3)
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            mn<- receiveChanTimeout 1000 port
            case mn of
                Just n  -> loop (s + n)
                Nothing -> do say $ "final: " ++ show s
                              terminate
    loop 0

First we spawn some clients and create a new channel for each (1). Then at (2),  
we merge all 100 ReceivePorts into one single ReceivePort using mergePortsRR:

mergePortsRR :: (Typeable a, Binary a) => [ReceivePort a] -> Process 
(ReceivePort a)

That RR stands for round-robin, which gives each port an equal chance of being read 
under congestion. There is also mergePortsBiased, which favors the rightmost port.

At (3), we then repeatedly receive from the merged channel until there have been no 
messages for 1 millisecond. This timeout is built into receiveChanTimeout:

receiveChanTimeout :: (Typeable a, Binary a) 
   => Int -> ReceivePort a -> Process (Maybe a)

When a timeout is reached, we print the final result and exit with terminate. Our 
main is the bare minimum:

main = do
    backend<- initializeBackend "localhost""9001" initRemoteTable
    startMaster backend (\_ -> master)

Running the program, we get the expected results:

./client-server

Thu Jul 14 21:32:05 UTC 2016 pid://localhost:9001:0:10: final: 505000.0

client-server: ProcessTerminationException

Establishing bidirectional channels
As mentioned earlier, only the sending endpoint of a channel is serializable. So it 
must always be the receiving end of a channel that creates it using newChan. To 
establish a bidirectional pair of channels between processes, they both create a 
channel and send the sendport to the other process.

In practice, this would look like the following:

-- file: bi-directional.hs 
 
server :: Process ()
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server = do

    pid<- getSelfPid

    (sendport', recvport) <- newChan

    _clientPid <- spawnLocal (client pid sendport')

    sendport<- expect

    sendChan sendport "ping"
    receiveChan recvport >>= say

client :: ProcessId -> SendPort String -> Process ()
client pid sendport = do

     (sendport', recvport) <- newChan

    send pid sendport'

    ping<- receiveChan recvport
    sendChan sendport ("pong: " ++ ping)

The relevant bits that establish the channels are highlighted. Note that these 
processes are not completely symmetrical, in that to run client we provide its 
master's process and upstream channel as arguments. But this isn't mandatory.  
With a bit more work, they both could establish channels via send/expect.

Calling a remote process
Previously, we used spawn to create new processes remotely. A common pattern is 
to spawn a process on a remote machine, wait for it to finish, and then collect the 
results. For this, Cloud Haskell provides a convenience operation, call:

call
  :: (Typeable a, Binary a) =>
     Static (SerializableDict a)
     -> NodeId -> Closure (Process a) -> Process a

There are two differences compared to spawn: the result type is a instead of () 
and there is a new argument, Static (SerializableDict a). This is a reified 
Serializable dictionary for the process. Let's see call in action to understand it 
better:

rpc :: String -> Process Int
rpc str = return (length str)

remotable ['rpc]

foo :: Process ()
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foo = do
    node<- getSelfNode
    str<- call $(functionTDict 'rpc) node ($(mkClosure 'rpc) "foo")
    say (show str)

Here are some points to note:

• We use mkClosure to turn rpc into a Closure. The one argument to rpc is 
passed normally outside the TH splice. This works only because rpc takes one 
monomorphic argument, String, and has a monomorphic result (Int). Also, 
remotable needs to have been called for rpc to create the static definitions.

• We use another TH splice, functionTDict, to get the serialization dictionary 
that is similar to the result type of rpc. There is also splice functionSDict, 
which gives the dictionary for the argument (source) type.

• If rpc threw an exception, this exception would be re-thrown at foo.

There is also a local version of call, named callLocal, which has a much simpler 
signature:

callLocal :: Process a → Process a

Though it seems like the identity function, it is not: the subprocess will get its own 
new ProcessId. This means that messages sent for the subprocess would be silently 
dropped when callLocal returns.

Handling failure
In a distributed system, it's customary to fail fast and let other processes deal 
with failure. This principle is encouraged in Erlang, from which Cloud Haskell is 
modelled. We should be prepared for an arbitrary process crashing, with its parent 
or monitoring process handling the failure (or propagating it further to a parent's 
parent).

There are two tactics to be noted about process failure in Cloud Haskell: linking 
and monitoring. The difference is that a linked process propagates exceptions to its 
parent, while an exception in a monitored process results in the monitoring process 
receiving a ProcessMonitorNotification message.
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Firing up monitors
The basic monitoring API is the following:

monitor     :: ProcessId  → Process MonitorRef
monitorNode :: NodeId     → Process MonitorRef
monitorPort :: SendPort a → Process MonitorRef

unmonitor   :: MonitorRef → Process ()

withMonitor :: ProcessId  → Process a → Process a

We can start monitoring either a process, a node, or a channel. A MonitorRef is 
retained so that it's possible to unmonitor later. The withMonitor combinator 
combines monitor and unmonitor, by monitoring the process only when in the  
inner computation.

When a monitored process exits, a notification message is sent to the monitoring 
process. To catch the message along with other messages in the system, we need 
some additional machinery. Plain expect is not sufficient here, because it matches 
one type only.

Matching on the message queue
What we need to sensibly match on multiple message types at once is, 
unsurprisingly, provided by Cloud Haskell as a nice API. Details will follow,  
but the crux of it is here:

data Match b

receiveWait  :: [Match b] → Process b

match        :: Serializable a => (a → Process b) → Match b
matchUnknown :: Process b                         → Match b
matchChan    :: ReceivePort a   → (a → Process b) → Match b

The match API allows us to check for multiple types of message in the queue 
simultaneously. We can also interleave arbitrary ReceivePorts with the message 
queue with matchChan, or drop any messages with matchUnknown.

Here's an example of a combined receive operation:

receiveWait
    [ match $ \(n :: Int)     → …
    , match $ \(s :: String)  → …
    , matchUnknown $            …
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    , matchChan recvport $ \x → …
    ]

It first tries for Int or String types in the message queue. If a message of neither 
type is available but instead there's some other message, we remove that from the 
queue. Otherwise, an attempt is made to read from channel recvport. If that's empty 
too, we start waiting until one of the match conditions is fulfilled.

The implementation of Match is based on STM, so the whole receive operation is 
atomic and it's efficient when waiting for events due to how STM works.

Linking processes together
Sometimes it's useful to handle failure at the level of a set of processes instead of 
a single process. Or maybe we want to ensure that a child process won't continue 
executing when its parent dies, as would happen when a process is merely 
monitored.

For the latter, Cloud Haskell provides a nice combinator, spawnSupervised:

spawnSupervised
:: NodeId → Closure (Process ()) → Process (ProcessId, MonitorRef)

This spawns a new process, starts monitoring it, and links the child to the parent. 
The link ensures that if the parent dies, the child dies too (or at the very least receives 
an asynchronous exception).

In case a supervised spawn doesn't fit your use case, there are more API functions for 
linking. Like monitoring, linking extends from processes to nodes and ports:

link, unlink         :: ProcessId  → Process ()
linkNode, unlinkNode :: NodeId     → Process ()
linkPort, unlinkPort :: SendPort a → Process ()

Links are always unidirectional, though it's possible to link processes to each other.

Message-passing performance
It's worth noting that message passing between processes normally goes between 
the network transport and undergoes serialization following deserialization. 
Serialization is not a free operation and it's inevitable between processes located on 
different nodes. However, processes on the same node don't necessarily need to do 
the relatively expensive serialization at all.
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Cloud Haskell takes a conservative approach and doesn't by default optimize local 
node communication. The main reason is that skipping (de)serialization can possibly 
give different runtime semantics due to strictness. For instance, unnoticed bottoms 
can lurk in data that isn't fully forced. Messages sent over network must always be 
fully evaluated, so it's easier for the developer when such mistakes can be caught in 
early development.

People familiar with distributed systems know that communication and serialization 
is not cheap, and in production it doesn't make much sense to incur extra work 
in local communication. Luckily, Cloud Haskell does permit optimizing local 
communication. Unsafe send functions are provided in two places. The Control.
Distributed.Process.UnsafePrimitives module replaces send functions from 
the main API, Control.Distributed.Process, while the main API provides unsafe 
variants with the unsafe prefix.

Using the unsafe variants is faster, but you will need to make sure you are not 
relying on evaluation-based asynchronous exceptions getting thrown in any process: 
an unsafe send can result in the exception being raised in the receiver instead of the 
sender.

Nodes and networking
Though Cloud Haskell processes communicate seamlessly together, they are 
completely oblivious to how they are connected. The transport layer provided by 
Network.Transport sits between the processes and a backend that implements the 
transport.

A Cloud Haskell backend provides on top of a transport layer some sort of peer 
discovery or allows for a predefined topology. A number of backends have been 
implemented and more are in development. At the time of writing, there are three 
well-supported backends available:

• SimpleLocalNet (distributed-process-simplelocalnet): Fully connected 
with optional client/slave configuration, TCP transport, and UDP multicast 
peer discovery

• P2P (distributed-process-p2p): TCP-transport with peer-to-peer 
discovery

• ZooKeeper (distributed-process-zookeeper): TCP transport that uses 
Apache ZooKeeper as naming registry
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Each backend has its use cases. In first development phases, SimpleLocalNet is the 
easiest choice, but non-existent network topology configuration is not good in many 
applications. For a "truly" distributed system, in other words, one that doesn't have a 
central puppetmaster, a peer-to-peer transport is a good fit. And for a more managed 
system, a ZooKeeper-based solution is a strong option.

If none of the existing backend solutions is viable, it's not too hard to roll your 
own with the more various network-transport packages, for instance, a managed 
TCP transport with network-transport-tcp or using ZeroMQ and network-
transport-zeromq.

All Network.Transport.* packages essentially provide ways to produce 
Transports that Cloud Haskell uses to launch nodes. The API in Control.
Distributed.Process.Node is quite self-explanatory:

data LocalNode

newLocalNode    :: Transport → RemoteTable → IO LocalNode
closeLocalNode  :: LocalNode → IO ()

forkProcess     :: LocalNode → Process () → IO ProcessId
runProcess      :: LocalNode → Process () → IO ()

initRemoteTable :: RemoteTable

localNodeId     :: LocalNode → NodeId

So Cloud Haskell's LocalNode associates with a NodeId. Local node initialization 
requires a Transport and the RemoteTable for closure lookup. At least the first 
process is started by forkProcess or runProcess, after which call or fork can be 
used in the Process monad to spark more processes on local or remote nodes.

Cloud Haskell backends are just convenient wrappers over network-transport.  
It's not necessary to use a backend in itself.
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Summary
In this chapter, we have learned to build distributed systems using the Cloud 
Haskell platform: launching nodes and processes, communicating via direct message 
passing between processes and with more flexible typed channels, passing remotely 
executed procedures in closures, and handling failure with process linking and 
monitoring. You now know how to build distributed systems with Cloud Haskell.

The next chapter will be about Functional Reactive Programming (FRP) and related 
Haskell libraries. Reactive programming, and especially FRP, challenges prevalent 
imperative control flow by a different notion of time. In imperative animation, for 
instance, timing is more or less implicit in the code, whereas in FRP, time would be 
just one more argument or input to an animation system. Reactive programming 
extends beyond just animation, though.
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Functional Reactive 
Programming

Functional Reactive Programming (FRP) is an elegant way to express behaviors that 
change over time, such as user interfaces or animation. From a theoretical point of 
view, behaviors are time-varying values. Using simple behaviors as building blocks, 
we can build increasingly complex behaviors: complete programs, UIs, games, and 
so on. Behaviors compose very well and eliminate lots of tedious and error-prone 
work that's present in the traditional imperative approach with actions and callbacks.

Though FRP has simple semantics, efficient implementation is largely an open 
question. Existing FRP implementations take different approaches with different 
trade-offs. In semantics, FRP is continuous, in other words, functions of the real 
numbers. In practice, we are forced to make approximations, either via sampling, 
using discrete semantics or some hybrid of continuous and discrete. The more 
theoretically minded reader is encouraged to glance at the following FRP papers: 
Functional Reactive Animation (1997, Elliot and Hudak), Push-Pull Functional Reactive 
Programming (2009, Elliot).

In this chapter, we will not bother much with understanding the semantics exactly. 
Instead, we will work with simple but illustrative examples of FRP in practice using 
a few Haskell libraries that implement their own realizations of FRP: Elerea, Yampa, 
and Reactive-banana. Because there are so many examples, tutorials and additional 
libraries for hooking FRP logic into input and output sources, for example, graphics 
frameworks, we won't focus on that aspect of FRP. Instead, the focus is on the very 
core of FRP: elegant and powerful composition of behaviors and events.
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This chapter will cover the following topics:

• Programming with three FRP frameworks: Elerea, Yampa, and Reactive-
banana

• Pros and cons of discrete- and continuous-time signals, events and behaviors
• Coding recursion and mutual recursion in event networks
• Adding inputs and outputs to networks statically and dynamically

The tiny discrete-time Elerea
In order to not feel overwhelmed, we'll begin with one of the simplest formulations 
of FRP, Elerea. Elerea is a very minimalist implementation, which restricts itself 
to discrete-time semantics and sampling. There are no events and everything is 
computed on demand only. Furthermore, the API consists of high-level constructs so 
that it's exceedingly difficult to shoot yourself in the foot with this library.

Time-varying values of type a are represented as Signal a in Elerea:

data Signal a
-- instances incl. Monad, Eq

Signals can be thought of as functions Nat → a, though obviously they are 
represented differently.

Signals are made inside signal generators, SignalGen a:

data SignalGen a
-- instances incl. Monad, MonadFix, MonadIO

Signal generators have a MonadFix instance, which will later allow us to build 
mutually recursive signals.

The minimal API provides just a few signal building blocks. Excluding some trivial 
extensions, the core combinators are as follows:

delay     :: a → Signal a               → SignalGen (Signal a)
snapshot  :: Signal a                   → SignalGen a
generator :: Signal (SignalGen a)       → SignalGen (Signal a)
memo      :: Signal a                   → SignalGen (Signal a)
till      :: Signal Bool                → SignalGen (Signal Bool)

stateful  :: a → (a → a)                → SignalGen (Sinal a)
transfer  :: a → (t → a → a) → Signal t → SignalGen (Signal a)

effectful :: IO a                       → SignalGen (Signal a)
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We'll see some examples soon, but first we introduce start:

start :: SignalGen (Signal a) → IO (IO a)

This embeds a signal network built via the signal generator network into IO. Once 
the network is initialized, we get an IO action (IO a) that samples the network. 
We can think of start as a "start-the-world" action while the resulting action is a 
"sample-the-world" action. We define a sigtest function that performs 10 samplings 
and prints them as a list:

-- file: elerea-first-ex.hs
 
import Control.Monad
import FRP.Elerea.Simple

sigtest :: Show a => SignalGen (Signal a) -> IO ()
sigtest gen = start gen >>= replicateM 10 >>= print

Now, let's see some signals in action. First, we have stateful signals, similar to 
unfolding:

> sigtest (stateful 5 (+1))
[5,6,7,8,9,10,11,12,13,14]

Signals can be composed using general Applicative or Monad operations:

> sigtest $ do { a <- stateful 0 (+1)
               ; b <- stateful 0 (subtract 1)
               ; return ((+) <$> a <*> b)
               }
[0,0,0,0,0,0,0,0,0,0]

The transfer combinator "scans" values in the stream, producing a new stream:

> sigtest $ do { series <- stateful 5 (+1)
               ; transfer 1 (+) series
               }
[6,12,19,27,36,46,57,69,82,96]

This is analogous to the scanl function from Prelude:

> let series = iterate (+1) 5
> take 10 $ scanl (+) 1 series
[1,6,12,19,27,36,46,57,69,82]
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Embedding arbitrary I/O actions as inputs is trivial with effectful:

> sigtest (effectful getLine)
hello
world
…
end
["hello","world",…,"end"]

Each combinator – stateful, transfer, and effectful – is simple and intuitive, 
but not always powerful enough in complex cases. We'll introduce the general 
building blocks delay, generator, and till with bigger examples next.

Mutually recursive signals
In a complex FRP application, we often need signals that depend mutually on 
each other. For instance, in a UI, actions depend on user input and available input 
depends on past actions. The Fibonacci series is one of simplest example programs 
that can be expressed as a combination of mutually recursive signals. In pseudo-code 
we have the following:

fib  <- 1 `cons` fib1
fib1 <- 1 `cons` fib2
let fib2 = fib + fib1

Here, cons is an operation that inserts one value to the head of the stream. But 
we can't quite directly translate this pseudo-code to SignalGen code, because the 
bindings are mutually recursive and a monadic bind is not recursive, though let 
bindings are.

Fortunately, we can utilize SignalGen's MonadFix instance, which will give 
us recursive bindings. In order to not bother with the details, we will use the 
RecursiveDo GHC language extension to yield recursive monadic bindings that look 
almost identical to normal monadic bindings:

{-# LANGUAGE RecursiveDo #-}

Now we can write a mutually recursive signal that produces the Fibonacci numbers:

fibonacci :: SignalGen (Signal Int)
fibonacci = do
    rec fib  <- delay 1 fib1
    fib1 <- delay 1 fib2
    let fib2 = (+) <$> fib <*> fib1
    return fib
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The magic is in the new rec keyword introduced by RecursiveDo. It lets us 
introduce a mutually recursive group of bindings. The delay function is the cons 
operation on signals:

delay :: a -> Signal a -> SignalGen (Signal a)

Just to confirm our implementation works:

> sigtest fibonacci 
[1,1,2,3,5,8,13,21,34,55]

RecursiveDo is really just syntactic sugar: all the magic happens in the MonadFix 
class and instance, which doesn't depend on any magic at all.

Signalling side-effects
With effectful, it's easy to turn IO effects into input signals in the network. To use 
signal output as a parameter to a side effect, we can use variants of effectful that 
take the signal to bind to as parameter:

effectful1 :: (t -> IO a) -> Signal t -> SignalGen (Signal a) 

effectful2 :: (t1 -> t2 -> IO a)
-> Signal t1 -> Signal t2 -> SignalGen (Signal a)

In the following small program, on every line read outputs the sum of read numbers 
so far:

linesum :: SignalGen (Signal ())
linesum = do
   sigInputNumbers ← fmap read <$> effectful getLine
   sigSumNumbers   ← transfer (0::Int) (+) sigInputNumbers
   effectful1 (putStrLn . ("sum " ++) . show) sigSumNumbers

Or, without do notation we could write:

fmap (fmap read) (effectful getLine)
>>= transfer (0::Int) (+)
>>= effectful1 (putStrLn . ("sum: " ++) . show)

Here it is in action:

> sigtest linesum

5

sum: 5

10

sum: 15
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3

sum: 18

This should demonstrate that it's really trivial to hook side effects to signals at any 
point of a network: beginning (with effectful), middle, or end (with effectful1 or 
effectfull2 or effectful3, or effectfull4). This is one of Elerea's strong points.

Dynamically changing signal networks
In Elerea, signal networks' structure is defined in the SignalGen monad. At 
first glance, this seems restrictive in that we couldn't alter the structure once the 
network is initialized. However, this is not true. Elerea provides a combinator called 
generator, which embeds a SignalGen producing signal into a signal:

generator :: Signal (SignalGen a) -> SignalGen (Signal a)

This is a powerful combinator that allows us to build very dynamic networks.

Let's take an example. Say we want to initiate a new countdown signal whenever a 
number is read from standard input. Empty lines decrease existing countdowns and 
when a countdown reaches zero, it is deleted. Our countdown signal is simple and 
self-explanatory:

countdown :: Int -> SignalGen (Signal Int)
countdown n = stateful n (subtract 1)

A signal of multiple countdown signals has type Signal [Signal Int]. A signal 
generator for such signal has the type of readCountdowns here:

readCountdowns :: SignalGen (Signal [Signal Int])
readCountdowns = do
    input <- effectful getLine                -- (1)
    generator $ do                            -- (2)
        x <- input
        return $ case x of                    -- (3)
            "" -> return []
            _  -> return <$> countdown (read x)

This function is a mouthful, so let's break it down. At (1), we initialize a signal that 
reads lines from standard input. At (2), we apply generator to a value which has 
the following type: Signal (SignalGen [Signal Int]), that is, a signal which 
produces signals generators for lists of countdown signals. The signal itself takes 
a line and pattern-matches on its contents (3): an empty line doesn't produce any 
signals, while a line with one number produces a countdown that starts with the 
specified amount of time.
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To drive a dynamic signal collection, we will save some trouble by utilizing the 
collection function with the following signature:

-- Implementation taken from Elerea's haddocks
collection :: Signal [Signal a] -> (a -> Bool) -> SignalGen  
  (Signal [a])
collection source isAlive = …

Note that collection is not provided by the library, but its implementation is found 
from the documentation, under the section A longer example

With collection, we can easily combine a signal of new signals (Signal [Signal 
a]) and a filtering function (a → Bool) to upkeep a dynamic set of signals (Signal 
[a]). For the countdowns, the choice of filtering function is (> 0), that is, the 
countdown is deleted once it hits zero.

To drive a dynamically updating collection of countdowns, we write the following:

runCountdowns :: SignalGen (Signal [Int])
runCountdowns = do
    csig <- readCountdowns
    collection csig (> 0)

Very straightforward. Let's confirm it works:

> sigtest runCountdowns

5

5

5

5

10

[[5],[5,4],[5,4,3],[5,4,3,2],[4,3,2,1],[3,2,1],[2,1],[1],[10],[9]]

On every line, existing countdowns tick one down and new countdowns are added 
when a numeral is given, as intended. Now we know how to use generator to 
create dynamic signal networks in Elerea.
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Performance and limitations in Elerea
The selling point in Elerea is its monadic interface that hides some implementation 
details and makes it trivial to compose signal generators and signals. As a 
consequence, plumbing signals and generators is somewhat restricting, although 
overall the interface is very powerful.

The biggest concern with Elerea is its eventless nature: every time, the signal 
network updates as a whole. It's not possible to update just a part of the network; 
on every tick, all signals are re-calculated. By using the memo primitive, we can 
memoize values within one update round, but this is always manual work. The 
library combinators memoize their values, but memoizing custom combinations is 
left to the library user.

Events and signal functions with Yampa
Yampa is an FRP framework that supports both continuous and discrete time. In 
Yampa, the most important concept is the signal function (SF). Signal functions are 
first-class transformations on signals, that is, time-dependent values:

data SF a b  -- think: Signal a → Signal b

-- instance Arrow, ArrowLoop, Category

Signal functions can be created and manipulated via the Arrow interface. For 
instance, a pure transformation (a → b) is turned into a signal function simply with 
arr from the Arrow class. Here's a signal function which squares values passed 
through it:

square :: SF Double Double
square = arr (^2)

The embed utility function can be used to test signal functions:

embed square (1, [(0, Just 2), (1, Just 3)])

[1.0,4.0,9.0]

The type signature of embed looks like this:

embed :: SF a b -> (a, [(DTime, Maybe a)]) -> [b]

The first argument is the signal function to sample from. The second is a tuple  
that consists of the initial input to the signal function and a list of sample times 
(DTime ~ Double), possibly accompanied by a new input value.
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Because in Yampa we could theoretically sample the network represented by a signal 
function at any time (up to Double precision), we need to explicitly specify the times 
when new input is fed into the network. Note that embed is a pure utility; normally, 
the network is hooked to IO input and output using reactimate (introduced a bit 
later).

Signal functions are inherently pure: it's not possible to produce side effects within  
a signal function.

Besides creating signal functions from Haskell functions, we can combine existing 
SFs using general combinators from the Category, Arrow, and ArrowLoop classes. 
Here are the most important ones. For clarity, they are here specialized for SF:

arr   :: (b -> c) -> SF b c         -- lift pure function

(>>>) :: SF a b → SF b c → SF a c   -- like (.)
(<<<) :: SF b c → SF a b → SF a c   -- like flip (.)

(^<<) :: (c → d) → SF b c → SF b d  -- combine arr and (<<<)
(>>^) :: SF b c → (c → d) → SF b d  -- combine arr and (>>>)

(&&&) :: SF b c → SF b  c' → SF b       (c, c')
(***) :: SF b c → SF b' c' → SF (b, b') (c, c')

loop  :: SF (b, d) (c, d) -> SF b c -- SF with feed-back

Adding state to signal functions
Signal functions in Yampa are continuous. State in a continuous setting is slightly 
different from the discrete case. Due to computational limitations, we can't express 
really continuous updates and need to use a discrete approximation. Then we need 
to make sure the state is always updated correctly no matter how often or rarely an 
evaluation occurs.

How would we implement a sum signal that works with continuous time? By using 
loop, we can get feedback of the sum so far. Effectively, loop ties a function's output 
to its input. That's not exactly what we want, however: we want to somehow specify 
the start value for the loop. Otherwise, we get an infinite loop where the output is 
fed as input indefinitely:

loop (arr go)
    where go (x,s) = let s' = x + s in (s', s')
    -- loops indefinitely
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The solution here is to delay the feedback signal by one iteration. For this, Yampa 
provides a convenient combinator, iPre:

iPre :: a -> SF a a

iPre expects the initial value as argument (plain pre just leaves the initial argument 
undefined). With iPre we can delay the feedback signal for a sum signal with its 
initial value zero:

cSum :: SF Int Int
cSum = loop (second (iPre 0) >>^ go)
 where go (x,s) = let s' = x + s in (s', s')

Looping with an initial value is so common that Yampa provides a combinator 
loopPre that is a combination of loop and iPre.

Working with time
Many tasks, in games and simulation, for instance, must interact with time. We need 
to know how much time has passed since the beginning of evaluation or locally since 
the last iteration.

Yampa defines a signal that yields time since the beginning of signal function 
evaluation:

time :: SF a Time

> embed time ((), [(0.5, Nothing), (1, Nothing)])

[0.0,0.5,1.5]

We can build a tick function that gives the time passed since the last evaluation by 
us:

tick :: SF a Time

tick = time >>> loopPre 0 (arr (\(t, t') -> (t - t', t)))

> embed tick (0, [(1.3, Nothing), (2.2, Nothing)])

[0.0,1.3,2.2]

So it's easy to get the running time or a tick from the beginning of evaluation. But 
suppose we want to express a time from the beginning of some event? To get the 
start time of an animation, for instance. We need to use the discrete part of Yampa: 
events and switches.
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Switching and discrete-time events
Yampa supports discrete-time FRP via events and switches. An event containing a 
value of type a is represented by Event a:

data Event a = Event a | NoEvent
-- instance Monad, Alternative, …

An event source is a signal function with some type SF a (Event b). Some example 
event sources are as follows:

never :: SF a (Event b)
now   :: b → SF a (Event b)
after :: Time → b → SF a (Event b)

Because event source is just a normal SF, we could yield events with arr. However, 
then we should take care that the event is emitted only once: because signal functions 
are continuous, unless the event is suppressed on subsequent samplings, it could 
occur more than once.

To react on events, we need switches. The basic one-time switch has the following 
type:

switch :: SF a (b, Event c) -- Default signal
       -> (c → SF a b)      -- Signal after event
       -> SF a b

The following signal yields the string foo for first 2 seconds, after which an event is 
fired and bar is yielded:

switchFooBar, switchFooBar' :: SF () String

switchFooBar  = switch  (constant "foo"&&& after 2 "bar") constant
switchFooBar' = dSwitch (constant "foo"&&& after 2 "bar") constant

Function dSwitch is identical to switch except that, at the time of the event, the 
previous signal is yielded one more time. The following shows the difference:

> embed switchFooBar ((), [(2, Nothing), (3, Nothing)])

["foo","bar","bar"]

> embed switchFooBar' ((), [(2, Nothing), (3, Nothing)])

["foo","foo","bar"]
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This is a one-time switch: once the event occurs, we switch permanently to the new 
signal function. To switch on more events, we can apply switch recursively. For 
instance, this signal alternates between foo and bar every 2 seconds:

switchRec :: SF () String
switchRec = go (0, "foo", "bar")
 where
    go (t, x, y) =
        switch (constant x &&& after (t + 2) (t + 2, y, x)) go

Here, time for the after combinator is just threaded through as an argument. Note 
that the time signal and Time arguments are always relative to current evaluation 
context, irrespective of switching.

Another switch combinator is rSwitch (and its delayed version, drSwitch). This 
recurring switch accepts whole signal functions as events, and every time replaces 
the active SF with newly emitted SF. Take a look at its type:

rSwitch :: SF a b -> SF (a, Event (SF a b)) b

The first argument is the initial SF a b. Resulting SF expects an Event (SF a b) 
stream tupled with actual input a.

An example use of a recurring switch would be changing walk directions in a game, 
say between foo and bar. We can write this as follows:

swap :: SF Bool String
swap = rSwitch foo <<< identity &&& swapEv -- (1)
 where
   swapEv = edge >>> sscanPrim go True (Event foo) -- (2)

   go tag = event Nothing $ \_ -> -- (3)
      Just (not tag, Event $ if tag then bar else foo)

   foo = constant "foo"
   bar = constant "bar"

Here, swap is an SF that reads, for instance, a button press status as a Boolean. Its 
output alternates between foo and bar, so that every button press (from pressed 
to unpressed; False to True) triggers a switch. At (1), the Boolean input signal 
is tupled into the original signal and an event signal (swapEv), which is fed into 
rSwitch.

The event signal at (2) applies an edge detector transformation (edge) from the 
Yampa API. It yields an event every time an edge is detected in the input signal:

edge :: SF Bool (Event ())
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In the second step, we scan over the Event signal with sscanPrim and on every 
triggered event yield an SF different from the previously active (foo or bar). The tag 
in (3) indicates which of the SFs is currently active. The combinators here are:

sscanPrim :: (c -> a -> Maybe (c, b)) -> c -> b -> SF a b

event     :: a -> (b -> a) -> Event b -> a

Confirm our swap works as intended:

> embed swap  (True, zip [1..] (map Just [False, False, True, False,  
    True]))

["foo","foo","foo","bar","bar","foo"]

The third type of switch is perhaps the hardest to understand. It's called a call-with-
current-continuation switch, kSwitch, or its delayed version, dkSwitch. Its type is:

kSwitch
  :: SF a b                    - initial SF
  -> SF (a, b) (Event c)       - event trigger
  -> (SF a b -> c -> SF a b)   – continuation SF
  -> SF a b

This switch allows access to the previous SF when deciding the continuation based 
on an event. We can choose to use the current SF in the new SF, for instance, as a pre- 
or post-processor. Like a normal switch, kSwitch switches only once. The difference 
is that deciding the continuation (third argument) is completely decoupled from the 
initial SF and event trigger. kSwitch composes a bit better than switch.

As a rather artificial example, we have the following SF:

withCC :: SF Int Int
withCC = kSwitch (arr (+1)) trigger cont
 where
   trigger = sscan f NoEvent

   f _ (inp,_) | inp > 1 && inp < 10 = Event (*inp)
               | otherwise = NoEvent

   cont f f' = f >>> arr f'

Initially, this SF adds 1 to every number in the stream. When a number larger than 
1 and smaller than 10 is encountered, from that point onward the numbers are also 
multiplied by that number. Note how in deciding the continuation (cont), we don't 
know or care about the specifics of the initial SF, but we can use it as a part of the 
final SF.
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Example run:

> embed withCC (1, zip [1..10] (map Just [10,2,10,3,10]))

[2,11,6,22,8,22]

Integrating to the real world
In all Yampa examples so far, we have simulated the pure signal functions with 
embed. Signal functions are pure, so pure simulation is always possible. However, in 
real applications, we want to integrate SF into a loop with the real world, IO. Because 
signal functions store state, mere multiple calls to embed would be insufficient. We 
need to preserve the state somehow.

For the simplest cases, Yampa provides a single combinator that guides us through 
the integration. It's called reactimate and its type is:

reactimate
  :: IO a                           -- Init
  -> (Bool -> IO (DTime, Maybe a))  -- Get input
  -> (Bool -> b -> IO Bool)         -- Process output
  -> SF a b                         -- Signal function
  -> IO ()

Besides the SF to execute, we need to define three IO actions: one to supply the initial 
input to the SF, one to sense input, and one to actuate output.

The sense function is informed via an argument whether it can block or not. The 
sense result should be a tuple of time difference since the last iteration and new input 
(if any).

The actuation is informed via an argument whether the output has changed since the 
last actuation. When the actuation returns True, reactimation stops there.

However, in practice, reactimate always calls the sense function with False (no 
block) and the actuation function with True (has changed). These arguments have 
no effect in Yampa version 0.10.5 at least.

The following main reads numbers from standard input and adds them together 
until hitting 42 or more, after which it exits:

main = reactimate init sense actuate sf
 where
   init = return "0"

   sense _ = do
      ln <- getLine



Chapter 13

[ 331 ]

      return (1, Just ln)

   actuate _ out = do
      putStrLn out
      return (out == "END")

   sf = arr read
      >>> sscan (+) 0
      >>> dSwitch (arr show &&& arr (filterE (>= 42) . Event))
         (\_ -> constant "END")

In complex applications, it isn't feasible to make reactimate the main loop of the 
program. The alternative is to use reactInit to yield a ReactHandle and react to 
feed input to it. Essentially these two functions decompose reactimate to two parts 
that allow for more flexibility.

Reactive-banana – Safe and simple 
semantics
The third and final approach to FRP we'll take a look at is Reactive-banana. Like 
Yampa, we have both continuous- and discrete-time semantics at our disposal. In 
Reactive-banana terminology, events describe discrete time, while behaviors describe 
continuous time. Behaviors in Reactive-banana are like signals in Elerea. Historically, 
the names event and behavior were the first to occur:

data Event a    -- instance Functor
data Behavior a -- instance Functor, Applicative

Note that behavior is not Monad, unlike Elerea's signal, which did have a Monad 
instance. Instead, Reactive-banana supports moments as reactive computation 
contexts. There is a pure Moment monad, impure MomentIO monad and MonadMoment 
class that is used to overload moment context:

data Moment a     -- instance Monad, MonadFix, MonadMoment
data MomentIO a   –- instance ..., MonadIO

class Monad m => MonadMoment m where
    liftMoment :: Moment a -> m a

instance MonadMoment Moment
instance MonadMoment MomentIO
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Example – First GUI application
The Reactive-banana framework is rather tightly tied with frameworks that provide 
the extra glue to drive reactive applications. Such frameworks exist for at least 
wx and sdl graphics libraries, in Haskell packages reactive-banana-wx and 
reactive-banana-sdl2. We'll be using the WX framework in this section:

cabal install reactive-banana-wx

In the Reactive.Banana.Frameworks module, there are the following data-types 
and functions that are used to execute any reactive network:

data EventNetwork
 
compile :: MomentIO () → IO EventNetwork

actuate :: EventNetwork → IO ()
pause   :: EventNetwork → IO ()

We express the reactive network as a MomentIO (), compile that into an 
EventNetwork and use actuate to start it, pause to stop it.

Graphical display with wxWidgets
Our first example will be a counter with a very simple GUI: a display for the current 
counter value along with up and down buttons.

We start by defining the UI in the wxHaskell way, with a light preamble:

-- file: reactive-banana-counter.hs
{-# LANGUAGE ScopedTypeVariables #-}

import Graphics.UI.WX
import Reactive.Banana
import Reactive.Banana.WX

app :: IO ()
app = do
   f <- frame [ text := "App" ]
   up <- button f [ text := "Up" ]
   down <- button f [ text := "Down" ]
   res <- staticText f []
   set f
      [ layout := margin 10 (column 5
         [ widget res
         , row 5 [widget up, widget down]
         ])
      ]
-- ...
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There's nothing reactive here yet. We have defined a frame (window) of the 
application (f :: Frame ()), two buttons (up and down), and a text element (res :: 
StaticText ()), and set a layout for the frame.

Next, we use the Reactive.Banana.WX glue to build an event network that uses  
the two buttons as event sources and the text field as output. The relevant glue 
functions are:

event0
  :: w
  -> Graphics.UI.WX.Event w (IO ())
  -> MomentIO (Reactive.Banana.Event ())

sink
  :: w -> [Prop' w] -> MomentIO ()

Note that there are two distinct types called Event in event0: one from  
Reactive-banana and other from the WX library. Those w type variables stand  
for widgets, for instance, buttons (up, and down).

Here is the network description for our counter application:

-- ... 
let network :: MomentIO ()
    network = do
      eup   <- event0 up command -- (1)
      edown <- event0 down command

      (counter :: Behavior Int)  -- (2)
         <- accumB 0 $ unions    –- (4)
            [ (+1) <$ eup
            , subtract 1 <$ edown
            ]

      sink res [ text :== show <$> counter ] -- (3)
-- ...

At (1), we bind commands (clicks) from the WX widgets up and down into  
Reactive-banana events eup and edown. At (2), we define the counter as a  
Behavior Int, that is, a time-varying integer. That integer then updates contents  
of the text box res at (3) by using sink.
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At (4), we use two functions from Reactive-banana itself: accumB and unions. The 
applicative (a <$ ev) is used to replace event's ev emitted value with a. The two 
event sources of functions are merged with unions, which yields any of the events 
if available, and if events occur simultaneously, they are combined with function 
composition. The accumB combinator transforms a discrete signal of events into a 
continuous behavior:

accumB
  :: MonadMoment m =>
  a -> Reactive.Banana.Event (a -> a) -> m (Behavior a)

Now that we have a network description of type MomentIO (), we use compile to 
turn it into an EventNetwork and actuate to execute it:

-- ... 
    evnet <- compile network
    actuate evnet

main = start app

The application is compiled normally with GHC:

ghc reactive-banana-counter.hs

[1 of 1] Compiling Main             ( reactive-banana-counter.hs, 
reactive-banana-counter.o )

Linking reactive-banana-counter …

We now have built a GUI in Haskell with Reactive-banana FRP and wxWidgets. Due 
to the portability of wxWidgets, the exact same reactive-banana-counter.hs file 
will compile and run under at least Linux, Mac, and Windows systems. I am using 
the 0.92.2.0 version of the wx Haskell library, which is compatible with wxWidgets 
2.9 and 3.0. Here's a screenshot of the application under one Linux machine:
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Combining events and behaviors
Events and behaviors are the core foundation of FRP in Reactive-banana. Behaviors 
can be composed via the Applicative interface, but numerous other ways are also 
provided by the Reactive-banana API. Some primitives are provided:

never :: Event a

unionWith
  :: (a -> a -> a) -> Event a  -> Event a -> Event a

filterE
  :: (a -> Bool) -> Event a -> Event a

apply
  :: Behavior (a -> b)  -> Event a -> Event b

It's apparent from the types what these functions do. unionWith combines two events 
using the first argument to decide the result in case of simultaneous emits. filterE 
suppresses events that don't match a predicate. apply applies a time-varying function 
to events. Often apply is encountered in its infix form, (<@>).

A special case of apply is replacing events with time-varying values. The (<@) 
combinator can be used in this case. For example, to turn every event from etick 
into a random value sampled from behavior brandom, we write:

brandom <@ etick :: Event a

These primitives are stateless. To include state, for instance, accumulators, we need 
the Moment context. accumE scans an event source of functions with an initial value, 
similar to scanl':

accumE
:: MonadMoment m =>
a -> Event (a -> a) -> m (Event a)

Note that accumE is subtly different from accumB we used in our example seen 
before. The latter produces a behavior as opposed to an event. In fact, we can express 
accumB in terms of accumE and another primitive stepper:

stepper
:: MonadMoment m => a -> Event a -> m (Behavior a)
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Given an initial value and event stream, stepper yields a continuous behavior that 
uses always the latest value from the event stream (initial value if no event has fired 
yet). Writing accumB is then easy: accumulate events and memoize the latest value 
for the behavior:

accumB a ev = stepper a =<< accumE a ev

Switching events and behaviors
In Reactive-banana, we can switch in both discrete (Event) or continuous (Behavior) 
streams. There's only one switch type for each case:

switchE
  :: MonadMoment m =>
  Event (Event a) -> m (Event a)

switchB
  :: MonadMoment m =>
  Behavior a -> Event (Behavior a) -> m (Behavior a)

It's clear from the types how these switches work: switchE takes only one argument, 
an event of events. The effective event is always the latest one from the event event 
stream.

switchB takes two arguments: the initial behavior and an event of behaviors.  
The effective behavior is the latest from event or initial if no event has yet emitted.

Observing moments on demand
Almost always, there is only one MonadMoment computation in an application.  
That moment is what eventually gets turned to an EventNetwork.

In some special cases, it might be convenient to execute pure Moment computations 
on demand. The function that executes moments emitted in an event is called 
observeE:

observeE
:: Event (Moment a) -> Event a

A useful combinator to use along with observeE is valueB, which samples a value of 
the Behavior:

valueB
:: MonadMoment m => Behavior a -> m a
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Essentially, observing allows executing "mini FRP networks" within the main 
network in a single step. When a Moment in a network is emitted, observeE 
immediately executes it and yields the result value. The network is discarded 
immediately. The only constraint is that the mini network has to be pure, that is, 
expressed as a Moment.

Nested networks probably have their uses. A small uncontrived example is hard to 
conceive, but one could be running a simulation that is expressed as an FRP network 
whenever an event occurs.

Recursion and semantics
Recursion is the final but certainly not the least important aspect of FRP we have yet 
to consider in Reactive-banana. Mutually recursive behaviors and events are the key 
for success in reasonably complex FRP networks.

Unlike the other frameworks (Elerea, Yampa) we have used in this chapter,  
Reactive-banana gives much simpler semantics with relation to recursive definitions. 
In general, recursion is always well defined as long as an event depends on itself 
only via a behavior, and vice versa.

In practice, this means that among other things, the second argument of stepper or 
(as a consequence of stepper) accumB can always safely depend on the result:

stepper :: MonadMoment a => a → Event a → Behavior a
accumB :: MonadMoment m => a -> Event (a -> a) -> m (Behavior a)

What about accumE? Feeding the result as an argument to accumE could at first 
glance look problematic. Consider:

ev <- accumE 1 ((+) <$> ev)

But this won't fail per se: instead, the event will just never occur! It won't enter an 
infinite loop or anything.

To make the preceding recursive definition do something sensible, we would need to 
supply an initial value for the event stream. This is only possible by using apply and 
expressing the event as a behavior – thus being perfectly valid.

In general, it's hard if not impossible to produce an infinite loop with the Reactive-
banana API unless valueB is used.
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One way to write the Fibonacci sequence implemented in Reactive-banana looks like 
this:

{-# LANGUAGE RecursiveDo #-}

fib :: Event () -> Moment (Behavior Int)
fib step = mdo
  fib1 <- stepper 1 (fib2 <@ step)
  fib2 <- accumB 1 ((+) <$> fib1 <@ step)
  return fib1

Basically, this is a combination of two mutually recursive behaviors: fib1 and fib2. 
The first one starts at the head of the sequence, while fib2 starts at the tail. At every 
step, the head (fib1) advances to the value of the tail, while the tail advances to the 
sum of current tail value.

Adding input and output
By now, you are familiar with the functions compile and actuate. Compile created 
from a network description (MomentIO ()), an EventNetwork in the IO monad, 
and actuate was used to execute the EventNetwork. In our GUI example, we used 
the reactive-banana-wx library as an aid to attach our network to the wxWidgets 
framework. What if we don't want to use wxWidgets or need to use some other input 
and output?

All the necessary glue for input and output is located in the Reactive.Banana.
Frameworks module. In this section, we'll add input and output that are IO actions, 
and also see how to add dynamic input and output in the network.

Input via polling or handlers
The simplest way to add continuous input to a network is by using fromPoll:

fromPoll :: IO a → MomentIO (Behavior a)

fromPoll executes the IO action frequently, simulating a continuous Behavior a. 
It's clear that the IO action must be cheap so that the network isn't slowed down 
considerably.

An example use of fromPoll is a stream of random numbers:

fromPoll (randomRIO (0,1) :: IO Double)
:: MomentIO (Behavior Double)
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The Behavior is updated every time the network processes an input event. In the 
case of a single random number, that means same random number is provided if it's 
used in multiple places. It makes sense, because semantically Behavior is a function 
of time: it doesn't get different values at the same time.

Pollers are sometimes useful. However, the preferred way to add input is via 
handlers. The Handler API is:

type Handler a = a → IO ()

newtype AddHandler a =
    AddHandler { register :: Handler a → IO (IO ()) }

newAddHandler  :: IO (AddHandler a, Handler a)

fromAddHandler ::     AddHandler a → MomentIO (Event a)
fromChanges    :: a → AddHandler a → MomentIO (Behavior a)

The idea is to use newAddHandler to create a pair of:

• Handler a: An IO action to push input of type a to the handler.
• AddHandler a: Event handler registration facility. register addHandler 

myHandler registers the handler myHandler to fire whenever an event is 
fired. The returned IO action can be used to unregister the handler.

Handlers are hooked to the network as either discrete (Event) or continuous 
(Behavior) input with fromChanges or fromAddHandler. Note that fromChanges 
is just a combination of stepper and fromAddHandler: fromAddHandler >=> 
stepper x0.

Reactimate output
Performing output from a network is simple by using reactimate:

reactimate :: Event (IO ()) → MomentIO ()

Essentially, we just express the output as an IO action event. Using the Functor 
instance for Event, it's easy to turn any event into an IO action.

So performing output on an event is easy. How about output based on behavior? 
Behaviors are continuous and we can't perform IO actions continuously. However, 
due to performance reasons, behaviors have rather sparse steps when they update. 
We can hook IO actions to these update steps or changes:

changes :: Behavior a → MomentIO (Event (Future a))
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Changes of a behavior don't necessarily correspond to real changes in the value 
(there's not really a way to know whether the value has changed, as in not equal).

The new values are returned in events and wrapped inside the Future monad.  
The values are not immediately available, as the name future suggests. Instead,  
we access the new values via reactimate':

reactimate' :: Event (Future (IO ())) → MomentIO ()

This works essentially just like reactimate except that it works with values from 
changes.

Input and output dynamically
It's possible to add and modify input and output dynamically in Reactive-banana. 
The function that allows this is called execute and has the following type:

execute :: Event (MomentIO a) → MomentIO (Event a)

execute turns events of MomentIO computations to events of their return values. 
This gives a lot of freedom: we can create new handlers (liftIO newAddHandler) 
or perform arbitrary IO or MomentIO code. However, there are no guarantees to 
execution order of the actions. This is why it's preferred to not use execute directly 
for output. You can call reactimate from within execute though.

For dynamic input, it's useful to combine execute with switchE. Yielding a new 
Event in the MomentIO monad (acquired via newAddHandler) in the argument for 
execute will yield an Event (Event a) – an event of events. Use switchE to turn that 
to an event that uses always the newest event as source.

Summary
In this chapter, we have worked with three different approaches to FRP: Elerea, with 
its safe monadic interface and discrete-only signals; Yampa and its first-class signal 
functions; and finally, Reactive-banana and its safe and simple hybrid semantics. 
Implementation differences are rather radical, but the theoretical FRP basis is still 
the same: model values as functions of time and include discrete events. It's also 
characteristic that interaction with the outside world, input and output, is more or 
less separated from application logic. Recursion is an important technique in FRP. 
For proper value recursion of monadically retrieved values in Haskell, the MonadFix 
class along with mfix or RecursiveDo is a must and often encountered in Haskell 
FRP code.
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The next and final chapter will comprise a collection of robust, extensively tested 
and production-ready Haskell libraries for more different and less general use. It's 
an unfortunate fact in the Haskell ecosystem that even some of the very best libraries 
are poorly documented in their APIs. Hopefully, the recommendations in the next 
chapter of this book will give you some insight into the design and use of selected 
libraries.
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Library Recommendations
This final chapter will list out generally useful Haskell libraries. As with any 
programming language ecosystem, libraries are a very important part of it. Good, 
modular, and extensible libraries are what really make for productive programming. 
The Haskell ecosystem has libraries of multiple varieties, from bad to outstanding. 
All of the libraries listed here are considered robust and safe and recommended for 
use in production.

It's an unfortunate fact that choosing a good Haskell library for your needs is no 
easy task. There are ways to compare and weigh libraries: When was the package 
last updated? Is its maintainer active? Is the library present in the newest Stackage 
snapshot? Still, it's easy to miss an excellent library for your specific use. Sometimes 
there might be a niche, not well-maintained library that fits just your need. Then use 
that, and refactor later if necessary. Haskell gives guarantees that make refactoring 
easy, so it's no big deal. If you like the library, it might be that maintaining the library 
yourself is not a big effort.

In this chapter, we will be covering the following topics:

• Lists of libraries sorted by use case structured in 
• Overview of use cases, features, and robustness of mentioned libraries
• Examples for most libraries

Representing data
Libraries for storing text and binary, and arbitrary data in different containers:

• vector: High-performance fixed-size vectors with a powerful fusion 
framework. Supports unboxed (primitive) and boxed (arbitrary) elements 
with respective performance.
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• text: Fast, memory-efficient, and unicode-correct text datatypes. Both strict 
and lazy variants. Orders of magnitude faster than String in many use cases 
(not all).

• bytestring: Extremely fast and efficient strict and lazy binary datatypes. 
Interfaces very well with the C FFI supporting marshalling in O(1).

• containers: General-use immutable graph, map, set, sequence (a list with 
O(1) cons and snoc), tree structures for storing arbitrary (boxed) data.

• unordered-containers: Efficient, immutable hash maps (tables) and sets.
• hashtables: Efficient mutable hash maps and sets.
• mutable-containers: A library that abstracts over multiple mutable 

variable and container types.

Refer to Chapter 2, Choose the Correct Data Structures for use and discussion of these 
libraries and more about data representation.

Functional graphs
The best representation for a graph depends a little on the use case. The Graph type 
in containers uses an adjacency list and a few basic graph operations are provided.

One unique Haskell library, fgl, for Functional Graph Library, takes a different 
approach to programming with graphs, by considering graph as an inductive  
data-type.

One of the core ideas in fgl is contexts and decomposition. A context of a graph 
node is a triplet of the node's predecessors, successors, and the node itself. All graph 
manipulations can be expressed as inductive recursions over the contexts of a graph. 
Furthermore, it's surprisingly efficient.

For reference, here's a very, very small section of the fgl API:

-- module Data.Graph.Inductive.Graph

type Adj        b = [(b, Node)]

type Context  a b = (Adj b, Node, a, Adj b)

type Decomp g a b = (Mcontext a b, g a b)

empty :: Graph    gr => gr a b
match :: Graph    gr => Node → gr a b → Decomp gr a b
(&)   :: DynGraph gr => Context a b → gr a b → gr a b
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The a and b type variables are for node and edge labels, respectively.

The API is overloaded over different representations of graphs (type variable gr). 
Different implementations are in distinct modules; for instance, one using a patricia 
tree is located in Data.Graph.Inductive.PatriciaTree module and called Gr a b.

Here's a small toy program which illustrates (de)composition using contexts. The 
build function creates a graph while sumNodes consumes one:

-- file: fgl.hs

import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.PatriciaTree

build :: Int -> Gr Int ()
build 0 = empty
build n = (to, n, n, from) & build (n - 1) 
  where
    to   = []
    from = [ ((), m) | m <- [n - 1, n - 2 .. 0] ]

sumNodes :: [Int] -> Gr Int () -> Int
sumNodes []      _ = 0
sumNodes (n:ns) gr = case mctx of
    Nothing           -> sumNodes ns gr
    Just (_,_,x,from) -> x + sumNodes
         (ns ++ [ m | (_,m) <- from ]) gr'
  where
     (mctx, gr') = match n gr

There are a lot of graph algorithms already implemented in fgl, as well as general 
combinators to help building your own special traversals. The feel in the library 
is very functional indeed: there's no need to drag along the graph or worry about 
keeping it consistent. In fgl, graphs are immutable, referentially transparent, while 
simultaneously not sacrificing speed.

Numeric data for special use
The libraries in this subsection are as follows:

• base (module Data.Fixed): Standard fixed-precision arithmetic from the 
base. Precision decided at compile-time.

• Decimal (module Data.Decimal): Fixed-precision Decimal type and some 
additional utility functions. Precision decided in runtime.
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• numbers (modules Data.Number.*): Constructive real numbers,  
multi-precision floats, fixed-precision decimals, and more. Precision  
decided at compile-time.

The Fixed datatype from base is good for fixed-precision arithmetic when you know 
the precision at compile-time. The precision is encoded as a phantom type, so it's not 
convenient to handle multiple precisions.

The Decimal library defines a more expressive DecimalRaw type and usually used 
Decimal synonym:

type Decimal = DecimalRaw Integer
data DecimalRaw I = Decimal 
     { decimalPlaces :: !Word8, decimalMantissa :: !i }

The exponent is expressed as a Word8, giving at most 255 decimal places. The 
Decimal library automatically handles multiple precisions in the exponent. The 
result is always most precise (largest exponent). There are also utility functions 
such as divide and allocate, that distribute a single decimal into multiple parts or 
portions. The parts are guaranteed to always sum to the original decimal.

The numbers library implements some exotic number types. It features floating 
point numbers with arbitrary, user-defined precision decided at compile-time. 
Constructive real numbers (full-precision reals; computation may diverge). 
Automatic forward differentiated numbers, interval numbers and natural numbers.

Encoding and serialization
It's an extremely common need to convert data from one format to another. In 
Haskell, we often like working with Haskell values, because of guarantees of 
strong-typing and the expressivity of algebraic datatypes, though data must then be 
converted to and from Haskell values. Conversions should also be fast, because there 
could be a lot of data.

There are a lot of data formats for different use cases: binary serialization to disk for 
local storage, efficiently packed formats for transmission over network and formats 
for interfacing with other applications, even users, in APIs and the like. Next, we'll 
glance at some of the widely used binary and text serialization libraries.
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Binary serialization of Haskell values
The libraries in this subsection are as follows:

• binary, cereal: Serialization using lazy ByteStrings using automatic or 
custom binary formats

• store: An even more direct and efficient serialization library from 
FPComplete

Efficiently serializing Haskell values into binary and back is crucial for performance 
in many applications. Fast serialization is important when handling lots of data, 
sending it over network or storing it on disk. For example, the performance of a disk 
cache system is highly dependent on the efficiency of serialization.

The binary package is a battle-tested, widely used library for serialization. It has 
a fast throughput and an easy API for adding new serialization instances. Usually, 
adding new instances by hand for custom types isn't necessary, because there are 
already generic serializations defined via GHC.Generics. If the format is important, 
however, it's necessary to create your own serialization instance.

The cereal package is more or less equivalent to binary. There are no major 
differences between these libraries, other than perhaps slightly different default 
serialization formats.

The store package is a newcomer in the serialization field from FPComplete. The 
library released in 2016 is in a couple of ways even faster than the already quite fast 
cereal and binary libraries. First, store avoids bit-swapping on x86: both binary 
and cereal use big endian for numbers while x86 uses little-endian. Store uses 
little endian. Second, store minimizes the number of allocations by allocating a 
correctly sized ByteString at once, instead of gradually allocating more space during 
serialization like is done in binary and cereal.

The store library has proved its competence benchmarks, showing as much as 
double the performance in encoding and decoding compared to binary and cereal. 
store isn't quite so portable as binary. In particular, older ARM processors are not 
supported.
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Encoding to and from other formats
The libraries in this subsection are as follows:

• cassava: Parsing and encoding of CSV. Engineered for high-performance 
applications, with ease of use in mind.

• aeson: Parsing and encoding of JSON.
• yaml: Parsing and encoding of YAML files. Utilizes parsers and type-classes 

from aeson.
• xml: Simple encoding of XML values. See the Parsing XML section (covered 

later in the chapter) for parsing (possibly malformed) XML in Haskell.
• json-autotype: Generating Haskell types from JSON formatted examples.

There are a lot of common data formats. Haskell has libraries to serialize to and from 
all commonly used formats. Thanks to GHC.Generics, the necessary boilerplate is 
often minimized: just write a Haskell datatype that corresponds to the serialized 
format, derive Generic, serialization instance and that's it! This approach applies at 
least to aeson and yaml.

Both aeson and yaml use the same base serialization type classes (ToJSON and 
FromJSON). This means that the same instances can be used to serialize in both JSON 
and YAML formats. The classes are defined as:

class FromJSON a where
  parseJSON  :: Value → Parser a 
 
  class ToJSON a where
  toJSON     :: a → Value
  toEncoding :: a → Encoding

That Value is a Haskell representation of JSON data. It's an algebraic datatype with 
constructors for objects, arrays, strings, numbers, booleans, and null.

JSON parsers are written in the Parser monad, which has Alternative, MonadPlus, 
and MonadFail instances, meaning there's no need for separate combinators 
needed to define parsers that accept multiple sources or to fail at any point in the 
parsing process. Most parsers can be written in applicative style, in other words, the 
following parses { "a":1, "b": 2 }:

AB <$> v .: "a" v .: "b"

One "feature" of aeson is that it parses only well-formatted JSON: for instance, all 
keys of objects must be quoted with double quotes. So this is not valid and will not 
parse by aeson: { a:1, b:2 }.
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Finally, usually the generic deriving method should be preferred. If it's inconvenient 
to make the field names of your Haskell datatypes match exactly with keys in the 
JSON format, there is some configuration available in the generic derive method. 
Another configurable besides field names is sum-type encoding, for which there are 
a few strategies.

To go the other way around, from JSON data to Haskell types, for example, to 
generate bindings to an API, there exists a library called json-autotype which does 
exactly this. It uses heuristics to generate Haskell datatypes along with ToJSON and 
FromJSON instances that translate according to the example input JSON files.

CSV input and output
Comma-separated values (CSV) is a relatively simple data format. A simple parser 
is easy to write yourself from scratch, but in a high-performance setting, it's better to 
use an optimized library such as cassava.

The conversion API in cassava is similar to that in aeson, with ToField and 
FromField classes:

class FromField a where
  fromField :: Field → Parser a

class ToField a where
  toField :: a → Field

The field type is an alias for strict ByteString.

cassava supports an alternative interface using named records. The corresponding 
type-classes are ToNamedRecord and FromNamedRecord. Named records are 
represented as hashmaps from headers to values:

type NamedRecord = HashMap ByteString ByteString

The unnamed interface uses Vectors for records.

cassava utilizes high-performance data-structures such as ByteString, Vector,  
and HashMap to parse and generate CSV files. Although CSV is a simple format, 
there are a lot of subtle corner cases that should be handled accordingly, such as 
double-quote escaped fields, different newlines, and mapping names from a header 
to record fields. cassava takes care of the details nice and fast.
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Persistent storage, SQL, and NoSQL
The libraries in this subsection are as follows:

• acid-state and safecopy: These libraries go hand in hand, giving a 
lightweight, disk-stored database of Haskell values with strong ACID 
guarantees and migrations.

• persistent: A by-product of the Yesod web framework, persistent is a 
backend-agnostic high-level query abstraction over SQL-like databases. 
Provides type-safe models with automatic schema migrations.

• esqueleto: Add type-safe SQL query EDSL that works with the persistent 
library and its models.

• HDBC: A SQL database abstraction layer similar to persistent except lower 
level. Provides transactions and marshalling of SQL values to Haskell values 
and the other way around.

• HDBC-odbc: Hook any ODBC-enabled database connection to HDBC.
• persistent-odbc: Hook any ODBC-enabled database connection to 

persistent via HDBC-odbc. Adds model and migration support.

acid-state and safecopy
The acid-state package provides a very good little database when the database can 
fit completely in memory. In short, acid-state uses a Haskell value as the database 
and user-defined transactions to query and update the database.

The database is stored in memory and on disk. The disk copy is very resistant to 
corruption, and call be rolled back to any earlier version assuming the event log and 
a checkpoint is still intact.

The safecopy package extends the cereal binary serialization package with 
version-controlled formats. It's relatively painless to change the serialization format 
even deep down in a hierarchy of datatypes.

The only downside is that both the old and new format must co-exist in code at least 
for the time of migrating. You are free to rename and move the old datatype freely, 
though. The only thing that matters is the version number, which must always 
increase when schema is changed.



Chapter 14

[ 351 ]

persistent and esqueleto
The persistent library makes it almost trivial to work with SQL and also NoSQL 
databases from Haskell. By defining your database models in the embedded model 
language, persistent generates strongly typed model definitions that work with 
persistent functions to insert, delete, and update rows. Lots of database adapters 
are available of varying quality, most notably SQLite, PostgreSQL, and MongoDB are 
well supported.

Here's how we would define a database schema in persistent, using 
TemplateHaskell and quosi-quoting:

share [mkPersist sqlSettings, mkMigrate "migrateAll"]
      [persistLowerCase|
User
  username Text
  UniqueUsername username
Post
  author UserId
  content Text
|]

In this schema, we have two tables, user and post. Both will have fields named 
id automatically. That UniqueUsername will turn into two things: a uniqueness 
constraint in the database and a Haskell data-constructor with which we can query 
unique rows from the table using getBy function of persistent.

To use this schema with say the SQLite in-memory backend, we could write the 
following Haskell main:

main = runSqlite ":memory:" $ do      -- (1)
  runMigration migrateAll             -- (2)

  uid ← insert $ User "foobar"        -- (3)
  insert $ Post uid "First post"

  posts ← selectList [PostAuthor ==. uid] -- (4)
                     [Asc PostContent]
  liftIO $ print $ map (postContent . entityVal) posts

There is nothing that isn't type-safe in this example. At (1), the runSqlite function 
initializes a connection to a database and runs an action in it. In case of exceptions, 
the database is closed cleanly.
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At (2), we perform database migrations if necessary. The migrator takes the schema 
definition as its target state, creating new tables and columns when necessary. Note 
that no destructive actions are taken automatically; dropping tables and columns 
must be done manually.

At (3), we perform a simple insertion to the database. The insert function returns 
the ID of the newly created row. We use this ID to consequently add a post entry to 
the database.

At (4), we use a simple selectList function of persistent to query some rows 
from the database. Note that persistent intentionally only deals with single tables: 
it doesn't do joins at all. Joins can be done either via raw SQL (automatic value 
interpolation is still provided in raw SQL queries) or with the esqueleto DSL.

Esqueleto is an add-on to persistent that brings complex database queries in a very 
type-safe embedded domain-specific language. Notably, table joins are supported, 
which is missing from persistent (unless manually crafting the query string). 
Queries in Esqueleto look a lot like queries in SQL, albeit with some extra noise from 
fancy operator names. A little noise is a small price to pay for compile-time checked 
queries.

For instance, here's an example query written in Esqueleto:

select $
from $ \(user `InnerJoin` post) → do
  on (user ^. UserId ==. post ^. PostAuthor)
  return (user, post)

This performs an inner join over tables user and post, returning all posts along with 
their author. It's equivalent to the following SQL:

SELECT user.* post.*
FROM user
INNER JOIN post ON user.id = post.author

HDBC and add-ons
HDBC is a library older than persistent, and is not as ambitious. HDBC aims to be 
merely an adapter between Haskell and SQL databases.

HDBC works with lots of databases, also including ODBC-compliant databases such 
as Microsoft SQL. persistent doesn't directly support ODBC, though there is an 
experimental library called persistent-odbc that adds ODBC compatibility to 
persistent via HDBC and HDBC-odbc.
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HDBC is a better choice than persistent when you don't need automatic migrations, 
whole model support in Haskell or type-checked queries. HDBC gives just the bare 
minimum to conveniently interact with a SQL database from Haskell: connecting to a 
database, performing queries, and marshalling SQL values.

Networking and HTTP
The libraries in this subsection are as follows:

• network (module Network) and network-uri: Low-level networking on 
bare sockets

• connection: Easy-to-use abstraction on TCP connections. Supports TLS and 
HTTP or SOCKS proxies out of the box.

Basic low-level networking using the network package has been discussed in  
Chapter 6, I/O and Streaming.

For a bit higher-level TCP client communication, the connection package provides 
a nice little abstraction layer. Plus, connection supports SSL/TLS and SOCKS 
with minimal configuration. A connection is established primarily by defining a 
configuration value of type ConnectionParams, given by:

data ConnectionParams = ConnectionParams
  { connectionHostname  :: HostName
  , connectionPort      :: PortNumber
  , connectionUseSecure :: Maybe TLSSettings
  , connectionUseSocks  :: Maybe ProxySettings
  }

This is a simple yet effective API for all primitive TCP connections. The get and 
put operations use ByteString as data format. connection is the best library choice 
when you don't need much more but connect via TCP and transmit bytes, securely, 
possibly via a proxy.

HTTP clients and servers
The libraries in this subsection are as follows:

• http-client: Making HTTP requests. Does not support HTTPS.
• http-client-tls: Adds HTTPS support to http-client.
• wreq: Lens-based HTTP client library. Easy to use when basic knowledge of 

lenses is assumed. Supports HTTP and HTTPS.
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• wai: Short form for Web Application Interface. Provides the bare minimum 
to receive and respond to client requests. Engineered for high-performance 
use

• warp: HTTP server for wai. Note that warp sits behind wai from the client's 
point of view.

For what it's worth, there is an old, minimally maintained library called HTTP that 
promises a simple interface for client-side HTTP requests. However, although fully 
functional, the HTTP library comes with a few unfortunate gotchas. HTTPS is not 
supported at all and the library can be too lazy in HTTP response values, which 
manifests as weird bugs.

In new code, it's recommended to use one of the newer HTTP client libraries, for 
instance, http-client, http-client-tls, or wreq. The first two use the connection 
library internally and provide a simple API. The wreq package takes abstraction even 
further, adding a lens-based API on top of http-client or http-client-tls.

It's worth mentioning that types generic for both server and client HTTP 
applications, such as status responses, headers, and URIs, can be found in a separate 
package, http-types. This is a dependency of many client and server-side libraries, 
and can be imported in library user's code if there's need for some URI manipulation.

For server-side HTTP programming without bells and whistles, the warp package 
is one high-performance option. It provides just enough to conveniently parse and 
respond to HTTP requests. warp has been proved to scale exceptionally well in multi-
core environments, much thanks to the threaded Runtime System but just as much to 
wonderful engineering by its authors. Plus, warp provides support for HTTP/2.

Supplementary HTTP libraries
The libraries in this subsection are as follows:

• json-rpc: JSON Remote Procedure Call server and client. Engineered for 
high performance with ease of use in mind. Uses conduits.

• websockets: Simple web socket server and client library on top of network. 
Does not support secure (WSS) connections.

• wai-websockets: Uses websockets in a wai (warp) application. Also uses the 
websockets library. Use this if you already run a wai application and want 
to add websocket support to it.

• REST: Can be found on silkapp.github.io/rest. Defining REST APIs in 
Haskell, with autogeneration of JavaScript client code and documentation.

silkapp.github.io/rest
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JSON remote procedure calls
Many web services provide JSON-RPC APIs that more or less conform to the official 
JSON-RPC specifications. Connecting to such a web service is relatively easy with 
any HTTP client. And if the API is too far from version 1 or 2 of the JSON-RPC spec, 
that might be an easier route than using the json-rpc library.

json-rpc works with all standard-conforming APIs. It adds its own logging (via 
monad-logger) and uses conduits to send and receive messages. Conforming to the 
spec, it tracks request IDs automatically. The biggest pain point of using json-rpc 
is that it uses conduits and its own monad transformer, the setup of which is non-
trivial for those unfamiliar with either.

The jsonRpcTcpClient/jsonRpcTcpServer functions provide simple JSON-
RPC client and server that don't necessitate knowing about conduits; however, 
the exposed configuration leaves more to be desired. For instance, it's not possible 
to override request or response headers, in which case one must drop to defining 
conduit source and sink for requests and responses manually.

It's worth noting that non-standard authentications in JSON-RPC, in other words, 
those that require an authorization key in the top-level JSON object, are not at all 
supported by json-rpc (without modifying the source) at least as of version 0.7.1.1 
of the library.

Using WebSockets
The websockets package makes writing WebSocket applications, both client and 
server, in Haskell a breeze. The API is simple, and the internals are engineered for 
speed and ease of use. For instance, there are multiple variants of receive and send 
functions: for ByteString, Text, and user-defined serialization formats via type-class.

The websockets library is rather flexible, and can be used together with other 
interfaces. In particular, the wai-websockets library provides a compatibility layer 
between websockets and wai applications, such as the warp HTTP server. This 
makes it possible to support both HTTP and upgrading to web sockets in the same 
server application.

Programming a REST API
One of the most featureful ways to define REST APIs in Haskell is via the Rest 
framework developed by Silk. See the documentation at http://silkapp.github.
io/rest for use. The killer features are automatic generation of documentation  
that's always up-to-date, client-code generation for Haskell and JavaScript clients, 
and API versioning.

http://silkapp.github.io/rest
http://silkapp.github.io/rest
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Cryptography
The libraries in this subsection are as follows:

• SHA and RSA: Pure implementations of SHA routines and RSA encryption 
and signature algorithms. Not the fastest, but plain Haskell without any FFI. 
Created by Galois Inc.

• HsOpenSSL: Partial bindings to OpenSSL via FFI.
• cryptonite: Low-level cryptography primitives with varying API's and 

probably of varying quality.
• skein: Bindings to the skein family of fast and secure cryptographic hash 

functions.

For really robust, production-ready cryptography applications, one should look for 
bindings to existing cryptography libraries. For instance, the C implementation of 
the Skein hash function family has Haskell bindings in the similarly named library 
skein.

Although Haskell can be used to implement cryptographic algorithms, many of the 
algorithms rely on bit-twiddling for security in ways that GHC's code optimizations 
can potentially negate. This makes code vulnerable to side-channel attacks.

That said, some pure Haskell implementations of some algorithms exist. In particular, 
the RSA package is good and very suitable when external library dependencies are 
inconvenient. For what it's worth, the RSA package is developed at Galois Inc, a known 
US military contractor.

The cryptonite package provides miscellaneous cryptography building blocks. 
They are deemed relatively secure, but every use should be considered individually. 
There are not too many users or cryptography experts that will have thoroughly 
reviewed all of the library.

Web technologies
The libraries in this subsection are as follows:

• Yesod framework: Full-blown MVC web framework, with all the bells and 
whistles.

• Snap / Happstack: Also web frameworks, independent from each other. 
Comprises fewer features than Yesod, but still very useful.

• blaze-html: Blazingly fast combinator library for HTML templating. Uses 
ByteStrings and the builder pattern.
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• amazonka / AWS: Bindings to the Amazon Web Service API. The amazonka 
bindings are autogenerated, full bindings, while aws is more user-friendly 
but partial.

Developing full-blown web applications in Haskell is easy, and there are multiple 
great libraries with overlapping features. In short, there are three major big 
frameworks: Yesod, Snap, and Happstack. Each of these provides basic things such 
as routing and templating. Yesod has most features of them, but also the steepest 
learning curve.

For just writing HTML in Haskell, one of the best options is blaze-html. blaze-
html provides Haskell combinators for defining HTML. Internally it uses ByteString 
and builders, to quickly and incrementally generate web pages. There are also 
templating libraries for CSS and JavaScript as well, in particular the "Shakespearean 
templates" associated to Yesod.

For interfacing web services such as Amazon's, a few libraries exist. Amazon has at 
least two Haskell bindings: the autogenerated amazonka bindings and partial, more 
user-friendly aws library. There's also package fb, which provides bindings to the 
Facebook graph query language API.

Parsing and pretty-printing
The libraries in this subsection are as follows:

• parsec: Very featureful, general parser combinator library. Old and poorly 
maintained. Slower than attoparsec

• attoparsec: Simple and fast parser combinator library. Fewer features than 
Parsec

• megaparsec: A fork of Parsec, well maintained. Extremely flexible. Faster 
than Parsec but considerably slower than Attoparsec

• happy / alex: Parser combinator libraries aimed towards parsing 
(programming language) grammars.

• pcre-heavy: A reasonable regular-expression library.

Parsing is something that Haskell shines at. Applicative and monadic parser 
interfaces are really expressive. There are many awesome general-purpose parser 
libraries for Haskell. In general, the choice should be between Attoparsec and 
Megaparsec.

Attoparsec should be preferred as speed is critical; Megaparsec if features are more 
important. Attoparsec suits best for well-defined file formats, such as serialization. 
Megaparsec is a better choice when dealing with more arbitrarily formatted input.
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The learning curve to all parser combinator libraries is rather steep. However, the 
general ideas are the same behind them all: using general Applicative/Monad/
Alternative interfaces to declare combinations and options.

Here are some examples of parsing using Megaparsec. First, imports:

> import Text.Megaparsec
> import Text.Megaparsec.String

Parsing in applicative style:

> let p = (,,) <$> digitChar
               <*> (char '.' *> digitChar)
               <*> (char '-' *> digitChar)

> parseTest p "2.4-6"
('2','4','6')

Alternatives between two parsers (using Alternative):

> parseTest (string "a"<|> string  "b") "b"
"b"

Parsing multiple occurrences of same parser:

> parseTest (many (string "a"<|> string  "b")) "aababb"
["a","a","b","a","b","b"]

Parsing with lookAhead:

> parseTest (manyTill (string "a") (string ";")) "aaaa;b"
["a","a","a","a"]

Lots of high-level parser combinators are available, but they are all just compositions 
of smaller parts. Such primitives are, for instance, lookAhead, which applies a parser 
without consuming input, and try, which turns any parser into a backtracking one 
that acts like it hadn't consumed input when failing.

The Happy and Alex parser libraries, on the other hand, are geared towards parsing 
grammars. They suit best for writing parsers for custom domain-specific languages.

Regular expressions in Haskell
Regular expressions (regex) are powerful, but they're pretty much write-only. It's 
an impossibility to reasonably maintain a sufficiently complex regex. Usually, it's a 
better idea to use a real parsing library, but regexes are still useful, mostly in one-off 
cases.
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There are a few regex libraries for Haskell. One which has rather good reputation 
is pcre-heavy. It's an extension of pcre-light. Basically, pcre-heavy adds utility 
functions such as substitions, splits, and so forth. From the name, we can infer 
that pcre-light supports expressive Perl 5 compatible regular expressions. Both 
libraries are also pure Haskell for maximum portability.

pcre-heavy allows for writing regexes using a fine quasi-quoter, and takes in and 
returns any string type: String, Text, and ByteString are all supported without extra 
overheads.

Parsing XML
The library in this subsection tagsoup parses arbitrary XML and HTML documents.

A task that comes up from time to time is parsing XML or HTML documents.  
The unfortunate thing with many XML and HTML documents is that they're rarely 
well formatted: missing end tags are just one example of ill-formatted HTML.

Tagsoup is one solution for parsing arbitrary data from XML-formatted documents. 
To some extent, it supports ill-formatted XML as well. The API is overloaded over 
source representation data type, via a StringLike class. It supports all of String, 
strict and lazy ByteString and strict and lazy Text.

Pretty-printing and text formatting
The libraries in this subsection are as follows:

• wl-pprint-* packages: Pretty-printers based on Wadler/Leijen pretty-
printers. Multiple implementations with different features are found in 
similarly named libraries.

• text-format: High-performance text formatting.
• interpolateInterpolate: Simple string interpolation using Template 

Haskell.
• here: Docs for Haskell using Template Haskell.

Pretty-printing is the process of turning data into user-friendly text format. Think, 
for instance, of printing a long string with appropriate line breaks, or printing 
Haskell values in a friendly way, in other words, commas at the beginning of lines 
and so on.
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The Wadler/Leijen pretty-printer is a simple but powerful interface that has multiple 
implementations: nearly a dozen packages with wl-pprint in their name. Some add 
support for ANSI terminal colors, or terminfo support, annotations, one even using 
a free monad for documents. Unfortunately, no single implementation admits for all 
features.

For basic formatting in classic printf-style, there's of course Text.Printf in 
the base package that implements the "original" polyvariadic printf in Haskell. 
Unfortunately, it's not at all type-safe. Yet more, it uses the incredibly slow String.

For high-performance text-formatting, the text-format package brings a formatter 
for Text values. At core, we have the format function:

format :: Params ps => Format → ps → Text

The Format datatype has an IsString instance. Interpolations are marked by "{}". 
The Params type-class overloads specification styles for parameters. In particular, 
supported parameters are tuples and lists of parameters, plus others. Here's an 
example formatting:

> format "testing: {} {} {} {}" (1, 1.23, hex 254, "hello")

"testing: 1 1.23000 fe hello" :: Text

The type of hex is:

hex :: Integral a => a → Builder

The text Builder is also a valid parameter, which is convenient for controlling 
output format.

For really type-safe text formatting, there are a few interpolation libraries that 
use Template Haskell for convenience. For instance, the interpolate library has 
an almost ludicrously simple interface: one quasi-quoter "i" which is used in this 
fashion:

> :set -XQuasiQuotes
> import Data.String.Interpolate
 
> let world = "World!' 

> putStrLn [i|Hello #{world} #{9 + 33}|] 
"Hello World! 42"

However, bear in mind that interpolate uses String as the only possible 
representation. This can hurt performance with larger strings. The Here library is 
similar to interpolate, using different interpolation syntax (dollar instead of hash) 
and supporting whitespace trimming.
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Control and utility libraries
The libraries in this subsection are as follows:

• conduit, io-streams, and pipes: General streaming libraries, that avoid 
problems with lazy IO

• lens: Solving the "nested record update" problem in a "batteries included" 
fashion

• convertible: Conversions between types using a single function without 
information loss

• basic-prelude, classy-prelude: Prelude alternatives that encourage best 
practices in modern Haskell

• chunked-data: Class abstractions to different builders, zipping, and reading 
and writing to files and handles

Streaming libraries are generally aimed at countering problems with lazy IO. Refer to 
Chapter 6, I/O and Streaming, for an in-depth discussion about problems with lazy IO 
and Haskell streaming libraries.

Using lenses
Lenses can be thought of as a generalization of getters and setters that compose well. 
A sore point of vanilla Haskell is nested record updates. The syntax is not very nice, 
for instance, this:

update rec new_c = rec { field_c = (field_c rec) { c = new_c } }

Here we update field c in field field_c of record rec. With lenses, we could 
have instead written the update as:

rec & field_c . c .~ new_c

(Assuming field_c and c are now lenses for renamed fields.)

In reality, lenses are a lot more than just setters. There are travelsals, prisms, 
and more. The lens rabbit hole goes very deep – but is for sure an eye-opening 
experience.

More beginner-friendly alternatives to monolithic and highly abstract lens library 
exist. The data-lens library provides vanilla Haskell 98 lenses. Library fclabels 
provides only the basics: get, set, and modify parts of a datatype.



Library Recommendations

[ 362 ]

Here's a complete example of the use of fclabels:

-- file: fclabels.hs

{-# LANGUAGE TemplateHaskell #-}

import Prelude hiding (id, (.))
import Control.Category
import Data.Label

At this point, notice that we have replaced function composition (.) and ID from 
Prelude with more general ones from Category. Fc-lables lenses compose 
as category, as opposed to lenses of lens library, that compose with function 
composition.

This is how we define lenses with fc-labels:

data Member = Member
          { _name :: String
          , _task :: String
          } deriving Show

data Team = Team
          { _leader :: Member
          , _memebrs :: [Member]
          } deriving Show

mkLabels [''Member, ''Team]

All the magic happens in the call to mkLabels. Actually, it's not much magic at all; all 
that happens is that from every field name that begins with an underscore, a lens is 
formed. The underscore is dropped.

Forming a lens is an entirely mechanical process of defining a getter and modifier. 
The getter is just _field, while the modifiers are more verbose:

\f rec → rec { field = f (field rec) }

Lenses are used with get, set, and modify functions. For instance:

> let john  = Member "John" "Test the software"
      peter = Member "Peter" "Lead team"
      team  = Team peter [john]

> get (name . leader) team
"Peter"
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Here is an example of modifying a record field inside another record:

> modify (task . leader) (++ " and hire people") team

Consider using lenses if you have a lot of nested records and update them 
frequently.

Easily converting between types (convertible)
Another nuisance that comes up is conversions of values to other types, for instance, 
between different textual types, time types, numbers, and so on. The convertible 
package provides a solution to this in the form of a Convertible type-class:

class Convertible a b where
  safeConvert :: a → ConvertResult b

Because a conversion can be invalid, in other words, from an Int64 to Int32 can 
overflow, convertible doesn't allow the invalid conversion and instead results in an 
error. When you are sure that a conversion is safe, you can use the convert function 
in a safe manner:

convert :: Convertible a b => a → b

The only possible downside to using convertible is that it can hide expensive 
conversions, for instance, conversions back and forth between String and Text. The 
other possible problem is using it with other value polymorphic libraries, that can 
result in too ambiguous types, thus necessitating type annotations.

Using a custom Prelude
Relatively advanced Haskellers might find the exports of default Prelude lacking or 
even devastating: encouraging the use of String, asynchronous exceptions (error), 
and partial functions. Preferences vary from person to person, so in principle there 
could be as many Preludes as there are Haskellers.

Luckily, one doesn't have to start from scratch defining a custom Prelude, as some 
better starting points exist. The basic-prelude package provides one bare base 
for building a custom Prelude. The classy-prelude package is aimed at rather 
advanced programmers, who don't mind working with highly class-based functions.
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Some of the convenience classes in classy-prelude come from other smaller 
packages. For one, the mono-traversable library abstracts over monomorphic 
containers. Essentially, it provides the classes MonoFunctor, MonoFoldable, 
MonoTraversable, and some others, that are just like Functor, Foldable, and 
Traversable except that they are monomorphic in the element values. Examples  
of such containers are Text (element Char) and ByteString (element Word8).

The element type is decided via an open type-family Element:

type family Element mono

Besides truly monomorphic elements, such as Char or Word8, the Element  
type-family allows for instances in which the element type is decided from a type 
variable in the container. For instance, we have:

type Element [a] = a
type Element (Either a b) = b

So the true meaning of "monomorphic" is in the classes, that are less generic than 
normal Functor/Foldable/Traversable. For instance, omap of MonoFunctor won't 
allow changing the element type unlike fmap would:

omap :: MonoFunctor mono
    => (Element mono → Element mono) → mono → mono

The motivation for using mono-traversable is that the classes allow for writing 
generic code that works with more container types, in particular using the same 
code for both monomorphic (Text, ByteString) and polymorphic ([a] and Set a) 
containers. There are also other type-classes present in the mono-traversable 
package; see the package documentation for details.

The chunked-data library was originally a part of classy-prelude, so reasonably 
it's re-exported there. It abstracts over a few things:

• Different builders, in particular text and bytestring builders, providing 
conversions to and from builders and their data representation

• Types that can be zipped together, in other words, lists, vectors, trees, 
sequences, and even IntMaps

• The IOData class abstracts over reading and writing Handles
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Working with monads and transformers
The libraries in this subsection are as follows:

• lifted-base, stm-lifted: Lifting IO operations to arbitrary monad stacks
• monad-control: Lifting general control operations to any monad (provides 

liftBaseWith)
• monad-logger: Adding high-performance and flexible logging facilities to 

any monad
• LogicT: A backtracking logic programming monad
• monad-unlift: Provides more reliable state-saving in monad transformer 

stacks for a subset of transformers (specifically, monad morphisms)
• monad-loops: Monad combinators that map, iterate, fold, and unfold with 

monadic side effects

For choice and considerations of monads and transformers themselves, refer to the 
discussion in Chapter 2, Choose the Correct Data Structures. Logging with monad-
logger and fast-logger is discussed in detail in Chapter 6, I/O and Streaming.

Working with monad transformer stacks is most convenient when the actions of used 
libraries are readily overloaded over a type-class that permits use of an arbitrary 
monad stack. The lifted-base and stm-lifted libraries are alternatives to some 
base and stm modules. They lift operations from the IO and STM monad to arbitrary 
monads overloaded by classes such as MonadIO, MonadBase, and MonadBaseControl.

One monad that hasn't been discussed yet at all is the Logic monad and the 
LogicT transformer. This monad has quite specific use cases: in particular, complex 
backtracking computations can benefit from being written using the Logic monad. 
It has its own overhead, that's more than, for instance, Maybe monad's overhead in 
simple cases.

The monad-control package and the MonadBaseControl class are especially useful 
when writing highly stateful applications, where nearly all code has to store and 
have access to resources. Normally, state control operations such as catch live in IO. 
With liftBaseWith from MonadBaseControl, it's possible to lift operations that 
require an IO callback to the custom monad, and allow the callback to run in the 
custom monad as well. Refer to Chapter 2, Choose the Correct Data Structures for more 
information about monad-control.
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To end our monadic discussion on a lighter note, we note the monad-loops package. 
It's a package which adds lots of general but seldom desired monadic operators, such 
as whileM, iterateWhile, and dozens of other variants. They may or may not make 
your code more expressive.

Monad morphisms – monad-unlift
The monad-unlift library exists for two reasons:

• To allow saving the monadic state (monadic side-effects) in case of an 
exception. Normally, with liftBaseWith from monad-control, the side-
effects are just discarded and there's no way to get them back if an exception 
is thrown.

• As an alternative to monad-control, whose types are extremely general and 
hard to grasp.

So monad-unlift provides much the same functionality as monad-control, except 
for a subset of monads (transformers). In return, monadic effects can be resurrected 
in case of an exception. This is possible for monads that are isomorphic to ReaderT, 
that is, their effect is not context-sensitive.

In practice, instead of liftBaseWith to run a computation with the saved state, we 
use askUnliftBase to get a function that executes actions in the base monad with 
the same state. The state is shared but must be immutable, in other words, the writer 
part could be represented by a reference.

Handling exceptions
The libraries in this subsection are as follows:

• exceptions: Generalizing extensible extensions to any monad via  
type-classes (MonadThrow, MonadCatch, and MonadMask)

• safe-exceptions: At the time of writing, safe-exceptions is a recent 
attempt at pumping more sense into exception handling in the Haskell 
ecosystem

When working with custom monads and exceptions, it's advisable to use generalized 
functions from the exceptions library to conveniently throw, catch, and mask 
exceptions. The functions work pretty much the same as their originals from 
Control.Exception, unless somehow restricted by the base monad.
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There are a few nuisances in the way exceptions are handled in Haskell and GHC. 
In particular, differentiating between synchronous and asynchronous exceptions 
is fickle. Plus, with current exception mechanisms in base, it's easy to make 
unnecessary mistakes, such as throwing asynchronous exceptions unintentionally 
(with throw) or throwing important exceptions away with failing cleanup handlers.

The safe-exceptions package tries to encourage better hygiene with exceptions. 
It's early in development, so radical changes are still possible. However, it seems 
prominent enough to include it in this list.

Random number generators
The libraries in this subsection are as follows:

• MonadRandom: Simple monadic interface for supplying random numbers. 
Uses System.Random. It's rather slow and not very secure.

• mwc-random: Very fast pseudo-random number generation. Probably not 
cryptographically secure.

• random-fu: Good support for sampling a wide range of different 
distributions. Good quality but not terribly slow either.

• mersenne-random: Pseudo-random numbers using a Mersenne Twister. 
Probably fastest RNG for Haskell when SIMD is supported.

Random numbers have multiple applications, from simulations to cryptography. 
Random number generators come with different trade-offs that suit different 
applications. Others are very fast and not really that random, while others are slower 
but cryptographically secure.

Haskell doesn't have a shortage of pseudo-random RNG libraries. Cryptographically 
secure random numbers are hard, however; your best bet is probably in HsOpenSSL 
or cryptonite.

For pseudo-random number generation, either mwc-random or mersenne-random are 
good choices. If you need a wider range of distributions and don't mind sacrificing 
speed, use random-fu.
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Parallel and concurrent programming
The libraries in this subsection are as follows:

• Control.Concurrent (base): The basic concurrency primitives
• parallel: Primitive parallel programming and parallel evaluation strategies
• monad-par: Provides the Par and ParIO monads for simple pure and IO 

parallel programming
• abstract-par, monad-par-extras: Add-on libraries to monad-par, that 

add extra combinators and a further abstraction layer over different Par 
implementations

• repa: Data-parallel arrays

Parallel programming and the use and features of libraries parallel and monad-par 
is considered in Chapter 5, Parallelize for Performance. The RePa library is also featured 
in that chapter.

In short, the parallel library is used to express parallelism deterministically, 
and more importantly to separate parallelism from program logic. This enhances 
modularity and composition. The monad-par library, on the other hand, ties 
computation with its parallel evaluation, in return giving more control over how 
evaluation happens.

RePa focuses on high-performance parallel array programming.

Functional Reactive Programming
The libraries in this subsection are as follows:

• Elerea: Discrete-time FRP with a safe monadic interface
• Yampa: Hybrid time FRP with first-class signal functions
• Reactive-banana: Hybrid time FRP with simple semantics

FRP is handled in depth in Chapter 13, Functional Reactive Programming. There are 
more useful FRP libraries than the three listed here, and the balance between good 
semantics and performance in FRP is still taking shape.
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Mathematics, statistics, and science
The libraries in this subsection are as follows:

• hmatrix: Highish-level library for doing linear algebra in Haskell using BLAS 
and LAPACK under the hood.

• hmatrix-gsl-stats: Bindings to GSL, based on hmatrix.
• hstatistics: Some statistical functions built on top of hmatrix and 

hmatrix-gsl-stats.
• statistics: Pure Haskell statistics functions. Focuses on high performance 

and robustness.
• Frames: Working with CSV and other tabular data sets so large that they 

don't always fit in memory.
• matrix: A fairly efficient matrix datatype in pure Haskell, with basic matrix 

operations.

For linear algebra and statistics, there are a few useful packages. The hmatrix/
hmatrix-gsl-stats/hstatistics provide pretty good bindings to well-known 
BLAS, LAPACK, and GSL libraries. The statistics package is very different, being a 
pure-Haskell implementation of a variety of statistics utilities.

Working with large datasets in Haskell is made easy with Frames. It provides a type-
safe data frame abstraction for streaming data from disk.

Although hmatrix is strictly more featureful than the matrix library, hmatrix has 
some fairly strict external library dependencies. The matrix library has none, which 
makes it nicer to work with in certain situations. The same applies to the Statistics 
library versus the hstatistics library. The latter has extra dependencies and more 
features, while the former provides basics in Haskell only.

Tools for research and sketching
The libraries in this subsection are as follows:

• ihaskell: Haskell backend for the IPython console and notebook platform.
• HaTeX: A Haskell EDSL for writing LaTeX documents.
• H (HaskellR): Embedding R computations into Haskell. Passing data 

between Haskell and R without copying.

The IPython console and notebook software enable wonderful interactive 
programming, and ihaskell brings Haskell to it.
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For those who fancy it, writing LaTeX documents is completely possible in Haskell. 
There is some added syntactic noise from using an EDSL, but the strong guarantees 
and high-level abstractions made available by Haskell are worth it in bigger 
documents. As a plus, HaTeX makes writing TIKZ images much easier.

The HaskellR project
The HaskellR project enables seamless integration between Haskell and the R 
language. It makes the big repository of R libraries available to Haskell. In essence, 
HaskellR provides an interpreter that integrates GHCi with R, called H, and a quasi-
quoter that enables writing R code into Haskell code.

The first way to use HaskellR is to install H and run it:

$ stack install H

$ stack exec H

>

This basically gives a modified GHCi prompt, where we have full access to both 
Haskell and R:

> [1..10]

[1,2,3,4,5,6,7,8,9,10]

> let (x,y) = (5, 10) :: (Double, Double)

> H.p [r| y_hs + x_hs + e |]

We access R through the R quasi-quoter. Haskell values simply get a _hs prefix.  
We can even use Haskell functions from quasi-quoted R expressions, as long as they 
are lifted to the R monad.

Creating charts and diagrams
The libraries in this subsection are as follows:

• Chart, Chart-cairo, Chart-diagrams: Rendering 2D charts in Haskell. 
Supports multiple backends, including Cairo and diagrams.

• Diagrams: Declaratively generating vector graphics. Supports multiple 
outputs including Cairo, SVG, PS, and more.

There are two excellent libraries for creating 2D graphics in Haskell: chart and 
diagrams. The first one is geared towards charting and plotting, whereas the latter is 
more on EDSL for generative vector graphics.
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Both libraries support a wide range of output formats, from vector graphic formats 
to output directly to GTK windows. Chart even provides some primitive supports 
for interactivity in charts.

Scripting and CLI applications
The libraries in this subsection are as follows:

• shelly: Shell programming in Haskell, similar to Turtle.
• turtle: Using Haskell as a shell and scripting language. Very beginner-

friendly but perhaps lacking in some ways as a result. Nonetheless portable 
and exception-safe.

• cmdargs: Command-line parsers with a Template Haskell empowered 
interface. Provides compatibility with getopt parsers.

• haskeline: Bindings to readline with an easy-to-use interface for use in 
command-line programs.

• console-program: Defining CLI applications with multiple sub-commands, 
optional and positional arguments. Supports one-off and readline modes.

• shake: A build system written in Haskell. A replacement for the make 
system.

• propellor: Puppeting software for servers, using a Haskell EDSL for defining 
configurations.

Haskell is quite well suited for scripting and shell-programming. Both the Shelly 
and Turtle libraries define APIs that wrap around shell functions. One of the 
features of Shelly is "lifting" the Unix pipe operator to the monadic bind (in 
Shelly.Pipe), which can be convenient in some situations. The Turtle library aims 
more at user-friendliness.

For writing command-line applications, there are multiple useful libraries. Both 
cmdargs and console-program provide facilities to define and parse command-line 
arguments and generate usage info from them. Console-program supports running 
the same program in interactive mode, taking advantage of readline. The haskeline 
library provides basic wrapper over readline.

Shake is a build system written in Haskell; it's not really geared towards compiling 
Haskell programs but rather as a replacement for make and similar ancient build 
systems.

Propellor is a relatively unknown server configuration system, which features a 
Haskell EDSl for declaring server configurations.
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Testing and benchmarking
The libraries in this subsection are as follows:

• QuickCheck: Property-checking with automatic test-case generation
• doctest: Writing tests and expected results directly in haddock comments
• HSpec, HUnit, tasty: Traditional unit-testing libraries
• criterion: Benchmarking time usage
• weigh: Benchmark allocation

There are two testing libraries that are rather novel in Haskell: QuickCheck and 
doctest. QuickCheck lets the programmer just state a property for a function, 
leaving it to the library to try proving it false.

Doctest builds on the ingenious idea of combining test cases with docstrings. 
It's especially useful in libraries, because it gives users reading the documentation 
always up-to-date information about properties and use of functions that have tests 
annotated in their documentation.

More traditional testing frameworks such as HSpec, HUnit, tasty and  
time-benchmarking library criterion are discussed in detail in Chapter 4,  
The Devil's in the Detail.

A newcomer library in benchmarking, Weigh, measures allocations in Haskell 
computations. Allocation as such is ignored by criterion, although allocation 
somewhat correlates with time complexity. Still, allocation benchmarking is a 
valuable tool in hunting down space leaks.

Summary
In this chapter, we have walked very quickly through a big bunch of libraries in 
different application areas. New libraries are constantly developed, and current  
ones are being improved. Lists in this chapter should be taken only as a guideline. 
It's always a good idea to do a little research before using a new library. The  
Haskell-Cafe mailing list is a good place to be notified about new libraries and  
major new releases, and is relatively low traffic.

During the course of this book, we have navigated many topics that have hopefully 
helped you become a better Haskeller.
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If you followed closely the first few chapters, you have a good working 
understanding of lazy evaluation and its traps. You can use seq, bang patterns, 
and pragmas where necessary. You know many high-performance data structures 
and are able to use them effectively. In the middle chapters, we learned to test and 
benchmark, that lazy I/O has drawbacks, to parallelize code, to do concurrency 
safely and to compile using appropriate flags for GHC and Runtime System. These 
are the things that form the foundation for productive high-performance Haskell 
programming.

The last topics in this book were more about specific applications of Haskell: 
interfacing with foreign code, GPU programming, Cloud Haskell, and functional 
reactive programming. If you followed through any of these then you have a good 
overview of that aspect in Haskell programming and are prepared to dive into that 
subject without friction.
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