
www.allitebooks.com

http://www.allitebooks.org

Haskell High Performance
Programming

Boost the performance of your Haskell applications
using optimization, concurrency, and parallel
programming

Samuli Thomasson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Haskell High Performance Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1190916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-421-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Samuli Thomasson

Reviewer
Aaron Stevens

Commissioning Editor
Kunal Parikh

Acquisition Editor
Sonali Vernekar

Content Development Editor
Priyanka Mehta

Technical Editor
Ravikiran Pise

Copy Editor
Safis Editing

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Samuli Thomasson is a long-time functional programming enthusiast from
Finland who has used Haskell extensively, both as a pastime and commercially,
for over four years. He enjoys working with great tools that help in getting things
done nice and fast.

His current job at RELEX Solutions consists of providing technical solutions to a
variety of practical problems. Besides functional programming, Samuli is interested
in distributed systems, which he also studies at the University of Helsinki.

I am grateful to my awesome friends, who have stuck around and
provided their support during the writing process, and my family
for always being there and their understanding.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Aaron Stevens is a scientific software engineer with Molex LLC in Little Rock,
Arkansas, where he combines his passion for programming with his education in
electrical systems engineering to develop innovative techniques to characterize
high-speed electronics in the lab and in production. He specializes in signal
processing, statistical process-control methods, and application construction in
Python and C#, and he enjoys discovering new methods to explore complex data
sets through rich visualizations.

Away from the office, Aaron enjoys practicing with a variety of programming
languages, studying linguistics, cooking, and spending time with his family.
He received his BS in mathematics and BS in electrical systems engineering
from the University of Arkansas in Little Rock.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface xi
Chapter 1: Identifying Bottlenecks 1

Meeting lazy evaluation 1
Writing sum correctly 3
Weak head normal form 5
Folding correctly 6

Memoization and CAFs 7
Constant applicative form 8

Recursion and accumulators 9
The worker/wrapper idiom 9
Guarded recursion 10
Accumulator parameters 12

Inspecting time and space usage 12
Increasing sharing and minimizing allocation 15

Compiler code optimizations 17
Inlining and stream fusion 17
Polymorphism performance 18
Partial functions 19

Summary 20
Chapter 2: Choosing the Correct Data Structures 21

Annotating strictness and unpacking datatype fields 22
Unbox with UNPACK 23

Using anonymous tuples 25
Performance of GADTs and branching 26

Handling numerical data 28
Handling binary and textual data 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Representing bit arrays 29
Handling bytes and blobs of bytes 31
Working with characters and strings 33

Using the text library 33
Builders for iterative construction 34

Builders for strings 35
Handling sequential data 36

Using difference lists 37
Difference list performance 38
Difference list with the Writer monad 38

Using zippers 39
Accessing both ends fast with Seq 40

Handling tabular data 42
Using the vector package 43

Handling sparse data 47
Using the containers package 47
Using the unordered-containers package 48

Ephemeral data structures 49
Mutable references are slow 49
Using mutable arrays 50
Using mutable vectors 51

Bubble sort with vectors 53
Working with monads and monad stacks 55

The list monad and its transformer 55
Free monads 57
Working with monad transformers 59
Speedup via continuation-passing style 59

Summary 61
Chapter 3: Profile and Benchmark to Your Heart's Content 63

Profiling time and allocations 63
Setting cost centres manually 64
Setting cost centres automatically 68
Installing libraries with profiling 70
Debugging unexpected crashes with profiler 70

Heap profiling 71
Cost centre-based heap profiling 73
Objects outside the heap 76
Retainer profiling 80
Biographical profiling 83

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Benchmarking using the criterion library 84
Profile and monitor in real time 88

Monitoring over HTTP with ekg 89
Summary 92

Chapter 4: The Devil's in the Detail 93
The anatomy of a Haskell project 94

Useful fields and flags in cabal files 96
Test suites and benchmarks 98
Using the stack tool 99
Multi-package projects 101

Erroring and handling exceptions 101
Handling synchronous errors 102
The exception hierarchy 104
Handling asynchronous errors 105
Throw and catch in other monads besides IO 106

Writing tests for Haskell 107
Property checks 107
Unit testing with HUnit 108
Test frameworks 109

Trivia at term-level 110
Coding in GHC PrimOps 112
Control inlining 114

Using rewrite rules 115
Specializing definitions 116
Phase control 117

Trivia at type-level 117
Phantom types 118
Functional dependencies 118
Type families and associated types 120

Useful GHC extensions 121
Monomorphism Restriction 122
Extensions for patterns and guards 123
Strict-by-default Haskell 124

Summary 125
Chapter 5: Parallelize for Performance 127

Primitive parallelism and the Runtime System 128
Spark away 130
Subtle evaluation – pseq 131
When in doubt, use the force 131

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

The Eval monad and strategies 132
Composing strategies 134
Fine-tune granularity with chunking and buffering 136

The Par monad and schedules 136
spawn for futures and promises 138
Non-deterministic parallelism with ParIO 139

Diagnosing parallelism – ThreadScope 140
Data parallel programming – Repa 141

Playing with Repa in GHCi 142
Mapping and delayed arrays 143
Reduction via folding 144

Manifest representations 145
Delayed representation and fusion 146
Indices, slicing, and extending arrays 146
Convolution with stencils 149
Cursored and partitioned arrays 151
Writing fast Repa code 153
Additional libraries 154
Example from image processing 154

Loading the image from file 155
Identifying letters with convolution 155
Extracting strings from an image 157
Testing and evaluating performance 159

Summary 161
Chapter 6: I/O and Streaming 163

Reading, writing, and handling resources 164
Traps of lazy I/O 164
File handles, buffering, and encoding 165
Binary I/O 166
Textual I/O 168
I/O performance with filesystem objects 168
Sockets and networking 169

Acting as a TCP/IP client 169
Acting as a TCP server (Unix domain sockets) 170
Raw UDP traffic 172
Networking above the transport layer 173

Managing resources with ResourceT 173
Streaming with side-effects 175

Choosing a streaming library 175

Table of Contents

[v]

Simple streaming using io-streams 176
Creating input streams 177
Using combinators and output streams 179
Handling exceptions and resources in streams 179
An example of parsing using io-streams and attoparsec 181

Streaming using pipes 184
Composing and executing pipes 185
For loops and category theory in pipes 186
Handling exceptions in pipes 187
Strengths and weaknesses of pipes 187

Streaming using conduits 188
Handling resources and exceptions in conduits 189
Resuming conduits 190

Logging in Haskell 191
Logging with FastLogger 191

More abstract loggers 192
Timed log messages 193
Monadic logging 195

Customizing monadic loggers 196
Summary 197

Chapter 7: Concurrency and Performance 199
Threads and concurrency primitives 200

Threads and mutable references 200
Avoid accumulating thunks 202
Atomic operations with IORefs 202

MVar 203
MVars are fair 204
MVar as a building block 205

Broadcasting with Chan 206
Software Transactional Memory 208

STM example – Bank accounts 208
Alternative transactions 210
Exceptions in STM 210

Runtime System and threads 211
Masking asynchronous exceptions 212

Asynchronous processing 213
Using the Async API 215

Async example – Timeouts 215
Composing with Concurrently 217

Table of Contents

[vi]

Lifting up from I/O 218
Top-level mutable references 218
Lifting from a base monad 219
Lifting base with exception handling 220

Summary 222
Chapter 8: Tweaking the Compiler and Runtime System (GHC) 223

Using GHC like a pro 224
Operating GHC 224

Circular dependencies 226
Adjusting optimizations and transformations 227

The state hack 227
Floating lets in and out 228
Eliminating common subexpressions 229
Liberate-case duplicates code 230

Compiling via the LLVM route 230
Linking and building shared libraries 231
Preprocessing Haskell source code 232
Enforcing type-safety using Safe Haskell 233

Tuning GHC's Runtime System 234
Scheduler and green threads 235

Sparks and spark pool 235
Bounded threads and affinity 236
Indefinite blocking and weak references 236

Heap, stack, and memory management 237
Evaluation stack in Haskell 238

Tuning the garbage collector 238
Parallel GC 239

Profiling and tracing options 240
Tracing using eventlog 241
Options for profiling and debugging 241

Summary of useful GHC options 241
Basic usage 242
The LLVM backend 242
Turn optimizations on and off 242
Configuring the Runtime System (compile-time) 242
Safe Haskell 243

Summary of useful RTS options 243
Scheduler flags 243
Memory management 243
Garbage collection 244

Table of Contents

[vii]

Runtime System statistics 244
Profiling and debugging 244

Summary 244
Chapter 9: GHC Internals and Code Generation 247

Interpreting GHC's internal representations 248
Reading GHC Core 248
Spineless tagless G-machine 251

Primitive GHC-specific features 253
Kinds encode type representation 254

Datatype generic programming 255
Working example – A generic sum 256

Generating Haskell with Haskell 259
Splicing with $(…) 260
Names in templates 261
Smart template constructors 262
The constN function 263
Lifting Haskell code to Q with quotation brackets 264
Launching missiles during compilation 264
Reifying Haskell data into template objects 264
Deriving setters with Template Haskell 265
Quasi-quoting for DSLs 267

Summary 269
Chapter 10: Foreign Function Interface 271

From Haskell to C and C to Haskell 271
Common types in Haskell and C 272
Importing static functions and addresses 273
Exporting Haskell functions 275
Compiling a shared library 276
Function pointers and wrappers 278

Haskell callbacks from C 279
Data marshal and stable pointers 280

Allocating memory outside the heap 281
Pointing to objects in the heap 281
Marshalling abstract datatypes 282
Marshalling in standard libraries 283

Summary 284

Table of Contents

[viii]

Chapter 11: Programming for the GPU with Accelerate 285
Writing Accelerate programs 286

Kernels – The motivation behind explicit use and run 287
Working with elements and scalars 288
Rudimentary array computations 290
Example – Matrix multiplication 291
Flow control and conditional execution 293
Inspecting generated code 293

Running with the CUDA backend 294
Debugging CUDA programs 295

More Accelerate concepts 296
Working with tuples 297
Folding, reducing, and segmenting 297
Accelerated stencils 298
Permutations in Accelerate 299
Using the backend foreign function interface 300

Summary 300
Chapter 12: Scaling to the Cloud with Cloud Haskell 301

Processes and message-passing 302
Creating a message type 302
Creating a Process 303
Spawning and closures 304
Running with the SimpleLocalNet backend 305
Using channels 306
Establishing bidirectional channels 308
Calling a remote process 309

Handling failure 310
Firing up monitors 311
Matching on the message queue 311
Linking processes together 312
Message-passing performance 312

Nodes and networking 313
Summary 315

Chapter 13: Functional Reactive Programming 317
The tiny discrete-time Elerea 318

Mutually recursive signals 320
Signalling side-effects 321

Table of Contents

[ix]

Dynamically changing signal networks 322
Performance and limitations in Elerea 324

Events and signal functions with Yampa 324
Adding state to signal functions 325
Working with time 326
Switching and discrete-time events 327
Integrating to the real world 330

Reactive-banana – Safe and simple semantics 331
Example – First GUI application 332
Graphical display with wxWidgets 332

Combining events and behaviors 335
Switching events and behaviors 336
Observing moments on demand 336
Recursion and semantics 337
Adding input and output 338

Input via polling or handlers 338
Reactimate output 339
Input and output dynamically 340

Summary 340
Chapter 14: Library Recommendations 343

Representing data 343
Functional graphs 344
Numeric data for special use 345
Encoding and serialization 346

Binary serialization of Haskell values 347
Encoding to and from other formats 348
CSV input and output 349

Persistent storage, SQL, and NoSQL 350
acid-state and safecopy 350
persistent and esqueleto 351
HDBC and add-ons 352

Networking and HTTP 353
HTTP clients and servers 353
Supplementary HTTP libraries 354
JSON remote procedure calls 355
Using WebSockets 355
Programming a REST API 355

Cryptography 356

Table of Contents

[x]

Web technologies 356
Parsing and pretty-printing 357

Regular expressions in Haskell 358
Parsing XML 359

Pretty-printing and text formatting 359
Control and utility libraries 361

Using lenses 361
Easily converting between types (convertible) 363
Using a custom Prelude 363

Working with monads and transformers 365
Monad morphisms – monad-unlift 366

Handling exceptions 366
Random number generators 367
Parallel and concurrent programming 368
Functional Reactive Programming 368
Mathematics, statistics, and science 369
Tools for research and sketching 369
The HaskellR project 370
Creating charts and diagrams 370
Scripting and CLI applications 371
Testing and benchmarking 372
Summary 372

Index 375

[xi]

Preface
Haskell is an elegant language. It allows us to express in code exactly what we mean,
in a clean and compact style. The nice features, including referential transparency
and call-by-need evaluation, not only help the programmer be more efficient, but
also help Haskell compilers to optimize programs in ways that are otherwise plain
impossible. For example, the garbage collector of GHC is notoriously fast, not least
thanks to its ability to exploit the immutability of Haskell values.

Unfortunately, high expressivity is a double-edged sword. Reasoning the exact
order of evaluation in Haskell programs is, in general, not an easy task. A lack of
understanding of the lazy call-by-need evaluation in Haskell will for sure lead
the programmer to introduce space leaks sooner or later. A productive Haskell
programmer not only has to know how to read and write the language, which is a
hard enough skill to achieve in itself, they also need to understand a new evaluation
schema and some related details. Of course, in order to not make things too easy,
just knowing the language well will not get you very far. In addition, one has to be
familiar with at least a few common libraries and, of course, the application domain
itself.

This book will give you working knowledge of high-performance Haskell
programming, including parallelism and concurrency. In this book, we will
cover the language, GHC, and the common libraries of Haskell.

What this book covers
Chapter 1, Identifying Bottlenecks, introduces you to basic techniques for optimal
evaluation and avoiding space leaks.

Chapter 2, Choose the Correct Data Structures, works with and optimizes both
immutable and mutable data structures.

Preface

[xii]

Chapter 3, Profile and Benchmark to Your Heart's Content, profiles Haskell programs
using GHC and benchmarking using Criterion.

Chapter 4, The Devil's in the Detail, explains the small details that affect performance
in Haskell programs, including code sharing, specializing, and simplifier rules.

Chapter 5, Parallelize for Performance, exploits parallelism in Haskell programs using
the RePa library for data parallelism.

Chapter 6, I/O and Streaming, talks about the pros and cons of lazy and strict I/O in
Haskell and explores the concept of streaming.

Chapter 7, Concurrency Performance, explores the different aspects of concurrent
programming, such as shared variables, exception handling, and software-
transactional memory.

Chapter 8, Tweaking the Compiler and Runtime System, chooses the optimal compiler
and runtime parameters for Haskell programs compiled with GHC.

Chapter 9, GHC Internals and Code Optimizations, delves deeper into the compilation
pipeline, and understands the intermediate representations of GHC.

Chapter 10, Foreign Function Interface, calls safely to and from C in Haskell using GHC
and its FFI support.

Chapter 11, Programming for the GPU with Accelerate, uses the Accelerate library to
program backend-agnostic GPU programs and executes on CUDA-enabled systems.

Chapter 12, Scaling to the Cloud with Cloud Haskell, uses the Cloud Haskell ecosystem
to build distributed systems with Haskell.

Chapter 13, Functional Reactive Programming, introduces three Haskell FRP libraries,
including Elerea, Yampa, and Reactive-banana.

Chapter 14, Library Recommendations, talks about a catalogue of robust Haskell
libraries, accompanied with overviews and examples.

What you need for this book
To run most examples in this book, all you need is a working, relatively recent,
installation of GHC and some Haskell libraries. Examples are built for nix-like
systems, although they are easily adapted for a Windows machine.

Preface

[xiii]

The recommended minimum version for GHC is 7.6. The Haskell libraries needed
are introduced in the chapters in which they are used. In Chapter 4, The Devil's in
the Detail, we use the Haskell Stack tool to perform some tasks, but it isn't strictly
required, although it is recommended to install Stack.

In Chapter 11, Programming for the GPU Using Accelerate, executing the CUDA
versions of examples requires a CUDA-enabled system and the installation of the
CUDA platform.

Who this book is for
To get the most out of this book, you need to have a working knowledge of
reading and writing basic Haskell. No knowledge of performance, optimization,
or concurrency is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

mySum [1..100]
 = 1 + mySum [2..100]
 = 1 + (2 + mySum [2..100])
 = 1 + (2 + (3 + mySum [2..100]))
 = ...
 = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0)))

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

mySum [1..100]
 = 1 + mySum [2..100]
 = 1 + (2 + mySum [2..100])
 = 1 + (2 + (3 + mySum [2..100]))
 = ...
 = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0)))

Preface

[xiv]

Any command-line input or output is written as follows:

> let xs = enumFromTo 1 5 :: [Int]

> :sprint xs

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xv]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by entering
the book's name in the Search box. Please note that you need to be logged in to your
Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Haskell-High-Performance-Programming. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/HaskellHighPerformanceProgramming_
ColorImages.pdf.

https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HaskellHighPerformanceProgramming_ColorImages.pdf

Preface

[xvi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Identifying Bottlenecks
You have probably at least once written some very neat Haskell you were very
proud of, until you test the code and it took ages to give an answer or even ran out of
memory. This is very normal, especially if you are used to performance semantics in
which performance can be analyzed on a step-by-step basis. Analyzing Haskell code
requires a different mental model that is more akin to graph traversal.

Luckily, there is no reason to think that writing efficient Haskell is sorcery known
only by math wizards or academics. Most bottlenecks are straightforward to identify
with some understanding of Haskell's evaluation schema. This chapter will help
you to reason about the performance of Haskell programs and to avoid some easily
recognizable patterns of bad performance:

• Understanding lazy evaluation schemas and their implications
• Handling intended and unintended value memoization (CAFs)
• Utilizing (guarded) recursion and the worker/wrapper pattern efficiently
• Using accumulators correctly to avoid space leaks
• Analyzing strictness and space usage of Haskell programs
• Important compiler code optimizations, inlining and fusion

Meeting lazy evaluation
The default evaluation strategy in Haskell is lazy, which intuitively means that
evaluation of values is deferred until the value is needed. To see lazy evaluation
in action, we can fire up GHCi and use the :sprint command to inspect only the
evaluated parts of a value. Consider the following GHCi session:

> let xs = enumFromTo 1 5 :: [Int]
> :sprint xs
xs = _

Identifying Bottlenecks

[2]

> xs !! 2
3
> :sprint xs
xs = 1 : 2 : 3 : _

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Haskell-High-Performance-
Programming. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Underscores in the output of :sprint stand for unevaluated values. The enumFromTo
function builds a linked list lazily. At first, xs is only an unevaluated thunk. Thunks
are in a way pointers to some calculation that is performed when the value is needed.
The preceding example illustrates this: after we have asked for the third element
of the list, the list has been evaluated up to the third element. Note also how pure
values are implicitly shared; by evaluating the third element after binding the list
to a variable, the original list was evaluated up to the third element. It will remain
evaluated as such in memory until we destroy the last reference to the list head.

The preceding figure is a graphical representation of how a list is stored in memory.
A T stands for a thunk; simple arrows represent pointers.

The preceding scenario is otherwise identical to the previous one, but now the list is
polymorphic. Polymorphic values are simply functions with implicit parameters that
provide the required operations when the type is specialized.

https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/Haskell-High-Performance-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Chapter 1

[3]

Be careful with :sprint and ad hoc polymorphic values! For
example, xs' = enumFromTo 1 5 is by default given the type
Num a => [a]. To evaluate such an expression, the type for a
must be filled in, meaning that in :sprint xs', the value xs'
is different from its first definition. Fully polymorphic values such
as xs'' = [undefined, undefined] are okay.

A shared value can be either a performance essential or an ugly space leak. Consider
the following seemingly similar scenarios (run with ghci +RTS -M20m to not throttle
your computer):

> Data.List.foldl' (+) 0 [1..10^6]
500000500000

> let xs = [1..10^6] :: [Int]
> Data.List.foldl' (+) 0 xs
<interactive>: Heap exhausted;

So what happened? By just assigning the list to a variable, we exhausted the heap of
a calculation that worked just fine previously. In the first calculation, the list could
be garbage-collected as we folded over it. But in the second scenario, we kept a
reference to the head of the linked list. Then the calculation blows up, because the
elements cannot be garbage-collected due to the reference to xs.

Writing sum correctly
Notice that in the previous example we used a strict variant of left-fold called foldl'
from Data.List and not the foldl exported from Prelude. Why couldn't we have
just as well used the latter? After all, we are only asking for a single numerical value
and, given lazy evaluation, we shouldn't be doing anything unnecessary. But we can
see that this is not the case (again with ghci +RTS -M20m):

> Prelude.foldl (+) 0 [1..10^6]
<interactive>: Heap exhausted;

To understand the underlying issue here, let's step away from the fold abstraction for
a moment and instead write our own sum function:

mySum :: [Int] -> Int
mySum [] = 0
mySum (x:xs) = x + mySum xs

Identifying Bottlenecks

[4]

By testing it, we can confirm that mySum too exhausts the heap:

> :load sums.hs
> mySum [1..10^6]
<interactive>: Heap exhausted;

Because mySum is a pure function, we can expand its evaluation by hand as follows:

mySum [1..100]
 = 1 + mySum [2..100]
 = 1 + (2 + mySum [2..100])
 = 1 + (2 + (3 + mySum [2..100]))
 = ...
 = 1 + (2 + (... + mySum [100]))
 = 1 + (2 + (... + (100 + 0)))

From the expanded form we can see that we build up a huge sum chain and then
start reducing it, starting from the very last element on the list. This means that we
have all the elements of the list simultaneously in memory. From this observation,
the obvious thing we could try is to evaluate the intermediate sum at each step. We
could define a mySum2 which does just this:

mySum2 :: Int -> [Int] -> Int
mySum2 s [] = s
mySum2 s (x:xs) = let s' = s + x in mySum2 s' xs

But to our disappointment mySum2 blows up too! Let's see how it expands:

mySum2 0 [1..100]
 = let s1 = 0 + 1 in mySum2 s1 [2..100]
 = let s1 = 0 + 1
 s2 = s1 + 2
 in mySum2 s2 [2..100]
 ...
 = let s1 = 0 + 1
 ...
 s100 = s99 + 100
 in mySum2 s100 []
 = s100
 = s99 + 100
 = (s89 + 99) + 100
 ...
 = ((1 + 2) + ...) + 100

Chapter 1

[5]

Oops! We still build up a huge sum chain. It may not be immediately clear that this is
happening. One could perhaps expect that 1 + 2 would be evaluated immediately as
3 as it is in strict languages. But in Haskell, this evaluation does not take place, as we
can confirm with :sprint:

> let x = 1 + 2 :: Int
> :sprint x
x = _

Note that our mySum is a special case of foldr and mySum2 corresponds to foldl.

Weak head normal form
The problem in our mySum2 function was too much laziness. We built up a huge chain
of numbers in memory only to immediately consume them in their original order. The
straightforward solution then is to decrease laziness: if we could force the evaluation
of the intermediate sums before moving on to the next element, our function would
consume the list immediately. We can do this with a system function, seq:

mySum2' :: [Int] -> Int -> Int
mySum2' [] s = s
mySum2' (x:xs) s = let s' = s + x
 in seq s' (mySum2' xs s')

This version won't blow up no matter how big a list you give it. Speaking very
roughly, the seq function returns its second argument and ties the evaluation of its
first argument to the evaluation of the second. In seq a b, the value of a is always
evaluated before b. However, the notion of evaluation here is a bit ambiguous, as
we will see soon.

When we evaluate a Haskell value, we mean one of two things:

• Normal Form (NF): A fully evaluated value; for example when we show a
value it will eventually be fully evaluated

• Weak Head Normal Form (WHNF): Evaluated up to the first data
constructor. seq evaluates its argument to WHNF only

Consider the following GHCi session:

> let t = const (Just "a") () :: Maybe String
> :sprint t
t = _
> t `seq` ()
> :sprint t
t = Just _

Identifying Bottlenecks

[6]

Even though we seq the value of t, it was only evaluated up to the Just constructor.
The list of characters inside was not touched at all. When deciding whether or not
a seq is necessary, it is crucial to understand WHNF and your data constructors.
You should take special care of accumulators, like those in the intermediate sums
in the mySum* functions. Because the actual value of the accumulator is often used
only after the iterator has finished, it is very easy to accidentally build long chains of
unevaluated thunks.

We could have annotated strictness more cleanly with the strict cousin of
($), the ($!) operator: mySum2' s (x:xs) = mySum2' xs $! s + x.

($!) is defined as f $! x = x `seq` f x.

Folding correctly
Now going back to folds, we recall that both foldl and foldr failed miserably,
while (+) . foldl' instead did the right thing. In fact, if you just turn on
optimizations in GHC then foldl (+) 0 will be optimized into a tight constant-
space loop. This is the mechanism behind why we can get away with Prelude.sum,
which is defined as foldl (+) 0.

What do we then have the foldr for? Let's look at the evaluation of foldr f a xs:

foldr f a [x1,x2,x3,x4,...]
 = f x1 (foldr f a [x2,x3,x4,...])
 = f x1 (f x2 (foldr f a [x3,x4,...]))
 = f x1 (f x2 (f x3 (foldr f a [x4,...])))
 …

Note that, if the operator f isn't strict in its second argument, then foldr does not
build up chains of unevaluated thunks. For example, let's consider foldr (:) []
[1..5]. Because (:) is just a data constructor, it is for sure lazy in its second (and
first) argument. That fold then simply expands to 1 : (2 : (3 : ...)), so it is the
identity function for lists.

Monadic bind (>>) for the IO monad is another example of a function that is lazy in
its second argument:

foldr (>>) (return ()) [putStrLn "Hello", putStrLn "World!"]

Chapter 1

[7]

For those monads whose actions do not depend on later actions, (that is, printing
"Hello" is independent from printing "World!" in the IO monad), bind is non-strict
in its second argument. On the other hand, the list monad is an example where bind
is generally non-strict in its second argument. (Bind for lists is strict unless the first
argument is the empty list.)

To sum up, use a left-fold when you need an accumulator function that is strict in
both its operands. Most of the time, though, a right-fold is the best option. And with
infinite lists, right-fold is the only option.

Memoization and CAFs
Memoization is a dynamic programming technique where intermediate results are
saved and later reused. Many string and graph algorithms make use of memoization.
Calculating the Fibonacci sequence, instances of the knapsack problem, and many
bioinformatics algorithms are almost inherently solvable only with dynamic
programming. A classic example in Haskell is the algorithm for the nth Fibonacci
number, of which one variant is the following:

-- file: fib.hs

fib_mem :: Int -> Integer
fib_mem = (map fib [0..] !!)
 where fib 0 = 1
 fib 1 = 1
 fib n = fib_mem (n-2) + fib_mem (n-1)

Try it with a reasonable input size (10000) to confirm it does memoize the
intermediate numbers. The time for lookups grows in size with larger numbers
though, so a linked list is not a very appropriate data structure here. But let's ignore
that for the time being and focus on what actually enables the values of this function
to be memoized.

Looking at the top level, fib_mem looks like a normal function that takes input,
does a computation, returns a result, and forgets everything it did with regard to its
internal state. But in reality, fib_mem will memoize the results of all inputs it will
ever be called with during its lifetime. So if fib_mem is defined at the top level, the
results will persist in memory over the lifetime of the program itself!

www.allitebooks.com

http://www.allitebooks.org

Identifying Bottlenecks

[8]

The short story of why memoization is taking place in fib_mem stems from the fact
that in Haskell functions exist at the same level with normal values such as integers
and characters; that is, they are all values. Because the parameter of fib_mem does
not occur in the function body, the body can be reduced irrespective of the parameter
value. Compare fib_mem to this fib_mem_arg:

fib_mem_arg :: Int -> Integer
fib_mem_arg x = map fib [0..] !! x
 where fib 0 = 1
 fib 1 = 1
 fib n = fib_mem_arg (n-2) + fib_mem_arg (n-1)

Running fib_mem_arg with anything but very small arguments, one can confirm it
does no memoization. Even though we can see that map fib [0..] does not depend
on the argument number and could be memorized, it will not be, because applying
an argument to a function will create a new expression that cannot implicitly have
pointers to expressions from previous function applications. This is equally true with
lambda abstractions as well, so this fib_mem_lambda is similarly stateless:

fib_mem_lambda :: Int -> Integer
fib_mem_lambda = \x -> map fib [0..] !! x
 where fib 0 = 1
 fib 1 = 1
 fib n = fib_mem_lambda (n-2) + fib_mem_lambda (n-1)

With optimizations, both fib_mem_arg and fib_mem_lambda will get rewritten into
a form similar to fib_mem. So in simple cases, the compiler will conveniently fix our
mistakes, but sometimes it is necessary to reorder complex computations so that
different parts are memoized correctly.

Be wary of memoization and compiler optimizations. GHC performs
aggressive inlining (Explained in the section, Inlining and stream fusion)
as a routine optimization, so it's very likely that values (and functions)
get recalculated more often than was intended.

Constant applicative form
The formal difference between fib_mem and the others is that the fib_mem is
something called a constant applicative form, or CAF for short. The compact
definition of a CAF is as follows: a supercombinator that is not a lambda abstraction.
We already covered the not-a-lambda abstraction, but what is a supercombinator?

Chapter 1

[9]

A supercombinator is either a constant, say 1.5 or ['a'..'z'], or a combinator
whose subexpressions are supercombinators. These are all supercombinators:

\n -> 1 + n
\f n -> f 1 n
\f -> f 1 . (\g n -> g 2 n)

But this one is not a supercombinator:

\f g -> f 1 . (\n -> g 2 n)

This is because g is not a free variable of the inner lambda abstraction.

CAFs are constant in the sense that they contain no free variables, which guarantees
that all thunks a CAF references directly are also constants. Actually, the constant
subvalues are a part of the value. Subvalues are automatically memoized within the
value itself.

A top-level [Int], say, is just as valid a value as the fib_mem function for holding
references to other values. You should pay attention to CAFs in your code because
memoized values are space leaks when the memoization was unintended. All code
that allocates lots of memory should be wrapped in functions that take one or more
parameters.

Recursion and accumulators
Recursion is perhaps the most important pattern in functional programming.
Recursive functions are more practical in Haskell than in imperative languages,
due to referential transparency and laziness. Referential transparency allows the
compiler to optimize the recursion away into a tight inner loop, and laziness means
that we don't have to evaluate the whole recursive expression at once.

Next we will look at a few useful idioms related to recursive definitions: the
worker/wrapper transformation, guarded recursion, and keeping accumulator
parameters strict.

The worker/wrapper idiom
Worker/wrapper transformation is an optimization that GHC sometimes does,
but worker/wrapper is also a useful coding idiom. The idiom consists of a (locally
defined, tail-recursive) worker function and a (top-level) function that calls the
worker. As an example, consider the following naive primality test implementation:

-- file: worker_wrapper.hs

isPrime :: Int -> Bool

Identifying Bottlenecks

[10]

isPrime n
 | n <= 1 = False
 | n <= 3 = True
 | otherwise = worker 2
 where
 worker i | i >= n = True
 | mod n i == 0 = False
 | otherwise = worker (i+1)

Here, isPrime is the wrapper and worker is the worker function. This style has two
benefits. First, you can rest assured it will compile into optimal code. Second, the
worker/wrapper style is both concise and flexible; notice how we did preliminary
checks in the wrapper code before invoking the worker, and how the argument n is
also (conveniently) in the worker's scope too.

Guarded recursion
In strict languages, tail-call optimization is often a concern with recursive functions.
A function f is tail-recursive if the result of a recursive call to f is the result. In a lazy
language such as Haskell, tail-call "optimization" is guaranteed by the evaluation
schema. Actually, because in Haskell evaluation is normally done only up to WHNF
(outmost data constructor), we have something more general than just tail-calls,
called guarded recursion. Consider this simple moving average implementation:

-- file: sma.hs
sma :: [Double] -> [Double]
sma (x0:x1:xs) = (x0 + x1) / 2 : sma (x1:xs)
sma xs = xs

The sma function is not tail-recursive, but nonetheless it won't build up a huge
stack like an equivalent in some other language might do. In sma, the recursive call
is guarded by the (:) data constructor. Evaluating the first element of a call to sma
does not yet make a single recursive call to sma. Asking for the second element
initiates the first recursive call, the third the second, and so on.

As a more involved example, let's build a reverse polish notation (RPN) calculator.
RPN is a notation where operands precede their operator, so that (3 1 2 + *) in RPN
corresponds to ((3 + 1) * 2), for example. To make our program easier to understand,
we wish to separate parsing the input from performing the calculation:

-- file: rpn.hs
data Lex = Number Double Lex
 | Plus Lex
 | Times Lex
 | End

lexRPN :: String -> Lex

Chapter 1

[11]

lexRPN = go . words
 where go ("*":rest) = Times (go rest)
 go ("+":rest) = Plus (go rest)
 go (num:rest) = Number (read num) (go rest)
 go [] = End

The Lex datatype represents a formula in RPN and is similar to the standard list
type. The lexRPN function reads a formula from string format into our own datatype.
Let's add an evalRPN function, which evaluates a parsed RPN formula:

evalRPN :: Lex -> Double
evalRPN = go []
 where
 go stack (Number num rest)
 = go (num : stack) rest
 go (o1:o2:stack) (Plus rest)
 = let r = o1 + o2 in r `seq` go (r : stack) rest
 go (o1:o2:stack) (Times rest)
 = let r = o1 * o2 in r `seq` go (r : stack) rest
 go [res] End
 = res

We can test this implementation to confirm that it works:

> :load rpn.hs
> evalRPN $ lexRPN "5 1 2 + 4 * *"
60.0

The RPN expression (5 1 2 + 4 * *) is (5 * ((1 + 2) * 4)) in infix, which is indeed
equal to 60.

Note how the lexRPN function makes use of guarded recursion when producing
the intermediate structure. It reads the input string incrementally and yields
the structure an element at a time. The evaluation function evalRPN consumes
the intermediate structure from left to right and is tail-recursive, so we keep the
minimum amount of things in memory at all times.

Linked lists equipped with guarded recursion (and lazy
I/O) actually provide a lightweight streaming facility –
for more on streaming see Chapter 6, I/O and Streaming.

Identifying Bottlenecks

[12]

Accumulator parameters
In our examples so far, we have encountered a few functions that used some kind
of accumulator. mySum2 had an Int that increased on every step. The go worker
function in evalRPN passed on a stack (a linked list). The former had a space leak,
because we didn't require the accumulator's value until at the end, at which point it
had grown into a huge chain of pointers. The latter case was okay because the stack
didn't grow in size indefinitely and the parameter was sufficiently strict in the sense
that we didn't unnecessarily defer its evaluation. The fix we applied in mySum2' was
to force the accumulator to WHNF at every iteration, even though the result was not
strictly speaking required in that iteration.

The final lesson is that you should apply special care to your accumulator's
strictness properties. If the accumulator must always be fully evaluated in order to
continue to the next step, then you're automatically safe. But if there is a danger of
an unnecessary chain of thunks being constructed due to a lazy accumulator, then
adding a seq (or a bang pattern, see Chapter 2, Choose the Correct Data Structures) is
more than just a good idea.

Inspecting time and space usage
It is often necessary to have numbers about the time and space usage of Haskell
programs, either to have an indicator of how well the program performs or to
identify unnecessary allocations. The GHC Runtime System flag -s enables
printing allocation and garbage-collection statistics when the program finishes.

Let's try this with an example program, which naively calculates the covariance
of two lists:

-- file: time_and_space.hs
import Data.List (foldl')

sum' = foldl' (+) 0

mean :: [Double] -> Double
mean v = sum' v / fromIntegral (length v)

covariance :: [Double] -> [Double] -> Double
covariance xs ys =
 sum' (zipWith (\x y -> (x - mean xs) * (y - mean ys)) xs ys)
 / fromIntegral (length xs)

main = do
 let xs = [1, 1.1 .. 500]
 ys = [2, 2.1 .. 501]
 print $ covariance xs ys

Chapter 1

[13]

To enable passing options for the Runtime System, we must compile with -rtsopts:

$ ghc -rtsopts time_and_space.hs

For the time being, we ignore optimizations GHC could do for us and compile the
program without any:

$./time_and_space +RTS -s

20758.399999992813

 802,142,688 bytes allocated in the heap

 1,215,656 bytes copied during GC

 339,056 bytes maximum residency (2 sample(s))

 88,104 bytes maximum slop

 2 MB total memory in use (0 MB lost due to
 fragmentation)

 Tot time (elapsed) Avg pause Max
pause

 Gen 0 1529 colls, 0 par 0.008s 0.007s 0.0000s
0.0004s

 Gen 1 2 colls, 0 par 0.001s 0.001s 0.0003s
0.0006s

 INIT time 0.000s (0.000s elapsed)

 MUT time 1.072s (1.073s elapsed)

 GC time 0.008s (0.008s elapsed)

 EXIT time 0.000s (0.000s elapsed)

 Total time 1.083s (1.082s elapsed)

 %GC time 0.8% (0.7% elapsed)

 Alloc rate 747,988,284 bytes per MUT second

 Productivity 99.2% of total user, 99.3% of total elapsed

Identifying Bottlenecks

[14]

On the first line of output from the Runtime System, we see that we allocated over
800 megabytes of memory. This is quite a lot for a program that only handles two
lists of 5,000 double-precision values. There is definitely something in our code that
could be made a lot more efficient. The output also contains other useful information,
such as the total memory in use and, more importantly, some statistics on garbage
collection. Our program spent only 0.8% of time in GC, meaning the program was
doing productive things 99.2% of the time. So our performance problem lies in the
calculations our program performs themselves.

If we look at the definition of covariance, we can spot the many invocations to mean
in the argument lambda to zipWith: we actually calculate the means of both lists
thousands of times over. So let's optimize that away:

covariance' :: [Double] -> [Double] -> Double
covariance' xs ys =
 let mean_xs = mean xs
 mean_ys = mean ys
 in
 sum' (zipWith (\x y -> (x - mean_xs) * (y - mean_ys)) xs ys)
 / fromIntegral (length xs)

With covariance' we get down to three megabytes of allocation:

 3,263,680 bytes allocated in the heap

 915,024 bytes copied during GC

 339,032 bytes maximum residency (2 sample(s))

 112,936 bytes maximum slop

 2 MB total memory in use (0 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max pause

 Gen 0 5 colls, 0 par 0.002s 0.002s 0.0003s
0.0005s

 Gen 1 2 colls, 0 par 0.001s 0.001s 0.0005s
0.0010s

 INIT time 0.000s (0.000s elapsed)

 MUT time 0.003s (0.003s elapsed)

 GC time 0.003s (0.003s elapsed)

 EXIT time 0.000s (0.000s elapsed)

 Total time 0.008s (0.006s elapsed)

Chapter 1

[15]

 %GC time 35.3% (44.6% elapsed)

 Alloc rate 1,029,648,194 bytes per MUT second

 Productivity 63.1% of total user, 79.6% of total elapsed

That's over a 250-fold decrease in heap allocation! With the new version, we now
have a considerable amount of time going to GC, about a third. This is about as
good as we can get without enabling compiler optimizations; if we compile with
-O, we would get to under two megabytes of heap allocation. And if you tried the
original covariance performance with optimizations on, you should get exactly the
same performance as with the newer hand-optimized variant. In fact, both versions
compile to the same assembly code. This is a demonstration of the sophistication of
GHC's optimizer, which we will take a deeper look at in a later chapter.

GHCi tip:
By setting +s in the interpreter, you can get time and space statistics
of every evaluation, which can be handy for quick testing. Keep in
mind though that no optimizations can be enabled for interpreted
code, so compiled code can have very different performance
characteristics. To test with optimizations, you should compile
the module with optimizations and then import it into GHCi.

Increasing sharing and minimizing allocation
In the covariance example, we observed that we could improve code performance
by explicitly sharing the result of an expensive calculation. Alternatively, enabling
compiler optimizations would have had that same effect (with some extras). Most of
the time, the optimizer does the right thing, but that is not always the case. Consider
the following versions of rather a silly function:

-- file: time_and_space_2.hs

goGen u = sum [1..u] + product [1..u]
goGenShared u = let xs = [1..u] in sum xs + product xs

Try reasoning which of these functions executes faster. The first one builds two
possibly very large lists and then immediately consumes them, independent of each
other. The second one shares the list between sum and product.

Identifying Bottlenecks

[16]

The list-sharing function is about 25% slower than the list-rebuilding function.
When we share the list, we need to keep the whole list in memory, whereas by just
enumerating the elements we can discard the elements as we go. The following table
confirms our reasoning. The list-sharing function has a larger maximum residency in
system memory and does more GC:

U = 10000 Time Allocated
heap

Copied
during GC

Maximum
residency

Total
memory

Time in
GC

goGen 0.050ms 87 MB 10 MB 0.7 MB 6 MB 60%
goGenShared 0.070ms 88 MB 29 MB 0.9 MB 7 MB 70%

Recall that, in the covariance example, the compiler automatically shared the values
of sin x and cos x for us when we enabled optimizations. But in the previous example,
we didn't get implicit sharing of the lists, even though they are thunks just like the
results of sin x and cos x. So what magic enabled the GHC optimizer to choose the
best sharing schema in both cases? The optimizer is non-trivial, and unfortunately,
in practice it's not feasible to blindly rely on the optimizer always doing "the right
thing." If you need to be sure that some sharing will take place, you should test it
yourself.

Let's go back to our previous example of sum and product. Surely we could do
better than spending 60% of the time in GC. The obvious improvement would be to
make only one pass through one list and calculate both the sum and product of the
elements simultaneously. The code is then a bit more involved:

goGenOnePass u = su + pu
 where
 (su, pu) = foldl f (0,1) [1..u]
 f (s, p) i = let s' = s+i
 p' = p*i
 in s' `seq` p' `seq` (s', p')

Note the sequential use of seq in the definition of goGenOnePass. This version has a
much better performance: only 10% in GC and about 50% faster than our first version:

U = 10000 Time Allocated
heap

Copied
during GC

Maximum
residency

Total
memory

Time in GC

GoGenOnePass 0.025ms 86 MB 0.9 MB 0.05 MB 2 MB 10%

The takeaway message is that once again algorithmic complexity matters more than
technical optimizations. The one-pass version executed in half the time of the original
two-pass version, as would be expected.

Chapter 1

[17]

With the Bang Patterns (BangPatterns) language extension
(available since GHC 6.6) the f binding could have been written more
cleanly as f (!s, !p) i = (s + i, p * I) with very slightly
degraded performance (0.7%). Annotating a binding with a bang
means that evaluation of that binding will be bound to the evaluation
of its surrounding tuple.

Compiler code optimizations
Haskell compilers perform aggressive optimization transformations on code. GHC
optimization passes are highly sophisticated, so much that one rarely needs to worry
about performance. We have seen some of the effects of ghc -O1 in our examples so
far; in all cases,-O1increased performance relative to no optimizations, or -Onot, and
in some optimizations passes were the difference between constant and exponential
complexity.

Inlining and stream fusion
GHC performs aggressive inlining, which simply means rewriting a function
call with the function's definition. Because all values in Haskell are referentially
transparent, any function can be inlined within the scope of its definition. Especially
in loops, inlining improves performance drastically. The GHC inliner does inlining
within a module, but also to some extent cross-module and cross-package.

Some rules of thumb regarding inlining:

• If a definition is only used once, and isn't exported, it will always be inlined.
• When a function body is small, it will almost certainly be inlined no matter

where or how often it is used.
• Bigger functions may be inlined cross-module. To ensure that foo is always

inlined, add a {-# INLINE foo #-} pragma near the definition of foo.

With these easy rules, you rarely need to worry about problems from bad inlining.
For completeness's sake, there is also a NOINLINE pragma which ensures a definition
is never inlined. NOINLINE is mostly used for hacks that would break referential
transparency; see Chapter 4, The Devil's in the Detail.

Another powerful technique is stream fusion. Behind that fancy name is just a bunch
of equations that are used to perform code rewriting (see Chapter 4, The Devil's in the
Detail for the technicalities).

Identifying Bottlenecks

[18]

When working with lists, you may be tempted to rewrite code like this:

map f . map g . map h

Rather than to use intermediate lists:

map (f . g . h)

But there is no other reason than cosmetics to do this, because with optimizations
GHC performs stream fusion, after which both expressions are time- and space-
equivalent. Stream fusion is also performed for other structures than [], which we
will take a look at in the next chapter.

Polymorphism performance
In principle, (ad hoc) polymorphic programs should carry a performance cost. To
evaluate a polymorphic function, a dictionary must be passed in, which contains
the specializations for the type specified on the caller side. However, almost
always GHC can fill in the dictionary already at compile time, reducing the cost of
polymorphism to zero. The big and obvious exception is code that uses reflection
(Typeable). Also, some sufficiently complex polymorphic code might defer the
dictionary passing to runtime, although, most of the time you can expect a zero cost.

Either way, it might ease your mind to have some notion of the cost of dictionary
passing in runtime. Let's write a program with both general and specialized
versions of the same function, compile it without optimizations, and compare
the performance. Our program will just iterate a simple calculation with double-
precision values:

-- file: class_performance.hs

class Some a where
 next :: a -> a -> a

instance Some Double where
 next a b = (a + b) / 2

goGeneral :: Some a => Int -> a -> a
goGeneral 0 x = x
goGeneral n x = goGeneral (n-1) (next x x)

goSpecialized :: Int -> Double -> Double
goSpecialized 0 x = x
goSpecialized n x = goSpecialized (n-1) (next' x x)

next' :: Double -> Double -> Double
next' a b = (a + b) / 2

Chapter 1

[19]

I compiled and ran both versions separately with their own main entry points using
the following command lines:

ghc class_performance.hs

time ./class_performance +RTS -s

On my machine, with 5,000,000 iterations, the general version does 1.09 GB of
allocation and takes 3.4s. The specialized version does 1.01 GB of allocation and runs
in about 3.2s. So the extra memory cost was about 8%, which is considerable. But by
enabling optimizations, both versions will have exactly the same performance.

Partial functions
Here's a puzzle: given the following definition, which is faster, partial or total?

partialHead :: [a] -> a
partialHead (x:_) = x

totalHead :: [a] -> Maybe a
totalHead [] = Nothing
totalHead (x:_) = Just x

partial = print $ partialHead [1..]

total = print $ case totalHead [1..] of
 Nothing -> 1
 Just n -> n

The total variant uses a head that wraps its result inside a new data constructor,
whereas the partial one results in a crash when a case is not matched, but in
exchange doesn't perform any extra wrapping. Surely the partial variant must be
faster, right? Well, almost always it is not. Both functions have exactly the same time
and space requirements.

Partial functions are justified in some situations, but performance is rarely if ever one
of them. In the example, the Maybe-wrapper of total will have a zero performance
cost. The performance cost of the case analysis will be left, however, but a similar
analysis is done in the partial variant too; the error case must be handled anyway,
so that the program can exit gracefully. Of course, even GHC is not a silver bullet
and you should always keep in mind that it might miss some optimizations. If you
absolutely need to rely on certain optimizations to take place, you should test your
program to confirm the correct results.

Identifying Bottlenecks

[20]

Summary
In this chapter, we learned how lazy evaluation works, what weak head normal
form is, and how to control it by increasing strictness with different methods. We
considered the peculiarities of right-fold, left-fold, and strict left-fold, and in which
situations one fold strategy works better than another. We introduced the concept of
CAF along with memoization techniques, utilized the worker/wrapper pattern, and
used guarded recursion to write clean and efficient recursive programs.

We used the :sprint command in GHCi to inspect unevaluated thunks and the
Runtime System option -s to inspect the heap usage and GC activity of compiled
programs. We took a look at inlining, stream fusion, and the performance costs of
partial functions and polymorphism.

In the next chapter, we will take a look at other basic data and control structures,
such as different array structures and some monads. But first, we will learn about
the performance semantics of Haskell data types and related common optimization
techniques.

[21]

Choosing the Correct
Data Structures

Perhaps the next most important topic in Haskell performance after lazy evaluation
is data structures. I say the next most important because although data structures
form a wider area than lazy evaluation, the unique performance aspects of lazy
evaluation should deserve more attention. Still, structuring data efficiently is a must
for performance, and in Haskell this often requires taking laziness into account, too.

Haskell gives the programmer lots of variety and clutches to structuring data,
ranging from low-level primitives to ingenious, purely functional data structures.
The traditional (re-)implementation costs associated with quick'n'dirty versus
highly optimized solutions are really low in Haskell, and therefore there are even
fewer reasons for complex premature optimizations in Haskell than in many other
languages.

This chapter will help you to understand the performance semantics of Haskell
values in general and to write efficient programs for processing numbers, text, and
arbitrary data in different classic container data types. By the end of this chapter,
you will know how to choose and design optimal data structures in applications.
You will be able to drop the level of abstraction in slow parts of code, all the way to
mutable data structures if necessary.

This chapter will cover the following points:

• Datatype design: boxed and unboxed, strict fields and unpacking fields
• Efficiently processing numeric, binary, and textual data
• Using common sequential, tabular, and mapping container data types
• Employing mutable state in Haskell: IO and ST monads
• Monad and monad transformer performance

Choosing the Correct Data Structures

[22]

Annotating strictness and unpacking
datatype fields
Recall that in the previous chapter, we used seq to force strict evaluation. With the
BangPatterns extension, we can force functions arguments. Strict arguments are
evaluated WHNF just before entering the function body:

{-# LANGUAGE BangPatterns #-}

f !s (x:xs) = f (s + 1) xs
f !s _ = s

Using bangs for annotating strictness in fact predates the BangPatterns extension
(and the older compiler flag -fbang-patterns in GHC 6.x). With just plain
Haskell98, we are allowed to use bangs to make datatype fields strict:

> data T = T !Int

A bang in front of a field ensures that whenever the outer constructor (T above) is in
WHNF, the inner field is as well in WHNF. We can check this:

> T undefined `seq` ()
*** Exception: Prelude.undefined

There are no restrictions to which fields can be strict, be it recursive or polymorphic
fields, although it rarely makes sense to make recursive fields strict. Consider the
fully strict linked list:

data List a = List !a !(List a)
 | ListEnd

With this much strictness, you cannot represent parts of infinite lists without always
requiring infinite space. Moreover, before accessing the head of a finite strict list
you must evaluate the list all the way to the last element. Strict lists don't have the
streaming property of lazy lists.

By default, all data constructor fields are pointers to other data constructors or
primitives, regardless of their strictness. This applies to basic data types Int, Double,
Char, and so on, which are not primitive in Haskell. They are data constructors over
their primitive counterparts Int#, Double#, and Char#:

> :info Int
data Int = GHC.Types.I# GHC.Prim.Int#

Chapter 2

[23]

There is a performance overhead, the size of pointer dereference between types,
say, Int and Int#, but an Int can represent lazy values (called thunks), whereas
primitives cannot. Without thunks, we couldn't have lazy evaluation. Luckily, GHC
is intelligent enough to unroll wrapper types as primitives in many situations,
completely eliminating indirect references.

The hash suffix is specific to GHC and always denotes a primitive type. The GHC
modules do expose the primitive interface. Programming with primitives, you
can further micro-optimize code and get C-like performance. However, several
limitations and drawbacks apply, which we shall consider in Chapter 4, The Devil's in
the Detail.

Unbox with UNPACK
The most powerful trick available to make efficient datatypes in Haskell is to unpack
their fields, also known as unboxing. Those terms are almost synonymous; unboxing
means very generally peeling off layers of indirection, while unpacking refers to
methods of unboxing in GHC. An unpacked field is no longer a pointer to a data
constructor. Instead, the value is stored in memory next to the constructor, where the
pointer to a value (or a thunk) is normally stored.

Use the {-# UNPACK #-} pragma before a field to unpack it. An unpacked field must
also be strict, that is, prefixed with a bang, otherwise it could be a pointer to a thunk,
and there would be no way to know whether the value is evaluated or not.

The preceding diagram illustrates how a value such as T (1 + 2) would be
represented in memory given different definitions for T. Without strictness annotation,
the field points to a thunk. When the field is strictly defined, the contents will be
calculated, but the field is still a pointer to the value.

In the unpacked version, the contents of field are stored in place of the pointer.

Choosing the Correct Data Structures

[24]

Note that, if compiled with -O and above optimization level, there is an error in the
image, as an optimization passed in GHC automatically unpacks strict fields when
possible. The strict field version then produces exactly the code of the version with
explicit unpacking. However, in performance-critical datatypes, and especially
in library code, it is good practice to use explicit unpacking, because automatic
unboxing isn't always a good idea.

There are some restrictions to which kinds of values can be declared unpacked. Most
importantly, sum types, parametrically polymorphic values, and functions are ruled
out. So these are all invalid data declarations:

data S = S {-# UNPACK #-} !(Maybe Int) -- invalid!

data F = F {-# UNPACK #-} !(Int -> Int) -- invalid!

data P a = P {-# UNPACK #-} !a -- invalid!

On the other hand, these are valid:

data T = T {-# UNPACK #-} !(Int, Int)

data R a = R { field_a :: a
 , field_t :: {-# UNPACK #-} !T
 }
data GADT a where
 Empty :: GADT ()
 Some :: a - > {-# UNPACK #-} !Int - > Some Int

That last type requires enabling the GADTs extension, for general algebraic
datatypes.

Then how about this one?

data W = W {-# UNPACK #-} !Int {-# UNPACK #-} !W

It compiles just fine. W is not a sum type nor polymorphic, so it will be unpacked. But
you cannot actually do anything with W – it's impossible to construct values of type
W: W 1 undefined as they will produce an error, while let w = W 1 w produces a
loop! So as a corollary of other requirements of unboxing, we have that inductive
fields cannot be unpacked.

Now let's find out the effect of unpacking on performance in a tight loop with the
following little program:

-- file: strict_and_unpacked.hs

{-# LANGUAGE BangPatterns #-}

Chapter 2

[25]

data PairP = PairP Int Int deriving (Show)

data PairS = PairS !Int !Int deriving (Show)

data PairU = PairU {-# UNPACK #-} !Int {-# UNPACK #-} !Int deriving
(Show)

iter :: Int -> (a -> a) -> a -> a
iter end f x = go 0 x
 where go !n x | n < end = go (n + 1) $! f x
 | otherwise = x

With 1000 iterations of a function that does simple arithmetic on the fields, we obtain
the following heap usage for the different data types:

PairP 370 KB
PairS 50 KB
PairU 50 KB

The difference is very big indeed! But do note that unboxing doesn't always increase
performance. For example, consider a record with a lot of fields. If those fields
contain large chunks of unboxed data, then to make a copy of the record would
mean duplicating all of that unboxed data too. Comparing to if those fields were
lazy, that is, represented by pointers, we would only need to make copies of those
pointers.

Using anonymous tuples
Tuples may seem harmless at first; they just lump a bunch of values together. But
note that the fields in a tuple aren't strict, so a two-tuple corresponds to the slowest
PairP data type from our previous benchmark.

If you need a strict Tuple type, you need to define one yourself. This is also one more
reason to prefer custom types over nameless tuples in many situations. These two
structurally similar tuple types have widely different performance semantics:

data Tuple = Tuple {-# UNPACK #-} !Int {-# UNPACK #-} !Int
data Tuple2 = Tuple2 {-# UNPACK #-} !(Int, Int)

If you really want unboxed anonymous tuples, you can enable the UnboxedTuples
extension and write things with types, like (# Int#, Char# #). But note that
a number of restrictions apply to unboxed tuples, as to all primitives. The most
important restriction is that unboxed types may not occur where polymorphic
types or values are expected, because polymorphic values are always considered as
pointers.

Choosing the Correct Data Structures

[26]

Performance of GADTs and branching
Generalized algebraic datatypes are great. Existential quantification, which is more
or less, comes with GADTs, but it's relatively easy to destroy performance with
existential quantification.

Consider the following slightly contrived GADT, capable of representing all integral
types and Chars:

-- file: gadts.hs

{-# LANGUAGE GADTs #-}

data Object a where
 Number :: Integral a => a -> Object a
 Character :: Char -> Object Char

Turns out, this datatype is quite benign. The following two folds, when compiled
with at least-O, have exactly the same performance:

 foldl (+) 0 [1..1000000 :: Int]

 foldl (\a (Number b) -> a + b) 0
 [Number x | x <- [1..1000000 :: Int]]

But this is an extremely simplified example, where GHC in fact discards our
intermediate Number constructors altogether and just produces a tight loop over
integers. And due to the extra type information present in the GADT, we can switch
the function we fold into:

f :: a -> Object a -> a
f a x = case x of
 Character _ -> a
 Number n -> a + n

GHC would inline f and specialize it with type Int → Object Int → Int, learn
that branch Character is never reached in the specialized version, discard it, and
we'd end up with the same tight loop. Which is pretty nice!

But if we add an extra constructor to Object:

Number' :: Integral a => a -> Object a

And add an extra branch to f:

case x of
 …
 Number' n -> a - n

Chapter 2

[27]

Then GHC will be forced to consider two branches, right? Well in general, the
answer would be yes. But in our simple example, GHC will still happily produce the
same tight loop. What is happening is that GHC fuses the list of Object values from
the list comprehension, learning that no values are constructed with the Number'
constructor, inferring that the new branch is still redundant.

But if we forced either the folding function or the object list and its elements to not
inline (with NOINLINE or producing the objects elsewhere), or indeed constructed
values with multiple constructors, then GHC would be forced to consider all type-
correct branches.

So, in general, GADTs are optimized pretty well. But what about existentials?
Consider using this ObjectE instead of Object:

data ObjectE where
 NumberE :: Integral a => a -> ObjectE

Here we're just saying that we don't care which number type a given object is, only
that it has an Integral instance. But if we compare the performance of this fold over
[ObjectE]:

foldl (\a (NumberE b) -> a + fromIntegral b) 0
 [NumberE x | x <- [1..1000000 :: Int]]

To the performance of a similar fold over [Object Int], the numbers are as follows:

• [Object Int]: 51 KB allocated and execution time about 5ms
• [ObjectE]: 32,000 KB allocated and execution time about 30ms

That is, because of an existential, our program got six times slower, and additionally
started allocating space linear to input size. What exactly is going on here?

The problem is that by wrapping our numbers inside an existential, we are
deliberately forgetting the type. The type class constraint lets us retain some
information, but with an extra cost of a layer of indirection. Existentials force this
indirection to persist through all GHC optimizations, and that's why our code was
so slow. Furthermore, with that added indirection, GHC can no longer unbox our
numbers as efficiently, which explains the extra allocations we observed.

The lessons here are that existentials have an overhead, and that extra type
information available in GADTs helps not only the programmer, but also the
compiler, by opening up extra possibilities for optimizations. GADT's are useful
and fast, while existentials are just useful.

www.allitebooks.com

http://www.allitebooks.org

Choosing the Correct Data Structures

[28]

Handling numerical data
Like all general-purpose programming languages, Haskell too has a few different
number types. Unlike other languages, the number types in Haskell are organized
into a hierarchy via type classes. This gives us two things:

• Check sat compiletime we aren't doing anything insane with numbers
• The ability to write polymorphic functions in the number type with enhanced

type safety

An example of an insane thing would be dividing an integer by another integer,
expecting an integer as a result. And because every integral type is an instance of the
Integral class, we can easily write a factorial function that doesn't care what the
underlying type is (as long as it represents an integer):

factorial :: Integral a => a -> a
factorial n = product [1..n]

The following table lists basic numeric types in Haskell:

Type Size
Int Signed integers, machine-dependent
Word Unsigned integers, machine-dependent
Double Double-precision floating point, machine-dependent
Float Single-precision floating point, machine-dependent
Integer Arbitrary precision integers
Integral a => Ratio a Rational numbers (Rational = Ratio Integer)
Int/Word{8,16,32,64} Signed (Int) or unsigned (Word) integers with fixed

size(from 8 to 64 bits)
RealFloat a => Complex a Complex numbers
HasResolution a => Fixed
a

Arbitrary size, fixed-precision numbers (a represents
precision, like E0, E1, and so on)

Apart from Integer and its derivatives, the performance of basic operations is very
much the same. Integer is special because of its ability to represent arbitrary-sized
numbers via GNU Multiple Precision Arithmetic Library (GMP). For its purpose,
Integer isn't slow, but the overhead relative to low-level types is big.

Because of the strict number hierarchy, some things are a bit inconvenient. However,
there are idiomatic conventions in many situations. For example:

• Instead of fromIntegral . length, use Data.List.genericLength
• Instead of 1 / fromIntegral (length xs), write 1 % length xs

Chapter 2

[29]

• Use float2Double and double2Float from GHC.Float to convert between
Floats and Doubles

Loops that use intermediate numbers usually benefit from strictness annotations.
GHC often unboxes strict number arguments, which leads to efficient code. Strict
arguments in non-recursive functions, however, are usually not a good idea,
resulting in longer execution times due to suboptimal sharing.

GHC flags that often give better performance for number-heavy code include -O2,
-fexcess-precision, and -fllvm. The last flag compiles via LLVM, which requires
the LLVM libraries installed (and currently (GHC 7 series) only version 3.5 is
supported).

Handling binary and textual data
The smallest piece of data is a bit (0 or 1), which is isomorphic to Bool (True or
False). When you need just one bit, a Bool should be your choice. If you need a few
bits, then a tuple of Bools will fit the purpose when performance is not critical. A
[Bool] is sometimes convenient, but should only be chosen for convenience in some
situations.

For high-performance binary data, you could define your own data type with strict
Bool fields. But this has an important caveat, namely that Bool is not a primitive but
an algebraic data type:

data Bool = False | True

The consequence is that you cannot unpack a Bool similar to how you could an Int or
Double. In Haskell, Bool values will always be represented by pointers. Fortunately
for many bit-fiddling applications, you can define a data type like this:

data BitStruct = BitStore !Bool !Bool !Bool

This will get respectable performance. However, if you need a whole array of bits it
quickly becomes inconvenient to define a field per bit.

Representing bit arrays
One way to define a bit array in Haskell that still retains the convenience of Bool is:

import Data.Array.Unboxed
type BitArray = UArray Int Bool

Choosing the Correct Data Structures

[30]

This representation packs 8 bits per byte, so it's space efficient. See the following
section on arrays in general to learn about time efficiency – for now we only note that
BitArray is an immutable data structure, like BitStruct, and that copying small
BitStructs is cheaper than copying BitArrays due to overheads in UArray.

Consider a program that processes a list of integers and tells whether they are even
or odd counts of numbers divisible by 2, 3, and 5. We can implement this with simple
recursion and a three-bit accumulator. Here are three alternative representations for
the accumulator:

-- file: bitstore.hs

{-# LANGUAGE BangPatterns #-}

import Data.Array.Unboxed
import Data.Bits (xor)
type BitTuple = (Bool, Bool, Bool)
data BitStruct = BitStruct !Bool !Bool !Bool deriving Show
type BitArray = UArray Int Bool

And the program itself is defined along these lines:

go :: acc -> [Int] -> acc
go acc [] = acc
go (two three five) (x:xs) = go ((test 2 x `xor` two)
(test 3 x `xor` three)
(test 5 x `xor` five)) xs

test n x = x `mod` n == 0

I've omitted the details here. They can be found in the bitstore.hs file.

The fastest variant is BitStruct, then comes BitTuple (30% slower), and BitArray is the
slowest (130% slower than BitStruct). Although BitArray is the slowest (due to making
a copy of the array on every iteration), it would be easy to scale the array in size or
make it dynamic. Note also that this benchmark is really on the extreme side; normally
programs do a bunch of other stuff besides updating an array in a tight loop.

If you need fast array updates, you can resort to mutable arrays discussed later on. It
might also be tempting to use Data.Vector.Unboxed.Vector Bool from the vector
package, due to its nice interface. But beware that that representation uses one byte
for every bit, wasting 7 bits for every bit.

Chapter 2

[31]

Handling bytes and blobs of bytes
The next simplest piece of information after bits is a byte, which is eight bits.
In Haskell, the Word8 type represents a byte. Often though, whole words are
more useful. The Word type has the same size as Int, defined by the underlying
architecture. Types Word16, Word32, and Word64 consist of respective numbers
of bits.

Like a bit array, a byte array could be represented as a UArray. But a more standard
solution is to use ByteString from the bytestring package. The bytestring
package uses a blazingly fast pointer representation internally, while the API looks
just like the API for standard lists.

Let's test how fast it really is:

-- file: bytestring-perf.hs

import qualified Data.ByteString as B
import System.IO (stdin)

go :: Int -> Int -> IO Int
go 0 s = return $! s
go n s = do bs <- B.hGet stdin (1024 * 1024)
 go (n-1) $! B.length bs + s

main = go 2048 0 >>= print

This program reads two gigabytes of binary data from its standard input in one
megabyte chunks and prints the total of bytes read. Test it with this:

$ ghc -rtsopts -O bytestring-perf.hs

$ time ./bytestring-perf +RTS -s < /dev/zero

On my machine, the program takes 0.25 seconds and allocates about 2.1 gigabytes in
heap – meaning there was hardly any space overhead from our use of ByteString
and speed was respectable as well.

The Data.ByteString.ByteString datatype is strict, meaning that all bytes of a
ByteString will be in memory. The Data.ByteString.Lazy module defines its own
ByteString, which is lazy:

data ByteString = Empty
 | Chunk {-# UNPACK #-} !S.ByteString ByteString

Choosing the Correct Data Structures

[32]

Note that you can unbox strict ByteStrings in your
own data types as well.

Using lazy ByteStrings, we could rewrite our program as follows:

-- file: bytestring-lazy-perf.hs

import qualified Data.ByteString.Lazy as B
import qualified Data.ByteString as S
import System.IO (stdin)

size = 2048 * 1024 * 1024

go :: Int -> [S.ByteString] -> Int
go s (c:cs) | s >= size = s
 | otherwise = go (s + S.length c) cs

main = do
 bs <- B.hGetContents stdin
 print $ go 0 (B.toChunks bs)

This program has very similar memory footprint to the strict ByteString version, but is
about 20% slower. That slowdown comes from different chunk sizes. hGetContents
uses a hard-coded chunk size of 32 KB (described in the documentation of ByteString).
In our previous example, we used a chunk size of 1024 KB, which is a better fit when a
lot of bytes are read in. If you changed the chunk size of the strict program variant to
32 KB, the difference between the strict and lazy variants would be negligible, though
lazy ByteStrings produce more GC traffic.

Thanks to lazy ByteStrings, we could use hGetContents to get an infinite ByteString
and turn our loop into a pure function. Pure code is in general more valuable than
just raw performance.

Starting with bytestring 0.10.0.0, the Data.ByteString.Short module provides
byte arrays with zero memory overhead. A normal ByteString has a memory
overhead of a few Word, and a ByteString, once allocated, cannot be moved by GC.
This means that multiple small ByteString could contribute to heap fragmentation,
or wasted space. ShortByteString, on the other hand, can be moved by GC, but their
API is not nearly as complete as the ByteString API, and should only be used for
internal optimization.

Chapter 2

[33]

Working with characters and strings
The standard Char data type is defined to hold any character of the ISO 10646
character set. Char represents every character with 31 bits.

The text representation chosen in Prelude and base libraries is String = [Char].
This representation has the convenient property that an understanding of, and
operations on, lists carries over to Strings. Furthermore, it's trivial to write programs
that process infinite data sequentially without any extra libraries.

Other than being convenient for the programmer, linked lists have a huge overhead,
making them ill-suited for high performance string processing. Furthermore, String
isn't totally Unicode-correct because some strings' lengths depend on their case.

We could fix performance with a UArray ix Char. However, this still wouldn't get
us Unicode-correctness.

The bytestring package provides a simple 8-bit character interface for ByteStrings
in separate Char8 modules (one for strict and lazy ByteStrings), which may
sometimes be all you need if you are sure you're working with 8-bit (ISO 8859)
encoded strings.

Using the text library
The library of choice for general text processing nowadays is text. Its API is
designed to resemble String functions, but is faster and Unicode-correct. The Text
datatype stores values UTF-16 encoded. That's 16 bits for most characters and 32 bits
for obscure characters. Compare this to 31 bits in a Char.

Note that due to the different representations, there is an overhead
when converting Strings and Texts. It doesn't always make sense to
convert from String to Text or vice versa.

Similar to the bytestring library, the text library provides strict and lazy variants
under different modules. I/O operations with strict and lazy Text are provided
under corresponding modules.

Unlike the bytestring library, the text library uses internally an array representation
and employs a technique called stream fusion to eliminate the need for intermediate
values. Basically this means that pipelines such as T.length . T.toUpper . T.init
will be optimized into a single loop over the input value when optimizations are
enabled. Functions that are fused away are indicated in the documentation of text with
the phrase Subject to fusion.

Choosing the Correct Data Structures

[34]

The text-icu package provides bindings for the mature International Components
for Unicode (ICU) library on top of text.

Builders for iterative construction
Builder abstractions can be used to efficiently compose multiple small chunks into
one big ByteString, Text, or even String. The text and bytestring packages provide
modules, Data.ByteString.Builder and Data.Text.Lazy.Builder, which define
Builder types that compose as monoids.

Say we have a data type, Tree, defined by:

data Tree = Tree !(Int, Tree) !(Int, Tree)
 | Leaf !ByteString

We want a ByteString serialization of Tree values, so that for an example value
(this requires enabling the OverloadedStrings extension):

Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))

This encodes as [1:"one",2:[3:"three",4:"four"]].

We can accomplish this with the following function:

-- file: builder-encoding.hs

import Data.ByteString (ByteString)
import qualified Data.ByteString.Builder as B
import Data.Monoid ((<>))
import System.IO (stdout)

encodeTree :: Tree -> B.Builder
encodeTree (Tree (l1, t1) (l2, t2)) = B.charUtf8 '['
 <> B.intDec l1 <> B.charUtf8 ':'<> encodeTree t1
 <> B.charUtf8 ','
 <> B.intDec l2 <> B.charUtf8 ':'<> encodeTree t2
 <> B.charUtf8 ']'
encodeTree (Leaf bs) = B.charUtf8 '"'
 <> B.byteString bs <> B.charUtf8 '"'

I also added a main to test the encoder:

main = B.hPutBuilder stdout $ encodeTree $
 Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))

Chapter 2

[35]

The ByteString Builder skips all unnecessary intermediate data structures. A ready
Builder value can be rendered as a lazy ByteString, meaning it can be consumed
lazily. So it's completely possible to create even infinite ByteStrings with Builder.
As a final bonus, if you are writing the resulting ByteString into a Handle, you can
use hPutBuilder, which puts the result straight in the handle's buffer, skipping all
intermediate allocations.

The Data.Text.Lazy.Builder API is similar to the ByteString Builder API. The
biggest difference is that text Builders can be constructed only from Chars, and lazy
and strict Texts, so they're clearly fit for textual data only.

Builders for strings
Strings are only lists of characters, and lists admit a rather elegant Builder type:

type Builder = [Char] -> [Char]

Turning a String into a Builder is accomplished by applying concatenation
partially, and to execute the Builder we just apply it to the empty list,[]:

string :: String -> Builder
string str = (str ++)
toString :: Builder -> String
toString b = b []

With this representation, builders are concatenated with normal function
composition (.). Now we can write the previous tree-encoding example using our
string builder:

-- file: string-builder.hs

data Tree = Tree !(Int, Tree) !(Int, Tree)
 | Leaf !String

encodeTree :: Tree -> Builder
encodeTree (Tree (l1, t1) (l2, t2)) =
 string "[" . string (show l1) . string ":" . encodeTree t1 .
 string "," . string (show l2) . string ":" . encodeTree t2 .
string "]"
 encodeTree (Leaf str) = string "\"" . string str . string "\""

main = putStrLn $ toString $ encodeTree $
Tree (1,Leaf "one") (2, Tree (3,Leaf "three") (4,Leaf "four"))

Choosing the Correct Data Structures

[36]

It's not hard to see that this builder also creates its result lazily. Coincidentally, the
standard Show type class defines its serializations via:

type ShowS = String -> String

This is exactly the same as our Builder.

Handling sequential data
The standard list,[], is the most used data structure for sequential data. It has
reasonable performance, but when processing multiple small values, say Chars,
the overhead of a linked list might be too much. Often, the convenient nature of []
is convincing enough.

The wide range of list functions in Data.List are hand-optimized and many are
subject to fusion. List fusion, as it is currently implemented using the foldr/build
fusion transformation, is subtly different from stream fusion employed in ByteString
and Text (concatMap is a bit problematic with traditional stream fusion). Still, the
end result is pretty much the same; in a long pipeline of list functions, intermediate
lists will usually not be constructed.

Say we want a pipeline that first increases every element by one, calculates
intermediate sums of all elements up to current element, and finally sums all
elements. From the previous chapter, we have learned to write optimally strict
recursive functions, so we end up with the following implementation:

-- file: list-fusion.hs

inc :: [Int] -> [Int]
inc (x:xs) = x + 1 : inc xs
inc [] = []

summer :: Int -> [Int] -> [Int]
summer a (x:xs) = let r = a + x in r `seq` r : summer r xs
summer _ [] = []

main = print $ sum $ summer 0 $ inc [1..100000]

If you run this program, you will find out that it allocates a whopping 24 megabytes
of heap space and does quite a lot of GC, being productive only about 80% of the
time. The problem here is that our pipeline is constructing a 100,000-element list
three times over, which is quite expensive.

Chapter 2

[37]

Sure, we could write our pipeline as a single fold, but that would be harder to extend
or maintain. A much better option is to use the map and scanl functions, which are
subject to fusion:

print $ sum $ scanl (+) 0 $ map (+1) [1..100000]

This version is not only much shorter than the original, but faster and allocates heap
for only 6.5 megabytes, which is very close to just allocating 100,000 64-bit integers
(6.1 megabytes).

The lesson here is that for fusion to kick in, library functions and higher-order
functions should be preferred over custom recursive functions. This holds for every
library that provides fusion: lists, text, bytestring, and others.

Using difference lists
We already met a difference list in the String builder section, which was a function
from String to String, or from list of characters to list of characters. String builder is
an example of a difference list. Generalizing over the element type (Char), we obtain
the general definition of difference lists.

Here is a definition of difference lists wrapped in a new type and conversion
function from and to a list:

-- file: dlist.hs

newtype DList a = DList ([a] -> [a])

fromList :: [a] -> DList a
fromList xs = DList (xs ++)

toList :: DList a -> [a]
toList (DList list) = list []

We can't use function composition to compose DList directly, so we give DList a
monoid instance:

instance Monoid (DList a) where
 mempty = DList id
 mappend (DList x) (DList y) = DList (x . y)

You might also want to consider using the DList package from
the Hackage archive in your own code, instead of rolling your own
difference list.

Choosing the Correct Data Structures

[38]

Difference list performance
Composing difference lists with (.) instead of lists directly with (++) can be magnitudes
faster when there is lots of appending. (++) associates to right, so the following:

a ++ b ++ c ++ d

Will parse as:

a ++ (b ++ (c ++ d))

And by the definition of (++), each of a, b, c, and d are traversed only once. But if
instead we first appended b to a, then c, and then d, the result would associate to left:

((a ++ b) ++ c) ++ d

This will unnecessarily build lots of intermediate thunks. If instead we used
difference lists and appended them with (.), the result would look like this:

(a ++) . ((b ++) . ((c ++) . (d ++))) $ []

This would reduce to:

a ++ ((b ++) . ((c ++) . (d ++)) $ [])

And so on, turning (++) right-associative again.

Difference list with the Writer monad
A difference list is often a much better choice as the logging type in a Writer monad.
Here is a simple benchmark of using lists versus difference lists:

-- file: dlist.hs

import Control.Monad.Writer

type DListWriter = Writer (DList Int)
type ListWriter = Writer [Int]

action :: Int -> ListWriter ()
action 15000 = return ()
action n = action (n + 1) >> tell [n]

action' :: Int -> DListWriter ()
action' 15000 = return ()
action' n = action' (n + 1) >> tell (fromList [n])
main = do
 forM (snd $ runWriter (action 1)) print -- []
 forM (toList $ snd $ runWriter (action' 1)) print -- DList

Chapter 2

[39]

The list-based version starts printing the numbers at an almost readable speed and
gradually gains speed, while the difference list-based version spits out numbers
immediately.

Using zippers
Another neat pattern that uses lists is the zipper. The core idea is that of focusing on
some element, that is, viewing the structure from different angles. For simplicity,
we'll consider only the list zipper here, though zippers can be defined for trees or
actually any data structure. For lists, we can define a zipper as:

-- file: zipper.hs

type Zipper a = ([a], [a])

The idea here is that we have split the actual list in two right before the element we
are focusing on. Elements that precede the focused element are kept in the first list,
while the focused element and the elements that follow it are kept in the second list.
Furthermore, the first list is in reverse order relative to the order of the actual list.
The following diagram illustrates this:

It's easy to define operations for moving the focus forwards or backwards:

forward, backward :: Zipper a -> Zipper a
forward (xs, y:ys) = (y:xs, ys)
backward (x:xs, ys) = (xs, x:ys)

The get function yields the element under focus, and set replaces the focused
element:

get :: Zipper a -> a
get (_, y:_) = y

set :: a -> Zipper a -> Zipper a
set x (xs, _:ys) = (xs, x:ys)

Choosing the Correct Data Structures

[40]

Accessing both ends fast with Seq
The Data.Sequence module (from the containers package) provides a general-
purpose sequential data structure Seq, characterized by its O(1) inserts and deletes at
both ends of the sequence. General indexing is of the same complexity as indexing in
a Map.

Seq is a purely functional data structure (based on non-trivial structures called finger
trees) and also quite fast. If you need fast indexing and inserting in both ends of a
sequence, then Seq is one of the easiest and fastest options you have.

Say we are observing sensor events, and would like to keep a buffer of the latest n
events only. Using Seq, we can easily create such a circular buffer, which supports
O(1) inserts, as follows:

-- file: circular.hs

import Data.Sequence as Seq
import Data.Foldable (toList)

data Circular a = Circular !Int (Seq.Seq a)

We will use the Integer in Circular to store the maximum size. Then we'll need a
way to create an empty buffer and a way to extract the current contents from the
buffer:

create :: Int -> Circular a
create n = Circular n Seq.empty

values :: Circular a -> [a]
values (Circular _ s) = toList s

That was pretty simple. Appending a new observation is almost as easy too, except
that we must handle possible buffer overflow:

observe :: Circular a -> a -> Circular a
observe (Circular n s) x
 | Seq.length s < n = Circular n $ s |> x
 | _ :< s'<- viewl s = Circular n $ s' |> x

The viewl and viewr functions are used to inspect the first and last, or left-most and
right-most, elements of a Seq:

data ViewR a = EmptyR | Seq a :> a
data ViewL a = EmptyL | a :< Seq a

Chapter 2

[41]

We can confirm that our buffer works as expected:

> :load circular.hs
> values $ foldl' observe (create 7) [1..10000000 :: Int]
[9999994,9999995,9999996,9999997,9999998,9999999,10000000]

If you compile that fold with optimizations and inspect the heap profile with +RTS
-s, you would find out that processing 10 million observations with buffer size of 7
spends about 3.5% time in GC, clocks in with 2.3 GB of heap allocation, and on my
machine completes in under 350ms.

So at least we have acceptable speed. However, for a buffer size of 7 elements we
could have probably done better with an unboxed array or vector and a simple
linear-time (in buffer size) observe function. But with bigger buffer sizes, linearity
will be costly and Seq will clearly dominate.

In the following graph, I have plotted heap allocation when folding 10 million
integers with different buffer sizes:

We see that after the buffer size is larger than about 10 elements, the amortized
constant time operations of Seq start to pay off. Note that there are size ranges
where heap usage doesn't really change at all – and such ranges become even longer
when buffer size gets larger! With small buffer sizes, overhead from modifying the
internal finger-trees is far greater than added value. There is even a peak at buffer
size 3, implying that it would be more efficient to represent size 3 as 4. This is also
a consequence of the underlying finger-trees, which behave sub optimally in such
small sizes.

Choosing the Correct Data Structures

[42]

Note that if we make the sequence field in the Circular datatype strict (or almost
equally, replace ($) with ($!) in observe), then performance would actually decrease
by about 10%. This is very much counterintuitive, because we will anyways always
need to evaluate the sequence to WHNF. Let me paraphrase this in a way that's
easier to explain: why does deferring the evaluation of a Seq from the constructing
site onto the consuming site have such a big impact?

Once again, the answer boils down to a combination of usual optimizations in GHC,
namely inlining and rewriting. Seq is based on finger-trees and has an interesting
structure and many operations that are often inlined all the way to our own
functions that use Seq operations. Now if we enforce strictness in something that
the GHC inliner rewrites to something completely different, we are limiting code
transformations that GHC could otherwise perform with full laziness.

Handling tabular data
If you need O(1) general indexing, a table-like data structure is virtually your only
option. The Haskell report specifies the array package, which provides tables
indexed by anything with an instance for a Ix typeclass.

Immutable arrays come in two flavors (we'll discuss mutable arrays later):

• Data.Array.Array: Immutable arrays of boxed values
• Data.Array.Unboxed.UArray: Immutable arrays of unboxed values

A common use case for Immutable arrays is memoization. For example, a table of
Fibonacci numbers could be constructed as follows:

-- file: fib-array-mem.hs
import Data.Array

fib :: Int -> Array Int Integer
fib n = arr where
 arr = listArray (1,n) $ 1 : 1 : [arr!(i-2) + arr!(i-1)
 | i <- [3..n]]

We can also index by a tuple, which gives the array extra dimensions. The symmetric
Pascal matrix will serve as an example:

pascal :: Int -> Array (Int, Int) Integer
pascal n = arr where
 arr = array ((1,1),(n,n)) $
 [((i,1),1) | i <- [1..n]] ++
 [((1,j),1) | j <- [1..n]] ++
 [((i,j),arr!(i-1,j) + arr!(i,j-1)) | i <- [2..n], j <- [2..n]]

Chapter 2

[43]

These self-referential definitions look very nice, and with arbitrary-sized integers the
performance is pretty much as good as it could be.

But what if we only needed a table of the first 90 Fibonacci numbers? The 90th
Fibonacci number fits into an Int64, so we could switch to that and use UArray
instead of Array. But then we could not have had the nice self-referential definition,
because array construction would block trying to index its unfinished self. In this
case, you should build the list so that it doesn't reference the array, or convert the
boxed array into an unboxed array via an intermediate list:

toUArray :: (Ix i, IArray UArray e) => Array i e -> UArray i e
toUArray a = listArray (bounds a) (elems a)

This conversion comes at the cost of an intermediate list, though.

The array package is quite low-level, but the speed will be there at the cost of doing
a lot of index fiddling yourself. For multi-dimensional arrays, much of that index-
fiddling is unfortunately unavoidable. But for single-dimensional arrays, there is a
better choice.

Using the vector package
The Data.Vector modules in the vector package provide sweet and speedy high-
level Int-indexed arrays, implemented on top of Data.Array. They too come in
boxed and unboxed flavors.

The sweetness of vector is in the API, which is loaded with higher-order functions,
convenient helpers, monad-lifted operations, and of course all the common
operations for list-like structures.

The speed comes once again from fusion; in terms of raw speed, operations on
vector have an upper bound set by arrays that vectors use internally. However, a
sufficiently large composition of vector operations will almost always outperform a
similar naive array-based program.

Say we have a sensor from which we have stored numeric observations at different
times, and now we want to analyze that data. For performance, we choose to use
unboxed vector for storing the data in memory. Also, we import randomIO for testing
purposes:

-- file: vector-testing.hs

import qualified Data.Vector.Unboxed as U
import System.Random (randomIO)

Choosing the Correct Data Structures

[44]

A neat thing about unboxed Vectors is that unboxed vectors support tuple-valued
elements. Internally, they are represented with two vectors. This defines some types:

type Obs = U.Vector (TimeStamp, Double)

type TimeStamp = Int

We can extract the value Vector of our observation vector using U.unzip in constant
time and no copying:

-- | O(1)
values :: Obs -> U.Vector Double
values obs = snd (U.unzip obs)

Note that U.map snd would be bad, because mapping constructs a new vector,
in general.

Now let's try something more interesting: a windowing function, which gives us the
slice between two timestamps. The following implementation of a window function is
linear in time and constant in space:

-- | O(n+m), no copying.
window :: TimeStamp -> TimeStamp -> Obs -> Obs
window from until v =
 let (_, start) = U.span ((< from) . fst) v
 (between, _) = U.span ((<= until) . fst) start
 in between

We could improve this by a more involved binary search, for example. But for
demonstration, I used just U.span, which also does no copying by reusing the
original vector. Because the time step between two observations (TimeStamps) can
be arbitrary, logarithmic time complexity is the best we could get.

Implementing value average is straightforward:

-- | O(n)
average :: Obs -> Double
average obs = U.sum (values obs) / fromIntegral (U.length (values
obs))

Let's test out the performance by generating a data set of a million random
observations and then calculating averages at different windows:

main = do
 obs <- U.generateM (1024 ^ 2) $ \i -> randomIO >>= \v -> re
turn (i, v)
 print $ average $ window 1 (1024 ^ 2) obs

Chapter 2

[45]

 print $ average $ window 2 (1023 ^ 2) obs
 print $ average $ window 3 (1022 ^ 2) obs
 print $ average $ window 4 (1021 ^ 2) obs

Compile and run with Runtime System statistics:

$ ghc -rtsopts -O vector-testing.hs && time ./vector-testing +RTS -s

[...]

2,090,993,872 bytes allocated in the heap

341,188,752 bytes copied during GC

59,032,744 bytes maximum residency (7 sample(s))

2,863,512 bytes maximum slop

138 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 4003 colls, 0 par 0.372s 0.372s 0.0001s
0.0013s

Gen 1 7 colls, 0 par 0.177s 0.177s 0.0253s
0.0447s

INIT time 0.000s (0.000s elapsed)

MUT time 1.426s (1.428s elapsed)

GC time 0.548s (0.548s elapsed)

EXIT time 0.006s (0.006s elapsed)

Total time 1.983s (1.983s elapsed)

%GC time 27.7% (27.7% elapsed)

Alloc rate 1,465,833,131 bytes per MUT second

Productivity 72.3% of total user, 72.3% of total elapsed

Wow, this looks pretty bad: lots of GC, only 70% productivity, and a 60-megabyte
memory footprint! The data itself is only 16 megabytes on a 64-bit machine, which
implies that a lot of unnecessary things are going on.

Choosing the Correct Data Structures

[46]

Turns out, optimization level -O is insufficient for lots of important optimizations to
kick in. Switching to -O2 gives significant improvements:

$ ghc -rtsopts -O2 vector-testing.hs && ./vector-testing +RTS -s

[..]

1,862,402,704 bytes allocated in the heap

818,920 bytes copied during GC

16,779,344 bytes maximum residency (2 sample(s))

2,070,704 bytes maximum slop

19 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 3576 colls, 0 par 0.014s 0.014s 0.0000s
0.0000s

Gen 1 2 colls, 0 par 0.001s 0.001s 0.0006s
0.0010s

INIT time 0.000s (0.000s elapsed)

MUT time 1.227s (1.229s elapsed)

GC time 0.016s (0.015s elapsed)

EXIT time 0.001s (0.001s elapsed)

Total time 1.247s (1.245s elapsed)

%GC time 1.3% (1.2% elapsed)

Alloc rate 1,517,508,130 bytes per MUT second

Productivity 98.7% of total user, 98.9% of total elapsed

With -O2, we got down to 1.3% GC and 19 megabytes of memory footprint. For even
better results, we could combine with optimizations for numerical code.

It's certainly a good idea to always use -O2 for production and
performance testing, especially for vector code. Compile times will
be significantly longer, however, so in development -O or even no
optimization passes at all is advisable.

Chapter 2

[47]

Handling sparse data
Vectors and arrays are excellent for dense data, that is, when you're not doing inserts
in between elements, and the range of indices is reasonable. But if you need, for
example, inserts and indexing in arbitrary indices, a tabular structure won't perform
well. In such cases, you need some sort of a map or similar structure.

Haskell doesn't have any sparse structures built-in, nor does the Haskell report
define any. This has some nice consequences:

• Keeps the core language small
• Gives Haskellers complete freedom over the implementation
• Allows writing code that doesn't care much about the specific underlying

data structure

There are many excellent libraries, implementing a wide range of sparse data
structures, in Hackage, not to mention type classes capturing general properties
of those structures. Unfortunately, the ecosystem is a bit too scattered, so it is
sometimes hard to determine which library would give the best performance,
cleanest code, and most flexibility, or whether the package is maintained.

Using the containers package
The go-to package for immutable sparse data structures is containers. It provides
reasonably efficient implementations for maps and sets, very basic tree and graph
structures, and the sequence mentioned previously. The structures are purely
functional, which is a nice property in itself, encouraging us to write code in a
functional style:

Ord a => Data.Map.{Lazy,Strict}.Map k v
Ord a => Data.Set.Set a

Data.IntMap.{Lazy,Strict}.IntMap v
Data.IntSet.IntSet a

Data.Tree.Tree a
Data.Graph.Graph = Array Int [Int]
Data.Sequence.Seq a

However, you shouldn't expect these structures, say Map, to perform equally with
traditional imperative-style structures (hashmaps), especially when used more or
less imperatively. The Map from containers is based on binary trees. IntMap,
which constrains its keys to Ints, uses Patricia trees and is considerably more efficient
than Map Int.

Choosing the Correct Data Structures

[48]

The imperative map implementation is usually a hash table because of its O(1)
lookups compared to the O(log n) of tree-based maps. However, hash tables rely on
mutable state, and so are not so convenient in functional settings.

Functional structures have their unique advantages:

• Updates reuse parts of the previous structure, so keeping older versions
lying around is cheap

• Automatic thread-safety

Furthermore, with lazy evaluation, a map lazy in its values allows for an intuitive
memoization pattern:

-- file: map-fib.hs

import Data.IntMap as IM

fib :: Int -> IntMap Int
fib n = m where
 m = IM.fromList $ (1,1) : (2,1) :
 [(i, IM.findWithDefault 0 (i-1) m + IM.findWithDefault 0 (i-
2) m)
 | i <- [3..n]]

Unless you need to have thunks as values, you should use the strict
variants of Map and IntMap for efficiency.

Using the unordered-containers package
The containers package requires an Ord instance from the keys in a Map and from
values in a Set. For string-valued data this is problematic, because a comparison
might be too expensive. And for some data, an Ord instance is an impossibility:

Hashable k => Data.HashMap.Lazy.HashMap k v
Hashable k => Data.HashMap.Strict.HashMap k v
Hashable a => Data.HashSet.HashSet

The unordered-containers package provides pure functional hash maps and
sets, requiring a Hashable instance. The same performance considerations apply to
HashMap and HashSet as the data structures from containers: they are persistent in
nature but won't beat mutable-state variants in terms of raw speed.

Chapter 2

[49]

Ephemeral data structures
Lazy evaluation, functional code, and persistent data structures are nice and all,
but they are not meant to wholly replace imperative strict evaluation, imperative
code, and ephemeral structures. Nor vice versa. Instead, all complement each
other. Although the default evaluation in Haskell is strict and a functional style is
strongly encouraged, Haskell is more than capable of providing for programming in
imperative style:

"In short, Haskell is the world's finest imperative programming language."

 – Simon Peyton Jones (in his paper Tackling the Awkward Squad)

Imperative programming calls for sequential processing. In Haskell, we tackle
sequential steps with monads. The monad of choice for ephemeral data structures is
IO or ST. ST (for state threads) behaves a bit more nicely than IO in that you cannot
launch missiles from ST. An ST action can be executed in pure code, or converted to
an IO action:

import Control.Monad.ST

runST :: (forall s. ST s a) -> a
stToIO :: ST RealWorld a -> IO a

The s type variable in ST actions can be largely ignored. It is only used to separate
the states of separate ST actions.

The ST monad comes in two flavors, strict (Control.Monad.ST) and lazy (Control.
Monad.ST.Lazy). The lazy ST monad executes only actions whose values are
required. The following code works with a lazy ST monad, but not with a strict one:

st :: Int
st = runST $ do
 mapM_ return [1..]
 return 9001

Unless you need lazy semantics, strict ST will be faster.

Mutable references are slow
Data.IORef and Data.STRef are the smallest bits of mutable state ; they are,
references to mutable variables, one for IO and other for ST. There is also a Data.
STRef.Lazy module, which provides a wrapper over strict STRef for lazy ST.

Choosing the Correct Data Structures

[50]

However, because IORef and STRef are references, they imply a level of indirection.
GHC intentionally does not optimize them away, as that would cause problems in
concurrent settings. For this reason, IORef or STRef shouldn't be used like variables
in C, for example. Performance will for sure be very bad.

Let's verify the performance hit by considering the following ST-based sum-of-range
implementation:

-- file: sum_mutable.hs

import Control.Monad.ST
import Data.STRef

count_st :: Int -> Int
count_st n = runST $ do
 ref <- newSTRef 0
 let go 0 = readSTRef ref
 go i = modifySTRef' ref (+ i) >> go (i - 1)
 go n

And compare it to this pure recursive implementation:

count_pure :: Int -> Int
count_pure n = go n 0 where
 go 0 s = s
 go i s = go (i - 1) $! (s + i)

The ST implementation is many times slower when at least -O is enabled. Without
optimizations, the two functions are more or less equivalent in performance; there
is similar amount of indirection from not unboxing arguments in the latter version.
This is one example of the wonders that can be done to optimize referentially
transparent code.

Using mutable arrays
To get rid of indirection when it isn't desired, mutable arrays from the array
package can be used. Those too live either in IO or ST, but unlike references arrays
can contain unboxed values. The main mutable array modules and types are:

• Data.Array.IO: Mutable boxed (IOArray) and unboxed arrays (IOUArray)
in IO

• Data.Array.ST: Mutable boxed (STArray) and unboxed arrays (STUArray)
in ST

• Data.Array.Storable: Mutable arrays in contiguous memory
(StorableArray)

Chapter 2

[51]

The purpose of StorableArray is to serve as a convenient medium for interfacing
with C. In general, it is a bit slower than the others. We'll consider StorableArray in
Chapter 10, Foreign Function Interface.

Using STUArray we can write sum-of-range, which is as efficient as the optimized
pure function:

-- file: sum_array_mutable.hs

{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.ST
import Data.Array.ST

count_stuarray :: Int -> Int
count_stuarray n = runST $ do
 ref <- newArray (0,0) 0 :: ST s (STUArray s Int Int)
 let go 0 = readArray ref 0
 go i = do s <- readArray ref 0
 writeArray ref 0 $ s + i
 go (i-1)
 go n

The obvious caveat here is that the code is more involved:

• Had to use an array for a single variable
• Needed an explicit type signature for the intermediate array (the array

interface is highly overloaded, for better or worse)
• Needed to enable FlexibleContexts so that go type-checks (due to the s

type parameter in ST)

The advantage of mutable arrays is that they are pretty low-level. It's trivial to reason
about the time and space usage of strict array code.

Using mutable vectors
Roman Leshchinskiy's wonderful vector package provides a mutable API. Similar
to immutable, the mutable API is charged with stream fusion as well. Furthermore,
mutable and immutable vectors are tightly entwined, so sometimes conversions from
one to the other can be done in place.

Choosing the Correct Data Structures

[52]

When working with mutable vectors, the types can seem a bit baffling. The Data.
Vector.Mutable and Data.Vector.Unboxed.Mutable modules each define two
types, IOVector and STVectors, which are analogous to mutable array types.
However, IOVector and STVector are just synonyms defined in terms of a more
general type, MVector s:

type IOVector = MVector RealWorld
type STVector s = MVector s

MVector is the sole mutable (boxed) vector type; the immediate benefit is that fewer
API functions need to be overloaded via an adhoc type class, yielding very good type
inference. All of the mutable vector API is written in terms of MVector, for example:

slice :: Int -> Int -> MVector s a -> MVector s a

Operations that must mutate the vector are wrapped in the underlying monad (IO or
ST). Thus, type signatures of mutating operations are a bit more involved:

read :: PrimMonad m => MVector (PrimState m) a -> Int -> m a
write :: PrimMonad m => MVector (PrimState m) a -> Int -> a ->
m ()

These operations execute in a monad, m, capable of primitive state-transformer
actions. So the monad must be IO, ST, or some monad transformer stack with IO
or ST at the bottom. That's the PrimMonad m =>… part.

The PrimState m might be baffling if you're not very familiar with associated types.
Associated types are like ordinary class functions, but lifted to type-level:

class Monad m => PrimMonad m where
 type PrimState m

instance PrimMonad IO where
 type PrimState IO = RealWorld

instance PrimMonad (ST s) where
 type PrimState (ST s) = s

So respectively for IO and ST, we have:

MVector (PrimState m) a === MVector RealWorld a = IOVector a
MVector (PrimState m) a === MVector s a = STVector s a

Associated types are not rocket science. Unfortunately, function arrow syntax for
type level functions does not exist in Haskell, so syntax is a little funny.

Chapter 2

[53]

Unboxed mutable vectors work the same way as boxed mutable vectors. The only
addition is an Unbox a => constraint on the element (and the unboxed MVector is a
type-family instead of a datatype). Unbox comes with instances for primitive types
and tuples (and it is possible to add your own instances), and is also a requirement in
the immutable unboxed API.

Bubble sort with vectors
Bubble sort is not an efficient sort algorithm, but because it's an in-place algorithm
and simple, we will implement it as a demonstration of mutable vectors:

-- file: bubblesort.hs

import Control.Monad.ST
import Data.Vector as V
import Data.Vector.Mutable as MV
import System.Random (randomIO) -- for testing

The (naive) bubble sort compares values of all adjacent indices in order, and swaps
the values if necessary. After reaching the last element, it starts from the beginning
or, if no swaps were made, the list is sorted and the algorithm is done:

bubblesortM :: (Ord a, PrimMonad m)
 => MVector (PrimState m) a -> m ()
bubblesortM v = loop where

 indices = V.fromList [1 .. MV.length v - 1]

 loop = do swapped <- V.foldM' f False indices – (1)
 if swapped then loop else return () – (2)

 f swapped i = do – (3)
 a <- MV.read v (i-1)
 b <- MV.read v i
 if a > b then MV.swap v (i-1) i >> return True
 else return swapped

At (1), we fold monadically over all but the last index, keeping state about whether
or not we have performed a swap in this iteration. If we had, at (2) we rerun the
fold ; if not, we can return. At (3) we compare an index and possibly swap values.

We can write a pure function that wraps the stateful algorithm:

bubblesort :: Ord a => Vector a -> Vector a
bubblesort v = runST $ do
 mv <- V.thaw v
 bubblesortM mv
 V.freeze mv

Choosing the Correct Data Structures

[54]

V.thaw and V.freeze (both O(n)) can be used to go back and forth with mutable
and immutable vectors.

Now, there are multiple code optimization opportunities in our implementation
of bubble sort. But before tackling those, let's see how well our straightforward
implementation fares using the following main:

main = do
 v <- V.generateM 10000 $ _ -> randomIO :: IO Double
 let v_sorted = bubblesort v
 median = v_sorted ! 5000
 print median

We should remember to compile with -O2. On my machine, this program takes
about 1.55s, and Runtime System reports 99.9% productivity, 18.7 megabytes
allocated heap and 570 kilobytes copied during GC.

So now with a baseline, let's see if we can squeeze more performance from vectors.
This is a non-exhaustive list:

• Use unboxed vectors instead. This restricts the types of elements we
can store, but it saves us a level of indirection. Down to 960ms and
approximately halved GC traffic.

• Large lists are inefficient, and they don't compose with vectors stream fusion.
We should change indices so that it uses V.enumFromTo instead (alternatively
turn on OverloadedLists extension and drop V.fromList). Down to 360ms
and 94% less GC traffic.

• Conversion functions V.thaw and V.freeze are O(n), that is, they modify
copies. Using in-place V.unsafeThaw and V.unsafeFreeze instead
is sometimes useful. V.unsafeFreeze in the bubblesort wrapper is
completely safe, but V.unsafeThaw is not. In our example, however, with
-O2, the program is optimized into a single loop and all those conversions get
eliminated.

• Vector operations (V.read, V.swap) in bubblesortM are guaranteed to never
be out of bounds, so it's perfectly safe to replace these with unsafe variants
(V.unsafeRead, V.unsafeSwap) that don't check bounds. Speed-up of about
25 milliseconds, or 5%.

To summarize, applying good practices and safe usage of unsafe functions, our
Bubble sort just got 80% faster. These optimizations are applied in the bubblesort-
optimized.hs file (omitted here).

Chapter 2

[55]

We noticed that almost all GC traffic came from a linked list, which was constructed
and immediately consumed. Lists are bad for performance in that they don't fuse like
vectors. To ensure good vector performance, ensure that the fusion framework can
work effectively. Anything that can be done with a vector should be done.

As a final note, when working with vectors (and other libraries) it's a good idea to
keep the Haddock documentation handy. There are several big and small performance
choices to be made. Often the difference is that of between O(n) and O(1).

Working with monads and monad stacks
Monads are very useful abstractions, and like any sufficiently complex abstraction,
many monads too incur some overhead. Two notable exceptions are IO and ST,
which are eliminated during compilation. A single simple monad such as Reader
or Writer has very minimal overhead, but monad stacks can incur unfortunate
slowdowns. In most cases, the convenient nature of programming in a monad stack
far outweighs the small overhead, because cost centers are rarely located in monad
operations (excluding IO and ST).

If you have an expensive subroutine in a State monad, it might be
possible to convert it to ST for a big speedup. However, State is
more expressive than ST so conversion is not always feasible.

The list monad and its transformer
The monad instance of lists admits attractive backtracking. For example, consider
special Pythagorean triplets from Project Euler problem 9: find three natural numbers
a < b < c such that a^2 + b^2 = c^2 and a + b + c = n, where n = 1000 (there exists exactly
one such triplet). A naive implementation using the list monad can be given as
follows:

-- file: backtracking-list.hs

import Control.Monad (guard)

special_pythagorean :: Int -> [(Int,Int,Int)]
special_pythagorean n = do
 a <- [1 .. n]
 b <- [a + 1 .. n]
 c <- [b + 1 .. n]
 guard (a + b + c == n)

Choosing the Correct Data Structures

[56]

 guard (a ^ 2 + b ^ 2 == c ^ 2)
 return (a, b, c)

main = print $ head $ special_pythagorean 1000

Algorithmically, this solution is pretty bad. But the implementation itself is fairly
efficient. GHC is smart enough to optimize all intermediate lists away, producing a
program with three nested loops. Most values get unboxed, too.

Previously we observed that lists don't perform well if used like lists and arrays
are used in imperative languages, that is, treating them as just some list-like values.
Instead, in a functional style, lists are more useful when used as a control structure.
Indeed, the list monad goes by another name, the stream monad. If you ever take
a look at how stream fusion in bytestring, vector, text, or built-in iterators in
imperative languages such as Python and Java are implemented, what you'll find is
just a linked list in disguise.

The list monad can be turned into a monad transformer, named ListT, albeit it is
tricky to get right. A correct implementation can be found in the list-t package.

With ListT, we can add streaming to any monad. For example, we could implement
a random noise generator with a repeating pattern and random delays with a ListT
IO. First, some imports:

-- file: noise.hs

import ListT -- package list-t
import System.Random -- package random
import Control.Monad.Trans (lift) -- package mtl
import Control.Concurrent (threadDelay)

We write the noise generator to take the pattern as an argument:

noise :: [Double] -> ListT IO Double
noise pat = do
 pat'<- ListT.repeat pat
 x <- ListT.fromFoldable pat'
 lift $ do delay <- randomIO
 threadDelay (mod delay 300000)
 randomRIO (x - 0.5, x + 0.5)

main = let generator = noise [1,5,10,5]
 in ListT.traverse_ print generator

Chapter 2

[57]

Monadic code in ListT looks just like monadic code in [], with the addition of
interleaved IO actions via lift. In main, we create a generator and consume it one
element at a time. The next item is generated only when it is really required, hence
we don't loop indefinitely but recurse productively.

In the list-t package, there is a MonadPlus instance for Monad m => ListT m.
MonadPlus gives us the empty list (mzero) and list concatenation (mplus) lifted to
ListT m for any monad m. Of course, we can also use other generic combinators, for
example, to make derived generators:

Control.Monad.mfilter (> 5) (noise [1,5,10,5])

Control.Monad.liftM (+) (noise [1,2,3]) (noise [7,6,8])

However, that second example is a bit questionable, because it incurs random delays
from both generators sequentially.

Free monads
Another general example of data as a control structure is the Free monad:

data Free f a = Pure a
 | Free (f (Free f a))

The key observation is that if f is a (law-abiding) functor, then Free f is
automatically always a monad.

With Free, we can define embedded languages in Haskell quite conveniently.
Let's take a silly example: a language capable of reading and writing strings, and
launching missiles, that is, to perform arbitrary I/O actions. We could write an
abstract datatype like so:

data Language = Write String Language
 | Read (String -> Language)
 | Missiles (IO ()) Language
 | End

Then, expressions could be written like so:

Write "Launch?"
 (Read (\s -> if s == "y" then Missiles launch End
 else Write "No launch" End))

Choosing the Correct Data Structures

[58]

But this doesn't look very nice. Certainly not nearly as readable as direct Haskell.
We could roll our own parser, but fortunately there is Free:

-- file: free.hs
{-# LANGUAGE DeriveFunctor #-}
import Prelude hiding (read)
import Control.Monad.Free -- package free

We begin our Free adventure with that preamble. Free will capture the recursive
nature in our Language datatype for us when we write it as:

data Language next = Write String next
 | Read (String -> next)
 | Missiles (IO ()) next
 deriving (Functor)
type Program = Free Language

We need DeriveFunctor to derive the Functor instance. Alternatively, we could
have written it by hand. To lift statements in our language to the free monad
Program, we write the following definitions:

read :: Program String
read = liftF (Read id)

write :: String -> Program ()
write string = liftF (Write string ())

missiles :: IO () -> Program ()
missiles io = liftF (Missiles io ())

With these statements, we can write programs in monadic style in our Program
monad. The following example program repeatedly asks for a command until
receiving a "launch" command, after which it launches some missiles and exits
gracefully:

program :: Program Int
program = do
 write "Waiting for command (launch)"
 input <- read
 case input of
 "launch" -> do missiles $ putStrLn "Missiles launched!"
 return 0
 _ -> do write $ "Unknown command: " ++ input
 program

Chapter 2

[59]

An interpreter for this Free language is implemented very similarly, as in the case of
a direct ADT:

interpret :: Program a -> IO a
interpret (Pure res) = return res
interpret (Free program) = case program of
 Write string next -> putStrLn string >> interpret next
 Read go -> getLine >>= interpret . go
 Missiles m next -> m >> interpret next

Note that nothing prevents us from writing a safe interpreter that doesn't launch
missiles, or an interpreter that doesn't live in the IO monad. Using Free, we got
monadic do-syntax for free, as well as all standard monad machinery in our little
embedded language. Also, similarly to ListT, there is a FreeT monad transformer,
with which side-effects in arbitrary inner monads can be allowed inside the
embedded language.

Working with monad transformers
In general, monads from the transformers package behave very nicely. Overhead is
pretty much predicted by the number of layers in the stack. Monadic functions inline
well and GHC is able to do lots of optimizations. The monad transformer library
(mtl) isn't much worse nowadays, but the extra flexibility in mtl doesn't always come
for free.

If you need to speed up a monad stack, you might want to consider unrolling it.
The RWS monad/transformer from mtl is an example of unrolling. RWS combines
Reader, Writer, and State on a single level:

RWS r w s a ~ r -> s -> (a, s, w)
ReaderT r (StateT s (Writer w)) a ~ r -> s -> ((a, s), w)

Composing monads and side-effects efficiently is ongoing research. Also, new
approaches such as extensible effects have emerged, but speed remains an issue.

Speedup via continuation-passing style
Implementing monads in continuation-passing style (CPS) can have very good
results. Unfortunately, no widely-used or supported library I'm aware of would
provide drop-in replacements for ubiquitous Maybe, List, Reader, Writer, and State
monads.

Choosing the Correct Data Structures

[60]

It's not that hard to implement the standard monads in CPS from scratch. For
example, the State monad can be implemented using the Cont monad from mtl as
follows:

-- file: cont-state-writer.hs
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

import Control.Monad.State.Strict
import Control.Monad.Cont

newtype StateCPS s r a = StateCPS (Cont (s -> r) a)
deriving (Functor, Applicative, Monad, MonadCont)

instance MonadState s (StateCPS s r) where
 get = StateCPS $ cont $
\next curState → next curState curState

 put newState = StateCPS $ cont $
\next curState → next () newState

runStateCPS :: StateCPS s s () -> s -> s
runStateCPS (StateCPS m) = runCont m (_ -> id)

In case you're not familiar with the continuation-passing style and the Cont monad,
the details might not make much sense: instead of just returning results from a
function, a function in CPS applies its results to a continuation. So in short, to
"get" the state in continuation-passing style, we pass the current state to the "next"
continuation (first argument) and don't change the state (second argument). To
"put,"we call the continuation with the unit (no return value) and change the state to
a new state (second argument to next).

StateCPS is used just like the State monad:

action :: MonadState Int m => m ()
action = replicateM_ 1000000 $ do
 i <- get
 put $! i + 1

main = do
 print $ (runStateCPS action 0 :: Int)
 print $ (snd $ runState action 0 :: Int)

Chapter 2

[61]

That action operation is, in the CPS version of the state monad, about 5% faster and
performs 30% less heap allocation than the state monad from mtl. This program is
limited pretty much only by the speed of monadic composition, so these numbers
are at least very close to the maximum speedup we can have from CPSing the state
monad. Speedups of the writer monad are probably near these results.

Other standard monads can be implemented similarly to StateCPS. The definitions
can also be generalized to monad transformers over an arbitrary monad (a la
ContT). For extra speed, you might wish to combine many monads in a single CPS
monad, similarly to what RWST does.

Summary
We began this chapter with GHC primitives such as Int# and figured out the effects
of strictness and unpacking annotations (bangs and UNPACK-pragmas) in data type
definitions. We noted that tuples are lazy and that Bool is an algebraic data type,
but we also noted that arrays and vectors represent Bool intelligently as single bits
internally.

Then we considered working with numeric, binary, and textual data. We witnessed
the performance of the bytestring, text, and vector libraries, all of which get
their speed from fusion optimizations, in contrast to linked lists, which have a huge
overhead despite also being subject to fusion to some degree. However, linked
lists give rise to simple difference lists and zippers. The builder patterns for lists,
bytestring, and text were introduced. We discovered that the array package is
low-level and clumsy compared to the superior vector package, unless you must
support Haskell 98. The Map type in containers was a binary tree, whereas some
hashing-based (functional) implementations resided in unordered containers. We
used the IO and ST monads to program with mutable state. Finally, we touched
upon the subject of side-effect composition.

In the next chapter, we will profile and benchmark Haskell code using the GHC
profiler and criterion. Our aim is to identify space leaks and cost centers. We will
learn how to structure and annotate programs for easy profiling.

[63]

Profile and Benchmark
to Your Heart's Content

So far we haven't used much else but heap usage statistics to gauge the performance
of Haskell programs. For a quick overview of the overall performance of a program,
a simple +RTS -s is often sufficient. However, often it is necessary to know which
parts of the code specifically are taking up the most time and space.

In this chapter we extend our toolset with more sophisticated profiling and
benchmarking facilities. We will learn to inspect and set cost centres, to benchmark
robustly when semantics are mostly lazy. Finally we'll also look at monitoring
performance while the program is still running.

• Profiling time, allocation and space usage
• Profiling the heap: break-downs and subset selection
• Benchmarking Haskell programs with the criterion library
• Monitoring still-executing programs in real-time with ekg

Profiling time and allocations
Profiling in the presence of lazy evaluation does not differ much from profiling
always-strict programs. The profiler that comes with GHC assigns time and space
usages to cost centres. Cost centres annotate expressions, and can be set either
manually or automatically by GHC. Cost centres can occur enclosed in other cost
centres recursively, forming cost centre stacks. All time and space costs accumulate
in each enclosing cost centre.

Profile and Benchmark to Your Heart's Content

[64]

Cost centres can be set manually via annotations, or automatically by GHC via
compiler flags. Depending on how often the cost centre is entered, the choice of
cost centre can have a big impact on overall execution time. Fortunately, allocation
profiling is not affected by chosen cost centers.

Setting cost centres manually
Let's start our profiling journey with a basic example. The following program
uses the simple moving average function we wrote in the first chapter:

-- file: prof-basics.hs

sma :: [Double] -> [Double]
sma (x0:x1:xs) = (x0 + x1) / 2 : sma (x1:xs)
sma xs = xs

main =
 let a = [1..1000000]
 b = sma a
 c = sum b
 in print c

We compile and execute this program with Runtime System statistics but no
profiling yet, to see what the performance is without any overhead from profiling:

ghc -O -rtsopts prof-basics.hs

./prof-basics +RTS -s
5.000009999995e11

264,106,248 bytes allocated in the heap
255,768 bytes copied during GC
44,312 bytes maximum residency (2 sample(s))

...

INIT time 0.000s (0.000s elapsed)
MUT time 0.105s (0.105s elapsed)
GC time 0.002s (0.002s elapsed)
EXIT time 0.000s (0.000s elapsed)
Total time 0.111s (0.108s elapsed)

From the statistics output, we learn that our program executes in about 110ms and
allocates 260 Megabytes of heap.

Chapter 3

[65]

We would now like to know which of the parts a, b, or c is consuming the most
resources. To do this, we can set cost centres with {-# SCC identifier #-}
pragmas and so modify our main accordingly:

main =
 let a = {-# SCC "list-" #-} [1..1000000]
 b = {-# SCC "sma-" #-} sma a
 c = {-# SCC "sum-" #-} sum b
 in print c

SCC stands for Set Cost Centre. To enable profiling support, we must compile with
the -prof flag and also enable the -p Runtime System option:

ghc -fforce-recomp -O -rtsopts -prof prof-basics.hs

./prof-basics +RTS -s -p
5.000009999995e11

440,172,808 bytes allocated in the heap
377,968 bytes copied during GC
46,040 bytes maximum residency (2 sample(s))
...

INIT time 0.000s (0.000s elapsed)
MUT time 0.169s (0.173s elapsed)
GC time 0.003s (0.003s elapsed)
RP time 0.000s (0.000s elapsed)
PROF time 0.000s (0.000s elapsed)
EXIT time 0.000s (0.000s elapsed)
Total time 0.175s (0.177s elapsed)

Using ghc -fforce-recomp forces re-compilation. This is useful when changing
compiler flags but not touching the source code itself. Normally GHC will look at the
source code files, and if they haven't changed since the last compilation, GHC won't
recompile.

Immediately we notice the overhead from profiling: the number of allocations
nearly doubled and execution time also increased from 110ms to 180ms. Also, in the
statistics there are two new lines: time spent in RP and time spent in PROF. However,
those are both zero and the overhead is accumulated in MUT, where the meat of our
program is.

Profile and Benchmark to Your Heart's Content

[66]

We note that compiling with profiling adds overhead to all code. Also, it doesn't
matter whether we used the -p Runtime System flag or not; the overhead is inherent
in the program itself when we ask to compile with profiling support.
For this reason, one should compile with profiling only when actually profiling.

By default, -p writes the profiling report into a file named <program>.prof, in
this case prof-basics.prof. The contents of that file are:

prof-basics +RTS -s -p -RTS

total time = 0.17 secs (170 ticks @ 1000 us, 1 processor)

total alloc = 264,104,200 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

list- Main 72.9 63.6

sma- Main 22.9 36.3

sum- Main 4.1 0.0

individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAINMAIN 47 0 0.0 0.0 100.0 100.0

CAF Main 93 0 0.0 0.0 100.0 100.0

list- Main 96 1 72.9 63.6 72.9 63.6

sma- Main 95 1 22.9 36.3 22.9 36.3

sum- Main 94 1 4.1 0.0 4.1 0.0

CAF GHC.IO.Handle.FD 90 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Handle.Text 88 0 0.0 0.0 0.0 0.0

CAF GHC.Conc.Signal 85 0 0.0 0.0 0.0 0.0

CAF GHC.Float 84 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding 2 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding.Iconv 62 0 0.0 0.0 0.0 0.0

The report contains lots of useful information:

• First, the profiling report conveniently gives us the amount of allocations
excluding profiling overheads, which unsurprisingly is exactly what we
observed compiling without profiling support.

Chapter 3

[67]

• Second, the cost centres that accrued individual costs are listed. In this case,
this is all of our manually set cost centres.

• Lastly, the hierarchy of all cost centres are listed. GHC assigns by default
one top-level cost centre stack, named Constant Applicative Form (CAF),
for every module. We see that in addition to Main.CAF, some GHC-internal
module CAFs are also exposed.

• Both individual and accumulated (inherited) costs are shown.

There are also other Runtime System flags besides -p that control time and allocation
profiling. To get a complete list, we can do executable +RTS -?. Sometimes more
detailed information can be useful. The extra Runtime System options for time and
allocation profiling are:

executable: -p Time/allocation profile (output file
 <program>.prof)
executable: -P More detailed Time/Allocation profile
executable: -Pa Give information about *all* cost centres

We can reduce allocations in our sma function with seq:

sma :: [Double] -> [Double]
sma (x0:x1:xs) = let r = (x0 + x1) / 2 in r `seq` r : sma (x1:xs)
sma xs = xs

Profiling this stricter version of the program, we now get slightly improved
performance. The important bits of the report are:

total time = 0.16 secs (160 ticks @ 1000 us, 1
 processor)

total alloc = 232,104,232 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

list- Main 80.6 72.4

sma- Main 16.9 27.6

sum- Main 2.5 0.0

Including profiling overheads, we shaved off some 10% of the time, and allocations
in sma dropped from 36.3% to 27.6%. (The real speed-up is probably somewhat
more, because the number of entered cost centres didn't change, meaning the
profiling overhead probably stayed the same. That constant factor eats into the
percentage increase.)

Profile and Benchmark to Your Heart's Content

[68]

Setting cost centres automatically
It's not necessary to add cost centres manually with SCC annotations. The GHC
flag -fprof-auto adds an SCC annotation for us for every binding that is not
marked INLINE. Be warned though that automatic cost centres might increase
the profiling overhead a lot! Of course, the same applies to manual cost centres,
but those are easier to control.

This is what our cost centres would have looked like (with the original lazy sma)
if we had not specified any cost centres manually:

ghc -O prof-basics.hs -prof -fprof-auto

./prof-basics +RTS -p

total time = 0.17 secs (168 ticks @ 1000 us, 1 processor)

total alloc = 264,104,296 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

main.a Main 77.4 63.6

sma Main 20.2 36.3

main.c Main 2.4 0.0

individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 47 0 0.0 0.0 100.0 100.0

main Main 95 0 0.0 0.0 0.0 0.0

CAF Main 93 0 0.0 0.0 100.0 100.0

main Main 94 1 0.0 0.0 100.0 100.0

main.a Main 99 1 77.4 63.6 77.4 63.6

main.b Main 97 1 0.0 0.0 20.2 36.3

sma Main 98 1000000 20.2 36.3 20.2 36.3

main.c Main 96 1 2.4 0.0 2.4 0.0

Chapter 3

[69]

Here we note a few differences from manual cost centres:

• -fprof-auto added cost centres for a, b, and c, but also the sma
function binding. We see that we entered a total of 1,000,000 times
into the sma function.

• The costs associated with sma are now included in the sma function, instead
of the binding where we added the manual cost centre. But the accumulated
costs in the binding haven't changed.

Prior to GHC 7.4.1, -fprof-auto was known as -auto-
all, which is apparently still recognized, at least in the
GHC 7 series, but deprecated nonetheless.

Within the strict sma, the added r binding will get assigned a cost centre:

individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

CAF Main 93 0 0.0 0.0 100.0 100.0

main Main 94 1 0.0 0.0 100.0 100.0

main.a Main 99 1 69.4 72.4 69.4 72.4

main.b Main 97 1 0.0 0.0 27.1 27.6

sma Main 98 1000000 26.5 27.6 27.1 27.6

sma.r Main 100 999999 0.6 0.0 0.6 0.0

main.c Main 96 1 3.5 0.0 3.5 0.0

That new cost centre adds so much overhead when invoked a million times that
time-wise we don't see any improvement over the lazy version when compiled with
profiling. However, allocations aren't affected.

What if we had both automatic and manual cost centres for the a, b, and c bindings?
The profiling overhead would have increased even more. In fact, it would have
increased so much that the strict version is 10% slower than the lazy one when
profiling!

The takeaway here is that not much can be deduced from profiling just time.
Allocation profiling is more valuable because profiling doesn't interfere with the
amount of allocations done (apart from doing its own allocation and subsequently
subtracting those in the report).

Profile and Benchmark to Your Heart's Content

[70]

With -O and higher, GHC routinely lifts constant expressions to the toplevel, but
this is not normally reflected in the cost centre stack. With the -fprof-cafs flag, we
ask GHC to assign individual cost centres to CAFs lifted to the toplevel. The upside of
-fprof-cafs is that the profiling report then more closely resembles the real structure
of the program, the cost centre stacks don't get so deep, and profiling overheads
reduce. The downside is that one might need to take a look at the Core (obtained via
-ddump-simple) in order to figure out what the lifted CAFs correspond to.

Installing libraries with profiling
Profiling programs that depend on extra modules requires that those modules were
built with profiling support. The libraries that come with Haskell Platform have
been built with profiling. Some distributions have enabled profiling in their Haskell
packages and some provide the profiling libraries in separate packages.

Haskell libraries that you have installed via cabal-install, or stack, do not in general
have profiling enabled. To profile code that uses such libraries, it is necessary to re-
install them with profiling. One can also create a cabal sandbox, which we will not
cover here.

Enabling profiling for dependencies using stack is easy:

stack build --executable-profiling –-library-profiling

Stack conveniently re-builds all necessary packages that didn't previously have
profiling enabled.

Using cabal-install re-installs is more tedious. The fastest and most
straightforward way is to enable library-profiling: True in your ~/.cabal/
config, remove ~/.ghc, and then install packages you want to use.

Debugging unexpected crashes with profiler
The Runtime System features the -xc flag, which shows the current cost centre stack
when an exception is raised. GHC 8 is the earliest release where actual callstack
information is available. In earlier versions, we can simulate callstacks with cost
centres to trace the sources of unexpected exceptions.

Consider the following silly program:

-- file: crash.hs

f = head
g = f . tail

Chapter 3

[71]

h = g . tail

main = print $ h [1,2]

Obviously this program will raise a runtime exception. Let's look at the cost
centre stack:

ghc -prof -fprof-auto crash.hs
[1 of 1] Compiling Main (crash.hs, crash.o)
Linking crash ...

./crash +RTS -p -xc
*** Exception (reporting due to +RTS -xc): (THUNK_1_0), stack
 trace:
GHC.List.CAF
--> evaluated by: Main.g,
called from Main.h,
called from Main.main,
called from Main.CAF
--> evaluated by: Main.main,
called from Main.CAF
crash: Prelude.head: empty list

The cost center stack prints with the most recent entry first. We can trace the error
to definition g, but not further into f, where the erroneous call to head is. This is
because, for GHC, f is the same as head, and therefore f doesn't get a cost centre of
its own. In fact, it isn't possible to even have a cost centre for f with an explicit Set
Cost Centre (SCC) annotation. If we had written f x = head x, then f would have
been assigned a cost centre.

Heap profiling
From the profiling report (+RTS -p) we were able to infer how much different cost
centres allocated space, along with a rough estimate of time spent in cost centres in
total during the program's lifetime. What if we wanted to see how space usage varies
across that lifetime? That would be useful to pinpoint space leaks that manifest
themselves only at certain events.

GHC includes a heap profiler, which put simply snapshots heap usage at small fixed
intervals and generates a time-dependent report in the form of a .hp file. To enable
the heap profiler for an executable, the same -prof flag for GHC is enough. Some
limited heap profiling is also supported when compiled without profiling. The same
cost centres used for time and allocation profiling are also used for heap profiling, if
the heap profile is generated or narrowed down based on cost centres.

Profile and Benchmark to Your Heart's Content

[72]

To extract a heap report, we need to use some of the -h family of Runtime System
options. Those options are as follows:

-h<break-down> Heap residency profile (hp2ps) (output file
 <program>.hp)
 break-down: c = cost centre stack (default)
 m = module
 d = closure description
 y = type description
 r = retainer
 b = biography (LAG,DRAG,VOID,USE)

A subset of closures may be selected thusly:

-hc<cc>,... specific cost centre(s) (top of stack only)
-hC<cc>,... specific cost centre(s) (anywhere in stack)
-hm<mod>... all cost centres from the specified modules(s)
-hd<des>,... closures with specified closure descriptions
-hy<typ>... closures with specified type descriptions
-hr<cc>... closures with specified retainers
-hb<bio>... closures with specified biographies
 (lag,drag,void,use)

This help message is quite dense. Basically, there are two separate concepts:
break-down and closure subset selection.

The break-down subset defines the kinds of thing we associate heap residencies
with. That is, the space taken by heap objects is accumulated in one of the following:

• cost centres (-hc): Pin-point heap residency to automatic or manual (SCC)
cost centers.

• per-module (-hm): Pin-point residency to Haskell modules.
• closure descriptions (-hd): Constructors and GHC internals.
• Type description (-hy): Types such as Double, String, Maybe, and so on.

Unknown and polymorphic types are given some approximation.
• Retainers (-hr): We'll discuss retainers shortly.
• Biography (-hb): The state a heap object is in, also discussed later.

The usual strategy is to break the heap profile down by cost centres (-hc). The
complementary concept to heap break-down is closure subsets. By restricting
profiling to some subsets of closures, we can narrow down the parts of the program
we are actually interested in. The same options apply for subset selection as for
break-down.

Chapter 3

[73]

There can be only one break-down option, but multiple closure subset selections.
With break-down, we choose the level at which we wish to inspect the program; with
closure subsets, we define the parts of the program we are interested in.

For example, this combination will generate a heap profile broken down by cost
centres in the Main module of all values of type Double:

+RTS -hc -hmMain -hyDouble

You can also compile without profiling and still use the -h Runtime System
option, at least with a recent GHC. This eliminates the profiling overhead, leaving
only minimal overhead from taking residency samples from the heap, but then
the profiler options are limited to a -h only. When profiling is disabled, a -h
(long form -hT) is pretty much identical to -hd when profiling is enabled.

Cost centre-based heap profiling
Let's take a real example of heap profiling. The following program calculates the
Taylor polynomial of degree 800 for the sin function. The approximation is given by
this formula:

()
()

800
2 1

0

1
2 1 !

n
n

n
sinx x

n
+

=

−
≈

+∑

This is implemented by this program:

-- file: heap-profiling.hs

sin' :: Double -> Double
sin' x = go 0 x where
 go n x
 | n > precision = x
 | otherwise = go (n + 1) $ x +
 (-1) ** n * x ** (2 * n + 1) / factorial (2 * n + 1)

 precision = 800

 factorial n = product [1..n]

main = print $ sum $ map sin' [0,0.1..1]

Profile and Benchmark to Your Heart's Content

[74]

To extract a heap profile of this program, we compile it with:

ghc -rtsopts -prof -fprof-auto heap-profiling.hs

./heap-profiling +RTS -hc -i0.05

The -i0.05 flag sets the interval we want to sample the heap. By default, this is 0.1
seconds. We halve it for our program to extract enough details.

By default, when just -h is given, the heap profile is generated based on cost centres
(-hc). The report is written in this case to a file named heap-profiling.hp. It is
hard to deduce anything meaningful from the .hp file directly. Instead, GHC comes
with a binary called hp2ps, which produces nice graphs from heap profile reports.
We can generate a PostScript file from a .hp file with hp2ps:

hp2ps -c -d -e8in heap-profiling.hp

I included some additional arguments there to make the output more readable:

• Colorized output with -c
• Sorting by standard deviation (-d) will push more static bars to the bottom of

the graph
• The Encapsulated PostScript option (-e) will output in portrait mode

(the default is landscape)

The graph is written in a file called heap-profiling.ps. It looks like this:

Chapter 3

[75]

We see 11 spikes from 11 invocations of sin'. Due to the sampling interval, the spikes
are not exactly even, and you might get fewer than 11 spikes on your machine. Crank
up the sampling interval if there aren't enough details visible. If we decreased the
interval a lot, we would see a lot more details. But this increases overhead, and finer
details are not always better because they can obscure the bigger picture.

Looking at this graph, we can rest assured that our program isn't leaking memory
over time. However, when we think about the space complexities of calculating a
factorial or a series expansion (a sum, basically), those are constant-space. So our
program is behaving suboptimally.

The problems in our program should be pretty easy to spot now. First, our factorial
function is based on product, which, similar to sum, requires at least optimization-
level -O to act in constant-space. The other thing is that, in go, the argument x is non-
strict, which results in a chain of thunks being built.

With -O, strictness analyzer is smart enough to fix both of these problems. But if
we don't want to rely on optimizer magic, we could fix our program with a bang
and a strict fold:

-- file: heap-profiling-optimized.hs
{-# LANGUAGE BangPatterns #-}

import Data.List (foldl')

sin' :: Double -> Double
sin' x = go 0 x where
 go n !x
 | n > precision = x
 | otherwise = go (n + 1) $ x +
 (-1) ** n * x ** (2 * n + 1) / factorial (2 * n + 1)

 precision = 800

 factorial n = foldl' (*) 1 [1..n]

main = print $ sum $ map sin' [0,0.1..1]

Profile and Benchmark to Your Heart's Content

[76]

The optimized program produces a solid heap profile. The pinned data is data that
the garbage collector cannot touch. Primitive data types are allocated pinned. From
the new heap profile we can infer that we are not doing unnecessary allocations
anymore:

Objects outside the heap
The heap profiler cannot catch all data. Data allocated in the C land belongs to
this category. The internal representation of a ByteString type is such that some
allocations happen outside what is reachable for the heap profiler. This can be
puzzling, as the following example illustrates.

A simple key-based encryption schema is obtained by taking a key k of length n and
plain text of any length. Split the plain text into chunks, p0…pm, each with length n,
truncating the last chunk. The first cipher text block is given by b0 = k `xor` p0, and for
the rest, bn = b{n-1} `xor` pn.

In Haskell, one way to implement this cipher is:

-- file: encryption.hs

import qualified Data.ByteString as B
import Data.Bits (xor)
import System.Environment (getArgs)

Chapter 3

[77]

encrypt :: B.ByteString -> B.ByteString -> B.ByteString
encrypt key plain = go key plain
 where
 keyLength = B.length key

 go k0 b
 | B.null b = B.empty
 | otherwise =
 let (b0, bn) = B.splitAt keyLength b
 r0 = B.pack $ B.zipWith xor k0 b0
 in r0 `B.append` go b0 bn

Here we just loop over the ByteString type, split it into two halves, the first of
which is of the same size as our key (or less if we have reached the end of the
ByteString type). We XOR the first half and the key (the first round) or previous
chunk (subsequent rounds). This becomes a chunk of output. Splitting a ByteString
type is O(1), and I intentionally included some naive O(n) appending and
intermediate lists there.

Decryption is symmetric to encryption. Here is the implementation:

decrypt :: B.ByteString -> B.ByteString -> B.ByteString
decrypt key plain = go key plain
 where
 keyLength = B.length key

 go k0 b
 | B.null b = B.empty
 | otherwise =
 let (b0, bn) = B.splitAt keyLength b
 r0 = B.pack $ B.zipWith xor k0 b0
 in r0 `B.append` go r0 bn

Now let's see how well our implementation performs. Here's a simple main program
that reads the key and input data from files:

main = do
 [action, keyFile, inputFile] <- getArgs
 key <- B.readFile keyFile
 input <- B.readFile inputFile
 case action of
 "encrypt" -> B.writeFile (inputFile ++ ".out") $ encrypt
 key input
 "decrypt" -> B.writeFile (inputFile ++ ".out") $ decrypt
 key input

www.allitebooks.com

http://www.allitebooks.org

Profile and Benchmark to Your Heart's Content

[78]

Let's compile with profiling and optimizations:

ghc -O -rtsopts -prof -fprof-auto encryption.hs

To test at a good enough scale, I used a key size of 1 MB and plain text size of 24 MB.
Those can be generated as random samples:

dd if=/dev/urandom of=key.bin bs=1M count=1

dd if=/dev/urandom of=plain.bin bs=1M count=24

Then run the program and convert the heap report into a graph:

./encryption +RTS -h -RTS encrypt key.bin plain.bin

hp2ps -c -e8in encryption.hp

(Note that, when reproducing this graph yourself, you might need to play with the
interval setting to get similar granularity. For instance, try a slightly bigger value, for
example -i0.005.)

This profile is quite peculiar. Those spikes are attributed to what is happening with
B.pack $ B.zipWith … as that naively constructs from two ByteString a third
ByteString via an intermediate list (which isn't optimized away in this case). But
it doesn't make sense that there needs to be about 80 MB allocated simultaneously;
there's a key of size 1 MB, one 24 MB plain text, and then the resulting ciphertext,
also with size of 24 MB, so a total of about 30 MB is unknown. What is that extra?

Chapter 3

[79]

Doing the math from the graph, we see that, for every 1 MB of output ciphertext
produced, an extra 1 MB is allocated. The culprit is B.append and non-tail non-
productive recursion.

When we call B.append, it will evaluate its first argument to whnf, collapsing the
list representation and allocating the first 1 MB. Evaluating its second argument will
allocate the next 1 MB. But the catch is that B.append is a copying operation, so it
also allocates the 1 MB for the output in addition. Both the output and the blocks will
be allocated until the final output ciphertext can be constructed, resulting in twice as
much space used as necessary.

A better option, as discussed in the previous chapter, is to use the Data.
ByteString.Builder module to produce the output. The necessary changes are
minimal. An implementation of the encryption step is given here:

-- file: encryption-optimized.hs

import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Builder as Builder
import Data.Bits (xor)
import System.Environment (getArgs)

encrypt :: B.ByteString -> B.ByteString -> B.ByteString
encrypt key plain = L.toStrict $ Builder.toLazyByteString $ go key
plain
 where
 keyLength = B.length key

 go k0 b
 | B.null b = mempty
 | otherwise =
 let (b0, bn) = B.splitAt keyLength b
 r0 = mconcat $ map Builder.word8 $ B.zipWith xor
k0 b0
 in r0 `mappend` go b0 bn

Profile and Benchmark to Your Heart's Content

[80]

The heap profile is now very concise, as shown in the following screenshot:

This is about as good as we can get with strict ByteStrings. Of course, the schema
allows for streaming so using lazy ByteStrings would be more appropriate.

Retainer profiling
Retainer profiling (+RTS -hr) is designed to help track down space leaks.
The retainer profiler breaks down the heap by retainer sets. The system stack,
thunks, and explicitly mutable objects are retainers. All live objects are retained
by one or more retainer objects.

Let's take an example:

let xs = [1..100000]
 a = sum xs

Here a is a retainer for xs. xs is not yet nothing but an unevaluated, cheap thunk (as
is a). If we asked for length xs, forcing the evaluation of xs, then xs becomes a large
evaluated structure in the heap, which is retained by a. The retainer profiler spots
such retaining and reports a as a retainer for a lot of data. Of course, if we evaluated
a to WHNF, then it would stop being a retainer, because constructors
are not retainers.

Chapter 3

[81]

Let's take another illustratives example and actually do some retainer profiling.
The following performs two calculations on two distinct lists:

-- file: mean.hs

mean xs = sum xs / fromIntegral (length xs)

sumlg xs = sum (map log xs)

main = do
 print $ mean [1..1000000]
 print $ sumlg [1..1000001]

Asking for a retainer profiling, we need to compile with profiling, execute with the
Runtime System flag -hr, and finally generate a graph from the heap profile:

ghc -rtsopts -prof -fprof-auto mean.hs

./mean +RTS -hr -i0.02

hp2ps -e8in -c mean.hp

Looking at the program and the heap profile graph, the shape looks like what one
would expect with no optimizations enabled: first, the first list is fully evaluated
and retained as a whole, and then discarded as we have retrieved its mean. Then a
similar process takes place for the second list. What is not quite clear though is what
the (2)SYSTEM and (9)SYSTEM mean retainer sets are.

Profile and Benchmark to Your Heart's Content

[82]

When we look at the graph more closely, we see that those system-things become
retainers after the heap usage at our mean and sumlg functions have peaked,
implying that our functions have pretty much done their work. After the peak, the
list is consumed and it is up to the garbage collector to dispose of the list. There is
a slight delay there, which is why the list shows up in a SYSTEM retainer before it is
garbage-collected.

The retainer sets are numbered. A dump of all retainer sets is written to the file
<program>.prof. The retainer sets in the graph correspond to these lines in that file:

SET 76 = {<Main.sumlg,Main.main,Main.CAF>}
SET 8 = {<Main.mean,Main.main,Main.CAF>}
SET 2 = {<SYSTEM.SYSTEM>}
SET 9 = {<SYSTEM.SYSTEM>, <Main.mean,Main.main,Main.CAF>}

We see that the retainers are given as cost centre stacks. This is crucial when
pinpointing retainers to correct calle-sites.

Recall the ByteString encryption example from before. What would the retainer
profile for that unoptimized program look like? Much to our surprise, it is in
crucial ways different from the cost centre-based heap profile. Look at this:

Only some spikes (from the intermediate list) – where are the large ByteStrings?
There sure were some in the other heap profile!

Chapter 3

[83]

This is a shortcoming of the heap profiler, or a consequence of the foreign pointer
representation used in the bytestring library. The retainer profiler is unable to follow
ByteStrings to their retainers, and in fact it isn't a given that the cost centre-based report
is always totally correct either. This is something that needs to be kept in mind when
using libraries, such as bytestring, that use foreign pointers in their data structures.

It is a good idea to always check the Runtime System memory statistics with +RTS
-s, as that will always give exact memory usage.

Biographical profiling
The last kind of break-down we can ask from GHC is the biographical breakdown.
Biographical profiling sorts heap objects into four categories:

• State LAG: From creation of the object to its first use
• State USE: From first use of the object until its last use
• State DRAG: From final use of the object until the last reference is dropped
• State VOID: Object is never used in its lifetime

Here's an example biographical profile of the ByteString encryption program from
before. Like in the retainer profile, here too the big ByteStrings are not shown. The
now familiar spikes are shown as lagging, as expected of a large list that is constructed
and then consumed. Then some big data structures seem to show up at the end of the
program execution. Something that is used and something that is lagging:

Profile and Benchmark to Your Heart's Content

[84]

I used the following Runtime System options in generating this graph:

./encrypt key.bin plain.bin +RTS -hb -i0.002

Again, experiment with the interval setting to find the correct granularity on your
machine.

Looking at this graph, it's hard to say much about anything. A more useful use case
for biographical profiling is to use biographical data in the subset selection, and
break-down using some other criteria, such as cost centres.

A usual example would be to find cost centres that produce heap objects in DRAG
or VOID states. This is achieved with:

program +RTS -hc -hbdrag,void

Then we could find retainers for those cost centres with the +RTS -hr -hccc1,cc2,
and so on program. Note that GHC cannot currently do both biographical and
retainer profiling simultaneously, so +RTS -hr -hbdrag,void is unfortunately
not allowed.

Benchmarking using the criterion library
Profiling aside, benchmarking the time a calculation takes to perform is a direct
indicator of real-world performance. Benchmarking Haskell applications is pretty
much dominated by the criterion library. There is a system called nofib, which is
used to benchmark GHC itself, but for applications criterion is superior. Criterion
even produces interactive web pages describing the results of benchmarks, which
is a nice feature.

This text is written for criterion-1.1.1.0. Obviously, the criterion package needs
to be installed:

cabal install criterion # or: stack install criterion

A criterion benchmark suite is created as a normal Haskell program. An example
is this:

–– file: benchmark.hs

import Criterion.Main
import Data.List (foldl')

main = defaultMain [
 bgroup "sum" [bench "sum" $ whnf sum [1..1000000]
 , bench "foldr" $ whnf (foldr (+) 0) [1..1000000]

Chapter 3

[85]

 , bench "foldl" $ whnf (foldl (+) 0) [1..1000000]
 , bench "foldl'" $ whnf (foldl' (+) 0) [1..1000000]
]
]

What is going on here is that:

• We imported Criterion.Main, which imports the most used criterion
functions.

• We used Criterion.Main.defaultMain as our program, giving it a list
of type [Benchmark].

• With bgroup :: String → [Benchmark] → Benchmark we defined a group
of sum benchmarks.

• For whnf :: (a → b) → a → Benchmarkable we gave different
implementations of sum to create something benchmarkable for us. Like the
name suggests, the result b is evaluated to WHNF, which marks the end of
the benchmark run.

• With bench :: String → Benchmarkable → Benchmark we defined
benchmarks from something benchmarkable, giving them some descriptive
names.

When we compile with optimizations and run this program, we get the
following results:

benchmarking sum/sum
time 309.2 ms (281.0 ms .. 344.2 ms)
0.996 R² (0.983 R² .. 1.000 R²)
mean 310.4 ms (300.6 ms .. 316.5 ms)
std dev 9.535 ms (4.148 ms .. 12.65 ms)
variance introduced by outliers: 16% (moderately inflated)

benchmarking sum/foldr
time 66.14 ms (62.61 ms .. 69.17 ms)
0.994 R² (0.988 R² .. 0.998 R²)
mean 67.27 ms (65.21 ms .. 71.28 ms)
std dev 4.686 ms (2.113 ms .. 7.483 ms)
variance introduced by outliers: 17% (moderately inflated)

benchmarking sum/foldl
time 318.8 ms (276.3 ms .. 365.7 ms)
0.988 R² (0.939 R² .. 1.000 R²)
mean 315.6 ms (294.8 ms .. 329.6 ms)
std dev 23.17 ms (9.738 ms .. 32.22 ms)

Profile and Benchmark to Your Heart's Content

[86]

variance introduced by outliers: 18% (moderately inflated)

benchmarking sum/foldl'
time 20.16 ms (20.10 ms .. 20.22 ms)
1.000 R² (1.000 R² .. 1.000 R²)
mean 20.17 ms (20.14 ms .. 20.25 ms)
std dev 110.4 μs (47.27 μs .. 202.3 μs)

No-one is surprised to see that foldl' is fast or that foldr is not too far behind. But
recall how in the first chapter we noted that sum [1..n] and similarly foldl (+) 0
[1..n] were equivalent to foldl' (+) 0 [1..n]. So why are these now so much
slower in our benchmark?

Simply because whnf by design doesn't inline sum or foldl cannot be optimized:
they're forced to consider the list as a black box. This forces the benchmark situation
to be such that the benchmarkable function cannot make assumptions about its
argument at compiletime, often simulating the real use case.

But inlining is often crucial for performance, so you shouldn't blindly perform
microbenchmarks on, for example, parts of vector code that as a whole would be
largely fused away.

To confirm our suspicion, let's add a few more benchmarks where the list is now
inside the benchmarkable function:

bgroup "foldl"
[bench "_" $ whnf (_ -> foldl (+) 0 [1..1000000])
 undefined
, bench "()" $ whnf (\() -> foldl (+) 0 [1..1000000]) ()
, bench "num" $ whnf (\n -> foldl (+) 0 [1..n]) (1000000)
, bench "num (strict)" $ whnf (\n -> foldl' (+) 0 [1..n])
 (1000000)
]

Running the benchmarks now with HTML output (benchmark – output results.
html) we get a webpage which, among benchmark-specific analysis, contains
this graph:

Chapter 3

[87]

Now we see clearly that, when the list is generated within the benchmarkable
function, foldl is equivalent to foldl'. And if we defined the list as a constant
within the function, then GHC deduces that it is a constant and lifts it into a CAF
which is memoized, resulting in a sum implementation that sums a million elements
in a few petty nanoseconds.

Benchmark results should be taken with a grain of salt, especially ones that seem too
fast. It is hardly ever trivial to guess which expressions are optimized into what. The
rule of thumb is that, when the result of the benchmarkable function depends on
the environment (the second argument to whnf), then the time taken to evaluate the
result will resemble the real cost.

Apart from evaluation to WHNF, other benchmarkable things supported by
criterion are:

nf :: NFData b => (a → b) → a → Becnhmarkable
nfIO :: NFData a => IO a → Benchmarkable
whnfIO :: IO a → Benchmarkable

So there is another pure benchmark, something that requires the result to be some
NFData, and IO action variants for both pure benchmarks.

NFData stands for Normal Form Data, which is a stronger notion than Weak Head
Normal Form. In normal form, the structure is fully evaluated, meaning there are
no unevaluated thunks, even deep down the structure. NFData is provided by the
deepseq package. The only method in the NFData typeclass is rnf :: a → (),
implementations of which are just recursive calls to rnf and seq. Starting with GHC
7.2, instances can be derived for anything for which the Generic typeclass (from
GHC.Generics) is derived. Refer to the documentation of the deepseq package for
the details.

With normal form, we can benchmark the total evaluation of big algebraic data
structures such as trees. However, it should be kept in mind that, in real scenarios,
it is rarely the case that a big lazy structure needs to be evaluated fully. What this
means is that such a benchmark doesn't accurately describe real amortized execution
times.

Criterion works so that it executes a benchmark for a few different numbers of
iterations. For a well-behaving, predictable benchmarkable function or action,
execution times increase linearly when the number of iterations increases. Criterion
uses linear regression to measure this, giving an ordinary least-squares regression
estimate for a single execution, R2 goodness-of-fit of the regression, along with mean
execution time and standard deviation.

Profile and Benchmark to Your Heart's Content

[88]

A general guideline for reading results from a criterion benchmark is to look at
whether R2 is close to 1. If it's much less than 1, it means that either there's something
wrong with the benchmark itself or that indeterminism in the benchmarkable thing
is producing a lot of deviation in single execution times. The ordinary least squares
regression estimate is probably closer to the expected execution time than the mean
execution time is, because outside disturbances in the benchmarking environment
can result in outliers that affect the mean more than the regression estimate.

Although the default regression predicts execution time from iterations, other
combinations are possible with the --regress criterion command line argument
or the respective regressions config field, regressions. For example, --regress
allocated:iters performs a regression of allocations given iterations. Extra
regressions produce additional output, such as:

allocated: 1.000 R² (1.000 R² .. 1.000 R²)
iters 23.999 (23.995 .. 24.004)
y 275.081 (-20091.728 .. 19504.093)

Another R2 goodness-of-fit is given for the regression, along with the slope and
y-intercept of the fitted line. Like many other regression metrics, measuring
allocations from within the program requires enabling the Runtime System
parameter +RTS -T. Refer to the criterion documentation to learn about other
available regression metrics.

The criterion library is designed such that it should be relatively easy to adapt it
to cover wildly different use cases. All necessary datatypes and utility functions
are exported and all exported identifiers are extensively documented. JUnit-style
reporting is also supported.

Profile and monitor in real time
The heap profile report file <program>.hp is generated as the program executes, so
it's perfectly fine to take a snapshot of the file at any time and visualize it with hp2ps,
even if the program is still busy executing. Because very basic heap profiling (-hT)
is possible without having compiled with profiling support, it is possible to produce
running heap profiles with a very small overhead.

Increasing the sample interval -i to something relatively big, such as a couple of
seconds, it is very feasible to extract heap profiles from long-running programs even
in production environments.

Chapter 3

[89]

A quick-and-dirty trick that isn't for the light-hearted is the -S Runtime System
option. This option prints garbage collector statistics every time a cleanup takes
place, in realtime. This includes bytes allocated, bytes copied, bytes live, time
elapsed, and how long the garbage collector took. To make some sense of the output,
it might make sense to limit the number of generations in the garbage collector to 1
(the default is 2). So +RTS -S -G1.

Monitoring over HTTP with ekg
We are now familiar with profiling and benchmarking applications executing locally.
We also know how to extract garbage collector information from programs running
locally, but what if the program was running on a server? Things are no longer so
convenient.

It would be nice to be able to monitor the performance of programs running on
servers in realtime, and perhaps to store performance history in some timeseries
database for later investigations.

A package called ekg provides a ready solution for the first wish, namely real-time
monitoring, and also a quite mature set of features for collecting statistics from
Haskell programs. It provides a REST API out-of-the-box, which can be used to
fetch data into time-series databases.

The first step with a new library is again to install it. This also installs the ekg-core
library, which contains metrics. The ekg library provides the monitoring application:

cabal install ekg

Now we get to an example. A silly example, but still an example: a program
that repeatedly asks for a number and prints the factorial of that number. For
some reason or other, we want to monitor the performance of our command-line
application via HTTP. Implementing this program is very straightforward:

-- file: ekg-fact.hs

{-# LANGUAGE OverloadedStrings #-}

module Main where

import Control.Monad
import System.Remote.Monitoring

main = do
 forkServer "localhost" 8000
 forever $ do

Profile and Benchmark to Your Heart's Content

[90]

 input <- getLine
 print $ product [1..read input :: Integer]

Adding real-time monitoring over HTTP to our command-line program was a matter
of adding one import and one extra line in main. When compiling, we should enable
the -T Runtime System option to enable ekg to collect GC statistics. It is also a good
idea to enable at least -O. On multithreaded systems, we may likely also want a
threaded runtime, so that the program doesn't need to share the same system core
with the monitoring subsystem. All in all, we have:

ghc -O -threaded -rtsopts -with-rtsopts='-N-T' ekg-fact.hs

ekg-fact

Now we can open a browser at http://localhost:8000 and get a real-time view of
the performance of our program. A portion of the page is shown here:

It's possible to add our own metrics for ekg to monitor. As an example, let's add to
our program a metric that counts the number of factorials we have calculated:

{-# LANGUAGE OverloadedStrings #-}
module Main where

import Control.Monad
import System.Remote.Monitoring
import System.Metrics
import qualified System.Metrics.Counter as Counter

Chapter 3

[91]

main = do
 server <- forkServer "localhost" 8000
 factorials <- createCounter "factorials.count"
 (serverMetricStore server)
 forever $ do
 input <- getLine
 print $ product [1..read input :: Integer]
 Counter.inc factorials

First we needed to import metric modules from the ekg-core package. Then we
created a new Countertype metric with createMetric. After calculating a factorial,
we increase that counter by one.

The JSON API that comes with ekg is quite simple. We can retrieve all metrics by just
requesting the root with content-type JSON:

curl -H "Accept: application/json" http://localhost:8000

{
 "ekg": {
 "server_timestamp_ms": { "type": "c", "val": 1460318128878 }
},
"rts": {
 "gc": {
 "gc_cpu_ms": { "type": "c", "val": 624 },
[…]

If we are only interested in one metric, say our new factorials.count metric, we
can only request it specifically, like so:

curl -H "Accept: application/json"
http://localhost:8000/factorials/count
{"type":"c","val":12}

It's not hard to imagine integrating ekg-monitoring to time series databases. Using
the REST API is straightforward, but the ekg library is so flexible that a push-model
wouldn't be too hard either.

Profile and Benchmark to Your Heart's Content

[92]

Summary
We started this chapter by profiling programs by cost centres, which can be set
automatically (-fprof-auto) or manually (SCC-annotations). We learned that there
is overhead in profiling, which is why execution times are an inaccurate metric when
profiling. Allocations remained a good measure of performance in any case. We used
the heap profiler to produce informative graphs about memory usage over time, and
to spot unwanted allocations and retainers.

We explored different options in the GHC heap profiler: break-downs and subset
selections, both of which draw more or less from the same pool of parameters. The
default break-down was by cost not yet finished.

Finally, we looked at two additional libraries, criterion for benchmarking and ekg
for monitoring. In discussing criterion, we stumbled upon the concept of normal
form, which will also come up later on when we discuss parallelism. Adding
real-time graphical garbage garbage collector monitoring via HTTP to a Haskell
application was a real breeze with ekg, and the library fully supports custom metrics
and extending the monitoring system.

In the next chapter, we will pull everything together from these first three chapters
and discuss some of the fine details of developing Haskell at scale: structuring bigger
projects using cabal and stack. We will look at some less common performance tricks
such as lazy patterns and rewrite rules, revisit and introduce some concepts such as
inlining and specializing, and briefly discuss practical type-level programming.

[93]

The Devil's in the Detail
In this chapter, we pull together knowledge and techniques from previous chapters
and learn to apply those techniques in large and complex projects. In particular, we
will use cabal-install and stack to help us cope with multi-file projects and even
projects with multiple subprojects. We learn how, and especially how not, to throw
and recover from exceptions in Haskell.

Having good test coverage is as important in a Haskell project as it is in projects
written in any other language. But because Haskell's type-system is so expressive,
the number of necessary test cases is greatly reduced. Also, new extensions for the
type-system in GHC are constantly being experimented with. Consequently, there
is a bunch of language extensions considered more or less experimental, and some
extensions are just not enabled by default yet in the current standard (Haskell 2010).

This chapter concludes the first part of this book. Already from the three previous
chapters, you are well equipped to create and optimize programs in vanilla Haskell
and to use some high-quality libraries effectively. After this chapter, you will know
how to structure Haskell projects of any size, handle exceptions correctly, and
test code. In addition, we will look at the usual use cases for some new language
extensions. The following topics will be covered in this chapter:

• Structuring larger projects using cabal-install and stack
• Writing tests for Haskell code
• Throwing errors and handling exceptions
• Best practices, tips, and tricks for writing robust, predictably fast Haskell
• Going beyond Haskell 2010 with modern language features

The Devil's in the Detail

[94]

The anatomy of a Haskell project
A typical Haskell project consists of one or several of the following sections:

• Library (modules); A no-brainer for library authors. But most applications
are also structured so that most code resides in distinct modules.

• One or more executables.
• Tests and benchmarks.
• Other source files and assets.

All of these are supported by Cabal. Starting with a new project from scratch, we can
use cabal init to create a .cabal file with basic information such as the package
name and maintainer details already filled in. Moreover, if you already have a bunch
of Haskell source files in your working directory, then Cabal will add those to the
.cabal file and even guess package dependencies for you.

The structure often found in projects that have both a library and an executable is to
place library code and the executable's source files under different subdirectories. If
we have a single library module, dubbed Lib, and a main, the structure would be:

some-package/
 src/Lib.hs
 app/main.hs

This is assuming the file contents are:

-- file: some-package/src/Lib.hs

{-# LANGUAGE OverloadedStrings #-}
module Lib where
import Data.ByteString as B
import qualified Data.ByteString.Char8 as C8
foo :: B.ByteString -> IO ()
foo = C8.putStrLn . B.append "foo"

-- file: some-package/app/main.hs

{-# LANGUAGE OverloadedStrings #-}
import Lib
main = foo "bar"

Chapter 4

[95]

Invoking cabal init -n –is library under some-package, will create a .cabal file
for us. The generated file looks like this (omitting some uninteresting lines):

-- Initial some-package.cabal generated by cabal init. For further
-- documentation, see http://haskell.org/cabal/users-guide/

name: some-package
version: 0.1.0.0
license: BSD3
license-file: LICENSE
build-type: Simple
-- extra-source-files:
cabal-version: >=1.10

library
 exposed-modules: Lib
 -- other-modules:
 -- other-extensions:
 build-depends: base >=4.8 && <4.9, bytestring >=0.10 &&
 <0.11
 hs-source-dirs: src
 default-language: Haskell2010

We notice a few things here. Firstly, the build-type is Simple. This holds for almost
every package, so no need to worry about it. Then we have an extra-source-files
field. In this field, we can list the non-Haskell, non-C source files required to build
the package, and files that should be distributed with the package (such as a README).

Next, we have a section labeled as library. There can be only one library section
per package. The library section is usually of most interest, because that's where
all the interesting code is located. There are other parameters besides the ones listed
here, but those most often used are:

• default-language: The language standard used in this package (currently
either Haskell 98 or Haskell 2010).

• build-depends: Other packages this package depends on and their accepted
version ranges.

• exposed-modules: Modules that are exposed for users of the library.
• other-modules: Modules that are hidden from users of the library. Unless

it breaks internal consistency, it is advised to export internal modules too,
because it is hard to predict all possible use cases of a library.

• hs-source-dirs: The directory under which module files are located.

The Devil's in the Detail

[96]

Now that we can build the library, we need to tell Cabal how to build the executable
as well. Unfortunately, current cabal init will not add both library and executable
definitions for us, so we need to write one of them manually. Fortunately, a minimal
executable section is only four lines appended to our .cabal file:

executable foo
 main-is: app/main.hs
 build-depends: base, some-package
 default-language: Haskell2010

A single package can provide multiple executables, which is why we had to specify
a name for it (foo). Then we need to specify which file contains main (app/main.hs)
and the dependencies. Note that we had to explicitly depend on our package (some-
package) to use our library modules. Last, the default-language needs also be
specified for executables.

At this point, we can use cabal build to build both the library and executable,
use cabal install to install the executable(s) under ~/.cabal/bin, create a
Hackage-ready source distribution with cabal sdist, and so on.

Useful fields and flags in cabal files
We can specify many other things in the cabal file as well. For example, in our
example package, we had the OverloadedStrings extension enabled in all files.
We could make this a default by adding the following line to the library and
executable sections:

default-extensions: OverloadedStrings

It is also good practice to list conditionally used extensions (via LANGUAGE pragmas)
in the other-extensions field.

Any cabal file section can be disabled by setting its buildable field to false,
for example:

executable foo-win
 buildable: False
 […]

Cabal supports conditionals and a few built-in functions such as os(name), meaning
we can, for example, conditionally enable some sections (or set any fields for that
matter). The preceding code would be better written as:

executable foo-win
 if !os(windows)
 buildable: False
 […]

Chapter 4

[97]

But note that the following would not work. The executable wouldn't be built
under any conditions:

executable foo-win
 buildable: False
 if os(windows)
 buildable: True
 […]

The reason is that, in a technical sense, Cabal doesn't override a field when the same
field has been declared multiple times. Instead, the occurrences are combined and,
for one reason or an other, False takes precedence over True in cabal flags.

The combination of list-like fields such as build-depends, default-extensions,
and so on is simply the union of all declarations. To build a Lib.Windows module
only when building for a Windows machine, we could do this:

library
 exposed-modules: Lib
 build-depends: base <4.9, transformers >= 0.3 && < 0.6
 if os(windows)
 exposed-modules: Lib.Windows
 build-depends: transformers < 0.5

Note that we were able to tighten the version bounds within a conditional block. On
the other hand, it is not possible to loosen bounds; bounds are simply concatenated,
so the final bounds for transformers become >=0.3 && <0.6 && <0.5.

In addition to built-in functions, cabal supports defining flags within the cabal file
itself. Package flags can be used in conditionals. To define a development flag, we
add a new flag section into the cabal file:

flag development
 description: Enable development features
 default: False

The new flag can now be used, for example, in conjunction with the ghc-options
field to enable profiling in development mode:

library
 […]
 if flag(development)
 ghc-options: -prof -fprof-auto

The Devil's in the Detail

[98]

A detail that's good to keep in mind if you're conditioning on build-depends or
*-extensions with a flag is that by default Cabal will resolve on flags when looking
for a plausible build plan. First Cabal tries the default flag value(s) and if that fails,
it tries to negate flags until a build plan is found. If this behavior is not desired,
a manual: True field can be added for the flag.

Flags are explicitly enabled via the -f argument for configure and its super
commands:

cabal configure -fdevelopment

cabal install -f-development

The former enables the development flag, while the latter disables it.

Test suites and benchmarks
Cabal supports declaring test and benchmark suites within a cabal file. These are
defined as sections, like executables. Examples of both are:

test-suite test-props
 type: exitcode-stdio-1.0
 main-is: properties.hs
 hs-source-dirs: tests
 build-depends: base, some-package

benchmark bench-foo
 type: exitcode-stdio-1.0
 main-is: benchmarks.hs
 hs-source-dirs: tests
 build-depends: base, some-package, criterion

Like executables, both test and benchmark suites require an identifier. It's possible
to define multiple test-suites and benchmarks with different names. The usual
usage of cabal test-suites and benchmarks consists of the exitcode-stdio-1.0
type, which requires a main-is field, and basically just tells Cabal that, to run this
test or benchmark, the accompanying program should be executed and the exit code
inspected. If the program exits cleanly, the suite finished successfully.

And, just like the other sections, tests and benchmarks must have their build-
depends explicitly listed. This is sometimes quite annoying, if the list of
dependencies is the same for the library and its test-suite. Unfortunately, there is
no simple solution to avoid this duplication.

Chapter 4

[99]

If you only need to test the public API, then it makes sense for the test-suite to
depend only on the base and the library. But often the internals need testing, in
which case the only option is to list the often almost identical lists of dependencies.
Many times, the version bounds are left out from the test-suite, because the
library's dependencies already enforce those.

To run tests and benchmarks, we invoke cabal as:

cabal configure --enable-tests --enable-benchmarks

cabal build

cabal test

cabal bench

If you want try these commands now, create dummy tests/
properties.hs and tests/benchmarks.hs files with a
main in them. We'll look at testing a bit later in this chapter.

Using the stack tool
Since its release in Spring 2015, the stack tool and stackage.org service by FP
Complete have provided a lovely solution for the notorious "Cabal Hell" problems.
In many ways, the stackage ecosystem is superior to cabal, or cabal with sandboxing.
The core feature of stack is internally consistent releases of Haskell packages and
reusable builds, along with many other cool features such as managing GHC
versions and building Docker images.

As an aside, the notorious challenge with Haskell package management, relative to
package management in many other languages, is mostly blamed on cross-module
inlining – it's impossible for two different versions of the same package to coexist in
the same dependency graph.

In normal Haskell development, transitioning from a cabal-based workflow to a
stack-based one is for the most part as simple as changing all occurrences of cabal
commands for stack commands. The subcommands and arguments don't need
touching. For example, cabal test translates to stack test, cabal install to
stack install, and so on.

Stack does not subsume cabal; in fact, the only feature of cabal-install that is
wholly subsumed by stack is sandboxing. Otherwise, stack just calls out to cabal with
some extra arguments. This also means that the cabal files are just as important with
or without stack.

stackage.org

The Devil's in the Detail

[100]

To use stack to build our toy project we cabalized previously, we need to create a
stack.yaml file for it. This is accomplished with stack init:

stack init --prefer-lts

That --prefer-lts is optional, and just tells stack to choose a long-term support
snapshot of Haskell packages from stackage as the basis of the project. Our stack.
yaml file now looks something along these lines:

For more information, see: http://docs.haskellstack.org/en/stable/
yaml_configuration.html

resolver: lts-5.11

packages:
- '.'

extra-deps: []

flags: {}

The syntax is just normal YAML syntax. On the first non-comment line, we specify
the resolver (lts-5.11). This is a snapshot of popular and maintained packages
guaranteed to work together. On the next line, we specify which cabal packages
belong to this project. In this case, it's just the current directory ('.').

Often a project needs to use packages that are outside the stackage snapshot. Using
the extra-deps array, we can augment the snapshot with arbitrary packages from
Hackage. The catch here is that we need to specify explicit versioning, for example:

extra-deps:
- acme-missiles-0.3

With the flags section, we tell stack to build packages with specific values of cabal
flags. For example, we can enable the development flag in our project by default:

flags:
 some-package:
 development: true

For more configurables and stack commands, refer to the stack manual at
http://docs.haskellstack.org/en/stable/README.

http://docs.haskellstack.org/en/stable/README

Chapter 4

[101]

Multi-package projects
When a project evolves into something bigger and complexity increases, it
sometimes makes sense to split the project into multiple cabal packages. The Cabal
infrastructure doesn't care how you organize your packages, as long as every cabal
file is named by the project (the name field within the file) and resides in a directory
with no other cabal files.

In general, two tactics are seen in the wild to organize multi-package projects
(assuming a version control system):

• Separate repositories for every package, possibly with a super-repository that
links to single repositories (for example with Git submodules)

• A catch-em-all mega-repository with subdirectories for every package

The choice is largely dependent on the nature of the project and people's preferences.
In the end, the workflows in both organization schemas are very similar. The
packages can be installed individually using cabal-install or declared in stack.
yaml packages field. For example, the Yesod framework is structured as a mega-
repository and the accompanying stack.yaml looks like this:

resolver: lts-5.6
packages:
 - ./yesod-core
 - ./yesod-static
 - ./yesod-persistent
 - ./yesod-form
 - ./yesod-auth
 - ./yesod-test
 - ./yesod-bin
 - ./yesod
[…]

More information on cabal and stack can be found in their manuals. Also, the
stackage.org site has pointers to many useful pieces of information. In the next
section, we will leave structuring concerns behind and get back to coding instead.

Erroring and handling exceptions
Haskell very intentionally does not have a null/None/nil value like many
popular languages have, both strongly typed (Java) or not (Perl). Null values are
exceptionally bad for program safety. Null values are not expressed in types, giving
nulls no choice but to hide from the unsuspecting programmer and pop into sight in
production.

stackage.org

The Devil's in the Detail

[102]

Nulls are one of the main causes of bugs and security holes in today's software,
which is why Haskell has opted for a no-null policy. This might sound restrictive at
first, but actually the alternative representations for possibly failing computations in
Haskell are various and rich.

First, there are infinite ways to embed the possibility of failing into the datatype:
Maybe, Either, YourAwesomeDataType, and so on.

Second, with the wonderfully extensive abstraction machinery in Haskell we can
compose and recover from failing situations on a very high level. Although these
functors, monoids, monads, and whatnots have scarily abstract names "borrowed"
from Category Theory, a branch of very abstract mathematics, their incarnations in
Haskell are easy to grasp and their benefits are many.

The worst way to handle any error in Haskell is to use error or undefined. Undefined
particularly should almost always be considered heresy – error is always better
because at least an error message can be given. Both error and undefined indicate an
anomalous program state, from which recovery should not be attempted. Moreover,
they are pure and asynchronous; a nightmare for referential transparency.

Handling synchronous errors
The exceptions interface shipped with GHC is in the Control.Exception module.
All exceptions (including error and undefined) are represented as a SomeException,
which is a datatype defined as:

data SomeException = forall e. Exception e => SomeException e

Different exceptions are defined as their own datatypes, such as:

data IOException
data AssertionFailed = AssertionFailed String
data PatternMatchFail = PatternMatchFail String
data ErrorCall = ErrorCall String -- when called error

Unlike some other languages, Haskell does not have any built-in try…catch style
constructs to handle exceptions. Instead, exceptions are thrown and handled with
just normal functions.

Synchronous errors in the IO monad are thrown with throwIO :: Exception e =>
e → IO a. This is the best option to fail when working in IO, because the exception is
guaranteed to be thrown at that point in the IO action.

Because there are no special try…catch style constructs in Haskell, for better or
worse we can get creative with patterns for catching and recovering from errors.
For example, using catch is rarely the best or even a good option.

Chapter 4

[103]

Often we want to perform some action to acquire a resource, such as a file handle;
do something with that resource; and release the resource when we are done or an
exception was raised in the middle. We capture this pattern in a single
function, bracket:

bracket :: IO a → (a → IO b) → (a → IO c) → IO c

bracket openFile closeFile (\fileHandle → doSomething)

In other situations, we want to only perform some cleanup action after a
computation has finished, no matter what happened. For this we have:

finally :: IO a → IO b → IO a

Sometimes we would like to perform a computation but not really do anything with
the exception yet – just return it for later inspection further down the program. For
this we have try, which wraps the result in an Either:

try :: Exception e => IO a → IO (Either e a)

Despite it being convenient to catch virtually all exceptions, this sort of catching
should be handled with great care. Especially if you are retrying a computation
when it raises an exception, you shouldn't blindly discard all exceptions and try
again; what if the user wants to abort and your program ignores the UserInterrupt
exception? Or the operating system wants to kill your program gracefully, but your
program ignores that wish too? Only catch exceptions you are prepared to handle!

Also, catching multiple exceptions does not require catching all exceptions. Using
catches and multiple different Handler exceptions from one computation can be
handled differently:

catches :: IO a → [Handler a] → IO a

data Handler a = forall e. Exception e => Handler (e → IO a)

An example of handling user interruption differently from an IO exception is:

catches someComputation
 [Handler $ \UserInterrupt -> handleUserInterrupt
 , Handler $ \(e :: IOException) -> handleIOException]

Note that, although exception handlers can be chained with multiple catch
statements, the semantics are different from using a single catch, in that, in chained
invocations of catch, previous handlers could throw exceptions that get caught in
the next handlers.

The Devil's in the Detail

[104]

The exception hierarchy
What is common for all exceptions is that they all must implement Show and
Exception, the latter of which is given by:

class (Typeable e, Show e) => Exception e where
 toException :: e → SomeException
 fromException :: SomeException → Maybe e

It is possible (and you are encouraged) to define your own exception types. The
simplest custom exception would be:

data MyException = MyException deriving (Show, Typeable)
instance Exception MyException

Looking at the Exception class, it would seem like the toException would be
redundant – it has exactly the same signature as the SomeException constructor has.

The point in calling the SomeException constructor via toException is that, this
way, arbitrary hierarchies of exceptions can be built. What is meant by exception
hierarchy is that, when exceptions A and B are under C, we can create exception
handlers for only A, only B, or both A and B as only C.

Say we are building an application that we would like to throw exceptions in some
situations. Furthermore, we want to catch some of those exceptions within the
application, while some application exceptions should be caught further up.

We start with an exception type that will represent all application exceptions. Our
SomeApplicationException resembles the root SomeException type, in that both
just wrap some other (ad hoc polymorphic) exception:

-- file: errors.hs
data SomeApplicationException =
 forall e. Exception e => SomeApplicationException e
 deriving Typeable

instance Show SomeApplicationException where
 show (SomeApplicationException e) =
 "application: " ++ show e

instance Exception SomeApplicationException

In all, three things are going on here:

• We derived a Typeable instance for our custom exception type. This is
necessary for coercion to and from SomeExceptions.

• We wrote a Show instance for the type. Because our exception is now an
existential, we cannot derive Show.

Chapter 4

[105]

• We added an instance for Exception. The default implementations of the
methods will suffice here.

Next, say our application includes some sub-procedures we call workers. These
workers can fail and throw exceptions. We would like to separate these worker
exceptions from other exceptions in our application, but still have it so that catching
application exceptions catches worker exceptions as well.

To achieve that, we again create a new exception type and make it an instance of
Typeable, Show, and Exception. But this time, the Exception instance is more
involved:

data WorkerException = WorkerException String deriving (Show,
 Typeable)

instance Exception WorkerException where
 toException = toException . SomeApplicationException
 fromException x = do
 SomeApplicationException e <- fromException x
 cast e

What is going on in that instance is that toException first wraps the worker
exception into an application exception, and dually in fromException, we coerce
to an application exception and then inside of that into a worker exception.

Now we can throw a WorkerException, and it will get caught by a worker
exception handler, an application exception handler, and a generic
(SomeException) handler:

> let worker = throwIO $ WorkerException "flood"

> catch worker (\e@(WorkerException _) -> print e)
WorkerException "flood"

> catch worker (\e@(SomeApplicationException _) -> print e)
application: WorkerException "flood"

Handling asynchronous errors
Exceptions thrown with throwIO are always synchronous – they are thrown at
exactly that point in the computation. Exceptions thrown with throw :: Exception
e => e → a are always asynchronous – they are thrown when and where an
attempt to evaluate the result a is made. The error and undefined functions are
specializations of throw.

The Devil's in the Detail

[106]

Asynchronous exceptions are particularly vicious in a purely functional language,
because the code or thread that raises the exception depends on where and when
an expression is evaluated, and evaluation can be deferred indefinitely. Raising
exceptions from pure code should be avoided in general; for instance, total functions
should be preferred to partial functions in most cases.

It is impossible to catch any exceptions from pure code. All catching must happen
in either IO or STM monads (or monad stacks with either IO or STM at the bottom).
Catching asynchronous exceptions in IO is no different from catching synchronous
exceptions. But care must be taken that the computation from which exceptions are
caught really raises the exception and doesn't only defer it in a thunk.

For example, this does not make sense:

> catch (return $ head []) (\(SomeException _) -> return 0)
*** Exception: Prelude.head: empty list

The exception is not raised within the computation, but it's returned from it and
raised outside the catch. On the other hand, if we force the evaluation within the
computation, the exception is raised within the catch:

> catch (evaluate $ head []) (\(SomeException _) -> return 0)
0

Throw and catch in other monads besides IO
The Control.Exception family of throw and catch functions is limited to living
in IO. This is not really a problem for throwing exceptions in monad stacks over
IO (we can use lift) or in failure monads such as [], Maybe, or Either. However,
because the exception handler callback in Control.Exception.catch and others is
also limited to IO, it means we can't utilize other parts of the monad stack within the
handler.

Instead of writing manual reconstructions for the monad stack from IO, a better
option is to use the exceptions package. The exceptions package generalizes
throw and catch for monad stacks via type-classes:

class Monad m => MonadThrow m where
 throwM :: Exception e => e → m a

class MonadThrow m => MonadCatch m where
 catch :: Exception e => m a → (e → m a) → m a

Instances are provided in particular for monad transformers from the mtl package.
Many convenient utility functions are also provided; see the documentation of the
Control.Monad.Catch module from the exceptions package.

Chapter 4

[107]

Also, a special CatchT monad transformer and a Catch monad are provided by
exceptions. CatchT and Catch can be used for mocking exception throwing and
catching in pure code. Note that catching is limited to exceptions thrown via throwM,
because "real" exceptions thrown with throw can only be caught in impure code.

Writing tests for Haskell
There are many libraries for testing Haskell code. Besides classic unit tests with HUnit
and spec testing in Ruby-style with Hspec, we can verify properties using SmallCheck
and QuickCheck with exhaustive and randomized test cases, respectively.

Property checks
With QuickCheck we can test properties in a randomized fashion. We don't need to
generate the test cases ourselves, as QuickCheck takes care of that. Here's a quick
example of testing a simple arithmetic property:

stack ghci --package QuickCheck

> import Test.QuickCheck as QC

> QC.quickCheck $ \x y -> x > 0 ==> x + y >= y

All testable properties in QuickCheck are given as instances of the Testable class.
As a quick reference, the core interface looks like this:

quickCheck :: Testable prop => prop → IO ()

class Testable prop where […]

instance Testable Property
instance Testable Bool
instance (Arbitrary a, Show a, Testable prop) => Testable (a →
 prop)

The last instance is perhaps most interesting. That's what allows us to test functions
of variadic arguments directly with QuickCheck, like in our example.

QuickCheck generates test cases via the Arbitrary class. Instances for all the
core types are given, provided they're sensible. Test case generators live in the
Gen monad. Here is an example for clarification purposes:

class Arbitrary a where
 arbitrary :: Gen a
 shrink :: a → [a]

The Devil's in the Detail

[108]

data D2 = D2 Double Double deriving (Eq, Show)

instance Arbitrary D2 where
 arbitrary = do
 x ← arbitrary
 y ← arbitrary
 return (x, y)

If you need more exhaustive checking than random test cases, then SmallCheck is
a better choice. SmallCheck provides quantifiers, so we can express things such as
"forall x exists y" and so forth. Here is an example GHCi session using SmallCheck:

stack ghci --package smallcheck

> import Test.SmallCheck as SC

> smallCheck 2 $ forAll $ \x -> exists $ \y -> x + y > (x :: Int)

Completed 22 tests without failure.

Like QuickCheck, SmallCheck supports testing properties as variadic functions. The
smallCheck function requires an extra argument as its first argument, namely the
depth of generated test cases. If the test case has a reasonably bounded search space,
such as Booleans, then it's possible to set the max depth to maxBound. SmallCheck
then does an exhaustive check for the property.

For the simple cases, SmallCheck works a lot like QuickCheck. The default
quantification context is forAll, which resembles that of QuickCheck. However,
the test cases of QuickCheck are much better optimized for inexhustive testing,
covering most usual corner cases, and QuickCheck automatically attempts to shrink
the size of counter-examples.

Unit testing with HUnit
Sometimes it is more interesting or just easier to write the test cases yourself.
Although you can write some testing in IO using QuickCheck, the HUnit package is
more suited for that too:

stack ghci --package HUnit

> import Test.HUnit as HU

> let mytests = test $ do { x <- getLine; assert (x == "success") }

> runTestTT mytests

success

Cases: 1 Tried: 1 Errors: 0 Failures: 0

Chapter 4

[109]

The Testable class of testable properties in HUnit is slightly different from that of
QuickCheck and SmallCheck. In particular, it's a lot simpler:

class Testable t where
 test :: t → Test

instance Testable Test
instance Testable t => Testable [t]
instance Assertable t => Testable (IO t)

One of the two main ways to build test cases in HUnit is to write them as IO actions
that result in something Assertable. There is a Bool instance for Assertable,
meaning that you can return a Boolean indicating the success or failure of the
test case. However, it's more informative to perform asserts with explicit failure
messages and just return unit, (), which is also an instance of Assertable.

The other way if there's no need to perform IO is to use one of the (seemingly) pure
assertion functions:

[1,2,3] ~=? sort [2,1,3] :: Test
sort [2,1,3] ~?= [1,2,3] :: Test

Internally (~=?) and (~?=) live in IO, thus they're not really pure. They are
counterparts for (@=?) and (@?=) that return Assertion, that is, IO ().

Test frameworks
To use either property checking (QuickCheck/SmallCheck) or unit testing (HUnit) in
the test suite of an application, the use of a test framework simplifies things. A good
test framework should also support some sort of resource management. Currently
there are two main choices for a test framework in Haskell: Hspec and Tasty.

Hspec is based on RSpec for Ruby, and Hspec tests look deceptively similar to
RSpec. The Hspec library provides only the framework, leaving testing itself to
any of the testing libraries discussed so far. The introduction and resource guide
for Hspec at http://hspec.github.io is comprehensive and beginner-friendly.
Integrations and extensions to Hspec are provided for many libraries.

The other of the two big test frameworks for Haskell, Tasty, is relatively new and
is designed to be extremely extensible. Aside from having integrations for all the
main testing libraries, Tasty supports integrating Hspec tests directly as Tasty tests.
The excellent documentation for Tasty is maintained at http://documentup.com/
feuerbach/tasty.

http://hspec.github.io
http://documentup.com/feuerbach/tasty
http://documentup.com/feuerbach/tasty

The Devil's in the Detail

[110]

GHC also supports program coverage reporting. To extract a coverage report from
running an arbitrary Haskell program (such as a test suite), the program must be
compiled with -fhpc. Or, if using cabal, configure with --enable-coverage. If
using stack, build with --coverage.

When you run a program with coverage reporting, a <program>.tix file is
generated. GHC comes with the hpc command-line utility, which is used to inspect,
combine, and do coverage reporting with .tix files. The hpc utility needs to know
where source code files to the program are located. The easiest way to jump through
the necessary hoops is to use stack hpc instead. To generate a report both in
terminal and HTML outputs from a foo.tix file, we can just execute:

$ stack hpc report foo.tix

Generating combined report

100% expressions used (4/4)

100% boolean coverage (0/0)

 100% guards (0/0)

 100% 'if' conditions (0/0)

 100% qualifiers (0/0)

Trivia at term-level
In this section, we look at lazy patterns, using the magic hash, controlling inlining
and using rewrite rules. These are small things used rarely in applications, but
nevertheless are very convenient where applicable.

We'll start with lazy patterns. Where strict pattern annotations use bangs and mean
"Evaluate this argument to WHNF immediately," lazy pattern annotations use tildes
and imply "Don't even bother pattern-matching unless a binding is really requested."
So this errors:

> let f (a,b) = 5

> f undefined

*** Exception: Prelude.undefined

But with a lazy pattern match, we are all okay:

> let f ~(a,b) = 5

> f undefined

5

Chapter 4

[111]

A more realistic use case for lazy patterns is the classic server-client setting. The
client makes requests sequentially and can change the request based on previous
responses. We can express this in Haskell elegantly with just linked lists. The server
is slightly simpler than the client: it just applies a computation on every request
– it is a map or a fold. The following server expects a number as the request and
responds with the square of that number:

-- file: lazypat.hs
server :: [Int] -> [Int]
server (y:ys) = process y : server ys
 where process n = n ^ 2

The client is slightly more involved, because of the initial request it has to make.
This is also where a lazy pattern match will come in handy, as we will see soon.
But first, let's try it without. This client function is otherwise similar to the server,
but it also takes the next (initial) request as an argument:

client :: Int -> [Int] -> [Int]
client initial (x:xs) = initial : client (next x) xs
 where next n = n `mod` 65534

Now, we need just "tie the knot" between requests and responses, client and server.
This happens like so:

requests :: [Int]
requests = client initial responses
 where initial = 2

responses :: [Int]
responses = server requests

But our program has a slight problem. Our client will never get to make even a
single request!

To see why our program deadlocks, we should look at the client: it pattern-matches
on the responses before producing the first request. The easiest fix in this case is to
use a lazy pattern on the responses:

client :: Int -> [Int] -> [Int]
client initial ~(x:xs) = initial : client (next x) xs
 where next n = n `mod` 65534

With that fix, we can now observe requests and responses as expected:

> :load lazypat.hs

> take 10 responses

[4,16,256,65536,4,16,256,65536,4,16]

The Devil's in the Detail

[112]

With :sprint, we can inspect requests made and responses:

> :sprint responses

responses = 4 : 16 : 256 : 65536 : 4 : 16 : 256 : 65536 : 4 : 16 :

 _

> :sprint requests

requests = 2 : 4 : 16 : 256 : 2 : 4 : 16 : 256 : 2 : 4 : _

Coding in GHC PrimOps
When the speed of some hopefully small piece of code is extremely critical and
nothing else seems to help, one way to speed it up if using GHC is to code that
code in raw primitives. PrimOps in GHC are built into the compiler and are always
identified by a hash suffix on both type and term levels.

Primitives are defined in the ghc-prim package, but it is recommended to not use
the ghc-prim package directly and instead import the GHC.Exts module from base.
Also, to use any PrimOps, we need to enable the MagicHash language extension,
and the UnboxedTuples extension is needed for primitive tuples.

Let's take a worked example upfront: an array that supports compare-and-swap
(CAS) operations on its elements. As our first take, we'll deliberately use the IO
constructor directly to show that IO in Haskell is really not that magical after all.
Here we go:

-- file: primops.hs

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.Exts
import GHC.Types (IO(IO))

data CASArrayIO a = CASArrayIO (MutableArray# RealWorld a)

Here we enabled some extensions, imported the officially supported primops
module GHC.Exts, and for demonstration the IO constructor from ghc-prim:GHC.
Types. Then we defined a data type for CAS arrays.

Chapter 4

[113]

That RealWorld argument looks much less cryptic when we consider the definition
of IO, which is simply a newtype:

newtype IO a = IO
 (State# RealWorld -> (# State# RealWorld, a #))

So under the hood, IO actions are a lot like the state monad: a state of type
RealWorld is carried over to the next step, though RealWorld is never constructed
and it exists only at compile time.

We want operations to create, read, and of course compare-and-swap for our CAS
arrays. The respective primitive functions on MutableArray# for our operations are:

newArray#
 :: Int# -> a
 -> State# s -> (# State# s, MutableArray# s a #)

readArray#
 :: MutableArray# s a-> Int#
 -> State# s -> (# State# s, a #)

casArray#
 :: MutableArray# s a -> Int# -> a -> a
 -> State# s-> (# State# s, Int#, a #)

We realize that, instead of using the monadic IO interface for threading RealWorld,
we can also pass them manually and construct IO actions with the IO constructor.
So, by just following the types, we devise the following definition for the create
operation:

newCasArray :: Int -> a -> IO (CASArrayIO a)
newCasArray (I# n) a = IO $ \st0 ->
 let (# st1, arr #) = newArray# n a st0
 in (# st1, CASArrayIO arr #)

It's a bit noisy but still understandable. Read is shorter:

readCas :: CASArrayIO a -> Int -> IO a
readCas (CASArrayIO arr) (I# n) = IO $ readArray# arr n

But how about the cas operation? Quite involved:

cas :: Ord a => CASArrayIO a -> Int -> a -> IO a
cas (CASArrayIO arr) (I# n) a = IO $ \st0 ->
 let (# st1, c #) = readArray# arr n st0 -- 1
 a' = if a > c then a else c –- 2
 (# st2, r, b #) = casArray# arr n c a' st1 -- 3
 in (# st2, b #) -- 4

The Devil's in the Detail

[114]

Step by step, this works as follows:

1. Read the current value at the specified location into c.
2. Compare c and the specified new value, a, and determine which of them

comes first; place that to a'.
3. Swap the value at the specified location with a'; if it still equals c, read in step.
4. Return the current value at the specified location.

The only problem with using primitives like this is that we need to take care of
threading the state correctly at every primitive operation. This produces a lot of
noise, like in the cas function. Fortunately, a lot of this can be abstracted with
the help of the primitive package. The primitive package defines a type class
PrimMonad along with instances for IO, ST, and monad transformers from the
transformers package:

class Monad m => PrimMonad m where
 type PrimState m
 primitive
 :: (State# (PrimState m) → (# State# (PrimState m), a #))
 → m a

The associated type PrimState in PrimMonad is just RealWorld for anything IO-
based, and for ST s it is the s. The primitive function is merely a generalization of
the IO constructor we used previously. Rewriting our cas function with primitives,
we import Control.Monad.Primitive and then define:

cas' :: Ord a => CASArrayIO a -> Int -> a -> IO a
cas' (CASArrayIO arr) (I# n) a = do
 c <- primitive $ readArray# arr n
 let a' = if a > c then a else c
 primitive $ \st →
 let (# st', _, b #) = casArray# arr n c a' st
 in (# st', b #)

Control inlining
The inliner in GHC is pretty well optimized for lots of different situations, but
sometimes a bit more control over inlining is desired. GHC supports a number of
pragmas and options for controlling inlining:

• INLINE and NOINLINE: Respectively, always or never inline a definition.
• INLINABLE: Consider the definition for inlining despite its size. Normally,

GHC might mark some definitions as no-inline because of their big size.

Chapter 4

[115]

Inlining is simply replacing a term in the caller-site with that term's definition itself.
In general, this increases code size when a term is used more than once, but the GHC
inliner is optimized to keep the increase to a minimum. In practice, the only situation
where use of NOINLINE is justified is when unsafePerformIO is used to build top-
level shared variables, if you're really desperate for smaller code size in, for example,
embedded systems or tweaking rewrite rules.

An explicit INLINE makes the most sense for large definitions that really should be
inlined for performance reasons. For example, a huge vector transformation would
likely benefit from further fusion when inlined. An explicit INLINE might be required
for such huge computation.

Some special quirks are related to inlining. Firstly, GHC only inlines a definition
when it is fully applied to its arguments. Consider these seemingly identical
definitions:

{-# INLINE s #-}
s x y z = x z (y z)

{-# INLINE s' #-}
s' x y = \z → x z (y z)

The first one would inline only after being applied to three arguments. The second
one inlines when applied to two.

Using rewrite rules
Another powerful optimization step along with inlining is rule-based rewriting.
Rewrite systems are what enable speed in Haskell lists and libraries such as vector,
text, and bytestring.

Rules tell the GHC optimizer to rewrite certain code fragments with something else.
Rules allow us to write things like this:

-- file: lem-rewrite.hs
lem x = x || not x
{-# RULES "lem/tautology" forall a. lem a = True #-}

The name of the rule is mandatory and comes after RULES. But there is a problem
with such a rule. If we attempt to compile it, we'll get a warning:

lem-rewrite.hs:3:11: Warning:
 Rule "lem/tautology" may never fire
 because 'lem' might inline first
 Probable fix: add an INLINE[n] or NOINLINE[n] pragma on 'lem'

The Devil's in the Detail

[116]

This gets us right into the fragile nature of rewrite rules. Rules interact with inlining
so that getting rules to fire correctly is tricky. The suggestion is to add either INLINE
or NOINLINE pragma (with a phase control number), which seems odd; why would
an INLINE pragma change the inlining behavior of such a small function? It gets
inlined anyway, right?

Where INLINE further enhances a small definition is that it tells GHC to at least
retain a copy of the definition as we wrote it (its RHS). Without an INLINE pragma,
a definition that isn't exported is completely erased early on in compilation. The
INLINABLE pragma works similarly to INLINE in this case, retaining both the
optimized and original RHS.

In this case, it would actually be enough to export lem by adding a module signature
such as module Main (lem) where. The default module definition when none is
given is module Main (main) where. The other (better) option is to use an explicit
INLINE or NOINLINE pragma.

Specializing definitions
Overloading a function via a type-class enforces a level of indirection in the form of
a lookup dictionary. If some of the overloaded versions are heavily used, it might
make sense to specialize that version of the function at the expense of slightly
increased code size.

GHC can be asked to create specialized versions of type-class overloaded definitions
with SPECIALIZE pragmas. Given an overloaded function such as:

lookup :: Ord key => [(key, v)] → key → v

We can ask GHC to create a version of lookup for (Int,Int) valued keys with:

{-# SPECIALIZE lookup :: [((Int,Int), v)] → v → (Int,Int) → v #-}

In effect, a specialized version is copied from the original definition at compile time
and rewrite rules are generated that ensure usages where the key type is decidedly
always (Int,Int) are specialized. Those rules can also fire after inlining and other
rewrites have taken place.

It's also possible to write rewrite rules that specialize a generic function with
some completely different user-defined function (from a different module even).
For example, we might have a UserKey type, for which comparisons via Ord are
particularly inefficient when doing a lookup. So we have devised a custom function
for doing lookups based on UserKey:

lookupByUser :: [(UserKey, v)] → v → UserKey → v

Chapter 4

[117]

Now instead of replacing every instance of lookup with our lookupByUser in the
code base, we could provide a rewrite rule that does it for us. This has the added
effect of hiding the implementation detail. The rule itself looks like this:

{-# RULES "lookup/lookupByUser" lookup = lookupByUser #-}

This rule fires when types match in the call-site.

To inspect which rules fired, compile with -ddump-
rule-firings. To see which rules were defined in
the compiled modules, compile with -ddump-rules.

Phase control
The part in GHC that performs optimizations based on inlines, rewrites, and
specializations, among others, is known as the simplifier. The simplifier consists of a
number of phases and each phase consists of multiple iterations. By default, there are
three phases numbered 2, 1, and 0. The phase number decreases between runs. In a
single phase, optimizations associated with that phase are run repeatedly until a fixed
point.

All of the INLINE pragmas, RULES, and SPECIALIZE pragmas support phase control
in the form of a [N] or [~N] suffix, where N is some phase number (0, 1, 2). The first
form means the simplification is in effect in phase N and onwards. The second form
with a tilde means the simplification is active up to, but not including, phase N.

Restricting simplifications to certain phases makes sense mainly in two situations.
The first one is to prevent inlining from happening before certain rule rewrites
take place. The second, when a rewrite in an earlier phase, which might subject the
definition for fusion, if not fused results in slower code than the unfused version. To
counter this, we can add a rule that fires only at the last phase, and which undoes the
first rewrite. (The first rewrite should also be restricted to earlier phases.)

Trivia at type-level
The more expressive the types are, the more safety we can ensure at compile-time.
What's more, expressive types serve as documentation that is always up-to-date.

The Devil's in the Detail

[118]

Phantom types
A type that has type variables on the left-hand side that do not appear on the right-
hand-side at all is called a phantom type. Such type variables are a cheap, in fact free,
technique to guarantee correctness in multiple situations. An example from base
is Data.Fixed, in which the precision of fixed-precision arithmetic is encoded in a
phantom type.

An extremely useful class of phantom types is obtained in conjunction with
Generalized Algebraic Data Types (GADT). As a little silly example, consider:

-- file: gadts.hs
{-# LANGUAGE GADTs #-}

data Value a where
 Boolean :: Bool -> Value Bool
 Not :: Value Bool -> Value Bool
 Numeric :: Num a => a -> Value a
 Sum :: Num a => Value a -> Value a -> Value a

The first two constructors allow us to build values that contain single Booleans or
Boolean values, but not, for example, negations of numeric values. The last two
constructors allow single numbers as numeric values and sums of numeric values,
but not sums of Booleans, or a Boolean and a number.

In effect, we can express any value as a forall a. Value a: Boolean values as Value
Bool, numeric values as Num a => Value a, floating point values as Float a =>
Value a, and so on.

A common pattern is to define custom types with no inhabitants and use those as
type arguments for phantom types.

Functional dependencies
Although functional dependencies (fundeps) are nowadays subsumed by associated
types, fundeps might be a bit easier to grasp. So let's learn by example what fundeps
are all about!

Say we are working with textual data: Strings, Text, and ByteStrings. But we
would really like to not care about the actual datatype when we are indexing, for
example. To solve this problem, we come up with a type class that provides a single
overloaded function, index, that knows how to index into any container. So the code
we write looks like this:

-- file: fundeps.hs
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}

Chapter 4

[119]

{-# LANGUAGE FunctionalDependencies #-}

import qualified Data.Text as T
import qualified Data.ByteString as BS
import Data.Word (Word8)

class Index container index elem where
 index :: container -> index -> elem

instance Index String Int Char where
 index = (!!)

instance Index T.Text Int Char where
 index = T.index

instance Index BS.ByteString Int Word8 where
 index = BS.index

We load this up in GHCi and confirm that it works. But when we get into actually
using our new shiny Index class, we bump into lots of ambiguous type errors!

> index ("foo" :: String) 0

<interactive>:74:1:

 Could not deduce (Num index0)

 from the context (Num index, Index String index elem)

 bound by the inferred type for 'it':

 (Num index, Index String index elem) => elem

 at <interactive>:74:1-26

 The type variable 'index0' is ambiguous

And GHC is completely right here. Although we hadn't given any instances other
than Index String Int Char for String-containers, we cannot be sure that someone
won't do that in some other module, for example.

With functional dependencies, we can rule out some instances and thus improve
type inference. For our Index, the container type decides the type of its elements,
so we would augment the class head with | container → elem. Thus we have:

class Index container index elem | container -> elem where
 index :: container -> index -> elem

The Devil's in the Detail

[120]

We could also, if desired, have written container → elem index to say that the
container decides both element and index types, or container index → elem for
container and index together deciding the type of element. The latter would be
useful to allow instances such as Index String (Int, Int) String, that is, using
a range as the index to return a substring.

Type families and associated types
An associated type can be used everywhere a functional dependency can be used.
An implementation of our Index class using an associated type for the element is:

-- file: associated.hs
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE TypeFamilies #-}

import qualified Data.Text as T
import qualified Data.ByteString as BS
import Data.Word (Word8)

class Index container index where

 type Elem container

 index :: container -> index -> Elem container

instance Index String Int where

 type Elem String = Char

 index = (!!)

instance Index T.Text Int where

 type Elem T.Text = Char

 index = T.index

instance Index BS.ByteString Int where

 type Elem BS.ByteString = Word8

 index = BS.index

Note that the element is no longer a type parameter, like in the fundep case, but an
associated type delimited by Elem. Elem can be thought of as a type-level function;
when we say type Elem container, we mean that instances of this class must define a
type into which container maps. The result of that type is denoted by Elem container.

Chapter 4

[121]

The idea of type-level functions applies to type families as well, of which
associated types are just a special case. The Elem type could be expressed as
a standalone type family:

-- file: datafamilies.hs
type family Elem container
type instance Elem String = Char
type instance Elem T.Text = Char

The type families considered so far have actually been type synonym families. Data
families are also supported, both associated and standalone. For data families, the
right-hand side is not a synonym but an actual datatype declaration. For example,
we could define a type function that maps tuples to their strict representations:

-- file: datafamilies-closed.hs
data family TStrict a

data instance TStrict (a, b) = TStrict2 !a !b
data instance TStrict (a, b, c) = TStrict3 !a !b !c
[…]

The main advantage of data families versus type synonym families is that data
families are always injective. In our example, each strict tuple is thus associated
with exactly one tuple. Injectivity allows us to recover type information for better
type inference and more importantly allows some programs not possible with type
synonym families.

The final quirk regarding standalone type and data families is that a data family is
either open or closed. In an open type family, new instances can be defined wherever
the family is in scope, and also in different modules. But all instances of a closed
type family must be specified in a where clause right after declaring the family. Strict
tuples as a closed type family would look like this:

data family TStrict a where
 TStrict (a, b) = TStrict2 !a !b
 TStrict (a, b, c) = TStrict3 !a !b !c
 […]

Useful GHC extensions
We have already used a number of extensions available in GHC, such as
MultiParamTypeClasses, TypeFamilies, FlexibleInstances, and so on. The nice
thing about most extensions in GHC is that, if you accidentally try to use a language
feature that is behind an extension, GHC gives you a hint about which extension you
forgot.

The Devil's in the Detail

[122]

In this last section, we'll look at some more useful extensions available in reasonably
modern GHC. There are other extensions, of course, and this is just a glimpse. For
an exhaustive list of currently supported extensions, see the Language.Haskell.
Extension module from the Cabal library.

Monomorphism Restriction
Some of the most confusing type errors originate from the monomorphism
restriction (MR). Consider this program:

-- file: mr.hs
main = do
 let f = (1 +)
 print $ f (6 :: Int)
 print $ f (0.1 :: Double)

The most general type for f would be Num a => a → a. But due to MR, the inferred
type is monomorphic in a. The error message we get if we attempt to compile
the program is "Couldn't match expected type 'Int' with actual type 'Double'".
Monomorphic type is inferred from context. In our case, f gets type Int → Int,
because that is its first usage. If the type cannot be inferred from the context, then the
monomorphic type is chosen in line with the type defaulting rules.

Strangely enough, if we instead let f x = (1 + x), then MR won't kick in and the
program compiles just fine. In this regard, function syntax is very much different
from pattern syntax (f = \x → 1 + x).

Monomorphism restriction has been on by
default in compiled code, and off in GHCi, since
GHC 7.8.1.

The motivation for MR is that in some cases it prevents a computation from being
performed twice. Consider this:

let len = Data.List.genericLength [1..1000]
print (len, len)

With MR, len gets the monomorphic type Num a => a with a instantiated to Integer.
This is ideal as len gets memoized. However, if MR didn't monomorphize the type,
len would have the polymorphic type Num a => a, meaning that evaluating len
requires passing in a dictionary for a, preventing memoization.

If requiring a type signature for polymorphic bindings is not desirable, MR can be
disabled with the NoMonomorphismRestriction language extension.

Chapter 4

[123]

Extensions for patterns and guards
The GHC extension ViewPatterns allows arbitrary functions (views) in patterns. The
advantage of view patterns over guards is more concise code in some cases. Consider
this funky function:

funky xs | 0 <- length xs = "Empty list!"
 | 4 <- last xs = "Ends in four!"
 | n <- sum xs = "Sum is " ++ show n

We can write this more clearly with view patterns:

-- file: viewpatterns.hs
{-# LANGUAGE ViewPatterns #-}

funky (length -> 0) = "Empty list!"
funky (last -> 4) = "Ends in four!"
funky (sum -> n) = "Sum is " ++ show n

Note that we didn't need to bind the argument (xs) to a variable at all.

Our definition of funky, which uses pattern matching inside guards, was originally
enabled by an extension known as PatternGuards, nowadays turned on by default.

A relatively new extension related to patterns is PatternSynonyms (available in
GHC 7.8 and later). Like the name suggests, with PatternSynonyms we can make
synonyms for patterns. Pattern matching on a pattern synonym works just like
pattern matching on a real constructor.

Pattern synonyms are declared using a new top-level pattern keyword. For example,
consider a program that extensively uses structures of type (Bool, Bool, Bool,
Bool) to represent bit arrays of length 4, and that we rarely need to look at more
than one bit at a time. So, instead of laying out the whole structure every time:

fun bits | (b1,b2,b3,b4) ← bits = …

We can define pattern synonyms that extract specific bits from the structure:

-- file: patternsynonyms.hs
{-# LANGUAGE PatternSynonyms #-}

pattern B1 a <- (a,_,_,_)
pattern B2 a <- (_,a,_,_)
pattern B3 a <- (_,_,a,_)
pattern B4 a <- (_,_,_,a)

The Devil's in the Detail

[124]

These synonyms can be used like this:

fun (B1 True) = 1
fun (B2 True) = 2
fun (B3 True) = 3
fun (B4 True) = 4

Pattern synonyms are identifiers just like types and constructors, meaning that they
can occur in export and import lists.

The final pattern-related extension we shall consider is ScopedTypeVariables.
Normally in Haskell, all type variables in a type signature are instantiated fresh,
meaning that all type variables will be implicitly for-alled.

Scoped type variables are useful when we would like to write explicit type
signatures for polymorphic function bindings within another polymorphic function.
In the following function, it is impossible to give go a type signature without scoped
type variables.

-- file: scoped-type-variables.hs
{-# LANGUAGE ScopedTypeVariables #-}

fun :: forall a b. (a -> b) -> [a] -> [a] -> ([b], [b])
fun f xs ys = let go :: [a] -> [b]
 go = map f
 in (go xs, go ys)

Note that explicit forall; without it, type variables a and b would still be in scope
only in the signature for fun.

Strict-by-default Haskell
Two of the new features added in GHC 8.0.1 are the Strict and StrictData
extensions, that change Haskell from a lazy-by-default language into a strict-by-
default language (on a per-module basis).

When StrictData is in effect, fields in the data declaration are considered as if they
had a strictness annotation (!) in front, unless the field is explicitly set to lazy with
the laziness annotation (~):

data S = S a -- 1

data S = S !a -- 2
data S = S ~a -- 3

Chapter 4

[125]

Under normal circumstances, (1) is interpreted as (3), but under StrictData
it is interpreted as (2). Writing laziness annotations is not allowed unless
StrictData is enabled.

On the other hand, the Strict extension adds a bang to all pattern bindings
everywhere in the module. With Strict in effect, normal irrefutable patterns, ~(x,y),
become just lazy patterns. Irrefutable patterns can be recovered with ~(~(x,y)).

Summary
We began this chapter by looking at what Haskell projects usually consist of and
how Cabal and stack are used to manage project complexity and dependencies. We
glanced at the basic usage of main test libraries and frameworks for Haskell and how
they can be integrated into a cabalized project. We learned how to handle errors and
exceptions. Even more importantly, we learned how to not do errors; why prefer
throwIO over error (or throw)? Why are asynchronous errors so vicious in lazy
semantics?

In the latter part of this chapter, we explored some Haskell trivia and techniques
specific to GHC: lazy patterns, coding with GHC primitives (the magic hash),
inlining, writing rewrite rules, using phantom types, fundeps, type families, the
monomorphism restriction, and some useful GHC extensions. Now you should
be able to both read and write cabal files, devise test suites with test libraries
(QuickCheck, SmallCheck, and HUnit) and test frameworks (Hspec, Tasty), and
throw and catch exceptions correctly; you should also have absorbed some trivia
about Haskell and GHC.

In the next chapter, we will look at parallelization and RePa, a Haskell library for
high-performance parallel array programming.

[127]

Parallelize for Performance
Nowadays, as single processor cores are not getting much faster, CPU manufacturers
instead keep increasing the number of cores in processors, implying that high-
performance programs must accordingly exploit more and more parallelism to keep
up with this breadth-wise hardware development.

Turns out, one of Haskell's strongest aspects, referential transparency, is very
valuable for parallelization. Automatically knowing that some distinct expressions
won't interact with each other means they are safe to execute simultaneously.
Note that parallelism is very different from concurrency, which usually refers to
interacting processes (they aren't necessarily executed in parallel).

In this chapter, we will cover what the Haskell ecosystem currently has to offer for
parallelism: a powerful parallel runtime system, fairly high-level abstractions for
parallel evaluation, data parallel programming, and diagnostic tools for parallel
programs. The learning objectives for this chapter are to have an overview of the
parallel runtime system, parallelizing Haskell programs and profiling them:

• Parallelizing plain Haskell programs using either Eval strategies
or par schedules

• Learning about the parallel runtime system and sparks
• Using RePa for data parallel programming
• Inspecting parallel performance using ThreadScope

Parallelize for Performance

[128]

Primitive parallelism and the Runtime
System
In Haskell, parallel execution (of pure values) boils down to evaluating thunks into
WHNF simultaneously. The GHC primitive we can use to annotate parallelism is
called par, exported from the Control.Parallel module in the parallel package:

par :: a → b → b

Note that par has exactly the same type as seq, which is used to control strictness.
So whereas a `seq` b ensures that a is evaluated when b is evaluated, a `par` b
evaluates a in parallel with b.

Let's start with a simple example. Everyone's favorite naive Fibonacci function
appears again. This time, however, we will be calculating multiple Fibonacci
numbers simultaneously. The following program prints Fibonacci numbers between
37 and 40:

-- file: fib.hs
fib :: Int -> Int
fib n
 | n <= 1 = 1
 | otherwise = let a = fib (n - 1)
 b = fib (n - 2)
 in a + b

main = print $
 let x = fib 37
 y = fib 38
 z = fib 39
 w = fib 40
 in (x,y,z,w)

Note that there are no parallelism annotations yet, just plain lazily evaluated
expressions. Compiling with the normal non-parallel runtime, we'll get the following
performance:

$ ghc -O2 -with-rtsopts="-s" parallel-fib.hs

$./parallel-fib

 Total time 4.285s (4.285s elapsed)

Chapter 5

[129]

The threaded runtime is enabled by passing the -threaded flag to GHC. The
Runtime System flag -N<n> controls how many system threads the Runtime System
uses. We test the performance on a machine with four cores:

$ ghc -O2 -threaded -with-rtsopts="-s -N4" fib.hs
$./fib

 Total time 11.204s (3.892s elapsed)

 Productivity 99.7% of total user, 287.2% of total elapsed

What we see here is that the elapsed time, also known as wall-clock time, perhaps
got a bit smaller, but the user time, CPU time, almost tripled. Also note 287.2%
of total elapsed; if your program had utilized all four cores to the max, that
percentage will have been closer to 400%. And, actually, if we execute the program
multiple times we would sometimes observe this behavior and on other occasions
the same behavior as with the non-parallel version. This is because of subtle things
that happen inside the parallel runtime system.

It's unlikely that the threaded runtime would have actually parallelized our
thunks of fib expressions. In general, it is impossible to know whether it is
actually beneficial to evaluate thunks in parallel, because expressions can share
subexpressions, and moving data between threads is expensive.

To tell GHC to evaluate our fib thunks in parallel, we can use par and pseq, which
is semantically like seq but is subtly different when it comes to parallelism. The
parallelized program looks like this:

 let x = fib 37
 y = fib 38
 z = fib 39
 w = fib 40
 in x `par` y `par` z `par` w `pseq` (x, y, z, w)

With this our program now performs better on four cores:

Total time 6.698s (1.739s elapsed)

Productivity 99.9% of total user, 384.7% of total elapsed

That's roughly 2.5 times faster with four cores as opposed to with just one core.
However, we were running four cores; why wasn't the speed four times greater?

Remember that the naive Fibonacci algorithm grows exponentially in time, so
the largest evaluation actually dominates the runtime of our program. We didn't
parallelize the calculation itself, and calculating the 40th Fibonacci number takes
about 1.7 sec, which is the best we could hope for when each individual Fibonacci
number is still calculated sequentially.

Parallelize for Performance

[130]

Spark away
The technique used in the parallel runtime to distribute work between processors
works via units of work called sparks. The Runtime System contains a spark pool,
from which it distributes work to vacant processor cores. What happens in par x y
is that a pointer to x is pushed into the spark pool.

The -s statistics show for our naive Fibonacci the following line:

SPARKS: 3 (3 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

This says that our program generated three sparks (from three calls to par), the
evaluation of which was entirely initiated from the spark pool by the Runtime System
(converted). Other things that can happen for a spark in a spark pool include:

• Overflowed: The spark was not added into the spark pool, because the pool
was at its maximum capacity.

• Dud: When the argument to par is already evaluated, it's counted as dud.
The spark pool is not touched at all.

• GC'd: Before the spark got evaluated, it was garbage-collected and removed
from the spark pool.

• Fizzled: Evaluation was triggered by the program; that is, the work was not
distributed directly by the Runtime System.

Sparking is relatively cheap, as it's only a pointer assignment. However, it's not
free. Consider parallelizing the naive Fibonacci by calculating each recursive call in
parallel:

let a = fib (n - 1)
 b = fib (n - 2)
 in a `par` b `par` a + b

This hurts performance, because we now create millions of sparks mostly of small
pieces of work. But if we limit sparking to larger recursive calls where n > 25, we get
a finer work distribution but not too many sparks:

fib n
 | n <= 1 = 1
 | n <= 25 = fib (n - 1) + fib (n - 2)
 | otherwise = let a = fib (n - 1)
 b = fib (n - 2)
 in a `par` b `par` a + b

This reduces the runtime to about 1.4 sec, which is a bit over three times faster than
the one-core version. Considering overheads and other load on my machine, that's a
pretty good speedup.

Chapter 5

[131]

Subtle evaluation – pseq
Remember that pseq we used a little while ago? This is different from the earlier
seq in that pseq is strict only its first argument, whereas seq is strict in its both
arguments. In normal usage, this doesn't make a difference.

However, the strictness analyzer in GHC infers from a `seq` b that it doesn't make
any difference whether a is evaluated before b or vice versa; therefore it is possible
that the expression becomes b `seq` a `seq` b. This would be a problem with
parallelism. Consider this, for example:

(a `par` b) `seq` (a + b)

GHC might turn this into:

(a + b) `seq` (a `par` b) `seq` (a + b)

Here, parallelism would be destroyed. Using pseq instead of seq prevents GHC
from inferring this.

When in doubt, use the force
In our Fibonacci examples, we were parallelizing computations that returned Ints.
Such basic structures are completely evaluated by seq. par always evaluates its
first argument to WHNF, although we often want to evaluate bigger structures in
parallel. The cleanest way to evaluate structures completely is to use force from the
deepseq package:

Control.DeepSeq.force :: NFData a => a → a

The force function evaluates (sequentially) its argument to Normal Form (NF).

Note, however, that there is a great difference between these expressions:

a `par` b `pseq` (a, b)
force (a, b) `par` (a, b)

The first one evaluates a in parallel with b, whereas the second one would evaluate a
and b sequentially.

Now that we are familiar with sparks and the two parallelization primitives, par
and pseq, we can start building abstractions to help us be more expressive about
parallelism in our programs.

Parallelize for Performance

[132]

The Eval monad and strategies
The first abstraction we will look at is the Control.Parallel.Strategies module
from the parallel package. The core Strategy API consists of the following:

data Eval a
instance Monad Eval

type Strategy a = a → Eval a

runEval :: Eval a → a

using :: a → Strategy a → a

rseq :: Strategy a
rdeepseq :: NFData a => Strategy a
rpar :: Strategy a

The principle is to use using or runEval to evaluate a lazy data structure in parallel,
using some strategy. Essentially we have separated the algorithm (a lazy data
structure) from the parallel evaluation (a strategy).

As a simple example, consider calculating the minimum and maximum elements of
many lists in parallel. We write an algorithm, which doesn't encode any parallelism,
called minmax:

-- file: rows.hs
import Control.Parallel.Strategies
minmax :: [Int] -> (Int, Int)
minmax xs = (minimum xs, maximum xs)

Then we have a list of lists (matrix) and a list of minimums and maximums
(minmaxes):

matrix = [[1..1000001], [2..2000002], [3..2000003]
 , [4..2000004], [5..2000005], [6..2000006]
 , [7..2000007]]
minmaxes = map minmax matrix

Then, when we are about to evaluate the results, we apply a strategy to parallelize
the evaluation:

print (minmaxes `using` parTraversable rdeepseq)

What happens here is that:

• We used parTraversable to evaluate the elements of a list in parallel
• In every parallel evaluation, we use the rdeepseq strategy to evaluate the

element fully

Chapter 5

[133]

Strategies work in conjunction with lazy data structures. The level of granularity at
which a strategy can define parallelism is limited by the data structure. Arbitrary
complex lazy data structures can have similarly complex strategies completely
separated from the algorithm that builds the structure. However, data dependencies
in the algorithm limit the possible benefits of applying parallel strategies, because
copying data between threads is not free.

Directly using the Eval monad, we can express arbitrarily complex strategies.
Consider these three strategies for evaluating a two-tuple:

strat1 (a, b) = do
 x ← rpar a
 y ← rpar b
 return (x, y)

This variant creates sparks for both elements and returns immediately. The elements
might get evaluated by some thread:

strat2 (a, b) = do
 x ← rpar a
 y ← rseq b
 return (x, y)

This variant creates a spark for the first element and evaluates the second element
before returning. The first element might or might not be evaluated by then (by some
other thread):

strat3 (a, b) = do
 x ← rpar a
 y ← rseq b
 rseq a
 return (x, y)

This third variant creates a spark for the first element, evaluates the second element,
and before returning also ensures that the first element has been evaluated. If it
wasn't evaluated between sparking it and evaluating the second element, it is
evaluated sequentially here.

Though it is possible to interleave the algorithm with an Eval computation, it is
usually clearer to annotate parallelism with using and or other combinators within
the algorithm, not the other way around. There useful strategy combinators in
Control.Parallel.Strategies to encourage this.

Parallelize for Performance

[134]

One such function is parListChunk, which splits a list into chunks of a given size
and evaluates those chunks in parallel. This is usually called static partitioning. Often
it is better to divide the work into smaller units and leave the hard job of assigning
the work to the scheduler in the Runtime System. We already used this tactic in the
naive Fibonacci case, where we created lots of sparks and let the Runtime System
scheduler decide on which cores the work happens.

The benefit from avoiding static partitioning is that programs with granular (but not
too granular) sparks scale to multiple cores and thus require less fine-tuning by the
programmer. The challenge is to aim for small units of work in sparks, but not too
small, so that overhead from the spark pool is kept to minimum.

Composing strategies
The encouraged pattern for using strategies is to compose them by parameterization.
Most strategies take other strategies as arguments, such as:

evalList :: Strategy a → Strategy [a]
parList :: Strategy a → Strategy [a]

evalTuple2 :: Strategy a → Strategy b → Strategy (a, b)

All strategy combinators also have eval and par variants, the first of which
evaluates the parts of a structure sequentially, and the second in parallel. The
parameters define strategies with which to evaluate the parts.

The composition of strategies analogous to function composition is dot:

dot :: Strategy a → Strategy a → Strategy a

As one could guess, the strategy s2 `dot` s1 first applies the strategy s1 and then
strategy s2.

How do we write a strategy that evaluates elements of a list in parallel, but returns
only after all elements have been fully evaluated? The solution is:

rdeepseq `dot` parList rdeepseq

When writing strategies for custom data types, a most useful combinator is
rparWith:

rparWith :: Strategy a → Strategy a

Chapter 5

[135]

This is like (rpar `dot`), except more efficient. In essence, it combines a given
strategy with an rpar so that the parameter strategy is applied within the parallel
evaluation. For a custom two-tuple, we could write the following strategy
combinatory, which evaluates the two parts in parallel according to some strategies:

-- file: tuple-par.hs
data T a b = T !a !b

parT :: Strategy a -> Strategy b -> Strategy (T a b)
parT sa sb (T a b) = do
 a' <- rparWith sa a
 b' <- rparWith sb b
 return (T a' b')

When writing strategies, it's important to understand how the lazy evaluation model
works in order to not shoot yourself in the foot. It's not too hard to write incorrect
strategies that don't retain references correctly. Particular things to keep in mind are
as follows:

• rpar (f x): not binding the result and using it later is very bad (the newly-
created thunk just gets garbage-collected). Always bind and use the result!

• rpar x: not binding the result is OK, as long as x is used later on.
• rparWith strat x: This is also OK, as long as x is used later on.

For big custom data types, it might not be feasible or desired to write custom strategy
combinators. In such cases, building the structure inside Eval can be the most elegant
solution. Especially if elements of the computation are not dependent on each other,
writing the computation in applicative style is very concise. For example:

data A = A Int Bool [Double] String

buildPar :: A
buildPar = runEval $
 Record <$> rpar toInt
 <*> rpar toBool
 <*> evalList rpar toList
 <*> rpar toString

Here all fields and even the elements of the list are all evaluated in parallel.
The parallelization is completely transparent to the caller of buildPar.

Parallelize for Performance

[136]

Fine-tune granularity with chunking and
buffering
As we have seen, creating sparks in slightly excessive amounts produces good results,
because the runtime can assign work to free cores at a finer granularity. However, we
also witnessed that too much granularity will hurt performance because of overheads.
So often, a problem in parallelizing boils down to limiting granularity.

In general, dividing the problem space into chunks and parallelizing the evaluation
of chunks instead of single problems is the classic strategy to reduce granularity.
A convenient combinator in Control.Parallel.Strategies does just this for lists.
It's called parListChunk:

parListChunk :: Int → Strategy a → Strategy [a]

The first argument defines the chunk size. Its use is straightforward:

[fib n | n ← [1..30]] `using` parListChunk 6 rseq

This evaluates chunks of six consecutive elements sequentially, and all chunks
in parallel.

But what about when a list is used as a stream? We wouldn't want to sacrifice the
nice streaming property of lazy lists when parallelizing its evaluation. We want to
buffer the list up to some depth in parallel, consume some portion from the start,
and then continue evaluation further.

Such a rolling buffer is implemented by the evalBuffer and parBuffer strategies in
Control.Parallel.Strategies, the former for sequential buffering and the latter
for parallel. These strategies work nicely even with infinite lists. Consider this list:

xs = [fib n | n ← [1..]] `using` parBuffer 6 rseq

Here, evaluating xs to Weak Head Normal Form triggers the parallel evaluation
of elements up to the 7th element. Evaluating the second element triggers the
evaluation of the 8th element, the third the 9th, ad infinitum.

The Par monad and schedules
The parallel package restricts us to expressing our computations as lazy data
structures. Moreover, such computations must always be pure, so no parallel IO is
possible. Sometimes this isn't feasible and we would like to express more control.
Somewhat inherently, more control implies less expressiveness. This trade-off is
made in the monad-par package.

Chapter 5

[137]

The core interface in Control.Monad.Par consists of:

data Par a -- instance Monad
runPar :: Par a → a
fork :: Par () → Par ()

The monad-par library defines its own context for computations, namely Par.
The second important operation, next to executing the computation via runPar,
 is fork, which forks a computation so it happens in parallel.

Communication between computations in Par happens via IVar:

data IVar a
new :: Par (IVar a)
get :: IVar a → Par a
put :: NFData a => IVar a → a → Par ()

To run two computations, c1 and c2, in parallel and return their results in a tuple,
we would write:

-- file: ivar-testing.hs
import Control.Monad.Par

f :: (NFData a, NFData b) => a -> b -> (a, b)
f c1 c2 = runPar $ do
 i1 <- new
 i2 <- new
 fork $ put i1 c1
 fork $ put i2 c2
 r1 <- get i1
 r2 <- get i2
 return (r1, r2)

What happens here is:

• We create two empty Ivars, i1, and i2 (new)
• We fork two computations that put their results into corresponding Ivars

(fork $ put …)
• We wait for both results (get) and then return them

Note that, once an IVar has been filled (with put), it may not be emptied nor its
contents swapped. So the computation model in Par is similar to the lazy evaluation
in Haskell itself: a reduction graph, directed and acyclic. This time however, we are
reducing IVars and not Haskell values (thunks), which gives us a little better control
over evaluation.

Parallelize for Performance

[138]

With IVars, we are being more explicit about when evaluation happens. Calls to
put guarantee that all values in IVars are evaluated to normal form. However, we
still can't control the flow exactly; a forked Par action may be executed anywhere
between the call to fork and get, which requires a value from a forked Par. But with
pure values, the result is always deterministic.

The dataflow-style of parallel programming that monad-par encourages is better
suited for some applications, whereas the strategy-style parallel evaluation of lazy
data structures is better for others.

spawn for futures and promises
You might be familiar with the concept of a future or promise from other
programming languages. In essence, we can think of IVar as a future or promise that
the value will be calculated at the latest when it is required.

The monad-par package supports future- or promise-style parallel programming
via the spawn function. The spawn function takes a computation and immediately
returns the result wrapped in IVar:

spawn :: NFData a => Par a → Par (IVar a)

For the moment, consider a situation where we have four computations A, B, C, and
D. Some of them depend on the result of others, conforming to this graph:

We see that B and C could execute in parallel. To express this in the Par monad,
we can write:

-- file: spawn.hs
computation :: A -> (A -> B) -> (A -> C) -> (B -> C -> D) -> Par D
computation fa fb fc fd = do
 av <- newFull fa -- (1)
 bv <- spawn $ do fb <$> get av -- (2)

 cv <- spawn $ do fc <$> get av -- (3)

 b <- get bv -- (4)
 c <- get cv
 return (fd b c) -- (5)

Chapter 5

[139]

• First, at (1) we make sure that the first computation A is fully performed.
newFull creates IVar and fills it with a fully evaluated value.

• At (2) and (3), we have spawned two computations to run in parallel.
One calculates B and the other C.

• At (4), we now wait for both B and C to complete.
• Finally, at (5) we perform the last computation D.

Non-deterministic parallelism with ParIO
What if the computations A, B, C, and D involved IO? The IO module from monad-
par, Control.Monad.Par.IO, provides another monad for parallel IO: ParIO.

ParIO is largely similar to Par, except that it allows lifting IO operations into it. IO
also brings with it some non-determinism over pure Par.

With ParIO, we cannot use the same functions that worked with pure Par. We need
to use the overloaded API from the abstract-par package. The function names stay
the same with the overloaded API, so it's no big deal – really a drop-in replacement
(for pure Par too).

Let's see how we would write our A, B, C, D computation in terms of IO actions.
The required imports change from one import to three:

import Control.Monad.IO.Class
import Control.Monad.Par.IO
import Control.Monad.Par.Class

From the first module, we need only liftIO to perform IO actions in ParIO. The
second module gives us the ParIO type. The last one is the overloaded Par API.

The computation itself doesn't change much:

-- file: spawnio.hs
computationIO
 :: IO A -> (A -> IO B) -> (A -> IO C) -> (B -> C -> IO D)
 -> ParIO D
computationIO fa fb fc fd = do
 av <- newFull =<< liftIO fa
 bv <- spawn $ liftIO . fb =<< get av

 cv <- spawn $ liftIO . Fc =<< get av

 b <- get bv
 c <- get cv
 liftIO (fd b c)

Parallelize for Performance

[140]

Basically we just plugged in some liftIO here and there. Bear in mind that the only
order enforced on IO actions is due to calls to put and get; an IO action may be
performed whenever all IVar data dependencies before it have been met. So when
doing impure parallelism, ensure that I/O actions interact with each other only via
IVars to prevent unexpected behavior.

Diagnosing parallelism – ThreadScope
Next we will look at a program visualization tool, ThreadScope. Install the
threadscope executable with:

stack install threadscope

To extract the eventlog that ThreadScope uses from a Haskell program, we need
to compile with -eventlog and execute with the -l Runtime System option.
Running the program then generates a program.eventlog file, which ThreadScope
reads. In a convenient single recipe, we lay out these commands:

ghc -O2 -threaded -eventlog -with-rtsopts="-N -l" program.hs

./program

threadscope program.eventlog

ThreadScope provides a graphical user interface. The opening view shows processor
core utilization. An example view from some eventlog is:

Chapter 5

[141]

Along with total utilization, we can see the work split on all processors (four in this
case). What we also see in this graph, below each core utilization, is that there is GC
activity. The program actually pauses quite often just to do GC for a split second.
Sometimes such scenarios might require further investigation. In this case, the
application in question is the parallelized naive Fibonacci program from before and
this GC activity was to be expected.

Other things that ThreadScope shows us include the spark pool sizes over the
program's lifetime. For example:

This is again data from the naive Fibonacci program. Most of the time there's some
work available for all cores, which is good. The graph is rather rough because of the
exponential nature of the algorithm, so this is about as good a spark rate as we can
reasonably expect.

Data parallel programming – Repa
Repa (regular parallel) is a Haskell library providing regular parallel arrays. Repa
performs very well in image processing, for example. Doing computations on large
data structures in parallel is Repa's specialty. Repa is installed with:

stack install repa

Parallelize for Performance

[142]

The parts on Repa in this chapter are written for version 3.4.0.2 of the Repa library.
The main interface is exported by the Data.Array.Repa module.

At first glance, the library perhaps looks a bit complex. For instance, the parallel sum
function has this daunting type signature:

sumAllP
 :: (Shape sh, Source r a, Elt a, Unbox a, Num a, Monad m)
 => Array r sh a -> m a

Repa uses a lot of classes to overload functionality over different types of array.
The type of immutable arrays in Repa contains three type variables:

data Array r sh e

Here, r defines representation, sh defines shape, and e defines the array elements'
type. For example, a one-dimensional array of unboxed Int is given by:

Array U DIM1 Int

Mutable arrays in Repa can be represented by another type, MVec r e. The difference
with immutable arrays is that mutable arrays don't have a defined shape; they're
always linear or one-dimensional. But rarely is it necessary to use explicitly mutable
arrays thanks to Repa's fusion system.

Playing with Repa in GHCi
Let's fire up GHCi to get the hang of the Repa library. A one-dimensional array of
unboxed Ints is constructed from a list with the fromListUnboxed function:

> import Data.Array.Repa as Repa
> let x = fromListUnboxed (ix1 3) [0, 1, 2 :: Int]
> :t x
x :: Array U DIM1 Int

Many definitions from Repa overlap with definitions from Prelude, so we want a
shorthand qualifier for the Repa library. Then, when building a list, note that we
had to provide fromListUnboxed with the exact size or shape of the resulting array.
The recommended way to construct shape definitions is with the ix1, ix2, and ix3
functions.

Chapter 5

[143]

Repa arrays are shape-polymorphic, but not shape-agnostic; Repa is actually quite
strict about aligning shapes correctly in computations. On the type level, we are
guaranteed that the number of dimensions will match or else there will be a type
error. Constructing two-dimensional arrays is straightforward:

> let y = fromListUnboxed (ix2 2 2) [1, 1, 1, 0 :: Int]
> y
AUnboxed ((Z :. 2) :. 2) [1,1,1,0]

Here, we witness the show instance for unboxed arrays. Conforming read instances
are of course also provided. The specialized data type under the array abstraction
leaks a little, in a sense. AUnboxed is the concrete data type for unboxed vectors
whereas array r sh e is in fact an (associated) type family, or in clearer terms just
a function on the type level. So although array is not really a data type itself, in
practice it can be thought of as one.

We can retrieve the shape of any Repa array as a value with the extent function:

> extent y
(Z :. 2) :. 2

Indexing into Repa arrays happens with the (!) operator. The index is given as a
shape of the same type as the array's extent. For instance:

> y ! ix2 1 0
1

Mapping and delayed arrays
We can map over the elements in the functor style with Repa.map:

map :: (Shape sh, Source r a) → (a → b) → Array r sh a → Array D
 sh b

Looking at the type of map, we see that, whatever representation the argument array
uses, the representation of the resulting array is always D for delayed. In the delayed
array representation, each element is given as a function in a sense. Indexing works
normally for delayed arrays (the work related to calculating the
element is done on-demand):

> Repa.map (+10) x ! ix1 1
11

There aren't show/read instances for delayed arrays, however. The advantages of
explicitly delayed evaluation are mostly related to fusing workers in optimization.

Parallelize for Performance

[144]

To evaluate a delayed array such as Repa.map returns, we use either computeP or
computeS. The former evaluates elements in parallel and the latter sequentially:

computeP :: Monad m => Array r1 sh e → m (Array r2 sh e)
computeS :: Array r1 sh e → Array r2 sh e

Type classes were omitted for clarity. What we see is that the parallel computeP has
to execute in some monad. computeP ensures parallel evaluation has been completed
at a certain point of monadic computation. In effect, nested data parallelism is not
supported by Repa.

As for the monad to use with computeP, it really does not matter that much, as long
as it conforms to the monad laws of course. We can ditch the monad after finishing
computation:

> let [r] = computeP (Repa.map (+10) x) :: [Array U DIM1 Int]
> r
AUnboxed (Z :. 3) [10,11,12]

Here we used the list monad, but could have used IO or ST as well.

Reduction via folding
Many array reductions are easily expressed as a fold. The foldS/foldP functions are
used for sequential and parallel folding over the innermost dimension. The resulting
dimension is one rank lower:

> :t foldP
foldP
 :: (Monad m, Shape sh, Source r a, Unbox a, Elt a) =>
 (a -> a -> a) -> a -> Array r (sh :. Int) a ->
 m (Array U sh a)
> foldP (+) 0 y
AUnboxed (Z :. 2) [2,1]

To reduce all dimensions flat into a single scalar, use the foldAllS/foldAllP
functions. The parallel sum of all elements could be implemented as foldAllP (+)
0. Take care that, if using parallel folding, the combiner function is associative and
the starting element is neutral; for a parallel fold to be parallel, Repa needs to use the
starting element multiple times to calculate sub-folds in different threads.

To fold over other dimensions, we should first transform the array's shape so that
the foldable dimension is lowest. In Repa, reshaping arrays is usually done in place
by index-space transformations. To swap the lowest two dimensions around without
copying, the convenience function transpose is provided:

transpose
 :: (Shape sh, Source r e) =>

Chapter 5

[145]

 Array r ((sh :. Int) :. Int) e -> Array D ((sh :. Int) :. Int) e

> foldP (+) 0 (transpose y)
AUnboxed (Z :. 2) [2,1]

Swapping arbitrary dimensions or indeed arbitrarily mapping indices is called
backpermuting in Repa. For instance, swapping the highest dimension with the
lowest dimension of a three-dimensional array can be done like this:

> let z = fromListUnboxed (ix3 3 2 1) [1, 2, 3, 4, 5, 6 :: Int]
> let z' = backpermute (ix3 1 2 3) (\(Z :. a :. b :. c) -> ix3 c b a)
z
> computeS z' :: Array U DIM3 Int
AUnboxed (((Z :. 1) :. 2) :. 3) [1,3,5,2,4,6]

A couple of specialized folds are provided, namely for sum (sumS/sumP/sumAllS/
sumAllP) and element equality (equalsP/equalsS).

Manifest representations
So far, we have met unboxed and delayed array representations. Unboxed arrays
belong to something called manifest representations. Representations are where the
array is stored as if it is in memory, that is, not ad-hoc via mapping functions , which
delayed arrays are.

If the array elements cannot be unboxed, then we would have to use boxed arrays
(V) that present a level of indirection. Boxed arrays perform worse than unboxed, so
unboxed arrays should always be preferred if possible.

When working with arrays, boxed or not, the deepSeqArray function
may come in handy to ensure complete evaluation of an array data
structure. An easy trap is when a call to computeP is deferred so that
its evaluation is triggered by another computeP later. Attempting to
evaluate multiple computeP at the same time produces a runtime error.
Best practice would be to evaluate all computeP in the same monad.

The third manifest representation in Repa is B for strict ByteStrings. The
advantage of Array B sh Word8 over Array U sh Word is that B-arrays can be
turned into ByteStrings and vice versa in O(1). The conversion functions can be
found separately in the Data.Array.Repa.Repr.ByteString module, not exported
by Data.Array.Repa:

module Data.Array.Repa.Repr.ByteString
fromByteString :: Shape sh => sh → ByteString → Array B sh Word8
toByteString :: Array B sh Word8 → ByteString

Parallelize for Performance

[146]

The ByteString representation can be used to manipulate textual data in
tabular form efficiently. But remember to ensure that you only need to
consider 8-bit characters. ByteString is not really a textual representation.

The fourth and final manifest representation, F, considers foreign memory buffers in
the C heap just like ByteStrings do, but generalized for other values besides Word8.
This representation is only relevant if your code interfaces with foreign code.

Delayed representation and fusion
Along with manifest representations are delayed representations. The first delayed
representation, D, presents elements as functions from indices to elements. Most
combinators in Repa return arrays in a delayed representation. This is because we
can eliminate a lot of intermediate arrays, for instance, mapping twice like in:

computeS . Repa.map (+ 1) . Repa.map (* 2)

Like we would expect from other fusion frameworks, this fuses into a tight loop.
The intermediate delayed array is certainly eliminated when compiling. In a way, the
fusion framework in Repa gives us more control over when fusion happens. This is
nice because it makes it easy to predict the performance of Repa programs. Although
our code looks like we are operating on immutable arrays, constructing them over
and over again, in practice correctly written Repa programs will optimize very nicely
into fast code.

Using computeS/computeP quite often requires an explicit type
signature, because the target array is polymorphic in its representation
(either unboxed array, boxed array, or foreign buffer). Usually
unboxed array is the desired choice, for which more specific functions,
computeUnboxedP and computeUnboxedS, provide specialized
type readily.

Indices, slicing, and extending arrays
Index types in Repa are defined as:

data Z
data tail :. head = !tail :. !head

Convenient type synonyms and smart constructors are provided for dimensions up
to five:

type DIM0 = Z
type DIM1 = DIM0 :. Int

Chapter 5

[147]

…
type DIM5 = DIM4 :. Int

ix1 :: Int → DIM1
…
ix5 :: Int → Int → Int → Int → Int → DIM5

However, Repa has full support for arrays of an arbitrary but finite number of
dimensions, if there's ever need for such arrays.

The Shape type class captures properties of an array's extent and its dimensions.
For instance, the number of dimensions of a shape can be retrieved with the rank
function and the overall count of elements with the size function. See the Data.
Array.Repa.Shape module for all supported operations.

Index space transformations readily defined include imposing a new shape on an
array element regardless of its original shape with reshape, appending two arrays by
appending their lowest dimensions together with (++), and transposing dimensions
with transpose. We can extract a sub-range with the extract function:

> y
AUnboxed ((Z :. 2) :. 2) [1,1,1,0]

> computeS $ extract (ix2 1 1) (ix2 1 1) y :: Array U DIM2 Int
AUnboxed ((Z :. 1) :. 1) [0]

The extend and slice functions involve some type families in their type signatures.
At first these look complicated:

> :t extend
 :: (Slice sl, Shape (SliceShape sl), Shape (FullShape sl),
 Source r e) =>
 sl -> Array r (SliceShape sl) e -> Array D (FullShape sl) e

> :t slice
slice
 :: (Slice sl, Shape (FullShape sl), Shape (SliceShape sl),
 Source r e) =>
 Array r (FullShape sl) e -> sl -> Array D (SliceShape sl) e

Ouch, how do you read these things? Let's write signatures for extend and slice
without all the details:

extend :: sl → Array r (SliceShape sl) e → Array D
 (FullShape sl) e
slice :: Array r (FullShape sl) e → sl → Array D (SliceShape sl) e

Parallelize for Performance

[148]

Now concentrate on that sl type variable; both extend and slice take such a type
as one of their two arguments, the other one being an array. Then we have two type-
level functions (type families): FullShape and SliceShape.

Now things are a little clearer. extend takes a slice of an array (of shape SliceShape
sl) and produces a full array (of shape FullShape sl); for slice, the shapes are the
other way around.

Then the sl thing? It's called slice specification. Intuitively, the end result depends
on how we are slicing the array (or extending a slice, in the case of extend).
SliceShape is the (type-level) function that tells us the shape based on the slice
specification. FullShape gives the original array's shape (result array in the case of
extend).

Recall that Repa defines dimensions inductively with the (:.) type constructor. So
the shape of three-dimensional arrays is:

DIM3 ~ (((Z :. Int) :. Int) :. Int)

The slice and full shapes are given as type families with these instances:

type instance FullShape (sl :. All) = FullShape sl :. Int
type instance FullShape (sl :. Int) = FullShape sl :. Int
type instance FullShape (Any sh) = sh
type instance FullShape Z = Z

type instance SliceShape (sl :. All) = SliceShape sl :. Int
type instance SliceShape (sl :. Int) = SliceShape sl
type instance SliceShape (Any sh) = sh
type instance SliceShape Z = Z

There are two new data types: Any and All. These are both nullary constructors.
Now, for a slice specification to be sensible its FullShape and SliceShape should be
of the form Z :. Int … :. Int. Clearly, all shapes are also slice specifications. The
slice shape of DIM3 reduces as follows:

Z :. Int :. Int :. Int -- SliceShape (sl :. Int) = SliceShape sl
Z :. Int :. Int
Z :. Int -- SliceShape Z = Z
Z

The FullShape function is just the identity.

This slice retains the structure of all other dimensions but the lowest; for the lowest
dimension, it takes the first index and ignores all others. Thus its SliceShape is one
rank lower.

Any :. (0 :: Int)

Chapter 5

[149]

This one slices along the second lowest dimension:

Any :. (0 :: Int) :. All

For instance:

> z
AUnboxed (((Z :. 3) :. 2) :. 1) [1,2,3,4,5,6]
> computeS $ slice z (Any :. (0 :: Int) :. All) :: Array U DIM2
 Int
AUnboxed ((Z :. 3) :. 1) [1,3,5]

When writing the slice specification, first consider the lowest dimension. Should
all elements be included, or just the element at one index? If all, the last constructor
is All. If a certain index, write an Int. Then consider the next lowest dimension:
should all indices (All) or just a certain index be considered? That's the second last
constructor. The highest dimensions that should be preserved should be written off
with a single Any constructor.

Whereas in slicing All and Any preserve the structure and indices drill-down, in
extending All and Any still preserve the structure but each index number defines a
new dimension at the position where it appears. The new dimensions replicate the
contents of the supplied array:

> x
AUnboxed (Z :. 3) [0,1,2]
> computeS $ extend (Any :. (2::Int)) x :: Array U DIM2 Int
AUnboxed ((Z :. 3) :. 2) [0,0,1,1,2,2]
> computeS $ extend (Any :. (2::Int) :. All) x :: Array U DIM2 Int
AUnboxed ((Z :. 2) :. 3) [0,1,2,0,1,2]
> computeS $ extend (Any :. (2::Int) :. (2::Int)) x :: Array U
 DIM3 Int
AUnboxed (((Z :. 3) :. 2) :. 2) [0,0,0,0,1,1,1,1,2,2,2,2]

Convolution with stencils
In image processing, among other applications, the convolution operation (*) is used.
Discrete convolution is defined by:

(A * K)(x, y) = sum_i sum_j A(x + i, y + j) K(i, j)

Here A is the array (image) and K is a stencil, basically a small matrix.

Parallelize for Performance

[150]

Let's consider a simple example. A 5x5 grayscale image is given by this matrix:

1 1 1 1 1
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

And the following stencil extracts the feature of horizontal lines:

0 0 0
1 1 1
0 0 0

To represent the stencil in Repa, we'll use a quasi-quoter that comes with Repa,
[stencil2|...|]. We will need these imports:

-- file: stencil.hs
{-# LANGUAGE QuasiQuotes #-}

import Data.Array.Repa as Repa
import Data.Array.Repa.Stencil
import Data.Array.Repa.Stencil.Dim2

For now, we'll build the image from a function with fromFunction:

image :: Array D DIM2 Double
image = fromFunction (ix2 5 5) $
 \(Z :. x :. y) -> if x == 2 || y == 2 then 1 else 0

As for the stencil, we can use the ready stencil framework present in Repa and
construct something with type Stencil:

stencil :: Stencil DIM2 Double
stencil = [stencil2| 0 0 0
 1 1 1
 0 0 0 |]

The convolution operation simply overlays the stencil over each pixel in the image
and produces a new value for that pixel by calculating sum of the elementwise
product with the stencil. The mapStencil2 function does exactly this:

mapStencil2
 :: Source r a =>
 Boundary a -> Stencil DIM2 a -> Array r DIM2 a ->
 Array PC5 DIM2 a

Chapter 5

[151]

The Boundary argument defines what happens at pixels on the edges, where the
stencil goes over the boundaries of the image. Three popular options are available:

data Boundary a = BoundFixed !a
 | BoundConst !a
 | BoundClamp

BoundClamp assigns edge pixels the same values as in the original image,
BoundConst treats points outside the image as having been given a constant value,
and BoundFixed assigns a fixed value where the stencil cannot be fully applied.

The representation of the result array, PC5, is also delayed in nature. It is something
called a partitioned array. Although it is a detail that we don't need to worry about,
the compute functions understand it. The convolution is then produced by:

computeP $ mapStencil2 (BoundConst 0) stencil image
 :: IO (Array U DIM2 Double)

This produces an array that looks like this:

3 3 3 3 3
0 1 1 1 0
3 3 3 3 3
0 1 1 1 0
0 1 1 1 0

Now if we applied a filter, like this:

Repa.map (\x -> if x >= 3 then 1 else 0)

The resulting image would contain only the horizontal line in the input image:

1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0

This is the basic idea behind edge detection. And what's more, it scales to larger
images performantly and will automatically scale to however many processors
are available.

Cursored and partitioned arrays
Although we just concluded it isn't necessary to acknowledge the existence of
the PC5 array representation that the stencil transformation produced, that isn't
completely correct. The distinction between bare delayed (D) and cursored/
partitioned (C, P) representations makes a difference in certain applications.

Parallelize for Performance

[152]

To see the need for exposing this difference in the API, let's continue with our
convolution example by extending it with one more edge detector. Can you guess
what kind of a pattern this stencil detects?

stencil' :: Stencil DIM2 Double
stencil' = [stencil2| -1 1 -1
 -2 1 -2
 -1 1 -1 |]

Yes, it detects vertical lines not intersected by anything.

Applying this and our previous stencil separately with some appropriate
normalizing thresholds we get:

st1, st2 :: Array D DIM2 Double
st1 = Repa.map (\x -> if x >= 3 then 1 else 0) $
 mapStencil2 BoundClamp stencil image

st2 = Repa.map (\x -> if x >= 1 then 1 else 0) $
 mapStencil2 BoundClamp stencil' image

Both of these have the same shape and type: Array D DIM2 Double. Combining
these to one image and computing the result look like this:

> import Data.Bits ((.|.))
> computeUnboxedP (zipWith (.|.) st1 st2)

The result is this:

1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

Now, looking at Repa.map again, we note that it always produces a delayed array,
which wraps every element into its own function. This is suboptimal when we have
partitioned our array such that sets of indices share computations (the Repa stencils
did that).

To open up more possibilities for compile-time optimizations, we should use
structured versions of smap and szipWith. These functions preserve the partitioning
and cursoring and let us benefit from index sharing. With these changes, the types
change a little, but not much:

st1, st2 :: Array PC5 DIM2 Int
st1 = smap (\x -> if x >= 3 then 1 else 0) $

Chapter 5

[153]

 mapStencil2 BoundClamp stencil image

st2 = smap (\x -> if x >= 1 then 1 else 0) $
 mapStencil2 BoundClamp stencil' image

> print $ computeUnboxedS $ szipWith (.|.) st1 st2

Writing fast Repa code
There are numerous tricks for writing fast and well-parallelizing code with Repa.
Enumerating from most important to least important, we have:

• Vectorize: Work the algorithm such that as much as possible is done with
array operations. Use unboxed arrays unless you have a good reason not to.

• Compute only where necessary: The more delayed arrays there are, the
more fusion will likely take place and the produced code will be faster.
Unless not evaluating would take up too much memory, it is usually best to
defer it further. Computation usually creates a new manifest array.

• Parallelize with optimal granularity: Using parallel computeP, foldP,
and others is faster on bigger arrays or with a bigger bunch of work; for
little work, computeS and foldS have less overhead. The lack of nested
parallelism encourages us to lift parallelism to the top level for best effect.

• Compile with optimizations, threaded and with LLVM: A good base set
of flags for Repa programs in production is -Odph -threaded -rtsopts
-fllvm -fno-liberate-case -optlo-O3.

• Bang everything: All lazy arguments and data type fields should be strict.
• Inline extensively: The fusion system relies heavily on worker functions

getting inlined. Instead of cluttering your code with INLINE pragmas,
consider compiling with these flags -funfolding-use-threshold1000
-funfolding-keenness-factor1000. They tell GHC to inline everything.
This might increase binary sizes considerably, so these flags should probably
be enabled on a per-module basis (using the OPTIONS_GHC pragma).

• Use unsafe versions of Repa functions: The function unsafeIndex and
others from Data.Array.Repa.Unsafe should be preferred when correctness
is guaranteed. These unsafe variants don't do bounds-checking and cause
undefined behavior if used incorrectly. Therefore, unsafe functions shouldn't
be used when developing or testing code.

Parallelize for Performance

[154]

Additional libraries
There are a number of libraries that complement Repa:

• repa-devil: Load and write arrays as image files. Apparently this has been
deprecated in favor of the friday and friday-devil libraries.

• repa-io: Load and write arrays in bitmap, binary, ASCII matrix, and vector
formats.

• repa-algorithms: Quite performant implementations of algorithms for
matrix operations, Fourier transform, randomized arrays, and more flexible
convolution functions.

• repa-stream and repa-flow: Data-parallel streaming libraries built on top
of Repa.

Example from image processing
We'll conclude this chapter with a full-blown example of image processing with
Repa. We will do letter recognition from images with convolution. For the sake of
demonstration, we'll restrict ourselves to well-defined black-and-white images with
text in a pixel-correct font that is assumed to be known. The image we will try to
read letters from is this:

To simplify things even further, we'll assume that the text is oriented exactly
horizontally.

Next, we will proceed to load the image from the file, identifying letters and then
text. Then we will test and evaluate the performance and see if we can squeeze in
some optimizations.

To follow along, write the code into a Haskell source code file by copying as we go
forward. First, these are a bunch of imports we will be using:

-- file: letterrec.hs
{-# LANGUAGE QuasiQuotes #-}

import Data.Array.Repa as Repa
import Data.Array.Repa.Algorithms.Convolve
import Data.Array.Repa.IO.BMP

Chapter 5

[155]

Loading the image from file
We have a few options for how to read an image file into a Repa array. One is the
repa-devil library (which has now been deprecated in favor of friday/friday-
devil). Here we will operate on just BMP images using the repa-io library. So make
sure that library is installed:

stack install repa-io

We'll represent pixels as single Doubles that represent luminance:

type Image r = Array r DIM2 Double

Reading in an image is simple. In addition, we'll have to convert RGB values to
luminance. Luckily, this problem is solved by Pixel.doubleLuminanceOfRGB8. The
final problem is that readImageFromBMP from repa-io builds the array so that the
lowest pixels are at the top of the array. This is fixed by a mirror function. Our read
action becomes:

readImage :: FilePath -> IO (Image U)
readImage fp = do
 result <- BMP.readImageFromBMP fp
 return $! computeS $ mirror $ case result of
 Left err -> error "readImage: Failed to load image from
 file"
 Right array -> Repa.map Pixel.doubleLuminanceOfRGB8 array

mirror :: Image D -> Image D
mirror img = backpermute (extent img)
 (\(Z :. x :. y) -> ix2 (mx - 1 - x) y) img
 where Z :. mx :. _ = extent img

Note that I used ($!) instead of ($). This way, if the image file was faulty, we get an
error before readImage IO action completes. With lazy return, the error would be
silently propagated to wherever the returned Image D thunk is next requested.

We computed the result here instead of returning a delayed array because the
convolution operation we'll be using expects an unboxed array as input.

Identifying letters with convolution
Next for the convolution. We'll implement recognition for three letters: a, b, and c.
We make stencils for each letter. But using the stencils in the repa library is not an
option this time, because letter b is larger than 7x7 in our font, which is the upper
bound on stencil size in Data.Array.Repa.Stencil.

Parallelize for Performance

[156]

To represent larger than 7x7 stencils, we'll again resort to repa-algorithms,
specifically the Data.Array.Repa.Algorithms.Convolve module. The function
we'll be using is convolveP. Specialized for our Image type, we have:

convoleP
 :: Monad m =>
 (DIM2 → Double) → Image U → Image U → m (Image U)

This convolution represents the stencil as an unboxed array too. The first argument is
used to decide what happens at the edges.

The stencils for letters a, b, and c in our font are therefore:

sta, stb, stc :: Image U
sta = fromListUnboxed (ix2 6 5)
 [-1, 1, 1, 1, -1
 , -1, -1, -1, -1, 1
 , -1, 1, 1, 1, 1
 , 1, -1, -1, -1, 1
 , 1, -1, -1, -1, 1
 , -1, 1, 1, 1, 1]

stb = fromListUnboxed (ix2 8 5)
 [1, -1, -1, -1, -1
 , 1, -1, -1, -1, -1
 , 1, 1, 1, 1, -1
 , 1, -1, -1, -1, 1
 , 1, -1, -1, -1, 1
 , 1, -1, -1, -1, 1
 , 1, -1, -1, -1, 1
 , 1, 1, 1, 1, -1]

stc = fromListUnboxed (ix2 6 5)
 [-1, 1, 1, 1, -1
 , 1, -1, -1, -1, 1
 , 1, -1, -1, -1, -1
 , 1, -1, -1, -1, -1
 , 1, -1, -1, -1, 1
 , -1, 1, 1, 1, -1]

To use these to recognize letters, for each letter and corresponding stencil we apply
convolution and read from the result where the stencil matched exactly. Matching
exactly means that, for every 1, there is a 1 in the input image and, for every -1, there
is a 0 in the input image.

Chapter 5

[157]

The following function takes a letter stencil and input image and creates a two-
dimensional character array of found matches with the size the same as the input
image:

match
 :: Monad m => Char -> Image U -> Image U -> m (Array D DIM2
 Char)
match char stencil image = do
 let
 threshold = sumAllS (Repa.map (max 0) stencil) – 0.1

 res <- convolveP (const 0) stencil image
 return $! Repa.map
 (\x -> if x > threshold then char else '\NUL') res

First we calculated the threshold value from the stencil. The 0.1 is there to
accommodate for inaccuracy from the bitmap (white pixels aren't exactly 1).

Next we apply convolution. Finally, we convert elements that are above the threshold
into characters. Others are set to null characters. We return this (delayed) array.

At this point, we can fire up GHCi and see if we match letters:

> :load letterrec.hs

> img <- readImage "image.bmp"

> res <- match 'a' sta img

> filter (/= '\NUL') $ toList $ computeUnboxedS res

"aa"

Yep, seems to work correctly. Repeat for other characters to verify further, if you wish.

Let's add one more letter, d. We note that d is exactly a flipped b in our font, so we
can get away with just this:

std :: Image U
std = computeUnboxedS . transpose . mirror $ transpose stb

Extracting strings from an image
Now for the final feature: combining letter recognizers into a complete string
recognizer.

The recognizer takes an image as input, so:

recognize :: Monad m => Image U -> m String
recognize img = do

Parallelize for Performance

[158]

Then we execute matches for all letters we recognize:

let recs = [match c st img
 | (c, st) ←[('a', sta), ('b', stb),
 ('c', stc), ('d', std)]]

 letters <- sequence recs

Here, recs is a list of computations that produce arrays. To execute them, we used
sequence. Now letters is a list of arrays. Then, to combine them, we'll just apply an
element-wise maximum over them all:

 combined <- computeUnboxedP $ foldl1 (Repa.zipWith max)
 letters

Then, to also accommodate for line-endings, we turn all left-most elements into
newline characters. This is safe, because those are always NUL characters (our
convolution always sets edges to zero). The final step is to convert the array into a list
and, strip nulls and excess line endings; then recognition is complete!

let Z :. _ :. my = extent combined

 lineEnds = Repa.traverse combined id $ \f ix@(Z :. _ :. y)
 ->
 if y == my - 1 then '\n' else f ix

 return $! unlines . words $ filter (/= '\NUL') $ toList
 lineEnds

The very last thing to do is test it. Here's a main that does this:

main = do
 img <- readImage "image.bmp"
 str <- recognize img
 putStr str

And a quick testing at GHCi makes it clear that our recognizer works:

> :load letterrec.hs

[1 of 1] Compiling Main (letterrec.hs, interpreted)

Ok, modules loaded: Main.

> main

bcdc

abca

Chapter 5

[159]

Testing and evaluating performance
Now it's time to see how our recognizer performs. For testing purposes, I tiled our
test image 5,000 times into a single image (size 3550x2100 pixels, 21.3 MB).

The first try was with a non-threaded runtime and no special optimizations:

ghc -rtsopts -O3 letterrec.hs

./letterrec +RTS -s

 7,323,831,024 bytes allocated in the heap

 4,803,680 bytes copied during GC

 268,385,496 bytes maximum residency (9 sample(s))

 4,978,072 bytes maximum slop

 342 MB total memory in use (27 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max pause

 Gen 0 13281 colls, 0 par 0.045s 0.044s 0.0000s
0.0001s

 Gen 1 9 colls, 0 par 0.016s 0.016s 0.0018s
0.0146s

 INIT time 0.000s (0.000s elapsed)

 MUT time 9.158s (9.172s elapsed)

 GC time 0.061s (0.059s elapsed)

 EXIT time 0.015s (0.015s elapsed)

 Total time 9.238s (9.246s elapsed)

 %GC time 0.7% (0.6% elapsed)

 Alloc rate 799,722,664 bytes per MUT second

 Productivity 99.3% of total user, 99.3% of total elapsed

Now we have a baseline from which we can try to get faster. Next, let's see how well
parallelization affects the results. Compile with a threaded runtime and run on three
system cores:

ghc -rtsopts -threaded -O3 letterrec.hs

./letterrec +RTS -N4 -s

Parallelize for Performance

[160]

The main differences from a non-threaded runtime were: elapsed time reduced to
4.4s (speedup by a factor of 2) and the memory footprint went up a little, due to more
work being done simultaneously.

Let's next add LLVM into the mix. With LLVM, we should use -Odph instead,
because it enables better optimizations for Repa and LLVM code:

ghc -rtsopts -threaded -Odph -fllvm -optlo-O3 -fno-liberate-case

 -funfolding-use-threshold1000 -funfolding-keeness-factor1000

./letterrec +RTS -N4 -s

This cuts down runtime to about 3.8s (speedup factor of 2.5).

Last, let's see if we could still have added some code-level optimizations. There are a
few things we could do. But most of the time is spent in convolveP, which is largely
out of our control. Anyway, we could:

• Add bangs to all function arguments and use explicit INLINE pragmas
• Use unsafeTraverse and unsafeBackpermute instead of traverse and

backpermute

Together, these account for about 3%-better performance in our program. If we
had implemented more of the labor and not just handed all the heavy lifting to
convolveP, inlining and unsafe functions would make for a bigger difference.

A better alternative to blindly cluttering code with bangs and pragmas is as usual to
profile the program to find the bottlenecks. For instance, the ThreadScope profile of
our program looks like this:

Chapter 5

[161]

What we see in the middle are the four convolution passes. Together they make up
about 1.5 seconds or 45% of the total runtime.

The first 0.8 seconds are spent in loading and processing the input image. Much of
it is sequential. With the extra-large image, it seems like our program could benefit
from using computeP in readImage instead of computeS.

That one second after convolution passes is probably spent combining the character
arrays into one. Even though we simply fold sequentially, Repa manages to squeeze
in a lot of parallel processing when we just wrapped the thing in computeP. We
didn't even need to use a real parallel fold (for lists).

Finally, the last 0.8 seconds are spent in constructing the output string… Er, I mean
it's spent doing GC. Once again a linked list performs badly. For better performance,
we should switch to a more memory-friendly representation instead.

Summary
Now we have crammed in how parallelism is done in Haskell and an overview of
the threaded runtime. We parallelized pure and lazy data structures with strategies
and Eval (the parallel package). For more control and parallelism in IO, we had
to resort to schedules and Par (the monad-par package). We dived into data-parallel
programming with Repa and even wrote a string recognition program with it.

We learned to use the event log and ThreadScope to diagnose the parallel
performance of Haskell programs. Things to keep in mind when parallelizing
programs are: use good granularity, not too much overhead but not too much
sequential processing either; compile with flags optimized for parallelism, especially
with Repa; and profile and diagnose before applying transformations at the code
level.

In the next chapter, we will look at stream processing in Haskell: I/O, networking,
and streaming libraries such as conduits and pipes. Lazy I/O, combined with
interacting with networks, produces nightmarish bugs and sadly it's not easy to
get right every time. And the consumer and producer types in some libraries we
will look at are scary for sure – but this is just to prevent you from writing incorrect
programs!

[163]

I/O and Streaming
I/O in Haskell is a source of confusion for many. The I/O functions in the base
library are lazy and allow the interleaving of I/O side effects with pure code. This
produces weird errors at runtime or, even worse, just incorrect behavior without
errors. On the other hand, interleaved side-effects allow easy file processing in
constant space, among other things. Fortunately, more robust alternatives for
streaming have been proposed and implemented as libraries.

In this chapter, we will learn to use some of the most popular streaming libraries.
But before that, we will tear down problems with lazy I/O, because it's still often the
easiest and most elegant way to do I/O. We will also consider an alternative to lazy
I/O, strict I/O.

The I/O we do in this chapter consists of standard input and output, file handles,
and network sockets. These cover almost all I/O that's possible in Haskell (we don't
do foreign interfaces in this chapter). Resource management is closely related to I/O
and so that will be covered too. We will also cover perhaps the most widely seen
specific kind of data output ever: writing logs and log files from applications. We
will look at the following topics:

• Working with lazy I/O: recognizing and avoiding problems
• Taking care of freeing resources and using ResourceT
• Working with streaming libraries: io-streams, pipes, and conduit
• Adding logging abilities to Haskell applications: fast-logger and monad-

logger

I/O and Streaming

[164]

Reading, writing, and handling resources
Although it's a common joke that because Haskell is a pure language, we couldn't
observe its effects, Haskell actually has very powerful and sophisticated facilities for
interacting with the outside world. Besides reading and writing to files and network
sockets, I/O affiliates to managing resources that provide for input and output.

In this section, we will first point out laziness in Haskell I/O, doing networking with
low-level sockets, and consider managing handles and resources.

Traps of lazy I/O
Lazy I/O allows pure functions to be interleaved with I/O actions arbitrarily.
It is important to know when an I/O action defers its action part for later. To
demonstrate how easy it is to fall prey to lazy I/O, consider this innocent-looking file
manipulation procedure:

-- file: readwrite.hs

main = do
 writeFile "file.txt" "old"
 old <- readFile "file.txt"
 writeFile "file.txt" "new"
 putStrLn old

However, running this code produces an error at runtime:

readwrite.hs: file.txt: openFile: resource busy (file is locked)

The culprit is readFile, which is lazy in its return value: reading the file begins only
when we demand the results. That would happen on the last line. But readFile
does set a lock on the file in the Runtime System immediately, leading to writeFile
failing.

Here's another example, using withFile from System.IO to manage the file resource
as a file handle:

-- file: readwithfile.hs

import System.IO

main = do
 old <- withFile "file.txt" ReadWriteMode hGetContents
 putStrLn old

Chapter 6

[165]

This time, the runtime error message has more information, as it is associated with a
handle instead of a file:

readwithfile.hs: file.txt: hGetContents: illegal operation (delayed read
on closed handle)

What's worse, because I/O operations in the base library work with strings, it
wouldn't even be enough to seq the result. We would have to do something like seq
(last string).

On the other hand, lazy IO and strings allow us to program input and output
streams in a similar way to streaming with pure lists. For example, the echo program
in Haskell is simply:

-- file: echo.hs

main = getContents >>= putStr

Or using the interact combinator:

main = interact id

File handles, buffering, and encoding
The Handle data type is used by Runtime System to manage reading and writing
from and to filesystem objects. Standard input, output, and error channels are also
handles. These handles are exported in System.IO as stdin, stdout, and stderr,
respectively. For convenience, basic reading, writing, and appending functions
are defined that hide handle opening and closing under the hood. These functions
correctly close the handle or Handle? make consistent globally even when exceptions
are raised.

When working with Handles directly, you are responsible for closing every handle
you open. Best practice is to use utility functions, such as withFile, that correctly
close handles even in the case of exceptions. With openFile, you are responsible
to call hClose on the Handle that openFile returns, preferably using finally or
bracket from the Control.Exception module. An example use of bracket is in the
withFile combinator, which we could equally implement ourselves as:

-- file: bracket.hs

import Control.Exception
import System.IO hiding (withFile)

withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r
withFile file mode go = bracket (openFile file mode) hClose go

I/O and Streaming

[166]

Buffering is also controlled via Handles. The preferable buffering mode depends on
the application. Three different buffering modes are supported:

• BlockBuffering: This is the fastest buffering mode with least overhead, best
suited for high-bandwidth applications.

• LineBuffering: Input and output is handled one line at a time. Best-suited for
terminal applications.

• NoBuffering: Input and output is handled one word or character at a time.
This is the only choice for highly interactive terminal programs, for example.
The overhead is very big when processing large amounts of data with no
buffering.

Basic I/O operations don't bother defining standard buffering modes and instead
depend on default buffering of the operating system.

Most of the time the defaults are reasonably sane, such as block-buffering for files
and line-buffering for terminal applications. But this isn't always the case: if your
application depends on a specific buffering mode, you should set it yourselves
with hSetBuffering. For example, to ensure that a terminal application uses line-
buffering for both input and output in all cases, we should do something like the
following:

-- file: interact.hs
import Data.Char (toUpper)
import System.IO

main = do
 hSetBuffering stdin LineBuffering
 hSetBuffering stdout LineBuffering
 interact (map toUpper)

Alongside buffering, text encoding is also a property of handles in text mode. By
default, files are always in text-mode and only opened in non-text or binary mode
with openBinaryFile. Encoding is controlled with hSetEncoding (from System.
IO) and, just like with buffering modes, the default encoding depends on the
underlaying system's configuration. To set standard input encoding to utf-8, use:

hSetEncoding stdin utf8 :: IO ()

Binary I/O
Using handles in binary mode with functions from System.IO is slightly
cumbersome because the interface is low-level, based on pointers (Ptr a).
The bytestring package is usually a better option for binary I/O.

Chapter 6

[167]

Recall that ByteStrings came in two flavors: strict and lazy. Both have their own I/O
interfaces using respective ByteString variants. The I/O interface with bytestring
is named consistently with the string IO interface, using exactly the same names,
such as getLine, getContents, interact, readFile, writeFile, and so on.

Before we do I/O with ByteStrings though, we should ensure that the handle
we are using is in binary mode. Functions such as withBinaryFile and
openBinaryFile take care of this for us. But stdin, stdout, and stderr are by
default in text-mode and should be set to binary mode with hSetBinaryMode.
This ensures that no special encoding takes place and no newline translation is
performed.

Recall the echo program (echo.hs) we wrote a few pages ago? There is a small
problem with that implementation: with binary files, end-of-line and end-of-file
characters could clutter output in the case of non-textual data. So in a correct echo
program, we should set both stdin and stdout to binary mode at startup.

The strict ByteString from Data.ByteString is always a single, fully evaluated,
strict byte array. This is to be expected from a strict data structure. But what is not
so obvious is that I/O operations with strict ByteStrings are also strict. So the write-
read-write program that failed with lazy string or String? make consistent globally
IO will work fine with strict ByteString IO:

-- file: readwrite-bs.hs
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.ByteString as B

main = do
 B.writeFile "file.txt" "old"
 old <- B.readFile "file.txt"
 B.writeFile "file.txt" "new"
 B.putStr old

Note that if you are relying on ASCII encoding with ByteStrings then, as usual, you
should probably be using the Text data type instead. However, the Data.ByteString.
Char8 module provides functions for interpreting ByteStrings as ASCII. Functions
such as hPutStrLn (relies on newline character) belong strictly to the Char8 module.

As a consequence of strictness, it's not possible to stream with strict ByteStrings like
it is with lazy strings. Fortunately, lazy ByteString works much the same way as
String. The API is very similar too.

I/O and Streaming

[168]

Implementing the echo program correctly with lazy ByteStrings, we write:

-- file: echo-lbs.hs

import System.IO
import qualified Data.ByteString.Lazy as L

main = do
 hSetBinaryMode stdin True
 hSetBinaryMode stdout True
 L.getContents >>= L.putStr

Note that for lazy ByteStrings, there's also a corresponding lazy Char8 module,
Data.ByteString.Lazy.Char8 for ASCII-dependent functions.

Textual I/O
Although String is a perfectly fine datatype to use in non-critical applications and for
small strings, they're horribly space-inefficient for large strings and not completely
Unicode-correct. The Text data types, strict and lazy, from the text package are a lot
better datatypes for larger strings.

The IO functions for Texts are again named just like IO functions for Strings and
ByteStrings, but for some reason IO functions are in their own modules named Data.
Text.IO and Data.Text.Lazy.IO.

I/O performance with filesystem objects
Let's for a moment consider the performance impact of using different datatypes for
I/O: String, strict and lazy ByteString, and strict and lazy Text. We'll benchmark by
processing 512 MB of zeroes with different implementations of echo. All programs
were compiled with -O3. The tests were run as:

dd if=/dev/zero of=/dev/stdout bs=1M count=512 | ./echo +RTS -s

The results are tabled as:

Datatype Time taken Heap
allocations

Copied in GC Memory in
use

String 18.4 seconds 22, 000 MB 1, 000, 000 kB 1 MB
ByteString
(lazy)

7 seconds 550 MB 110 kB 2 MB

ByteString
(strict)

8 seconds 1, 000 MB 6, 100 kB 1,100 MB

Chapter 6

[169]

Datatype Time taken Heap
allocations

Copied in GC Memory in
use

Text (lazy) 17 seconds 32, 000 MB 31, 000 kB 1 MB
Text (strict) 21 seconds 33, 000 MB 56, 000 kB 2,900 MB

In terms of time taken, String isn't too bad. But GC traffic is orders of magnitude
larger than with any other datatype. Not surprisingly, the most efficient
representations are ByteStrings. Also notable is that there is a considerable memory
overhead in producing a large strict Text, but the lazy Text is clearly a better option
than String overall.

Sockets and networking
The Network.Socket module from the network package exposes the C socket API
unclear?. The more recent socket package takes a more type-safe approach than the
network package. Using either package is straightforward when there is knowledge
of network programming in general; the interested reader might consider picking up
a favorite networking book, as this isn't one.

Acting as a TCP/IP client
Using the network package, the function connectTo can be used to open a Handle to
a remote endpoint:

connectTo :: HostName → PortID → IO Handle

For example, we could make a HTTP request directly with a TCP socket in GHCi:

> import System.IO
> import Network

> h <- connectTo "google.com" (PortNumber 80)
> hPutStr h "GET / HTTP/1.1\nHost: www.google.com\n\n"
> hGetContents h

"HTTP/1.1 200 OK\r\nDate: Sat, 07 May 2016 13:19:47 GMT\r\nExpires:
-1\r\nCache-Control: private, max-age=0\r\nContent-Type: text/html;
charset=ISO-8859 …

Note that, because connectTo returns a handle, we could just as well use hPutStr
and other handle functions from bytestring or text libraries. The same points
about buffering discussed previously in Handle's apply here as well: for interactive
applications, you should probably set the Handle to line-buffering (the default is
block-buffering).

I/O and Streaming

[170]

Unfortunately, the network package is potentially confusing to navigate: while the
C socket API is exported as is in Network.Socket, the Network module exports a
slightly higher-level but much restricted API that supports only TCP/IP.

Using the Network.Socket module is more laborious and error-prone than using the
higher-level Network module. Instead of connectTo, we would create a socket with
correct parameters and then bind an address to it. The connectTo from previous
example becomes then:

> import Network.Socket

> s <- socket AF_INET Stream defaultProtocol
> addrInfos <- getAddrInfo Nothing (Just "google.com") (Just "80")
> connect s (addrAddress (head addrInfos))

To read and write to such an opened socket, we could call socketToHandle on s to
obtain a Handle on the Socket and use it with System.IO, bytestring, or text.
Alternatively, we could use the send and recv functions directly on the Socket.
Those use Strings, however. A third similarly fast option is the Network.Socket.
ByteString module that provides send and recv functions for ByteStrings. (There
are actually two modules: one for strict and other for lazy ByteString socket IO.)

Acting as a TCP server (Unix domain sockets)
How about being at the other endpoint of a TCP connection, that is, accepting
requests instead of making them? With the easy Network API, we would create a
Socket with listenOn and then accept requests

listenOn :: PortID → IO Socket
accept :: Socket → IO (Handle, HostName, PortNumber)

However, for more control, we should use the slightly lower-level Socket interface.

Let's take an example of Inter-process Communication (IPC) using Unix domain
sockets. The following therefore applies only on Unices, but is easy to adapt to others
by using the AF_INET socket family.

This server program opens a Unix domain socket ./echo.socket and echoes back
everything it receives:

-- file: socket-echo.hs

import Control.Exception
import Network.Socket

server = bracket

Chapter 6

[171]

 (socket AF_UNIX Stream defaultProtocol)
 close
 (\s -> do
 bind s (SockAddrUnix "./echo.socket")
 listen s 1
 (conn, _) <- accept s
 talk conn)
 where
 talk s = do r <- recv s 1024
 putStrLn r
 send s r
 talk s

There are quite a few steps in this simple socket server:

1. Create a socket (Socket) with the correct family (AF_UNIX), type (Stream)
and protocol number (defaultProtocol = 0).

2. Bind an address ("./echo.socket") to the socket.
3. Start listening for incoming connections.
4. Accept a connection and bind it to a variable (conn :: Socket).
5. Communicate with the new connection (talk).

This program only serves the first inbound client. In a real application, we would
likely want to serve multiple clients simultaneously. This would mean to forkIO a
new thread for every new connection from accept.

Also note that, for demonstration, I've excluded all error handling, except freeing the
socket at the end of program. Almost all of the socket functions might throw errors,
though not all recoverable.

Unix domain sockets are not automatically removed. On the server,
one would probably want to try deleting the socket file at startup if
it exists.

The corresponding client program is similar except simpler (here I've omitted even
closing the socket, assuming that the socket will persist over the lifetime of the
client):

client = do
 s <- socket AF_UNIX Stream defaultProtocol
 connect s (SockAddrUnix "./echo.socket")
 send s "ping"
 pong <- recv s 1024
 putStrLn pong

When running server and client in separate terminals, they both print ping and exit.

I/O and Streaming

[172]

Raw UDP traffic
So far we have used exclusively the network package and TCP. To demonstrate
UDP, we'll switch to the socket package. The main difference between these
libraries lies in the socket datatype. The socket library's socket has three additional
type variables to encode the family, type, and protocol of the socket:

data Socket family type protocol

Also the socket function now takes no arguments but we should encode
information in an explicit type signature. So, to create a UDP socket we would write:

socket :: IO (Socket Inet Datagram UDP)

Some function names have changed in version 0.6 of socket relative to earlier
versions. The following applies for version 0.6 of the socket library.

Because of the extensible design of the socket library, it is split into multiple smaller
modules. The unfortunate consequence of this is that we need quite a few imports for
even small programs. For a UDP echo server-client pair, we'll use this preamble:

-- file: socket-udp.hs
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad (forever)
import System.Socket
import System.Socket.Protocol.UDP (UDP)
import System.Socket.Type.Datagram (Datagram)
import System.Socket.Family.Inet
 (Inet, SocketAddress(..), inetLoopback)

UDP is a simpler protocol than TCP, namely we don't need to listen to and accept
requests, and so the server program is considerably simpler:

server = do
 s <- socket :: IO (Socket Inet Datagram UDP)
 bind s (SocketAddressInet inetLoopback 3003)
 forever $ do
 (msg, addr) <- receiveFrom s 1024 mempty
 sendTo s msg mempty addr

Note that I've again excluded all error handling; at least the socket should be freed
after use (with close and bracket). Otherwise the socket will leak memory!

Chapter 6

[173]

The client program is also simplified somewhat in UDP:

client = do
 s <- socket :: IO (Socket Inet Datagram UDP)
 connect s (SocketAddressInet inetLoopback 3003)
 send s "ping" mempty
 receive s 1024 mempty >>= print

Note that it wouldn't be mandatory to connect; we could instead specify the
destination in sendTo just like we needed to in the server program. This is all
due to the stateless nature of UDP.

Networking above the transport layer
Instead of working directly in the lower levels of abstraction like TCP, higher-level
interfaces are provided by numerous libraries.

The network-transport library defines an abstract API for endpoint-to-endpoint
communication. Additional libraries implement the API for different transports:
network-transport-tcp for TCP and network-transport-zeromq for ZeroMQ
transports.

For networking in the application level, there are many specialized libraries;
search for them in Hackage by application name or refer to Chapter 14, Library
Recommendations.

Managing resources with ResourceT
Remember when we were creating sockets, it was important to always close them
after use (so that they wouldn't leak memory)? So far we have usually wrapped
every socket, or resource, in a bracket (except when we were just lazy and testing). In
larger applications, there are larger amounts of resources that should be free at some
point. It quickly becomes cumbersome to always bracket everything.

As usual with Haskell, abstracting resource handling with a monad (transformer)
turns out to work quite well. One such monad transformer is ResourceT m a from the
resourcet package.

With ResourceT, we are no longer required to nest resource allocations with brackets.
Instead, we can perform allocate in ResourceT to obtain a resource and register
a release action for it that will be performed last when the ResourceT finishes.
allocate has the following type:

allocate
 :: MonadResource m => IO a → (a → IO ()) → m (ReleaseKey, a)

I/O and Streaming

[174]

Now consider allocating two resources, two file handles: one to read from and
another to write to. We could write two nested brackets as such:

import Control.Exception
import System.IO

copy_bracket :: IO ()
copy_bracket =
 bracket (openFile "read.txt" ReadMode) hClose $ \f1 →
 bracket (openFile "write.txt" WriteMode) hClose $ \f2 →
 hGetContents f1 >>= hPutStr f2

We can rewrite this using ResourceT as:

-- file: resourcet.hs

import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Resource
import System.IO

copy_resourcet :: ResIO ()
copy_resourcet = do
 (_, f1) <- allocate (openFile "read.txt" ReadMode) hClose
 (_, f2) <- allocate (openFile "write.txt" WriteMode) hClose
 liftIO $ hGetContents f1 >>= hPutStr f2

ResIO is just a synonym for ResourceT I/O. Note that there is less nesting and more
monadic binding in this version, which is better for composability. To execute a
ResIO, we need to use run ResourceT to convert it into an I/O:

main = runResourceT copy_resourcet

The first element in return tuple of allocate is of type ReleaseKey. We can use this to
deallocate the resource early, using release :: MonadIO m => ReleaseKey → m
().

Bottom line is that ResourceT greatly simplifies composing resource-allocating and
-deallocating actions (by adding a monadic allocation interface) and also makes it
easy to interleave resource allocation with effects from other monads (by being a
transformer).

Chapter 6

[175]

Streaming with side-effects
Lists are pure, but the streaming property is still useful also in impure I/O settings.
Although lazy I/O has its share of problems, it isn't the only streaming I/O
technique in Haskell. It's fully possible to use explicit buffers, for example, to read
and process iteratively using the low-level functions in System.IO. This program
uses a pointer to an integer to stream random numbers from `

-- file: ptr.hs

import System.IO
import Foreign.Ptr (Ptr)
import Foreign.Storable (Storable(sizeOf, peek))
import Foreign.Marshal (alloca)

main = withBinaryFile "/dev/random" ReadMode $ alloca . process
 where
 process :: Handle -> Ptr Int -> IO ()
 process h ptr = go where
 go = do
 count <- hGetBuf h ptr (sizeOf (undefined :: Int))
 if count > 0
 then do num <- peek ptr
 print num
 go
 else return ()

As can be seen, this program is pretty verbose. The same program could perhaps be
written in C more concisely, and that's because Haskell isn't designed for fiddling
with pointers and memory areas – though it's fully possible. Put more favorably,
Haskell encourages thinking more (and more) in the abstract.

That's all about Foreign modules for now (we'll meet them again in more depth in
the FFI chapter). From now on, we'll focus on streaming abstractions other than lazy
I/O, of which there are many.

Choosing a streaming library
Streaming frameworks in Haskell have come a long way along the years, starting
with lazy I/O. The problem with lazy I/O is foremost unpredictable resource
handling, and that there is little control over when given effects happen precisely,
because effects are interleaved with pure code. This allows for elegant code in small
scale, but it becomes hard to control effects in larger scale.

I/O and Streaming

[176]

In the 00s, work by Oleg Kiselyov initiated a surge of streaming libraries. Some of
the first ones published on Hackage were iteratee, enumerator, and iterIO at the
turn of 2010. Instead of imperatively using buffers for streaming data, iteratee-
based I/O abstracts such patterns in composable monadic actions. Unlike lazy I/O,
iteratee based I/O is strict (in I/O, at least).

Nowadays, the libraries most seen in use with new code include pipes, conduit,
and io-streams. pipes and conduit evolved simultaneously and hence they have a
lot of overlap in their feature sets. Later versions of conduit actually featured a heavy
internal redesign largely influenced by pipes. For those interested in such things,
it's worth mentioning that the types and most functions in pipes have been checked
using Coq (a theorem proving system) to ensure that the implementation is a law-
abiding category.

An unfortunate feature of both conduit and pipes is their type framework: the
types are hard to wrap one's head around even for a seasoned Haskeller. On the
other hand, io-streams library has its focus on user-friendliness with its simple
types (and is restricted to I/O).

Both pipes and conduits are very flexible, but if you're really sure you need even
more control and more abstractions over your streams in the form of networked
stream transducers, perhaps you should take a look at the machines library by
Edward Kmett.

In this section, we'll first introduce io-streams and then pipes and conduits.

Simple streaming using io-streams
The io-streams package defines two data types dubbed "smart handles" to
represent streams:

data InputStream c
data OutputStream c

There are exactly three primitive functions on smart handles. They are:

read :: InputStream c → IO (Maybe c)
unRead :: c → InputStream c → IO ()
write :: Maybe c → OutputStream c → IO ()

In other words, we can read elements from an InputStream or push items back into
an InputStream; or we can write an element into an OutputStream. A Nothing is
used to signal end-of-file in both read and write.

Chapter 6

[177]

This set of three primitives is both powerful and easy to grasp. Though the io-
streams package provides lots of useful combinators, they're all implemented in
terms of the primitives. Using higher-level combinators often makes code more
concise, of course, but it isn't mandatory.

Let's see what we can accomplish with io-streams. But first: how to construct
streams? There are two such functions, one for input and other for output streams:

makeInputStream :: IO (Maybe a) → IO (InputStream a)
makeOutputStream :: (Maybe a → IO ()) → IO (OutputStream a)

Here again, Nothing represents end-of-file. New input streams can be built from an
IO action that is performed to generate next element and output streams are built
from a consuming IO action that takes the input element as argument.

Creating input streams
Now we are ready to build some streams. The first stream we build will be one that
generates random numbers. First things first, here are some imports we'll use in this
example:

-- file: io-streams.hs

import Data.IORef (newIORef, readIORef, writeIORef)
import Control.Monad.IO.Class (liftIO)
import System.Random (randomIO)

import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S

If we were to use makeInputStream, we see that there's no built-in way to store state
between yielded elements. This means we have to resort to imperative state, such
as IORef. Here's an implementation of a random stream using an IORef to store the
count of numbers left to produce:

randomInputStreamRef :: Int -> IO (InputStream Double)
randomInputStreamRef count = do
 ref <- newIORef count
 S.makeInputStream $ do
 n <- readIORef ref
 if n <= 0
 then return Nothing
 else do writeIORef ref $! n - 1
 r <- randomIO
 return (Just r)

I/O and Streaming

[178]

Unfortunately, this is quite verbose, but this is Haskell. Surely we could do better,
right? Of course! One option is to use the Generator monad, which provides a
yield operation and MonadIO instance. This stream is equivalent to our IORef-based
stream:

randomInputStreamGen :: Int -> IO (InputStream Double)
randomInputStreamGen count = S.fromGenerator (go count)
 where
 go :: Int -> Generator Double ()
 go 0 = return ()
 go n = liftIO randomIO >>= S.yield >> go (n – 1)

Or, if it suits your fancy, we could write a stream as an anamorphism, known also as
unfold. The relevant io-stream combinator is:

unfoldM :: (b → IO (Maybe (a, b))) → b → IO (InputStream a)

With the unfoldM combinator, we get yet another way of expressing a random stream:

randomInputStreamAna :: Int -> IO (InputStream Double)
randomInputStreamAna count = S.unfoldM go count
 where
 go 0 = return Nothing
 go n = randomIO >>= \r -> return (Just (r, n – 1))

However, note that there is a slight overhead in these abstractions. In a quick and
controversial benchmark, I observed that timewise the differences are negligible
(with n = 500, 000), though some differences in heap usage were observable:

• The Generator-based random stream used about 6% more heap than the
IORef-based stream

• The anamorphism/unfold-based stream used about 12% more heap than the
IORef-based stream

It isn't strictly necessary to create IO actions that yield next values to create input
streams. Input (and output) streams can be generated via various other methods,
including:

• From a list: S.fromList :: [c] → IO (InputStream c)
• From files (see module System.IO.Streams.File)
• From ByteStrings (see module System.IO.Streams.ByteString)
• From Vectors (see module System.IO.Streams.Vector)
• From Handles (see module System.IO.Streams.Handle)

Chapter 6

[179]

• From Sockets (see module System.IO.Streams.Network)
• From output of external processes (see module System.IO.Streams.

Process)

Using combinators and output streams
The toList function can be used to convert any input stream into a list. Testing our
random streams, we fire up GHCi:

> :load io-streams.hs

> randomInputStreamAna 3 >>= S.toList

> [0.1745076027065504,0.9856406364162231,0.653112050978402]

Mapping is a basic stream transformation:

> randomInputStreamAna 3 >>= S.map (*10) >>= S.toList

[6.09571320125644,5.815660274344739,0.23496022064959265]

With the fold function from io-streams we can fold over an input stream,
producing a single value:

> randomInputStreamAna 3 >>= S.fold (+) 0

1.6587768967308916

Handling exceptions and resources in streams
Handling exceptions when using io-streams is exceptionally simple: just handle
them normally in I/O with machinery from Control.Exception. It's important to
catch exceptions where it makes sense, that is, whether inside a computation of an
input stream or an exception from stream creation action (IO (InputStream a)).

As an example of the former scenario, catching within a stream computation, we'll
create a stream which produces output by performing element-wise division on two
input streams. Division by zero is not well defined, so we'll want to omit such results
from the output stream. Here's the combinator:

-- file: io-streams-exceptions.hs

import Control.Exception
import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S

divideBy :: InputStream Int -> InputStream Int
 -> IO (InputStream Int)
divideBy as bs = S.makeInputStream go

I/O and Streaming

[180]

 where
 go = do
 ma <- S.read as
 mb <- S.read bs
 case (ma, mb) of
 (Just a, Just b) ->
 (return $! Just $! div a b)
 `catch`
 (const go :: ArithException -> IO (Maybe Int))
 _ -> return Nothing

So we read one element from each stream, divide them, and return the result, except
when the division raises an exception, which we'll catch and proceed to reading the
next two elements, without producing any output yet.

Note that it's important we fully evaluate the result Int on the right-hand side of
catch – otherwise the error would propagate to wherever we demand that Int
(which can be practically anywhere, or nowhere if it's never needed).

We can test that our stream works correctly with:

main = do x <- S.fromList [0..4]
 y <- S.fromList [1,0,0,2]
 divideBy x y >>= S.toList >>= print

This prints [0,1].

The other strategy to error handling is to intentionally propagate the error up to
what will call read on the stream. In this scenario, it's also important to raise the
exception in the IO monad, not deferring it in a yielded thunk. For example, this is
not good:

> s <- S.makeInputStream (return (Just undefined))

Calling read on such a stream won't fail, that is, this won't catch the exception:

> S.read s `catch` (\(e::SomeException) -> print "catched" >>
 return Nothing)
Just *** Exception: Prelude.undefined

Note that extra care needs to be taken because results are wrapped in Maybe's.
Even these won't fail within the yielding computation:

S.makeInputStream (return $! Just undefined)
S.makeInputStream (return (Just $! undefined))

But this one does fail at first read:

S.makeInputStream (return $! Just $! undefined)

Chapter 6

[181]

This demonstration is slightly contrived: as usual with exceptions, it's almost always
better to use throwIO instead of error/undefined when failing in the IO monad.

What comes to the Generator monad? Unfortunately, exceptions cannot be caught
there. The most important consequence is that resources should never be allocated
in that of the Generator. Of course, singular IO actions that both acquire and free
resources are excluded from this, as well as IO actions that catch exceptions from
within themselves.

An example of parsing using io-streams and
attoparsec
As an example of both io-streams and the parsing library attoparsec for which
io-streams provide bindings, in this section we'll build a chat log parser that works
over streams. The log file format we shall consider looks like:

-- file: messages.log

[00:50] <Seneca> It is the power of the mind to be unconquerable
[05:03] <Leibniz> The monad here is nothing but a simple substance
which enters into compounds
=== Erin enters the chat
[00:01] <Erin> Warriors should suffer their pain silently

Though the content itself is quite arbitrary, the log file is line-based and on each line
there is either a message or a notification. Notifications start with ===, and messages
follow the general format: [time] <person> message.

The first thing we'll need (after some imports) is some datatypes to express the
content. We write the following:

-- file: io-streams-parser.hs

{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid ((<>))
import Control.Applicative ((<|>))
import Data.ByteString (ByteString)
import Data.Attoparsec.ByteString.Char8 as PC8

import System.IO.Streams (Generator, InputStream, OutputStream)
import qualified System.IO.Streams as S
import System.IO.Streams.File (withFileAsInput)

I/O and Streaming

[182]

import System.IO.Streams.Attoparsec (parserToInputStream)

data Line = Notification ByteString
 | Message Time User ByteString deriving Show

type Time = ByteString
type User = ByteString

Self-explanatory so far! Now for the parser, or parsers. We'll start with simple ones:
parsers for timestamps and persons or users. Using applicative syntax, we can write
these concisely as:

timeParser :: Parser Time
timeParser = char '[' *> takeWhile1 (/= ']') <* char ']'
 <* PC8.takeWhile (== ' ')

userParser :: Parser User
userParser = char '<' *> takeWhile1 (/= '>') <* char '>'
 <* PC8.takeWhile (== ' ')

The (p *> q) combinator simply applies parser p, discards its results, and proceeds
to apply parser q. The (<*) combinator is like (*>) but takes results only from the
first argument instead. The parser primitives char and takeWhile come from the
attoparsec library. Both (*>) and (<*) are infixl, meaning they associate to the left
and so the whole parser can be read from left to right. The final result is where a (*>)
is followed by a (<*).

Parser for a line is slightly more involved:

lineParser, messageParser, notificationParser :: Parser Line

lineParser = messageParser <|> notificationParser

notificationParser = string "=== "
 *> (Notification <$> PC8.takeWhile (/= '\n'))

messageParser = Message <$> timeParser
 <*> userParser
 <*> PC8.takeWhile (/= '\n')

The (p <|> q) combinator tries to apply parser p, and if it fails, proceeds with q.

We can verify that our parsers work, in GHCi:

> :load io-streams-parser.hs

> > parseOnly lineParser "[time] <user> a message"

Chapter 6

[183]

Right (Message "time" "user" "a message")

> parseOnly lineParser "=== notification"
Right (Notification "notification")

Now that we have our parser, we should hook it up into a stream. The input stream
we'll be using comes from a file. Our output stream will print messages into standard
output, discarding everything else.

As is customary in io-streams, Nothing values represent end-of-file. So we need
one last parser. One that tries reading a next line, returning nothing when reaching
the end-of-file:

logParser :: Parser (Maybe Line)
logParser = (endOfInput *> pure Nothing) <|>
 (fmap Just lineParser <* PC8.takeWhile (== '\n'))

Then the output stream: this time, we'll use the OutputStream type and some funny
operators:

lineOutputStream :: IO (OutputStream Line)
lineOutputStream = S.contramapMaybe f =<< S.ignoreEof S.stdout
 where
 f (Message _ _ msg) = Just (msg <> "\n")
 f _ = Nothing

The two funny operators here are S.contramapMaybe and S.ignoreEof. The
first one maps a function (f) over the values before feeding them into the output
stream, discarding Nothings (like mapMaybe from Data.Maybe). The S.ignoreEof
on S.stdout prevents io-streams from closing standard output when a Nothing
is encountered. Normally io-streams closes Handles in output streams when a
Nothing is encountered in the stream.

Now we can write the main program itself:

main = withFileAsInput "messages.log" $ \is -> do
 lines <- parserToInputStream logParser is
 outs <- lineOutputStream
 S.connect lines outs

The parserToInputStream function builds an input stream from repeatedly
applying our logParser parser. The S.connect is a utility function which combines
an input stream with an output stream. We can confirm our program does what we
intended:

> :load io-streams-parser.hs
> main

I/O and Streaming

[184]

It is the power of the mind to be unconquerable
The monad here is nothing but a simple substance which enters into
compounds
Warriors should suffer their pain silently

Streaming using pipes
The next streaming library we'll consider is pipes. Now we have only one stream
type compared to two types in io-streams, but that is a considerably more
complicated type:

data Proxy a' a b' b m r

Now skim your eyes for a while and unsee a' and b'. Then Proxy would be
something that takes in values of type a and produces output values of another type
b while performing effects in some monad m. The r type variable is just the result
type of the monad.

The a' and b' exist for bidirectional communication along pipelines and aren't often
needed. For convenience, pipes provides some type synonyms that simplify pipes
types a lot. Three most used of those are:

type Producer' b m r
type Consumer' a m r
type Pipe a b m r

Type variables correspond to variables in Proxy. Omitted type variables are not
relevant here now.

The primitives in (unidirectional) pipes are reduced to two, contrary to three, for io-
streams. They're called await and yield:

await :: Monad m => Consumer' a m a
yield :: Monad m => b -> Producer' b m ()

The types actually tell precisely what these functions do. await returns a value
that was yielded from the input-side of a pipe in the monad (the first and last type
variables are unified). yield takes as argument a value of type that is unified with
the output-side's type and passes it forward in the stream.

We can say that consumers await whereas producers yield. Now note that Pipe is a
strictly more general type than consumers or producers. So pipes can both yield and
await.

Chapter 6

[185]

Here is one example of each, producer, consumer and pipe:

-- file: pipes.hs

import Control.Monad
import System.Random (randomIO)
import Pipes

randoms :: Producer' Int IO ()
randoms = forever (liftIO randomIO >>= yield)

taking :: Monad m => Int -> Pipe a a m ()
taking 0 = return ()
taking n = await >>= yield >> taking (n - 1)

printing :: Show a => Consumer' a IO ()
printing = forever (await >>= liftIO . print)

Composing and executing pipes
There's one more type synonym of Proxy we'll need to introduce. It's a pipe that
neither yields nor awaits, called Effect:

type Effect' m r

We need this to understand how to execute pipes. The relevant function is:

runEffect :: Monad m => Effect m r → m r

Combining a producer with a consumer using the (>->) operator yields an Effect.
Here's an effect combining our previous examples:

effect :: Effect IO ()
effect = randoms >-> taking 5 >-> printing

We can run this effect with runEffect:

> :load pipes.hs
> runEffect effect
4486626397489119841
571690255473717323
-8556621642364119471
-1668223325432668307
-4935317933637218898

I/O and Streaming

[186]

For loops and category theory in pipes
The (>->) combinator is really more general than this and works with almost any
two instances of Proxy:

(>->)
 :: Monad m =>
 Proxy a' a () b m r
 -> Proxy () b c' c m r -> Proxy a' a c' c m r

This looks really similar to normal function composition, (.), if we just forget about
other type variables than a, b, and c:

(.) :: (b → c) → (a → b) → (a → c)

Indeed, (>->) even forms a category with the identity pipe cat, like (.) forms a
category with the identity function id. A category must satisfy the category laws,
identity, and associativity:

 id . f = f cat >-> f = f
 f . id = f f >-> cat = f
(f . g) . h = f . (g . h) (f >-> g) >-> h = f >-> (g >-> h)

This is relevant mostly because pipes draw its elegance from category theory.
Though by no means is it required from the programmer using the library to know
category theory.

pipes provides a combinator for, which can be used to transform producers:

randomsPositive :: Producer' Int IO ()
randomsPositive = for randoms (\r → when (r > 0) (yield r))

There's also a synonym for for: (~>). for too forms a category, with yield as the
identity.

randoms ~> (\r → when (r > 0) (yield r))

Then we have the (>~) combinator. Note the symmetry with (~>). Whereas (~>)
transformed yields, (>~) transforms awaits. It's useful to supply the same expression
to a consumer:

> runEffect $ lift getLine >~ taking 5 >-> printing

(>~) forms a category together with await.

Chapter 6

[187]

Handling exceptions in pipes
Similar to io-streams, it isn't possible to catch exceptions in a Proxy. However,
pipes is polymorphic in the base (m) monad, so within a lifted computation,
exceptions can be caught even "outside" IO if using lifted-base. If the base monad
is IO, then normal machinery from the exceptions package would be sufficient to
catch exceptions.

A useful idiom is to wrap the lifted computation in a try, effectively "lifting" the
exception to the pipeline as an Either:

-- file: pipes-exceptions.hs

import Control.Exception
import Pipes
import GHC.IO.Exception (IOException(..))

tolerantStdinLn :: Producer' String IO ()
tolerantStdinLn = do
 x <- lift $ try readLn
 case x of
 Left e@IOError{} -> return ()
 Right ln -> yield ln >> tolerantStdinLn

Strengths and weaknesses of pipes
The pipes philosophy is pretty much elegance first, as we have witnessed in its
category-theory-inspired operators. There's also one relatively new feature in
pipes that we haven't touched (and won't): bidirectional flow. This is related to the
additional type variables in the Proxy type. With bidirectional flow, pipes admits
for generator and iteratee design patterns, making requests and responses in
addition to normal data flow.

Unlike io-streams that worked over IO, pipes works over arbitrary monads, which
is definitely a plus. However, exceptions must be caught within computations in the
inner monad. For one, in io-streams, we could resume a stream from where it left
after handling exceptions raised from a stream, but with pipes, it isn't possible to
resume a pipeline. On the other hand, pipes is declarative and doesn't require an IO
action to build a pipeline.

I/O and Streaming

[188]

Streaming using conduits
Starting with conduit version 1.0.0.0, the core library design is just like that of the
pipes Proxy type with bidirectional flow removed. The core conduit type is called
ConduitM:

data ConduitM i o m r

What comes to conduit's type synonyms compared to pipes synonyms: producers
are now sources, pipes are conduits and consumers are sinks:

type Source m o
type Conduit i m o
type Sink i m r

The operator that chains conduits together is (=$=). The ($$) operator connects source
with sink, evaluating the conduit, along with side-effects:

(=$=) :: Monad m
 => Conduit a m b → ConduitM b c m r → ConduitM a c m r
($$) :: Monad m
 => Source m a → Sink a m b → m b

There's considerably less noise in conduit type signatures because of the absence of
bidirectional flow.

In conduit versions before 1.0.0.0, there were different datatypes for
sources, conduits, and sinks. In this design, two more operators were
needed for connecting (($=) and (=$)). These are no longer necessary.

Here's a simple conduit program. This implements the exact same randoms program
from the pipes section:

-- file conduit.hs

import Control.Monad
import Control.Monad.IO.Class (liftIO)
import Data.Conduit
import System.Random (randomIO)

randoms :: Source IO Int
randoms = forever (liftIO randomIO >>= yield)

taking :: Monad m => Int -> Conduit a m a
taking 0 = return ()
taking n = do x <- await

Chapter 6

[189]

 case x of
 Nothing -> return ()
 Just y -> yield y >> taking (n - 1)

printing :: Show a => Sink a IO ()
printing = do x <- await
 case x of
 Nothing -> return ()
 Just y -> liftIO (print y) >> printing

main :: IO ()
main = randoms =$= taking 5 $$ printing

This is substantially longer because the await primitive of conduits returns its result
wrapped in Maybe, as in io-streams. Instead of writing every conduit program
with the primitives, it is best practice to utilize functions from additional conduit
modules (and libraries) beyond Data.Conduit, such as the following:

• Data.Conduit.List (conduit) provides list-like combinators for conduits
• Data.Conduit.Combinators (conduit-combinators) replaces the

functionality of Data.Conduit.List and enforces conduit best practices
• The conduit-extra package provides additional modules for textual and

binary data, parsing, and so on, similar to io-streams
• Conduit (conduit-combinators) is a convenience module which re-exports

lots of useful conduit-related machinery

Handling resources and exceptions in conduits
The main advantage of conduits over pipes is that handling resources and
exceptions is built into the ConduitM type.

Resource handling is generalized via ResourceT. This instance allows us to use
ResourceT machinery within any conduit whose inner monad allows it to:

instance MonadResource m => MonadResource (ConduitM i o m)

Exception handling is lifted to conduits using the extensible extensions library:

instance MonadThrow m => MonadThrow (ConduitM i o m)
instance MonadCatch m => MonadCatch (ConduitM i o m)

I/O and Streaming

[190]

With conduits, we have combinators such as bracket lifted to conduits:

bracketP :: MonadResource m
 => IO a → (a → IO ()) → (a → ConduitM i o m r)
 → ConduitM i o m r

And also catch lifted to conduits:

catchC :: (MonadBaseControl IO m, Exception e)
 => ConduitM i o m r → (e → ConduitM i o m r) → ConduitM i o m r

Resuming conduits
It is possible to feed some source into a sink, using the ($$+), process, until the
sink has finished and then save the source at where it left, turning Source into a
ResumableSource. ResumableSources can be passed around freely and used almost
like normal sources later with ($$++):

($$+) :: Monad m
 => Source m a -> Sink a m b
 -> m (ResumableSource m a, b)

($$++) :: Monad m
 => ResumableSource m a -> Sink a m b
 -> m (ResumableSource m a, b)

For an example, consider this Source which yields consecutive numbers from zero:

counter :: Source IO Int
counter = go 0
 where go n = yield n >> go (n + 1)

With ResumableSources, we can use this as a source of unique identifiers, for
example. Here's an illustrating GHCi session:

> (resume,_) <- counter $$+ taking 5 =$= printing
0
1
2
3
4
> resume $$++ taking 3 =$= printing
5
6
7

Chapter 6

[191]

ResumableSources can also be converted into normal sources with unwrapResumable.
ResumableSources give us back the nice feature that was built into io-streams and
that was lost in pipes, namely first-class streams. But one thing is still missing which is
related to exceptions.

When an exception was raised inside an io-stream stream, it would propagate
upward, but leave the stream in the state it was at before raising the exception. To
copy this behavior in conduits, we would catch exceptions in conduit/sink and end
computation. Then, as the pipeline stops accepting input, use ($$+) to convert the
source into an ResumableStream.

Logging in Haskell
A final thing we'll consider is more related to I/O than streaming: logging in Haskell
applications. Logging is important in any sufficiently important application.

In a small scale, a list- or DList-based WriterT monad is often all that is needed: it's
simple and potentially pure (if the underlying monad is pure). However, on a bigger
scale it doesn't make sense to store messages in an internal pure data structure.
Instead, it's most efficient to write them to disk (or over a network) immediately
(likely still using a buffer, though).

Furthermore, it would be nice if the logging functionality could be decoupled from
other application code, even reused between different applications.

A popular solution which provides just that kind of decoupling is the monad-
logger library. It uses a library called Fastlogger, which provides logging that
scales in multicore environments. Most notoriously, FastLogger is used in the Web
Application Interface (WAI) package used by many high-performance Haskell web
frameworks and applications.

Logging with FastLogger
The core datatype in FastLogger is LoggerSet, whose constructors are not exposed.
Internally, it holds multiple loggers, one for each OS thread (-N<x>). A LoggerSet is
built with one of the smart constructors:

newFileLoggerSet :: BufSize -> FilePath -> IO LoggerSet
newStdoutLoggerSet :: BufSize -> IO LoggerSet
newStderrLoggerSet :: BufSize -> IO LoggerSet

Log messages are written to that of a LoggerSet using pushLogStr(Ln):

pushLogStr :: LoggerSet → LogStr → IO ()

I/O and Streaming

[192]

The LogStr datatype is also abstract (constructors not exposed). LogStr construction
is overloaded via type class ToLogStr, provided with default instances for textual
data:

class ToLogStr msg where
 toLogStr :: msg → LogStr

instance ToLogStr String
instance ToLogStr ByteString
instance ToLogStr Text
instance toLogStr LogStr

Here's a GHCi session to demonstrate usage:

> import System.Log.FastLogger
> logger <- newStdoutLoggerSet defaultBufSize
> pushLogStr logger (toLogStr "a log message")
a log message

It's encouraged to create your own log message datatype and write custom instances
for ToLogStr (inductively utilizing existing instances). For performance reasons, it's
better to specialize your logging functions to avoid ToLogStr dictionary-passing, as
in pushLogStr.

Note that FastLogger provides the bare minimum needed for efficient logging:
monomorphic file and stream loggers and a simple overloaded interface for building
log messages. On top of this, it's easy to build other mechanisms, such as custom log
messages and logging functions.

More abstract loggers
Version 2.4.4 of FastLogger had some new functionality. Among others, a new type
alias was introduced: when we partially apply pushLogStr with a LoggerSet, we
get the extremely simple yet powerful FastLogger function:

type FastLogger = LogStr → IO ()

Now, instead of using LoggerSets directly, we can step up abstractions one notch.
The withFastLogger function takes an argument of type LogType, with which we
can build many kinds of loggers:

withFastLogger :: LogType → IO (FastLogger → IO a) → IO a

Chapter 6

[193]

This function takes care of closing the LoggerSet correctly, so you don't need to
worry about leaking loggers. The second argument is a callback which can make use
of the logger function. The different constructors of LogType initialize different kinds
of loggers. In addition to stdout, stderr, and file logging, it becomes trivial to create
file-rotating loggers:

data LogType
 = LogNone
 | LogStdout BufSize
 | LogStderr BufSize
 | LogFileNoRotate FilePath BufSize
 | LogFile FileLogSpec BufSize
 | LogCallback FastLogger (IO ())

Timed log messages
It's often very useful to have timestamps in log messages. However, in high-
performance applications with high-frequency logging, date rendering becomes a
bottleneck, unless we cache rendered dates. Fortunately, FastLogger (versions later
than 2.4.4) comes with a solution for date caching that only renders dates at most
once per second. Timed FastLoggers have the type:

type TimedFastLogger = (FormattedTime → LogStr) → IO ()

Timed loggers are created with the withTimedFastLogger function:

withTimedFastLogger
 :: IO FormattedTime -> LogType -> (TimedFastLogger -> IO a) ->
 IO a

The first argument requires an IO action to return formatted time (ByteString), which
we should build with newTimeCache:

newTimeCache :: TimeFormat -> IO (IO FormattedTime)

Just an IO action within an IO action. This is used as in:

> getTimeStamp <- newTimeCache "%Y-%m-%d %H:%M"
> getTimeStamp
"2016-05-11 15:02"

To attach timestamps into log messages, we need a log function which formats the
timestamp. Here's one for logging events of type String:

logFormat :: String -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> toLogStr msg

I/O and Streaming

[194]

Now let's put everything together into a complete program that logs something
nonsensical (yet true). Let's try a top to bottom approach. We wish to write log
messages with a simple IO action taking only our log message (String) as its
argument. This is easily expressed as:

-- file: fastlogger.hs
{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid
import System.Log.FastLogger

type MyLogger = String -> IO ()

app :: MyLogger -> IO ()
app log = do
 log "Haskell is fun"
 log "and logging is fun too!"

Now we only need the main that executes our application, supplying it with an
appropriate logger. There is nothing new in the function body that follows – I have
just combined everything we discussed so far about (timed) logging and formatting:

main = do
 getTimeStamp <- newTimeCache "%Y-%m-%d %H:%M"
 withTimedFastLogger getTimeStamp (LogStdout defaultBufSize) $
 \logger -> app (logger . logFormat)

logFormat :: String -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> toLogStr msg <> "\n"

Just to confirm everything works as it should:

> :load fastlogger.hs
[1 of 1] Compiling Main (fastlogger.hs, interpreted)
Ok, modules loaded: Main.
> main
2016-05-11 16:20: Haskell is fun
2016-05-11 16:20: and logging is fun too!

So what did we gain from using FastLogger? We wrote about four lines, but in
those four lines we got all these:

• Timestamped log messages with a timestamp cache.
• Custom timestamp and log message formatting.

Chapter 6

[195]

• Completely decoupled setup and configuration of logging from the
application code.

• If you wanted to, the log function could be hidden in a Reader monad and
write a log action, thus eliminating the need to pass the log function around.
In fact, this pattern is already captured in the monad-logger library.

Monadic logging
In MonadLogger, logging functions are polymorphic in the MonadLogger class.
You can either define an instance for your application monad, or use the add-on
LoggingT transformer:

class Monad m => MonadLogger m where
 monadLoggerLog :: ToLogStr msg => Loc → LogSource → LogLevel

instance MonadIO m => MonadLogger (LoggingT m)
[…]

Instances for transformer stacks from mtl/transformers, conduits, and pipes are also
provided out of the box for MonadLogger.

Here's an example monadic logger program, that does nothing else but logs 500,000
lines (for no particular reason):

-- file: logging-t.hs

{-# LANGUAGE TemplateHaskell #-}

import Data.Text (pack)
import Control.Monad
import Control.Monad.Logger

app :: LoggingT IO ()
app = replicateM_ 500000 ($(logInfo) (pack "msg"))

main = runStdoutLoggingT app

See that, with help from LoggingT, we got rid of a lot more boiler-plate than with
using fast-logger. What's nice is that we actually got a new feature: the template
Haskell function $(logInfo) logs the code file and line number the log message
originated from! This is very valuable in debugging.

I/O and Streaming

[196]

Customizing monadic loggers
If the default log message format of MonadLogger is not enough, it is fully
customizable via the monadLoggerLog class method. As an illustration, let's add
timestamps to our log messages using monadic logging. MonadLogger really works
only with monads, so we need to create one. Actually, let's make one from scratch: we
only need access to a logger function in our monad, so this App monad will suffice:

-- file: monadlogger.hs
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveFunctor #-}

import Control.Monad.Logger
import Data.Monoid
import System.Log.FastLogger

type MyLogger = LogStr -> IO ()

newtype App a = App { unApp :: MyLogger -> IO a }
 deriving (Functor)

This will actually turn out to be an exercise in writing Functor-Applicative-Monad
instances (neither Applicative nor Monad can be derived in this case). If you'd like a
challenge, try writing the instances yourself now! Or just read on:

instance Applicative App where
 pure x = App $ _ -> pure x
 App f <*> (App g) = App $ \log -> f log <*> g log

instance Monad App where
 App f >>= g = App $ \log -> do r <- f log
 unApp (g r) log

Now, we're not really interested in source file positions in our log messages, because
it simplifies the MonadLogger instance a bit, as can be seen:

instance MonadLogger App where
 monadLoggerLog _ _ _ msg = App $ \log -> log (toLogStr msg)

Now we need a test application and a main (and a timestamped log message
formatting function). With slight alterations, we reuse those we defined in our
FastLogger example:

app :: App ()
app = do

Chapter 6

[197]

 logInfoN "Haskell is fun"
 logInfoN "and logging is fun too!"

logFormat :: LogStr -> FormattedTime -> LogStr
logFormat msg time = toLogStr time <> ": " <> msg <> "\n"

main = do
 getTimeStamp <- newTimeCache "%Y-%M-%d %H:%m"
 withTimedFastLogger getTimeStamp (LogStdout defaultBufSize) $
 \logger -> unApp app (logger . LogFormat)

All that is left to do is testing, so here we go:

> :load monadlogger.hs
[1 of 1] Compiling Main (monadlogger.hs, interpreted)
Ok, modules loaded: Main.

> main
2016-05-11 16:10: Haskell is fun
2016-05-11 16:10: and logging is fun too!

Now we can conclude our application does what we expected it to do. Logging in
Haskell is indeed fun and easy.

Summary
In this chapter we have covered the advantages and disadvantages of lazy I/O and
its alternatives: strict I/O and some streaming solutions. We learned to connect to
remote network endpoints as clients and to write own network servers in Haskell.
We also learned that acquired I/O resources such as handles and sockets must
always be freed. For this, we considered two main solutions: functions such as
bracket and the ResourceT monad transformer.

After reading this chapter you should now understand and be able to use lazy I/O
without surprising memory leaks and correctly release all acquired resources as well
as exceptions. You know and can use three streaming libraries: rudimentary io-
streams, elegant pipes, and industrial conduits. You are also bound to enjoy doing
logging from your Haskell programs with FastLogger and monads with monad-
logger.

In the next chapter, we will focus on concurrent programming in Haskell. Light-
Lightweight GHC threads give a lot of flexibility for the concurrent programmer,
and software transactional memory provides an easy-to-use framework for handling
critical sections in a more abstract fashion.

[199]

Concurrency and
Performance

Writing concurrent programs that are correct is hard: subtle race conditions,
resources blocked by another thread, asynchronous exceptions, and so on. Basically,
a lot can go wrong. Remember that, whereas parallelism points to execution model
(multiple threads running simultaneously), concurrency is more like a paradigm:
multiple threads working together, intertwined. However, concurrent threads are
often run in parallel for responsiveness and performance reasons.

In this chapter, we will write concurrent Haskell programs making use of light-
weight threads and type-safe concurrency primitives like MVars. For complex
programs, we will learn to build atomic transactions with Software Transactional
Memory (STM).

We will consider some models for concurrent programming: asynchronous
workers and actors. And although asynchronous exceptions are usually to be
avoided (like those from calls to error/undefined), asynchronous exceptions are
useful for notifying one thread from another. Finally, we'll look at working with
lifted concurrency operations to other monads besides IO, which can be extremely
convenient sometimes.

We will cover:

• Becoming familiar with light-weight threads, primitive concurrency
functions, and mutable variables

• Building complex atomic transactions using Software Transactional Memory
• Using the Async API for concise asynchronous processing
• Lifting concurrency operations and exception handling using MonadBase and

MonadBaseControl

Concurrency and Performance

[200]

Threads and concurrency primitives
One of the basic forms of concurrent programming involves sharing read-write data
between threads. Usually data is shared via references. From fastest to most flexible,
the three types of mutable references in Haskell are IORef, MVar, and STM. All three
can be used, at least to some extent, in a thread-safe manner. We start our concurrent
journey with a simple reference, IORef, and work our way to arbitrarily complex
transactions using STM.

Threads and mutable references
The most basic reference type in Haskell is IORef. The core IORef API is compact,
one datatype and a few atomic operations:

module Data.IORef

data IORef a

newIORef :: a → IO (IORef a)
readIORef :: IORef a → IO a
writeIORef :: IORef a → a → IO ()
modifyIORef :: IORef a → (a → a) → IO ()
atomicModifyIORef :: IORef a → (a → (a, b)) → IO b

IORef is always full, that is, there is always a value to be read without blocking.
They're just simple mutable references. IORef is very fast. They're the fastest option
when all you need is a single mutable reference and no locking. If you need more
complexity than that, you shouldn't be using an IORef.

Now that we have shared memory (IORef), we need ways to program interleaved
threads that can use the shared memory. The most important module for working
with threads in Haskell is Control.Concurrent, and the most important function is
forkIO:

forkIO :: IO () → IO ThreadId

A thread is simply an IO () action, like the main program is an IO (). With forkIO,
we can make any IO () execute in its own thread. Calls to forkIO return
immediately and give us a ThreadID that identifies the newly forked thread.

The following program illustrates forking and mutable references. It prints multiple
instances of a and b in some order for a split second:

-- ioref.hs

import Data.IORef

Chapter 7

[201]

import Control.Concurrent

fun ref c = do
 x <- readIORef ref
 writeIORef ref c
 putStr x
 fun ref c

main = do
 ref <- newIORef "a"
 forkIO $ fun ref "a"
 forkIO $ fun ref "b"
 threadDelay 5000

We can run this via runhaskell ioref.hs. The output pattern looks like
aabababababa and so on and is around 200 characters long. Note carefully that we
didn't bother killing the child threads; in Haskell, when the main thread exits, all
child threads will die too. However, we did use threadDelay, which blocks the
current thread for a given number of microseconds.

While our program was multi-threaded, we were actually running it in a single
Operating System (OS) thread. The single-threaded Runtime System always uses
just one OS thread, but features a scheduler of its own for light-weight threads.

Light-weight threads are cheaper than OS threads: a smaller memory footprint, very
cheap to create and destroy, and they share the same heap objects with other light-
weight threads in the same Haskell program.

Actually runhaskell didn't bother compiling our program, but merely interpreted
it. If we compile the program and run the compiled version, still in a single
OS thread, the output would look like abaaaaaaaaaaaaaa…, with the b thread
sometimes not getting a second chance to execute at all within the split second.

In a compiled single-threaded program, the runtime tries to avoid excess context-
switching. The interpreted version executed more like one step at a time, using a
different scheduler. Because of this, it is often insufficient to test concurrent programs
only interactively (in GHCi or via runhaskell), because scheduler semantics are
different to compiled programs.

Concurrency and Performance

[202]

Avoid accumulating thunks
Even mutable references are not safe from the unfortunate consequences of
lazy evaluation; it's deceptively easy to accidentally accumulate a big chain of
unreferenced thunks in an IORef, because modifyIORef is not strict in its second
argument. A classic example is using IORef as a counter:

import Control.Monad (replicateM_)
import Data.IORef

main = do
 counter <- newIORef 0
 replicateM_ 10000000 (modifyIORef counter (+1))
 print =<< readIORef counter

This will probably finish cleanly, but requires almost 1 gigabyte of memory.

It's up to you to ensure that you don't leak memory in values you write into IORef.
Depending on the datatype, if evaluation to Weak Head Normal Form is enough
then the strict version of modifyIORef, modifyIORef', is a clean and concise option.

Atomic operations with IORefs
All of the operations for IORef are atomic as such, but it's hard if not impossible
to make combinations of atomic operations on IORefs remain atomic. One atomic
operation on IORefs, however, provides a little more flexibility than others:

atomicModifyIORef :: IORef a → (a → (a, b)) → IO b

Essentially, atomicModifyIORef allows us to read the value of an IORef and write a
new value based on the old value, ensuring that no other thread could read or write
the value in between. A strict variant is also available: atomicModifyIORef'.

An example use case would be a unique identifier supply. When drawing a new
identifier from a IORef Int, we need to fetch the current one and then atomically
update the supply. The newUID function below is thread-safe:

-- file: ioref-supply.hs

import Data.IORef

type Supply = IORef Int

createSupply :: IO Supply
createSupply = newIORef 0

newUID :: Supply -> IO Int
newUID supply = atomicModifyIORef' supply $ \uid -> (uid + 1, uid)

Chapter 7

[203]

This is about as far as we can reasonably get atomically using plain IORef. Next we'll
look at a more practical concurrency primitive, MVar.

MVar
Mvar is a box that may be full or empty. It supports the atomic operations takeMVar
and putMVar, which empty and fill the box, respectively. The core API is referenced
here. Many utility functions are omitted:

module Control.Concurrent.MVar

data MVar a

newMVar :: a → IO (MVar a)
takeMVar :: MVar a → IO a
putMVar :: MVar a → a → IO ()

MVar is slightly slower than IORef, but more flexible. For instance, it's trivial to
reserve a shared resource to be used only by one thread at a time:

-- file: mvar-reserve.hs

import Control.Exception (bracket)
import Control.Concurrent (forkIO)
import Control.Concurrent.MVar

printing lock str =
 bracket (takeMVar lock)(\i -> putMVar lock $! i+1)(_ -> print
str)

main = do
 lock <- newMVar () :: IO (MVar ())
 forkIO $ printing lock "output a"
 forkIO $ printing lock "output b"
 forkIO $ printing lock "output c"
 takeMVar lock >>= print

The preceding program prints three lines from three different threads and finally
outputs the number of printed lines. By taking the contents lock MVar each time
before printing, and putting something back after each print, we ensure that
printing is never inlined:

"output a"
"output b"
"output c"
4

Concurrency and Performance

[204]

Without the lock, we would very likely witness output like:

"outpu"t"o ouaut"tp
puutt bc""

Notice that we used bracket to ensure that we don't reserve the lock indefinitely in
case an exception is thrown. This function takes three arguments. The first argument
acquires a resource (takeMVar), the second releases it (putMVar) and the third does
something with the resource between acquire and release. bracket ensures that the
resource is released if an exception is raised.

The Runtime System is smart enough that, in simple cases, it can recognize when the
program is waiting indefinitely and kill the thread with a thread blocked indefinitely
in an MVar operation exception. But if you have many threads, it is possible to
deadlock your program with an empty MVar. Also a full MVar can block, because
putMVar will wait until the MVar is empty before filling it.

Like IORef, MVar is lazy in its contents and it's important to ensure that no thunk
chain in an MVar clutters the heap of your program.

MVars are fair
MVar has some nice properties. For instance, it's guaranteed that when multiple
threads are sleeping, blocked on same MVar, none of the threads can be blocked
indefinitely. In practice, the threads are woken up in the order they are blocked.
The wakeup and taking of the MVar is a single atomic operation.

Another feature of MVar is that it's not susceptible to reordering by the underlying
processor architecture; for IORef, it's possible that reads get moved to be performed
before writes:

writeIORef ref1 True
x <- readIORef ref2

These lines would probably get swapped around on an x86 system, where loads
(read) can move ahead of stores (write). This is problematic when references are used
from multiple threads. MVar is thus a more suitable synchronization primitive than
IORef.

For what it's worth, the atomicModifyIORef and
atomicWriteIORef operations resist described reordering.

Chapter 7

[205]

MVar as a building block
Many concurrent data structures in base and elsewhere use MVar as their building
blocks. For instance, semaphores (Control.Concurrent.QSem) and channels
(Control.Concurrent.Chan) are built with MVars.

Building your own data structures with MVar isn't hard. Let's build an unbounded
FIFO queue with non-blocking enqueue and dequeue operations. This is like the
Chan type in Control.Concurrent.Chan, but more inefficient.

We'll represent our FIFO as two lists. The first list represents the head of the queue,
with the head element being the next element to read. The second list represents the
tail of the queue, the head element being the newest enqueued element:

ioref-counter.hs
-- file: mvar-queue.hs

import Control.Concurrent.MVar

data Queue a = Queue (MVar [a]) (MVar [a])

newQueue :: IO (Queue a)
newQueue = Queue <$> newMVar [] <*> newMVar []

The enqueue operation is straightforward: we just need to cons(:)an element to the
second list:

enqueue :: Queue a -> a -> IO ()
enqueue (Queue _ ys_var) x = modifyMVar_ ys_var (return . (x :))

I've used the modifyMVar_ utility function, which puts the original contents back to
the MVar in the case of an exception:

modifyMVar_ :: MVar a → (a → IO a) → IO ()

We can also return a result with the modifyMVar function, which we'll use shortly
too:

modifyMVar :: MVar a → (a → IO (a, b)) → IO b

Dequeueing is more complex. Now we uncons the first list. If that list is empty,
we need to reverse the second list and insert it into the first list, at the same time
emptying the second list. In the code, we have:

dequeue :: Queue a -> IO (Maybe a)
dequeue (Queue xs_var ys_var) = modifyMVar xs_var $ \xs_q ->
 case xs_q of
 x : xs -> return (xs, Just x)
 [] -> modifyMVar ys_var $ \ys_q ->

Concurrency and Performance

[206]

 return $ case reverse ys_q of
 [] -> ([], ([], Nothing))
 x : xs -> ([], (xs, Just x))

Usually we only take the first MVar. If we need to reverse the tail, we take the second
list too, momentarily locking both MVars.

We can now witness that our queue works as it should:

> q <- newQueue :: IO (Queue Int)
> enqueue q 1
> enqueue q 2
> enqueue q 3
> enqueue q 4
> dequeue q
Just 1
> dequeue q
Just 2
> dequeue q
Just 3
> dequeue q
Just 4
> dequeue q
Nothing

A better FIFO implementation is already provided by the Control.Concurrent.
Chan module, which also supports channel duplication. Next we'll have multiple
actors reading and writing from each other via a broadcast channel.

Broadcasting with Chan
The Chan datatype resembles our queue a lot. The core API is:

module Control.Concurrent.Chan

data Chan a

newChan :: IO (Chan a)
writeChan :: Chan a → a → IO ()
readChan :: Chan a → IO a
dupChan :: Chan a → IO (Chan a)

The only addition is dupChan, which creates a copy of the channel such that reads
and writes to either the original or the copy appear in both. The duplicated channel
starts empty, though.

Chapter 7

[207]

The client function that follows takes its integer identifier and a read-and-write
channel. It responds to messages of the form request <myid> with a response
<myid> in the same channel:

-- file: chan-actors.hs

import Control.Monad
import Control.Concurrent
import Control.Concurrent.Chan

client :: Int -> Chan String -> IO ()
client i chan = go where
 go = do input <- readChan chan
 if input == ("request " ++ show i)
 then writeChan chan ("response " ++ show i)
 else return ()
 go

The following main, written compactly with monad utility functions, forks three
clients with different identifiers. A single channel is duplicated for each client,
so that every client receives all messages:

main = do
 chan <- newChan
 chans <- replicateM 3 (dupChan chan)
 zipWithM_ (\i c -> forkIO $ client i c) [1..] chans

 forM_ [1..3] $ writeChan chan . ("request " ++) . show
 getChanContents chan >>= mapM_ print . filter (isPrefixOf
"response")

The getChanContents function turns the channel contents into a lazy streaming list.
Unlike hGetContents, which returns a finite list when the file handle returns EOF,
getChanContents builds a really infinite list. When we run this program, we see the
following output:

"response 1"
"response 3"
"response 2"
chan-actors: thread blocked indefinitely in an MVar operation

The "thread blocked indefinitely in an MVar operation" exception above comes
from one of the client threads. The Runtime System detects that after call to
getChanContents, all threads are waiting on the same Chan and throws anexception.
It isn't possible to close a Chan; it will remain open forever.

Concurrency and Performance

[208]

Software Transactional Memory
Software Transactional Memory (STM) is the highest-level general concurrency
abstraction we will consider. STM provides composable atomic transactions,
meaning we can combine reads, writes, and other operations in multiple memory
locations into single atomic operations. Transactions can be aborted or retried.

An STM transaction lives in the STM monad:

data STM a
instance Monad STM

Transactions are performed with the atomically function:

atomically :: STM a → IO a

Another important primitive is the retry function, which aborts the current
transaction and retries it when some of its dependencies have changed (in some
other transaction in another thread):

retry :: STM a

Basic transactional variables are provided by the STM package itself. Advanced
structures are provided by additional packages. The following are provided in
stm:Control.Concurrent.STM:

• TVar: A shared memory location analogous to IORef, but transactional
• TMVar: Mutable variable analogous to IORef
• TChan: Channels analogous to Chan from base
• TQueue: Faster channels without support channel duplication
• TBQueue: Bounded and non-duplicable channels
• TArray: Transactional arrays analogous to arrays from the array package

Some more transactional datatypes are provided by the stm-containers and stm-
chans packages.

STM example – Bank accounts
We can represent account balance as a TVar:

-- file: tvar-account.hs

import Control.Concurrent.STM

Chapter 7

[209]

type Balance = Int
type Account = TVar Balance

createAccount :: Balance -> STM Account
createAccount = newTVar

The basic operations that can be done on accounts are withdraw and deposit.
Implemented as STM transactions, we get the following transactions:

withdraw account amount = do
 balance <- readTVar account
 if balance - amount < 0
 then retry
 else writeTVar account $! balance - amount

deposit account amount = do
 balance <- readTVar account
 writeTVar account $! balance + amount

Our accounts can't go negative. Therefore, withdrawals will wait until the balance
becomes available. Retrying inside a transaction will restart the STM transaction at
the beginning, but only after the variable (account) has been touched by some other
transaction. It won't wait in a busy loop or anything.

We can compose withdrawal and deposit to create a transfer transaction, which
transfers a given amount from one account to another:

transfer from to n = do
 withdraw from n
 deposit to n

Note how easily we composed two atomic operations into one atomic operation. STM
makes sure that all modifications made in an incomplete transaction are discarded.
Furthermore, because of atomicity, it is guaranteed that nothing else could update
the contents of any variable that is used during the transaction.

This is guaranteed to execute atomically, no matter how many threads try to
withdraw from the account in one moment. For an example of usage, here we
transfer from one account to another:

acc1 <- atomically $ createAccount 5
acc2 <- atomically $ createAccount 3
atomically $ transfer acc1 acc2 2
atomically (readTVar acc1) >>= print
atomically (readTVar acc2) >>= print

Concurrency and Performance

[210]

There is a small overhead in using TVar or TMVar instead of MVar, so if performance
is critical and no complex logic is involved, an MVar (or even IORef) might be more
suitable than STM.

But there are also two even more important caveats that TMVar have over MVar. One
is that TMVar isn't fair; it might take an indefinite time for some thread to unblock on
a contended TMVar. Another caveat is due to overhead from STM, a simple takeTMVar
might not be single-wakeup like a takeMVar is, which is a big penalty for highly-
contended mutable variables.

Alternative transactions
There is an operation that allows us to combine transactions, such that if the first one
does not yield a result but would wait, we can try another transaction. The operation
is orElse:

orElse :: STM a → STM a → STM a

This is exactly the (<|>) operation from Alternative class, which STM implements.

For instance, to withdraw from a fallback account if the primary one doesn't have
enough balance, we have the following transaction:

import Control.Applicative

withdraw' :: Account -> Account -> Balance -> STM ()
withdraw' primary secondary amount =
 withdraw primary amount <|> withdraw secondary amount

Exceptions in STM
Because STM is not I/O nor are I/O actions liftable to STM, we cannot use throwIO to
throw exceptions within an STM transaction. We could use throw or error, but those
are asynchronous and don't guarantee ordering respective to other STM operations,
like throwIO does for IO.

The correct way to throw exceptions from STM is throwSTM:

throwSTM :: Exception e => e → STM a

And to catch exceptions within STM, we can use catchSTM:

catchSTM :: Exception e => STM a → (e → STM a) → STM a

Chapter 7

[211]

Alternatively, the MonadThrow/MonadCatch classes from the exceptions package
capture correct throw and catch functions for STM among other monads.

Runtime System and threads
The GHC Runtime System comes in two flavors: threaded and non-threaded. For
truly single-threaded applications, it's usually better to use the default non-threaded
runtime, because there's more overhead in the threaded one. The non-threaded
runtime features a scheduler for light-weight GHC threads (created via forkIO),
providing for single-threaded concurrent programming.

Usually though, a concurrent program benefits from being multi-threaded – that is,
using multiple CPU capabilities triggered via the -N<n> RTS flag when compiled
with -threaded. The Runtime System creates one system thread for every capability
and schedules light-weight threads to run in parallel on its system threads.

An important caveat with the non-threaded runtime is that if a light-weight thread
has blocked a system call, the whole program will block. On the threaded runtime,
GHC can schedule light-weight threads to run on other system threads while the
other thread is blocked on a system call.

In Haskell, threads are identified by their ThreadId. One is returned by forkIO to
the main thread, and the current ThreadId can be retrieved with myThreadId. We
can use this ThreadId to throw exceptions from any thread to any other thread
asynchronously, using throwTo:

throwTo :: Exception e => ThreadId → e → IO ()

The killThread function throws a ThreadKilled exception to the target thread.
The forkIO function discards the ThreadKilled exception (also the exceptions
BlockedIndefinitelyOnMVar and BlockedIndefinitelyOnSTM):

-- file: forking.hs
-- outputs nothing
test1 = do
 tid <- forkIO $ threadDelay 100000000
 killThread tid

-- outputs exception: Prelude.undefined
test2 = do
 tid <- forkIO $ undefined
 killThread tid

If you need to catch all exceptions from a thread, use forkFinally:

forkFinally :: IO a → (Either SomeException a → IO ()) → IO ThreadId

Concurrency and Performance

[212]

In Haskell, when the main thread exits, all child threads are killed as well. Often it's
useful to wait for all threads to exit, or inform some other thread when a thread dies.
For this, forkFinally is the perfect utility:

-- waits for the child thread to exit
test3 = do
 mvar <- newEmptyMVar
 tid <- threadDelay 5000000 `forkFinally` _ -> putMVar mvar ()
 takeMVar mvar

Masking asynchronous exceptions
It's possible to mask asynchronous exceptions for a short period of time using
Control.Concurrent.mask. When a thread is in a masked state, no asynchronous
exception will be raised as long as the thread does not block, or is uninterruptible.
In principle, atomic operations such as operations on IORef, operations on MVar
that don't block, and STM transactions that don't use retry won't be interruptible.
The masked IO action is provided with a restore function, which restores the
masked state to what it was outside the mask:

mask :: ((forall a. IO a → IO a) → IO b) → IO b

The restore function is the only way to restore to an unmasked state in a current
thread. If mask is called from an already masked context, then its restore function
won't unmask exceptions. Furthermore, new threads created via forkIO inherit the
masked state of their parent, though it's possible to use forkIOWithUnmask to create
a new thread with a restore function that unmasks exceptions in the child thread:

forkIOWithUnmask :: ((forall a. IO a → IO a) → IO ()) → IO ThreadId

To ensure that, in a new thread, an exception handler is established and executed
despite asynchronous exceptions in a masked state while the main body is executed
in an unmasked state, the pattern we would use is:

mask_ $ forkIOWithUnmask $ \unmask →
 catch (unmask main_body) exception_handler

The mask_ function is like mask but without a restore function.

Note that this is subtly different from using forkFinally, because forkFinally
does not unmask exceptions in the main body if they were masked in the main
thread.

If you cannot be sure of the enclosing masking state, use forkIOWithUnmask
(usual in library code).

Chapter 7

[213]

If you need to mask exceptions around an interruptible operation, then this can
be done with uninterruptibleMask. Be warned though, it's easy to render your
program unkillable if the masked operation blocks for whatever reason.

Asynchronous processing
Executing asynchronously involves forking a computation to execute in another
thread and right after continuing to do other things. In interactive applications, it
is often useful to execute things in the background, in order not to block the user
interface for too long. Usually we want to use the results from the asynchronous
worker thread once it has finished. Sometimes we wish to cancel a long-running
asynchronous computation, in order not to leave unwanted jobs lying around.

Although it is totally possible to create asynchronous jobs with waits and cancels
using MVar and perhaps STM, the Async API in the async package provides much
nicer solutions.

But first, to be convinced there's nothing magical in the Async API abstraction, we'll
build something with just MVar and STM. So, forking multiple asynchronous threads
and waiting for their results is trivial with a few instances of MVar: just create an
MVar for every worker and make the workers put their results into one of the MVar
locations. Then, in the main thread, take each of the result MVar:

-- file: mvar-async.hs

import Control.Concurrent

doAsync :: MVar a -> IO a -> IO ThreadId
doAsync mvar job = forkIO $ do
 r <- job
 putMVar mvar r

main = do
 mvars <- sequence [newEmptyMVar, newEmptyMVar]
 sequence [doAsync mvar getLine | mvar <- mvars]
 results <- mapM takeMVar mvars
 print results

Concurrency and Performance

[214]

This works, but only as long as the asynchronous job does not throw an error. If
the thread errors then the MVar is left empty, leading to our program failing with a
BlockedIndefinitelyOnMVar exception. To fix this, we need to install an exception
handler that puts something into the MVar before the worker thread exits. This
improved version handles that:

doAsyncSafe :: MVar (Either SomeException a) -> IO a -> IO ThreadId
doAsyncSafe mvar job = mask_ $ forkIOWithUnmask $ \unmask ->
 do { r <- unmask job; putMVar mvar (Right r) }
 `catch` \e -> putMVar mvar (Left e)

This also ensures that the worker thread isn't disrupted by asynchronous exceptions
at any point, except for the asynchronous job itself, by using forkIOWithUnmask.

Let's take another case: waiting for either one of two jobs to complete. One solution
would be to use just one MVar and the tryPutMVar function in order to not block if
the other thread already filled the MVar.

Another solution involves STM. The obvious benefit to using STM is that this solution
composes seamlessly with other STM transactions. The following implementation of
eitherOr utilizes the STM primitive orElse to obtain a result when either of two jobs
return:

-- file: stm-either.hs

import Control.Concurrent
import Control.Concurrent.STM

eitherOr :: IO a -> IO b -> IO (Either a b)
eitherOr job_a job_b = do
 a <- doAsyncSTM job_a
 b <- doAsyncSTM job_b
 atomically $ fmap Left (takeTMVar a) `orElse` fmap Right (
 takeTMVar b)

doAsyncSTM :: IO a -> IO (TMVar a)
doAsyncSTM job = do
 tmvar <- newEmptyTMVarIO
 forkIO $ do r <- job
 atomically $ putTMVar tmvar r
 return tmvar

Chapter 7

[215]

I have omitted exception handling for clarity. Basically we just wait for one of two
TMVar variables to fill. But what if we would like to cancel one computation once
the other finishes? After all, it's not good to leave threads lying around, as running
threads cannot be garbage-collected. We would need to throw a ThreadKilled
exception (using killThread) or something similar to cancel a job.

Using the Async API
Instead of explicitly keeping track of and managing all our asynchronous threads, we
can utilize the Async API to do the hard lifting for us. For instance, the withAsync
combinator provides automatic cancellation:

withAsync :: IO a → (Async a → IO b) → IO b

In withAsync action (\a -> inner), the asynchronous job action is coupled
with the computation inner such that if inner finishes (with an exception or
otherwise), the asynchronous thread is killed if it is still running.

The Async type represents an asynchronous job. It encapsulates the ThreadId and
means to wait or poll the job's result (or a raised exception). To create an Async
without automatic cancellation, use async:

async :: IO a → IO (Async a)

One of the simplest operations on an Async is to wait for its result:

wait :: Async a → IO a

But we can also do more, like wait for one of multiple Async to complete, and
automatically cancelling all others when one finishes, by using waitAnyCancel:

waitAnyCancel :: [Async a] → IO (Async a, a)

We can also wait for Async within an STM transaction using waitSTM :: Async a →
STM a.

Async example – Timeouts
Let's take a concrete example using the Async API. Say we need to write a command-
line interface that reads lines of user input, but times out if the user hasn't finished
the line within five seconds. After the timeout, the prompt is reset.

Concurrency and Performance

[216]

One way to write this program is using withAsync, as follows:

-- file: async-cli.hs

import Control.Monad (forever)
import Control.Concurrent
import Control.Concurrent.Async

main = forever $
 withAsync getLine $ \userInput ->
 withAsync (threadDelay 5000000) $ \timeOut -> do
 res <- waitEither userInput timeOut
 case res of
 Left input -> print input
 Right _ -> putStrLn "Timeout!"

We use waitEither to wait for either of two Asyncs to complete. If a line was
received, then we print the line; and if a timeout was reached instead, we print
Timeout!. Finally, the other Async is cancelled.

Note that in this case what we do after one of the Asyncs has completed executes
fast (just print a line). But if it was something more complex, like if we wanted to
continue to some other part of the program, we should cancel the other Async before
continuing there. Instead of cancelling manually, we can rewrite our program such
that we exit both withAsync actions before processing the result. This ensures that
neither Async is left running:

main2 = forever $ do
 res <- withAsync getLine $ \userInput ->
 withAsync (threadDelay 5000000) $ \timeOut ->
 waitEither userInput timeOut
 case res of
 Left input -> print input
 Right _ -> putStrLn "Timeout!"

It turns out our res computation is already captured by the race combinator in the
async library:

race :: IO a → IO b → IO (Either a b)

We can rewrite our program using race, yielding very concise code:

main3 = forever $ do
res <- getLine `race` threadDelay 5000000
case res of
Left input -> print input
Right _ -> putStrLn "Timeout!"

Chapter 7

[217]

The race combinator is not only more concise but quite a bit faster too; Async relies
on STM to provide the flexibility, but race can be (and is) implemented using MVar and
throwTo. As an exercise for the reader, consider how you would implement race using
MVar and throwTo, such that the other computation gets killed when the first finishes.

Composing with Concurrently
The async library provides two types: the Async type we have already met and a
type called Concurrently:

newtype Concurrently a = Concurrently { runConcurrently :: IO a }
instance Applicative Concurrently
instance Alternative Concurrently
instance Monoid a => Monoid (Concurrently a) -- since 2.1.0

Values of type Concurrently are built simply by wrapping an IO action with
the exposed constructor. The magic of Concurrently lies in its Applicative,
Alternative, and Monoid instances. These instances allow composing actions
concurrently by either waiting for results from all actions (Applicative, Monoid)
or either of multiple options (Alternative).

So, to compose either of two alternatives, use (<|>):

-- file: concurrently.hs

import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async

lineOrTimeOut :: Concurrently (Either String ())
lineOrTimeOut =
 Concurrently (fmap Left getLine) <|>
 Concurrently (fmap Right (threadDelay 5000000))

And to compose many into one, use (<*>) and (fmap/(<$>)):

threeLines :: Concurrently (String, String, String)
threeLines = (,,)
 <$> Concurrently getLine
 <*> Concurrently getLine
 <*> Concurrently getLine

Concurrency and Performance

[218]

To get the result of Concurrently, apply runConcurrently and execute the
resulting IO action:

> runConcurrently lineOrTimeOut
Right ()

The number of concurrent threads can be determined from the number of
Concurrently constructors there are. Wrapping and composing IO actions this way
using Concurrently has many nice properties:

• There is no need for any special combinators, just the full power of the
Functor, Applicative, and Alternative classes

• Composition using the Alternative instance ensures that unused actions
get cancelled

• Composition using Applicative instance ensures that all results are waited
for before returning, and makes it hard to forget about concurrent jobs

Lifting up from I/O
In real-world applications, it's quite usual for much of the code base to live
in monads or monad stacks. In such situations, concurrency operations from
Control.Concurrent become challenging, because they all are monomorphic in
IO. Sometimes this isn't much of a problem, because we can use liftIO from the
MonadIO class to lift arbitrary IO actions.

But MonadIO leaves two important cases uncovered. The first one is about other base
monads besides IO, such as STM. Though more limited in its use cases, it's sometimes
desired to have a monad stack on top of STM. The other case is about exception
handling, for which MonadIO is quite insufficient; all of Control.Exception is
monomorphic in IO, meaning a lot of plumbing if they are used within a monad stack.

In this chapter, we'll look at some solutions to both cases. Another thing that's
often desired, and which we'll cover first, is top-level mutable references. In some
languages these are called globals, and though they're often shunned, Haskell kind
of supports them but in a way that's more useful.

Top-level mutable references
All references (IORef, MVar, TVar) are created in the IO or STM monad. It is possible
to escape IO using unsafePerformIO, and it's safe to do so when used correctly.
One such safe use is at top-level accompanied with a NOINLINE pragma:

Chapter 7

[219]

-- file: top-level.hso
import Data.IORef
import System.IO.Unsafe (unsafePerformIO)

globalVariable :: IORef String
globalVariable = unsafePerformIO (newIORef "")
{-# NOINLINE globalVariable #-}

It's important to set the variable to non-inlinable, because if it inlines, a new IORef
might get created on reference. Equally important is to ensure the top-level variable
has a monomorphic type. For instance, this is bad:

globalVar :: Num a => IORef a
globalVar = unsafePerformIO (newIORef 0)

Even if globalVar is not inlined, it now represents a function (with an implicit class
dictionary parameter). Effectively this means that a new IORef is created every time
we reference globalVar.

When it comes to transactional variables in STM, it should be noted that atomically
cannot be used inside unsafePerformIO (weird things will happen). Instead, the IO
variations should be used, such as newTVarIO which lives in IO and can be used with
unsafePerformIO. The same considerations about inlining and monomorphic typing
apply for transactional top-level variables as well.

Lifting from a base monad
The transformers library provides the MonadIO class to lift from base IO. With base
we mean the bottom monad of a monad transformer stack. The transformers-base,
library, on the other hand, provides a MonadBase class to lift from an arbitrary base:

class MonadBase b m | m → b where
 liftBase :: b a → m a

Type variable b represents the base (for example, IO) and m is the monad to lift
operations to. For MonadBase IO, liftBase is equivalent to liftIO. The benefits of
MonadBase are mostly in its other base instances, such as STM or ST. For instance, if
we were writing complex STM transactions and wanted to wrap some common data
with a Reader monad on top of STM:

-- file: transactionm.hs

import Control.Monad.Base
import Control.Monad.Trans.Reader
import Control.Concurrent.STM

type TransactionM a = ReaderT String STM a

Concurrency and Performance

[220]

To lift STM transactions to TransactionM, we could use Control.Monad.Trans.
lift. But if the stack was bigger, we would end up doing lift . lift . lift
or similar, and if we instead had our TransactionM be a newtype, it would be
impossible to lift STM operations into it using lift. By using liftBase, we can
circumvent both of these restrictions, because a single liftBase will lift through an
arbitrary stack as long as the base monad is sitting at the bottom.

The newtype case is straightforward; we can derive the instance for MonadBase:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype TransactionM' a = TransactionM' (ReaderT String STM a)
 deriving (Functor, Applicative, Monad
 , MonadReader String, MonadBase STM)

If on the other hand you don't need the full power of STM, then the stm-lifted
library provides basic atomic operations such as readTVarIO, dupTChanIO, and so
forth on transactional variables lifted into MonadIO.

Lifting base with exception handling
Lifting operations using MonadBase was very similar to MonadIO, just more general
in the base monad. But lifting operations from Control.Concurrent is trickier.
For instance, how do we lift forkIO into, say, WriterT Int IO? We have to decide
what happens with the added state from the transformers. In the case of forkIO,
that's simple: just duplicate the current state into the new thread. But how about an
exception handler of catch?

catch :: Exception e => IO a → (e → IO a) → IO a

A generalized version of catch provided by the lifted-base package has this
signature:

module Control.Exception.Lifted

catch :: (MonadBaseControl IO m, Exception e)
 => m a → (e → m a) → m a

Like MonadBase, MonadBaseControl is a type class that allows lifting operations
from the base monad. As the name implies, MonadBaseControl adds something
extra to the lifting. The type class definition is also entirely different from
MonadBase:

class MonadBase b m => MonadBaseControl b m | m → b where
 type StM m a :: *
 liftBaseWith :: (RunInBase m b → b a) → m a
 restoreM :: StM m a → m a

Chapter 7

[221]

Fortunately, it isn't necessary to understand how this class works in order to use
MonadBaseControl; in terms of user interface, it looks just like MonadBase (or indeed
MonadIO).

But what is useful to understand is the main implication of MonadBaseControl,
namely that it saves the added monadic state (as a value of associated type StM m
a) and uses this saved state to run computations such as the exception handler in
catch. This means that the computation in an exception handler is executed using
the monadic state before calling catch. What's more, the monadic state from a
computation that throws an exception is also discarded.

Apart from generalizing Control.Concurrent and Control.Exception with
module names suffixed with Lifted, in the lifted-base library there are
generalized versions of some other modules in base as well, including, for example,
Data.IORef.Lifted. Some functions generalize well with just MonadBase IO, and
those are left as such. Others that require monadic state controlling are marked with
MonadBaseControl in their type signatures.

Because of the associated type in MonadBaseControl class, making an instance for
a newtype is substantially harder than MonadBase. Sadly, GHC won't derive any
instances for classes with associated types, and the higher-order class functions sure
aren't making our lives any easier.

For reference, here's an example of a manually-written derived instance for a
newtyped monad stack:

-- file: newtype-monadbasecontrol.hs

newtype Handler a = Handler
 { unHandler :: LoggingT (StateT HandlerState (ReaderT Config IO))
a
 } deriving (...)

instance MonadBaseControl IO Handler where
 type StM Handler a = StM
 (LoggingT (StateT HandlerState (ReaderT Config IO))) a

 liftBaseWith f = Handler $ liftBaseWith $ \q -> f (q . unHandler)

 restoreM = Handler . RestoreM

Concurrency and Performance

[222]

Summary
In this chapter, we started by looking at light-weight threads and forkIO. Closely
related to this, we looked at mutable references IORef and MVar in concurrent
settings. Atomic operations on those reference types were quite limited, which is
why we next dived into STM for arbitrarily complex transactions. Then we considered
a nice higher-level abstraction over an asynchronous program, the Async API. One of
the main benefits of using Async is easy and automatic cancellation of asynchronous
jobs. Finally, we lifted concurrency operations into complex monad stacks.

In the next chapter, we will take a deeper look at the Runtime System, scheduling,
and garbage collection. We will look at what options there are to tweak both the
compiler and the Runtime System. We will learn how the GHC compilation pipeline
works and how to read the intermediate core language that GHC produces just
enough to spot possibly missed optimizations.

[223]

Tweaking the Compiler and
Runtime System (GHC)

In the previous chapter, we got programmed concurrent applications and used
the related powerful features of GHC. Next we concentrate on tuning GHC and its
Runtime System. For the best performance, it's necessary to tune the compiler and
Runtime System according to the application's specific needs. For instance, heavy
number crunching benefits greatly from a different compilation path using LLVM,
at the expense of longer compilation times and portability. There are lots of useful
options, tricks, and tweaks available in GHC that we will look at in this chapter.

This chapter attempts to highlight the most important flags and options in GHC
and RTS. It's not meant to be a substitute for GHC UserGuide, which is much more
comprehensive. Instead, we cover options in a systematic and easy-to-follow way,
starting with compiler options and proceeding with Runtime System options.

At the end of this chapter, the reader will understand the big picture of compiler
phases in GHC and the most important options that affect compilation, optimization,
code generations, linking, and preprocessing in GHC. The reader will be familiar
with the Runtime System, its scheduler, green threads, memory management, and
the garbage collector. We will mention some important configuration options that
affect Runtime System performance or enable tracing features.

An additional Haskell feature more or less related to GHC is Safe Haskell, which
helps programmers in trusting libraries to do what they promise. In essence,
Safe Haskell enforces referential transparency: a Safe Haskell module cannot use
unsafePerformIO, for example. In this chapter, we will learn how Safe Haskell can
help in trusting code and validating it We will take a look at the following topics:.

• Compiling and linking with GHC
• Configuring and tuning GHC and the Runtime System

Tweaking the Compiler and Runtime System (GHC)

[224]

• Compiling safely with Safe Haskell
• Understanding memory management, GC, and scheduler in Runtime System

Using GHC like a pro
The Glasgow Haskell Compiler is a mighty beast. It's a product of almost three
decades of active development and innovation. The lead developers have, for a
long time, been Simon Peyton Jones and Simon Marlow. The compiler is written
in Haskell itself, though the Runtime System is written in C and C--. GHC is open
source and licensed under a permissive three-clause BSD license.

To be able to effectively use the compiler, it's necessary to understand the big steps
GHC performs when compiling Haskell code. GHC consists of a front end, back end
and something that goes in-between.

The GHC front end performs type-checking and type inference, after which Haskell
code is transformed into an intermediate language called Core. Core is like Haskell
but syntactically simpler. Much of GHC's magic happens as code transformations
from Core to Core: strictness analysis, optimization, rewrite rules, inlining, automatic
unboxing of arguments, and so on.

The GHC backend takes Core code and turns it into machine code. Core is first
transformed into another intermediate language called STG (short for Spineless
Tagless G-machine) which is essentially a language for expressing graph reduction.
Then, STG is transformed into C--. Finally, C-- is either directly converted into
machine code using GHC's native code generator, converted to LLVM code for
compilation with LLVM, or printed as C code to be compiled with GCC. However,
the C route is generally deprecated and is not included in usual builds of GHC
(it may still be used for cross-compiling).

Next, we will consider the most important GHC flags and common use cases.
For a complete overview, consult the GHC UserGuide.

Operating GHC
There are a few ways GHC can be invoked.

The most basic form is ghc program.hs. This compiles a single-module Haskell
program. To compile a multi-module program, that is, one that consists of multiple
.hs files, use ghc --make Main.hs. The --make flag tells GHC to automatically
resolve dependent source files from module declarations and to compile them.

Chapter 8

[225]

module A where
import B
import C

files: A.hs, B.hs, C. hs

ghc --make A.hs

The multi-module mode of GHC has advantages as opposed to a hand-crafted
Makefile: automatic dependency resolution, cached compilation and parallel
compilation using the -j<n> flag. Most of the time though Cabal and cabal-
install are used in developing multi-module projects, which takes care of calling
GHC with --make and possibly -j.

Other GHC modes of operation are interactive, expression evaluation, and runghc.
The interactive mode (flag -i) is exactly just GHCi, while expression evaluation (flag
-e <expr>) is like the interactive mode, but executes just one Haskell expression
given as a command-line argument. The runghc executable that ships with GHC
evaluates a whole Haskell module in the interactive mode:

$ runghc <<<'main = putStrLn "Hello World"'

Hello World

Multiple options that affect GHC's behavior can be useful in Haskell development.
For instance, in some cases GHC doesn't automatically detect that something that
affects the resulting program has changed, and GHC doesn't trigger recompilation
as it should. Experimenting with different optimization flags is one such scenario.
In such cases, the flag -fforce-recomp is useful. It forces recompilation of target
modules.

When doing type-error-driven development, some people prefer seeing the top-most
error first. By default, GHC prints errors in the order it encounters them, leading to
the latest printed error being bottom-most. The-freverse-errors flag reverses this
order.

Flags related to a warning that GHC produces are especially useful. It's good practice
to always develop with -Wall to get warned about a lot of possible problems in code,
such as unused variables, inexhaustive case matches, and more.

Use -Werror to turn all warnings into errors. This flag is useful for addressing all
warnings in a large codebase, but it isn't advisable to use -Werror by default because
it can unnecessarily break builds with different tool or library versions. Combine
-Werror with -fforce-recomp to not silently suppress warnings with cached
module builds.

If using stack, the --pedantic option executes GHC with -Wall -Werror.

Tweaking the Compiler and Runtime System (GHC)

[226]

Circular dependencies
Without doubt, every Haskell programmer has bumped into a circular dependency
problem. Circular dependencies are not directly supported by GHC, due to the way
the Haskell module system works. There is limited support for mutually recursive
modules in GHC, but they should be avoided if at all possible. There is no support
for mutually recursive packages, which means that mutually recursive modules
make it impossible to reasonably split a project into separate packages later.

To demonstrate that mutually recursive modules are possible, consider these cyclic
modules:

module B where
 import A (a)
 b = a ++ "b"

module A where
 import B (b)

 a = "a"
 main = print b

Attempting to compile this is futile:

$ ghc --make A.hs

Module imports form a cycle:

 module 'A' (A.hs)

 imports 'B' (./B.hs)

 which imports 'A' (A.hs)

However, with a few additions we can make this cycle compile. First, we need to
create a B.hs-boot file which holds an abbreviated version of module B. Essentially,
we need to lay out exposed data types and function signatures. We don't need to
give function definitions:

-- file: B.hs-boot

module B where
 b :: String

Then we need to break the cycle by adding a SOURCE pragma to where we import B,
in module A:

module A where
 import {-# SOURCE #-} B (b)
 ...

Chapter 8

[227]

In big projects with a lot of isolation in modules, it might become painfully hard to
design module dependencies so that there are no cycles. Fortunately, most of the
time that extra work will pay off as better design.

Adjusting optimizations and transformations
A big section of GHC's Haskell compilation pipeline is code transformations from
Core to Core. GHC performs strictness analysis on Core to compile functions with
strict arguments more efficiently, because, for instance, strict arguments can be safely
unboxed. The inliner reduces indirection in the program, and GHC's inliner is quite
aggressive. A plethora of individual optimizations are performed if enabled. Rewrite
rules written by library authors express algebraic properties that help the compiler to
identify and eliminate expensive identities.

GHC does not try to optimize your code unless a -O[<n>] flag is specified. There
are two good reasons for this default. Firstly, compilation with optimizations takes
considerably longer, which makes it less suitable for fast iteration. Secondly, code
transformations are not always benign; if the sophisticated heuristics guess wrong,
the result is slower or even incorrect code. Even supposedly benign optimizations
enabled by -O might produce slowdown in some corner cases, though such cases are
rare. First observing performance without optimizations gives a baseline from which
to start optimizing.

The state hack
Some optimizations jeopardize performance more easily than others. One
particularly nasty effect is observed when the heuristics of an optimization called
state hack makes a bad guess. In state hack, GHC attempts to optimize "stateful"
computations such as IO or ST that carry a state token by eta-expansion; by assuming
that an IO () computation is only performed once, we can transform (representing
IO with RealWorld → (RealWorld, a)) the following:

foo a = let b = … in
 \w1 -> let (w2, ()) = action1 b w1
 (w3, ()) = action2 w2
 in (w3, ())

The following version uses just one function call, instead of a nested lambda. This is
a much faster call:

foo a w1 = let b = …
 (w2, ()) = action1 b w1
 (w3, ()) = action2 w2
 in (w3, ())

Tweaking the Compiler and Runtime System (GHC)

[228]

However, if we are executing an action (foo a) multiple times, where a is fixed, and
computing b is expensive, the latter version will exhibit a massive slowdown due to
calculating b again every time!

The state hack heuristics are quite good in newer GHCs and it's hard to find a case
where a slowdown is perceived. However, if you think that state hack is slowing
down your code, give it a try and compile with -O -fno-state-hack.

Floating lets in and out
Other optimizations that interact with let bindings are -ffloat-in and -ffull-
laziness, the latter of which would perhaps be better described as "float-out
Both are enabled by -O. Floating lets bindings nearer their use site and possibly
eliminates unnecessary allocations when the code branches, so that the binding ends
up never being used. On the other hand, floating outwards with what is called full-
laziness transformation tries to increase sharing and so might also increase memory
residency.

Full laziness does not compose well with unsafePerformIO tricks. For a while now,
imagine this unsafeVar in scope:

-- file: full-laziness.hs

import Control.Monad
import Control.Concurrent.MVar
import System.IO.Unsafe

unsafeVar :: a -> MVar a
unsafeVar i = unsafePerformIO (newMVar i)
{-# NOINLINE unsafeVar #-}

These are both bad, that is, they produce only a single MVar:

let xs = replicate 10 (unsafeVar 1)
xs ← replicateM 10 (return (unsafeVar 1))

But by using forM and compiling with -O0, this one produces 10 distinct MVars:

xs <- forM [1..10] $ _ -> return (unsafeVar 1)

The preceding however breaks under -O, because the unsafeVar is floated up,
producing code like this:

 xs <- let x = return (unsafeVar 1) in forM [1..10] $ _ -> x

Chapter 8

[229]

Turning off full laziness via -fno-full-laziness will make this code correct
again. Another way to circumvent full laziness is to artificially force a call to
unsafePerformIO to depend on the inner context. In our example, we could do this:

xs <- forM [1..10] $ \i -> return (unsafeVar' i 1)

unsafeVar' :: b -> a -> MVar a
unsafeVar' _ i = unsafePerformIO (newMVar i)
{-# NOINLINE unsafeVar' #-}

However, this kind of code, using unsafePerformIO for no real reason, shouldn't
be written unless there is a real reason for masquerading IO computations as pure
values.

Eliminating common subexpressions
Here's another thing to be wary of with unsafe tricks: the Common Subexpression
Elimination optimization (CSE). Take this code:

-- file: cse.hs
main = do
 let a = unsafeVar 5
 b = unsafeVar 5
 takeMVar a
 takeMVar b

Again, all is well under -O0. But with -O, which enables -fcse, GHC will infer that a
= b, producing code akin to:

main = do
 let a = unsafeVar 5
 takeMVar a
 takeMVar a

With the -fno-cse flag, we can make this work. Note that CSE is not beneficial in
general. We might end up retaining a big thunk for long periods, whereas without
CSE it could be allocated anew once needed. However, a much bigger concern for
CSE is inductive datatypes such as linked lists. For instance, with too eager CSE, this
program would blow up in memory (lists get floated out into a single list, retained
between calls to sum):

main = do
 print $ sum [1..10000000]
 print $ sum [1..10000000]

Tweaking the Compiler and Runtime System (GHC)

[230]

Liberate-case duplicates code
Liberate-case is one of those transformations that generates more code. Actually, in
unfortunate cases, it can cause an explosion in code size. That is because liberate-case
always creates new code. For instance, consider this function:

-- file: liberate-case.hs

option = ('a', 'b')

fun x = case option of
 (a, _) -> a : fun x

If this recursive function is compiled without liberate-case optimization, then
fun ends up doing a pattern match on every recursive evaluation. Because option
occurs free in fun, it would be enough to pattern match it only once because its value
wouldn't change from one recursive iteration to the next. Liberate-case would unroll
the definition of the recursive function fun once and eliminate free terms, producing
code equivalent to:

fun x = case option of
 (a, _) -> a : (let f x' = a : f x' in f x)

Although liberate-case was useful in this simple example, sometimes we just don't
want it. Notably, the liberate-case transformation does not interact too well with a
rules-based fusion. It can lead to lots of duplicated code, especially when combined
with keen inlining. A lot of duplication in Core implies a harder time for other
optimizations, thus hurting performance. For instance, the authors of the Repa
library suggest using -fno-liberate-case.

Compiling via the LLVM route
The LLVM compilation route should be preferred over the default native code
generator when performance matters. LLVM is an intermediate representation at the
level of assembly code. LLVM is more recent and provides more opportunities for
optimizations at the lowest level.

Generated LLVM code from GHC is in practice always at least as fast as, and usually
faster than, whatever the native code generator produces. The main downside of
LLVM is that it's slower to compile than using the native code generator, which
makes a big difference in slowing down development cycles.

To choose the LLVM route, say -fllvm to GHC. Because LLVM has its own
optimization flags that are different from GHC's, it makes sense to pass -optlo-O3
to GHC, which in turn passes -O3 to LLVM , which enables some optimizations in
LLVM's intermediate representation.

Chapter 8

[231]

GHC has rough support for Single Instruction, Multiple Data (SIMD) instructions
in the form of GHC primitives defined in GHC.Prim module. They only work if using
the LLVM backend. As of now, the representation is quite limited and their use
cases questionable. However, in principle, substantial work libraries such as vector
could in the future be made to use SIMD instructions. For the time being, SIMD
is not explicitly used in the Haskell ecosystem, though intermediate LLVM might
incorporate some optimizations that use SIMD.

Linking and building shared libraries
By default, GHC statically links Haskell libraries to executables it produces.
This means that an executable built with GHC is usually compatible in a similar
environment which has no Haskell-specific libraries installed. It is possible to link
Haskell libraries dynamically using the-dynamic flag to save disk space.

GHC is also able to produce regular shared objects with the-shared flag to be used
from C, for instance. For shared objects, it's also best to give a GHC flag -fPIC, to
generate position-independent code.

While Haskell libraries are normally linked statically, non-Haskell libraries are
usually linked dynamically. GHC uses the system linker to link with non-Haskell
libraries, and we can pass it arguments via GHC with the-optl prefix. So the GHC
option -optl-static will link other non-Haskell libraries statically. Static linking
may help with portability.

The GHC Runtime System, which is necessary to execute Haskell programs built
with GHC, is configured at linking time. Multiple flags control the Runtime System
that gets linked into an executable: -threaded links with the multi-core version
of Runtime System that can run on multiple OS threads;-with-rtsopts=<opts>
specifies RTS flags at link time;-debug enables additional debug event output from
RTS (configured further via RTS flags); and -eventlog enables event tracing (for
ThreadScope).

The -rtsopts={none,some,all} linker flag controls which Runtime System flags
can be given for the executable itself via +RTS. By default this is some, which enables
some safe options. Simple -rtsopts enables all configurable options (the exact set of
options depend on the given GHC flags), identical to -rtopts=all.

Tweaking the Compiler and Runtime System (GHC)

[232]

Preprocessing Haskell source code
GHC supports using the C preprocessor (CPP) on Haskell source files. CPP is a
simple macro language which enables conditional computation and macros. It is not
enabled by default but is behind the language extension -XCPP. It is advisable to only
use the C preprocessor for conditional compilation, that is, do not define constants
using CPP.

The problem with CPP is that it is not type-checked and that it understands C, but
not Haskell. CPP easily messes up Haskell code by expanding macros in string
literals and comments, changing significant whitespace and identifiers containing '
or # characters. In particular, multi-line string literals almost certainly won't work
with most C preprocessors.

Acceptable use cases for CPP in Haskell are:

• Compiling differently for different operating systems
• Compiling for different versions of libraries for backwards-compatibility
• Disabling or enabling some features in production versus development

versions

CPP is used with GHC just like it is used with C. Macros can be defined from the
command-line using -D and undefined using -U flags for GHC, just like with C. For
example, the following program only prints when -DDEVELOPMENT is given for GHC:

-- file: cpp.hs

{-# LANGUAGE CPP #-}

main = do
#ifdef DEVELOPMENT
 print "just debugging"
#endif
 return ()

CPP flags can be hidden behind Cabal flags in a cabal file, using the ghc-options
field to conditionally pass CPP options:

flag development
 description: Turn on development settings
 default: False

library
 if flag(development)
 ghc-options: -DDEVELOPMENT

Chapter 8

[233]

GHC also supports arbitrary custom preprocessors. Use the-F flag to tell GHC
to preprocess and -pgmF=<executable> to tell it which program to use as the
preprocessor. Preprocessing can be enabled on a per-module basis using the {-#
OPTIONS_GHC -F #-} pragma. The preprocessor program itself could be defined,
for example, in a cabal file.

Enforcing type-safety using Safe Haskell
Safe Haskell is an effort to help running untrusted code safely. It's a pretty unique
thing, though it is still bit rough around the edges. The main purposes of Safe
Haskell include to machine-check untrusted code, define a safe subset of Haskell that
cannot use unsafe functions, call foreign C, or hang the system.

Safe Haskell contains language extensions (-XSafe, -XTrustworthy, and -XUnsafe)
and the compiler flag -fpackage-trust. Safe Haskell marks every module either
Safe, Trustworthy, Unsafe, or Safe-Inferred. Only modules that are either Safe or
Safe-Inferred are machine-checked to use only safe language. However, safe modules
may still use modules that don't fit to only safe language. This leads us to transitive
trust, which we will look at in a moment.

Any module can be marked Trustworthy, which is essentially the library author
promising that the exposed API is safe, although internally it might not be. It's now
up to the user to decide whether to trust the author and thus the library.

Enabling any of the Safe Haskell extensions enables one new language feature, the
safe import keyword:

{-# LANGUAGE Unsafe #-}
import safe qualified Data.List as List

A module imported with safe guarantees that the imported module is trusted at
compile-time. Trust is determined differently, whether the-fpackage-trust flag is
in effect or not. For "safe" imports, it holds that:

• -fno-package-trust: Module is trusted if it is not marked unsafe.
• -fpackage-trust: Module is trusted if it's marked Safe or Safe-Inferred,

or Trustworthy with the module's package trusted in the package db.
All transitive dependencies must also be trusted.

These points hold for all imports for a module that is -XSafe. For such modules,
the language is restricted: everything unsafe is banned. Some surprising things are
considered unsafe in Safe Haskell, including generalized newtype deriving, template
Haskell, overlapping instances, rewrite rules, and Typeable.

Tweaking the Compiler and Runtime System (GHC)

[234]

If a library author wants to use unsafe language features but still make the library
available to Safe Haskell, she/he marks the library as Trustworthy. This doesn't
restrict the language, but gives the library user an option to trust. Local packages are
marked trusted using ghc-pkg trust <package>-<version>.

Safe Haskell does not protect from malicious code being run at compile-time.
For example arbitrary executables could be called during compilation as custom
preprocessors. Safe Haskell does not even aim to protect from compile-time issues.
The solution for that is to build with isolated privileges.

Tuning GHC's Runtime System
GHC's Runtime System is not something that could be called elegant, consisting
of 50,000 lines of C and C-- (a C-like language) code that does a lot of managerial
things to execute compiled Haskell programs. The RTS is responsible for managing
exceptions, implementing GHC's primitive functions (those suffixed with a magic
hash), and scheduling light-weight threads. Memory management, profiling
facilities, and STM are all implemented in RTS, and more.

How is this relevant to a Haskell programmer? Knowing the scope and limitations
of the RTS is one thing. Also, the RTS isn't so much a black box; it can provide
useful feedback about running programs, such as memory usage, garbage-
collection statistics, profiling information, and so forth. Many aspects of the RTS are
configurable via flags, whose optimization is necessary to max out performance.
Different applications utilize the RTS in wildly different ways.

Runtime System flags are set at program startup:

./program +RTS opts -RTS

Using -RTS is optional, marking the end of Runtime System options and the
continuation normal program arguments.

One thing that rarely crosses one's mind is that, because GHC is built with GHC
itself, all discussions about the Runtime System apply to GHC itself. You can pass
Runtime System options to the compiler with +RTS just like to any normal Haskell
program.

If you wish to specify RTS options to the program being compiled, use the GHC flag
--with-rtsopts.

Chapter 8

[235]

Scheduler and green threads
GHC implements light-weight threads, commonly known as green threads. These
threads use less memory than traditional operating system threads and are thus
lighter to schedule. Threads are represented by Thread State Objects (TSOs). In
Haskell, ThreadId corresponds to a TSO:

data ThreadId
 -- instance Eq, Ord, Show

Each TSO has a stack allocated with it. The default stack size is 1 kilobyte (controlled
via the RTS flag -ki). TSOs are garbage-collected. Usually, TSOs are retained by a
capability's run queue. Capability is a GHC name for an operating system thread the
RTS is running. Each capability has its own run queue. In other situations, TSOs are
retained in waiting lists on a concurrency variable such as an MVar.

Most of the memory overhead in a green thread comes from the stack size (1k).
Reducing this to smaller values via the-ki RTS option might improve performance
when spawning a lot of very small threads frequently. Conversely, lots of fat threads
may benefit from bigger values.

When using the threaded runtime, the most important RTS option is -N<n>. This
option controls the number of capabilities in use, loosely corresponding to the
number of cores. On systems with more than two cores, it's rarely useful to set -N
even to the number of cores on the system, because there are likely other programs
running on your system that may hinder the RTS scheduler's performance. The
number of capabilities can also be changed from code using setNumCapabilities.

Sparks and spark pool
Remember how we used Control.Parallel.par for requesting parallel evaluation?
What the par operator actually does is that it allocates a spark in a capability's spark
pool. Sparks are really cheap, because they're just pointers in a circular buffer. Valid
sparks are pointers to unevaluated thunks – work that could be performed.

A spark is turned into a green thread when there are no threads in the run queue.
Also, the scheduler tries to share sparks with other idle capabilities. This is
important, because usually sparks are added to the spark pool of the currently
executing capability which might be reserved for a long time. It is more efficient
for each capability to have their own spark pool than a global spark pool, because a
global pool would require acquiring a lock before adding sparks.

Tweaking the Compiler and Runtime System (GHC)

[236]

Bounded threads and affinity
Normal green threads (created with forkIO) may get transferred at almost any time
from one capability to another. Usually, this is not a problem. In fact, most of the
time automatic migration results in very good performance. There are, however, two
special cases where forkIO might be insufficient.

The first case is merely an optimization: sometimes it may be possible to get better
performance by fixing threads to capabilities; for example, you are sure that threads
interact in such ways that they shouldn't migrate between capabilities. These
should be extremely rare cases; carelessly fixing capabilities can result in degraded
performance. Nonetheless, using forkOn it's possible to fix a thread's capability:

forkOn :: Int → IO () → IO ThreadId

Another case that's more common is related to foreign calls to or from C. Some
foreign calls depend on OS-thread-local state. This means that a thread that's
interfacing with a C library which depends on thread-local state (OpenGL, for
example), should use the forkOS function instead. A thread forked with forkOS is
bounded to an operating system thread – a bounded thread:

forkOS :: IO () → IO ThreadId

In particular, the main program is always a bounded thread. Unbounded threads
usually yield better concurrency performance than bounded threads, which is why
it's discouraged to do lots of work in the main thread in a concurrent program.
Instead, fork worker threads using forkIO or use runInUnboundThread (a
runInBoundThread exists, too).

Indefinite blocking and weak references
The BlockedIndefinitely family of exceptions come with a detail that's not
immediately apparent. In principle, a thread will not receive an exception of the
blocked indefinitely kind as long as some other thread is holding a reference that
could be used to unblock the thread. In the case of BlockedIndefinitelyOnMVar,
one such reference is the MVar itself; we can unblock a takeMVar with a putMVar in
another thread (or the other way around).

The nitty-gritty detail is, however, that just a reference to a ThreadId is enough to
prevent blocked indefinitely exceptions from being thrown. After all, we could throw
arbitrary asynchronous exceptions (including ThreadKilled) to the blocked thread
using throwTo.

Chapter 8

[237]

To keep a reference to a ThreadId and still allow that thread to receive blocked
indefinitely exceptions, we can make a weak reference to the ThreadId instead of
a direct reference. The following program doesn't retain a reference to the ThreadId
but just a Weak ThreadId, resulting in the child thread dying:

-- file: weak-threadid.hs

import Control.Concurrent
import Control.Concurrent.MVar

main = do
 tid <- forkFinally (do { var <- newEmptyMVar
 ; takeMVar (var :: MVar ())
 }) print >>= mkWeakThreadId
 threadDelay 10000000
 print =<< deRefWeak tid

This outputs thread blocked indefinitely in an MVar operation, perhaps surprisingly
followed by a Just value. The doRefWeak function de-references a weak reference,
returning nothing if the value had been GC'd, or otherwise the value wrapped
in Just. In this case, the garbage-collector hadn't yet collected the unnecessary
ThreadId.

Heap, stack, and memory management
Due to immutability, Haskell programs produce lots of memory traffic. Or, in
garbage-collection terms, a lot of garbage is produced. However, immutability
greatly simplifies garbage collector implementation and enhances its performance.
The key trick used by memory management in Haskell is from the following
observation: a value can never refer to values newer than itself, nor can it refer later
because values are immutable.

GHC's GC is generational. Newer data is subject to garbage collection in the first
generation. If data survives the first GC generation, it's retained in the second
generation. By default there are two generations. New data is first allocated in the
allocation area (default size 512 KB). When the allocation area is filled, the first
generation of GC is performed (minor GC). Only live data is kept and retained in the
main memory. Everything else just gets removed.

Almost all Haskell data lives in the heap: data constructors and fields, functions,
thunks, mutable and transactional variables (STM), TSOs, and so on. Types that can
be inhabited by bottom (_|_), undefined, must be represented by a pointer. Such
types are called lifted. In general, types that are represented by pointers are called
boxed types. Boxed unlifted types exist too.

Tweaking the Compiler and Runtime System (GHC)

[238]

We can control minimum and maximum heap size with the RTS options -H and
-M, for example,-H1G. The Runtime System will allocate more space for the heap as
it grows in size (as long as it doesn't grow over the maximum size specified by -M,
which is unlimited by default). The benefit of specifying a larger starting size for the
heap is that there's less need for re-allocation. If the program's memory usage varies
a lot over time, it improves overall performance to specify a bigger base heap size.

Heap usage is profilable, as discussed in the previous chapter on profiling. There's a
technical overhead in heap profiling that's accumulated in every heap object as some
extra fields. Profiling tooling subtracts that memory overhead exactly in reporting,
but some programs' performance might be drastically degraded under heap
profiling.

Evaluation stack in Haskell
In traditional, eagerly-evaluated languages, when an exception occurs often, a call
stack is printed, which shows the stack of functions or methods that were called to
produce the error. In Haskell, with lazy evaluation, there's no need to keep track of
a call stack (though in newer versions of GHC there's some support for call stacks to
help debugging partial functions).

There is, however, something called stacks in the Runtime System. Instead of functions
or methods, these stacks hold pattern matches; they're sort of evaluation stacks. When
a thread is evaluating a thunk, there's a stack associated with the evaluation. This is
where stack overflows occur in Haskell, for example, in a non-strict left-fold. In a less
dramatic, more common case, a stack is filled with a lot of case expressions, just to be
collapsed later on – a classic space leak.

Noticing space leaks in the stack is a tricky business. Often big stacks are evaluated
before being exhausted, but still consume unnecessary amounts of resources. It's
possible to limit the maximum size of one thread's stack using the RTS option -K,
for instance,-K1k. The default limit is 80% of physical memory. Often big stacks are
perfectly valid, which is why this approach doesn't always work.

Tuning the garbage collector
Along with memory management in Haskell comes the garbage collector.
It's multi-threaded (when using the threaded runtime) and generational. Lots
of GC options are tunable. It is also in the GHC developer's interests to experiment
with different GC settings, to see what works best in a lazy and pure language.

Chapter 8

[239]

Generational garbage collectors sort live objects into different generations, from
newest to oldest. Newer generations get collected more frequently than older
generations. Because Haskell is pure, generational garbage collection is easy to
implement. In fact, GHC implements multi-generational GC, and the number of
generations is fully configurable using the RTS option -G<n>. The default number
of generations is 2. A maximum number that's still sensible is around 4; otherwise,
oldest generations practically never get collected.

Some of the most useful GC flags are -A<size> and -n<size>. The former controls
allocation area size, and the latter divides the allocation area into chunks of a
specified size. The advantage of chunking the allocation area is evident in multi-core
environments. By default, there's no chunking and the first core to fill its allocation
area triggers GC over all cores, even if the other cores still have plenty of allocation
area left. With chunking, the core is given a new chunk instead.

For instance, to set the allocation area to 64 megabits and chunk it into sizes of 4
megabits, set -A64m -n4m. Remember that chunking is only advantageous when
running in parallel.

The garbage collector copies by default, which means that data is copied from the
allocation area to some fresh memory block. It is possible to instead enable the
compacting algorithm for the oldest generation with the-c flag. The compacting
algorithm is most useful when there's a good ratio (say 30%) of live data to heap size.

Parallel GC
GC options related to parallelism are -qg<gen> and -qb<gen>. The former enables
parallel GC in generations gen and higher (default: 0). The latter enables load-
balancing in generations higher than gen (default: 1). Omitting gen turns off parallel
GC or load balancing completely.

Even if your program is completely sequential, it might benefit from parallel GC
depending on heap size and GC utilization. For a sequential program, it's probably a
good idea to use parallel GC only in generations 1 and higher, because generation 0
is highly sequential anyway, so extra overhead hurts performance.

Parallel GC load balancing is, by default, enabled only for generations 1 and higher.
Migrating GC work from one core to another requires data copying, which hurts
locality in a fast-paced generation 0. For a parallel program where threads don't
interact much with each other (that is, a web server), it might be beneficial to disable
load balancing altogether (using -qb).

Tweaking the Compiler and Runtime System (GHC)

[240]

Profiling and tracing options
We have already used many of the profiling and tracing options in RTS. Most
extensively, we've used the -s[<file>] statistics summary flag to get a nice
summary about bytes allocated, bytes copied during GC, maximum residency,
and so forth. The uppercase variant -S[<file>] prints more information, giving
information about every GC event as they happen:

Alloc Copied Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

521128 161784 161776 0.000 0.000 0.005 0.001 0 1
(Gen: 0)

523608 322720 322864 0.001 0.001 0.006 0.003 0 0
(Gen: 0)

523608 483888 483864 0.001 0.001 0.007 0.004 0 0
(Gen: 1)

523600 322280 645000 0.000 0.000 0.008 0.005 0 0
(Gen: 0)

...

This (-S) is probably way too much detail though.

And if even -s is too much, if you'd like to see just a one-line summary at program
termination, use -t[<file>]:

<<ghc: 1532385248 bytes, 2925 GCs, 76266654/408929240 avg/max bytes
residency (17 samples), 860M in use, 0.000 INIT (0.000 elapsed), 0.901
MUT (0.901 elapsed), 3.265 GC (3.268 elapsed) :ghc>>

Using -t in combination with --machine-readable produces a nice map-like
structure that's easy to read using Prelude.read or similar. The following is an
example output from a program run with +RTS -t --machine-readable:

 [("bytes allocated", "1532385248")

 ,("num_GCs", "2925")

 ,("average_bytes_used", "76266654")

 ,("max_bytes_used", "408929240")

 ,("num_byte_usage_samples", "17")

 ,("peak_megabytes_allocated", "860")

 ,("init_cpu_seconds", "0.000")

 ,("init_wall_seconds", "0.000")

 ,("mutator_cpu_seconds", "0.898")

 ,("mutator_wall_seconds", "0.898")

Chapter 8

[241]

 ,("GC_cpu_seconds", "3.269")

 ,("GC_wall_seconds", "3.272")

]

Finally, the -T flag makes statistics accessible using methods from the GHC.Stats
module. We used this flag in Chapter 3, Profile and Benchmark to Your Heart's Content,
where we hooked the ekg performance monitoring library to our program.

Tracing using eventlog
The eventlog contains information about scheduler events, GC events, sparks,
and user-defined events. To generate an eventlog from a program, compile it with
-eventlog and supply -l<flags> for the RTS. The flags are optional– refer to the
GHC UserGuide for what is configurable. The eventlog is written to the program.
eventlog file in binary format. The tool that you'll most likely want to inspect the
eventlog with is ThreadScope, as discussed in Chapter 3, Profile and Benchmark to Your
Heart's Content.

The eventlog is used for performance profiling. It's possible to emit your own events
from code. Using the eventlog for event messaging, instead of plain trace debugging,
means that the eventlog can show more information about which processor cores
thunks were evaluated or actions performed with. Use Debug.Trace.traceEvent
and traceEventIO to emit eventlog events.

Options for profiling and debugging
Profiling and options for profiling have been discussed extensively in Chapter 3,
Profile and Benchmark to Your Heart's Content. Most options require compiling with
profiling support, except one, which generates a very basic heap profile in file
program.hp: -hT. Use hp2ps to render the report as a nice PostScript graph.

For profiling and debugging multithreaded programs, the RTS clock interval
option -V<secs> is of special interest. Setting -V0 effectively makes the scheduler
deterministic. The RTS will be doing a lot more context-switching, but everything
is deterministic. Eliminating non-determinism is really useful for debugging
concurrent applications. For instance, determinism ensures reads and writes in
concurrent threads are always performed in the same order.

Summary of useful GHC options
The last part of this chapter collects options for GHC and the Runtime System into a
concise reference. Let's start off with GHC.

Tweaking the Compiler and Runtime System (GHC)

[242]

Basic usage
These are some of the most often used general flags related to compilation with GHC:

• --make: Compile a multi-module program
• -j<n>: Parallel compilation
• -i, -e, runghc: Interactive and evaluation modes
• -fforce-recomp: Force recompilation
• -Wall: Turn on all code-level warnings
• -Werror: Turn all warnings into errors
• -freverse-errors: Print top-most error last

The LLVM backend
The LLVM route is the preferred compilation path for numeric code. It requires the
LLVM libraries and a compatible system. The flags used to enable LLVM are:

• -fllvm: Compile via LLVM
• -optlo-O3: Enable optimizations in the LLVM backend

Turn optimizations on and off
GHC has a sophisticated optimization pipeline. Every optimization can be turned on
and off separately, but that's rarely necessary. Good default sets of optimizations are
enabled with the -O family of flags:

• -O: Standard set of benign optimizations (same as -O1)
• -Odph, -O2, -O3: Enable more optimizations
• -fno-state-hack: Disable the state hack optimization
• -ffloat-in, -ffull-laziness: Let-floating in and out
• -fno-cse: Disable common subexpression elimination (CSE) optimization

Configuring the Runtime System
(compile-time)
The following flags affect the Runtime System that is linked to the program.
The Runtime System has configurable flags of its own, discussed later on:

Chapter 8

[243]

• -threaded: Link with threaded Runtime System
• -with-rtsopts=<opts>: Specify RTS flags at link time
• -debug: Enable additional RTS debug events
• -eventlog: Enable event tracing for ThreadScope
• -rtsopts={none,some,all}: Enable configuring RTSoptions via ./

program +RTS

• -static, -dynamic: Link Haskell libraries statically or dynamically (default:
-static)

• -shared -fPIC: Build a shared object
• -optl-static: Link non-Haskell libraries statically

Safe Haskell
These are flags for controlling Safe Haskell compilation:

• -XSafe, -XTrustworthy, -XUnsafe: Enable Safe Haskell extensions
• -fpackage-trust: Refuse compiling untrusted code

Summary of useful RTS options
The following sections describe flags for controlling the Runtime System's behavior.
The exact set of flags available depend on how the Runtime System was configured
(via GHC flags).

Scheduler flags
The number of capabilities (OS threads) to use is controlled with N<n>:. This can be
changed with setNumCapabilities. (default: 1)

Memory management
These are flags for controlling used heap and stack size:

• -H<size>: Minimum heap size (default: 0)
• -M<size>: Maximum heap size (default: unlimited)
• -ki<size>: Minimum stack size (default: 512k)
• -K<size>: Maximum stack size (default: 80% system memory)

Tweaking the Compiler and Runtime System (GHC)

[244]

Garbage collection
These are flags for controlling the generational garbage collector:

• -G<n>: Number of GC generations (default: 2)
• -qg<gen>: Minimum generation to apply parallel GC to (default: 0)
• -qb<gen>: Minimum generation in parallel GC to apply load-balancing

(default: 1)
• -c: Enable compacting algorithm for oldest generation

Runtime System statistics
These are flags for collecting statistics from GHC Stats and the eventlog:

• -t[<file>], -s[<file>], -S[<file>]: Output to file or stderr
• -T: Enable statistics collection via GHC.Stats
• -t[<file>] --machine-readable: Output summary in machine-readable

format
• -l<flags>: Gather an eventlog (for ThreadScope)

Profiling and debugging
These are flags to generate the heap profile from Haskell programs:

• -hT: Basic heap profile; render using hp2ps
• -h*: Heap profiling options (require compiling with profiling support)
• -V0: Eliminate non-determinism in parallel programs

Summary
In this chapter, we have discussed the easiest way to increase GHC Haskell's
performance: tweaking compiler and Runtime System flags. Enabling optimizations,
compiling via LLVM, and enabling LLVM optimizations is a quick route to a usually
very respectable performance. Although most of the time GHC's sophisticated,
heuristic optimizations produce faster code, this is not always the case. Some
optimizations produce slow and even incorrect code under certain situations. Unsafe
functions in particular interact badly with many optimizations. Furthermore, eager
inlining may produce very big binaries.

Chapter 8

[245]

We discussed features in the Runtime System and how to enable and configure
them. Light-weight (green) threads were cheap, scheduled by RTS, and enabled easy
concurrent evaluation via sparks, but were limited with regard to foreign system
calls. The parallel and generational garbage collector also had multiple tunable
parameters to experiment with.

In the next chapter, we will learn to read GHC's intermediate language, Core.
It allows us to observe whether the optimizer did the right thing. For example,
unboxing is explicit in Core.

[247]

GHC Internals and
Code Generation

In the previous chapter, we learned to tweak options in GHC and Runtime System.
In this chapter, we will dive into GHC's internal language, Core. We will learn to
read Core and to spot possible problems in Core. Such problems arise when, for
instance, the strictness analyzer left an argument lazy and boxed, while it would
have been a lot more performant to make it strict and unboxed. We can basically just
read such situations from Core, because strictness is explicit and unboxed arguments
are always output with hashes.

Recall that the hash suffix is referred to as the magic hash in Haskell. Magic hashes
mark primitive functions and types (those provided by GHC itself). We call these
primops. In this chapter, we will learn to program with primops directly. Sometimes
raw primop programming is an easy way to get reliably good performance. Also,
a lesser-known fact is that GHC supports some SIMD operations via the LLVM
backend. As of now, SIMD support is not complete and not as powerful as it
could be, but still useful at a small scale. We'll use SIMD as an example of primop
programming.

Our third main topic is meta-programming using Template Haskell and datatype
generic programming using GHC Generics. Generic programming in Haskell is quite
pleasant and, what's even better, in principle comes with a zero runtime overhead.
Template Haskell is really powerful, albeit slightly verbose. Like, with great power
comes great responsibilities, meta-programming should always be the last resort!

GHC Internals and Code Generation

[248]

In this chapter, we will cover the following topics:

• Making sense of the Core language
• Programming with GHC primitives
• Using GHC Generics to write data-type-generic code
• Meta-programming with Template Haskell

Interpreting GHC's internal
representations
The first internal representation in GHC is Core, the second one is STG, and the
third one Cmm. Both Core and STG are very functional, while Cmm is an imperative
language which resembles C a lot. In this section we will learn to read GHC Core and
to spot possible performance problems that might otherwise be hard to spot.

Reading GHC Core
Core is the intermediate language within GHC. Nearly all optimizations GHC
does are only program transformations from Core to Core. Reading Core is pretty
straightforward for anyone who has read Haskell. For the most part, Core is just let
bindings, pattern matches, and function applications. The challenge is in naming
conventions, because Core can be quite a noisy code. Following this is a (recursive)
function definition in Core (with added line numbering):

1 Rec {
2 foo_rjH
3 foo_rjH =
4 \ ds_d1ya ->
5 case ds_d1ya of wild_X5 { I# ds1_d1yb ->
6 case ds1_d1yb of _ {
7 __DEFAULT ->
8 * $fNumIntwild_X5 (foo_rjH (- $fNumIntwild_X5 (I#
1)));
9 1 -> I# 1
10 }
11 }
12 end Rec }

Chapter 9

[249]

The Haskell function definition from which this Core was generated is given in the
following code block. Core can be inspected by giving the GHC flag -ddump-simpl,
and optionally also -dsuppress-all. The flag -dsuppress-all discards parts of
Core that are usually just extra noise:

foo :: Int -> Int
foo 1 = 1
foo n = n * foo (n – 1)

We note a few things about Core:

• Recursive bindings are explicit. Top-level recursive definitions are wrapped
inside a Rec block, as seen earlier.

• Names of functions have added identifiers in them, while variable names are
some generated gibberish.

• Function arguments are desugared into lambdas and all function application
is prefix (no infix). Look at, for instance, the applications of * and -.

• Pattern matches are desugared into simple case expressions.
• Boxing is explicit, note, for example, the usage of Int's constructor I#.

Recursive bindings are defined via a letrec block, which actually corresponds to
Haskell's let block. That is because all Haskell let blocks are by default recursive;
that is, the name on the left-hand side is in scope in its right-hand side.

Some identifiers in Core are named anew (ds_d1ya instead of the original n), others
have added suffixes (foo_rjH instead of foo) and finally there are some totally new
identifiers from optimization transformations in Core that weren't visible in the
original Haskell code. But all in all, the correspondence between Haskell and Core is
usually easy to see.

Let's look at some more complex Core next. The following Haskell main function is
simple and straightforward:

main = do
 line <- getLine
 print $ foo (read line)

Its unsuppressed Core is printed as follows:

main :: IO ()
[GblId, Str=DmdType]
main =
 >>=
 @ IO
 GHC.Base.$fMonadIO

GHC Internals and Code Generation

[250]

 @ String
 @ ()
 getLine
 (\ (line_aqk :: String) ->
 print
 @ Int
 GHC.Show.$fShowInt
 (foo_rjH (read @ Int GHC.Read.$fReadIntline_aqk)))

:Main.main :: IO ()
[GblId, Str=DmdType]
:Main.main = GHC.TopHandler.runMainIO @ () main

Firstly, we note that our main using do notation was desugared to use just monadic
bind (>>=). Now, recall that the general type signature of monadic bind is:

(>>=) :: Monad m => m a → (a → m b) → m b

There are three type variables (in order of occurrence): m, a and b. We can read from
Core what we saw earlier that m is specialized to IO, a to String and b to (), as
expected. Type specializations are notated using the @ symbol:

 >>=
 @ IO
 GHC.Base.$fMonadIO
 @ String
 @ ()

Some GHC-internal implementation details also "leak" into the Core dump, like GHC.
Base.$fMonadIO. Usually these are not relevant to the programmer. This particular
term ($fMonadIO) is the monad type-class dictionary for the IO type. In Core,
the type-class dictionaries are represented in the same way that normal function
arguments are.

We see also that there are two top-level definitions of something main. The lower one
is an actual entry point, namely :Main.main (the default module name is Main, when
none is given in the Haskell file).

Between the functions' type signatures and the definitions between brackets, there
is a set of flags assigned by GHC for that definition. These flags are used to control
various optimizations.

Chapter 9

[251]

Spineless tagless G-machine
STG is the representation after Core and before Cmm. It is simpler than Core and
functional. GHC dumps STG by flag -ddump-stg. Our foo function corresponds to
the following STG syntax:

foo_rjH =
 sat-only \r srt:SRT:[rjH :-> foo_rjH, rlI :-> $fNumInt]
 [ds_s1yw]
 case ds_s1yw of wild_s1yx {
 I# ds1_s1yy ->
 case ds1_s1yy of _ {
 __DEFAULT ->
 let {
 sat_s1yC =
 \u srt:SRT:[rjH :->foo_rjH, rlI :->
 $fNumInt] []
 let {
 sat_s1yB =
 \u srt:SRT:[rlI :-> $fNumInt] []
 let { sat_s1yA = NO_CCS
 I#! [1];
 } in - $fNumIntwild_s1yx
 sat_s1yA;
 } in foo_rjH sat_s1yB;
 } in * $fNumIntwild_s1yxsat_s1yC;
 1 -> I# [1];
 };
 };

STG is quite different from Haskell syntactically. Lambdas have the unconventional
form:

\r srt:SRT:[rjH :->foo_rjH, rlI :-> $fNumInt] [ds_s1yw]

After the backhash, you can see that there is one of the three flags: re-entrant (r),
updatable (u), or single-entry (s). The arguments to the lambda are at the very end
between brackets using normal list syntax.

Updatable lambdas are such that, after evaluation, their contents can be rewritten
by the results. The thunks correspond to updatable lambdas. The lambdas that take
arguments are usually re-entrant, meaning their results can't be memorized similarly.

In STG, constructor applications such as I# [1] are always written fully saturated.
A saturated application means that all arguments are given in the argument list. The
partial constructor applications are converted into lambdas in STG.

GHC Internals and Code Generation

[252]

Now, because we didn't compile with optimizations, GHC didn't bother with a
strictness analysis and thus our foo is suboptimal. There is unnecessary boxing,
which is not too hard to see from this cleaned version of foo function's STG:

foo_rjH = \r [ds_s1yw] =
 case ds_s1yw of wild_s1yx {
 GHC.Types.I# ds1_s1yy ->
 case ds1_s1yy of _ {
 __DEFAULT ->
 let {
 sat_s1yC = \u []
 let {
 sat_s1yB = \u []
 let {
 sat_s1yA = I#! [1];
 } in - wild_s1yxsat_s1yA;
 } in foo_rjHsat_s1yB;
 } in * wild_s1yxsat_s1yC;
 1 ->GHC.Types.I# [1];
 };
 };

Here, we can see that arguments to * always get fully evaluated. But GHC
pedantically creates thunks for both arguments. The second argument, sat_s1yC,
which corresponds to foo (n-1) is a thunk and so is sat_s1yB, which corresponds
to the expression (n-1).

Compiling with optimizations (-O) the generated STG is much simpler:

$wfoo =
 \r srt:SRT:[] [ww_s4wx]
 case ww_s4wx of ds_s4wy {
 __DEFAULT ->
 case -# [ds_s4wy 1] of sat_s4wz {
 __DEFAULT ->
 case $wfoosat_s4wz of ww1_s4wA {
 __DEFAULT -> *# [ds_s4wyww1_s4wA];
 };
 };
 1 -> 1;
 };

This version of foo doesn't generate any intermediate thunks. In fact, look at the new
name: $wfoo. This indicates that foo now operates on unboxed values. Indeed, there
is no unwrapping or wrapping of I# values.

Chapter 9

[253]

Primitive GHC-specific features
All strictly GHC-specific functionality is contained in GHC.* module. The GHC.Exts
module is of particular interest. The GHC.Prim module (re-exported by GHC.Exts)
exports core primitives in GHC.

For a while now, GHC has shipped with primitives for SIMD processor instructions.
These are available when compiling via the LLVM backend (-fllvm).

SIMD stands for Single Instruction, Multiple Data. It basically means performing
the same operation on a whole vector of machine numbers at the cost of performing
that operation on just one number. SIMD vector types can be found in the GHC.Prim
module. The specialized vectors are named like Int8X16#, which stands for an Int8
vector of length 16. DoubleX8# stands for a vector of eight double precision values:

data Int8X16#
data DoubleX8#

These types are primitive and there are no exposed constructors.

To create vectors that can be used with SIMD instructions, we have two basic
options. The first one is to use one of the broadcast functions like:

broadcastDoubleX8# :: Double# → DoubleX8#

These broadcast functions create vectors with all elements initialized to the given
value.

The other option is to pack the vectors from unboxed tuples:

packDoubleX4# :: (#Double#, Double#, Double#, Double##) ->DoubleX4#

There also exist unpack functions that go the other way around, from SIMD vectors
to unboxed tuples.

Because the SIMD types are unlifted (marked with a #), we cannot have polymorphic
functions over them. So, there is a function for every pair of operation and SIMD
vector types. Fortunately, these functions are named predictably. Operations that are
supported for SIMD vectors are:

packSXN# :: (# ... #) ->SXN#
unpackSXN# :: SXN# -> (# S, ... #)

insertSXN# :: SXN# -> S# -> Int# ->SXN#

negateSXN# :: SXN# ->SXN#
plusSXN# :: SXN# ->SXN# ->SXN#

GHC Internals and Code Generation

[254]

minusSXN# :: SXN# ->SXN# ->SXN#
timesSXN# :: SXN# ->SXN# ->SXN#

divideSXN# :: SXN# ->SXN# ->SXN#
quotSXN# :: SXN# ->SXN# ->SXN#
remSXN# :: SXN# ->SXN# ->SXN#

Basic arithmetic operations are therefore supported. All operations are element-wise.
In addition to those shown previously, operations are provided to read and write
SIMD vectors from primitive arrays (ByteArray# and MutableByteArray#) and
addresses (Addr#).

The GHC primitive SIMD interface is a bit cumbersome because it is given on top
of the primitives. However, if one is desperate to speed up that manual SIMD
vectorization, one would usually require total control over strictness and the
program flow.

Kinds encode type representation
Kinds are like types for types. For instance, lifted inhabitable types have the kind *,
like:

'c' :: Char :: *
Just 1 :: Maybe Int :: *

Type constructors, on the other hand, contain the arrow symbol. The following
example will help clear things out:

Maybe :: * -> *
Either :: * -> * -> *

Unlifted types are of the # kind:

'c'# :: Char# :: #

Starting with GHC 8, types and kinds have been unified. There's now a single
indexed type of types:

data TYPE a :: RuntimeRep -> *

Chapter 9

[255]

Datatype generic programming
GHC Generics provide a nice interface for datatype generic programming. The core
idea is that every datatype is representable as a sum of products. The GHC.Generics
module defines a small sufficient set of datatypes. The unit type represents
constructors with no arguments:

data U1 p = U1 -- unit

The V1 datatype, on the other hand, represents types with no constructors (empty):

data V1 p -- empty

Sums and products are represented respectively by the following types:

(:+:) f g p = L1 (f p) | R1 (g p) -- sum
(:*:) f g p = f p :*: g p -- product

The sum types with more than two constructors are represented by the recursive
application of (:+:), and it's a similar case for the product types.

The K1 datatype acts as a container for values (of type c):

newtype K1 i c p = K1 { unK1 :: c } -- container

The final datatype is a metadata wrapper:

newtype M1 i t f p = M1 { unM1 :: f p } -- metadata wrapper

The Generic type class glues arbitrary Haskell datatypes to their representations
with the types that were mentioned earlier. The (associated) type family Rep maps
datatypes to their generic representations:

class Generic a
 type Rep a :: * -> *
 from :: a -> Rep a x
 to :: Rep a x -> a

For example, the instance for Either boils down roughly to the following:

type instance Rep (Either a b) = K1 R a :+: K1 R b

However, since there is metadata attached to subexpressions, the real instance is, in
fact can be seen here:

type instance Rep (Either a b)
 = M1 D D1Either
 (M1 C C1_0Either (M1 S NoSelector (K1 R a))
 :+:
 M1 C C1_1Either (M1 S NoSelector (K1 R b)))

GHC Internals and Code Generation

[256]

Furthermore, GHC.Generics defines type synonyms D1 = M1 D, C1 = M1 C, and S1
= M1 S, which ultimately helps a bit with readability.

At first glance, it isn't obvious how class functions from and to are useful. The key
is to exploit the fact that these represent something and are supposed to be some
constructions of the building blocks—V1, U1, (:*:), (:+:), K1, M1—and nothing else,
except some other types wrapped within K1's. This fact now enables us to create fully
datatype generic functions—just overload it over the six generic constructors.

Working example – A generic sum
For the sake of an example, let's create a generic numeric sum traversal function and
call it gsum. We will accomplish this via two type classes, GSum and GSum':

-- file: gsum.hs

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeOperators #-}

import GHC.Generics

class GSum' f where
 gsum' :: f p -> Double

class GSum a where
 gsum :: a -> Double

 default gsum :: (Generic a, GSum' (Rep a)) => a -> Double

 gsum = gsum' . from

GSum' will handle calculating the sum in the case of the GHC.Generics
representation, while GSum will handle the any cases of other types. The magic
that will help us save a lot of boilerplate is the highlighted default implementation
for GSum. Its type is restricted so that the argument must have a Generic instance,
which is auto-derivable for all Haskell types, and also a GSum' instance for the type's
representation in Generics.

Let's first add some base cases for numeric values:

instance GSum Double where
 gsum = id

Chapter 9

[257]

instance GSum Int where
 gsum = fromIntegral

instance GSum Integer where
 gsum = fromInteger

Double, Int, and Integer are now the atoms that add to the sum. Next, we will
make GSum work over any data structure that consists of these atoms at "leaves". We
will achieve this by adding GSum' instances for the types of Generic's representation:
V1, U1, (:*:), (:+:), K1, and M1.

The GSum' instance for the empty datatype (V1) is trivial; there are no values of the
empty type, so this case is not actually usually even reached:

instance GSum' V1 where
 gsum' _ = undefined

The nullary case is also easy. There are no numbers contained in nullary leaves.
So a 0 is appropriate, as in the following code block:

instance GSum' U1 where
 gsum' U1 = 0

Next, we take a look at some interesting cases: sums and products. For sum types we
just branch out and apply gsum' inductively. For products we apply gsum' to both,
and sum the results into the following code block:

instance (GSum' f, GSum' g) => GSum' (f :+: g) where
 gsum' (L1 x) = gsum' x
 gsum' (R1 y) = gsum' y

instance (GSum' f, GSum' g) =>GSum' (f :*: g) where
 gsum' (x :*: y) = gsum' x + gsum' y

In the container (K1) or our leaf case, we need more information than GSum' can
give us. We need to convert the contained value into a Double. These are the base
cases we defined instances of GSum for, so we apply gsum (instead of gsum') to the
contained value at leaves:

instance GSum c => GSum' (K1 i c) where
 gsum' (K1 x) = gsum x

Finally, the metadata (M1) case is just an unwrapping that discards metadata
information:

instance GSum' f => GSum' (M1 i t f) where
 gsum' (M1 x) = gsum' x

GHC Internals and Code Generation

[258]

With all this in place, it's now trivial to add instances of GSum for any Haskell type
that is also an instance of Generic.

For our own types, we can derive both Generic and GSum. This requires enabling the
DeriveGeneric and DeriveAnyClass extensions. For instance:

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveAnyClass #-}

data T a b = TA a | TB b | TAB a b
 deriving (Generic, GSum)

For the existing datatypes, we can enable the StandaloneDeriving extension and
list the instances we want:

{-# LANGUAGE StandaloneDeriving #-}

deriving instance (GSum a, GSum b) =>GSum (Either a b)
deriving instance (GSum a, GSum b) =>GSum (a, b)

Let's load our code into GHCi and test that gsum works as we intended it to:

> :load gsum.hs

>gsum 5

5.0

>gsum ((TAB 1 2, TAB 5 8))

16.0

>gsum (TA 42 :: T Int Int)

42.0

With quite minimal boilerplate, we managed to create an extendable datatype
generic sum function. Everything we did was safe and checked by the type checker
at compile time; there was no need for any kind of dynamic typing.

The runtime cost of the GHC Generic representation is 0: there is usually no
overhead for GHC Generics, because the Rep type representation is erased at compile
time, unlike the reflection in Java, which has a considerable runtime cost.

Chapter 9

[259]

Generating Haskell with Haskell
If the power of GHC Generics is not enough, that is, you really need to generate code
that isn't derivable from the structure of datatypes, the solution you're looking for
is Template Haskell (TH). TH is much more sophisticated than the C preprocessor.
With TH, one basically has the full power of Haskell at one's disposal for code-
generation. Like Haskell, Template Haskell will not compile unless it produces at
least syntactically correct code.

Code generation should be used sparingly. It is easy to write highly unmaintainable
code using Template Haskell. On the other hand, code generation can be an easy
route for incorporating non-trivial domain-specific optimizations into a Haskell
program. Most often though, Template Haskell is used mostly to replace boilerplate
code by code that generates that boilerplate.

Template Haskell code lives in the Q monad. Take a look at the following code block:

-- module Language.Haskell.TH

data Q a

-- instances include: Monad, MonadFail, Quasi

In the Language.Haskell.TH module, the core algebraic datatypes that are able
to represent Haskell syntax tree are also defined—declarations (Dec), expressions
(Exp), patterns (Pat), and types (Typ). These are the four top-level terms that can be
constructed and plugged in as source code for the compiler to process.

Interpolating template values is called splicing. The splicable expression must live
in the Q monad and return a top-level term of correct type. The correct term type
depends on the splicing context. Following this is an example each of an expression,
declaration, pattern, and type expressed as template values:

module MySplices where

-- Expression: literal 1
myExp :: Exp
myExp = LitE (IntegerL 1)

-- Declaration: n = 1
myDec :: Dec
myDec = ValD (VarP (mkName"n")) (NormalBmyExp) []

-- Pattern: (1, 2)
myPat :: Pat

GHC Internals and Code Generation

[260]

myPat = TupP [LitP (IntegerL 1), LitP (IntegerL 2)]

-- Type: Maybe Int
myType :: Type
myType = AppT (ConT (mkName"Maybe")) (ConT (mkName"Int"))

The Language.Haskell.TH module documentation conveniently gives examples
for each constructor and their meaning. The constructor naming convention is also
convenient; all constructors of Exp end in E, for example (LitE for literals, VarE for
variables, LamE for lambdas, and so forth).

Splicing with $(…)
Now that we know how to write expressions using the algebraic datatypes, we can
use the $(…) splice operator to insert these values into our source code. We also need
to lift pure terms into the Q monad using pure. Here are examples of contexts where
splicing is applicable:

-- file splice-testing.hs
{-# LANGUAGE TemplateHaskell #-}

import MySplices

two :: Int
two = $(pure myExp) + $(pure myExp)

-- n = 1
$(pure [myDec])

f :: (Int, Int) -> String
f $(pure myPat) = "1 and 1"
f _ = "something else"

mint :: $(pure myType)
mint = Just two

A few points to note:

• It is a type error trying to splice expression Q Exp where a pattern Q Pat
splice is expected.

• For convenience, top-level Dec splices are actually required to be a list of
definitions or Q [Dec]. That's why we wrapped myDec into a singleton list.

Chapter 9

[261]

• We intentionally defined our terms (myExp, myDec, myPat, and myType)
in a separate module than to where we spliced them into. This is strictly
necessary due to GHC's stage restriction: only definitions imported from
other modules can be used inside a splice expression.

If you are wondering what GHC spliced, you can use the -ddump-splices flag when
compiling:

$ ghc --make -ddump-splices splice-testing.hs

[1 of 2] Compiling MySplices (MySplices.hs, MySplices.o)

[2 of 2] Compiling Main (splice-testing.hs, splice-
testing.o)

splice-testing.hs:7:9-18: Splicing expression

 pure myExp ======> 1

splice-testing.hs:7:25-34: Splicing expression

 pure myExp ======> 1

splice-testing.hs:10:3-14: Splicing declarations

 pure [myDec] ======> n = 1

splice-testing.hs:16:11-21: Splicing type

 pure myType ======> Maybe Int

splice-testing.hs:13:5-14: Splicing pattern

 pure myPat ======> (1, 2)

Names in templates
In our declaration, we used the mkName :: String → Name function to create a
Haskell identifier:

myDec = ValD (VarP (mkName "n")) (NormalB myExp) []

The mkName function sort of lifts the given string into a variable name in the meta
program. The name is dynamic in the sense that the value it references to when
spliced is the closest in scope. Names from mkName are resolved like any other
Haskell bindings. This illustrates mkName:

n = 5
main = print $(pure $ VarE $ mkName "n")
 where n = 1

This prints 1, because the where clause is closer to the splice.

GHC Internals and Code Generation

[262]

Often it is convenient to have uncapturable names. For this, there is function
newName:

newName :: String -> Q Name

This one now lives in the Q monad, unlike mkName which was pure. Every name's
generated with newName is uncapturable. For example, this program won't compile
because the newName is not in scope:

main = print $(fmap VarE (newName "n"))
 where n = 1

Another way to generate names is to lift them from Haskell-land. Single-quote prefix
lifts names for values:

right, left, pi' :: Name
right = 'Right
left = 'Left
pi' = 'pi

Double-single quotes lift type names instead:

either :: Name
either = ''Either

The reason we need to use different quote-styles for values and types is because in
Haskell, types and values, including type constructors, have their own namespaces.
We need to somehow indicate to which namespace we are referring.

Smart template constructors
For every datatype constructor (LitE, ValD, and others) there is a "smart" constructor
(litE, valD, and others) whose result and (most) arguments have been lifted to the
Q monad. This is often convenient, because sub-expressions don't then need to be
explicitly sequenced with monadic bind.

ValD :: Pat -> Body -> [Dec] -> Dec
valD :: PatQ -> BodyQ -> [DecQ] -> DecQ

PatQ is just a synonym for Q Pat.

Chapter 9

[263]

The constN function
The normal const function takes two arguments and returns the first while ignoring
a second argument. Now, we would like to have a set of constN functions for many
N, which take N+1 arguments, return the first argument and ignore all the others.
The type signatures should look like the following:

const1 :: a -> b -> a
const2 :: a -> b -> c -> a
const3 :: a -> b -> c -> d -> a
…

The constN function here creates a definition for such const variant for given N:

module ConstSplices where

import Language.Haskell.TH

constN :: Int -> Q Dec
constN nth = do
 expr<- constExp nth
 let name = mkName $ "const" ++ show nth
 return $ FunD name [Clause [] (NormalB expr) []]

constExp :: Int -> Q Exp
constExp nth = do
 a <- newName"a"
 return $ LamE (VarP a : replicate nth WildP) (VarE a)

A few things to note:

• We use mkName to create a capturable name for const1, const2, and so on.
• The constExp splice uses newName instead to name the first argument (a) of a

lambda. Effectively, this turns into \a _ … _ -> a.

To generate function declarations constN for N upto 15, we would write at top-level:

$(forM [1..15] constN)

But we could also generate them on demand using constExp:

putStrLn $ $(constExp 2) "Hello!" () 42

GHC Internals and Code Generation

[264]

Lifting Haskell code to Q with quotation
brackets
Whereas $(…) splices Q along with values into a source code, it's dual [|...|]
(Oxford brackets) turns source code into Q values:

idExp :: Q Exp
idExp = [| \x -> x |]

Note that:

$([| e |]) == e

There are different brackets for quoting expressions [e|…|], patterns [p|…|],
declarations [d|…|], and type[t|…|]. A [|…|] is equal to writing [e|…|].

It's perfectly fine to splice within a quotation:

$([| $(constExp 2) 'a' |]) 'b' 'c'

Launching missiles during compilation
It's possible to embed arbitrary IO actions into the Q monad using runIO:

runIO :: IO a -> Q a

An IO action could be used to embed a compilation timestamp as a constant or to
source another file. For example, the source for a program written in an embedded
domain specific language (DSL) could be read in at compile time and the
corresponding Haskell code generated.

Although contrived, you could even read a line from standard input during splicing:

$(fmap (LitE . StringL) $ runIOgetLine)

Reifying Haskell data into template objects
Given a name, we can retrieve some information about the term itself using reify.

reify :: Name -> Q Info

Because type and constructor names may overlap, it is advised to use reify in
conjunction with lookupTypeName or lookupValueName which lookup identifiers in
correct namespaces:

lookupTypeName :: String -> Q (Maybe Name)
lookupValueName :: String -> Q (Maybe Name)

Chapter 9

[265]

Or, if you're certain that the name is (or should be) in scope, use the single quote
notation:

reify 'value
reify ''Type

Reification is very useful, for instance, base code generation on a datatype. It's much
like GHC Generics but with more flexibility. Common use cases are: defining class
instances or completely new boilerplate functions for the datatype. For example, the
lens library provides TH splices to generate lenses (a generalization of getters and
setters) for user-defined datatypes.

Deriving setters with Template Haskell
When you declare a record in Haskell, the only way to update one of the fields then
is to use the record syntax. For instance, we have the following user datatype:

data User = User
 { firstName :: String
 , lastName :: String
 , age :: Int
 } deriving Show

To update the age field of the user, we would write:

let user' = user { age = newAge }

But if we wanted to, we could write a setter function for a field:

age' :: User -> Int -> User
age' u newAge = u { age = newAge }

let user' = age' user newAge

Writing a setter for every field of every type would be laborious to say the least.
Fortunately, we can automate the process by using a little Template Haskell.

setterDec :: Name -> Q Dec
setterDec nm = do
 let nmD = mkName $ nameBase nm ++ "'"-- (2)

 nmV<- newName"val"
 nmP<- newName"p"

 let pat = [VarPnmV, VarPnmP] -- (3)
 body = NormalB $ RecUpdE (VarEnmP) [(nm, VarEnmV)] -- (4)

 return $ FunDnmD [Clause pat body []] --(1)

GHC Internals and Code Generation

[266]

At (1), we build a function definition (FunD) named field' for a given field.
The name is specified at (2) using mkName from the field name that is given as
an argument to our setterDec template function. Note that a function may have
multiple definitions with different patterns, therefore the second argument to FunD is
a list of clauses.

In lines (3) and (4), we have defined arguments to our setter function (new field
value and the object itself). The arguments val and p are given new unique names
using newName. The record update itself is encoded in a record update expression
using the RecUpdE constructor.

To create setters for every field of a datatype at once, we can write another template
function:

deriveSetters :: Name -> Q [Dec]
deriveSetters nm = do
 TyConItyCon<- reify nm -- (1)
 case tyCon of
 DataD _ nm tyVarscs _ -> do -- (2)
 let fieldsTypes = nub (concatMaprecFieldscs) -- (3)
 forMfieldsTypes $
 \(nm, ty) ->setterDec nm -- (5)
 where
 recFields (RecC _ xs) = -- (4)
 map (\(var,_,ty) -> (var, ty)) xs

Here we now use reify to fetch information about the identifier. We are assuming
that the identifier points to a type constructor, TyConI(1). Further, it should be a
datatype, a DataD(2), as opposed to a newtype or type synonym for instance.

The magic of this template function happens at (3) when we get a list of record
field names and their types that appear in the datatype. The list of fields in a single
record (RecC) is retrieved at (4). A datatype can have multiple constructors with
differing record fields, so we need to concatenate them all into a list and then remove
duplicates with nub.

Finally at (5), we loop over unique record field names and create a setter definition
for each record field using our setterDec template function.

Testing this out for our user datatype, we would use this splice at top-level:

deriveSetters ''User

Chapter 9

[267]

Using -ddump-splices, we can confirm that the generated code is as we intended it
to be:

$ ghc -ddump-splices reify-example.hs

[2 of 2] Compiling Main (reify-example.hs, reify-
example.o)

reify-example.hs:13:1-20: Splicing declarations

 deriveSetters''User

 ======>

 firstName'val_a450p_a451 = p_a451 {firstName = val_a450}

 lastName'val_a452p_a453 = p_a453 {lastName = val_a452}

 age'val_a454p_a455 = p_a455 {age = val_a454}

There are three setter functions, as expected!

Note that, in this case we used about two dozen lines for two template functions
in exchange of three one-liners. This isn't exactly what one could call good pay-off;
much more the opposite. However, if we had tens of record fields as opposed to just
three, which would often be the case, then the template solution starts to look viable.

Quasi-quoting for DSLs
One last feature of GHC closely related to Template Haskell is quasi-quoted expressions.
Recall that the Oxford bracket notation [e|...|] enabled us to "un-quote" Haskell
expressions into their object representation in the template datatypes (Exp, Dec,
and so on).

This "un-quoting" of Haskell expressions is extendable to arbitrary syntax inside the
brackets. More formally this is called quasi-quoting and quasi-quoters are defined as
QuasiQuoter:

data QuasiQuoter = QuasiQuoter
 { quoteExp :: String → Q Exp
 , quotePat :: String → Q Pat
 , quoteType :: String → Q Type
 , quoteDec :: String → Q Dec
 }

That is, depending on the splicing context quasi-quoter is a function from String to
a syntax tree.

GHC Internals and Code Generation

[268]

Quasi-quoters are generally used together with the datatype class and utility
functions such as dataToExpQ (GHC 7), or the little more convenient liftData
(starting with GHC 8):

dataToExpQ :: Data a => (Data b => b → Maybe (Q Exp)) → a → Q Exp
liftData :: Data a => a → Q Exp

The liftData function is equivalent to dataToExpQ applied to (const Nothing) –
the first argument is there just to provide an option to override some constructor's
representation.

Data is a derivable class when using the DeriveDataTypeable GHC extension. Thus,
essentially, if we have a parser for an arbitrary datatype, and so we can convert it
to a quasi-quoter with almost no effort. Shown here is a really quick illustration of a
quasi-quoter for matrices [[Double]]:

module MatrixSplice where

import Language.Haskell.TH.Quote

matrix :: QuasiQuoter
matrix = QuasiQuoter { quoteExp = dataToExpQ (_ -> Nothing) .
parse }

parse :: String -> [[Double]]
parse = map (map read . words) . filter (/= "") . lines

Now we can write matrices with minimum syntax directly into a Haskell source file.
Here are some examples:

-- file compact-matrix.hs
{-# LANGUAGE QuasiQuotes #-}
import MatrixSplice

m1, m2 :: [[Double]]

m1 = [matrix|
 1 2
 2 1
|]

m2 = [matrix|
 1.5 4.2 5
 5.5 4.1 4
 4.5 4 1 6
|]

Chapter 9

[269]

Note that parse could produce values of any type, as long as the value has a
data instance. Quasi-quoting makes Haskell an even more friendly platform for
embedded domain-specific languages, because it allows the seamless integration of
the actual syntax of a custom language with the host language.

Summary
We started this chapter from GHC internal representation Core. We looked at the
differences in Core syntax as opposed to Haskell syntax, among them explicit boxing,
recursive bindings, explicit specialization and the passing of class dictionaries. Next,
we took a glance at STG, the next internal representation after Core that's even
simpler. Then we considered how GHC exposes its primitives: magic hash, unlifted
types, and the unlifted kind.

Our second subject was code generation with GHC using GHC Generics. The
essential idea with Generics is to represent every datatype as a sum of products
using a handful of indexed datatypes (:+:, :*:, and so on). It then becomes easy to
write general functions over all datatypes by converting to or from the general sum-
of-products representation. Then we looked at full-blown code generation using
Template Haskell, which enabled us to generate code, declarations and expressions
by directly manipulating the program's abstract syntax tree.

In the next chapter we will be interacting with other languages from within Haskell,
and interacting with Haskell from within other languages. It turns out that Haskell
is surprisingly mature in this respect: the C foreign function interface is very robust
and tooling is good. Going the other way around, GHC is able to compile Haskell
into a shared object callable from other languages.

[271]

Foreign Function Interface
In the previous chapter, we learned how the GHC code generator works and how to
dig deeper into the compiler pipeline when necessary. In this chapter we will learn
to interface with C from Haskell, and with Haskell functions from C. The foreign
function interface (FFI) is part of the Haskell language report. The tooling for
binding into shared libraries and also for compiling Haskell into shared libraries is
quite mature. In this chapter we will cover the fundamentals of the FFI: importing
and exporting functions, marshalling data, invoking the Haskell runtime from C,
and building shared libraries with Haskell.

One of Haskell's strongest points compared to many languages is in fact the FFI: it's
relatively easy to integrate parts written in Haskell to programs written in C or the
other way around. By extension, integrating Haskell with other languages by going
through the C level is also not too hard. Building a shared library (a shared object or
a DLL) with Haskell and GHC is quite easy:

• Calling C functions from Haskell and Haskell functions from C
• Using Haskell to build a shared library and using the library from C
• Marshalling pointers and data through the FFI between C and Haskell

From Haskell to C and C to Haskell
A classic usage of the FFI is calling C functions from Haskell. So let's start with that.
Consider that you wrote a function in C, for instance the recursive nth Fibonacci
number like the fib.c file here:

/* file: fib.c */

int fib_c(int num)
{
 if (num <= 2)

Foreign Function Interface

[272]

 {
 return 1;
 }
 else
 {
 return(fib_c(num - 1) + fib_c(num - 2));
 }
}

Although naive, this implementation is still faster than the Haskell equivalent.

Now, to call this fast naive fib_c function from Haskell, at its simplest we could just
add the following line to a Haskell source file and then we would have a fib_c ::
Int → Int Haskell function:

-- file: ffi-fib.hs

foreign import ccall
 fib_c :: Int -> Int

main = print $ fib_c 20

The only FFI-specific thing here is foreign import. Note that, with some
earlier versions of GHC, it was necessary to explicitly enable the FFI with
-XForeignFunctionInterface.

To compile this program, we should give both the Haskell and C source file to GHC:

$ ghc ffi-fib.hs fib.c

[1 of 1] Compiling Main (ffi-fib.hs, ffi-fib.o)

Linking ffi-fib ...

$./ffi-fib

6765

Common types in Haskell and C
However, there's one problem in our binding: the Haskell Int type isn't guaranteed
to match C's int type. In general, the types could have different sizes. The FFI
specification explicitly addresses this problem by requiring Haskell implementations
to provide a set of Haskell types that correspond to C types.

Haskell wrappers for common C types are defined in Foreign.C.Types. For
instance, the int C type is CInt in Haskell, unsigned long in C is CULong in Haskell,
and so on.

Chapter 10

[273]

So to ensure correctness on all architectures, we should have written this instead:

foreign import ccall fib_c :: CInt -> CInt

A common pattern that is often used in Haskell bindings is to use C types in internal
bindings and then expose wrappers that convert between C and Haskell types (such
as fromIntegral for converting between Int and CInt).

Conversely, common Haskell types have corresponding C types defined in the
header file HsFFI.h, which is distributed along with GHC. For instance, the Haskell
Int type corresponds to HsInt in C, and the Haskell type Ptr is represented by
HsPtr in C.

Using the Haskell types on the C side is also an option. We just need to include the
Haskell FFI header file to use them:

/* file: hs-fib.c */

#include <HsFFI.h>

int fib_c(HsInt num)
{
...
}

Importing static functions and addresses
The complete syntax for importing C definitions to Haskell-land is:

foreign import <callconv> [safe/unsafe] "<impent>"
 <variable> :: <type>

Let's see this syntax in more detail:

• For C binding, the calling convention <callconv> should be set to ccall, as
we did in our previous example. Other calling conventions include stdcall
for Win32 API bindings, and cplusplus for C++ calling convention.

• By default foreign calls are marked safe. Marking an import unsafe reduces
the overhead of calling an external entity, but unsafe calls cannot call back to
the Haskell system. Such callbacks are rather rare, so unsafe imports are used
often.

• In the impent we define what we wish to import from the C side. If omitted,
it defaults to <variable>. For instance, our fib_c function from earlier
corresponds to impent "fib_c".

Foreign Function Interface

[274]

• <variable> :: <type> just defines how the import looks in Haskell. Note
that GHC does zero sanity checking on what you give it as a type. If the
Haskell type doesn't align with the C-side definition, a segmentation fault
awaits. The types don't need to match exactly though: for instance a Bool is
a perfectly fine int.

The impent is actually a bit more complex. The complete syntax is given by:

impent → "[static] [chname] [&] [cid]" | "dynamic" | "wrapper"

There are three main alternatives: static, dynamic, or wrapper. Static function
import ("static [cid]") is the default behavior. To import a static address, the
identifier cid should be preceded with an ampersand (&). Typing static in the
impent is only necessary when importing C identifiers named dynamic or wrapper.
Optionally, we can specify the exact header file chname from which the identifier to
import (cid) is searched for.

Consider this C source file, defining a static function called update and a static
address named c_var:

/* file: c_var.c */

int c_var = 0;

void update() {
 c_var = 42;
}

To use these two identifiers from Haskell, we import the variable with type Ptr
CInt and update with type IO (). Note that any static function can be imported
either as a pure function or as an IO action. It is left up to the binding author to
choose how to import a definition, because there is no systematic way to know
whether a given C function is pure or not!

-- file: ffi-c-var.hs

import Foreign.C (CInt)
import Foreign.Ptr (Ptr)
import Foreign.Storable (peek)

foreign import ccall unsafe "&" c_var :: Ptr CInt
foreign import ccall unsafe update :: IO ()

main = do peek c_var >>= print
 update
 peek c_var >>= print

Chapter 10

[275]

Let's compile this program and verify it works correctly:

$ ghc ffi-c-var.hs c_var.c

[1 of 1] Compiling Main (ffi-c-var.hs, ffi-c-var.o)

Linking ffi-c-var …

$./ffi-c-var

0

42

Now we know how to import static functions and variables that we have defined
by ourselves in C source files.

To import a definition from an arbitrary header file, we should specify the header
in the foreign import statement. For instance, to import the sin function from the
math.h library:

-- file: ffi-math-h.hs
foreign import ccall unsafe "math.h sin"
 csin :: Double -> Double

foreign export ccall
 fun :: Int -> Int -> Int

This is really all that is required to import identifiers from system-wide C library
headers. Such a definition can be compiled with just ghc source.hs.

Exporting Haskell functions
Exporting Haskell functions for use in C is as easy as importing functions from C.
Here is a simple example that exports the Haskell function fun:

-- file: FunExport.hs
module FunExport where

foreign export ccall
 fun :: Int -> Int -> Int

fun :: Int -> Int -> Int
fun a b = a ^ 2 + b

Compiling this in GHC:

$ ghc -c FunExport.hs

GHC generates an object file FunExport.o and a header file FunExport_stub.h,
effectively with the contents:

extern HsInt fun(HsInt a1, HsInt a2);

Foreign Function Interface

[276]

To call Haskell directly from C means that we need a main function in C. Then we
need to initialize the Haskell system by ourselves using hs_init(). Here is an
example C program that does that and then calls our Haskell fun function:

/* file: fun_export.c */

#include <stdio.h>
#include "FunExport_stub.h"

int main(int argc, char *argv[]) {
 hs_init(&argc, &argv);
 printf("%d\n", fun(1, 2));
 hs_exit();
}

To compile this C program we should not use a C compiler directly; instead we
use GHC. The reason for this is that GHC is more knowledgeable about how
the program should be linked, specifically the Haskell parts of it. The following
command line creates a dynamically linked executable named fun_export, with the
Haskell parts linked statically.

$ ghc --make -no-hs-main fun_export.c FunExport.o -o fun_export

$./fun_export

3

It's important to call hs_init() before using any identifiers from Haskell-land, and
to terminate it when no longer needed with hs_exit(). Otherwise the program will
segfault.

Remember to enable optimizations for both Haskell
and C when compiling for production! In our preceding
example we would have used, for example, ghc -c -O2
FunExport.hs for the first and ghc -optc-O … for the C
second step.

Compiling a shared library
Given a Haskell source file, say FunExport.hs, we can create a shared library
libfunexport.so with the following GHC command line:

ghc --make -dynamic -shared -fPIC FunExport.hs -o libfunexport.so

Chapter 10

[277]

All flags, except perhaps -fPIC, are necessary to successfully build a shared library
(at least with GHC 7 series and GHC 8.0.1). The most important flag is -shared,
which specifies that we want to build a shared library. Unfortunately, GHC does
not as yet support building the base libraries with -fPIC, which is a requirement for
embedding into a shared object. Thus we need to link the shared object dynamically
with -dynamic.

A similar command on a Windows machine can be used to build a DLL instead of a
.so file. Just replace the.so suffix with .dll.

To compile and link a (C) program that uses the shared library, we need to jump
through some extra hoops. A complete command line that takes a C source file
(fun_export.c) that uses identifiers from the header file (FunExport_stub.h), links
against a shared library (libfunexport.so), and uses GCC to compile a dynamically
linked executable could look like the following:

gcc fun_export.c -o main \

-I /usr/lib/ghc-7.10.3/include \
-L. -L/usr/lib/ghc-7.10.3/rts \
-lHSrts-ghc7.10.3 -lfunexport \
-Wl,-rpath=/usr/lib/ghc-7.10.3/rts -Wl,-rpath='$ORIGIN'

The first line is self-explanatory. The -I flag specifies where to find the HsFFI.h
header file. The -L flags specify where the Haskell Runtime System library and our
own shared library are located. With the -l flags we are linking against the RTS and
our own library.

On the last lines, the -Wl,-rpath=… flags specify additional runtime search paths
for the executable. These are necessary so that the libraries can be found when the
executable is to be run if they are located in non-standard paths. Special $ORIGIN
refers to the directory name of the executable.

It's also possible to dynamically load (as opposed to link) a shared library from
program code. The following is an example of a dynamic loading library funexport
in C:

/* file: dyn_fun_export.c */

#include <stdio.h>
#include <dlfcn.h>

int main(intargc, char *argv[]) {
 void *dl = dlopen("./libfunexport.so", RTLD_LAZY);

 void (*hs_init)(int *argc, char **argv[]) = dlsym(dl,
 "hs_init");

Foreign Function Interface

[278]

 hs_init(&argc, &argv);

 int (*fun)(int a, int b) = dlsym(dl, "fun");
 printf("%d\n", fun(1, 2));
}

When compiling this, we only need to link against dl to gain access to dynamic
loading:

gcc dyn_fun_export.c -o main -ldl

We also need to slightly modify our Haskell shared library to make it suitable for
dynamic loading. The problem is that we still need the Haskell Runtime System,
but by default it is not linked to a Haskell shared library. We need to specifically
request that when building the shared library with -lHSrts-ghc7.10.3.

ghc --make -dynamic -shared -fPIC FunExport.hs -o libfunexport.so
-lHSrts-ghc7.10.3

With this, the shared library is pretty much self-contained and can be loaded
dynamically.

Function pointers and wrappers
Importing static functions was easy, but how about dynamic functions and function
pointers? In Haskell, function pointers are represented by the datatype FunPtr. To
import a function pointer into Haskell-land, we do the following:

-- file: ffi-funptr.hs

import Foreign.Ptr (FunPtr)

foreign import ccall"math.h & cos"
 p_cos :: FunPtr (Double -> Double)

We need the ampersand and a FunPtr return type. It's also possible for a C function
to return a function pointer, in which case we could leave the ampersand out and
import the function statically. In any case the result is a FunPtr return type in
Haskell-land.

To convert a FunPtr return type into a Haskell function to call it, we need to jump
through an extra hoop. Specifically, we must ask the FFI to generate a call routine
for our specific function type using the dynamic impent. In this case that type is
Double -> Double, so we write:

foreign import ccall "dynamic"
 mkF :: FunPtr (Double -> Double) -> (Double -> Double)

Chapter 10

[279]

The impent is purely semantic: there is no need to define anything else to generate
the call routine. Now we can apply mkF to our function pointer and get an ordinary
Haskell function:

ghci> (mkF p_cos) pi

-1.0

The "dual" of dynamic is wrapper. Wrappers turn Haskell functions into FunPtr to
be passed into the foreign side:

foreign import ccall "wrapper"
 toF :: (Double -> Double) -> IO (FunPtr (Double -> Double))

Note that creating a foreign function pointer from a Haskell function must be an
IO action. The types for dynamic and wrapper types must conform to the general
formulas (for some Haskell function f):

dynamic: FunPtr f -> f
wrapper: f -> IO (FunPtr f)

Haskell callbacks from C
Using FFI wrappers and function pointers we can easily pass Haskell functions as
callbacks to foreign functions. Consider wanting to call this C function, which takes a
function pointer as its first argument:

/* file: callbacks-procedure.c */

void procedure(void (*callback)(double), double n) {
 callback(n * 3);
}

Here is an example Haskell program that calls procedure:

-- file: callbacks.hs

import Foreign.Ptr (FunPtr)

foreign import ccall safe -- (1)
procedure :: FunPtr (Double -> IO ()) -> Double -> IO ()

foreign import ccall"wrapper" -- (2)
toCallback :: (Double -> IO ()) -> IO (FunPtr
 (Double -> IO ()))

printRes :: Double -> IO () -- (3)

Foreign Function Interface

[280]

printRes x = putStrLn $ "Result: " ++ show x

main = do
cont <- toCallback printRes -- (4)
procedure cont 5 -- (5)
procedure cont 8 --

Tearing this down, we have:

• At (1) we import the procedure as a normal FFI function. Note that we must
import it safe – if it is imported unsafe, our program will crash at runtime
with the helpful error message:
callbacks: schedule: re-entered unsafely.
Perhaps a 'foreign import unsafe' should be 'safe'?

• At (2) we create the wrapper to wrap a Haskell function as a function
pointer that can be passed to procedure.

• At (3) we use the pure Haskell callback function (printRes). In this case, it
is an I/O action with () result type; IO () corresponding to void * on
the C side.

• At (4) we wrap our callback into a function pointer.
• At (5) are two example calls for procedure from Haskell main.

So, using arbitrary Haskell functions as callbacks to foreign calls is very easy. The
only necessary boilerplate is creating an FFI wrapper corresponding to the callback
function's type, and wrapping callbacks as function pointers before passing them to
the procedure.

Data marshal and stable pointers
The Haskell types Ptr a and FunPtr a represent pointers in foreign, raw memory
(outside the Haskell heap). Relevant operations on foreign pointers are provided by
the Storable type class, which has instances for primitive marshallable data types.
A third pointer type is StablePtr a, which is a pointer to an object in the Haskell
heap.

On top of passing primitive values and pointers through the FFI, almost arbitrary
data can be marshalled between Haskell and C (and by extension other languages)
relatively easily.

Chapter 10

[281]

Allocating memory outside the heap
A centric type-class in marshalling is Foreign.Storable.Storable. Storable types
must provide a length, byte alignment, and the methods peek and poke:

class Storable a where
 sizeOf :: a ->Int
 alignment :: a ->Int
 peek :: Ptr a -> IO a
 poke :: Ptr a -> a -> IO ()
 …

Primitive allocation routines are located in the Foreign.Marshal.Alloc module.
Normal dynamic allocations are provided for using malloc and also alloca, which
allocates a block of memory used locally. Using alloca we don't need to take care
of freeing allocated memory, because the combinator does it for us once the local
computation finishes:

malloc :: Storable a => IO (Ptr a)
alloca :: Storable a => (Ptr a → IO b) → IO b

Haskell lists are usually represented as arrays in C. To convert between a linked
list in Haskell and an array in C, we can use the Foreign.Marshal.Array module.
Methods are once again overloaded over Storable, as in:

newArray :: Storable a => [a] → IO (Ptr a)
peekArray :: Storable a => Int → Ptr a → IO [a]

Strings in Haskell are also linked lists, but in C they're null-terminated consecutive
blocks of memory. Convenience routines for working with this translation are
located in the Foreign.C.String module.

Pointing to objects in the heap
Haskell values in foreign code are represented by stable pointers, StablePtr a.
A special pointer type is needed for values in Haskell due to GC: normally GC could
and does collect or move objects in the heap, changing their memory location. But
values pointed to by stable pointers don't get collected or relocated. Thus, stable
pointers are ideal for passing Haskell values into C and back.

Stable pointers support these operations: create, de-ref and free. From the type
signatures we can infer that a StablePtr pointer can really point to Haskell values
of any (concrete) type:

newStablePtr :: a -> IO (StablePtr a)
deRefStablePtr :: StablePtr a -> IO a
freeStablePtr :: StablePtr a -> IO ()

Foreign Function Interface

[282]

On the C side very little can be done with a StablePtr pointer. The HsStablePtr
pointer is merely guaranteed to be a valid pointer, within the Haskell runtime, that is
once derefenced with deRefStablePtr. The pointed value will be retained by GC at
least until freeStablePtr is called.

Marshalling abstract datatypes
Any Haskell datatype can be made marshallable by giving it a Storable instance.
Instead of writing the instance by hand, accommodating for correct alignment in the
corresponding C structs and so forth, we can automate a lot of the process using the
hsc2hs tool.

For instance, consider having the following C header file and custom struct:

// file: struct-marshal-c.h

typedefstruct {
 int a;
 double b;
} Some;

The corresponding Haskell datatype and (pseudo-)Haskell source file that will
contain the Storable instance starts with:

-- file: struct-marshal.hsc

#include <struct-marshal-c.h>

import Foreign.Storable

data Some = Some { a :: Int, b :: Double }

Note the .hsc extension and an #include directive. We are going to preprocess this
file with hsc2hs, which calculates size and alignments for the marshal.

A quick note before going forward: on GHC 8 the following macro is already present
in hsc2hs, but for the GHC 7 series we need to define the alignment macro by
ourselves. On GHC 8 the following is unnecessary:

#let alignment t = "%lu", (unsigned long)offsetof(struct {char
 x__; t (y__); }, y__)

Chapter 10

[283]

Now we can write the Storable instance:

instance Storable Some where
 sizeOf _ = (#size Some)
 alignment _ = (#alignment Some)
 peek ptr = Some <$> (#peek Some, a) ptr
 <*> (#peek Some, b) ptr
 poke ptr some = do
 (#poke Some, a) ptr (a some)
 (#poke Some, b) ptr (b some)

Note the use of # macros. These will be expanded by running hsc2hs:

hsc2hs -I. struct-marshal.hsc

hsc2hs generates a struct-marshal.hs file that is now valid Haskell and can be
fed into GHC.

Using a pre-processor is highly recommended when creating Haskell bindings to C
libraries. In addition to hsc2hs there is another preprocessor called c2hs. These have
many overlapping features but each has some unique characteristics as well.

Marshalling in standard libraries
The core Haskell container libraries (bytestring, vector, text, and others) include
good support for efficient marshalling of their datatypes through the FFI.

All ByteString values are actually already stored outside the Haskell heap, which
means that foreign code can read and write a ByteString with zero copying needed.
However, such interoperability is deemed unsafe because it easily breaks referential
transparency. That is why these fast marshalling functions are placed in the Data.
ByteString.Unsafe module. Slower but safer marshal alternatives are in the Data.
ByteString module.

The vector package deals with marshalling by providing custom vector types with
storable instances in the Data.Vector.Storable package. This representation is
slightly slower than using pure unboxed vectors, but is the vector type of choice if
marshallability is required.

Finally, the text package contains a Data.Text.Foreign module which provides
conversion functions. Marshalling unicode-correct text between C is not trivial in
every case, so Text marshal is a bit more complicated.

Foreign Function Interface

[284]

Summary
In this chapter we have imported C functions as Haskell functions, exported Haskell
functions as C functions, passed pointers (both foreign and stable) and data through
the FFI, built a shared library with Haskell, and used hsc2hsto to write a Storable
instance for a custom datatype. You have learned to invoke the FFI from both the C
and the Haskell side and to manage memory in both the Haskell heap and the lower-
level memory area also used by C.

The next chapter will be about another implementation-level concept like the FFI:
GPU-programming using Haskell. Graphics processors are much better suited for
highly parallel number-crunching applications, which is the reason for the GPU's
popularity in high-performance numeric computing. An excellent Haskell library,
Accelerate, defines a language that greatly simplifies usually mundane and hard
GPU programming. In addition, Accelerate is backend-agnostic: the same code
could run on any hardware solution (CPU/LLVM, CUDA, OpenCL, and others)
given a suitable backend implementation.

[285]

Programming for the
GPU with Accelerate

In recent years, Graphics Processing Units (GPUs) have become prominent
hardware in areas other than just plain graphics applications. This practice is
known as General-Purpose Computing On Graphics Processing Units (GPGPU).
Due to their ability to perform highly parallel computations much more efficiently
compared to a CPU, the GPU is often utilized, for instance, in machine-learning
applications. The GPU is specialized to perform certain kinds of vectorized
computations extremely efficiently. It's not nearly as flexible as a CPU is. Single cores
in a GPU are far less powerful than CPU cores, but there are hundreds of smaller
cores in a GPU.

Due to their parallel nature, GPUs use wildly different instruction sets than, say, the
x86. The two dominant ways of writing programs that run on the GPU are Nvidia's
proprietary CUDA platform and OpenCL, which is an open source framework and
standard for writing programs that run on heterogeneous hardware (CPU, GPU, DSP,
FPGA, and others). Both CUDA and OpenCL are designed to work with low-level
imperative languages: CUDA for C, C++, and Fortran, while OpenCL defines its own
C-like language.

The Haskell library Accelerate is a high-level EDSL for writing programs that execute
on the GPU. Accelerate is fully backend-agnostic: the same Accelerate program
can be turned into a CUDA application, executed using the reference interpreter
on the CPU, and translated into an OpenCL application, a Repa application, an
LLVM application, or indeed extended with your own backend. Currently, only the
interpreter and CUDA backend are considered mature.

Programming for the GPU with Accelerate

[286]

In this chapter, we will learn to write high-performance programs with Accelerate
and to run them on the GPU. Although first we test our programs using the reference
interpreter. The chapter will cover the following topics:

• Writing in the core Accelerate language, operations, and expressions
• Running on CUDA and writing efficient high-level GPU programs
• Using Accelerate's extra features: tuples, reductions, and backend foreign

functions

Writing Accelerate programs
Accelerate arrays are indexed by similar data types with Repa arrays, in other words,
snoc-style lists:

data Z
data tail :. head = tail :. head

Like Repa, type synonyms are provided for Accelerate indices:

type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
...

The Accelerate array type is Array sh e. We can build accelerated arrays from lists
with fromList:

> import Data.Array.Accelerate as A
> fromList (Z :. 5) [1..5]
Array (Z :. 5) [1,2,3,4,5]

Now let's try to do something with an Array: reverse it. Accelerate provides the
function reverse, but it has this slightly daunting type signature:

reverse :: Elt e => Acc (Vector e) -> Acc (Vector e)

And if we try to apply reverse to an array directly, we are greeted with a type-
mismatch error:

> A.reverse (fromList (Z :. 5) [1..] :: Array DIM1 Int)

<interactive>:24:12:
 Couldn't match expected type 'Acc (Vector e)'
 with actual type 'Array DIM1 Int'

Chapter 11

[287]

The problem is that reverse expects its argument to be a vector wrapped within
an accelerated computation: Acc (Vector e). Acc type marks an accelerated
computation that produces a value of the given type. Vector is just a synonym for
a one-dimensional array. Accelerate provides a function to use bare arrays within
computations, aptly named use:

use :: Arrays arrays => arrays -> Acc arrays

The reverse function also unsurprisingly returns Acc, an accelerated computation,
so we need also some way to run such accelerated computation. One run function is
provided by another module: Data.Array.Accelerate.Interpreter. Yet another
run is provided by the accelerate-cuda package, which we'll meet shortly. For
now let's use the interpreter:

Data.Array.Accelerate.Interpreter.run :: Arrays a => Acc a → a

The Arrays type-class is used to overload over arrays and tuples of arrays.

Now we have all the pieces needed to reverse an accelerated array, so let's test it out:

>I.run $ A.reverse (use $ fromList (Z :. 5) [1..5]) :: Array DIM1 Int
Array (Z :. 5) [5,4,3,2,1]

Kernels – The motivation behind explicit use
and run
Let's step back and think for a moment. Why did the Accelerate library designers
decide that reverse and many other operations should take in and produce arrays
inside some Acc context? In theory, the API could be completely transparent without
exposing the internal Acc context at all.

The reason stems from how the GPU interacts with rest of the computer. The
memory of a GPU is separate from the system RAM. This means that every array
and indeed computation we wish to perform on the GPU must be loaded into the
GPU memory from system memory. Loading stuff into or from the GPU is highly
inefficient, so we would like to avoid doing it in excess.

In the lower-level (CUDA and OpenCL) frameworks, we would not only load data
(arrays) explicitly but also define the computing kernels (computations) explicitly. In
Accelerate, we load data explicitly but kernel-loading is largely abstracted away. The
Acc datatype is in fact a sort of AST that is turned into code that is then compiled by
an Accelerate backend (CUDA, for instance).

Programming for the GPU with Accelerate

[288]

The trick that Accelerate employs is that its kernels are created on demand. In
addition, for acceptable performance, it's necessary to memoize often-used kernels
so that they're loaded only once. Memoization is the part where we as library users
need to be conscious, because if we write code that doesn't reuse kernels enough,
it really hurts performance. Arguably, solving this problem perfectly on the library
side, even in Haskell, would be akin to solving the halting problem.

The rule of thumb for performance would be to always pass changing arguments
inside accelerated arrays (Acc). Accelerate also provides some debugging tools to
diagnose kernel-sharing problems. But for now we won't delve into optimizations
and instead use Accelerate for getting things done.

Working with elements and scalars
The Accelerate API builds upon arrays: nearly everything is an array. This is
understandable, because the GPU also operates on arrays. This doesn't mean we
would need to throw away convenience of scalars. After all, scalars are just zero-
dimensional arrays:

type Scalar e = Array DIM0 e

For convenience, Accelerate has its own expression language for manipulating
scalars. An expression is represented by the abstract data type:

data Exp t

There's a plethora of related type-classes and instances for Exp. Most notably, if t is
some Haskell numeric type, then Exp inherits its numeric nature via the classes Num,
Floating, and Fractional.

To construct values in the expression language, we can use lift:

> lift (42 :: Int) :: Exp Int
42

If the value is truly constant (and an instance of the Elt type-class of array element
types), constant is also an option:

constant :: Elt t => t -> Exp t

The expression language is closely tied to Acc. Once something is in Exp, we can't
get it out without run. We can't evaluate Exp scalars directly. For that we need unit:

unit :: Elt e => Exp e -> Acc (Scalar e)

Chapter 11

[289]

Once again, the GPU revolves around arrays so we needed a zero-dimensional array.
So, all in all, the following conversions are possible:

> let a0 = 42 :: Int
> let a1 = lift a0 :: Exp Int
> let a2 = unit a1 :: Acc (Scalar Int)
> let a3 = run a2 :: Scalar Int
> indexArray a3 Z :: Int
42

There's yet one more operation, the dual of unit, which turns an accelerated scalar
array into an expression:

the :: Elt e => Acc (Scalar e) -> Exp e

The following figure sums up the transformations between the Haskell, Exp,
and Acc worlds:

Int

Exp Int

ACC (Scalar Int)

lift

Unit the

Scalar Int

run

Haskell

Expression

Language

Accelerate

Language

We can do basic arithmetic in the expression language:

> lift (1 :: Int) + lift (2 :: Int) :: Exp Int
3

Exp occurs where the Accelerate API expects or produces scalar values: indexing,
mapping, array construction by element, and so forth. There is only a very small set
of API operations that don't live in the Acc context. For instance, indexArray works
on plain arrays, but not on arrays inside Acc. The (!) function does indexing within
Acc, and produces an expression as opposed to a plain element:

(!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix -> Exp e

Programming for the GPU with Accelerate

[290]

Rudimentary array computations
Besides initializing accelerated arrays from Haskell lists using fromList, using
the generate routine, we can initialize an array in parallel within an accelerated
computation:

generate
 :: (Shape ix, Elt a) =>
 Exp ix -> (Exp ix -> Exp a) -> Acc (Array ix a)

Again, nearly everything is wrapped within an Exp or Acc. Note that functions
cannot be expressions: we couldn't have an Exp (ix → a). And if we had just (ix
→ a), then for every element the Haskell runtime and thus CPU would need to be
bothered, which is exactly what we want to avoid in GPU programming.

But how would we build a function of the required type Exp ix -> Exp a? Or
more precisely, what can we do with a value, say, Exp DIM2? One thing we can do
is index other arrays with it using (!). But what if we needed separate access to the
components of the wrapped DIM2? We can't directly pattern-match, because Exp
doesn't allow it. What we need is the unlift function:

unlift :: Unlift c e => c (Plain e) -> e

Contrary to its name, unlift is not exactly the dual of lift, which brings Haskell
values into the Exp language. unlift can only bring back a small subset of values,
specifically singleton types such as Z or (:.). Applied to an Exp DIM2, unlift gets
specialized into the following:

unlift :: Exp DIM2 → Z :. Exp Int :. Exp Int

We can break up the dimensions of an Exp DIM2, but we cannot escape the
expression language itself (without run). Usually this is exactly what you want,
though, because most operations expect an Exp value anyways. The following code
uses generate together with unlift to generate an array that is a combination of
two arrays:

> let as = lift $ fromList (Z :. 3) [1..] :: Acc (Array DIM1 Int)
> let bs = lift $ fromList (Z :. 2) [100,100] :: Acc (Array DIM1 Int)

> run $ generate (index2 3 2)
 (\ix -> let Z :. x :. y = unlift ix
 in as A.!! x + bs A.!! y)
Array (Z :. 3 :. 2) [101,101,102,102,103,103]

Chapter 11

[291]

Unsurprisingly, the map function on accelerated arrays operates on expressions:

A.map
 :: (Shape ix, Elt a, Elt b) =>
 (Exp a -> Exp b) -> Acc (Array ix a) -> Acc (Array ix b)

But a little crazy type won't stop us from doing simple things simply:

> run $ A.map (^2) as
Array (Z :. 3) [1,4,9]

Example – Matrix multiplication
Let's now use what we have learned so far and implement matrix multiplication with
Accelerate. An approach which we will try first uses generate to produce the result
matrix. So, let's start with a simple preamble:

-- file: matrix.hs

{-# LANGUAGE TypeOperators #-}

import Data.Array.Accelerate as A

type Matrix = Array DIM2 Double

The implementation with generate is relatively straightforward:

matProduct :: Acc Matrix -> Acc Matrix -> Acc Matrix
matProduct a b = let

 -- (1)
 Z :. mx :. _ = unlift (shape a) :: Z :. Exp Int :. Exp Int
 Z :. _ :. my = unlift (shape b) :: Z :. Exp Int :. Exp Int

 -- (2)
 in generate (index2 mx my) $ \ix ->
 let Z :. x :. y = unlift ix :: Z :. Exp Int :. Exp Int
 s1 = lift (Z :. x :. All)
 s2 = lift (Z :. All :. y)
 -- (3)
 in the $ A.sum $ A.zipWith (*) (slice a s1) (slice b s2)

At (1), we get the size of the result matrix. At (2), we would produce the matrix by
mapping a function (3) over every individual index (in parallel). The function at (3)
uses slice to get the row and column needed to compute a value at the given index.
Then we use A.sum and to produce an expression.

Programming for the GPU with Accelerate

[292]

But it turns out this implementation will not work.

The Haskell type-checks and compiles, but the Accelerate program will not work; we
are greeted with an error message akin to the following:

*** Exception: Cyclic definition of a value of type 'Exp' (sa = 7)

This is one of Accelerate's ways of telling that you have (possibly) attempted to
employ nested parallelism – which is not supported by Accelerate or the GPU.

Using the generate function, it's really easy to encode nested parallelism. The reason
is that generate itself is parallel, so the supplied function must not be parallel. In
our function, we are using the to produce an Exp from an accelerated computation,
and then perform the computation in parallel; thus, we have nested parallelism.

To work around the limitations, we need to be clever. We can't express ourselves
with generate. The goal should be to vectorize the algorithm altogether, because
performing vectorized operations is what GPUs are extremely fast at. In general, we
should avoid producing single scalar values (like generate function argument of
generate) and operate on whole arrays instead.

A known vectorized version of matrix multiplication uses a third dimension to
encode fold (sum). An implementation is given in the following section. Perhaps
surprisingly, the vectorized version is more readable than the naive version. But it's
not so easy to wrap one's head around:

matProduct :: Acc Matrix -> Acc Matrix -> Acc Matrix
matProduct a b = let

 Z :. mx :. _ = unlift (shape a) :: Z :. Exp Int :. Exp Int
 Z :. _ :. my = unlift (shape b) :: Z :. Exp Int :. Exp Int

 aRep = A.replicate (lift $ Z :. All :. my :. All) a
 bRep = A.replicate (lift $ Z :. mx :. All :. All) (A.transpose b)

 in A.fold (+) 0
 $ A.zipWith (*) aRep bRep

Note that A.zipWith zips element-wise in a linear fashion, while A.fold reduces the
lowest dimension only. A.sum would be inappropriate here, because A.sum would
produce a scalar. Indeed, a vectorized solution is not always imminent. But the
benefit of vectorization is huge on highly parallel GPUs.

Chapter 11

[293]

Flow control and conditional execution
In general, conditional if-then-else and similar constructs don't compose well
with parallel execution. As a rule of thumb, conditionals should be kept to a
minimum, but often some flow control is still needed.

In the Exp world, we have some unsurprising combinators. Here is the classic
conditional, or if-then-else:

cond :: Elt t => Exp Bool -> Exp t -> Exp t -> Exp t

Here is its infix form:

(?) :: Elt t => Exp Bool -> (Exp t, Exp t) -> Exp t

This is a while construct:

while :: Elt e => (Exp e -> Exp Bool) -> (Exp e -> Exp e) -> Exp e
 -> Exp e

The cond and while operators also have variants lifted to the Acc world, named
acond (infix (?|)) and awhile:

acond :: Arrays a => Exp Bool -> Acc a -> Acc a -> Acc a

(?|) :: Arrays a => Exp Bool -> (Acc a, Acc a) -> Acc a

awhile
 :: Arrays a =>
 (Acc a -> Acc (Scalar Bool)) -> (Acc a -> Acc a) -> Acc a -> Acc
a

Inspecting generated code
Accelerate programs are turned into an intermediate language, which is understood
by Accelerate backends such as the interpreter or the CUDA backend. We can
inspect the intermediate code easily via some handy Show instances in Accelerate.
In particular, all Acc arr values can be shown. We can try that in GHCi:

> A.map (^2) (lift (fromList (Z:.3) [1..] :: Array DIM1 Int))

let a0 = use (Array (Z :. 3) [1,2,3])
in map (\x0 -> x0 * x0) a0

Programming for the GPU with Accelerate

[294]

Exps are showable, and so are functions that take only Acc or Exp values as
arguments:

> A.map (^2) :: Acc (Array DIM2 Int) -> Acc (Array DIM2 Int)

\a0 -> map (\x0 -> x0 * x0) a0

Looking at the generated code is one way of debugging Accelerate programs. If the
generated code doesn't look right, the problem is likely in our code, not the backend.
Even an attempt at showing can produce a runtime error, like sometimes happens
when nested parallelism is encoded unintentionally.

Running with the CUDA backend
To compile using the CUDA backend, we should install the accelerate-
cuda package from Hackage. Also required is the CUDA platform. Refer to the
accelerate-cuda package documentation and CUDA platform documentation for
further information:

cabal install accelerate-cuda -fdebug

The Haskell dependencies require some additional tools in scope, including alex,
happy, and c2hs. Install those first if necessary. The debug flag gives our Accelerate
CUDA programs some additional tools. There's no extra runtime cost versus no
debug flag. The additional flags could interfere with the user program, though.

In principle, the only necessary code change for using the CUDA backend instead
of the interpreter is to import the run function from Data.Array.Accelerate.CUDA
instead of the Interpreter module:

import Data.Array.Accelerate.CUDA

The program below executes our matrix product of 100x100 matrices on the GPU
using CUDA. Note that swapping back to the interpreter is a matter of swapping out
CUDA for interpreter in the corresponding import statement. Indeed, with CPP, it is
easy to put the choice behind a compile-time cabal flag as well:

-- file: matrix-cuda.hs

{-# LANGUAGE TypeOperators #-}

import Data.Array.Accelerate as A
import Data.Array.Accelerate.CUDA

type Matrix = Array DIM2 Double

Chapter 11

[295]

matProduct = ...

main = let
 mat :: Matrix
 mat = fromList (Z :. 100 :. 100) [1..]

 res = run $ A.sum $ matProduct (lift mat) (lift mat)

 in print res

Assuming CUDA and the corresponding libraries are installed, we can compile
the program like any other Haskell program. Note that all Accelerate programs
must be linked with the threaded GHC runtime:

ghc -threaded -O2 matrix-cuda.hs

[1 of 1] Compiling Main (matrix-cuda.hs, matrix-cuda.o)

Linking matrix-cuda ...

We execute the resulting binary normally. The matrix product is calculated rather
fast, using the GPU:

./matrix-cuda

Array (Z) [2.5088563200314e13]

Debugging CUDA programs
When accelerate-cuda is compiled with -fdebug, some extra options are available
in compiled GPU programs. A full list is maintained in the accelerate-cuda
package documentation. The following are a handful of useful flags:

• -ddump-cc: Dump information about CUDA kernel compilation and
execution

• -ddump-exec: Dump CUDA kernels before execution
• -fflush-cache: Delete CUDA kernel disk cache

The additional output from our matrix product example program looks like
the following:

./matrix-cuda -ddump-cc

0.09:cc: initialise kernel table

0.09:cc: persist/restore: 4 entries

0.09:cc: found/persistent

0.10:cc: found/persistent

Programming for the GPU with Accelerate

[296]

0.10:cc: found/persistent

0.10:cc: entry function 'fold' used 40 registers, 0 bytes smem, 0 bytes
lmem, 0 bytes cmem

 ... multiprocessor occupancy 78.1% : 1600 threads over 50 warps in 25
blocks

0.10:cc: entry function 'foldAll' used 16 registers, 0 bytes smem, 0
bytes lmem, 0 bytes cmem

 ... multiprocessor occupancy 100.0% : 2048 threads over 64 warps in 2
blocks

0.10:cc: entry function 'foldAll' used 16 registers, 0 bytes smem, 0
bytes lmem, 0 bytes cmem

 ... multiprocessor occupancy 100.0% : 2048 threads over 64 warps in 2
blocks

Most of the time, we are executing with multiprocessor occupancy of 100%, which is
really good. It's an indicator we are utilizing the full capabilities of the GPU.

Accelerate caches the CUDA kernels under a .accelerate directory under your
home directory. When executing an Accelerate program for the first time, we spend
a lot of time producing the kernels – in our small example, this accounted for about
1.5 extra seconds for just three kernels on my system. On consecutive executions,
however, the kernels are pulled from the cache.

Use -fflush-cache to clear the cache before execution. To inspect only the executed
kernels, pass -ddump-exec.

If the program is repeatedly producing new kernels when you think some previously
used kernel could be reused, this can be spotted in the debug output.

More Accelerate concepts
So far, we have considered accelerated arrays and expressions. These are the
primitives that Accelerate builds upon. On top, we have a bunch of functional
machinery to help us express ourselves in accelerated computations: zips and unzips,
reductions, permutations, stencils, and so forth. The complete API is documented
in the accelerate package. In this section, we consider using some of the most useful
parts of this machinery.

Chapter 11

[297]

Working with tuples
GPUs don't allow array nesting or tuples as elements of an array. Nested arrays can
be somewhat mimicked with higher-dimensional arrays. And it might not come
as a surprise that Accelerate supports tuples as elements of an array. Internally,
arrays with tupled elements are represented as tuples of arrays, but this is strictly an
implementation detail. For the programmer, it really looks like we are working with
tupled elements, which is sometimes very convenient.

With zip and unzip, we can (de)construct tupled elements within accelerated
arrays with zero runtime cost. A tuple array could be used to represent an array of
imaginary numbers, or instances.

The lift and unlift functions translate between tuple expressions and tuples of
expressions. For instance, these are valid type specializations of lift and unlift:

lift :: (Exp Int, Exp Int) -> Exp (Int, Int)

unlift :: Exp (Int, Int) -> (Exp Int, Exp Int)

lift and unlift work with Acc in place of Exp too.

Regarding performance, it doesn't matter whether there is a tuple of expressions
(Exp) or an expression of tuples. They have pretty much the same internal
representation and will produce the same program.

Folding, reducing, and segmenting
Accelerate provides familiarly named fold and fold1, but unlike those versions of
these functions in Data.List, the Accelerate ones fold over the innermost dimension
only, so they can be used to reduce the rank of an array by one. To fold along all
dimensions producing a scalar, functions like foldAll and fold1All can be used.

What's different versus Data.List style folds is that Accelerate's folds always
proceed in parallel. This means that the folding function must be associative. To
do sequential fold with Accelerate, we would need to use sfoldl, also from the
Accelerate library. Note that slfold only reduces along the innermost slice:

sfoldl :: _ => (Exp a → Exp b → a)
 → Exp a
 → Exp sh
 → Acc (Array (sh :. Int) b)
 → Exp a

Programming for the GPU with Accelerate

[298]

The slice is specified by an argument of type Exp sh. There is no ready-made
solution for folding over a whole dimension or all dimensions sequentially. It is not
a common need to fold a multi-dimensional array non-associatively, and a sequential
fold of a big array isn't very efficient on a GPU due to the lack of parallelism.

One more folding variant provided by Accelerate operates on segments:

type Segments i = Vector i

Segments are how nested one-dimensional arrays can be represented in Accelerate:
a segment array gives the lengths of successive logical sub-arrays within an array.
The foldSeg and fold1Seg functions fold over each logical sub-array, producing
an array with the same dimensionality but with the logical sub-arrays reduced.

Accelerated stencils
Stencils pop up in many applications. We have covered the basics of stencils in the
Chapter 5, Parallelize for Performance. Now we will promptly consider how the stencil
system present in Accelerate is used, and its limitations.

The core function stencil has a predictable signature:

stencil
 :: (Stencil ix a stencil, Elt b) =>
 (stencil -> Exp b)
 -> Boundary a -> Acc (Array ix a) -> Acc (Array ix b)

Note the Stencil type-class. It's multi-parameter with parameters for the shape,
element type, and stencil type. For a one-dimensional array, the corresponding
stencil is a tuple of its elements:

Stencil DIM1 e (Exp e, Exp e, Exp e)

For a two-dimensional array, we have tuples of tuples of elements; for instance,
a 3x3 stencil would be as follows:

Stencil DIM2 e ((Exp e, Exp e, Exp e)
, (Exp e, Exp e, Exp e)
, (Exp e, Exp e, Exp e))

We could nest tuples even further for higher-dimensional arrays. Provided Stencil
instances are inductive on the array shape, so arbitrary ranks are supported.
Furthermore supported are tuples of 3, 5, 7, and 9 elements.

Chapter 11

[299]

The meat of a stencil application lies in the stencil function, that has the type (for
some Stencil is a stencil):

stencil → Exp b

This is perhaps a more powerful way to represent stencils than Repa's element-wise
multiplication. Nevertheless, expressing a 3x3 stencil that detects horizontal lines
using a threshold of 0.5 is expressed easily:

stFun ((x1, x2, x3)
 , (y1, y2, y3)
 , (z1, z2, z3)) = y1 >* 0.5 &&*
 y2 >* 0.5 &&*
 y3 >* 0.5 ? (1, 0)

Accelerate also supports binary stencils, via the function stencil2. Binary stencils
operate on two images, combining them neighborhood-wise. A binary stencil
function would have the following type:

stencil :: stencil → stencil → Exp b

The boundary argument is very similar to how it is in Repa. The benefit of using
Accelerate instead of Repa for stencils is, of course, higher parallelism. For bigger
images or arrays, Accelerate can easily be many times faster on a GPU than Repa
on a CPU.

Permutations in Accelerate
A permutation is an array transformation which reorders the elements, possibly
replacing some with new elements and maybe altering the shape. Accelerate
provides combinators for both forward and backward permutations. In a forward
permutation, indices are mapped from the input array to the output array. Going
backward, output array indices define input indices.

Reverse and transpose are examples of permutations. These two are provided
by Accelerate by default. Generic forward permutation is called permute while
backward permutation is backpermute.

Programming for the GPU with Accelerate

[300]

Using the backend foreign function interface
Not every Accelerate backend is built even. Some backends provide routines that
others don't that are a lot faster due to specialized hardware, for instance. Accelerate
provides a thin layer for embedding backend-specific alternatives in accelerated
computations. The FFI consists of two embedding functions (contexts omitted for
clarity):

foreignAcc :: _ =>
 ff acc res → (Acc acc → Acc res) → Acc acc → Acc res

foreignExp :: _=>
 ff e res → (Exp e → Exp res) → Exp e → Exp res

The first argument in both foreignAcc and Exp is a value of a type defined by the
backend. For instance, accelerate-cuda provides CUDAForeignAcc and *Exp
datatypes that can be used to construct wrappers for CUDA-specific functions.

For example, CUDA has a fast float-specialized exponentiation __expf. We can
easily access this faster primitive from Accelerate, although it's not provided by
the Haskell library. What's nice is that by doing so we don't necessarily lock our
program for CUDA only. The foreignExp wrapper expects a generic fallback as its
second argument, which is expected to be slower, but works on any backend:

fexp :: Exp Float → Exp Float
fexp = foreignExp (CUDAForeignExp [] "__expf") exp

Summary
Now we have learned to write programs with Accelerate that run using the
interpreter, and to compile and run them on CUDA-enabled GPUs. We know that
Accelerate uses a code generator of its own internally. We understand it's crucial to
write code that can efficiently reuse cached CUDA kernels, because their compilation
is very expensive. We also learned that tuples are a free abstraction in Accelerate,
although GPUs themselves don't directly support tupled elements.

In the next chapter, we will dive into Cloud Haskell and distributed programming
using Haskell. It turns out Haskell is a pretty well-suited language for programming
distributed systems. Cloud Haskell is an effort that streamlines building distributed
applications, providing an abstraction over the network layer, among other things.

[301]

Scaling to the Cloud
with Cloud Haskell

In this chapter, we will look at how distributed systems programming fits with
Haskell. The motivation behind distributed systems is multifaceted. On one
end, there is more computing power available with multiple physical machines.
Then there are other resources besides computing power: storage space, network
bandwidth, and other devices. Yet another advantage of proper distributed systems
is resilience. With a growing number of machines, there are a growing number of
failure points. A proper distributed system should be able to operate under arbitrary
process failures.

Cloud Haskell is a relatively new but mature platform that's modelled from Erlang's
wonderful execution model. Cloud Haskell brings distributed processes and process
management to Haskell with modular network transport and fine-grained message
and channel-based communication.

In this chapter, we will explore the Cloud Haskell platform. No deep knowledge
about distributed systems is required. A general notion of a distributed system is
enough. We will do basic message-passing, work with typed channels, and send and
receive both data and closures of arbitrary data, including functions and procedures.
We will look at the facilities for handling distributed failure in Cloud Haskell, that is,
linking and monitoring processes. By the end of this chapter, you will be able to use
Cloud Haskell to build your distributed system.

The chapter will cover the following topics:

• Launching Cloud Haskell nodes and processes
• Message-passing and typed channels
• Using closures to pass arbitrary data between machines
• Handling failure, linking processes together, and process monitoring

Scaling to the Cloud with Cloud Haskell

[302]

Processes and message-passing
The maze of packages around Cloud Haskell may seem daunting. But to get started,
we really need just two packages: distributed-process and distributed-
process-simplelocalnet. The former package implements the core features of
Cloud Haskell: nodes, processes, serialization, and message-passing. In particular,
it doesn't provide any implementation for communication between nodes. That's
what the latter package is for.

Cloud Haskell is modular in its communication layer. The distributed-process-
simplelocalnet package provides simple, zero-configuration networking for Cloud
Haskell nodes. It uses UDP broadcasting for node discovery, which is adequate
for our testing purposes in this section. So let's get started. At the time of writing,
distributed-process version 0.6.4 is the newest, so we'll be using that:

stack install --resolver lts-6.7 distributed-process distributed-process-
simplelocalnet

The most important Cloud Haskell concept and type is Process:

data ProcessId

data Process
-- instance Monad, MonadIO, MonadMask

Cloud Haskell processes are lightweight threads that aren't necessarily executed
on the local machine. ProcessId uniquely identifies a process across the distributed
system, and Process in turn corresponds to a ThreadId on the machine it is
executing on.

All code that somehow interacts with the Cloud Haskell API lives in the Process
monad. It has a MonadIO instance as well as MonadMask (and MonadThrow/
MonadCatch) instances, so Process can be used almost always where plain IO
would be used.

Creating a message type
Let's now build a summer process that repeatedly takes in numbers from other
processes, adds them to an internal counter, and responds to every number with the
updated counter value. The first thing we need to write is a datatype that describes
the messages that are passed in and out of such a summer process.

The basic API functions for message-passing in Control.Distributed.Process
(from distributed-process) that we will be using are as follows:

send :: Serializable a => ProcessId → a → Process ()
expect :: Serializable a => Process a

Chapter 12

[303]

Messages are overloaded over the Serializable class. Serializable is
implemented by every type with Binary and Typeable instances, in turn both of
which are derivable. Still, we end up with quite a lot of code, because Binary is
"derivable" only via GHC Generics:

import Data.Binary (Binary)
import Data.Typeable (Typeable)
import GHC.Generics (Generic)

data SummerMsg = Add Int ProcessId
 | Value Int
 deriving (Show, Typeable, Generic)

instance Binary SummerMsg

Note that we included a ProcessId in the Add constructor. The idea is that the
process which sends an Add message will include its own ProcessId in it so that the
summer process knows where to send its Value reply.

Creating a Process
The next step is to write Process code for the summer. Using expect to get a message
and send for replies, this is a straightforward task:

import Control.Distributed.Process

summerProc :: Process ()
summerProc = go 0
 where
 go s = do msg@(Add num from) <- expect
 say $ "received msg: " ++ show msg
 let s' = s + num
 send from (Value s')
 go s'

The say function is for debug purposes. By default, it outputs a string to standard
error stream, but implementation varies depending on the Cloud Haskell transport
layer used.

Scaling to the Cloud with Cloud Haskell

[304]

Spawning and closures
The forkIO equivalent for Cloud Haskell processes is spawn. Because a Process
doesn't necessarily run on the machine or node that spawns it, spawn takes a NodeId
as its argument:

spawn :: NodeId -> Closure (Process ()) -> Process ProcessId

A node is a machine or capability that is able to run Processes. If we just want
to fork a Process to run on the local machine, we can get the local NodeId with
getSelfNode.

Notice also that spawn takes a Closure type, not Process directly. This makes sense,
because Process is akin to IO and we couldn't just transfer an arbitrary IO action
from one machine to another. A Closure is a serializable form of arbitrary data or
actions. To create closures, Cloud Haskell provides some Template Haskell magic
that generates special remote tables for arbitrary serialization.

To make our summerProc :: Process () spawnable, we create a remote table of it
with the remotable TH splice:

remotable ['summerProc]

Among other things, remotable creates a new top-level definition __remoteTable.
We'll need to provide this to the transport backend so that the backend can use it to
map definitions to closures and back, and more. In general, a module that contains
definitions should have one remotable splice, with all remotable definitions from
that module listed.

To then create a closure, we use mkStaticClosure:

$(mkStaticClosure 'summerProc) :: Closure (Process ())

There is also mkClosure, which creates closures with one argument. Given f :: a →
b, we have the following:

$(mkClosure 'f) :: a → Closure b

Now, for demonstration, we can create a process that spawns a summer process and
interacts with it. Here we go:

[…]
import Control.Distributed.Process.Closure

summerTest :: Process ()
summerTest = do
 node<- getSelfNode

Chapter 12

[305]

 summerPid<- spawn node $(mkStaticClosure 'summerProc)

 mypid<- getSelfPid

 send summerPid (Add 5 mypid)
 send summerPid (Add 7 mypid)

 Value n <- expect
 say $ "updated value: " ++ show n
 Value n'<- expect
 say $ "updated value: " ++ show n'

We use getSelfNode and getSelfPid to get the NodeId and ProcessId for the
current process. We use spawn to create a new process from a closure, which gives us
the ProcessId of the newly made process. We send messages to that, which in turn
replies to us.

The final thing that's missing is the backend that initializes nodes and manages
processes.

Running with the SimpleLocalNet backend
The SimpleLocalNet backend is easy to use, because it only requires a simple local
network, something that all machines should have. Let's start with an example.
Here's a main that executes the summerTest process from the previous section:

import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet
[…]

main :: IO ()
main = do
 backend<-initializeBackend "localhost" "9001"
 (__remoteTable initRemoteTable)
 startMaster backend $ _ -> summerTest

There are two important functions: initializeBackend and startMaster. The
former basically creates a new local node with some additional information (backend
:: Backend). The Backend type is also part of the SimpleLocalNet backend.

The third argument to initializeBackend is of type RemoteTable: this is related
to the remotable TH splice we saw previously. The __remoteTable definition that
remotable generates is of type RemoteTable → RemoteTable. This is so that we can
combine multiple remote tables with plain function composition. initRemoteTable
is the "unit" of RemoteTables (an empty table).

Scaling to the Cloud with Cloud Haskell

[306]

The startMaster function is an auxiliary function which starts a process on a new
node it creates in the network. There's also a startSlave function, which starts a
slave node with no running processes yet. The second argument to startMaster is
of the following type:

[NodeId] → Process ()

So, for convenience, startMaster automatically discovers every slave node in the
network before starting the process. For now, we'll only use one node on our local
machine (localhost) at port 9001. Note that we could run multiple nodes on the same
machine at the same port – Cloud Haskell backends should be considered as merely
media where nodes live and communicate. From the application side, once we have
a NodeId, it doesn't make a difference how the node is connected to the network. The
backend used guarantees that messages flow between nodes.

Now let's compile and run our main and summer processes:

stack --resolver lts-6.7 ghc -- -threaded first-example.hs

./first-example

… pid://localhost:9001:0:11: received msg: Add 5
 pid://localhost:9001:0:10

… pid://localhost:9001:0:11: received msg: Add 7
 pid://localhost:9001:0:10

… pid://localhost:9001:0:10: updated value: 5

… pid://localhost:9001:0:10: updated value: 12

(Timestamps omitted for lack of space.)

Everything is as expected! Now we know how to create and execute processes using
the simple localnet backend, and to send and receive messages between processes.

Using channels
While plain message-passing using expect and send works fine, it has some caveats.
The biggest one is that all messages from all processes go to the same queue. This has
two unfortunate implications. First, expect has to search the queue every time for a
matching message. Second, we cannot know from which client the message came, or
if it is even relevant anymore.

Chapter 12

[307]

Cloud Haskell provides an abstraction called typed channels to overcome these
difficulties. A channel consists of a SendPort and a ReceivePort that are connected
to provide unidirectional communication using sendChan and receiveChan:

newChan :: (Typeable a, Binary a) => Process (SendPort a, ReceivePort
a)

receiveChan :: (Typeable a, Binary a) => ReceivePort a -> Process a

sendChan :: (Typeable a, Binary a) => SendPort a -> a -> Process ()

Because SendPort is Serializable, we can send them using send. This way, it
is easy to establish bidirectional communication between a client and server, for
instance. What's more, the channel is only valid through the lifetime of SendPort
and corresponding ReceivePort. Messages can be put into the channel only after the
channel's creation, unlike with plain messaging, where messages flow as long as the
process is alive. Typed channels enable easy encapsulation.

Let's see a small example of using channels. We'll continue using a simple summer
process just to emphasize Cloud Haskell features. First, a fairly minimal set of
pragmas and imports:

-- file: client-server.hs
{-# LANGUAGE BangPatterns #-}

import Control.Monad
import Control.Distributed.Process
import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet

This time around, we will spawn clients that take a port to send numbers into.
The client is a simple one-liner:

client :: SendPort Double -> Process ()
client sendport = forM_ [1..100] (sendChan sendport)

And here is the master process:
master :: Process ()
master = do
 ports<- replicateM 100 $ do -- (1)
 (sendport, recvport) <- newChan
 _pid <- spawnLocal (client sendport)
 return recvport

 port<- mergePortsRR ports -- (2)

 let loop !s = do -- (3)

Scaling to the Cloud with Cloud Haskell

[308]

 mn<- receiveChanTimeout 1000 port
 case mn of
 Just n -> loop (s + n)
 Nothing -> do say $ "final: " ++ show s
 terminate
 loop 0

First we spawn some clients and create a new channel for each (1). Then at (2),
we merge all 100 ReceivePorts into one single ReceivePort using mergePortsRR:

mergePortsRR :: (Typeable a, Binary a) => [ReceivePort a] -> Process
(ReceivePort a)

That RR stands for round-robin, which gives each port an equal chance of being read
under congestion. There is also mergePortsBiased, which favors the rightmost port.

At (3), we then repeatedly receive from the merged channel until there have been no
messages for 1 millisecond. This timeout is built into receiveChanTimeout:

receiveChanTimeout :: (Typeable a, Binary a)
 => Int -> ReceivePort a -> Process (Maybe a)

When a timeout is reached, we print the final result and exit with terminate. Our
main is the bare minimum:

main = do
 backend<- initializeBackend "localhost""9001" initRemoteTable
 startMaster backend (_ -> master)

Running the program, we get the expected results:

./client-server

Thu Jul 14 21:32:05 UTC 2016 pid://localhost:9001:0:10: final: 505000.0

client-server: ProcessTerminationException

Establishing bidirectional channels
As mentioned earlier, only the sending endpoint of a channel is serializable. So it
must always be the receiving end of a channel that creates it using newChan. To
establish a bidirectional pair of channels between processes, they both create a
channel and send the sendport to the other process.

In practice, this would look like the following:

-- file: bi-directional.hs

server :: Process ()

Chapter 12

[309]

server = do

 pid<- getSelfPid

 (sendport', recvport) <- newChan

 _clientPid <- spawnLocal (client pid sendport')

 sendport<- expect

 sendChan sendport "ping"
 receiveChan recvport >>= say

client :: ProcessId -> SendPort String -> Process ()
client pid sendport = do

 (sendport', recvport) <- newChan

 send pid sendport'

 ping<- receiveChan recvport
 sendChan sendport ("pong: " ++ ping)

The relevant bits that establish the channels are highlighted. Note that these
processes are not completely symmetrical, in that to run client we provide its
master's process and upstream channel as arguments. But this isn't mandatory.
With a bit more work, they both could establish channels via send/expect.

Calling a remote process
Previously, we used spawn to create new processes remotely. A common pattern is
to spawn a process on a remote machine, wait for it to finish, and then collect the
results. For this, Cloud Haskell provides a convenience operation, call:

call
 :: (Typeable a, Binary a) =>
 Static (SerializableDict a)
 -> NodeId -> Closure (Process a) -> Process a

There are two differences compared to spawn: the result type is a instead of ()
and there is a new argument, Static (SerializableDict a). This is a reified
Serializable dictionary for the process. Let's see call in action to understand it
better:

rpc :: String -> Process Int
rpc str = return (length str)

remotable ['rpc]

foo :: Process ()

Scaling to the Cloud with Cloud Haskell

[310]

foo = do
 node<- getSelfNode
 str<- call $(functionTDict 'rpc) node ($(mkClosure 'rpc) "foo")
 say (show str)

Here are some points to note:

• We use mkClosure to turn rpc into a Closure. The one argument to rpc is
passed normally outside the TH splice. This works only because rpc takes one
monomorphic argument, String, and has a monomorphic result (Int). Also,
remotable needs to have been called for rpc to create the static definitions.

• We use another TH splice, functionTDict, to get the serialization dictionary
that is similar to the result type of rpc. There is also splice functionSDict,
which gives the dictionary for the argument (source) type.

• If rpc threw an exception, this exception would be re-thrown at foo.

There is also a local version of call, named callLocal, which has a much simpler
signature:

callLocal :: Process a → Process a

Though it seems like the identity function, it is not: the subprocess will get its own
new ProcessId. This means that messages sent for the subprocess would be silently
dropped when callLocal returns.

Handling failure
In a distributed system, it's customary to fail fast and let other processes deal
with failure. This principle is encouraged in Erlang, from which Cloud Haskell is
modelled. We should be prepared for an arbitrary process crashing, with its parent
or monitoring process handling the failure (or propagating it further to a parent's
parent).

There are two tactics to be noted about process failure in Cloud Haskell: linking
and monitoring. The difference is that a linked process propagates exceptions to its
parent, while an exception in a monitored process results in the monitoring process
receiving a ProcessMonitorNotification message.

Chapter 12

[311]

Firing up monitors
The basic monitoring API is the following:

monitor :: ProcessId → Process MonitorRef
monitorNode :: NodeId → Process MonitorRef
monitorPort :: SendPort a → Process MonitorRef

unmonitor :: MonitorRef → Process ()

withMonitor :: ProcessId → Process a → Process a

We can start monitoring either a process, a node, or a channel. A MonitorRef is
retained so that it's possible to unmonitor later. The withMonitor combinator
combines monitor and unmonitor, by monitoring the process only when in the
inner computation.

When a monitored process exits, a notification message is sent to the monitoring
process. To catch the message along with other messages in the system, we need
some additional machinery. Plain expect is not sufficient here, because it matches
one type only.

Matching on the message queue
What we need to sensibly match on multiple message types at once is,
unsurprisingly, provided by Cloud Haskell as a nice API. Details will follow,
but the crux of it is here:

data Match b

receiveWait :: [Match b] → Process b

match :: Serializable a => (a → Process b) → Match b
matchUnknown :: Process b → Match b
matchChan :: ReceivePort a → (a → Process b) → Match b

The match API allows us to check for multiple types of message in the queue
simultaneously. We can also interleave arbitrary ReceivePorts with the message
queue with matchChan, or drop any messages with matchUnknown.

Here's an example of a combined receive operation:

receiveWait
 [match $ \(n :: Int) → …
 , match $ \(s :: String) → …
 , matchUnknown $ …

Scaling to the Cloud with Cloud Haskell

[312]

 , matchChan recvport $ \x → …
]

It first tries for Int or String types in the message queue. If a message of neither
type is available but instead there's some other message, we remove that from the
queue. Otherwise, an attempt is made to read from channel recvport. If that's empty
too, we start waiting until one of the match conditions is fulfilled.

The implementation of Match is based on STM, so the whole receive operation is
atomic and it's efficient when waiting for events due to how STM works.

Linking processes together
Sometimes it's useful to handle failure at the level of a set of processes instead of
a single process. Or maybe we want to ensure that a child process won't continue
executing when its parent dies, as would happen when a process is merely
monitored.

For the latter, Cloud Haskell provides a nice combinator, spawnSupervised:

spawnSupervised
:: NodeId → Closure (Process ()) → Process (ProcessId, MonitorRef)

This spawns a new process, starts monitoring it, and links the child to the parent.
The link ensures that if the parent dies, the child dies too (or at the very least receives
an asynchronous exception).

In case a supervised spawn doesn't fit your use case, there are more API functions for
linking. Like monitoring, linking extends from processes to nodes and ports:

link, unlink :: ProcessId → Process ()
linkNode, unlinkNode :: NodeId → Process ()
linkPort, unlinkPort :: SendPort a → Process ()

Links are always unidirectional, though it's possible to link processes to each other.

Message-passing performance
It's worth noting that message passing between processes normally goes between
the network transport and undergoes serialization following deserialization.
Serialization is not a free operation and it's inevitable between processes located on
different nodes. However, processes on the same node don't necessarily need to do
the relatively expensive serialization at all.

Chapter 12

[313]

Cloud Haskell takes a conservative approach and doesn't by default optimize local
node communication. The main reason is that skipping (de)serialization can possibly
give different runtime semantics due to strictness. For instance, unnoticed bottoms
can lurk in data that isn't fully forced. Messages sent over network must always be
fully evaluated, so it's easier for the developer when such mistakes can be caught in
early development.

People familiar with distributed systems know that communication and serialization
is not cheap, and in production it doesn't make much sense to incur extra work
in local communication. Luckily, Cloud Haskell does permit optimizing local
communication. Unsafe send functions are provided in two places. The Control.
Distributed.Process.UnsafePrimitives module replaces send functions from
the main API, Control.Distributed.Process, while the main API provides unsafe
variants with the unsafe prefix.

Using the unsafe variants is faster, but you will need to make sure you are not
relying on evaluation-based asynchronous exceptions getting thrown in any process:
an unsafe send can result in the exception being raised in the receiver instead of the
sender.

Nodes and networking
Though Cloud Haskell processes communicate seamlessly together, they are
completely oblivious to how they are connected. The transport layer provided by
Network.Transport sits between the processes and a backend that implements the
transport.

A Cloud Haskell backend provides on top of a transport layer some sort of peer
discovery or allows for a predefined topology. A number of backends have been
implemented and more are in development. At the time of writing, there are three
well-supported backends available:

• SimpleLocalNet (distributed-process-simplelocalnet): Fully connected
with optional client/slave configuration, TCP transport, and UDP multicast
peer discovery

• P2P (distributed-process-p2p): TCP-transport with peer-to-peer
discovery

• ZooKeeper (distributed-process-zookeeper): TCP transport that uses
Apache ZooKeeper as naming registry

Scaling to the Cloud with Cloud Haskell

[314]

Each backend has its use cases. In first development phases, SimpleLocalNet is the
easiest choice, but non-existent network topology configuration is not good in many
applications. For a "truly" distributed system, in other words, one that doesn't have a
central puppetmaster, a peer-to-peer transport is a good fit. And for a more managed
system, a ZooKeeper-based solution is a strong option.

If none of the existing backend solutions is viable, it's not too hard to roll your
own with the more various network-transport packages, for instance, a managed
TCP transport with network-transport-tcp or using ZeroMQ and network-
transport-zeromq.

All Network.Transport.* packages essentially provide ways to produce
Transports that Cloud Haskell uses to launch nodes. The API in Control.
Distributed.Process.Node is quite self-explanatory:

data LocalNode

newLocalNode :: Transport → RemoteTable → IO LocalNode
closeLocalNode :: LocalNode → IO ()

forkProcess :: LocalNode → Process () → IO ProcessId
runProcess :: LocalNode → Process () → IO ()

initRemoteTable :: RemoteTable

localNodeId :: LocalNode → NodeId

So Cloud Haskell's LocalNode associates with a NodeId. Local node initialization
requires a Transport and the RemoteTable for closure lookup. At least the first
process is started by forkProcess or runProcess, after which call or fork can be
used in the Process monad to spark more processes on local or remote nodes.

Cloud Haskell backends are just convenient wrappers over network-transport.
It's not necessary to use a backend in itself.

Chapter 12

[315]

Summary
In this chapter, we have learned to build distributed systems using the Cloud
Haskell platform: launching nodes and processes, communicating via direct message
passing between processes and with more flexible typed channels, passing remotely
executed procedures in closures, and handling failure with process linking and
monitoring. You now know how to build distributed systems with Cloud Haskell.

The next chapter will be about Functional Reactive Programming (FRP) and related
Haskell libraries. Reactive programming, and especially FRP, challenges prevalent
imperative control flow by a different notion of time. In imperative animation, for
instance, timing is more or less implicit in the code, whereas in FRP, time would be
just one more argument or input to an animation system. Reactive programming
extends beyond just animation, though.

[317]

Functional Reactive
Programming

Functional Reactive Programming (FRP) is an elegant way to express behaviors that
change over time, such as user interfaces or animation. From a theoretical point of
view, behaviors are time-varying values. Using simple behaviors as building blocks,
we can build increasingly complex behaviors: complete programs, UIs, games, and
so on. Behaviors compose very well and eliminate lots of tedious and error-prone
work that's present in the traditional imperative approach with actions and callbacks.

Though FRP has simple semantics, efficient implementation is largely an open
question. Existing FRP implementations take different approaches with different
trade-offs. In semantics, FRP is continuous, in other words, functions of the real
numbers. In practice, we are forced to make approximations, either via sampling,
using discrete semantics or some hybrid of continuous and discrete. The more
theoretically minded reader is encouraged to glance at the following FRP papers:
Functional Reactive Animation (1997, Elliot and Hudak), Push-Pull Functional Reactive
Programming (2009, Elliot).

In this chapter, we will not bother much with understanding the semantics exactly.
Instead, we will work with simple but illustrative examples of FRP in practice using
a few Haskell libraries that implement their own realizations of FRP: Elerea, Yampa,
and Reactive-banana. Because there are so many examples, tutorials and additional
libraries for hooking FRP logic into input and output sources, for example, graphics
frameworks, we won't focus on that aspect of FRP. Instead, the focus is on the very
core of FRP: elegant and powerful composition of behaviors and events.

Functional Reactive Programming

[318]

This chapter will cover the following topics:

• Programming with three FRP frameworks: Elerea, Yampa, and Reactive-
banana

• Pros and cons of discrete- and continuous-time signals, events and behaviors
• Coding recursion and mutual recursion in event networks
• Adding inputs and outputs to networks statically and dynamically

The tiny discrete-time Elerea
In order to not feel overwhelmed, we'll begin with one of the simplest formulations
of FRP, Elerea. Elerea is a very minimalist implementation, which restricts itself
to discrete-time semantics and sampling. There are no events and everything is
computed on demand only. Furthermore, the API consists of high-level constructs so
that it's exceedingly difficult to shoot yourself in the foot with this library.

Time-varying values of type a are represented as Signal a in Elerea:

data Signal a
-- instances incl. Monad, Eq

Signals can be thought of as functions Nat → a, though obviously they are
represented differently.

Signals are made inside signal generators, SignalGen a:

data SignalGen a
-- instances incl. Monad, MonadFix, MonadIO

Signal generators have a MonadFix instance, which will later allow us to build
mutually recursive signals.

The minimal API provides just a few signal building blocks. Excluding some trivial
extensions, the core combinators are as follows:

delay :: a → Signal a → SignalGen (Signal a)
snapshot :: Signal a → SignalGen a
generator :: Signal (SignalGen a) → SignalGen (Signal a)
memo :: Signal a → SignalGen (Signal a)
till :: Signal Bool → SignalGen (Signal Bool)

stateful :: a → (a → a) → SignalGen (Sinal a)
transfer :: a → (t → a → a) → Signal t → SignalGen (Signal a)

effectful :: IO a → SignalGen (Signal a)

Chapter 13

[319]

We'll see some examples soon, but first we introduce start:

start :: SignalGen (Signal a) → IO (IO a)

This embeds a signal network built via the signal generator network into IO. Once
the network is initialized, we get an IO action (IO a) that samples the network.
We can think of start as a "start-the-world" action while the resulting action is a
"sample-the-world" action. We define a sigtest function that performs 10 samplings
and prints them as a list:

-- file: elerea-first-ex.hs

import Control.Monad
import FRP.Elerea.Simple

sigtest :: Show a => SignalGen (Signal a) -> IO ()
sigtest gen = start gen >>= replicateM 10 >>= print

Now, let's see some signals in action. First, we have stateful signals, similar to
unfolding:

> sigtest (stateful 5 (+1))
[5,6,7,8,9,10,11,12,13,14]

Signals can be composed using general Applicative or Monad operations:

> sigtest $ do { a <- stateful 0 (+1)
 ; b <- stateful 0 (subtract 1)
 ; return ((+) <$> a <*> b)
 }
[0,0,0,0,0,0,0,0,0,0]

The transfer combinator "scans" values in the stream, producing a new stream:

> sigtest $ do { series <- stateful 5 (+1)
 ; transfer 1 (+) series
 }
[6,12,19,27,36,46,57,69,82,96]

This is analogous to the scanl function from Prelude:

> let series = iterate (+1) 5
> take 10 $ scanl (+) 1 series
[1,6,12,19,27,36,46,57,69,82]

Functional Reactive Programming

[320]

Embedding arbitrary I/O actions as inputs is trivial with effectful:

> sigtest (effectful getLine)
hello
world
…
end
["hello","world",…,"end"]

Each combinator – stateful, transfer, and effectful – is simple and intuitive,
but not always powerful enough in complex cases. We'll introduce the general
building blocks delay, generator, and till with bigger examples next.

Mutually recursive signals
In a complex FRP application, we often need signals that depend mutually on
each other. For instance, in a UI, actions depend on user input and available input
depends on past actions. The Fibonacci series is one of simplest example programs
that can be expressed as a combination of mutually recursive signals. In pseudo-code
we have the following:

fib <- 1 `cons` fib1
fib1 <- 1 `cons` fib2
let fib2 = fib + fib1

Here, cons is an operation that inserts one value to the head of the stream. But
we can't quite directly translate this pseudo-code to SignalGen code, because the
bindings are mutually recursive and a monadic bind is not recursive, though let
bindings are.

Fortunately, we can utilize SignalGen's MonadFix instance, which will give
us recursive bindings. In order to not bother with the details, we will use the
RecursiveDo GHC language extension to yield recursive monadic bindings that look
almost identical to normal monadic bindings:

{-# LANGUAGE RecursiveDo #-}

Now we can write a mutually recursive signal that produces the Fibonacci numbers:

fibonacci :: SignalGen (Signal Int)
fibonacci = do
 rec fib <- delay 1 fib1
 fib1 <- delay 1 fib2
 let fib2 = (+) <$> fib <*> fib1
 return fib

Chapter 13

[321]

The magic is in the new rec keyword introduced by RecursiveDo. It lets us
introduce a mutually recursive group of bindings. The delay function is the cons
operation on signals:

delay :: a -> Signal a -> SignalGen (Signal a)

Just to confirm our implementation works:

> sigtest fibonacci
[1,1,2,3,5,8,13,21,34,55]

RecursiveDo is really just syntactic sugar: all the magic happens in the MonadFix
class and instance, which doesn't depend on any magic at all.

Signalling side-effects
With effectful, it's easy to turn IO effects into input signals in the network. To use
signal output as a parameter to a side effect, we can use variants of effectful that
take the signal to bind to as parameter:

effectful1 :: (t -> IO a) -> Signal t -> SignalGen (Signal a)

effectful2 :: (t1 -> t2 -> IO a)
-> Signal t1 -> Signal t2 -> SignalGen (Signal a)

In the following small program, on every line read outputs the sum of read numbers
so far:

linesum :: SignalGen (Signal ())
linesum = do
 sigInputNumbers ← fmap read <$> effectful getLine
 sigSumNumbers ← transfer (0::Int) (+) sigInputNumbers
 effectful1 (putStrLn . ("sum " ++) . show) sigSumNumbers

Or, without do notation we could write:

fmap (fmap read) (effectful getLine)
>>= transfer (0::Int) (+)
>>= effectful1 (putStrLn . ("sum: " ++) . show)

Here it is in action:

> sigtest linesum

5

sum: 5

10

sum: 15

Functional Reactive Programming

[322]

3

sum: 18

This should demonstrate that it's really trivial to hook side effects to signals at any
point of a network: beginning (with effectful), middle, or end (with effectful1 or
effectfull2 or effectful3, or effectfull4). This is one of Elerea's strong points.

Dynamically changing signal networks
In Elerea, signal networks' structure is defined in the SignalGen monad. At
first glance, this seems restrictive in that we couldn't alter the structure once the
network is initialized. However, this is not true. Elerea provides a combinator called
generator, which embeds a SignalGen producing signal into a signal:

generator :: Signal (SignalGen a) -> SignalGen (Signal a)

This is a powerful combinator that allows us to build very dynamic networks.

Let's take an example. Say we want to initiate a new countdown signal whenever a
number is read from standard input. Empty lines decrease existing countdowns and
when a countdown reaches zero, it is deleted. Our countdown signal is simple and
self-explanatory:

countdown :: Int -> SignalGen (Signal Int)
countdown n = stateful n (subtract 1)

A signal of multiple countdown signals has type Signal [Signal Int]. A signal
generator for such signal has the type of readCountdowns here:

readCountdowns :: SignalGen (Signal [Signal Int])
readCountdowns = do
 input <- effectful getLine -- (1)
 generator $ do -- (2)
 x <- input
 return $ case x of -- (3)
 "" -> return []
 _ -> return <$> countdown (read x)

This function is a mouthful, so let's break it down. At (1), we initialize a signal that
reads lines from standard input. At (2), we apply generator to a value which has
the following type: Signal (SignalGen [Signal Int]), that is, a signal which
produces signals generators for lists of countdown signals. The signal itself takes
a line and pattern-matches on its contents (3): an empty line doesn't produce any
signals, while a line with one number produces a countdown that starts with the
specified amount of time.

Chapter 13

[323]

To drive a dynamic signal collection, we will save some trouble by utilizing the
collection function with the following signature:

-- Implementation taken from Elerea's haddocks
collection :: Signal [Signal a] -> (a -> Bool) -> SignalGen
 (Signal [a])
collection source isAlive = …

Note that collection is not provided by the library, but its implementation is found
from the documentation, under the section A longer example

With collection, we can easily combine a signal of new signals (Signal [Signal
a]) and a filtering function (a → Bool) to upkeep a dynamic set of signals (Signal
[a]). For the countdowns, the choice of filtering function is (> 0), that is, the
countdown is deleted once it hits zero.

To drive a dynamically updating collection of countdowns, we write the following:

runCountdowns :: SignalGen (Signal [Int])
runCountdowns = do
 csig <- readCountdowns
 collection csig (> 0)

Very straightforward. Let's confirm it works:

> sigtest runCountdowns

5

5

5

5

10

[[5],[5,4],[5,4,3],[5,4,3,2],[4,3,2,1],[3,2,1],[2,1],[1],[10],[9]]

On every line, existing countdowns tick one down and new countdowns are added
when a numeral is given, as intended. Now we know how to use generator to
create dynamic signal networks in Elerea.

Functional Reactive Programming

[324]

Performance and limitations in Elerea
The selling point in Elerea is its monadic interface that hides some implementation
details and makes it trivial to compose signal generators and signals. As a
consequence, plumbing signals and generators is somewhat restricting, although
overall the interface is very powerful.

The biggest concern with Elerea is its eventless nature: every time, the signal
network updates as a whole. It's not possible to update just a part of the network;
on every tick, all signals are re-calculated. By using the memo primitive, we can
memoize values within one update round, but this is always manual work. The
library combinators memoize their values, but memoizing custom combinations is
left to the library user.

Events and signal functions with Yampa
Yampa is an FRP framework that supports both continuous and discrete time. In
Yampa, the most important concept is the signal function (SF). Signal functions are
first-class transformations on signals, that is, time-dependent values:

data SF a b -- think: Signal a → Signal b

-- instance Arrow, ArrowLoop, Category

Signal functions can be created and manipulated via the Arrow interface. For
instance, a pure transformation (a → b) is turned into a signal function simply with
arr from the Arrow class. Here's a signal function which squares values passed
through it:

square :: SF Double Double
square = arr (^2)

The embed utility function can be used to test signal functions:

embed square (1, [(0, Just 2), (1, Just 3)])

[1.0,4.0,9.0]

The type signature of embed looks like this:

embed :: SF a b -> (a, [(DTime, Maybe a)]) -> [b]

The first argument is the signal function to sample from. The second is a tuple
that consists of the initial input to the signal function and a list of sample times
(DTime ~ Double), possibly accompanied by a new input value.

Chapter 13

[325]

Because in Yampa we could theoretically sample the network represented by a signal
function at any time (up to Double precision), we need to explicitly specify the times
when new input is fed into the network. Note that embed is a pure utility; normally,
the network is hooked to IO input and output using reactimate (introduced a bit
later).

Signal functions are inherently pure: it's not possible to produce side effects within
a signal function.

Besides creating signal functions from Haskell functions, we can combine existing
SFs using general combinators from the Category, Arrow, and ArrowLoop classes.
Here are the most important ones. For clarity, they are here specialized for SF:

arr :: (b -> c) -> SF b c -- lift pure function

(>>>) :: SF a b → SF b c → SF a c -- like (.)
(<<<) :: SF b c → SF a b → SF a c -- like flip (.)

(^<<) :: (c → d) → SF b c → SF b d -- combine arr and (<<<)
(>>^) :: SF b c → (c → d) → SF b d -- combine arr and (>>>)

(&&&) :: SF b c → SF b c' → SF b (c, c')
(***) :: SF b c → SF b' c' → SF (b, b') (c, c')

loop :: SF (b, d) (c, d) -> SF b c -- SF with feed-back

Adding state to signal functions
Signal functions in Yampa are continuous. State in a continuous setting is slightly
different from the discrete case. Due to computational limitations, we can't express
really continuous updates and need to use a discrete approximation. Then we need
to make sure the state is always updated correctly no matter how often or rarely an
evaluation occurs.

How would we implement a sum signal that works with continuous time? By using
loop, we can get feedback of the sum so far. Effectively, loop ties a function's output
to its input. That's not exactly what we want, however: we want to somehow specify
the start value for the loop. Otherwise, we get an infinite loop where the output is
fed as input indefinitely:

loop (arr go)
 where go (x,s) = let s' = x + s in (s', s')
 -- loops indefinitely

Functional Reactive Programming

[326]

The solution here is to delay the feedback signal by one iteration. For this, Yampa
provides a convenient combinator, iPre:

iPre :: a -> SF a a

iPre expects the initial value as argument (plain pre just leaves the initial argument
undefined). With iPre we can delay the feedback signal for a sum signal with its
initial value zero:

cSum :: SF Int Int
cSum = loop (second (iPre 0) >>^ go)
 where go (x,s) = let s' = x + s in (s', s')

Looping with an initial value is so common that Yampa provides a combinator
loopPre that is a combination of loop and iPre.

Working with time
Many tasks, in games and simulation, for instance, must interact with time. We need
to know how much time has passed since the beginning of evaluation or locally since
the last iteration.

Yampa defines a signal that yields time since the beginning of signal function
evaluation:

time :: SF a Time

> embed time ((), [(0.5, Nothing), (1, Nothing)])

[0.0,0.5,1.5]

We can build a tick function that gives the time passed since the last evaluation by
us:

tick :: SF a Time

tick = time >>> loopPre 0 (arr (\(t, t') -> (t - t', t)))

> embed tick (0, [(1.3, Nothing), (2.2, Nothing)])

[0.0,1.3,2.2]

So it's easy to get the running time or a tick from the beginning of evaluation. But
suppose we want to express a time from the beginning of some event? To get the
start time of an animation, for instance. We need to use the discrete part of Yampa:
events and switches.

Chapter 13

[327]

Switching and discrete-time events
Yampa supports discrete-time FRP via events and switches. An event containing a
value of type a is represented by Event a:

data Event a = Event a | NoEvent
-- instance Monad, Alternative, …

An event source is a signal function with some type SF a (Event b). Some example
event sources are as follows:

never :: SF a (Event b)
now :: b → SF a (Event b)
after :: Time → b → SF a (Event b)

Because event source is just a normal SF, we could yield events with arr. However,
then we should take care that the event is emitted only once: because signal functions
are continuous, unless the event is suppressed on subsequent samplings, it could
occur more than once.

To react on events, we need switches. The basic one-time switch has the following
type:

switch :: SF a (b, Event c) -- Default signal
 -> (c → SF a b) -- Signal after event
 -> SF a b

The following signal yields the string foo for first 2 seconds, after which an event is
fired and bar is yielded:

switchFooBar, switchFooBar' :: SF () String

switchFooBar = switch (constant "foo"&&& after 2 "bar") constant
switchFooBar' = dSwitch (constant "foo"&&& after 2 "bar") constant

Function dSwitch is identical to switch except that, at the time of the event, the
previous signal is yielded one more time. The following shows the difference:

> embed switchFooBar ((), [(2, Nothing), (3, Nothing)])

["foo","bar","bar"]

> embed switchFooBar' ((), [(2, Nothing), (3, Nothing)])

["foo","foo","bar"]

Functional Reactive Programming

[328]

This is a one-time switch: once the event occurs, we switch permanently to the new
signal function. To switch on more events, we can apply switch recursively. For
instance, this signal alternates between foo and bar every 2 seconds:

switchRec :: SF () String
switchRec = go (0, "foo", "bar")
 where
 go (t, x, y) =
 switch (constant x &&& after (t + 2) (t + 2, y, x)) go

Here, time for the after combinator is just threaded through as an argument. Note
that the time signal and Time arguments are always relative to current evaluation
context, irrespective of switching.

Another switch combinator is rSwitch (and its delayed version, drSwitch). This
recurring switch accepts whole signal functions as events, and every time replaces
the active SF with newly emitted SF. Take a look at its type:

rSwitch :: SF a b -> SF (a, Event (SF a b)) b

The first argument is the initial SF a b. Resulting SF expects an Event (SF a b)
stream tupled with actual input a.

An example use of a recurring switch would be changing walk directions in a game,
say between foo and bar. We can write this as follows:

swap :: SF Bool String
swap = rSwitch foo <<< identity &&& swapEv -- (1)
 where
 swapEv = edge >>> sscanPrim go True (Event foo) -- (2)

 go tag = event Nothing $ _ -> -- (3)
 Just (not tag, Event $ if tag then bar else foo)

 foo = constant "foo"
 bar = constant "bar"

Here, swap is an SF that reads, for instance, a button press status as a Boolean. Its
output alternates between foo and bar, so that every button press (from pressed
to unpressed; False to True) triggers a switch. At (1), the Boolean input signal
is tupled into the original signal and an event signal (swapEv), which is fed into
rSwitch.

The event signal at (2) applies an edge detector transformation (edge) from the
Yampa API. It yields an event every time an edge is detected in the input signal:

edge :: SF Bool (Event ())

Chapter 13

[329]

In the second step, we scan over the Event signal with sscanPrim and on every
triggered event yield an SF different from the previously active (foo or bar). The tag
in (3) indicates which of the SFs is currently active. The combinators here are:

sscanPrim :: (c -> a -> Maybe (c, b)) -> c -> b -> SF a b

event :: a -> (b -> a) -> Event b -> a

Confirm our swap works as intended:

> embed swap (True, zip [1..] (map Just [False, False, True, False,
 True]))

["foo","foo","foo","bar","bar","foo"]

The third type of switch is perhaps the hardest to understand. It's called a call-with-
current-continuation switch, kSwitch, or its delayed version, dkSwitch. Its type is:

kSwitch
 :: SF a b - initial SF
 -> SF (a, b) (Event c) - event trigger
 -> (SF a b -> c -> SF a b) – continuation SF
 -> SF a b

This switch allows access to the previous SF when deciding the continuation based
on an event. We can choose to use the current SF in the new SF, for instance, as a pre-
or post-processor. Like a normal switch, kSwitch switches only once. The difference
is that deciding the continuation (third argument) is completely decoupled from the
initial SF and event trigger. kSwitch composes a bit better than switch.

As a rather artificial example, we have the following SF:

withCC :: SF Int Int
withCC = kSwitch (arr (+1)) trigger cont
 where
 trigger = sscan f NoEvent

 f _ (inp,_) | inp > 1 && inp < 10 = Event (*inp)
 | otherwise = NoEvent

 cont f f' = f >>> arr f'

Initially, this SF adds 1 to every number in the stream. When a number larger than
1 and smaller than 10 is encountered, from that point onward the numbers are also
multiplied by that number. Note how in deciding the continuation (cont), we don't
know or care about the specifics of the initial SF, but we can use it as a part of the
final SF.

Functional Reactive Programming

[330]

Example run:

> embed withCC (1, zip [1..10] (map Just [10,2,10,3,10]))

[2,11,6,22,8,22]

Integrating to the real world
In all Yampa examples so far, we have simulated the pure signal functions with
embed. Signal functions are pure, so pure simulation is always possible. However, in
real applications, we want to integrate SF into a loop with the real world, IO. Because
signal functions store state, mere multiple calls to embed would be insufficient. We
need to preserve the state somehow.

For the simplest cases, Yampa provides a single combinator that guides us through
the integration. It's called reactimate and its type is:

reactimate
 :: IO a -- Init
 -> (Bool -> IO (DTime, Maybe a)) -- Get input
 -> (Bool -> b -> IO Bool) -- Process output
 -> SF a b -- Signal function
 -> IO ()

Besides the SF to execute, we need to define three IO actions: one to supply the initial
input to the SF, one to sense input, and one to actuate output.

The sense function is informed via an argument whether it can block or not. The
sense result should be a tuple of time difference since the last iteration and new input
(if any).

The actuation is informed via an argument whether the output has changed since the
last actuation. When the actuation returns True, reactimation stops there.

However, in practice, reactimate always calls the sense function with False (no
block) and the actuation function with True (has changed). These arguments have
no effect in Yampa version 0.10.5 at least.

The following main reads numbers from standard input and adds them together
until hitting 42 or more, after which it exits:

main = reactimate init sense actuate sf
 where
 init = return "0"

 sense _ = do
 ln <- getLine

Chapter 13

[331]

 return (1, Just ln)

 actuate _ out = do
 putStrLn out
 return (out == "END")

 sf = arr read
 >>> sscan (+) 0
 >>> dSwitch (arr show &&& arr (filterE (>= 42) . Event))
 (_ -> constant "END")

In complex applications, it isn't feasible to make reactimate the main loop of the
program. The alternative is to use reactInit to yield a ReactHandle and react to
feed input to it. Essentially these two functions decompose reactimate to two parts
that allow for more flexibility.

Reactive-banana – Safe and simple
semantics
The third and final approach to FRP we'll take a look at is Reactive-banana. Like
Yampa, we have both continuous- and discrete-time semantics at our disposal. In
Reactive-banana terminology, events describe discrete time, while behaviors describe
continuous time. Behaviors in Reactive-banana are like signals in Elerea. Historically,
the names event and behavior were the first to occur:

data Event a -- instance Functor
data Behavior a -- instance Functor, Applicative

Note that behavior is not Monad, unlike Elerea's signal, which did have a Monad
instance. Instead, Reactive-banana supports moments as reactive computation
contexts. There is a pure Moment monad, impure MomentIO monad and MonadMoment
class that is used to overload moment context:

data Moment a -- instance Monad, MonadFix, MonadMoment
data MomentIO a –- instance ..., MonadIO

class Monad m => MonadMoment m where
 liftMoment :: Moment a -> m a

instance MonadMoment Moment
instance MonadMoment MomentIO

Functional Reactive Programming

[332]

Example – First GUI application
The Reactive-banana framework is rather tightly tied with frameworks that provide
the extra glue to drive reactive applications. Such frameworks exist for at least
wx and sdl graphics libraries, in Haskell packages reactive-banana-wx and
reactive-banana-sdl2. We'll be using the WX framework in this section:

cabal install reactive-banana-wx

In the Reactive.Banana.Frameworks module, there are the following data-types
and functions that are used to execute any reactive network:

data EventNetwork

compile :: MomentIO () → IO EventNetwork

actuate :: EventNetwork → IO ()
pause :: EventNetwork → IO ()

We express the reactive network as a MomentIO (), compile that into an
EventNetwork and use actuate to start it, pause to stop it.

Graphical display with wxWidgets
Our first example will be a counter with a very simple GUI: a display for the current
counter value along with up and down buttons.

We start by defining the UI in the wxHaskell way, with a light preamble:

-- file: reactive-banana-counter.hs
{-# LANGUAGE ScopedTypeVariables #-}

import Graphics.UI.WX
import Reactive.Banana
import Reactive.Banana.WX

app :: IO ()
app = do
 f <- frame [text := "App"]
 up <- button f [text := "Up"]
 down <- button f [text := "Down"]
 res <- staticText f []
 set f
 [layout := margin 10 (column 5
 [widget res
 , row 5 [widget up, widget down]
])
]
-- ...

Chapter 13

[333]

There's nothing reactive here yet. We have defined a frame (window) of the
application (f :: Frame ()), two buttons (up and down), and a text element (res ::
StaticText ()), and set a layout for the frame.

Next, we use the Reactive.Banana.WX glue to build an event network that uses
the two buttons as event sources and the text field as output. The relevant glue
functions are:

event0
 :: w
 -> Graphics.UI.WX.Event w (IO ())
 -> MomentIO (Reactive.Banana.Event ())

sink
 :: w -> [Prop' w] -> MomentIO ()

Note that there are two distinct types called Event in event0: one from
Reactive-banana and other from the WX library. Those w type variables stand
for widgets, for instance, buttons (up, and down).

Here is the network description for our counter application:

-- ...
let network :: MomentIO ()
 network = do
 eup <- event0 up command -- (1)
 edown <- event0 down command

 (counter :: Behavior Int) -- (2)
 <- accumB 0 $ unions –- (4)
 [(+1) <$ eup
 , subtract 1 <$ edown
]

 sink res [text :== show <$> counter] -- (3)
-- ...

At (1), we bind commands (clicks) from the WX widgets up and down into
Reactive-banana events eup and edown. At (2), we define the counter as a
Behavior Int, that is, a time-varying integer. That integer then updates contents
of the text box res at (3) by using sink.

Functional Reactive Programming

[334]

At (4), we use two functions from Reactive-banana itself: accumB and unions. The
applicative (a <$ ev) is used to replace event's ev emitted value with a. The two
event sources of functions are merged with unions, which yields any of the events
if available, and if events occur simultaneously, they are combined with function
composition. The accumB combinator transforms a discrete signal of events into a
continuous behavior:

accumB
 :: MonadMoment m =>
 a -> Reactive.Banana.Event (a -> a) -> m (Behavior a)

Now that we have a network description of type MomentIO (), we use compile to
turn it into an EventNetwork and actuate to execute it:

-- ...
 evnet <- compile network
 actuate evnet

main = start app

The application is compiled normally with GHC:

ghc reactive-banana-counter.hs

[1 of 1] Compiling Main (reactive-banana-counter.hs,
reactive-banana-counter.o)

Linking reactive-banana-counter …

We now have built a GUI in Haskell with Reactive-banana FRP and wxWidgets. Due
to the portability of wxWidgets, the exact same reactive-banana-counter.hs file
will compile and run under at least Linux, Mac, and Windows systems. I am using
the 0.92.2.0 version of the wx Haskell library, which is compatible with wxWidgets
2.9 and 3.0. Here's a screenshot of the application under one Linux machine:

Chapter 13

[335]

Combining events and behaviors
Events and behaviors are the core foundation of FRP in Reactive-banana. Behaviors
can be composed via the Applicative interface, but numerous other ways are also
provided by the Reactive-banana API. Some primitives are provided:

never :: Event a

unionWith
 :: (a -> a -> a) -> Event a -> Event a -> Event a

filterE
 :: (a -> Bool) -> Event a -> Event a

apply
 :: Behavior (a -> b) -> Event a -> Event b

It's apparent from the types what these functions do. unionWith combines two events
using the first argument to decide the result in case of simultaneous emits. filterE
suppresses events that don't match a predicate. apply applies a time-varying function
to events. Often apply is encountered in its infix form, (<@>).

A special case of apply is replacing events with time-varying values. The (<@)
combinator can be used in this case. For example, to turn every event from etick
into a random value sampled from behavior brandom, we write:

brandom <@ etick :: Event a

These primitives are stateless. To include state, for instance, accumulators, we need
the Moment context. accumE scans an event source of functions with an initial value,
similar to scanl':

accumE
:: MonadMoment m =>
a -> Event (a -> a) -> m (Event a)

Note that accumE is subtly different from accumB we used in our example seen
before. The latter produces a behavior as opposed to an event. In fact, we can express
accumB in terms of accumE and another primitive stepper:

stepper
:: MonadMoment m => a -> Event a -> m (Behavior a)

Functional Reactive Programming

[336]

Given an initial value and event stream, stepper yields a continuous behavior that
uses always the latest value from the event stream (initial value if no event has fired
yet). Writing accumB is then easy: accumulate events and memoize the latest value
for the behavior:

accumB a ev = stepper a =<< accumE a ev

Switching events and behaviors
In Reactive-banana, we can switch in both discrete (Event) or continuous (Behavior)
streams. There's only one switch type for each case:

switchE
 :: MonadMoment m =>
 Event (Event a) -> m (Event a)

switchB
 :: MonadMoment m =>
 Behavior a -> Event (Behavior a) -> m (Behavior a)

It's clear from the types how these switches work: switchE takes only one argument,
an event of events. The effective event is always the latest one from the event event
stream.

switchB takes two arguments: the initial behavior and an event of behaviors.
The effective behavior is the latest from event or initial if no event has yet emitted.

Observing moments on demand
Almost always, there is only one MonadMoment computation in an application.
That moment is what eventually gets turned to an EventNetwork.

In some special cases, it might be convenient to execute pure Moment computations
on demand. The function that executes moments emitted in an event is called
observeE:

observeE
:: Event (Moment a) -> Event a

A useful combinator to use along with observeE is valueB, which samples a value of
the Behavior:

valueB
:: MonadMoment m => Behavior a -> m a

Chapter 13

[337]

Essentially, observing allows executing "mini FRP networks" within the main
network in a single step. When a Moment in a network is emitted, observeE
immediately executes it and yields the result value. The network is discarded
immediately. The only constraint is that the mini network has to be pure, that is,
expressed as a Moment.

Nested networks probably have their uses. A small uncontrived example is hard to
conceive, but one could be running a simulation that is expressed as an FRP network
whenever an event occurs.

Recursion and semantics
Recursion is the final but certainly not the least important aspect of FRP we have yet
to consider in Reactive-banana. Mutually recursive behaviors and events are the key
for success in reasonably complex FRP networks.

Unlike the other frameworks (Elerea, Yampa) we have used in this chapter,
Reactive-banana gives much simpler semantics with relation to recursive definitions.
In general, recursion is always well defined as long as an event depends on itself
only via a behavior, and vice versa.

In practice, this means that among other things, the second argument of stepper or
(as a consequence of stepper) accumB can always safely depend on the result:

stepper :: MonadMoment a => a → Event a → Behavior a
accumB :: MonadMoment m => a -> Event (a -> a) -> m (Behavior a)

What about accumE? Feeding the result as an argument to accumE could at first
glance look problematic. Consider:

ev <- accumE 1 ((+) <$> ev)

But this won't fail per se: instead, the event will just never occur! It won't enter an
infinite loop or anything.

To make the preceding recursive definition do something sensible, we would need to
supply an initial value for the event stream. This is only possible by using apply and
expressing the event as a behavior – thus being perfectly valid.

In general, it's hard if not impossible to produce an infinite loop with the Reactive-
banana API unless valueB is used.

Functional Reactive Programming

[338]

One way to write the Fibonacci sequence implemented in Reactive-banana looks like
this:

{-# LANGUAGE RecursiveDo #-}

fib :: Event () -> Moment (Behavior Int)
fib step = mdo
 fib1 <- stepper 1 (fib2 <@ step)
 fib2 <- accumB 1 ((+) <$> fib1 <@ step)
 return fib1

Basically, this is a combination of two mutually recursive behaviors: fib1 and fib2.
The first one starts at the head of the sequence, while fib2 starts at the tail. At every
step, the head (fib1) advances to the value of the tail, while the tail advances to the
sum of current tail value.

Adding input and output
By now, you are familiar with the functions compile and actuate. Compile created
from a network description (MomentIO ()), an EventNetwork in the IO monad,
and actuate was used to execute the EventNetwork. In our GUI example, we used
the reactive-banana-wx library as an aid to attach our network to the wxWidgets
framework. What if we don't want to use wxWidgets or need to use some other input
and output?

All the necessary glue for input and output is located in the Reactive.Banana.
Frameworks module. In this section, we'll add input and output that are IO actions,
and also see how to add dynamic input and output in the network.

Input via polling or handlers
The simplest way to add continuous input to a network is by using fromPoll:

fromPoll :: IO a → MomentIO (Behavior a)

fromPoll executes the IO action frequently, simulating a continuous Behavior a.
It's clear that the IO action must be cheap so that the network isn't slowed down
considerably.

An example use of fromPoll is a stream of random numbers:

fromPoll (randomRIO (0,1) :: IO Double)
:: MomentIO (Behavior Double)

Chapter 13

[339]

The Behavior is updated every time the network processes an input event. In the
case of a single random number, that means same random number is provided if it's
used in multiple places. It makes sense, because semantically Behavior is a function
of time: it doesn't get different values at the same time.

Pollers are sometimes useful. However, the preferred way to add input is via
handlers. The Handler API is:

type Handler a = a → IO ()

newtype AddHandler a =
 AddHandler { register :: Handler a → IO (IO ()) }

newAddHandler :: IO (AddHandler a, Handler a)

fromAddHandler :: AddHandler a → MomentIO (Event a)
fromChanges :: a → AddHandler a → MomentIO (Behavior a)

The idea is to use newAddHandler to create a pair of:

• Handler a: An IO action to push input of type a to the handler.
• AddHandler a: Event handler registration facility. register addHandler

myHandler registers the handler myHandler to fire whenever an event is
fired. The returned IO action can be used to unregister the handler.

Handlers are hooked to the network as either discrete (Event) or continuous
(Behavior) input with fromChanges or fromAddHandler. Note that fromChanges
is just a combination of stepper and fromAddHandler: fromAddHandler >=>
stepper x0.

Reactimate output
Performing output from a network is simple by using reactimate:

reactimate :: Event (IO ()) → MomentIO ()

Essentially, we just express the output as an IO action event. Using the Functor
instance for Event, it's easy to turn any event into an IO action.

So performing output on an event is easy. How about output based on behavior?
Behaviors are continuous and we can't perform IO actions continuously. However,
due to performance reasons, behaviors have rather sparse steps when they update.
We can hook IO actions to these update steps or changes:

changes :: Behavior a → MomentIO (Event (Future a))

Functional Reactive Programming

[340]

Changes of a behavior don't necessarily correspond to real changes in the value
(there's not really a way to know whether the value has changed, as in not equal).

The new values are returned in events and wrapped inside the Future monad.
The values are not immediately available, as the name future suggests. Instead,
we access the new values via reactimate':

reactimate' :: Event (Future (IO ())) → MomentIO ()

This works essentially just like reactimate except that it works with values from
changes.

Input and output dynamically
It's possible to add and modify input and output dynamically in Reactive-banana.
The function that allows this is called execute and has the following type:

execute :: Event (MomentIO a) → MomentIO (Event a)

execute turns events of MomentIO computations to events of their return values.
This gives a lot of freedom: we can create new handlers (liftIO newAddHandler)
or perform arbitrary IO or MomentIO code. However, there are no guarantees to
execution order of the actions. This is why it's preferred to not use execute directly
for output. You can call reactimate from within execute though.

For dynamic input, it's useful to combine execute with switchE. Yielding a new
Event in the MomentIO monad (acquired via newAddHandler) in the argument for
execute will yield an Event (Event a) – an event of events. Use switchE to turn that
to an event that uses always the newest event as source.

Summary
In this chapter, we have worked with three different approaches to FRP: Elerea, with
its safe monadic interface and discrete-only signals; Yampa and its first-class signal
functions; and finally, Reactive-banana and its safe and simple hybrid semantics.
Implementation differences are rather radical, but the theoretical FRP basis is still
the same: model values as functions of time and include discrete events. It's also
characteristic that interaction with the outside world, input and output, is more or
less separated from application logic. Recursion is an important technique in FRP.
For proper value recursion of monadically retrieved values in Haskell, the MonadFix
class along with mfix or RecursiveDo is a must and often encountered in Haskell
FRP code.

Chapter 13

[341]

The next and final chapter will comprise a collection of robust, extensively tested
and production-ready Haskell libraries for more different and less general use. It's
an unfortunate fact in the Haskell ecosystem that even some of the very best libraries
are poorly documented in their APIs. Hopefully, the recommendations in the next
chapter of this book will give you some insight into the design and use of selected
libraries.

[343]

Library Recommendations
This final chapter will list out generally useful Haskell libraries. As with any
programming language ecosystem, libraries are a very important part of it. Good,
modular, and extensible libraries are what really make for productive programming.
The Haskell ecosystem has libraries of multiple varieties, from bad to outstanding.
All of the libraries listed here are considered robust and safe and recommended for
use in production.

It's an unfortunate fact that choosing a good Haskell library for your needs is no
easy task. There are ways to compare and weigh libraries: When was the package
last updated? Is its maintainer active? Is the library present in the newest Stackage
snapshot? Still, it's easy to miss an excellent library for your specific use. Sometimes
there might be a niche, not well-maintained library that fits just your need. Then use
that, and refactor later if necessary. Haskell gives guarantees that make refactoring
easy, so it's no big deal. If you like the library, it might be that maintaining the library
yourself is not a big effort.

In this chapter, we will be covering the following topics:

• Lists of libraries sorted by use case structured in
• Overview of use cases, features, and robustness of mentioned libraries
• Examples for most libraries

Representing data
Libraries for storing text and binary, and arbitrary data in different containers:

• vector: High-performance fixed-size vectors with a powerful fusion
framework. Supports unboxed (primitive) and boxed (arbitrary) elements
with respective performance.

Library Recommendations

[344]

• text: Fast, memory-efficient, and unicode-correct text datatypes. Both strict
and lazy variants. Orders of magnitude faster than String in many use cases
(not all).

• bytestring: Extremely fast and efficient strict and lazy binary datatypes.
Interfaces very well with the C FFI supporting marshalling in O(1).

• containers: General-use immutable graph, map, set, sequence (a list with
O(1) cons and snoc), tree structures for storing arbitrary (boxed) data.

• unordered-containers: Efficient, immutable hash maps (tables) and sets.
• hashtables: Efficient mutable hash maps and sets.
• mutable-containers: A library that abstracts over multiple mutable

variable and container types.

Refer to Chapter 2, Choose the Correct Data Structures for use and discussion of these
libraries and more about data representation.

Functional graphs
The best representation for a graph depends a little on the use case. The Graph type
in containers uses an adjacency list and a few basic graph operations are provided.

One unique Haskell library, fgl, for Functional Graph Library, takes a different
approach to programming with graphs, by considering graph as an inductive
data-type.

One of the core ideas in fgl is contexts and decomposition. A context of a graph
node is a triplet of the node's predecessors, successors, and the node itself. All graph
manipulations can be expressed as inductive recursions over the contexts of a graph.
Furthermore, it's surprisingly efficient.

For reference, here's a very, very small section of the fgl API:

-- module Data.Graph.Inductive.Graph

type Adj b = [(b, Node)]

type Context a b = (Adj b, Node, a, Adj b)

type Decomp g a b = (Mcontext a b, g a b)

empty :: Graph gr => gr a b
match :: Graph gr => Node → gr a b → Decomp gr a b
(&) :: DynGraph gr => Context a b → gr a b → gr a b

Chapter 14

[345]

The a and b type variables are for node and edge labels, respectively.

The API is overloaded over different representations of graphs (type variable gr).
Different implementations are in distinct modules; for instance, one using a patricia
tree is located in Data.Graph.Inductive.PatriciaTree module and called Gr a b.

Here's a small toy program which illustrates (de)composition using contexts. The
build function creates a graph while sumNodes consumes one:

-- file: fgl.hs

import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.PatriciaTree

build :: Int -> Gr Int ()
build 0 = empty
build n = (to, n, n, from) & build (n - 1)
 where
 to = []
 from = [((), m) | m <- [n - 1, n - 2 .. 0]]

sumNodes :: [Int] -> Gr Int () -> Int
sumNodes [] _ = 0
sumNodes (n:ns) gr = case mctx of
 Nothing -> sumNodes ns gr
 Just (_,_,x,from) -> x + sumNodes
 (ns ++ [m | (_,m) <- from]) gr'
 where
 (mctx, gr') = match n gr

There are a lot of graph algorithms already implemented in fgl, as well as general
combinators to help building your own special traversals. The feel in the library
is very functional indeed: there's no need to drag along the graph or worry about
keeping it consistent. In fgl, graphs are immutable, referentially transparent, while
simultaneously not sacrificing speed.

Numeric data for special use
The libraries in this subsection are as follows:

• base (module Data.Fixed): Standard fixed-precision arithmetic from the
base. Precision decided at compile-time.

• Decimal (module Data.Decimal): Fixed-precision Decimal type and some
additional utility functions. Precision decided in runtime.

Library Recommendations

[346]

• numbers (modules Data.Number.*): Constructive real numbers,
multi-precision floats, fixed-precision decimals, and more. Precision
decided at compile-time.

The Fixed datatype from base is good for fixed-precision arithmetic when you know
the precision at compile-time. The precision is encoded as a phantom type, so it's not
convenient to handle multiple precisions.

The Decimal library defines a more expressive DecimalRaw type and usually used
Decimal synonym:

type Decimal = DecimalRaw Integer
data DecimalRaw I = Decimal
 { decimalPlaces :: !Word8, decimalMantissa :: !i }

The exponent is expressed as a Word8, giving at most 255 decimal places. The
Decimal library automatically handles multiple precisions in the exponent. The
result is always most precise (largest exponent). There are also utility functions
such as divide and allocate, that distribute a single decimal into multiple parts or
portions. The parts are guaranteed to always sum to the original decimal.

The numbers library implements some exotic number types. It features floating
point numbers with arbitrary, user-defined precision decided at compile-time.
Constructive real numbers (full-precision reals; computation may diverge).
Automatic forward differentiated numbers, interval numbers and natural numbers.

Encoding and serialization
It's an extremely common need to convert data from one format to another. In
Haskell, we often like working with Haskell values, because of guarantees of
strong-typing and the expressivity of algebraic datatypes, though data must then be
converted to and from Haskell values. Conversions should also be fast, because there
could be a lot of data.

There are a lot of data formats for different use cases: binary serialization to disk for
local storage, efficiently packed formats for transmission over network and formats
for interfacing with other applications, even users, in APIs and the like. Next, we'll
glance at some of the widely used binary and text serialization libraries.

Chapter 14

[347]

Binary serialization of Haskell values
The libraries in this subsection are as follows:

• binary, cereal: Serialization using lazy ByteStrings using automatic or
custom binary formats

• store: An even more direct and efficient serialization library from
FPComplete

Efficiently serializing Haskell values into binary and back is crucial for performance
in many applications. Fast serialization is important when handling lots of data,
sending it over network or storing it on disk. For example, the performance of a disk
cache system is highly dependent on the efficiency of serialization.

The binary package is a battle-tested, widely used library for serialization. It has
a fast throughput and an easy API for adding new serialization instances. Usually,
adding new instances by hand for custom types isn't necessary, because there are
already generic serializations defined via GHC.Generics. If the format is important,
however, it's necessary to create your own serialization instance.

The cereal package is more or less equivalent to binary. There are no major
differences between these libraries, other than perhaps slightly different default
serialization formats.

The store package is a newcomer in the serialization field from FPComplete. The
library released in 2016 is in a couple of ways even faster than the already quite fast
cereal and binary libraries. First, store avoids bit-swapping on x86: both binary
and cereal use big endian for numbers while x86 uses little-endian. Store uses
little endian. Second, store minimizes the number of allocations by allocating a
correctly sized ByteString at once, instead of gradually allocating more space during
serialization like is done in binary and cereal.

The store library has proved its competence benchmarks, showing as much as
double the performance in encoding and decoding compared to binary and cereal.
store isn't quite so portable as binary. In particular, older ARM processors are not
supported.

Library Recommendations

[348]

Encoding to and from other formats
The libraries in this subsection are as follows:

• cassava: Parsing and encoding of CSV. Engineered for high-performance
applications, with ease of use in mind.

• aeson: Parsing and encoding of JSON.
• yaml: Parsing and encoding of YAML files. Utilizes parsers and type-classes

from aeson.
• xml: Simple encoding of XML values. See the Parsing XML section (covered

later in the chapter) for parsing (possibly malformed) XML in Haskell.
• json-autotype: Generating Haskell types from JSON formatted examples.

There are a lot of common data formats. Haskell has libraries to serialize to and from
all commonly used formats. Thanks to GHC.Generics, the necessary boilerplate is
often minimized: just write a Haskell datatype that corresponds to the serialized
format, derive Generic, serialization instance and that's it! This approach applies at
least to aeson and yaml.

Both aeson and yaml use the same base serialization type classes (ToJSON and
FromJSON). This means that the same instances can be used to serialize in both JSON
and YAML formats. The classes are defined as:

class FromJSON a where
 parseJSON :: Value → Parser a

 class ToJSON a where
 toJSON :: a → Value
 toEncoding :: a → Encoding

That Value is a Haskell representation of JSON data. It's an algebraic datatype with
constructors for objects, arrays, strings, numbers, booleans, and null.

JSON parsers are written in the Parser monad, which has Alternative, MonadPlus,
and MonadFail instances, meaning there's no need for separate combinators
needed to define parsers that accept multiple sources or to fail at any point in the
parsing process. Most parsers can be written in applicative style, in other words, the
following parses { "a":1, "b": 2 }:

AB <$> v .: "a" v .: "b"

One "feature" of aeson is that it parses only well-formatted JSON: for instance, all
keys of objects must be quoted with double quotes. So this is not valid and will not
parse by aeson: { a:1, b:2 }.

Chapter 14

[349]

Finally, usually the generic deriving method should be preferred. If it's inconvenient
to make the field names of your Haskell datatypes match exactly with keys in the
JSON format, there is some configuration available in the generic derive method.
Another configurable besides field names is sum-type encoding, for which there are
a few strategies.

To go the other way around, from JSON data to Haskell types, for example, to
generate bindings to an API, there exists a library called json-autotype which does
exactly this. It uses heuristics to generate Haskell datatypes along with ToJSON and
FromJSON instances that translate according to the example input JSON files.

CSV input and output
Comma-separated values (CSV) is a relatively simple data format. A simple parser
is easy to write yourself from scratch, but in a high-performance setting, it's better to
use an optimized library such as cassava.

The conversion API in cassava is similar to that in aeson, with ToField and
FromField classes:

class FromField a where
 fromField :: Field → Parser a

class ToField a where
 toField :: a → Field

The field type is an alias for strict ByteString.

cassava supports an alternative interface using named records. The corresponding
type-classes are ToNamedRecord and FromNamedRecord. Named records are
represented as hashmaps from headers to values:

type NamedRecord = HashMap ByteString ByteString

The unnamed interface uses Vectors for records.

cassava utilizes high-performance data-structures such as ByteString, Vector,
and HashMap to parse and generate CSV files. Although CSV is a simple format,
there are a lot of subtle corner cases that should be handled accordingly, such as
double-quote escaped fields, different newlines, and mapping names from a header
to record fields. cassava takes care of the details nice and fast.

Library Recommendations

[350]

Persistent storage, SQL, and NoSQL
The libraries in this subsection are as follows:

• acid-state and safecopy: These libraries go hand in hand, giving a
lightweight, disk-stored database of Haskell values with strong ACID
guarantees and migrations.

• persistent: A by-product of the Yesod web framework, persistent is a
backend-agnostic high-level query abstraction over SQL-like databases.
Provides type-safe models with automatic schema migrations.

• esqueleto: Add type-safe SQL query EDSL that works with the persistent
library and its models.

• HDBC: A SQL database abstraction layer similar to persistent except lower
level. Provides transactions and marshalling of SQL values to Haskell values
and the other way around.

• HDBC-odbc: Hook any ODBC-enabled database connection to HDBC.
• persistent-odbc: Hook any ODBC-enabled database connection to

persistent via HDBC-odbc. Adds model and migration support.

acid-state and safecopy
The acid-state package provides a very good little database when the database can
fit completely in memory. In short, acid-state uses a Haskell value as the database
and user-defined transactions to query and update the database.

The database is stored in memory and on disk. The disk copy is very resistant to
corruption, and call be rolled back to any earlier version assuming the event log and
a checkpoint is still intact.

The safecopy package extends the cereal binary serialization package with
version-controlled formats. It's relatively painless to change the serialization format
even deep down in a hierarchy of datatypes.

The only downside is that both the old and new format must co-exist in code at least
for the time of migrating. You are free to rename and move the old datatype freely,
though. The only thing that matters is the version number, which must always
increase when schema is changed.

Chapter 14

[351]

persistent and esqueleto
The persistent library makes it almost trivial to work with SQL and also NoSQL
databases from Haskell. By defining your database models in the embedded model
language, persistent generates strongly typed model definitions that work with
persistent functions to insert, delete, and update rows. Lots of database adapters
are available of varying quality, most notably SQLite, PostgreSQL, and MongoDB are
well supported.

Here's how we would define a database schema in persistent, using
TemplateHaskell and quosi-quoting:

share [mkPersist sqlSettings, mkMigrate "migrateAll"]
 [persistLowerCase|
User
 username Text
 UniqueUsername username
Post
 author UserId
 content Text
|]

In this schema, we have two tables, user and post. Both will have fields named
id automatically. That UniqueUsername will turn into two things: a uniqueness
constraint in the database and a Haskell data-constructor with which we can query
unique rows from the table using getBy function of persistent.

To use this schema with say the SQLite in-memory backend, we could write the
following Haskell main:

main = runSqlite ":memory:" $ do -- (1)
 runMigration migrateAll -- (2)

 uid ← insert $ User "foobar" -- (3)
 insert $ Post uid "First post"

 posts ← selectList [PostAuthor ==. uid] -- (4)
 [Asc PostContent]
 liftIO $ print $ map (postContent . entityVal) posts

There is nothing that isn't type-safe in this example. At (1), the runSqlite function
initializes a connection to a database and runs an action in it. In case of exceptions,
the database is closed cleanly.

Library Recommendations

[352]

At (2), we perform database migrations if necessary. The migrator takes the schema
definition as its target state, creating new tables and columns when necessary. Note
that no destructive actions are taken automatically; dropping tables and columns
must be done manually.

At (3), we perform a simple insertion to the database. The insert function returns
the ID of the newly created row. We use this ID to consequently add a post entry to
the database.

At (4), we use a simple selectList function of persistent to query some rows
from the database. Note that persistent intentionally only deals with single tables:
it doesn't do joins at all. Joins can be done either via raw SQL (automatic value
interpolation is still provided in raw SQL queries) or with the esqueleto DSL.

Esqueleto is an add-on to persistent that brings complex database queries in a very
type-safe embedded domain-specific language. Notably, table joins are supported,
which is missing from persistent (unless manually crafting the query string).
Queries in Esqueleto look a lot like queries in SQL, albeit with some extra noise from
fancy operator names. A little noise is a small price to pay for compile-time checked
queries.

For instance, here's an example query written in Esqueleto:

select $
from $ \(user `InnerJoin` post) → do
 on (user ^. UserId ==. post ^. PostAuthor)
 return (user, post)

This performs an inner join over tables user and post, returning all posts along with
their author. It's equivalent to the following SQL:

SELECT user.* post.*
FROM user
INNER JOIN post ON user.id = post.author

HDBC and add-ons
HDBC is a library older than persistent, and is not as ambitious. HDBC aims to be
merely an adapter between Haskell and SQL databases.

HDBC works with lots of databases, also including ODBC-compliant databases such
as Microsoft SQL. persistent doesn't directly support ODBC, though there is an
experimental library called persistent-odbc that adds ODBC compatibility to
persistent via HDBC and HDBC-odbc.

Chapter 14

[353]

HDBC is a better choice than persistent when you don't need automatic migrations,
whole model support in Haskell or type-checked queries. HDBC gives just the bare
minimum to conveniently interact with a SQL database from Haskell: connecting to a
database, performing queries, and marshalling SQL values.

Networking and HTTP
The libraries in this subsection are as follows:

• network (module Network) and network-uri: Low-level networking on
bare sockets

• connection: Easy-to-use abstraction on TCP connections. Supports TLS and
HTTP or SOCKS proxies out of the box.

Basic low-level networking using the network package has been discussed in
Chapter 6, I/O and Streaming.

For a bit higher-level TCP client communication, the connection package provides
a nice little abstraction layer. Plus, connection supports SSL/TLS and SOCKS
with minimal configuration. A connection is established primarily by defining a
configuration value of type ConnectionParams, given by:

data ConnectionParams = ConnectionParams
 { connectionHostname :: HostName
 , connectionPort :: PortNumber
 , connectionUseSecure :: Maybe TLSSettings
 , connectionUseSocks :: Maybe ProxySettings
 }

This is a simple yet effective API for all primitive TCP connections. The get and
put operations use ByteString as data format. connection is the best library choice
when you don't need much more but connect via TCP and transmit bytes, securely,
possibly via a proxy.

HTTP clients and servers
The libraries in this subsection are as follows:

• http-client: Making HTTP requests. Does not support HTTPS.
• http-client-tls: Adds HTTPS support to http-client.
• wreq: Lens-based HTTP client library. Easy to use when basic knowledge of

lenses is assumed. Supports HTTP and HTTPS.

Library Recommendations

[354]

• wai: Short form for Web Application Interface. Provides the bare minimum
to receive and respond to client requests. Engineered for high-performance
use

• warp: HTTP server for wai. Note that warp sits behind wai from the client's
point of view.

For what it's worth, there is an old, minimally maintained library called HTTP that
promises a simple interface for client-side HTTP requests. However, although fully
functional, the HTTP library comes with a few unfortunate gotchas. HTTPS is not
supported at all and the library can be too lazy in HTTP response values, which
manifests as weird bugs.

In new code, it's recommended to use one of the newer HTTP client libraries, for
instance, http-client, http-client-tls, or wreq. The first two use the connection
library internally and provide a simple API. The wreq package takes abstraction even
further, adding a lens-based API on top of http-client or http-client-tls.

It's worth mentioning that types generic for both server and client HTTP
applications, such as status responses, headers, and URIs, can be found in a separate
package, http-types. This is a dependency of many client and server-side libraries,
and can be imported in library user's code if there's need for some URI manipulation.

For server-side HTTP programming without bells and whistles, the warp package
is one high-performance option. It provides just enough to conveniently parse and
respond to HTTP requests. warp has been proved to scale exceptionally well in multi-
core environments, much thanks to the threaded Runtime System but just as much to
wonderful engineering by its authors. Plus, warp provides support for HTTP/2.

Supplementary HTTP libraries
The libraries in this subsection are as follows:

• json-rpc: JSON Remote Procedure Call server and client. Engineered for
high performance with ease of use in mind. Uses conduits.

• websockets: Simple web socket server and client library on top of network.
Does not support secure (WSS) connections.

• wai-websockets: Uses websockets in a wai (warp) application. Also uses the
websockets library. Use this if you already run a wai application and want
to add websocket support to it.

• REST: Can be found on silkapp.github.io/rest. Defining REST APIs in
Haskell, with autogeneration of JavaScript client code and documentation.

silkapp.github.io/rest

Chapter 14

[355]

JSON remote procedure calls
Many web services provide JSON-RPC APIs that more or less conform to the official
JSON-RPC specifications. Connecting to such a web service is relatively easy with
any HTTP client. And if the API is too far from version 1 or 2 of the JSON-RPC spec,
that might be an easier route than using the json-rpc library.

json-rpc works with all standard-conforming APIs. It adds its own logging (via
monad-logger) and uses conduits to send and receive messages. Conforming to the
spec, it tracks request IDs automatically. The biggest pain point of using json-rpc
is that it uses conduits and its own monad transformer, the setup of which is non-
trivial for those unfamiliar with either.

The jsonRpcTcpClient/jsonRpcTcpServer functions provide simple JSON-
RPC client and server that don't necessitate knowing about conduits; however,
the exposed configuration leaves more to be desired. For instance, it's not possible
to override request or response headers, in which case one must drop to defining
conduit source and sink for requests and responses manually.

It's worth noting that non-standard authentications in JSON-RPC, in other words,
those that require an authorization key in the top-level JSON object, are not at all
supported by json-rpc (without modifying the source) at least as of version 0.7.1.1
of the library.

Using WebSockets
The websockets package makes writing WebSocket applications, both client and
server, in Haskell a breeze. The API is simple, and the internals are engineered for
speed and ease of use. For instance, there are multiple variants of receive and send
functions: for ByteString, Text, and user-defined serialization formats via type-class.

The websockets library is rather flexible, and can be used together with other
interfaces. In particular, the wai-websockets library provides a compatibility layer
between websockets and wai applications, such as the warp HTTP server. This
makes it possible to support both HTTP and upgrading to web sockets in the same
server application.

Programming a REST API
One of the most featureful ways to define REST APIs in Haskell is via the Rest
framework developed by Silk. See the documentation at http://silkapp.github.
io/rest for use. The killer features are automatic generation of documentation
that's always up-to-date, client-code generation for Haskell and JavaScript clients,
and API versioning.

http://silkapp.github.io/rest
http://silkapp.github.io/rest

Library Recommendations

[356]

Cryptography
The libraries in this subsection are as follows:

• SHA and RSA: Pure implementations of SHA routines and RSA encryption
and signature algorithms. Not the fastest, but plain Haskell without any FFI.
Created by Galois Inc.

• HsOpenSSL: Partial bindings to OpenSSL via FFI.
• cryptonite: Low-level cryptography primitives with varying API's and

probably of varying quality.
• skein: Bindings to the skein family of fast and secure cryptographic hash

functions.

For really robust, production-ready cryptography applications, one should look for
bindings to existing cryptography libraries. For instance, the C implementation of
the Skein hash function family has Haskell bindings in the similarly named library
skein.

Although Haskell can be used to implement cryptographic algorithms, many of the
algorithms rely on bit-twiddling for security in ways that GHC's code optimizations
can potentially negate. This makes code vulnerable to side-channel attacks.

That said, some pure Haskell implementations of some algorithms exist. In particular,
the RSA package is good and very suitable when external library dependencies are
inconvenient. For what it's worth, the RSA package is developed at Galois Inc, a known
US military contractor.

The cryptonite package provides miscellaneous cryptography building blocks.
They are deemed relatively secure, but every use should be considered individually.
There are not too many users or cryptography experts that will have thoroughly
reviewed all of the library.

Web technologies
The libraries in this subsection are as follows:

• Yesod framework: Full-blown MVC web framework, with all the bells and
whistles.

• Snap / Happstack: Also web frameworks, independent from each other.
Comprises fewer features than Yesod, but still very useful.

• blaze-html: Blazingly fast combinator library for HTML templating. Uses
ByteStrings and the builder pattern.

Chapter 14

[357]

• amazonka / AWS: Bindings to the Amazon Web Service API. The amazonka
bindings are autogenerated, full bindings, while aws is more user-friendly
but partial.

Developing full-blown web applications in Haskell is easy, and there are multiple
great libraries with overlapping features. In short, there are three major big
frameworks: Yesod, Snap, and Happstack. Each of these provides basic things such
as routing and templating. Yesod has most features of them, but also the steepest
learning curve.

For just writing HTML in Haskell, one of the best options is blaze-html. blaze-
html provides Haskell combinators for defining HTML. Internally it uses ByteString
and builders, to quickly and incrementally generate web pages. There are also
templating libraries for CSS and JavaScript as well, in particular the "Shakespearean
templates" associated to Yesod.

For interfacing web services such as Amazon's, a few libraries exist. Amazon has at
least two Haskell bindings: the autogenerated amazonka bindings and partial, more
user-friendly aws library. There's also package fb, which provides bindings to the
Facebook graph query language API.

Parsing and pretty-printing
The libraries in this subsection are as follows:

• parsec: Very featureful, general parser combinator library. Old and poorly
maintained. Slower than attoparsec

• attoparsec: Simple and fast parser combinator library. Fewer features than
Parsec

• megaparsec: A fork of Parsec, well maintained. Extremely flexible. Faster
than Parsec but considerably slower than Attoparsec

• happy / alex: Parser combinator libraries aimed towards parsing
(programming language) grammars.

• pcre-heavy: A reasonable regular-expression library.

Parsing is something that Haskell shines at. Applicative and monadic parser
interfaces are really expressive. There are many awesome general-purpose parser
libraries for Haskell. In general, the choice should be between Attoparsec and
Megaparsec.

Attoparsec should be preferred as speed is critical; Megaparsec if features are more
important. Attoparsec suits best for well-defined file formats, such as serialization.
Megaparsec is a better choice when dealing with more arbitrarily formatted input.

Library Recommendations

[358]

The learning curve to all parser combinator libraries is rather steep. However, the
general ideas are the same behind them all: using general Applicative/Monad/
Alternative interfaces to declare combinations and options.

Here are some examples of parsing using Megaparsec. First, imports:

> import Text.Megaparsec
> import Text.Megaparsec.String

Parsing in applicative style:

> let p = (,,) <$> digitChar
 <*> (char '.' *> digitChar)
 <*> (char '-' *> digitChar)

> parseTest p "2.4-6"
('2','4','6')

Alternatives between two parsers (using Alternative):

> parseTest (string "a"<|> string "b") "b"
"b"

Parsing multiple occurrences of same parser:

> parseTest (many (string "a"<|> string "b")) "aababb"
["a","a","b","a","b","b"]

Parsing with lookAhead:

> parseTest (manyTill (string "a") (string ";")) "aaaa;b"
["a","a","a","a"]

Lots of high-level parser combinators are available, but they are all just compositions
of smaller parts. Such primitives are, for instance, lookAhead, which applies a parser
without consuming input, and try, which turns any parser into a backtracking one
that acts like it hadn't consumed input when failing.

The Happy and Alex parser libraries, on the other hand, are geared towards parsing
grammars. They suit best for writing parsers for custom domain-specific languages.

Regular expressions in Haskell
Regular expressions (regex) are powerful, but they're pretty much write-only. It's
an impossibility to reasonably maintain a sufficiently complex regex. Usually, it's a
better idea to use a real parsing library, but regexes are still useful, mostly in one-off
cases.

Chapter 14

[359]

There are a few regex libraries for Haskell. One which has rather good reputation
is pcre-heavy. It's an extension of pcre-light. Basically, pcre-heavy adds utility
functions such as substitions, splits, and so forth. From the name, we can infer
that pcre-light supports expressive Perl 5 compatible regular expressions. Both
libraries are also pure Haskell for maximum portability.

pcre-heavy allows for writing regexes using a fine quasi-quoter, and takes in and
returns any string type: String, Text, and ByteString are all supported without extra
overheads.

Parsing XML
The library in this subsection tagsoup parses arbitrary XML and HTML documents.

A task that comes up from time to time is parsing XML or HTML documents.
The unfortunate thing with many XML and HTML documents is that they're rarely
well formatted: missing end tags are just one example of ill-formatted HTML.

Tagsoup is one solution for parsing arbitrary data from XML-formatted documents.
To some extent, it supports ill-formatted XML as well. The API is overloaded over
source representation data type, via a StringLike class. It supports all of String,
strict and lazy ByteString and strict and lazy Text.

Pretty-printing and text formatting
The libraries in this subsection are as follows:

• wl-pprint-* packages: Pretty-printers based on Wadler/Leijen pretty-
printers. Multiple implementations with different features are found in
similarly named libraries.

• text-format: High-performance text formatting.
• interpolateInterpolate: Simple string interpolation using Template

Haskell.
• here: Docs for Haskell using Template Haskell.

Pretty-printing is the process of turning data into user-friendly text format. Think,
for instance, of printing a long string with appropriate line breaks, or printing
Haskell values in a friendly way, in other words, commas at the beginning of lines
and so on.

Library Recommendations

[360]

The Wadler/Leijen pretty-printer is a simple but powerful interface that has multiple
implementations: nearly a dozen packages with wl-pprint in their name. Some add
support for ANSI terminal colors, or terminfo support, annotations, one even using
a free monad for documents. Unfortunately, no single implementation admits for all
features.

For basic formatting in classic printf-style, there's of course Text.Printf in
the base package that implements the "original" polyvariadic printf in Haskell.
Unfortunately, it's not at all type-safe. Yet more, it uses the incredibly slow String.

For high-performance text-formatting, the text-format package brings a formatter
for Text values. At core, we have the format function:

format :: Params ps => Format → ps → Text

The Format datatype has an IsString instance. Interpolations are marked by "{}".
The Params type-class overloads specification styles for parameters. In particular,
supported parameters are tuples and lists of parameters, plus others. Here's an
example formatting:

> format "testing: {} {} {} {}" (1, 1.23, hex 254, "hello")

"testing: 1 1.23000 fe hello" :: Text

The type of hex is:

hex :: Integral a => a → Builder

The text Builder is also a valid parameter, which is convenient for controlling
output format.

For really type-safe text formatting, there are a few interpolation libraries that
use Template Haskell for convenience. For instance, the interpolate library has
an almost ludicrously simple interface: one quasi-quoter "i" which is used in this
fashion:

> :set -XQuasiQuotes
> import Data.String.Interpolate

> let world = "World!'

> putStrLn [i|Hello #{world} #{9 + 33}|]
"Hello World! 42"

However, bear in mind that interpolate uses String as the only possible
representation. This can hurt performance with larger strings. The Here library is
similar to interpolate, using different interpolation syntax (dollar instead of hash)
and supporting whitespace trimming.

Chapter 14

[361]

Control and utility libraries
The libraries in this subsection are as follows:

• conduit, io-streams, and pipes: General streaming libraries, that avoid
problems with lazy IO

• lens: Solving the "nested record update" problem in a "batteries included"
fashion

• convertible: Conversions between types using a single function without
information loss

• basic-prelude, classy-prelude: Prelude alternatives that encourage best
practices in modern Haskell

• chunked-data: Class abstractions to different builders, zipping, and reading
and writing to files and handles

Streaming libraries are generally aimed at countering problems with lazy IO. Refer to
Chapter 6, I/O and Streaming, for an in-depth discussion about problems with lazy IO
and Haskell streaming libraries.

Using lenses
Lenses can be thought of as a generalization of getters and setters that compose well.
A sore point of vanilla Haskell is nested record updates. The syntax is not very nice,
for instance, this:

update rec new_c = rec { field_c = (field_c rec) { c = new_c } }

Here we update field c in field field_c of record rec. With lenses, we could
have instead written the update as:

rec & field_c . c .~ new_c

(Assuming field_c and c are now lenses for renamed fields.)

In reality, lenses are a lot more than just setters. There are travelsals, prisms,
and more. The lens rabbit hole goes very deep – but is for sure an eye-opening
experience.

More beginner-friendly alternatives to monolithic and highly abstract lens library
exist. The data-lens library provides vanilla Haskell 98 lenses. Library fclabels
provides only the basics: get, set, and modify parts of a datatype.

Library Recommendations

[362]

Here's a complete example of the use of fclabels:

-- file: fclabels.hs

{-# LANGUAGE TemplateHaskell #-}

import Prelude hiding (id, (.))
import Control.Category
import Data.Label

At this point, notice that we have replaced function composition (.) and ID from
Prelude with more general ones from Category. Fc-lables lenses compose
as category, as opposed to lenses of lens library, that compose with function
composition.

This is how we define lenses with fc-labels:

data Member = Member
 { _name :: String
 , _task :: String
 } deriving Show

data Team = Team
 { _leader :: Member
 , _memebrs :: [Member]
 } deriving Show

mkLabels [''Member, ''Team]

All the magic happens in the call to mkLabels. Actually, it's not much magic at all; all
that happens is that from every field name that begins with an underscore, a lens is
formed. The underscore is dropped.

Forming a lens is an entirely mechanical process of defining a getter and modifier.
The getter is just _field, while the modifiers are more verbose:

\f rec → rec { field = f (field rec) }

Lenses are used with get, set, and modify functions. For instance:

> let john = Member "John" "Test the software"
 peter = Member "Peter" "Lead team"
 team = Team peter [john]

> get (name . leader) team
"Peter"

Chapter 14

[363]

Here is an example of modifying a record field inside another record:

> modify (task . leader) (++ " and hire people") team

Consider using lenses if you have a lot of nested records and update them
frequently.

Easily converting between types (convertible)
Another nuisance that comes up is conversions of values to other types, for instance,
between different textual types, time types, numbers, and so on. The convertible
package provides a solution to this in the form of a Convertible type-class:

class Convertible a b where
 safeConvert :: a → ConvertResult b

Because a conversion can be invalid, in other words, from an Int64 to Int32 can
overflow, convertible doesn't allow the invalid conversion and instead results in an
error. When you are sure that a conversion is safe, you can use the convert function
in a safe manner:

convert :: Convertible a b => a → b

The only possible downside to using convertible is that it can hide expensive
conversions, for instance, conversions back and forth between String and Text. The
other possible problem is using it with other value polymorphic libraries, that can
result in too ambiguous types, thus necessitating type annotations.

Using a custom Prelude
Relatively advanced Haskellers might find the exports of default Prelude lacking or
even devastating: encouraging the use of String, asynchronous exceptions (error),
and partial functions. Preferences vary from person to person, so in principle there
could be as many Preludes as there are Haskellers.

Luckily, one doesn't have to start from scratch defining a custom Prelude, as some
better starting points exist. The basic-prelude package provides one bare base
for building a custom Prelude. The classy-prelude package is aimed at rather
advanced programmers, who don't mind working with highly class-based functions.

Library Recommendations

[364]

Some of the convenience classes in classy-prelude come from other smaller
packages. For one, the mono-traversable library abstracts over monomorphic
containers. Essentially, it provides the classes MonoFunctor, MonoFoldable,
MonoTraversable, and some others, that are just like Functor, Foldable, and
Traversable except that they are monomorphic in the element values. Examples
of such containers are Text (element Char) and ByteString (element Word8).

The element type is decided via an open type-family Element:

type family Element mono

Besides truly monomorphic elements, such as Char or Word8, the Element
type-family allows for instances in which the element type is decided from a type
variable in the container. For instance, we have:

type Element [a] = a
type Element (Either a b) = b

So the true meaning of "monomorphic" is in the classes, that are less generic than
normal Functor/Foldable/Traversable. For instance, omap of MonoFunctor won't
allow changing the element type unlike fmap would:

omap :: MonoFunctor mono
 => (Element mono → Element mono) → mono → mono

The motivation for using mono-traversable is that the classes allow for writing
generic code that works with more container types, in particular using the same
code for both monomorphic (Text, ByteString) and polymorphic ([a] and Set a)
containers. There are also other type-classes present in the mono-traversable
package; see the package documentation for details.

The chunked-data library was originally a part of classy-prelude, so reasonably
it's re-exported there. It abstracts over a few things:

• Different builders, in particular text and bytestring builders, providing
conversions to and from builders and their data representation

• Types that can be zipped together, in other words, lists, vectors, trees,
sequences, and even IntMaps

• The IOData class abstracts over reading and writing Handles

Chapter 14

[365]

Working with monads and transformers
The libraries in this subsection are as follows:

• lifted-base, stm-lifted: Lifting IO operations to arbitrary monad stacks
• monad-control: Lifting general control operations to any monad (provides

liftBaseWith)
• monad-logger: Adding high-performance and flexible logging facilities to

any monad
• LogicT: A backtracking logic programming monad
• monad-unlift: Provides more reliable state-saving in monad transformer

stacks for a subset of transformers (specifically, monad morphisms)
• monad-loops: Monad combinators that map, iterate, fold, and unfold with

monadic side effects

For choice and considerations of monads and transformers themselves, refer to the
discussion in Chapter 2, Choose the Correct Data Structures. Logging with monad-
logger and fast-logger is discussed in detail in Chapter 6, I/O and Streaming.

Working with monad transformer stacks is most convenient when the actions of used
libraries are readily overloaded over a type-class that permits use of an arbitrary
monad stack. The lifted-base and stm-lifted libraries are alternatives to some
base and stm modules. They lift operations from the IO and STM monad to arbitrary
monads overloaded by classes such as MonadIO, MonadBase, and MonadBaseControl.

One monad that hasn't been discussed yet at all is the Logic monad and the
LogicT transformer. This monad has quite specific use cases: in particular, complex
backtracking computations can benefit from being written using the Logic monad.
It has its own overhead, that's more than, for instance, Maybe monad's overhead in
simple cases.

The monad-control package and the MonadBaseControl class are especially useful
when writing highly stateful applications, where nearly all code has to store and
have access to resources. Normally, state control operations such as catch live in IO.
With liftBaseWith from MonadBaseControl, it's possible to lift operations that
require an IO callback to the custom monad, and allow the callback to run in the
custom monad as well. Refer to Chapter 2, Choose the Correct Data Structures for more
information about monad-control.

Library Recommendations

[366]

To end our monadic discussion on a lighter note, we note the monad-loops package.
It's a package which adds lots of general but seldom desired monadic operators, such
as whileM, iterateWhile, and dozens of other variants. They may or may not make
your code more expressive.

Monad morphisms – monad-unlift
The monad-unlift library exists for two reasons:

• To allow saving the monadic state (monadic side-effects) in case of an
exception. Normally, with liftBaseWith from monad-control, the side-
effects are just discarded and there's no way to get them back if an exception
is thrown.

• As an alternative to monad-control, whose types are extremely general and
hard to grasp.

So monad-unlift provides much the same functionality as monad-control, except
for a subset of monads (transformers). In return, monadic effects can be resurrected
in case of an exception. This is possible for monads that are isomorphic to ReaderT,
that is, their effect is not context-sensitive.

In practice, instead of liftBaseWith to run a computation with the saved state, we
use askUnliftBase to get a function that executes actions in the base monad with
the same state. The state is shared but must be immutable, in other words, the writer
part could be represented by a reference.

Handling exceptions
The libraries in this subsection are as follows:

• exceptions: Generalizing extensible extensions to any monad via
type-classes (MonadThrow, MonadCatch, and MonadMask)

• safe-exceptions: At the time of writing, safe-exceptions is a recent
attempt at pumping more sense into exception handling in the Haskell
ecosystem

When working with custom monads and exceptions, it's advisable to use generalized
functions from the exceptions library to conveniently throw, catch, and mask
exceptions. The functions work pretty much the same as their originals from
Control.Exception, unless somehow restricted by the base monad.

Chapter 14

[367]

There are a few nuisances in the way exceptions are handled in Haskell and GHC.
In particular, differentiating between synchronous and asynchronous exceptions
is fickle. Plus, with current exception mechanisms in base, it's easy to make
unnecessary mistakes, such as throwing asynchronous exceptions unintentionally
(with throw) or throwing important exceptions away with failing cleanup handlers.

The safe-exceptions package tries to encourage better hygiene with exceptions.
It's early in development, so radical changes are still possible. However, it seems
prominent enough to include it in this list.

Random number generators
The libraries in this subsection are as follows:

• MonadRandom: Simple monadic interface for supplying random numbers.
Uses System.Random. It's rather slow and not very secure.

• mwc-random: Very fast pseudo-random number generation. Probably not
cryptographically secure.

• random-fu: Good support for sampling a wide range of different
distributions. Good quality but not terribly slow either.

• mersenne-random: Pseudo-random numbers using a Mersenne Twister.
Probably fastest RNG for Haskell when SIMD is supported.

Random numbers have multiple applications, from simulations to cryptography.
Random number generators come with different trade-offs that suit different
applications. Others are very fast and not really that random, while others are slower
but cryptographically secure.

Haskell doesn't have a shortage of pseudo-random RNG libraries. Cryptographically
secure random numbers are hard, however; your best bet is probably in HsOpenSSL
or cryptonite.

For pseudo-random number generation, either mwc-random or mersenne-random are
good choices. If you need a wider range of distributions and don't mind sacrificing
speed, use random-fu.

Library Recommendations

[368]

Parallel and concurrent programming
The libraries in this subsection are as follows:

• Control.Concurrent (base): The basic concurrency primitives
• parallel: Primitive parallel programming and parallel evaluation strategies
• monad-par: Provides the Par and ParIO monads for simple pure and IO

parallel programming
• abstract-par, monad-par-extras: Add-on libraries to monad-par, that

add extra combinators and a further abstraction layer over different Par
implementations

• repa: Data-parallel arrays

Parallel programming and the use and features of libraries parallel and monad-par
is considered in Chapter 5, Parallelize for Performance. The RePa library is also featured
in that chapter.

In short, the parallel library is used to express parallelism deterministically,
and more importantly to separate parallelism from program logic. This enhances
modularity and composition. The monad-par library, on the other hand, ties
computation with its parallel evaluation, in return giving more control over how
evaluation happens.

RePa focuses on high-performance parallel array programming.

Functional Reactive Programming
The libraries in this subsection are as follows:

• Elerea: Discrete-time FRP with a safe monadic interface
• Yampa: Hybrid time FRP with first-class signal functions
• Reactive-banana: Hybrid time FRP with simple semantics

FRP is handled in depth in Chapter 13, Functional Reactive Programming. There are
more useful FRP libraries than the three listed here, and the balance between good
semantics and performance in FRP is still taking shape.

Chapter 14

[369]

Mathematics, statistics, and science
The libraries in this subsection are as follows:

• hmatrix: Highish-level library for doing linear algebra in Haskell using BLAS
and LAPACK under the hood.

• hmatrix-gsl-stats: Bindings to GSL, based on hmatrix.
• hstatistics: Some statistical functions built on top of hmatrix and

hmatrix-gsl-stats.
• statistics: Pure Haskell statistics functions. Focuses on high performance

and robustness.
• Frames: Working with CSV and other tabular data sets so large that they

don't always fit in memory.
• matrix: A fairly efficient matrix datatype in pure Haskell, with basic matrix

operations.

For linear algebra and statistics, there are a few useful packages. The hmatrix/
hmatrix-gsl-stats/hstatistics provide pretty good bindings to well-known
BLAS, LAPACK, and GSL libraries. The statistics package is very different, being a
pure-Haskell implementation of a variety of statistics utilities.

Working with large datasets in Haskell is made easy with Frames. It provides a type-
safe data frame abstraction for streaming data from disk.

Although hmatrix is strictly more featureful than the matrix library, hmatrix has
some fairly strict external library dependencies. The matrix library has none, which
makes it nicer to work with in certain situations. The same applies to the Statistics
library versus the hstatistics library. The latter has extra dependencies and more
features, while the former provides basics in Haskell only.

Tools for research and sketching
The libraries in this subsection are as follows:

• ihaskell: Haskell backend for the IPython console and notebook platform.
• HaTeX: A Haskell EDSL for writing LaTeX documents.
• H (HaskellR): Embedding R computations into Haskell. Passing data

between Haskell and R without copying.

The IPython console and notebook software enable wonderful interactive
programming, and ihaskell brings Haskell to it.

Library Recommendations

[370]

For those who fancy it, writing LaTeX documents is completely possible in Haskell.
There is some added syntactic noise from using an EDSL, but the strong guarantees
and high-level abstractions made available by Haskell are worth it in bigger
documents. As a plus, HaTeX makes writing TIKZ images much easier.

The HaskellR project
The HaskellR project enables seamless integration between Haskell and the R
language. It makes the big repository of R libraries available to Haskell. In essence,
HaskellR provides an interpreter that integrates GHCi with R, called H, and a quasi-
quoter that enables writing R code into Haskell code.

The first way to use HaskellR is to install H and run it:

$ stack install H

$ stack exec H

>

This basically gives a modified GHCi prompt, where we have full access to both
Haskell and R:

> [1..10]

[1,2,3,4,5,6,7,8,9,10]

> let (x,y) = (5, 10) :: (Double, Double)

> H.p [r| y_hs + x_hs + e |]

We access R through the R quasi-quoter. Haskell values simply get a _hs prefix.
We can even use Haskell functions from quasi-quoted R expressions, as long as they
are lifted to the R monad.

Creating charts and diagrams
The libraries in this subsection are as follows:

• Chart, Chart-cairo, Chart-diagrams: Rendering 2D charts in Haskell.
Supports multiple backends, including Cairo and diagrams.

• Diagrams: Declaratively generating vector graphics. Supports multiple
outputs including Cairo, SVG, PS, and more.

There are two excellent libraries for creating 2D graphics in Haskell: chart and
diagrams. The first one is geared towards charting and plotting, whereas the latter is
more on EDSL for generative vector graphics.

Chapter 14

[371]

Both libraries support a wide range of output formats, from vector graphic formats
to output directly to GTK windows. Chart even provides some primitive supports
for interactivity in charts.

Scripting and CLI applications
The libraries in this subsection are as follows:

• shelly: Shell programming in Haskell, similar to Turtle.
• turtle: Using Haskell as a shell and scripting language. Very beginner-

friendly but perhaps lacking in some ways as a result. Nonetheless portable
and exception-safe.

• cmdargs: Command-line parsers with a Template Haskell empowered
interface. Provides compatibility with getopt parsers.

• haskeline: Bindings to readline with an easy-to-use interface for use in
command-line programs.

• console-program: Defining CLI applications with multiple sub-commands,
optional and positional arguments. Supports one-off and readline modes.

• shake: A build system written in Haskell. A replacement for the make
system.

• propellor: Puppeting software for servers, using a Haskell EDSL for defining
configurations.

Haskell is quite well suited for scripting and shell-programming. Both the Shelly
and Turtle libraries define APIs that wrap around shell functions. One of the
features of Shelly is "lifting" the Unix pipe operator to the monadic bind (in
Shelly.Pipe), which can be convenient in some situations. The Turtle library aims
more at user-friendliness.

For writing command-line applications, there are multiple useful libraries. Both
cmdargs and console-program provide facilities to define and parse command-line
arguments and generate usage info from them. Console-program supports running
the same program in interactive mode, taking advantage of readline. The haskeline
library provides basic wrapper over readline.

Shake is a build system written in Haskell; it's not really geared towards compiling
Haskell programs but rather as a replacement for make and similar ancient build
systems.

Propellor is a relatively unknown server configuration system, which features a
Haskell EDSl for declaring server configurations.

Library Recommendations

[372]

Testing and benchmarking
The libraries in this subsection are as follows:

• QuickCheck: Property-checking with automatic test-case generation
• doctest: Writing tests and expected results directly in haddock comments
• HSpec, HUnit, tasty: Traditional unit-testing libraries
• criterion: Benchmarking time usage
• weigh: Benchmark allocation

There are two testing libraries that are rather novel in Haskell: QuickCheck and
doctest. QuickCheck lets the programmer just state a property for a function,
leaving it to the library to try proving it false.

Doctest builds on the ingenious idea of combining test cases with docstrings.
It's especially useful in libraries, because it gives users reading the documentation
always up-to-date information about properties and use of functions that have tests
annotated in their documentation.

More traditional testing frameworks such as HSpec, HUnit, tasty and
time-benchmarking library criterion are discussed in detail in Chapter 4,
The Devil's in the Detail.

A newcomer library in benchmarking, Weigh, measures allocations in Haskell
computations. Allocation as such is ignored by criterion, although allocation
somewhat correlates with time complexity. Still, allocation benchmarking is a
valuable tool in hunting down space leaks.

Summary
In this chapter, we have walked very quickly through a big bunch of libraries in
different application areas. New libraries are constantly developed, and current
ones are being improved. Lists in this chapter should be taken only as a guideline.
It's always a good idea to do a little research before using a new library. The
Haskell-Cafe mailing list is a good place to be notified about new libraries and
major new releases, and is relatively low traffic.

During the course of this book, we have navigated many topics that have hopefully
helped you become a better Haskeller.

Chapter 14

[373]

If you followed closely the first few chapters, you have a good working
understanding of lazy evaluation and its traps. You can use seq, bang patterns,
and pragmas where necessary. You know many high-performance data structures
and are able to use them effectively. In the middle chapters, we learned to test and
benchmark, that lazy I/O has drawbacks, to parallelize code, to do concurrency
safely and to compile using appropriate flags for GHC and Runtime System. These
are the things that form the foundation for productive high-performance Haskell
programming.

The last topics in this book were more about specific applications of Haskell:
interfacing with foreign code, GPU programming, Cloud Haskell, and functional
reactive programming. If you followed through any of these then you have a good
overview of that aspect in Haskell programming and are prepared to dive into that
subject without friction.

[375]

Index
A
abstract data-types

marshalling 282, 283
abstract loggers 192, 193
abstract-par library 368
Accelerate

about 285
matrix multiplication,

implementing 291, 292
Accelerate, concepts

backend foreign function interface 300
conditional execution 293
elements 288, 289
flow control 293
folding 297, 298
kernels 287
permutation 299
reducing 297, 298
rudimentary array computations 290, 291
scalars 288, 289
segmenting 297, 298
stencils 298, 299
tuples 297

accelerate-cuda package 294
Accelerate programs

generated code, inspecting 293
writing 286, 287

accumulator parameters 12
accumulators 9
acid-state package 350
ad hoc polymorphic 3
aeson library 348
affinity 236
aggressive inlining 17
allocations

minimizing 15, 16
profiling 63

anatomy, Haskell project 94-96
array reductions

via folding 144
arrays

extending 147-149
mapping 143

Async API
examples, timeouts 215, 216
using 215

asynchronous errors
handling 105

asynchronous processing
about 213, 214
Async API, using 215
composing, with Concurrently

type 217, 218
attoparsec

example 181-183
AWS 357

B
base (module Data.Fixed) library 345
basic-prelude library 361
benchmarking

about 84
with criterion 84-88

benchmarks 98
bidirectional channels

establishing 308
binary and textual data, handling

about 29
bit arrays, representing 29, 30
blobs of bytes, handling 31, 32

[376]

builder abstractions, used for iterative
construction 34, 35

bytes, handling 31, 32
characters, working with 33
strings, working with 33

binary I/O 166, 167
binary library 347
binary serialization, libraries

binary 347
cereal 347
store 347

binary serialization, of Haskell values 347
biographical profiling 83, 84
blaze-html 356
bounded thread 236
boxed types 237
branching 26, 27
buffering modes

BlockBuffering 166
LineBuffering 166
NoBuffering 166

builder abstractions
using, for iterative construction 34, 35
using, for strings 35

C
C

common types 272, 273
cabal file

about 232
fields 96, 97
flags 96, 97

cassava library 348
cereal library 347
C functions

calling, from Haskell 271, 272
Chan

used, for broadcasting 206, 207
channels

using 306, 308
characters

text library, using 33
charts

creating 370
charts, libraries

Chart 370

Chart-cairo 370
Chart-diagrams 370

chunked-data library 364
classy-prelude library 361
closures 304
Cloud Haskell 302
cmdargs library 371
Cmm 248
code optimizations

common subexpressions, eliminating 229
float-in 228
float-out 228
liberate case duplicates code 230
state hack 227

Common Subexpression Elimination
(CSE) 229

common types, C 272, 273
common types, Haskell 272, 273
compiler code optimizations 17
concurrency primitives 200
conduit library 361
console-program 371
Constant Applicative Form (CAF) 67
containers library 344
control and utility libraries

basic-prelude 361
chunked-data 361
classy-prelude 361
conduit 361
convertible 361
io-streams 361
lens 361
pipes 361

Control.Concurrent (base) library 368
control inlining

about 114, 115
definitions, specializing 116
phase control 117
rewrite rules, using 115, 116

convolution operation
with stencils 149-151

cost centre-based heap profiling 73-76
cost centres

about 64
setting, automatically 68-70
setting, manually 64-67

[377]

C preprocessor (CPP)
about 232
use cases 232

criterion benchmark suite 84
cryptography 356
cryptography, libraries

cryptonite 356
HsOpenSSL 356
RSA 356
SHA 356
skein 356

cryptonite package 356
CSV input 349
CSV output 349
CUDA backend

using 294
CUDA platform 285
CUDA programs

debugging 295
custom Prelude

using 363, 364

D
data marshal 280
data parallel programming 141, 142
data representation

libraries 343
datatype fields

unpacking 23
data-type generic programming

about 256
generic sum example 256-258

debugging
options 241

Decimal (module Data.Decimal) library 345
definitions

specializing 116
delayed arrays 143
delayed representations 146
diagrams

creating 370
Diagrams library 370
difference lists

performance 38
using 37
using, with writer monad 38, 39

discrete-time events 327-329
domain specific language (DSL) 264

E
ekg

used, for monitoring over HTTP 89-91
Elerea

about 318, 319, 368
limitations 324
performance 324

encoding 166, 346
encoding, libraries

aeson 348
cassava 348
json-autotype 348
xml 348
yaml 348

ephemeral data structures
about 49
mutable arrays, using 50, 51
mutable references 50
mutable vectors, using 51, 52

errors
asynchronous errors, handling 106
synchronous errors, handling 102, 103

esqueleto DSL 352
esqueleto library 350-352
Eval monad 132
eventlog

used, for tracing 241
events, and behaviors

combining 335
switching 336

examples, from image processing
about 154
image, loading from file 155
letters, identifying with

convolution 155, 157
performance, evaluating 159-161
performance, testing 159-161
strings, extracting from image 157

exception hierarchy 104, 105
exceptions

handling 101, 366, 367
exceptions, libraries

safe-exceptions 366

[378]

F
failure, handling

about 310
matching on message queue 311, 312
message-passing performance 312
monitors, firing up 311
processes, linking together 312

file handles 165
finger trees 40
FlexibleInstances 121
force

using 131
foreign function interface (FFI) 271
formats

encoding from 348
encoding to 348

FP Complete 99
Frames library 369
functional dependencies 118, 119
Functional Graph Library (fgl) 344
functional graphs 344, 345
Functional Reactive Programming,

libraries
Elerea 368
Reactive-banana 368
Yampa 368

function pointers 278
fusion 146
futures 138

G
GADTs

performance 26, 27
garbage collector

parallel GC 239
tuning 239

general algebraic datatypes 24
General-Purpose Computing On Graphics

Processing Units (GPGPU) 285
getopt parsers 371
GHC

code optimizations, adjusting 227
code transformations, adjusting 227
compiling, via LLVM route 230
Haskell source code, pre-processing 232

operating 224
operating, circular dependency

problem 226
shared libraries, building 231
shared libraries, linking 231
type-safety, enforcing with Safe

Haskell 233
using, like pro 224

GHC Core
considerations 249

GHC extensions
about 121
for guards 123
for patterns 123

GHCi
Repa, working 142, 143
tip 15

GHC options
flags 242
LLVM backend 242
optimization, turning off 242
optimization, turning on 242
Runtime System (compile-time),

configuring 242, 243
Safe Haskell compilation, controlling 243
summaries 241

GHC PrimOps
coding in 112

GHC Runtime System
and threads 211, 212
asynchronous exceptions, masking 212

GHC's internal representations
GHC Core, reading 248, 249, 250
interpreting 248
Spineless tagless G-machine (STG) 251, 252

GHC-specific features
about 253
kinds encode type, representation 254

Glasgow Haskell Compiler. See GHC
GNU Multiple Precision Arithmetic Library

(GMP) 28
granularity

fine-tuning, with buffering 136
fine-tuning, with chunking 136

Graphics Processing Units (GPUs) 285
green threads 235
guarded recursion 10, 11

[379]

H
Hackage 294
Happstack 356
happy library 357
hashtables library 344
Haskell

about 164
code lifting to Q, with quotation

brackets 264
common types 272, 273
constN function 263
data, reifying into template objects 264
evaluation stack, using 238
generating 259
missiles, launching on compilation 264
names, in templates 261, 262
quasi-quoting, for DSLs 267, 268
setters, deriving with Template

Haskell 265-267
smart template constructor 262
splicing, with $(…) 260
tests, writing for 107

Haskell callbacks, from C 279, 280
Haskell functions

exporting 275, 276
Haskell programs

space usage, inspecting 12-15
time, inspecting 12-15

Haskell project
anatomy 94-96

HaskellR project 370
HaTeX 369
HDBC 350, 352
HDBC-odbc 350
heap objects, biographical profiling

state DRAG 83
state LAG 83
state USE 83
state VOID 83

heap profiling
about 71, 73
cost centre-based heap profiling 73-76

here library 359

H (HaskellR) 369
hmatrix-gsl-stats library 369
hmatrix library 369
hpc command-line utility 110
HsOpenSSL library 356
Hspec

about 107, 109
reference 109

hstatistics library 369
http-client library 353
HTTP clients and servers, libraries

http-client 353
http-client-tls 353
wai 354
warp 354
wreq 353

HUnit
used, for unit testing 108

I
ihaskell 369
indefinite blocking 236
indices 146-149
inlining

about 17
considerations 17

International Components for Unicode
(ICU) 34

Inter-process Communication (IPC) 170
I/O

about 163
binary I/O 166, 167
lazy I/O 164, 165
lifting, base with exception

handling 220, 221
lifting, from base monad 219, 220
lifting up from 218
textual I/O 168
top-level mutable references 218, 219

I/O performance
with filesystem objects 168

io-streams
example 181-183

[380]

J
json-autotype library 348
JSON-RPC APIs 355

L
lazy evaluation schema

about 1, 2
folds 6
sum, writing correctly 3, 4
weak head normal form 5

lazy I/O 164, 165
lenses

using 361, 363
lens library 361
libraries

installing, with profiling 70
libraries, for data representation

bytestring 344
containers 344
hashtables 344
mutable-containers 344
text 344
unordered-containers 344
vector 343

libraries, for mathematics
hmatrix 369
hmatrix-gsl-stats 369
matrix 369

libraries, for monads and transformers
lifted-base 365
LogicT 365
monad-control 365
monad-logger 365
monad-loops 365
monad-unlift 365
stm-lifted 365

libraries, for parallel and concurrent
programming

abstract-par 368
Control.Concurrent (base) 368
monad-par 368
monad-par-extras 368
parallel 368
repa 368

libraries, for parsing and pretty-printing
attoparsec 357
happy / alex 357
megaparsec 357
parsec 357
pcre-heavy 357

libraries, for pretty-printing and text
formatting

here 359
interpolate 359
text-format 359
wl-pprint-* packages 359

libraries, for Scripting and CLI applications
cmdargs 371
console-program 371
haskeline 371
propellor 371
shake 371
shelly 371
turtle 371

libraries, for statistics
hstatistics 369
statistics 369

libraries, for testing and benchmarking
criterion 372
doctest 372
HSpec 372
HUnit 372
QuickCheck 372
tasty 372
weigh 372

libraries, Repa
repa-algorithms 154
repa-devil 154
repa-flow 154
repa-io 154
repa-stream 154

lifted-base library 365
logging, in Haskell

about 191
with FastLogger 191

LogicT library 365

M
MagicHash language extension 112
manifest representations 145

[381]

marshalling
in standard libraries 283

matrix library 369
megaparsec library 357
memoization 7
memory

allocating, outside heap 281
mersenne-random library 367
Mersenne Twister 367
message-passing 302
message type

creating 302, 303
migrator 352
modules

Safe 233
Safe-Inferred 233
Trustworthy 233
UnSafe 233

moments
about 331
observing, on demand 336

monad-control library 365
monadic loggers

customizing 196, 197
monadic logging 195
monad instance 331
monad-logger library 365
monad-loops library 365
monad-par library 368
monad-unlift library 365
monad-par-extras library 368
MonadRandom library 367
monads

catch function, implementing 106, 107
free monads 57-59
list monad 55-57
monad transformers, working with 59
speedup, via continuation-passing

style 59, 60
throw function, implementing 106, 107
transformer 55-57
working with 365

monad stacks
working with 55

monad transformer library (mtl) 59
monad-unlift library

need for 366

monitoring
in realtime 88

monitoring, over HTTP
with ekg 89-91

monomorphism restriction (MR) 122
multi-package projects 101
MultiParamTypeClasses 121
mutable-containers library 344
mutable vectors

bubble sort, using with 53, 54
using 52, 53

mutually recursive signals
about 320
side effects, signalling 321, 322
signal networks, changing

dynamically 322, 323
MVars

about 199, 203
features 204
used, as building blocks 205

mwc-random library 367

N
networking

about 169, 313, 314
above transport layer 173

networking and HTTP, libraries
connection 353
network (module Network) 353
network-uri 353

nodes 313, 314
NoMonomorphismRestriction language

extension 122
non-deterministic parallelism

with ParIO 139, 140
Normal Form Data (NFData) 87
Normal Form (NF) 5, 131
numbers (modules Data.Number.*)

library 346
numerical data

handling 28, 29
numeric data, libraries

base (module Data.Fixed) 345
Decimal (module Data.Decimal) 345
numbers (modules Data.Number.*) 346

numeric types, Haskell 28

[382]

O
objects

outside heap 76-80
pointing, in heap 281

O(log n) 48
OpenCL 285
Operating System (OS) thread 201

P
parallelism

diagnosing 140, 141
Parallel library 368
ParIO

using, for non-deterministic
parallelism 139, 140

Par monad 136-138
parsec library 357
parsing 357
partial functions 19
partitioned arrays 151
patricia 345
PatternGuards 123
PatternSynonyms 123
pcre-heavy library 357
Perl 5 compatible regular expressions 359
persistent library 350, 351
persistent-odbc 350
phantom types 118
pipes

benefits 187
drawbacks 187

pipes library 361
polymorphic 2
polymorphic programs 18
polymorphism performance 18
pretty-printing 359
primitive parallelism 128, 129
primops 247
processes

about 302
creating 303

profiler
unexpected crashes, debugging with 70, 71

profiling
about 63
in realtime 88

libraries, installing with 70
options 241

promises 138
propellor library 371
property checks 107, 108
pseq 131

Q
QuickCheck 107

R
random-fu library 367
random number generators 367
random number generators, libraries

mersenne-random 367
MonadRandom 367
mwc-random 367
random-fu 367

raw UDP traffic 172
Reactive-banana

about 331
first GUI application 332
graphical display, with

wxWidgets 332-334
input, adding 338
input, adding dynamically 340
input, adding via handlers 338, 339
input, adding via polling 338, 339
output, adding 338
output, adding dynamically 340

Reader 55
Reader Writer State (RWS) 59
recursion 9, 337
regular expressions, in Haskell 358
remote process

calling 309
Repa

about 141
working with 142, 143

repa-algorithms library 154
Repa code

writing 153
repa-devil library 154
repa-flow library 154
repa-io library 154
repa library 368

[383]

repa-stream library 154
resources

handling 164
managing, with ResourceT 173, 174
reading 164
writing 164

ResourceT
resources, managing with 173, 174

REST API
programming 355

Rest framework, Silk
reference 355

retainer profiling 80-83
reverse polish notation (RPN) 10
rewrite rules

using 115, 116
RSA library 356
RSpec 109
RTS options

debugging 244
garbage collection 244
memory management 243
profiling 244
runtime system statistics 244
scheduler flags 243
summaries 243

runtime system, GHC
garbage collector, tuning 238
green threads 235
heap management 237, 238
memory management 237, 238
profiling options 240, 241
scheduler threads 235
stack management 237, 238
tracing options 240, 241
tuning 234

S
safecopy package 350
Safe Haskell 223
schedules 136-138
ScopedTypeVariables 124
semantics 337
Seq 40

sequential data, handling
about 36, 37
difference lists, using 37
zippers, using 39

serialization 346
Set Cost Centre (SCC) 65, 71
SHA library 356
shared library

compiling 276, 277
sharing

increasing 15, 16
shelly library 371
signal functions

state, adding to 325, 326
SimpleLocalNet backend

running with 305, 306
Single Instruction, Multiple Data

(SIMD) 231, 253
slicing 147
SmallCheck 107
Snap 356
sockets 169
Software Transactional Memory (STM)

about 199, 208
alternative transactions 210
bank account example 208, 210
exceptions 210

spark pool
about 235
dud 130
fizzled 130
GC'd 130
overflowed 130

sparks 130
sparse data, handling

about 47
containers package, using 47
unordered-containers package, using 48

spawn function
for futures 138, 139
for promises 138, 139

spawning 304
spec testing 107
Spineless Tagless G-machine (STG) 224
stable pointers 280
stack manual

reference 100

[384]

stack tool
using 99, 100

state
adding, to signal functions 325, 326

static addresses
importing 273-275

static functions
importing 273-275

statistics library 369
stm-lifted library 365
store library 347
strategies

about 132
composing 134, 135
working 133

stream fusion 33
streaming 175
streaming library

selecting 175
streaming, with conduits

about 188, 189
conduits, resuming 190, 191
exceptions, handling 189
resources, handling 189

streaming, with io-streams
about 176, 177
combinators, using 179
exceptions, handling 179-181
input streams, creating 177-179
output streams, using 179
resources, handling 179-181

streaming, with pipes
about 184
category theory 186
exceptions, handling 187
for-loops 186
pipes, composing 185
pipes, executing 185

stream monad 56
StrictData 124
strictness

annotating 23
strings

text library, using 33
subtle evaluation

with pseq 131

sum-type encoding 349
supplementary HTTP libraries

json-rpc 354
REST 354
wai-websockets 354
websockets 354

switching 327-329
synchronous errors

handling 102, 103
szipWith 152

T
tabular data, handling

about 42
vector package, using 43-46

Tagsoup 359
Tasty

about 109
reference 109

TCP/IP client
acting as 169

TCP server
acting as 170, 171

Template Haskell
about 247
used, for deriving setters 265-267

test frameworks
about 109, 110
Hspec 109
RSpec 109

tests
writing, for Haskell 107

test suites 98
text-format library 359
text formatting 360
text library 344
textual I/O 168
threads

about 200
and mutable references 200
atomic operations, performing with

IORefs 202
thunk accumulation, avoiding 202

ThreadScope 231, 241
Thread State Objects (TSOs) 235

[385]

time
profiling 63
working with 326

timed log messages 193-195
tools, for research and sketching

HaTeX 369
H (HaskellR) 369
ihaskell 369

tracing
eventlog, using 241

transformers
working with 365

Trivia, at term-level
about 110-112
coding, in GHC PrimOps 112-114
control inlining 114, 115

Trivia, at type-level
about 117
associated types 120, 121
functional dependencies 118, 119
phantom types 118
type families 120, 121

turtle library 371
type families 121
types

converting between 363

U
UnboxedTuples extension 112
unboxing

about 23
anonymous tuples, using 25

unexpected crashes
debugging, with profiler 70, 71

Unicode-correct 33
unit testing

with HUnit 108
unordered-containers library 344
UNPACK

used, for unboxing 23-25

V
vector library 343
ViewPatterns 123

W
wai library 354
wai-websockets library 354
warp HTTP server 355
warp library 354
Weak Head Normal Form 87
weak references 236
Weak ThreadId 237
Web Application Interface 354
WebSocket applications 355
WebSockets

using 355
web technologies 356
web technologies, libraries

amazonka/ AWS 357
blaze-html 356
Snap / Happstack 356
Yesod framework 356

windowing function 44
wl-pprint package 359
worker/wrapper transformation 9
wrappers 278
wreq library 353
Writer 55

X
XML

parsing 359
xml library 348

Y
yaml library 348
Yampa

about 324, 368
events 325
integrating, to real world 330, 331
signal functions 324

Yesod framework 356
Yesod web framework 350

Z
zippers

both ends, accessing with Seq 40-42
using 39

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Identifying Bottlenecks
	Meeting lazy evaluation
	Writing sum correctly
	Weak head normal form
	Folding correctly

	Memoization and CAFs
	Constant applicative form

	Recursion and accumulators
	The worker/wrapper idiom
	Guarded recursion
	Accumulator parameters

	Inspecting time and space usage
	Increasing sharing and minimizing allocation

	Compiler code optimizations
	Inlining and stream fusion
	Polymorphism performance
	Partial functions

	Summary

	Chapter 2: Choosing the Correct Data Structures
	Annotating strictness and unpacking datatype fields
	Unbox with UNPACK
	Using anonymous tuples

	Performance of GADTs and branching

	Handling numerical data
	Handling binary and textual data
	Representing bit arrays
	Handling bytes and blobs of bytes
	Working with characters and strings
	Using the text library

	Builders for iterative construction
	Builders for strings

	Handling sequential data
	Using difference lists
	Difference list performance
	Difference list with the writer monad

	Using zippers
	Accessing both ends fast with Seq

	Handling tabular data
	Using the vector package

	Handling sparse data
	Using the containers package
	Using the unordered-containers package

	Ephemeral data structures
	Mutable references are slow
	Using mutable arrays
	Using mutable vectors
	Bubble sort with vectors

	Working with monads and monad stacks
	The list monad and its transformer
	Free monads
	Working with monad transformers
	Speedup via continuation-passing style

	Summary

	Chapter 3: Profile and Benchmark to Your Heart's Content
	Profiling time and allocations
	Setting cost centres manually
	Setting cost centres automatically
	Installing libraries with profiling
	Debugging unexpected crashes with profiler

	Heap profiling
	Cost centre-based heap profiling
	Objects outside the heap
	Retainer profiling
	Biographical profiling

	Benchmarking using the criterion library
	Profile and monitor in real time
	Monitoring over HTTP with ekg

	Summary

	Chapter 4: The Devil's in the Detail
	The anatomy of a Haskell project
	Useful fields and flags in cabal files
	Test suites and benchmarks
	Using the stack tool
	Multi-package projects

	Erroring and handling exceptions
	Handling synchronous errors
	The exception hierarchy
	Handling asynchronous errors
	Throw and catch in other monads besides IO

	Writing tests for Haskell
	Property checks
	Unit testing with HUnit
	Test frameworks

	Trivia at term-level
	Coding in GHC PrimOps
	Control inlining
	Using rewrite rules
	Specializing definitions
	Phase control

	Trivia at type-level
	Phantom types
	Functional dependencies
	Type families and associated types

	Useful GHC extensions
	Monomorphism Restriction
	Extensions for patterns and guards
	Strict-by-default Haskell

	Summary

	Chapter 5: Parallelize for Performance
	Primitive parallelism and the runtime system
	Spark away
	Subtle evaluation – pseq
	When in doubt, use the force

	The Eval monad and strategies
	Composing strategies
	Fine-tune granularity with chunking and buffering

	The Par monad and schedules
	spawn for futures and promises
	Non-deterministic parallelism with ParIO

	Diagnosing parallelism – ThreadScope
	Data parallel programming – Repa
	Playing with Repa in GHCi
	Mapping and delayed arrays
	Reduction via folding

	Manifest representations
	Delayed representation and fusion
	Indices, slicing, and extending arrays
	Convolution with stencils
	Cursored and partitioned arrays
	Writing fast Repa code
	Additional libraries
	Example from image processing
	Loading the image from file
	Identifying letters with convolution
	Extracting strings from an image
	Testing and evaluating performance

	Summary

	Chapter 6: I/O and Streaming
	Reading, writing, and handling resources
	Traps of lazy I/O
	File handles, buffering, and encoding
	Binary I/O
	Textual I/O
	I/O performance with filesystem objects
	Sockets and networking
	Acting as a TCP/IP client
	Acting as a TCP server (Unix domain sockets)
	Raw UDP traffic
	Networking above the transport layer

	Managing resources with ResourceT

	Streaming with side-effects
	Choosing a streaming library
	Simple streaming using io-streams
	Creating input streams
	Using combinators and output streams
	Handling exceptions and resources in streams
	An example of parsing using io-streams and attoparsec

	Streaming using pipes
	Composing and executing pipes
	For-loops and category theory in pipes
	Handling exceptions in pipes
	Strengths and weaknesses of pipes

	Streaming using conduits
	Handling resources and exceptions in conduits
	Resuming conduits

	Logging in Haskell
	Logging with FastLogger
	More abstract loggers

	Timed log messages
	Monadic logging
	Customizing monadic loggers

	Summary

	Chapter 7: Concurrency and Performance
	Threads and concurrency primitives
	Threads and mutable references
	Avoid accumulating thunks
	Atomic operations with IORefs

	MVar
	MVars are fair
	MVar as a building block

	Broadcasting with Chan

	Software Transactional Memory
	STM example- bank accounts
	Alternative transactions
	Exceptions in STM

	Runtime System and threads
	Masking asynchronous exceptions

	Asynchronous processing
	Using the Async API
	Async example- timeouts

	Composing with Concurrently

	Lifting up from I/O
	Top-level mutable references
	Lifting from a base monad
	Lifting base with exception handling

	Summary

	Chapter 8: Tweaking the Compiler and Runtime System (GHC)
	Using GHC like a pro
	Operating GHC
	Circular dependencies

	Adjusting optimizations and transformations
	The state hack
	Floating lets in and out
	Eliminating common subexpressions
	Liberate-case duplicates code

	Compiling via the LLVM route
	Linking and building shared libraries
	Preprocessing Haskell source code
	Enforcing type-safety using Safe Haskell

	Tuning GHC's Runtime System
	Scheduler and green threads
	Sparks and spark pool
	Bounded threads and affinity
	Indefinite blocking and weak references

	Heap, stack, and memory management
	Evaluation stack in Haskell

	Tuning the garbage collector
	Parallel GC

	Profiling and tracing options
	Tracing using eventlog
	Options for profiling and debugging

	Summary of useful GHC options
	Basic usage
	The LLVM backend
	Turn optimizations on and off
	Configuring the Runtime System
(compile-time)
	Safe Haskell

	Summary of useful RTS options
	Scheduler flags
	Memory management
	Garbage collection
	Runtime System statistics
	Profiling and debugging

	Summary

	Chapter 9: GHC Internals and Code Generation
	Interpreting GHC's internal representations
	Reading GHC Core
	Spineless tagless G-machine

	Primitive GHC-specific features
	Kinds encode type representation

	Datatype generic programming
	Working example – a generic sum

	Generating Haskell with Haskell
	Splicing with $(…)
	Names in templates
	Smart template constructors
	The constN function
	Lifting Haskell code to Q with quotation brackets
	Launching missiles during compilation
	Reifying Haskell data into template objects
	Deriving setters with Template Haskell
	Quasi-quoting for DSLs

	Summary

	Chapter 10: Foreign Function Interface
	From Haskell to C and C to Haskell
	Common types in Haskell and C
	Importing static functions and addresses
	Exporting Haskell functions
	Compiling a shared library
	Function pointers and wrappers
	Haskell callbacks from C

	Data marshal and stable pointers
	Allocating memory outside the heap
	Pointing to objects in the heap
	Marshalling abstract data-types
	Marshalling in standard libraries

	Summary

	Chapter 11: Programming for the GPU with Accelerate
	Writing Accelerate programs
	Kernels – the motivation behind explicit use and run
	Working with elements and scalars
	Rudimentary array computations
	Example – matrix multiplication
	Flow control and conditional execution
	Inspecting generated code

	Running with the CUDA backend
	Debugging CUDA programs

	More Accelerate concepts
	Working with tuples
	Folding, reducing, and segmenting
	Accelerated stencils
	Permutations in Accelerate
	Using the backend foreign function interface

	Summary

	Chapter 12: Scaling to the Cloud with Cloud Haskell
	Processes and message-passing
	Creating a message type
	Creating a Process
	Spawning and closures
	Running with the SimpleLocalNet backend
	Using channels
	Establishing bidirectional channels
	Calling a remote process

	Handling failure
	Firing up monitors
	Matching on the message queue
	Linking processes together
	Message-passing performance

	Nodes and networking
	Summary

	Chapter 13: Functional Reactive Programming
	The tiny discrete-time Elerea
	Mutually recursive signals
	Signalling side effects
	Dynamically changing signal networks
	Performance and limitations in Elerea

	Events and signal functions with Yampa
	Adding state to signal functions
	Working with time
	Switching and discrete-time events
	Integrating to the real world

	Reactive-banana – Safe and simple semantics
	Example – First GUI application
	Graphical display with wxWidgets

	Combining events and behaviors
	Switching events and behaviors
	Observing moments on demand
	Recursion and semantics
	Adding input and output
	Input via polling or handlers
	Reactimate output
	Input and output dynamically

	Summary

	Chapter 14: Library Recommendations
	Representing data
	Functional graphs
	Numeric data for special use
	Encoding and serialization
	Binary serialization of Haskell values
	Encoding to and from other formats
	CSV input and output

	Persistent storage, SQL, and NoSQL
	acid-state and safecopy
	persistent and esqueleto
	HDBC and add-ons

	Networking and HTTP
	HTTP clients and servers
	Supplementary HTTP libraries
	JSON remote procedure calls
	Using WebSockets
	Programming a REST API

	Cryptography
	Web technologies
	Parsing and pretty-printing
	Regular expressions in Haskell
	Parsing XML

	Pretty-printing and text formatting
	Control and utility libraries
	Using lenses
	Easily converting between types (convertible)
	Using a custom Prelude

	Working with monads and transformers
	Monad morphisms – monad-unlift

	Handling exceptions
	Random number generators
	Parallel and concurrent programming
	Functional Reactive Programming
	Mathematics, statistics, science
	Tools for research and sketching
	The HaskellR project
	Creating charts and diagrams
	Scripting and CLI applications
	Testing and benchmarking
	Summary

	Index

