
Elisabeth Robson & Eric Freeman

Learn how Scrum 
helped Amy keep her 

users thrilled 

A Learner’s Companion to 
Understanding Agile and 

Passing the PMI-ACP® Exam

Boss your code 
around with XP

Explore how task 
boards keep everybody 

on track

Load agile concepts 
right into your brain

Head First

Unravel the mysteries 
of Lean and Kanban

Agile

Andrew Stellman & Jennifer Greene

A Brain-Friendly Guide

FREE
 

Full-Length Practice  

PMI-ACP Exam Inside

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Praise for Head First Agile

“Working on a great agile team can feel magical. Problems, personality conflicts, and project politics 
fall away through the emphasis and focus on delivering something, learning, and delivering again. 
But creating such magical teams is hard. It just got easier. Head First Agile is the book many of  us have 
been waiting for. A perfect blend of  practical advice, supported by the principles of  Scrum, Extreme 
Programming, and Kanban, Head First Agile can help anyone create a great, magical, agile team.”

— Mike Cohn, Author of  Succeeding with Agile, Agile Estimating and Planning, 
and User Stories Applied

“If  you’ve ever worked in a software team, you will immediately relate to the accurate and insightful case 
studies in Head First Agile. There’s plenty of  great advice here that I wish someone had told me earlier in 
my career. But regardless of  how long you’ve been in the software field, you’re guaranteed to find things 
to learn and new ways of  looking at old problems. It was a surprise to me to learn how much more 
there is to XP than just Pair Programming—and I’m definitely going to be looking at how my team can 
benefit from these practices and ideas.”

— Adam Reeve, Principal Architect at RedOwl Analytics 

“Head First Agile is written in such an easy to digest manner that I found it difficult to put down. Since 
the book is written as an interaction between people, instead of  just providing facts, I feel I have a much 
better understanding of  both the principles and practices of  Agile.”

— Patrick Cannon, Senior Program Manager, Dell

“Head First Agile thoroughly explains some very challenging Agile concepts to successfully pass the PMI-
ACP exam and re-enforces these concepts with meaningful exercises, real-life stories, and brain-teasing 
visuals for greater learning retention.  The unique format of  this book caters to all learning styles and 
anyone from beginner to expert will benefit from studying this book.  Thank you, Andrew and Jennifer, 
for writing another outstanding Head First book!”

— John Steenis, PMP, CSM, CSPO

“Head First Agile is great! I love how the authors are able to explain the subject matter in a fun, easy to 
read and understand format. Kudos to Andrew and Jennifer for a job well done!”

— Mark Andrew Bond, Network Operations Project Manager at a higher 
education institution

“Members of  any software development team, in any capacity, Agile based or not, should read this Head 
First Agile. Teams that have adopted Agile in “whole” or part will better understand how to improve their 
processes. Teams that are not using Agile can really learn what it takes to start the journey to Agile.  For me, 
this book was a good reflection on projects that succeeded and failed over the last 20 years of  my career.”

— Dan Faltyn, Chief  Security Officer, BlueMatrix

“Agile has been a buzz word in the industry, which many people talk about and use but without fully 
understanding the underlying principles and values behind the practices. Head First Agile helps demystify 
the topic and provides a superb guide into the Agile journey and mindset.”

— Philip Cheung, Software Developer

www.allitebooks.com

http://www.allitebooks.org


Praise for Head First Agile

“I am a Project Manager who used Head First PMP to obtain my PMP last year. Head First Agile follows the same 
concept as Head First PMP... visual thinking and learning to understand, comprehend, and retain the concepts. 
In a market where quality books for preparation are limited, this was a great resource to have and use for PMI-
ACP exam prep. The practice exam questions and Chapter 7 (including Domain Reviews) were really good 
preparation. The whole thing went great, and I passed on my first try!”

— Kelly D. Marce, Project Manager at a financial services firm

“Head First Agile shows you that Agile is not a single methodology, but a range of  approaches and ways of  thinking 
about the development lifecycle. This book will guide you to find the method that best fits the needs of  your team, 
and to understand how to continually improve over time. Approaches like Kanban, where you establish a pull 
system by visualizing the workflow and limiting work in progress, can be particularly empowering for teams.”

— Nick Lai, Senior Engineering Manager at Uber Technologies

“What better way to learn about an innovative way to approach work, Agile, than through this ingenious, creative, 
and ground-breaking approach to learning that engages the whole mind, emotions, and different learning styles. 
Chuck the boring text books of  the past and pick up Head First Agile for a contemporary and intriguing learning 
experience.”

— Tess Thompson, MS, PMP, PMI-ACP, CSP Agile Transformation Coach and Professor 
at Saint Mary’s University

“Agile can be a very challenging topic for any PM who is schooled in traditional ways of  working. The authors 
of  this book have taken great care to make the topics accessible and they’ve presented the information in a 
straightforward, concise way that offers not just valuable information you need to be successful at the PMI-ACP 
exam, but more importantly information you need to be successful in applying Agile in a practical setting.”

— Dave Prior, Certified Scrum Trainer, PMP, PMI-ACP at LeadingAgile

“Head First Agile thoroughly explores practical problems and solutions using a wide array of  techniques from the 
Agile playbook. The authors adeptly explain different types of  Agile approaches, providing a great repository of  
Agile resources to the reader.”

— Keith Conant, Senior Software Engineer at a payments company

“Head First Agile is a great resource because it teaches people not only the practices and methods of  Agile, but 
more importantly the mindset change. This book is based upon the values and principles outlined in the Agile 
Manifesto. I highly recommend this book for anyone who wants to learn about Agile delivery.”

— Mike MacIsaac, Scrum Master, MBA, PMP, CSM

“I am a certified Agile coach at IBM, where I teach and coach people from my organization helping them become 
Agile. I found Head First Agile to be a great addition to the Agile bookshelves, as well as a wonderful resource to 
complement the studies of  those professionals preparing for the PMI-ACP exam”

— Renato Barbieri, PMP, PMI-ACP, Manager, Agile coach, Kepner-Tregoe Program 
Leader at IBM

www.allitebooks.com

http://www.allitebooks.org


Praise for other Head First books

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very 
approachable while covering a great amount of  detail in a unique style. If  you’ve been turned off  by 
more conventional books on C#, you’ll love this one.”

— Jay Hilyard, software developer, coauthor of  C# 3.0 Cookbook

“Going through this Head First C# book was a great experience. I have not come across a book series 
which actually teaches you so well…This is a book I would definitely recommend to people wanting to 
learn C#”

— Krishna Pala, MCP

“Head First Web Design really demystifies the web design process and makes it possible for any web 
programmer to give it a try. For a web developer who has not taken web design classes, Head First Web 
Design confirmed and clarified a lot of  theory and best practices that seem to be just assumed in this 
industry.”

— Ashley Doughty, senior web developer

“Building websites has definitely become more than just writing code. Head First Web Design shows you 
what you need to know to give your users an appealing and satisfying experience. Another great Head 
First book!”

— Sarah Collings, user experience software engineer

“Head First Networking takes network concepts that are sometimes too esoteric and abstract even for highly 
technical people to understand without difficulty and makes them very concrete and approachable. Well 
done.”

—  Jonathan Moore, owner, Forerunner Design

“The big picture is what is often lost in information technology how-to books. Head First Networking keeps 
the focus on the real world, distilling knowledge from experience and presenting it in byte-size packets 
for the IT novitiate. The combination of  explanations with real-world problems to solve makes this an 
excellent learning tool.”

—  Rohn Wood, senior research systems analyst, University of  Montana

www.allitebooks.com

http://www.allitebooks.org


Other related books from O’Reilly

Learning Agile

Beautiful Teams

Head First PMP®

Applied Software Project Management

Making Things Happen

Practical Development Environments

Process Improvement Essentials

Other books in O’Reilly’s Head First series

Head First PMP

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First SQL

Head First Software Development

Head First JavaScript

Head First Physics

Head First Statistics

Head First Ajax

Head First Rails

Head First Algebra

Head First PHP & MySQL

Head First Web Design

Head First Networking

www.allitebooks.com

http://www.allitebooks.org


Andrew Stellman
Jennifer Greene

Head First Agile

Wouldn’t it be 
dreamy if there were 

a book to help me learn 
about agile that was 

more fun than going 
to the dentist? It’s 
probably nothing but a 

fantasy…

Boston

www.allitebooks.com

http://www.allitebooks.org


Head First Agile
by Andrew Stellman and Jennifer Greene

Copyright © 2017 Andrew Stellman and Jennifer Greene. All rights reserved.

Printed in the United States of  America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are 
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional 
sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:  Kathy Sierra, Bert Bates

Editor:   Nan Barber

Design Editor:  Louise Barr

Cover Designers:  Karen Montgomery, Louise Barr

Production Editors:  Melanie Yarbrough

Indexer:   Lucie Haskins

Proofreader:   Jasmine Kwityn

In Our Hearts Forever: Quentin the whippet and Tequila the pomeranian

Printing History:
September 2017: First Edition.

The O’Reilly logo is a registered trademark of  O’Reilly Media, Inc. The Head First series designations, 
Head First Agile, and related trade dress are trademarks of  O’Reilly Media, Inc.

PMI-ACP, PMP, and PMBOK are registered marks of  Project Management Institute, Inc.

Many of  the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of  a trademark 
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of  this book, the publisher and the authors assume no 
responsibility for errors or omissions, or for damages resulting from the use of  the information contained herein.

ISBN: 978-1-449-31433-0 
[M]           

www.allitebooks.com

http://www.allitebooks.org


For Nisha and Lisa

www.allitebooks.com

http://www.allitebooks.org


viii

the authors

Jenny

Andrew

Thanks for buying 
our book! We really love 

writing about this stuff, and 
we hope you get a kick out of 

reading it…

…because we know 
you’re going to do 
great work with 

agile!

Photo by Nisha Sondhe

Jennifer Greene is an enterprise 
agile transformation leader, an agile coach, 
development manager, project manager, speaker, 
and authority on software engineering practices 
and principles. She’s been building software 
for over 20 years in many different domains, 
including media, finance, and IT consulting. She’s 
led large-scale agile adoption efforts supporting 
development teams around the world and helped 
individual team members get the most out of  
agile practices. She looks forward to continuing to 
work with talented teams solving interesting and 
difficult problems.

Andrew Stellman is a developer, architect, 
speaker, trainer, agile coach, project manager, 
and expert in building better software. Andrew 
is an author and international speaker, with 
top-selling books in software development and 
project management, and world-recognized 
expert in transforming and improving 
software organizations, teams, and code. He 
has architected and built large-scale software 
systems, managed large international software 
teams, and consulted for companies, schools, and 
corporations, including Microsoft, the National 
Bureau of  Economic Research, Bank of  America, 
Notre Dame, and MIT.  Andrew’s had the 
privilege of  working with some pretty amazing 
programmers during that time, and likes to think 
that he’s learned a few things from them.

Jenny and Andrew have been building software and writing about software engineering together since they 

first met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly 

in 2005. They published their first book in the Head First series, Head First PMP, and their second 

one, Head First C#, both in 2007. Both books have gone on to third and, soon, fourth editions. Their 

fourth book, Beautiful Teams, was released in 2009, followed by their fifth, Learning Agile, in 2014.

They founded Stellman & Greene Consulting in 2003—their first project as a consulting company was 

a really fascinating software project for scientists studying herbicide exposure in Vietnam veterans. 
And when they’re not building software or writing books, they do a lot of speaking at conferences and 

meetings of software engineers, architects, and project managers.

Check out their website, Building Better Software, at http://www.stellman-greene.com.

www.allitebooks.com

http://www.allitebooks.org


ix

table of contents

Table of Contents (Summary)
 Intro      xix

1 What is agile? Principles and practices   1

2 Agile values and principles: Mindset meets method  23

3 Managing projects with Scrum: The rules of  Scrum  71

4 Agile planning and estimation: Generally accepted Scrum practices 117

5 XP (Extreme Programming): Embracing change  177

6 Lean/Kanban: Eliminating waste and managing flow  245

7 Preparing for the PMI-ACP® exam: Check your knowledge 307

8 Professional responsibility: Making good choices  377

9 Practice makes perfect: Practice PMI-ACP exam  391

Table of Contents (the real thing)

Your brain on agile.   Here you are trying to learn something, while here 

your brain is doing you a favor by making sure the learning doesn’t stick.  Your 

brain’s thinking, “Better leave room for more important things, like which wild 

animals to avoid and whether naked snowboarding is a bad idea.” So how do you 

trick your brain into thinking that your life depends on knowing enough to really 

“get” agile—and maybe even get through the PMI-ACP certification exam? 

Intro

Who is this book for?     xx

We know what you’re thinking    xxi

Metacognition: thinking about thinking    xxiii

Here’s what YOU can do to bend your brain into submission xxii

Read me       xxvi

The technical review team     xxvii

Acknowledgments      xxviii



x

table of contents

Principles and practices1 It’s an exciting time to be agile!  For the first time, our industry 

has found a real, sustainable way to solve problems that generations of 

software development teams have been struggling with. Agile teams use 

simple, straightforward practices that have been proven to work on real-life 

projects. But wait a minute... if agile is so great, why isn’t everyone doing it? It 

turns out that in the real world, a practice that works really well for one team 

causes serious problems for another team, and the difference is the team 

mindset. So get ready to change the way you think about your projects!

What is agile?

The new features sound great...    2

...but things don’t always go as expected    3

Agile to the rescue!      4

Kate tries to hold a daily standup    5

Different team members have different attitudes   6

A better mindset makes the practice work better   8

So what is agile, anyway?     10

Scrum is the most common approach to agile   12

The PMI-ACP certification can help you be more agile  18

BRAIN
TRAINING

In a daily standup meeting, everyone on the 
team stands for the duration of the meeting. 
That keeps it short, sweet, and to the point.

But is this guy really paying 
attention to what his teammates 
are saying?



xi

table of contents

Mindset meets method
There’s no “perfect” recipe for building great software.  
Some teams have had a lot of success and seen big improvements after adopting agile 

practices, methods, and methodologies, while others have struggled. We’ve learned that the 

difference is the mindset that the people on the team have. So what do you do if you want 

to get those great agile results for your own team? How do you make sure your team has 

the right mindset? That’s where the Agile Manifesto comes in. When you and your team 

get your head around its values and principles, you start to think differently about the agile 

practices and how they work, and they start to become a lot more effective.

Agile values and principles

Something big happened in Snowbird     24

The Agile Manifesto      25

Adding practices in the real world can be a challenge   26

Individuals and interactions over processes and tools   27

Working software over comprehensive documentation   28

Customer collaboration over contract negotiation    31

Responding to change over following a plan    32

Question Clinic: The “which-is-BEST” question    36

They think they’ve got a hit...      38

...but it’s a flop!       39

The principles behind the Agile Manifesto    40

The agile principles help you deliver your product    42

The agile principles help your team communicate and work together  52

The new product is a hit!      56

Exam Questions       58

2

individuals

collaboration
working software

strict control
self organization

embrace change

simplicity



xii

table of contents

3 The rules of Scrum
The rules of Scrum are simple. Using it effectively is not so simple.  
Scrum is the most common agile methodology, and for good reason: the rules of Scrum are 

straightforward and easy to learn. Most teams don’t need a lot of time to pick up the events, roles, 

and artifacts that make up the rules of Scrum. But for Scrum to be most effective, they need to 

really understand the values of Scrum and the Agile Manifesto principles, which help them get 

into an effective mindset. Because while Scrum seems simple, the way a Scrum team constantly 

inspects and adapts is a whole new way of thinking about projects.

Managing projects with Scrum

Meet the Ranch Hand Games team    73

The Scrum events help you get your projects done  74

The Scrum roles help you understand who does what  75

The Scrum artifacts keep the team informed   76

The Scrum values make the team more effective   82

Question Clinic: The “which-comes-next” question  90

A task isn’t done until it’s “Done” done    92

Scrum teams adapt to changes throughout the Sprint  93

The Agile Manifesto helps you really “get” Scrum  96

Things are looking good for the team    102

Exam Questions      104

BLACK AND 
WHITE OPS

CGW V
HayStation Hs

RHG

COWS 
GONE 
WILD 

5

GAMESRANCH HAND
PrODuCTION

A

Sprint 5 product backlog

strategic silo assault

CAN’T DO THAT,
GAMERS HATED IT!

With a new Product Owner, the 
team should be able to figure 
out the most valuable features 
to include in the next sprint.

so what do we do instead?



xiii

table of contents

4
Meanwhile, back at the ranch...     118

So... what’s next?       121

Introducing GASPs!      122

No more 300-page specs... please?     124

User stories help teams understand what users need   125

Story points let the team focus on the relative size of  each story  126

The whole team estimates together     132

No more detailed project plans     134

Taskboards keep the team informed     136

Question Clinic: The red herring     140

Burndown charts help the team see how much work is left   143

Velocity tells you how much your team can do in a sprint   144

Burn-ups keep your progress and your scope separate from each other 147

How do we know what to build?     148

Story maps help you prioritize your backlog    149

Personas help you get to know your users    150

The news could be better...      152

Retrospectives help your team improve the way they work   154

Some tools to help you get more out of  your retrospectives   156

Exam Questions       164

Generally Accepted Scrum Practices
Agile teams use straightforward planning tools to get a handle 
on their projects.  Scrum teams plan their projects together so that everybody on the 

team commits to each sprint’s goal. To maintain the team’s collective commitment, planning, 

estimating and tracking need to be simple and easy for the whole team to do as a group. From 

user stories and planning poker to velocity and burndown charts, Scrum teams always 

know what they’ve done and what’s left to do. Get ready to learn the tools that keep Scrum 

teams informed and in control of what they build!

Agile planning and estimation

AS A PlAyer,
I WANT TO SWITch beTWeeN my equIPPed 
WeAPONS WhIle SPrINTINg

SO ThAT I dON’T hAve TO STOP TO See my 
INveNTOry

2 POINTSSWITch WeAPONS WhIle 
SPrINTINg



xiv

table of contents

5 Embracing change

Software teams are successful when they build great code.  
Even really good software teams with very talented developers run into problems 

with their code. When small code changes “bloom” into a series of cascading hacks, 

or everyday code commits lead to hours of fixing merge conflicts, work that used to 

be satisfying becomes annoying, tedious, and frustrating. And that’s where XP 

comes in. XP is an agile methodology that’s focused on building cohesive teams that 

communicate well, and creating a relaxed, energized environment. When teams 

build code that’s simple, not complex, they can embrace change rather than fear it.

XP (extreme programming)

Meet the team behind CircuitTrak    178

Late nights and weekends lead to code problems  180

XP brings a mindset that helps the team and the code  181

Iterative development helps teams stay on top of  changes 182

Courage and respect keep fear out of  the project  184

Teams build better code when they work together  190

Teams work best when they sit together   192

XP teams value communication    194

Teams work best with relaxed, rested minds   196

Question Clinic: The “which-is-NOT” question  200

XP teams embrace change    204

Frequent feedback keeps changes small   205

Bad experiences cause a rational fear of  change  206

XP practices give you feedback about the code   208

XP teams use automated builds that run quickly  210

Continuous integration prevents nasty surprises  211

The weekly cycle starts with writing tests   212

Agile teams get feedback from design and testing  214

Pair programming     216

Complex code is really hard to maintain   223

When teams value simplicity, they build better code  224

Simplicity is a fundamental agile principle   225

Every team accumulates technical debt   226

XP teams “pay down” technical debt in each weekly cycle 227

Incremental design starts (and ends) with simple code  228

Exam Questions      234

Schedules
Trainers
Attendance
My Account

Schedules
Trainers
Attendance
My Account

edules    Trainers    Attendanc 

My Account

Source 
code 
files

Packaged 
binary



xv

table of contents

6 Eliminating waste and managing flow
Agile teams know that they can always improve they way they 
work.  They use the Lean mindset to find out where they are spending time on things 

that aren’t helping them deliver value. Then they get rid of the waste that’s slowing them 

down.  Many teams with a lean mindset use Kanban to set work in progress limits and 

create pull systems to make sure that people are not getting sidetracked by work that 

doesn’t amount to much. Get ready to learn how to seeing your software development 

process as a whole system can help you build better software!

Lean / Kanban

File form
at 

changes

Modify the 
Audience profiler

Update the analytics 
algorithm

Database code 
changes

UI updates

Improvements to 
the stats service

Stat mapper 
report changes

Fix concurrency 
bugs

Improved stat 
mapper UI

Mike feels a 
crushing weight 
from all the 
work the team 
still has to do.

Trouble with Audience Analyzer 2.5    246

Lean is a mindset (not a methodology)   248

Lean principles help you see things differently   249

More Lean principles     250

Some thinking tools you haven’t seen before   254

More Lean thinking tools     256

Categorizing waste can help you see it better   260

Value stream maps help you see waste   264

Trying to do too many things at once   267

Anatomy of  an Option     270

Systems thinking helps Lean teams see the whole  272

Some “improvements” didn’t work out   273

Lean teams use pull systems to make sure they’re always working  
on the most valuable tasks     274

Question Clinic: Least worst option    278

Kanban uses a pull system to make your process better  280

Use Kanban boards to visualize the workflow   281

How to use Kanban to improve your process   282

The team creates a workflow    284

The team is delivering faster    291

Cumulative flow diagrams help you manage flow  292

Kanban teams talk about their policies   293

Feedback loops show you how it’s working   294

Now the whole team is collaborating on finding better ways  
to work!      295

Exam Questions      300



xvi

table of contents

Basic needs

Delighters
Not Implemented

Fully Implemented

Dis
sat

isf
ied

Sat
isf

ied

PMI-ACP® 
Examination 

Content Outline

Revised December 
2014

7 Check your knowledge

Wow, you sure covered a lot of ground in the last six chapters!   
You’ve delved into the values and principles of the agile manifesto and how they drive an agile 

mindset, explored how teams use Scrum to manage projects, discovered a higher level of 

engineering with XP, and seen how teams improve themselves using Lean/Kanban. Now it’s 

time to take a look back and drill in some of the most important concepts that you learned. 

But there’s more to the PMI-ACP® exam than just understanding agile tools, techniques, 

and concepts. To really ace the test, you’ll need to explore how teams use them in real-

world situations. So let’s give your brain a fresh look at agile concepts with a complete set 

of exercises, puzzles, and practice questions (along with some new material) specficially 

constructed to help prepare you for the PMI-ACP® exam.

Preparing for the pmi-acp® exam

The PMI-ACP® certification is valuable...   308

The PMI-ACP® exam is based on the content outline  309

“You are an agile practitioner...”    310

A long-term relationship for your brain   313

Domain 1: Agile Principles and Mindset   314

Domain 1: Exam Questions    316

Domain 2: Value-Driven Delivery    322

Agile teams use customer value to prioritize requirements 325

Value calculations help you figure out which projects to do 326

Domain 2: Exam Questions    330

Domain 3: Stakeholder Engagement   336

Domain 4: Team Performance    337

Domain 3: Exam Questions    338

Domain 4: Exam Questions    339

Domain 5: Adaptive Planning    348

Adapt your leadership style as the team evolves  349

A few last tools and techniques    351

Domain 6: Problem Detection and Resolution   360

Domain 7: Continuous Improvement   361

Domain 5: Exam Questions    372

Domain 6: Exam Questions    373

Domain 7: Exam Questions    374

Are you ready for the final exam?    376



xvii

table of contents

8 Making good choices
Professional responsibility

It’s not enough to just know your stuff. You need to 
make good choices to be good at your job.  Everyone 

who has the PMI-ACP credential agrees to follow the Project Management 

Institute Code of Ethics and Professional Conduct, too, because the 

Code helps you with ethical decisions. There may be a few questions 

based on this material scattered through the PMI-ACP® exam. Luckily, most 

of what you need to know is really straightforward, and with a little review, 

you’ll do great with this material.

Doing the right thing    378

Keep the cash?     380

Fly business class?    381

New software     382

Shortcuts     383

A good price or a clean river?   384

We’re not all angels    385

Exam Questions     386

I’m sorry, I 
can’t accept the 

gift. I really 
appreciate the 
gesture, though. 

Awesome. I’ve 
been wanting to go 
shopping for a while. 
And what about that 

vacation? Acapulco, here 
we come!

i would never accept 
a gift like that. Doing 

a good job is its own 
reward!

The PMI-ACP® certification is valuable...   308

The PMI-ACP® exam is based on the content outline  309

“You are an agile practitioner...”    310

A long-term relationship for your brain   313

Domain 1: Agile Principles and Mindset   314

Domain 1: Exam Questions    316

Domain 2: Value-Driven Delivery    322

Agile teams use customer value to prioritize requirements 325

Value calculations help you figure out which projects to do 326

Domain 2: Exam Questions    330

Domain 3: Stakeholder Engagement   336

Domain 4: Team Performance    337

Domain 3: Exam Questions    338

Domain 4: Exam Questions    339

Domain 5: Adaptive Planning    348

Adapt your leadership style as the team evolves  349

A few last tools and techniques    351

Domain 6: Problem Detection and Resolution   360

Domain 7: Continuous Improvement   361

Domain 5: Exam Questions    372

Domain 6: Exam Questions    373

Domain 7: Exam Questions    374

Are you ready for the final exam?    376



xviii

table of contents

9 Practice PMI-ACP® Exam
Bet you never thought you’d make it this far!  It’s been a long journey, 

but here you are, ready to review your knowledge and get ready for exam day. You’ve put a 

lot of new information about agile into your brain, and now it’s time to see just how much of 

it stuck. That’s why we put together this full-length, 120-question PMI-ACP® practice exam 

for you. We followed the exact same PMI-ACP® Examination Content Outline that the 

experts at PMI use, so it looks just like the one you’re going to see when you take the real 

thing. Now’s your time to flex your mental muscle. So take a deep breath, get ready, and 

let’s get started.

Practice makes perfect

Complete PMI-ACP® Practice Exam   391

Before you look at the answers...    423



xix

how to use this book

Intro
I can’t 

believe they 
put that in a 
book about 

agile!

In this section, we answer the burning question:  

“So why DID they put that in a book abou
t agile?”



xx  intro

how to use this book

1

2

4

Who is this book for?

Who should probably back away from this book?

If  you can answer “yes” to any of  these questions:

If  you can answer “yes” to any of  these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a pulse.]

Are you a developer, project manager, business 
analyst, designer, or other member of a team, and 
you’re looking to improve your projects?

Is your team going agile, but you’re not really sure 
what that means or how you fit in?

Do you prefer stimulating dinner-party conversation 
to dry, dull, academic lectures?

1

2

3

Are you completely new to working on any kind of team 
or working with other people to achieve something?

Are you a “go-it-alone” loner who feels that working with 
other people on a team is always a waste of time?

Are you afraid to try something different? Would 
you rather have a root canal than mix stripes with 
plaid? Do you believe that a technical book can’t 
be serious if agile concepts, tools, and ideas are 
anthropomorphized?

If you’ve never been on any kind of team before, then many of the ideas in agile will feel foreign. Just to be clear, we’re not necessarily talking about a software team—experience on any kind of team will be just fine!

3 Are you thinking about a job search, and want to understand 
why employers are asking for agile experience?

Are you preparing for 
the PMI-ACP® exam?
Then this book is definitely 
for you! We built this book to get 
the ideas, concepts, and practices 
of  agile into your brain—and 
we made sure to include 100% 
coverage of  every topic that 
appears on the exam. We included 
a lot of  exam preparation material, 
including a full-length simulated 
exam that’s as close to the 
real thing as you can get!

The PMI-ACP® (Agile Certified Practitioner) is 

one of the fastest-growing certifications in the 

world that employers are increasingly demanding.



you are here 4

the intro

Great. 
Only 458 

more 
dull, dry, 

boring 
pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious book on agile?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for 
something unusual. It was built that way, and it helps you stay alive. 

So what does your brain do with all the routine, ordinary, normal things 
you encounter? Everything it can to stop them from interfering with 
the brain’s real job—recording things that matter. It doesn’t bother 
saving the boring things; they never make it past the “this is obviously 
not important” filter.

How does your brain know what’s important? Suppose you’re out for 
a day hike and a tiger jumps in front of  you, what happens inside your 
head and body? 

Neurons fire. Emotions crank up. Chemicals surge. 

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone. 
You’re studying. Getting ready for an exam. Or trying to learn some 
tough technical topic your boss thinks will take a week, 10 days at the 
most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying 
to make sure that this obviously unimportant content doesn’t clutter 
up scarce resources. Resources that are better spent storing the really 
big things. Like tigers. Like the danger of  fire. Like how you should 
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you 
very much, but no matter how dull this book is, and how little I’m 
registering on the emotional Richter scale right now, I really do want 
you to keep this stuff  around.”

Your brain thinks THIS is important.

Your brain t
hinks 

THIS isn’t worth 
saving.



xxii  intro

how to use this book

So what does it take to learn something? First, you have to get it, then make sure 

you don’t forget it.  It’s not about pushing facts into your head. Based on the 

latest research in cognitive science, neurobiology, and educational psychology, 

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, 

and make learning much more effective (up to 89% improvement in 

recall and transfer studies). It also makes things more understandable.  

Put the words within or near the graphics they relate to, 

rather than on the bottom or on another page, and learners will be up 

to twice as likely to solve problems related to the content.

Use a conversational and 

personalized style. In recent studies, 

students performed up to 40% better on post-

learning tests if the content spoke directly to 

the reader, using a first-person, conversational 

style rather than taking a formal tone. Tell stories instead of lecturing. Use 

casual language. Don’t take yourself too seriously. Which would you pay more 

attention to: a stimulating dinner-party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively 

flex your neurons, nothing much happens in your head.  A reader has to be motivated, 

engaged, curious, and inspired to solve problems, draw conclusions, and generate 

new knowledge. And for that, you need challenges, exercises, and thought-provoking 

questions, and activities that involve both sides 

of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but 

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of 

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, 

technical topic doesn’t have to be boring. Your brain will learn much more quickly if 

it’s not.

Touch their emotions. We now know that your ability to remember something 

is largely dependent on its emotional content.  You remember what you care about.  

You remember when you feel something. No, we’re not talking heart-wrenching 

stories about a boy and his dog. We’re talking emotions like surprise, curiosity, fun, 

“what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn 

something everybody else thinks is hard, or realize you know something that “I’m 

more technical than thou” Bob from engineering doesn’t.

We think of a “Head First” reader as a learner.

I asked Amy a simple 
10-second question, 
and I’ve been stuck 

waiting for two 
hours for her to 
get back to me.

BLACK AND 
WHITE OPS

CGW V
HayStation Hs

RHG



you are here 4

the intro

If  you really want to learn, and you want to learn more quickly and more deeply, 
pay attention to how you pay attention. Think about how you think. Learn how you 
learn.

Most of  us did not take courses on metacognition or learning theory when we were 
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if  you’re holding this book, you really want to learn about 
project management. And you probably don’t want to spend a lot of  time. And since 
you need to use this on a real project (and especially if  you’re going to take an exam 
on it!) you need to remember what you read. And for that, you’ve got to understand it. 
To get the most from this book, or any book or learning experience, take 
responsibility for your brain. Your brain on this content. 

The trick is to get your brain to see the new material you’re learning 
as Really Important. Crucial to your well-being. As important as a 
tiger. Otherwise, you’re in for a constant battle, with your brain doing 
its best to keep the new content from sticking.

Metacognition: thinking about thinking I wonder 
how I can 
trick my 

brain into 
remembering 

this stuff...

So just how DO you get your brain to think that 
the material about agile is a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The 
slow way is about sheer repetition. You obviously know that you 
are able to learn and remember even the dullest of  topics if  you 
keep pounding the same thing into your brain. With enough repetition, your 
brain says, “This doesn’t feel important to him, but he keeps looking at the same thing over 
and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different 
types of  brain activity. The things on the previous page are a big part of  the solution, 
and they’re all things that have been proven to help your brain work in your favor. For 
example, studies show that putting words within the pictures they describe (as opposed to 
somewhere else in the page, like a caption or in the body text) causes your brain to try to 
makes sense of  how the words and picture relate, and this causes more neurons to fire. 
More neurons firing = more chances for your brain to get that this is something worth 
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they 
perceive that they’re in a conversation, since they’re expected to follow along and hold up 
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation” 
is between you and a book! On the other hand, if  the writing style is formal and dry, your 
brain perceives it the same way you experience being lectured to while sitting in a roomful 
of  passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.



xxiv  intro

how to use this book

Here’s what WE did:

BULLET POINTS

We used pictures, because your brain is tuned for visuals, not text. As far as your 
brain’s concerned, a picture really is worth a thousand words. And when text and 
pictures work together, we embedded the text in the pictures because your brain works 
more effectively when the text is within the thing the text refers to, as opposed to in a 
caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different 
media types, and multiple senses, to increase the chance that the content gets coded into 
more than one area of  your brain. 

We used concepts and pictures in unexpected ways because your brain is tuned for 
novelty, and we used pictures and ideas with at least some emotional content, because 
your brain is tuned to pay attention to the biochemistry of  emotions. That which 
causes you to feel something is more likely to be remembered, even if  that feeling is 
nothing more than a little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to 
pay more attention when it believes you’re in a conversation than if  it thinks you’re 
passively listening to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and 
remember more when you do things than when you read about things. And we made 
the exercises challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step 
procedures, while someone else wants to understand the big picture first, and someone 
else just wants to see an example. But regardless of  your own learning preference, 
everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of  your brain, because the more of  your brain 
you engage, the more likely you are to learn and remember, and the longer you can 
stay focused. Since working one side of  the brain often means giving the other side a 
chance to rest, you can be more productive at learning for a longer period of  time. 

And we included stories and exercises that present more than one point of  view, 
because your brain is tuned to learn more deeply when it’s forced to make evaluations 
and judgments. 

We included challenges, with exercises, and by asking questions that don’t 
always have a straight answer, because your brain is tuned to learn and remember 
when it has to work at something. Think about it—you can’t get your body in shape 
just by watching people at the gym. But we did our best to make sure that when 
you’re working hard, it’s on the right things. That you’re not spending one extra 
dendrite processing a hard-to-understand example, or parsing difficult, jargon-laden, 
or overly terse text.

We used people. In stories, examples, pictures, and so on, because, well, because 
you’re a person. And your brain pays more attention to people than it does to things. 

Move on to the 
next small piece 
of functionality

Think about 
what the code 
has to do

Write a unit 
test that 
fails

Write code 
that makes 
the test pass

The test-driven 
development 
feedback loop



you are here 4

the intro

So, we did our part. The rest is up to you. These tips are a 
starting point; listen to your brain and figure out what works 
for you and what doesn’t. Try new things.

1

2

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of  fluid. 
Dehydration (which can happen before you ever 
feel thirsty) decreases cognitive function. 

Make this the last thing you read before 
bed. Or at least the last challenging thing.

6

7

9 Create something!
Apply this to your daily work; use what you are 
learning to make decisions on your projects. Just 
do something to get some experience beyond the 
exercises and activities in this book. All you need 
is a pencil and a problem to solve…a problem that 
might benefit from using the tools and techniques 
you’re learning in this book.

Listen to your brain.

8 Feel something!
Your brain needs to know that this matters. Get 
involved with the stories. Make up your own 
captions for the photos. Groaning over a bad joke 
is still better than feeling nothing at all.

Pay attention to whether your brain is getting 
overloaded. If  you find yourself  starting to skim 
the surface or forget what you just read, it’s time 
for a break. Once you go past a certain point, you 
won’t learn faster by trying to shove more in, and 
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of  the brain. 
If  you’re trying to understand something, or 
increase your chance of  remembering it later, say 
it out loud. Better still, try to explain it out loud 
to someone else. You’ll learn more quickly, and 
you might uncover ideas you hadn’t known were 
there when you were reading about it.

Part of  the learning (especially the transfer to 
long-term memory) happens after you put the 
book down. Your brain needs time on its own, to 
do more processing. If  you put in something new 
during that processing time, some of  what you 
just learned will be lost. 

Read the “There are No Dumb Questions”
That means all of  them. They’re not optional 
sidebars—they’re part of  the core content! 
Don’t skip them.

Do the exercises. Write your own notes.
We put them in, but if  we did them for you, 
that would be like having someone else do 
your workouts for you. And don’t just look at 
the exercises. Use a pencil. There’s plenty of  
evidence that physical activity while learning 
can increase the learning. 

Slow down. The more you understand, 
the less you have to memorize.
Don’t just read. Stop and think. When the 
book asks you a question, don’t just skip to the 
answer. Imagine that someone really is asking 
the question. The more deeply you force your 
brain to think, the better chance you have of  
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to        bend 
your brain into submission



xxvi  intro

how to use this book

Read me
This is a learning experience, not a reference book. We deliberately stripped out everything 
that might get in the way of  learning whatever it is we’re working on at that point in the 
book. Once you’ve read this book, you’ll definitely want to keep it on your shelf, so you can 
revisit useful ideas, tools, and techniques. But the first time through, you need to begin at the 
beginning, because the book makes assumptions about what you’ve already seen and learned.

The redundancy is intentional and important. 
One distinct difference in a Head First book is that we want you to really get it. And we want 
you to finish the book remembering what you’ve learned. Most reference books don’t have 
retention and recall as a goal, but this book is about learning, so you’ll see some of  the same 
concepts come up more than once. 

The Brain Power exercises don’t have answers.
For some of  them, there is no right answer, and for others, part of  the learning experience of  
the Brain Power activities is for you to decide if  and when your answers are right. In some of  
the Brain Power exercises, you will find hints to point you in the right direction.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of  the core content of  the book. 
Some of  them are to help with memory, some are for understanding, and some will help 
you apply what you’ve learned. Don’t skip the exercises. Even crossword puzzles are 
important—they’ll help get concepts into your brain. But more importantly, they’re good 
for giving your brain a chance to think about the words and terms you’ve been learning in a 
different context.

Try the exam questions—even if you’re not studying for the exam!
Some of  our readers are preparing for the three-hour, 120-question exam PMI-ACP® 
certification exam. Luckily, the most effective way to prepare for the exam is to learn agile. 
So even if  you’re not interested in the PMI-ACP® certification, this book is still for you. But 
you should still try the practice exam questions at the end of  each chapter, because answering 
the exam questions is a really effective way to get agile concepts into your brain.



you are here 4

the intro

The technical review team

Lisa Kellner

Philip Cheung

Technical reviewers:

Dave Prior has been managing technology projects for over 20 years and he has been focusing exclusively on agile 
since 2009. He is a Certified Scrum Trainer and works for LeadingAgile. His spirit animal is Otis Redding and if  he 
could ingest only one food substance, it would be coffee.

Keith Conant has developed software for 20 years as a software engineer, project manager, and group manager. He 
currently leads a team enhancing a point-of-sale payment application used by universities around the world. Away from 
the office, Keith can be found composing music, playing drums, guitar, or keyboards in a band, or challenging himself  
physically kayaking, running, hiking, or cycling.

Philip Cheung has been developing software for 15 years and he has been exclusively using agile since 2013 to 
manage and deliver projects. He works in the financial industry involved in creating various enterprise-level applications. 
Philip likes to escape into the rural English countryside and one day hopes to retire in a charming country cottage. 

Kelly D. Marce, PMP®, PMI-ACP® has more than nine years in project management. Kelly is an agile trainer, 
certified project manager, and PMP® mentor at a leading financial services company in Canada. In his spare time, he 
acts as a producer of  live events within his community and tries to keep up with his four-year-old son, Jacob.

And, as always, we were lucky to have Lisa Kellner return to our tech review team. Lisa was awesome, as usual. 
Thanks so much, everyone!

Keith Conant

Dave Prior

Kelly D. Marce



xxviii  intro

how to use this book

Acknowledgments

Our editor:

We want to thank our editor, Nan Barber, for editing this book. Thanks!

There are so many people at O’Reilly we want to thank that we hope we don’t forget anyone. 

We’ll definitely be thanking the production team in this space. In the meantime, here are a few 
people we definitely want to acknowledge.

And as always, we love Mary Treseler, and can’t wait to work with her again! And a big shout 
out to our other friends and editors, Mike Hendrickson, Tim O’Reilly, Andy Oram, Laurel 
Ruma, Lindsay Ventimiglia, Melanie Yarbrough, Ron Bilodeau, Lucie Haskins, and 
Jasmine Kwityn. And if  you’re reading this book right now, then you can thank the greatest 
publicity team in the industry: Marsee Henon, Kathryn Barret, and the rest of  the folks in 
Sebastopol.

The O’Reilly team:

Nan Barber

www.allitebooks.com

http://www.allitebooks.org


you are here 4

the intro

O’Reilly Safari®
Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, 
government, educators, and individuals.

Members have access to thousands of  books, training videos, Learning Paths, interactive tutorials, and curated playlists 
from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, 
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.



xxx  intro

Praise Quote
I’ve read so many agile books before

But they all come off the same,
A bunch of pretentious preachy solemn righteous stuff,

I just find them all lame.

Break it down (you) break it down for me. 
(If I could T-shirt size it
It’d be an extra-large)

Meta meta meta cognition 
I finally found the right information. 

I really appreciate the book that you wrote. 
But I can’t make a praise quote. 

– Mike Monsoon, International Rock Star
Listen to the song here: https://bit.ly/head-first-agile-song

Praise for Head First Agile

We asked organizational transformation expert and part-time international rock star Mike Monsoon to review an early release of this book and give us a quote for the “Praise for...” page. Instead, he wrote a song!

https://bit.ly/head-first-agile-song


this is a new chapter  1

what is agile?1

Principles and practices

It’s an exciting time to be agile!  For the first time, our industry has found a 

real, sustainable way to solve problems that generations of software development teams 

have been struggling with. Agile teams use simple, straightforward practices that have 

been proven to work on real-life projects. But wait a minute...if agile is so great, why 

isn’t everyone doing it? It turns out that in the real world, a practice that works really well 

for one team causes serious problems for another team, and the difference is the team 

mindset. So get ready to change the way you think about your projects!

So we just assume  
everything on the project will go 

perfectly, and we write it down in the 
plan here.

brilliant 
planning, sir!



2  Chapter 1

looks like we won’t get that bonus

Kate's a project manager 
for a software team.

The new features sound great...
Meet Kate. She’s a project manager at a successful Silicon Valley startup. Her 
company builds software that’s used by video and music streaming services and 
internet radio stations to analyze audiences in real time and choose programming 
suggestions that make their viewers or listeners happy. And now Kate’s team has 
an opportunity to deliver something that will really help the company.

Ben is the product owner. 
His job is to talk to clients, 
figure out what they need, 
and come up with new 
features that they’ll use.

I’ll 
talk to the team 

about getting those new 
advanced audience analytics 

features into the next 
release.

Thanks, 
Kate. If the team 

can get this done quickly, 
our biggest client will add fifty 

licenses, and we’ll all get a 
big bonus this year!



you are here 4  3

what is agile?

...but things don’t always go as expected
Kate’s discussion with the project team didn’t go nearly as well as she’d 
hoped. What’s she going to tell Ben?

Kate: So if  we can get those new advanced audience analytics features 
into the next release, we’ll all get a big bonus.

Mike: Well, that sounds like it would be great.

Kate: Fantastic! So we can count on you guys?

Mike: Hold on! Not so fast. I said it sounds like it would be great. But 
there’s no way it’s happening.

Kate: Wait, what?! Don’t mess with me, Mike.

Mike: Look, if  we’d known about this change four months ago when we 
were designing the audience data analysis service, this would be easy. But 
now we’d have to rip out a huge chunk of  code and replace it with... well, I 
don’t want to get into technical details.

Kate: Good. I don’t want to hear them.

Mike: So... are we done here? Because my team’s got a lot of  work to do.

Mike is the lead 
programmer and 
architect.

It 
sounds like we’ve 

got a real opportunity 
to make our customers 

happy.



4  Chapter 1

standing keeps the meeting short

In a daily standup meeting, everyone on the 
team stands for the duration of the meeting. 
That keeps it short, sweet, and to the point.

Agile to the rescue!
Kate’s been reading about agile, and she thinks it might help her get those features 
into the next release. Agile’s gotten really popular with software teams because the 
ones that have “gone agile” often talk about the great results they get. The software 
they build is better, which makes a big difference to them and their users. Not only 
that, but when agile teams are effective, they have a much better time at work! Things 
are more relaxed, and the working environment is a lot more enjoyable. 

So why has agile gotten so popular? Lots of  reasons:

 ≥ When teams go agile, they find that it’s a lot easier to meet their deadlines.

 ≥ They also find that they can really cut down on bugs in their software.

 ≥ Their code is a lot easier to maintain—adding, extending, or changing their 
codebase is no longer a headache.

 ≥ The users are a lot happier, which always makes everyone’s lives easier.

 ≥ And best of  all, when agile teams are effective, the team members’ lives are 
better, because they can go home at a reasonable hour and rarely have to 
work weekends (which, for a lot of  developers, is a first!).

A daily standup is a good starting point
One of  the most common agile practices that teams adopt 
is called the daily standup, a meeting that happens 
every day, during which team members talk about what 
they’re working on and their challenges. The meeting is 
kept short by making everyone stand for the duration. 
Adding a daily standup to their projects has brought 
success to a lot of  teams, and it’s often the first step in 
going agile.

But is this guy really paying attention 
to what his teammates are saying?



you are here 4  5

what is agile?

Kate tries to hold a daily standup
To Kate’s surprise, not everyone on Mike’s team shares her excitement for this 
new practice. In fact, one of  his developers is angry that she’s even suggesting 
that they add a new meeting, and seems to feel insulted by the idea of  attending 
a meeting every day where he’s asked prying questions about his day-to-day work.

The new 
features are really important. 

Let’s hold a daily status meeting so I can get 
updates from you and the team every day. That’s a 

great agile practice that we can all get 
behind!

 
We already have too 

many meetings! If you don’t trust 
us to do the job, find another 

team to do it.

Kate thinks Mike and his team are being irrational, but maybe they have a point. What do you think?

So what’s going on here? Is Mike being irrational? Is Kate being too 
demanding? Why is this simple, well-accepted practice causing a conflict?



6  Chapter 1

mindset meets methodology

Different team members have different attitudes
Kate ran into problems adopting agile almost as soon as she started—and she’s not alone.

The truth is that a lot of  teams simply haven’t had as much success with agile as they’d hoped they would. 
Did you know that well over half  of  companies that build software have experimented with agile? Despite 
the success stories—and there are many of  them!—a lot of  teams try agile, but end up with results that 
they’re not particularly happy with. In fact, they feel a little ripped off ! It seemed like agile came with a 
promise of  big changes, but trying to get agile working on their own projects never seemed to work out.

And that’s what’s happening to Kate. She created a plan all on her own, and now she wants to get status 
updates from her team. So she’s started dragging a reluctant team to her daily standup meeting. She’s able 
to get them in the room. But will it really make a difference? She’s worried about how people are deviating 
from her plan, so she’ll concentrate on getting a status update from each person. Mike and his developers, 
on the other hand, want the meeting to end as quickly as possible so they can get back to “real” work.

I only find out about 
problems when it’s too late 
to do something about them.

When you keep dragging us 
to meetings, we don’t any have time 

to write code.

Two people can 
see the same 
practice very 
differently. 
If they don’t 
both feel like 
they’re getting 
something 
out of it, it 
can make the 
practice much 
less effective.

In Kate’s less-than-effective daily standup, 
each person tunes out everyone else while 
they’re waiting to give their updates, then 
says as little as possible when it’s time to 

speak. She still gets some useful information, 
but at the cost of conflict and boredom—and 

nobody in the meeting is collaborating.



you are here 4  7

what is agile?

That’s just how software projects 
are, right? Things that work in textbooks 

don’t really work out in real life. There’s 
nothing we can do about it, right?

No! The right mindset makes practices more effective.

Let’s be clear: the way Kate is running her standups is how many daily 
standups are run. And while it’s not optimal, a daily standup that’s run this 
way will still produce results. Kate will find out about problems with her plan, 
and Mike’s team will benefit in the long run because those problems that do 
affect them can be taken care of  sooner rather than later. The whole thing 
doesn’t take much time every day, and that makes it worth doing.

But there’s a big difference between an agile team that goes through the 
motions and one that gets great results. The key to that difference is the 
mindset the team brings to each project. Believe it or not, the attitude that 
each person takes toward a practice can make it much more effective!

The attitude that each team member 
brings to a practice like the daily 
standup makes a huge difference in 
how effective it is. But even when 
everyone tunes out, the meeting is 
still effective enough to make it 
worth doing, even if it’s boring.



8  Chapter 1

keep mindset in mind

A better mindset makes the practice work better
What would happen if  Kate and Mike had a different mindset? What if  each person on the 
team approached the daily standup with an entirely different attitude?

For example, what would happen if  Kate felt like everyone on the team 
worked together to plan the project? Then she would genuinely listen 
to every single developer. If  Kate changes her attitude toward the standup, 
she’ll stop trying to figure out how they’ve deviated from her plan so that she 
can correct them. The focus of  the meeting changes for her: now it’s about 
understanding the plan that everyone on the team worked together to create, 
and her job is about helping the whole team do their work more effectivly.

That’s a very different way of  thinking about planning, one that Kate was 
never taught in any of  her project management training courses. She was 
always taught that it was her job to come up with a project plan and 
basically dictate it to the team. She had tools that let her measure 
how well the team followed her plan, and strict processes that 
she would enforce to make changes to it.

Now things are totally different for her. She realized that the 
only way she could make the daily standup work is if  she 
puts effort into working with the team so that everyone 
on the team can work together to figure out the best approach 
to the project. Then the daily standup turns into a way for the whole 
team to work together to make sure everyone is making solid decisions, and 
that the project is on track.

I 
don’t have all 

the answers. We need 
this meeting so we can 

plan the project 
together!

Kate used to get really frustrated when she discovered changes to her project plan, because it was usually too late for the team to effectively change course.

Now that the daily standup is in place, the whole team works with her every day to find those changes, so they can make them much earlier. That’s a lot more effective!



you are here 4  9

what is agile?

And what if  Mike felt like this meeting wasn’t just about giving status 
updates, but about understanding how the project is going, and coming together 
every day to find ways that everyone can work better? Then the daily 
standup becomes important to him.

A good developer almost always has opinions not just about his own code, 
but about the whole direction of  the project. The daily standup becomes 
his way to make sure that the project is run in a sensible, efficient way—and 
Mike knows that in the long run that will make his job of  coding more 
rewarding for his team, because the rest of  the project is being run well. 
And he knows that when he brings up a problem with the plan during the 
meeting, everyone will listen, and the project will run better because of  it.

Things work best when Mike (and the rest of  the team) figure out that the 
daily standup helps them plan the next day’s worth of  work—and every 
single person on the team is part of  the planning process.

So the 
daily standup means 

you’ll listen to me and my team 
and actually change the way the 

project runs?

 
That makes sense! 

Planning a project works a lot 
better when everyone on the team is 
engaged. But I bet this only works if 
everyone at the meeting is tuned in 

the whole time.

How do you change the mindset in a team or an individual? 
Can you think of examples from your own projects where 
someone’s mindset changed—maybe your own?



10  Chapter 1

practices don’t always make perfect

So what is agile, anyway?
Agile is a set of  methods and methodologies that are optimized to help with specific problems 
that software teams run into, and kept simple so they’re relatively straightforward to implement.

These methods and methodologies address all of  the areas of  traditional software engineering, 
including project management, software design and architecture, and process improvement. Each 
of  those methods and methodologies consists of  practices that are streamlined and optimized to 
make them as easy as possible to adopt.

Mindset versus methodology
Agile is also a mindset, and that’s a new idea for a lot of  people who haven’t worked with agile before.  
It turns out that each team member’s attitude toward the practices they use can make a huge difference 
in how effective those practices are. The agile mindset is focused on helping people share information 
with each other, which makes it much easier for them to make important project decisions (rather than 
just relying on a boss or project manager to make those decisions). It’s about opening up planning, 
design, and process improvement to the entire team. To help everyone get into an effective mindset, 
each agile methodology has its own set of  values that team members can use as a guide.

 
I spent all this 

time coming up with my plan, but 
the team keeps deviating from it. I 
can use the daily standup to make 
sure they do everything I tell 

them to do.

If we all work together 
to plan our project, then we can use 

the daily standup to make course 
corrections along the way.

What happens if one team member checks out during the daily 
standup and doesn’t really listen to his or her teammates?



you are here 4  11

what is agile?

Here are a few problems that Kate, Ben, and Mike brought up during a daily standup. Across 
from them, we’ve written down the names of a few different practices that you’ll often see 
used on agile teams. Don’t worry if you haven’t run across some of them—you’ll learn a lot 
more about them later in the book, so we included a brief description of each practice to 
help you out. See if you can match each problem with a practice that might help fix it.

“We just wasted hours grinding 
through spaghetti code to find 

that bug!”

“We always seem to run into the 
same kind of problems over and 
over again with every release.”

“I thought we’d be done updating 
the song database code by Friday. 
Now you’re telling me that it’ll 

be three more weeks?”

Developers fix code problems by constantly 
refactoring their code, or improving the code 
structure without changing its behavior.

A task board is an agile planning tool in which 
user stories are attached to a board and 
categorized into columns based on their status.

A retrospective is a meeting in which everyone 
talks about how the last part of the project went, 
and talks about what lessons can be learned.

A user story is a way to express one very specific 
need that a user has, usually written out as a few 
sentences on a sticky note or index card.

A burndown chart is a line chart, updated daily, 
that tracks the amount of work left on the project, 

“burning” down to zero when the work is done.

“ok, we’ve gone over the user 
stories. Now let’s figure out how 
they fit together so we can plan 
out the next few weeks of work.”

“I just demoed a new feature to 
one of our video streaming users. 
She said it won’t actually fix the 

problem it’s supposed to address 
for her.”

It’s OK if you haven’t run across these practices yet. 
You’ll learn more about them in the next few chapters.



12  Chapter 1

a methodical framework

Scrum is the most common approach to agile
There are many ways that teams can be agile, and there’s a long list of  methods and methodologies 
that agile teams use. But there have been many surveys done over the years that have found that 
the most common approach to agile is Scrum, a software development framework focused on 
project management and product development.

When a team uses Scrum, every project follows the same 
basic pattern. There are three main roles on a Scrum 
project: the Product Owner (like Ben) works with the 
team to maintain a Product Backlog; the Scrum 
Master helps guide the team past roadblocks; and the 
Development Team members (everyone else on the 
team). The project is divided into sprints, or cycles of  
equal length (often two weeks or 30 days) that follow the 
Scrum pattern. At the start of  a sprint, the team does 
sprint planning to determine which features from 
the Product Backlog they’ll build during the sprint. This 
is called the Sprint Backlog, and the team works 
throughout the sprint to build all of  the features in it. 
Every day the team holds a short meeting called the Daily 
Scrum. At the end of  the sprint, working software is 
demonstrated to the product owner and stakeholders in the 
sprint review, and the team holds a retrospective to 
figure out lessons they’ve learned.

We’ll cover Scrum in depth in Chapters 3 and 4, and we’ll 
not only teach you how it helps teams build better software 
and run more successful projects, but we’ll also use it to 
explore important concepts and ideas shared by all agile 
teams.

  Getting a little overwhelmed with new vocabulary?

We’ll highlight new vocabulary words in boldface when we first introduce them. 
We did that a lot on this page—and if  there are a few that you’re not familiar with, 
that’s OK! Seeing new ideas in context now will help them sink into your brain 

when you learn about them in detail later. That’s part of  the Head First neuroscience that makes this 
book brain-friendly!

XP and Lean/Kanban
While Scrum is the most popular agile methodology, many teams take other approaches. The next most 
popular methodology is XP, a methodology focused on software development and programming that’s 
often used in combination with Scrum. Other teams approach agile with Lean and Kanban, a mindset 
that gives you tools to understand the way you build software today and a method that helps you evolve to a 
better state tomorrow. You’ll learn about XP and Lean/Kanban in Chapters 5 and 6.



you are here 4  13

what is agile?

“One of my programmers just 
wasted hours grinding through 
spaghetti code to find a bug!”

“We always seem to run into the 
same kind of problems over and 
over again with every release.”

“I thought we’d be done updating 
the song database code by Friday. 
Now you’re telling me that it’ll 

be three more weeks?”

Developers fix code problems by constantly 
refactoring their code, or improving the code 
structure without changing its behavior.

A task board is an agile planning tool in which 
user stories are attached to a board and 
categorized into columns based on their status.

A retrospective is a meeting in which everyone 
talks about how the last part of the project went, 
and talks about what lessons can be learned.

A user story is a way to express one very specific 
need that a user has, usually written out as a few 
sentences on a sticky note or index card.

A burndown chart is a line chart, updated daily, 
that tracks the amount of work left on the project, 

“burning” down to zero when the work is done.

“ok, we’ve gone over the user 
stories. Now let’s figure out how 
they fit together so we can plan 
out the next few weeks of work.”

“I just demoed a new feature to 
one of our video streaming users. 
She said it won’t actually fix the 

problem it’s supposed to address 
for her.”

A task board is a great way for 
everyone on the team to see the same 
big-picture view of the project.

When everyone on the team understands the users and what they need, they do a better job of building software that users love.

This is an XP practice. Some project managers 
are surprised the first time they discover 
agile practices that are focused on code, and 
not just on planning and executing the project.

Teams can avoid making the same mistakes over and over again by looking back 
at the project and talking about what went right and what could be improved.



14  Chapter 1

 � Many teams that want to adopt agile start with the 
daily standup, a meeting with the whole team where 
everyone stands in order to keep it short.

 � Agile is a set of methods and methodologies, but it’s 
also a mindset, or an attitude that’s shared by everyone 
on the team.

 � The daily standup meeting is much more effective when 
everyone on the team has the right mindset—everyone 
listens to each other, and they all work together to make 
sure the project is on track.

 � Every agile methodology comes with a set of values to 
help the team get into the most effective mindset.

 � When team members follow shared principles and 
share the same set of values, it can make the method 
that they use much more effective.

 � Scrum, a framework focused on project management 
and product development, is the most common 
approach to agile.

 � In a Scrum project, the team breaks the work into 
sprints, or cycles of equal length (often 30 days) that 
follow the Scrum pattern.

 � Every sprint starts with a sprint planning session to 
determine what they’ll build.

 � During the sprint the team works on the project, and 
every day they hold a short meeting called a daily 
scrum.

 � At the end of the sprint, the team holds a sprint review 
with the stakeholders to demo the working software that 
they built.

 � To finish the sprint, the team holds a retrospective to 
look back at how the sprint went and discuss ways that 
they can improve together as a team.

agile is not just new names for old things

Q: It sounds like Scrum, XP, and Lean/
Kanban are very different from each other. 
How can they all be agile?

A: Scrum, XP, and Lean/Kanban focus on 
very different areas. Scrum is mainly focused 
on project management: what work is getting 
done, and making sure that it’s in line with 
what the users and stakeholders need. XP is 
focused on software development: building 
high-quality code that’s well-designed 
and easy to maintain. Lean/Kanban is a 
combination of the Lean mindset and the 
Kanban method, and teams use it to focus 
on continually improving the way that they 
build software. 
 
In other words, Scrum, XP, and Lean/Kanban 
are focused on three different areas of 
software engineering: project management, 
design and architecture, and process 
improvement. So it makes sense that they 

would have different practices—that’s how 
they differ. 
 
In the next chapter you’ll learn about what 
they have in common: shared values and 
principles that help teams adopt an agile 
mindset.

Q: Isn’t this all just stuff I know 
already, only with a new name? Like, 
Scrum sprints are really just milestones 
and project phases, right?

A: When you come across an agile 
methodology like Scrum for the first time, 
it’s really common to look for the parts of 
it that are similar to things you already 
know—and that’s a good thing! If you’ve 
been working on teams for a while, then a lot 
of agile should feel familiar. Your team builds 
something, and you and your teammates are 
almost certainly doing a lot of things well that 
you don’t want to change (yet!). 

 
However, it’s very easy to fall into the trap of 
thinking that a familiar-seeming part of agile 
is exactly the same thing as something you 
already know. For example, Scrum sprints 
are not the same thing as project phases. 
There are many differences between 
phases or milestones in traditional project 
management and sprints in Scrum. 
 
For example, in a typical project plan, all 
of the project phases are planned at the 
beginning of the project; in Scrum, only 
the next sprint is planned in detail. This 
difference can feel very strange to a 
team accustomed to traditional project 
management. 
 
You’ll learn a lot more about how Scrum 
planning works, and how it may be different 
from what you’re used to. In the meantime, 
keep an open mind—and try to catch 
yourself when you have the thought, “This is 
just like something I already know!”



you are here 4  15

what is agile?

Which of these scenarios are examples of applying practices, and which 
are examples of applying principles? Don’t worry if you haven’t seen some 
of these practices yet, just use the context to try to figure out the right 
answer. (That’s a good skill to work on for taking a certification exam!)

1. Kate knows that the most effective way to communicate important information about the project to her 
team is with a face-to-face conversation.

	 c Principle c Practice

2. Mike and his team know that the users will probably change their minds later, and those changes can 
wreak havoc with their code, so they use incremental design to make sure the code that they build is easy 
to change later.

	 c Principle c Practice

3. Ben uses a persona to model a typical user because he knows that the more the team understands the 
users, the better job they’ll do of building software.

	 c Principle c Practice

4. Mike always makes sure that his team is working on something that he can demonstrate to Kate and Ben, 
because he knows that working software is the best way to show the team’s progress.

	 c Principle c Practice

5. Kate wants to improve the way that the team builds software, so she gets them all to improve 
collaboratively and evolve experimentally by coming up with changes that they can make to their 
process together, and using data to figure out if those changes made things better.

	 c Principle c Practice

6. Mike and his team embrace change by building code that’s easy to change down the road.

	 c Principle c Practice

Answers on page 20

        Don’t just dismiss the idea that mindset matters!

A lot of people—especially hardcore developers—tune out as soon as they start 
hearing words like mindset, values, and principles. That’s especially true of coders 
who have a habit of locking themselves in a room and never talking to anyone. If 

you’re starting to think this way, really try to give these ideas the benefit of the doubt. After all, 
a lot of great software has been built this way, so there has to be something to it... right?



16  Chapter 1

more visibility is better (right?)

Wow! 
We’ve never worked 

together this well before. That 
daily standup meeting changed 

everything!

Kate: This project’s gone so much better than ones in the past. And all because of  
one little meeting every day!

Mike: Well, I wouldn’t say that.

Kate: Come on, Mike! Don’t be such a pessimist.

Mike: No, seriously. Look, you didn’t really think you’re the first person to try to 
solve our project problems by adding meetings, did you?

Kate: Well, I... um...

Mike: We got some really good results, so I’ll be honest with you here. When you 
started holding those daily standups, almost everyone on the team was unhappy.

Kate: Really?

Mike: Yeah. Don’t you remember how for the first week and a half, most of  us just 
stared at our phones the whole time?

Kate: Well, sure. I guess that wasn’t particularly useful. If  I’m honest with myself, I 
was actually thinking about calling the whole thing off.

Mike: But then one of  my coders brought up that serious architecture issue. 
Everyone listened because she’s really good, and they all respect her opinion.

Kate: Right. We had to make a major change, and I cut two of  the features out of  
the release to make room for it.

Mike: Yes! That was really important. Normally when we run into a problem like 
that, we have to work late nights to deal with the aftermath. Like when we found 
out that the listener feedback analysis algorithm had a serious flaw in it.

Kate: Ugh, that was awful. I usually find out about problems like that after we’ve 
all promised things we couldn’t deliver. This time we caught the problem early, and 
I could work with Ben to manage our users’ expectations and get you guys the time 
you needed to come up with a new approach.

Mike: We’ll definitely bring up problems like that every time they come up.

Kate: Wait—what? That kind of  problem happens a lot?! 

Mike: Are you kidding? I’ve never had a project that didn’t run into at least one 
nasty surprise like that once we started coding. That’s how software projects work in 
the real world, Kate.

Looks like Kate discovered 
that software projects are 
a lot less clean and simple 
in real life than they are 
on paper. Before, she could 
just build her plan and then 
force the team to work it...
and when things went wrong, 
it was their fault, not hers.

On the other hand, this project 
went a lot better than her last 
ones. She had to work a lot 
harder to deal with problems, 
but she got better results!



you are here 4  17

what is agile?

Across
1. A daily ______ can be valuable, but it really works best if everyone 
on the team has the right mindset
3. In the Kanban method, teams improve collaboratively and _______ 
experimentally
5. Kanban is an agile method focused on _______ improvement
7. Holds the features that haven’t been built yet
9. The Scrum team always demos _______ software
10. Who the Scrum team does the demo for
11. What Scrum teams do every day
16. Helps the team understand their users’ needs
17. The Scrum ______ guides the team past roadblocks and helps 
them implement Scrum
19. Agile planning tool
20. The ______ Owner on a Scrum team maintains a backlog
21. The most effective way to communicate
22. _______ design helps XP teams make code easy to change

24. Scrum teams get together to do this at the start of the project
25. Scrum team’s demo at the end of the project

Down
1. How Scrum teams divide up their projects chronologically
2. Helps the team understand who their users are
4. These help teams understand the mindset of a methodology
6. Framework focused on project management and product 
development
8. Makes a big difference when adopting practices
12. When the team gets together to figure out what lessons they’ve 
learned
13. Chart that tracks the amount of work left on a project 
14. What XP teams do constantly to improve their code structure
15. What XP teams do with change
18. A tool or technique used by a team
23. Methodology focused on code and software design

1 2

3 4

5 6

7

8 9

10

11 12

13 14

15 16

17 18

19

20

21

22

23

24

25

Agilecross
Solve this crossword and get these agile ideas to stick in your brain! 
How many words you can get without looking back at the chapter?



The PMI-ACP certification can help you be more agile

If you’re planning on taking the 
exam, we’ll help you prepare for it by including 
practice exam questions to review the material 

that you learned in each chapter. 

And Even 
If you aren’t using this book 
to prepare for the PMI-ACP 

certification, the practice questions 
will give you a different way of 

approaching the material. That’s a 
great way to seal it into 

your brain!

The Agile Certified Practitioner (PMI-ACP)® certification was created by the Project 
Management Institute to meet the needs of  project managers who have increasingly 
found themselves working with agile methods, methodologies, practices, and techniques. 
And just like with the PMP certification, PMI has constructed an exam based on real-
world tasks, tools, and practices used by agile teams every day.

18

The PMI-ACP certification is for anyone who works on agile teams, or in an organization that’s moving toward adopting agile.

BRAIN
TRAINING

The exam is focused on real-world agile knowledge.

The PMI-ACP exam is designed to reflect the way teams work in the real 
world. It covers the most common methods and methodologies, including 
Scrum, XP, and Lean/Kanban. The exam questions are based on 
knowledge and real-world tasks that teams use every day.

That’s why this book is, first and foremost, built to teach you agile: 
because understanding agile methods, methodologies, practices, values, and 
ideas is the most effective way to prepare for the PMI-ACP certification.

In addition to teaching you all about agile, we will also spend some time 
focusing specifically on exam material. This book has 100% coverage 
of  the PMI-ACP exam content, and includes many practice questions, 
test-taking tips, and exam preparation exercises, including a complete, full-
length practice exam that mimics the real thing.

The exam doctor is 
here to help you get in 
the best shape possible 
for taking the exam.

www.allitebooks.com

http://www.allitebooks.org


19

We’ll use practice 
questions to 

give you tips and  
exam strategy...

39. Which of the following is used by teams to understand the 

progress of their project?

A. Refactoring

B. Retrospective

C. Burndown chart

D. Continuous integration

Some answers will clearly be wrong. 
Refactoring is about improving code, 
not understanding project progress.

Some answers can be misleading! The retrospective 
helps the team understand their project better, 
but it doesn’t keep track of progress because it 
mainly looks back at work that’s been done.

Here’s the right answer! The burndown 
chart is a tool that shows how the project 
has been doing, and how much work is left..

You haven’t seen this term yet—it’s a practice that XP teams use. Some exam 
questions will have answers you don’t recognize. And that’s OK! Just relax, and 
concentrate on the other answers. In this case, one of the others is correct. But 
if none of them are, then you can eliminate them and take an educated guess!.

...And We’ll help you prepare for the 
PMI-ACP exam with “Question Clinic” 
sections that focus on different 

kinds of exam questions, and give you 
practice writing questions yourself!

Chapters 2 through 7 each end with a set of practice questions. 
They also include “Question Clinic” sections that break down 
different types of questions that you’ll run across on the exam. 
Learning to recognize different kinds of  questions that you’ll see on the exam is really 
useful because when you see something familiar it helps your brain relax, which can help 
the answer come more quickly. We call this one the “Just the facts, ma’am” question. 
It looks like it’s just asking for some basic information, but read all of  the answers carefully! 
There’s often a misleading answer that looks like it might be right, but isn’t.



20  Chapter 1

exercise solutions

1. Kate knows that the most effective way to communicate important information about the project to her 
team is with a face-to-face conversation.

	 c Principle c Practice

2. Mike and his team know that the users will probably change their minds later, and those changes can 
wreak havoc with their code, so they use incremental design to make sure the code that they build is easy 
to change later.

	 c Principle c Practice

3. Ben uses a persona to model a typical user because knows that the more the team understands the users, 
the better job they’ll do of building software.

	 c Principle c Practice

4. Mike always makes sure that his team is working on something that he can demonstrate to Kate and Ben, 
because he knows that working software is the best way to show the team’s progress.

	 c Principle c Practice

5. Kate wants to improve the way that the team builds software, so she gets them all to improve 
collaboratively and evolve experimentally by coming up with changes that they can make to their 
process together, and using data to figure out if those changes made things better.

	 c Principle c Practice

6. Mike and his team embrace change by building code that’s easy to change down the road.

	 c Principle c Practice

This is one of the principles behind agile: that a 
face-to-face conversation is the most effective way 
to convey information to and within a software team.

Incremental design is an XP practice in which the team grows the codebase incrementally over time.

A persona is a practice in which the team creates an fictional user with a name (and often a fake photo) to better understand who will be using their software.

This is one of the core practices of Kanban. 
The team uses the scientific method to see if 
their improvements actually work in practice.

An important value shared by all effective XP teams is that they 
embrace change, rather than try to prevent or resist it.

An important agile principle is that working software 
is the primary measure of progress in the project, 
because it’s the most effective way for everyone to 
gauge exactly what the team has accomplished.



you are here 4  21

what is agile?

S1 T A N D U P2

P E E3 V4 O L V E
R P5 R O C E S S S6 A
I S B7 A C K L O G
N M8 W9 O R K I N G R U
T I N U10 S E R S

N D11 A I L Y S C R12 U M S
D E
S B13 R14 T

E15 E U16 S E R S T O R Y
M17 A S T E R F O P18

B N A T19 A S K B O A R D
R P20 R O D U C T P A
A O T F21 A C E T O F A C E
C W O C T
E I22 N C R E M E N T A L I

X23 I I C
P24 L A N N I N G V E

G R25 E V I E W

Across
1. The daily ______ can be vaulable—but only if

everyone has the right attitude [STANDUP] 
3. In the Kanban method, teams improve

collaboratively and _______ experimentally
[EVOLVE]

5. Kanban is an agile method focused on _______
improvement [PROCESS] 

7. Holds the features that haven't been built yet
[BACKLOG]

9. The Scrum team always demos _______
software [WORKING] 

10. Who the Scrum team does the demo for
[USERS]

Down
1. How Scrum teams divide up their projects

[SPRINT]
2. Helps the team understand who their users are

[PERSONA]
4. Every methodology comes with a set of these

[VALUES]
6. Methodology focused on project management

[SCRUM]
8. Makes a big difference when adopting practices

[MINDSET]
12. When the team gets together to figure out what

lessons they've learned [RETROSPECTIVE] 

Hey, check it out! 
The “Sharpen Your Pencil” 

solution on the previous page has 
notes with useful explanations 
added to it! I bet that’ll be a good 

learning tool.



22  Chapter 1

this page intentionally left blank



I know this specification has 
problems. On the other hand, 
I can’t remember the last time 
anyone on the team actually 
read a spec before writing 

code. So... I guess it’s a 
wash?

agile values and principles2

Mindset meets method

There’s no “perfect” recipe for building great software.  
Some teams have had a lot of success and seen big improvements after adopting agile 

practices, methods, and methodologies, while others have struggled. We’ve learned that 

the difference is the mindset that the people on the team have. So what do you do if you 

want to get those great agile results for your own team? How do you make sure your team 

has the right mindset? That’s where the Agile Manifesto comes in. When you and your 

team get your head around its values and principles, you start to think differently about 

the agile practices and how they work, and they start to become a lot more effective.

this is a new chapter  23



Something big happened in Snowbird
In the 1990s there was a growing movement throughout the software 
development world. Teams were growing tired of  the traditional way 
of  building software using a waterfall process, where the team first 
defines strict requirements, then draws up a complete design, and builds 
out all of  the software architecture on paper before the code is written. 

By the end of  the decade, there was a growing consensus that teams 
needed a more “lightweight” way to build software, and several 
methodologies—especially Scrum and XP—were gaining popularity as 
the way to accomplish that.

People on waterfall teams weren’t 
always 100% clear on exactly 
why they didn’t like their process, 
but there was a lot of agreement 
that it was somehow too 
“heavyweight” and cumbersome.

Meeting of the minds
In 2001, a group of  seventeen open-minded people got together at the 
Snowbird ski resort in the mountains outside of  Salt Lake City, Utah. The 
group included thought leaders from all across the new “lightweight” world, 
including the creators of  Scrum and XP. They weren’t sure exactly what 
would come out of  the meeting, but there was a strong sense that these new 
lightweight methods for building software had something in common. They 
wanted to figure out if  they were right, and maybe find a way to write it down.

individuals

collaboration
working software

strict control
self-organization

embrace change

simplicity

Leaders from 
across the 
industry got 
together to 
figure out if 
there was 
anything 
in common 
among the 
various and 
increasingly 
popular 
lightweight 
methods 
for building 
software.

24  Chapter 2

what agile teams value



Manifesto for Agile Software Development
We are uncovering better ways of  developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

The Agile Manifesto
It didn’t take long for the group to converge on four values that they all had in common. 
They wrote those values down in what would come to be known as the Agile Manifesto.

IF those guys were so smart, why 
didn’t they just come up with the best 
way to build softwarE? why bother 

with these “values” at all?

They weren’t trying to come up with a “unified” methodology.
One of  the fundamental ideas in modern software engineering is that there’s 
no single “best” way to build software. That’s an important idea that’s 
been around in software engineering for decades. The Agile Manifesto is effective 
because it lays out values that help teams get into an agile mindset. 
When everyone on the team genuinely incorporates these values into the way they 
think, it actually helps them build better software.

The idea that there’s no “silver bullet” method for building software was first introduced in the 1980s by pioneering software engineer Fred Brooks, in an essay 
called “No Silver Bullet.”

you are here 4  25

agile values and principles



26  Chapter 2

tools are good people are better

The four values of the Agile Manifesto guide the team to 
a better, more effective mindset
The Agile Manifesto contains four X over Y lines that help us understand what 
agile teams value. Each of  those lines tells us something specific about the values 
that drive an agile mindset. We can use them to help us understand what it 
means for a team to be agile.

Let’s take a closer look each of those four values 

Mike and Kate discovered that it’s not 
enough to have a “best” or “correct” 
practice. If the people don’t buy into it, it’ll 
cause conflict and eventually be thrown out.

But 
this is the real 

world, and we still need 
the team to “GET” it. IF THEY DON’T, 

WE’LL JUST GO THROUGH THE MO-
TIONS AND IT WON’T MAKE 

MUCH DIFFERENCE.

Adding practices in the real world can be a challenge
Teams are always looking for ways to improve. We’ve seen how practices can help. That’s 
especially true of  the lightweight practices used by agile teams, which are designed to be simple, 
straightforward, and easy to adopt. But we’ve also seen that the team’s mindset or attitude can 
make it much more difficult to adopt them successfully—like when Kate found that the attitude 
that she, Mike, and the rest of  the team had made a big difference when she tried to start holding 
a daily standup meeting.

The daily 
standup is a best 

practice that a lot of teams 
use. Every book I’ve read 

on agile says it’s a 
good idea.

Meanwhile, back at THE 
Silicon Valley startup 

that’s building software 
used by video and music 
streaming services to 
analyze audiences...



you are here 4  27

agile values and principles

Individuals and interactions over processes and tools

Agile teams recognize that processes and tools are important. You’ve already learned 
about a few practices that agile teams use: daily standups, user stories, task boards, 
burndown charts, refactoring, and retrospectives. These are all valuable tools that 
can make a real difference to an agile team.

But agile teams value individuals and interactions even more than processes and 
tools, because teams always work best when you pay attention to the human element.

You’ve already seen an example of  this—when Kate tried to introduce daily 
standups, and ended up getting into a conflict with Mike and his development team. 
That’s because a tool that works really well for one team can cause serious problems 
for another team if  the people on the team aren’t getting anything out of  it, and if  
it’s not directly helping them build software.

Next time I try to introduce a new tool 
or process, I’ll talk to the team and try to 

understand it from their perspective.

Good idea, Kate!
Processes and tools are important to getting the project done, 
and they can be really valuable. But the individual people 
on the team are even more important, and any tool that 
you introduce needs to improve their interactions with 
each other and with their users and stakeholders.



28  Chapter 2

it’s a feature not a bug

Working software over comprehensive documentation

What does “working” software mean? How do you know if  your software works? That’s actually 
a harder question to answer than you might think. A traditional waterfall team starts a project by 
building comprehensive requirements documents to determine what the team will build, reviews that 
documentation with the users and stakeholders, and then passes it on to the developers to build.

Most professional software developers have had that terrible meeting where the team proudly 
demonstrates the software they’ve been working on, only to have a user complain that it’s missing an 
important feature, or that it doesn’t work correctly. It often ends in an argument, like the one that Ben 
had with Mike after he gave a demo of  a feature his team had been working on for a few months:

There’s an old programmer joke that bugs are 
just undocumented features. A lot of bugs 
happen because the programmer thought the 
software should work one way, but the users 
expected it to work differently.

A lot of  people try to fix this problem with comprehensive documentation, but that can actually make 
the situation worse. The problem with documentation is that two people can read the same page and 
come away with two very different interpretations.

That’s why agile teams value working software over comprehensive documentation—because it 
turns out that the most effective way for a user to gauge how well the software works is to actually use it.

Hey, Mike? That feature you 
demoed doesn’t work the way it’s 

supposed to.

Remember that meeting we had a 
few months ago? I explained exactly 

what I was going to build.

I do remember. This 
absolutely is not what I was 

expecting. As far as I’m concerned, 
it’s a bug.

Dude, it’s not a bug, it’s an 
undocumented feature.



you are here 4  29

agile values and principles

Lisa is testing the firmware component for the Black Box 
3000TM. The product is only “working” in one of these 
scenarios. Can you help Lisa figure out which version of 
the product has “working” firmware?

This little puzzle should be familiar to anyone who read Head First PMP!

Here’s a hint: there’s an important 
piece of information that we haven’t 
given you. Without it, this puzzle is 
really hard to solve. The Black Box 3000TM

Scenario 1

Lisa presses the button, but nothing happens.

Scenario 2

Lisa presses the button and a voice comes out 
of  the box that says, “You pressed the button 
incorrectly.”

Scenario 3

Lisa presses the button and the box heats up to 
628°F. Lisa drops the box and it shatters into 
hundreds of  pieces. 

So... 
How do I 
know if the 

firmware in the 
box is working?

Lisa, our tester, is testing the 
Black Box 3000TM firmware, 
but she isn’t sure what she’s 
supposed to be testing for.

Some might even say impossible!

Just in case you don’t happen to know the term, 
firmware is software that’s programmed into 
the read-only memory of a piece of hardware.



30  Chapter 2

why product owners are part of the team

Here’s that crucial missing piece of information that we didn’t give you on the 
previous page: the Black Box 3000TM is the heating element from an industrial oven. 
So Scenario 3 is the one that demonstrates “working” software.

The best—and sometimes only!—way to tell if software is working is to put it in the 
hands of the people who need to use it. If they can use the software to do what they 
need it to do, it’s working. But it’s not always easy to know exactly what “working” 
means, which is why agile teams also value comprehensive documentation—they 
just value working software more.

EXPLANATION

Sometimes documentation 
can be useful—like when 
it’s not clear exactly 
what “working” software 
is supposed to do.

BLACK BOX 3000TM

Specification Manual

The BB3KTM is a heating element for 

an industrial oven.

BB3KTM must heat up to exactly 628°F 

in 0.8 seconds.

BB3KTM must have a large, easy-to-

press button.
Looks like scenario #3 is 

the one that shows working 
software. Good thing I had 
some documentation to tell 
me that...but it’s even more 
important to me that I have 
the actual product in my 

hands.

Now that she knows what “working” 
means for this software, Lisa can 
actually test it.

Here’s an example of comprehensive 
documentation that the team actually 
found useful: the specification for the 
Black Box 3000TM.

In this case, 
literally in Lisa’s 
hands. Let’s hope 
that she was 
wearing heat-
proof gloves!



you are here 4  31

agile values and principles

Customer collaboration over contract negotiation

No, this isn’t about consultants or procurement teams who have to deal with contracts!

When people on agile teams talk about contract negotiation, they often mean an attitude that 
people take toward their users, customers, or people on other teams. When people on a team 
have a “contract negotiation” mindset, they feel like they have to come to a strict agreement 
on what the team will build or do before any work can start. Many companies encourage this 
mindset, asking teams to provide explicit “agreements” (often documented in specifications, 
and enforced with strict change control procedures) about what it is they will deliver and 
when.

Agile teams value customer collaboration over contract negotiation. They recognize that 
projects change, and that people never have perfect information when starting a project. 
So instead of  trying to nail down exactly what’s going to be built before they start, they 
collaborate with their users to try to get the best results.

Contract negotiation 
is necessary in cases 
where the customers are 
unwilling to collaborate. 
It’s very difficult to 
genuinely collaborate 
with someone who’s being 
unreasonable—like a 
customer who routinely 
changes the scope of the 
project, but refuses to 
give the team enough time 
to make those changes.

Scrum teams are especially good at this because 
they have a product owner like Ben who is a 
true member of  the team. He might not have been 
developing code, but he worked hard on the project 
by talking to users, understanding what they needed, 
and working with the rest of  the team to help them 
understand those needs and build working software.

when we collaborate with 
our users, it always works 
out better than when we try 

to negotiate with them.



32  Chapter 2

your plans will change and it’s OK

Responding to change over following a plan

Some project managers have a saying: “Plan the work, work the plan.” And agile teams 
recognize that planning is important. But working a plan that has problems will cause 
the team to build a product with problems. 

Traditional waterfall projects have ways of  handling changes, but they usually involve 
strict and time-consuming change control procedures. This reflects a mindset in which 
changes are the exception, not the rule. 

The problem with plans is that they’re built at the start of  projects, and that’s when the 
team knows the least about the product they’re going to build. So agile teams expect 
that their plans will change. 

That’s why they typically use methodologies that have tools to help them constantly look 
for changes and respond to them. You’ve already seen a tool like that: the daily standup.

Before 
we started having the 

daily standup, I didn’t find out 
about problems with the project 

plan until it was too late to 
deal with them.

Once Kate and Mike sorted out their 
differences, they both realized that the daily 
standup was a way for everyone to look at the 
plan every day, and work together to respond 
to any changes that were needed. When 
everyone on the team worked together to 
respond to change, they were able to update 
the plan that they all built together without 
introducing chaos into the project.

It’s important 
to plan your 
project, but 
it’s even more 
important to 
recognize that 
those plans 
will change 
once the team 
starts working 
on the code.

In agile projects, your product is developed step 
by step, each new step drawing knowledge from 

the previous step. When a plan (or requirement, or 
anything else you use in a project)  is developed this 

way, it’s called progressive elaboration.



you are here 4  33

agile values and principles

Responding to change is important to agile 
teams, but they still value following a plan.

Take another look at the last line of the Agile Manifesto:

Each of the four values in the Agile Manifesto contains two parts: 
something (on the righthand side) that agile teams value, and then 
something else (on the lefthand side) that agile teams value more.

So when agile teams say they value responding to change over 
following a plan, that doesn’t mean that they don’t value planning—in 
fact, it means the opposite! They absolutely value following a plan. 
They just value responding to change more.

In fact, Scrum teams actually do more planning than traditional teams following a waterfall process! But since they’re really good at responding to change, it doesn’t feel like it to the people on the team.

That is, while there is value in the items on
the right, we value the items on the left more.

 � The Agile Manifesto was created in 2001 by people 
who came together to find common ground between 
different “lightweight” methods, methodologies, and 
approaches to building software.

 � The Agile Manifesto has four values that help agile 
teams get into the right mindset.

 � Agile teams value processes and tools because they 
help the team get organized and work effectively.

 � But they value people and interactions more because 
teams work best when you pay attention to the human 
element.

 � Agile teams value comprehensive documentation 
because it’s an effective way to communicate complex 
requirements and ideas.

 � But they value working software more because it’s the 
most effective way to communicate progress and get 
feedback from users.

 � Agile teams value contract negotiation because 
sometimes it’s the only way to work effectively in an 
office culture where mistakes are punished.

 � But they value customer collaboration more because 
it is much more effective for building software than 
having a legalistic or antagonistic customer relationship.

 � Agile teams value following a plan because without 
planning, complex software projects go off the rails.

 � But they value responding to change more because 
the team that works the wrong plan ends up building the 
wrong software.



34  Chapter 2

get the values into your brain

Manifesto Magnets
 
Oops! You had the Agile Manifesto re-created 
perfectly with refrigerator magnets! But someone 
slammed the door and they all fell off. Can you put 
the whole thing back together? See how much of 
it you can do without flipping back and looking 
for hints.  

Don’t worry about the order of the 
values.

The four values in the Agile 
Manifesto are equally important, 
so there’s no particular order 
for them. Just make sure that 
each specific value (X over Y) is 
matched up.

 Answers on page 66

Manifesto for Agile Software Development

That is, while there is

following

morethe items on the

We are uncovering better way
s of developing

over

over

over

over

processes

individuals

and to

plan

a

responding

change left

Through this work we have come to

value

:

and

interactions

tools

software

working

documentation

comprehensive

collaboration

customer
negotiationcontract

value

value

the items on thein

right

,
we

.

software by doing it and helping others do it.

All of the other 
magnets fell off 
the fridge. Can 
you put them back 
in the right place?

Some of the magnets 
stayed on the fridge. 
Leave these magnets 
in place.



you are here 4  35

agile values and principles

Q: I’m still not clear on what 
“waterfall” means.

A: “Waterfall” is the name given to a 
specific way that software companies have 
traditionally built software. They divide their 
projects into phases, usually drawn in a 
diagram that looks like this: 

Requirements

Design

Implementation

Verification

Maintenance

 
 
 
 
 
 
 
 
 
 
It was given the name “waterfall” by a 
software engineering researcher in the 
1970s who first described it as a less-than-
effective way to build software. The team 
is often expected to come up with a near-
perfect requirements document and design 
before they start building code, because it 
takes a lot of time and effort to go back and 
fix the requirements and design when the 
team finds problems with them. 
 
The problem is that there’s often no way 
to know if the requirements and design 
are right until the team starts building 
code. It’s very common for a waterfall 
team to think they got everything right 
in the documentation, only to discover 
serious flaws when the developers start 
implementing the design.

Q: Then why would anyone ever use 
a waterfall process?

A: Because it works—or, at least, it can 
work. There have been plenty of teams that 
used a waterfall process and built great 
software. It’s certainly possible to create the 

requirements and design first so that there 
are relatively few changes.  
 
More importantly, there are a lot of 
companies where the culture really lends 
itself to a waterfall process. For example, 
if you work for a boss who will severely 
punish you if he thinks you made a mistake, 
then having him personally approve fully 
fleshed-out requirements and design 
documents before any code is written can 
help you keep your job.  But no matter how 
you do it, the effort it takes to figure out 
who’s accountable for each decision in the 
project takes away from effort that could be 
spent actually building your product.

Q: So is waterfall good or bad? And 
how is it less “lightweight” than an agile 
methodology, approach, or framework?

A: Waterfall isn’t “good” or “bad,” it’s just 
a certain way of doing things. Like any tool, 
it has its strengths and weaknesses. 
 
However, many teams find a lot more 
success with agile methodologies like 
Scrum than they do with a waterfall process. 
One reason is that they find a waterfall 
process too “heavyweight” because it 
imposes a lot of restrictions on how they 
work: they’re required to go through 
complete requirements and design phases 
before any code is written. In the next 
chapter, you’ll learn how Scrum teams 
use their sprints and planning practices to 
start building the software quickly, which 
lets them get working software into the 
hands of their users. This feels a lot more 

“lightweight” to the team because everything 
they’re doing has an immediate effect on 
the code that gets built.

Q: Then exactly how should I run 
my projects? Should my team create 
documentation or not? Do we work from 
a complete specification? Should we 
throw out documentation altogether?

A: Documentation is important to agile 
teams—but mainly because it can be an 
effective way to build working software. 
Documentation is only useful if people read 
it, and the truth of the matter is that a lot of 
people just don’t read documentation. 
 
When I write a specification requirements 
document and give it to you and your team 
to build, the document isn’t important. The 
important thing is that what’s in my head 
matches what’s in your head, and what’s 
in each of the team members’ heads. In 
some cases, like when there are complex 
calculations or workflows, a document can 
be a really effective way to the shared 
understanding that leads to great software.

Q: I’m just not sold on this idea that 
values are important. How do they help 
me and my team actually write code?

A: The values in the Agile Manifesto help 
you and your team get into a mindset that 
helps you build better software. And you’ve 
already learned that your mindset—the 
attitude that you have toward the practices 
that you use—can make a big difference. 
 
Think about the example in the last chapter, 
where Kate and Mike were having trouble 
with the daily standup meeting. Kate only got 
mediocre results when she used it as a way 
to dictate her plan to the team and demand 
status from them. But when everyone had a 
more collaborative attitude, they got much 
better results. That’s how mindset can have 
a big effect on real-world results.



Question Clinic: The “which-is-BEST” question

A lot of exam questions ask you to 
choose which of the answers is BEST. That usually 

means one answer is pretty good, but there’s another 
answer that’s better.

82. A user asks the team for a new feature that’s very important, but doing the work will make them miss a committed deadline for a different feature that they plan to work on. Which is the BEST thing the team should do first?

A. Call a meeting with senior management to get an official decision on relative priority

B. Follow the existing plan so they don’t miss the deadline, and prioritize the new feature so they work on it next
C. Talk to to the user and figure out if the new feature is important enough for them to change direction
D. Initiate the change control process

The “Which-is-BEST” 
question has more than 

one good answer, but 
only one BEST answer.

A great way to prepare for the exam is to learn about the different kinds of  questions, 
and then try writing your own. Each of  these Question Clinics will look at a different 
type of  question, and give you practice writing one yourself. Even if  you’re not using 
this book to prepare for the PMI-ACP certification exam, give this a shot. It can still 
be a great way to help get these concepts into your brain!

36

Take a little time out of the chapter for this Question Clinic. It’s here to let your brain have a break and think about something different.

The BEST 
answer

This is the BEST answer! 
Agile teams value responding to 
change over following a plan. So 
the best thing to do is respond 
to the user quickly and get all 
of the information. Then they 
can all work together to figure 
out how the plan is impacted.

It’s not a terrible idea to get senior management involved, but 
that really ought to be left for resolving serious conflicts. It’s 
better for the team to work with the user and figure things 
out together, without appealing to authority.

Agile teams value 
following a plan, so this 
is a good idea... but 
they value responding 
to change more. Is 
there another answer 
that’s more in line with 
agile values?

If you were studying for the PMP exam, this could be the right answer. And since many agile teams work in companies that have a change control process, they may eventually do this. But the question asked what the team should do first, and this would come later (and maybe not at all!).



37

You’re a developer on a    project. A

wants you to      , but you need to      .

What is the BEST way to handle this situation?

HEAD LIBS

Fill in the blanks to come up with your own “which-is-BEST” question about how agile teams 
value customer collaboration over contract negotiation.

(something the user wants you to do)

(a type of user)

A.

B.

C.

D.

(an obviously wrong answer that has nothing to do with this question at all)

(a good answer that is a good idea, but isn’t really relevant to this value)

(a better answer that’s consistent with valuing contract negotiation) 

(the BEST  answer that’s consistent with valuing customer collaboration)

Ladies and Gentlemen, 
We Now Return You 

To Chapter Two

(a conflicting thing you want to do)

(an industry)



38  Chapter 2

wish we’d talked about this sooner

They think they’ve got a hit ...
Mike’s been working with the development team for almost a year on the 
latest killer feature, and he’s really excited that they’re finally done.

We 
just finished testing 

our new “Big Brother” feature. You 
know how individual audience members are 

usually anonymous? We came up with a way 
to use advanced artificial intelligence to 
find their social network profiles 

and create individualized experi-
ences!

  
 
 

Now 
we can find listeners’ email 

addresses, phone numbers, and even 
home addresses! Imagine what our clients 

can do with that information. It’ll be 
an amazing marketing tool!



you are here 4  39

agile values and principles

... but it’s a flop!
Uh-oh. It looks like Mike and his team wasted a year working on a 
product that nobody wants. What happened?

This would 
have been great if we’d delivered it 

a year ago. But there’s no way we can use 
this today!

Mike: What?! We’ve been working on this for a year. Are you telling me 
we just wasted our time?

Ben: I have no idea what you’ve been doing with your time. But I’m telling 
you right now, I don’t see any of  our clients using this.

Mike: But what about that big presentation we gave at that conference last 
year? Every client we talked to said they would love to figure out exactly 
who their listeners are and start marketing directly to them.

Ben: Right. And nine months ago, three of  those clients were named in a 
lawsuit for violating privacy laws. Now none of  them would touch this.

Mike: But... but this is a huge innovation! You have no idea how many 
technical problems we had to solve. We even brought in a specialized AI 
consulting company to help us do advanced customer analysis!

Ben: Look, Mike, I don’t know what to tell you. Maybe you can repurpose 
the code for something else?

Mike: We’re going to have to salvage what we can. But I’ll tell you right 
now, whenever we tear out chunks of  code, we always have bugs.

Ben: Ugh. I wish you’d talked to me about this sooner.

This makes sense! A major source 
of bugs is rework, or taking 

code that was already built and 
modifying it for another purpose.

If agile teams value responding to change but 
changes often cause rework, then how do they 
keep that rework from always causing bugs?



40  Chapter 2

a principled approach

The principles behind the Agile Manifesto
The four values in the Agile Manifesto do a really good job of  capturing 
the core of  the agile mindset. But while those four values are great at giving 
you a high-level understanding of  what it means to “think agile,” there are 
a lot of  day-to-day decisions that every software team needs to make. So in 
addition to the four values, there are twelve principles behind the Agile 
Manifesto that are there to help you really understand the agile mindset.

individuals

collaboration
working software

strict control
self organization

embrace change

simplicity

Behind 
the Scenes

The group at Snowbird came up 
with the four values pretty quickly, 
but it took them a few days of deep 
discussion to agree on the twelve 

principles behind the Agile Manifesto—and even after they left Utah, 
they still hadn’t finalized the wording. The version they first came 
up with is a little different. The final version is on the next page (and 
also at http://www.agilemanifesto.org, the official website of the Agile 
Manifesto). But even though the wording changed slightly over the 
first few years, the ideas laid out in the twelve principles haven’t.

Manifesto for Agile Software Development
We are uncovering better ways of  developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

When you’re building software, it’s not always easy to see the direct connection between the agile values and the day-to-day work. That’s where the principles behind the Agile Manifesto come in.

   public object Convert
       (object value, Type targetType,
                   object parameter, string language)
  {
    double parsedValue;
    if ((value != null)
        && double.TryParse(value.ToString(), 
                           out parsedValue)
        && (parameter != null))
        switch (parameter.ToString()) {
            case "Hours":
                return parsedValue * 30;
                case "Minutes":
                case "Seconds":
                    return parsedValue * 6;
            }
        return 0;
    }

???

http://www.agilemanifesto.org/


you are here 4  41

agile values and principles

Principles Behind the Agile Manifesto
We follow these principles:

• Our highest priority is to satisfy the customer through early and 
continuous delivery of  valuable software.

• Welcome changing requirements, even late in development. Agile 
processes harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of  weeks to a 
couple of  months, with a preference to the shorter timescale.

• Business people and developers must work together daily 
throughout the project.

• Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the job 
done.

• The most efficient and effective method of  conveying information 
to and within a development team is face-to-face conversation.

• Working software is the primary measure of  progress.

• Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace 
indefinitely.

• Continuous attention to technical excellence and good design 
enhances agility.

• Simplicity—the art of  maximizing the amount of  work not done—
is essential.

• The best architectures, requirements, and designs emerge from 
self-organizing teams.

• At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly.



42  Chapter 2

what makes software valuable

The agile principles help you deliver your product
The first three principles are all about delivering software to your users. And the most 
effective way to deliver the best software possible is to make sure that it’s valuable. But what 
does “value” really mean? How do we make sure that we’ve got our users, stakeholders, and 
customers’ best interests in mind when we’re building software? These principles help us 
understand those things.

• Our highest priority is to satisfy the customer through early and 
continuous delivery of  valuable software.

Early delivery
Getting the first version of  the software into users’ 
hands as early as possible so you can get early feedback

+
Continuous delivery

Constantly getting updated versions to the users so 
they can help the team build software that solves their 
most important problems

=
Satisfied users

The users help the team stay on track by making sure 
that the most important features are added first

The 
software does 

something, but not what 
we need it to do.

A product owner like Ben works 
with users and customers to 
really understand what they need 
in the software. He can usually 
spot a feature that the users won’t 
actually use... which happens a lot 
more often than you might think!

So what does that mean, exactly? It means that 
early delivery and continuous delivery  

add up to satisfied users:



you are here 4  43

agile values and principles

• Welcome changing requirements, even late in development. Agile 
processes harness change for the customer’s competitive advantage.

When the 
team delivers 
software early 
and often 
to the users, 
stakeholders, 
and customers, 
that gives 
everyone lots 
of chances to 
find changes 
early, when 
they’re much 
easier to make.

How does the team react when someone points out that they need to make a change that 
will affect a lot of  the code? Every developer has been through this, and it can be a lot of  
(often difficult) work. So how does the team react? It’s natural to resist a big change. But if  
the team can find a way to not just accept but welcome that change, it means that they’re 
putting the users’ long-term needs ahead of  their own short-term annoyance.

But we already 
built the code! This is 

going to be a real pain 
to change.

This is how a lot of teams act when 
someone points out a major change to 
the code. It’s understandable, because 
a change that could have been found 
earlier now requires a lot of work 
that can be slow and highly annoying.

“Requirements” just means what the software is supposed 
to do... but sometimes the users’ needs change, or the 
programmers misunderstand what’s needed, and that can 
lead to changing requirements.



44  Chapter 2

deliver frequently and only make small changes

• Deliver working software frequently, from a couple of  weeks to 
a couple of  months, with a preference to the shorter timescale.

• Working software is the primary measure of  progress.

And now 
that we’re getting working 

software out to the users every 
few weeks, we can avoid nasty 

surprises in the future.

That change was 
a lot of work, but now 

the software is a lot more 
valuable.

When developers push back against changes, it’s not an irrational response: if  they’ve spent many 
months working on a feature, changing that code can be a slow, painful, and error-prone process. 
One reason is that when teams do rework (that’s when they change existing code to do something 
new) it almost always leads to bugs, often ones that are really nasty and difficult to track down and fix.

So how does the team avoid rework? Deliver working software to the users frequently. If  the 
team is building a feature that isn’t useful or does the wrong thing, the users will spot it early, and the 
team can make the change before too much code is written... and preventing rework prevents bugs.

People actually say stuff like 
this when they welcome changing 
requirements. What does it mean 
for software to be “valuable”?



you are here 4  45

agile values and principles

Principles make the most sense in practice.
Most of  us have been on teams that have struggled at one point or another, 
and the most common way to handle that situation is to adopt a new practice. 
But some practices that work really well for some teams only get marginal 
results with other teams—just like we saw with the daily standup in Chapter 1.

So what makes the difference between the team that only gets so-so results 
with a practice and the one that gets really great results? More often than not, 
it has a lot to do with the mindset of  the team, and the attitude they bring to the 
practice. And that’s what these principles are about: helping teams find the 
best mindset that makes their practices as effective as possible.

You’ll see an example on the next page...  

I’m sure that all sounds good on paper, 
but I don’t see how these principles can make a 

difference in the real world.



46  Chapter 2

iteration and backlog

Principles in Practice

The first three principles behind the Agile Manifesto talk about early and continuous delivery of 
software, welcoming changing requirements, and delivering working software on a short timescale. So 
how do teams do that in the real world? With great practices, like iteration and using a backlog.

Iteration: repeatedly performing all of the project 
activities to continuously deliver working software

If you read our book Learning Agile then you’ll 
recognize these iteration and backlog illustrations!

timeboxed, adjective
setting a hard deadline for an activity to be completed, and 
adjusting the scope of  that activity to meet the deadline

The team couldn’t fit all of  the requested features into the current 
timeboxed iteration, so they concentrated on the most valuable ones.

Iterations are 
timeboxed, so if 
you and your team 
discover partway 
through an iteration 
that there’s too much 
work planned for it, 
you’ll push features to 
the next one. 

The team gets 
together at the start 
of the iteration 
to plan out which 
features they’ll build. 
They try to include 
only work that they 
can actually get done 
during the iteration.

DICTIONAry DEfINITION



you are here 4  47

agile values and principles

Backlog: a great way to manage changing requirements

The backlog is a list 
of features waiting 
to be built. Any 
feature that hasn’t 
been included in an 
iteration yet is fair 
game for the users 
and the product 
owner to change.

When the team plans each iteration, they pull 
features to include off of the backlog.

Hey, wait a minute! We learned about 
how Scrum teams use a backlog earlier. 

Does that mean Scrum sprints are a form 
of iteration?

Yes! Scrum uses an iterative approach.
The Scrum practice of  using sprints is a classic example of  how teams 
use iteration in real life to deliver working software early and frequently. 
The Scrum team has a Product Owner who works with the users and 
stakeholders to understand their needs. Everyone learns more with 
each new version of  the working software, and the Product Owner 
uses that new knowledge to add or remove features from the backlog.

We’ll talk a lot more about Scrum in the next chapter.



48  Chapter 2

bet we can do better than “better than nothing”

Tonight’s talk: Practice meets principle

Principle: Practice:
I’ve been looking forward to this debate for a while.

I’m not sure there’s going to be much of  a debate, if  you 
want to know the truth.

This again? There he goes, back on his “nothing gets 
done without practices” kick.

Well, you have to admit, it’s a pretty good point. After all, 
where would an approach like Scrum be without me? Take 
away the sprints, backlogs, retrospectives, sprint reviews, 
Daily Scrum meetings, and sprint planning sessions, and 
what are you left with? Chaos!

Yeah? OK. Let’s talk about those practices for a minute. 
Like the Daily Scrum, for example—

Hold it right there. I already know what you’re going to say 
next. It’s that whole thing about the Daily Scrum getting 

“mediocre” results if  the team doesn’t “get” the principles.

Yep! And it’s not just the Daily Scrum. Let’s talk about 
iteration.

A fantastic practice, thank you very much.

Indeed. But what happens if  the people on the team 
don’t really, genuinely believe in the principle of  
delivering working software frequently?

There will still be iterations! And you know what? It’ll be 
better than it was before they added the practice.

Yes. But will they really deliver working software? Or 
will they cut corners just to push something out the 
door before the iteration ends? Will they really delay a 
feature until the next iteration because it won’t fit? Or 
will adding iteration to the project make everyone on the 
team feel like they’re just “going through the motions”?

Well, at least they’ll have something to show for their effort. 
Even if  they only get a marginal improvement, it’s better 
than nothing! 

Have you been on a team that 
tried to go agile but ended up with 
mediocre results? If so, this might 
remind you of your own experience.

This is true! Even when the team doesn’t 
really understand the principles, adding 
iterations is still usually an improvement... not 
much of one, but enough to justify doing it. 



you are here 4  49

agile values and principles

Dictionary drill
Here are a bunch of definitions for words that you’ve seen in this 
chapter. Can you fill in the words that each definition belongs to?

Answers on page 67

, noun

work done by the team to change previously written code to make it function differently or serve a different 
purpose, often considered risky by teams due to its increased likelihood of  introducing bugs

, adjective

setting a hard deadline for an activity to be completed, and adjusting the scope of  that activity to meet the 
deadline

, noun

a practice used by teams in which the team works with users, customers, and/or stakeholders to maintain a list 
of  features that will be built in the future, often prioritized with the most valuable features at the top

, adjective

a kind of  methodology in which teams break the project down into smaller parts, delivering working software at 
the end of  each one, and possibly changing direction based on the feedback from the working software

, adjective

a type of  model, process, or method for building software in which the entire project is broken down into 
sequential phases, often including a change control process in which changes force the project into a prior phase

, noun (two words)

developing a project artifact (like a plan) in steps, using knowledge gained from the previous step to improve it



50  Chapter 2

reflect regularly

Q: Does each principle match 
up with exactly one practice? Is there a 
one-to-one correspondence?

A: Not at all. The first three principles 
behind the Agile Manifesto emphasize 
early and continuous delivery of software, 
welcoming changing requirements, and 
delivering working software frequently. 
And we used two practices (iteration 
and backlog) to help you understand 
the principles on a deeper level. But 
that doesn’t mean there’s a one-to-one 
relationship between the practices and the 
principles. 
 
In fact, the opposite is true. You can have 
principles without practices, and you can 
have practices without principles.

Q: I’m not sure how that works. What 
exactly do you mean by “practices 
without principles”?

A: Here’s an example of what it looks 
like when a team puts a practice in place 
without really understanding or internalizing 
the agile principles. Scrum teams hold a 
retrospective at the end of each sprint so 
that they can talk about what went well and 
what can be improved.  
 
But take another look at the last principle in 
the list: 

At regular intervals, the team reflects 
on how to become more effective, 
then tunes and adjusts its behavior 
accordingly.

 

What if the team hasn’t really taken this 
idea to heart? They’ll still have the 
retrospective meeting because the Scrum 
rules tell them to do it. And they’ll probably 
talk about some of the problems that they 

had, which can certainly lead to some 
marginal improvements.  
 
The problem is that while the new meeting 
did something, it feels like it’s somewhat 

“empty” or superfluous. The people on the 
team feel like they’re taking time away from 
their “real” jobs to do it. Eventually, they’ll 
start talking about replacing it with 
something more “efficient,” like using an 
email discussion list or wiki page. A lot of 
teams have that experience when they add 
practices without principles.

Q: OK, I think I see how you can 
have practices without really believing 
in the principles. But how can you have 
principles without practices?

A: A lot of people have a little trouble 
with this idea when they first come in 
contact with the idea of an “agile mindset” 
driven by principles.  
 
So what does it look like if the team 
takes very seriously the agile principle of 
reflecting on how to become more effective, 
but doesn’t have a specific practice for 
doing that reflection? That’s actually pretty 
common on very effective agile teams. 
Everyone is in the mindset of reflecting 
often, so when someone feels like it’s time 
to review how the project has progressed 
and make necessary corrections, that 
person usually grabs a few other team 
members and has an informal retrospective. 
If something good comes out of it, they talk 
it over, and make the necessary correction. 
For a team accustomed to a framework 
with well-specified rules, such as Scrum, 
that feels disorganized, chaotic, or “loosey-
goosey.” That’s one reason teams like to 
standardize on a set of practices—so that 
everyone has common ground rules.

Q: Why did you capitalize “Product 
Owner” on the bottom of page 47?

A: Because while many people have the 
job title “product owner,” spelling Product 
Owner with capital letters refers to a 
specific role with responsibilities specified 
by the Scrum rules. You’ll learn more about 
that in the next chapter.

When the team 
adopts practices 
without the right 
principle-driven 
mindset, it often 
feels “empty” or 
superfluous, like 
they’re just going 
through the 
motions, and they’ll 
start looking for 
alternatives that 
take less effort.



you are here 4  51

agile values and principles

Some-
thing’s still really 

bothering me about how things 
are going, though.

Wow, Kate! 
I’m feeling so much better 

about the project now. Every time I get a 
new build, I can see exactly how much 

progress the team’s made.

Ben: And just as I was feeling good about how things were going. I 
wish you didn’t have to be so negative. What’s the bad news now?

Kate: I’m not trying to be negative. I’m really happy about the 
progress we’ve made just by starting to use iteration.

Ben: Right! I went back to the users with early builds, and they found 
all sorts of  changes that we could fix early without a lot of  rework.

Kate: Yeah, and that’s great. But we still have problems.

Ben: Such as...?

Kate: Well, like that meeting we had last Wednesday. We spent all 
afternoon arguing about documentation.

Ben: Why do you want to bring that up again? You and Mike keep 
asking for specifications with every tiny detail about what to build.

Kate: Yes, because then I can help the team plan out the project, and 
Mike and the team know exactly what to build.

Ben: But it’s not that simple! These specs are really hard to write. And 
even when we write a spec for one iteration, it still gets really long.

Kate: Look, if  you’ve got a better idea about how to get the team to 
build the right software, I’d love to hear it.

A lot of teams seem to have trouble writing and reading highly detailed 
specifications. Can you think of a more effective way for a product owner 
to help the team to understand exactly what the users need them to build?



52  Chapter 2

maybe hang up some motivational posters?

The agile principles help your team 
communicate and work together
Modern software is built by teams, and while individual people are really 
important to any team, teams work best when everyone works together—which 
means developers not just working with each other, but with the users, customers, 
and stakeholders, too. That’s what these next principles are all about.

Meet with 
the users more often?! 

But all they ever do is ask us for 
changes.

This is a great way to demotivate your whole team 
and cause them to do lousy work. Ben isn’t even 
the boss! But he can still create an environment 
of fear and distrust for everyone around him.

It’s really common for developers to dread or resent meeting with users, 
because those meetings often uncover changes, which leads to rework that 
can often be difficult and frustrating. But when the team has a better, more 
agile mindset, they know that meeting with users more often keeps 
them in sync, and actually prevents those changes.

I don’t 
care if the team’s been 

working 70 hours a week. Failure is not 
an option, and mistakes will be 

reported.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and 
support they need, and trust them to get the job done.

A more agile mindset would 
help Mike see that working 
with his users more often 
actually prevents those changes.

Teams do their best work when the people on them are motivated. Unfortunately, most of  
us have had bosses or coworkers who seemed determined to drain all of  that great motivation. 
When people feel like they aren’t allowed to make mistakes without serious consequences, 
are pressured to work extremely long hours, and generally feel like they aren’t trusted to do 
their jobs, the quantity and quality of  their work plummets. Teams with a more agile mindset 
know that when everyone is trusted and given a good working environment, they flourish.



you are here 4  53

agile values and principles

MULTIPOINTED 
POLYGON SPEC

• The most efficient and effective method of  conveying information 
to and within a development team is face-to-face conversation.

Waterfall teams typically build a requirements specification first, and then design the 
software based on those requirements. The problem is that three people can read 
the same spec and come away with three very different ideas about what the team is 
supposed to build. This can be a little surprising—shouldn’t specifications be precise 
enough to give everyone the same idea?

There are two problems with that in the real world: writing technical material is 
hard, and reading it is even harder. Even if  the person writing the spec does a perfect 
job describing what needs to be built (which rarely happens), the people reading it 
will very often interpret it differently. So how do you get around this problem?

The answer is surprisingly simple: face-to-face conversation. When the team gets together 
and talks about what they need to build, it really is the most efficient and effective way to 
communicate exactly what needs to be built... and also status, ideas, and any other information.

Let’s be honest—we don’t 
always read every word in the 
manual before turning on a new 
gadget. So why would we expect 
people to do that with a spec?



54  Chapter 2

let’s get motivated

Q: Are you saying that when people 
are demotivated, they do bad work on 
purpose?

A: No, not on purpose. But it’s very 
difficult to innovate, create, or do the 
mentally taxing tasks required to work 
on a software team when you’re in a 
demotivating environment. And it’s 
surprisingly easy to demotivate a team: 
your motivation gets drained when you’re 
not trusted to do your job, harshly punished 
or publicly embarrassed if you make a 
mistake (everyone makes mistakes!), or 
held to unreasonable deadlines that you 
have no input into or control over. Those 
are all things that have been shown 
repeatedly to drag down software teams 
and make them a lot less productive.

Q: Wait, go back to what you were 
saying about mistakes. We’ve been 
talking about welcoming changes. But 
if you’re making a change, doesn’t that 
mean someone made a mistake earlier 
that has to be changed now?

A: It’s dangerous to think of changes 
as mistakes, especially when you’re using 
iteration. A lot of times, everyone on the 

team and the users and stakeholders all 
agree that the software should be built 
to do something, but when the users get 
their hands on the working software at 
the end of the iteration, they realize that it 
needs to change—not because they made 
a mistake earlier, but because they now 
have information they didn’t have at the 
start of the iteration. That’s actually a really 
effective way to build software. But it only 
works if people feel comfortable making 
changes, and if they don’t call it a mistake 
or “blame” anyone for finding the change.

Q: Don’t we need specifications for 
more than just communication? What if 
you need to refer back to the spec in the 
future? Or if it needs to be distributed to 
a lot of people?

A: Sure, and those are good reasons 
to write things down. And that’s why 
agile teams value comprehensive 
documentation—they just value working 
software more. 
 
One thing to keep in mind, though, is that 
if you’re writing documentation to refer 
back to, or to distribute to a wide audience 
beyond the software team, then a software 

specification may not be the right kind of 
document for the job. Documentation is 
a tool to get a job done, and you always 
want to use the right tool for the job. The 
information that teams need in order to 
build software is usually different than the 
information a user or manager might need 
after the software is built, so trying to create 
a document that serves both purposes 
might do neither particularly well.

Q: Hey, it looks like the chapter is 
almost over, and you haven’t covered all 
twelve principles! Why not?

A: Because the agile principles aren’t 
just an isolated topic that teams learn once 
and then move on from. They’re important 
because they help you understand how 
agile teams think about the way they work 
together to build software. That’s why the 
values and principles of the Agile Manifesto 
are important. 
 
We’re not going to stop talking about the 
agile mindset, values, or principles, even 
though we’re moving on to methodologies 
in the next chapter. We’ll keep coming back 
to them, because they help you understand 
the methodologies (for example, Scrum 
teams are self-organizing, and XP teams 
value simplicity).

 � Software is valuable when it does what the users, 
customers, or stakeholders need it to do.

 � To ensure that software is valuable, teams should 
deliver an early version to the users, and keep 
delivering continuously.

 � Agile teams welcome changing requirements, and 
finding those changes early helps prevent rework.

 � The best way to find those changes early is to get 
working software to the users frequently.

 � Documents are helpful, but the most effective way to 
convey information is face-to-face conversation.

 � Developers on agile teams work with business people 
every day, including users and stakeholders.

 � Iteration is a practice in which teams break the software 
down into frequent timeboxed deliveries.

 � A backlog is a practice in which teams maintain a list of 
features that will be built in future iterations.

Scrum teams actually maintain two backlogs: one for the current sprint, and one for the whole product.

You’ll learn more about that in the next chapter.



you are here 4  55

agile values and principles

Getting into a more agile mindset isn’t always easy! Sometimes we 
get it, but sometimes we need a little work. Here are some things we 
overheard Mike, Kate, and Ben saying. Draw a line from each speech 
bubble to either COMPATIBLE or INCOMPATIBLE, and then to 
the agile principle that it’s either compatible or incompatible with.

Welcome changing requirements, 
even late in development. Agile 
processes harness change for 
the customer’s competitive 
advantage.

Working software is the 
primary measure of  progress.

Build projects around 
motivated individuals. Give 
them the environment and 
support they need, and trust 
them to get the job done.

Deliver working software 
frequently, from a couple 
of  weeks to a couple of  
months, with a preference 
to the shorter timescale.

Why are you 
asking me questions? I 

already wrote down everything 
the users asked for in the 

specification.

I’m running 
the latest build, but I 

thought we’d be a lot further 
along on that analytics feature. Is 

there a problem I don’t know 
about?

I just found out that 
the audience size calculation 

algorithm we’re using doesn’t work. 
We need to push this feature to 

the next iteration.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

ok, which of you idiots 
wrote this buggy block of 
spaghetti code? It’s your 
fault that we’re behind.

INCOMPATIBLE

COMPATIBLE

Answers on page 68

CALLJUDGMENT



56  Chapter 2

nice work team

The new product is a hit!
Kate and Mike delivered a great product, and it’s been 
extremely successful.

And 
the team is 

really clicking! It’s 
been a long time since 
I’ve enjoyed work so 

much.

Did you see that email 
from the CEO? Sales are 

through the roof, and it’s all 
because of the new features 

we added.

In fact, it’s gone so well that Ben has 
some fantastic news that everyone 
will want to hear. Nice work, team!

Thanks to the latest 
sales, We just got a new 

round of venture capital funding... 
and that means bonuses for 

everyone!



1 2 3 4

5

6

7 8 9 10

11 12

13 14

15 16

17

18 19 20

21 22

23

24

25

26

27 28

Across
1. When a deadline's been set, and the scope is

adjusted to meet it
3. A great way to manage changing requirements
6. How often to deliver

12. When teams repeatedly perform all of the
project activities in small chunks

13. What the team does to its behavior after a
retrospective

16. An effective way to communicate complex
requirements and ideas

19. There's no single "________" way to build
software

22. What we do with customers
23. Something that shouldn't be punished if you

want a motivated team
24. What business people and developers must do

together daily
25. Very useful for agile teams because they help

get the work done
26. At regular ________ the team reflects on how to

become more effective

Down
2. When to deliver software
4. The kind of delivery agile teams try to achieve
5. Attitude towards customers or other teams that

requires strict agreements before any work can
start

7. What agile teams respond to
8. You need to _______ the team to get the job

done
9. Traditional but often less-than-effective way to

build software
10. The kind of individuals to build projects around
11. Working software is the primary measure of

_______
14. Where the original authors of the Agile

Manifesto got together
15. What happens to your team if you create a

culture of fear
17. Agile teams still follow one
18. The kind of software delivered at the end of

every iteration
20. The kind of users that are the highest priority for

agile teams

Across
1. When a deadline’s been set, and the scope is adjusted to meet it
3. A great way to manage changing requirements
6. How often to deliver
12. When teams repeatedly perform all of the project activities in small 
chunks
13. What the team does to its behavior after a retrospective
16. An effective way to communicate complex requirements and ideas
19. There’s no single “________” way to build software
22. What we do with customers
23. Something that shouldn’t be punished if you want a motivated team
24. What business people and developers must do
together daily
25. Very useful for agile teams because they help get the work done
26. At regular ________ the team reflects on how to become more 
effective 
27. The most effective and efficient method of conveying information
28. Teams work best when you pay attention to them

Down
2. When to deliver software
4. The kind of delivery agile teams try to achieve 
5. Attitude toward customers or other teams that requires strict agree-
ments before any work can start
7. What agile teams respond to
8. You need to _______ the team to get the job done
9. Traditional but often less-than-effective way to build software
10. The kind of individuals to build projects around 
11. Working software is the primary measure of _______
14. Where the original authors of the Agile Manifesto got together
15. What happens to your team if you create a culture of fear
17. Agile teams still follow one
18. The kind of software delivered at the end of every iteration
20. The kind of users that are the highest priority for agile teams
21. Avoid this if you can

you are here 4  57

agile values and principles

Mindsetcross
See how well you understand the agile values and principles. Can 
you solve this without flipping back to the rest of the chapter?

Answers on page 69



58  Chapter 2

exam questions

Exam Questions

1. You’re a project manager on a team building network firmware for embedded systems. You’ve called a 
meeting to give a demo of the latest version of code the team has been working on for a control panel interface 
to a very technical group of business users and customers. This is the fifth time that you’ve called a meeting 
to do a demo like this. And for the fifth time, the users and customers asked for specific changes. The team will 
now go back and work on a sixth version, and you’ll repeat the process again.  
Which of the following BEST describes this situation?

A. The team does not understand the requirements
B. The users and customers don’t know what they want
C. The project needs better change control and requirements management practices
D. The team is delivering value early and continuously

2. Which of the following is NOT a Scrum role?

A. Scrum Master
B. Team Member
C. Project Manager
D. Product Owner

3. Joaquin is a developer, and his software team is in the process of adopting agile. One of the project’s users 
wrote a brief specification that describes exactly what she wants for a new feature, and Joaquin’s manager 
assigned him to work on that feature. What should Joaquin do next?

A. Demand a meeting with the user, because agile teams recognize that face-to-face conversation is the most 
efficient and effective method of conveying information

B. Read the specification
C. Ignore the specification, because agile teams value customer collaboration over comprehensive 

documentation
D. Start writing code immediately, because the team’s highest priority is to satisfy the customer through early 

delivery of valuable software

4. Which of the following is TRUE about working software?

A. It does what the users need it to do
B. It meets the requirements in its specification
C. Both A and B
D. Neither A nor B

These practice exam questions will help you review the material in this chapter. You should still try 
answering them even if you’re not using this book to prepare for the PMI-ACP certification. It’s a great 

way to figure out what you do and don’t know, which helps get the material into your brain more quickly.



you are here 4  59

agile values and principles

5. Which of the following statements BEST describes the Agile Manifesto?

A. It outlines the most effective way to build software
B. It contains practices that many agile teams use
C. It contains values that establish an agile mindset
D. It defines rules for building software

6. Scrum projects are divided into:

A. Phases
B. Sprints
C. Milestones
D. Rolling wave planning

7. You are a developer at a social media company working on a project to build a new feature to create a private 
site for a corporate client. You need to work with your company’s network engineers to determine a hosting 
strategy, and come up with a set of services and tools that the engineers will use to manage the site. The network 
engineers want to host all of the services internally on your network, but you and your teammates disagree and 
feel that the services should be hosted on the client’s network. Work on the project has come to a halt while 
everyone tries to come to an agreement. Which agile value BEST applies to this situation?

A. Individuals and interactions over processes and tools
B. Working software over comprehensive documentation
C. Customer collaboration over contract negotiation
D. Responding to change over following a plan

8. Donald is a project manager on a team that follows separate phases for each project, starting with a 
requirements phase followed by a design phase. Some work can begin on the code before the requirements 
and design are finished, but the team typically doesn’t consider any work to be complete until those phases are 
finished. Which term BEST describes Donald’s projects?

A. Iterative
B. Rolling wave planning
C. Waterfall
D. Scrum

Exam Questions



60  Chapter 2

exam questions

Exam Questions
9. Keith is the manager of a software team. He’s made it clear that mistakes are not to be tolerated. 
A developer spent several hours building “proof of concept” code to test a possible approach to a 
complex problem. When he eventually discovered from the experiment that the approach wouldn’t 
work, Keith yelled at him in front of the whole team and threatened to fire him if he did it again.  
Which agile principle BEST applies to this situation?

A. The most efficient and effective method of conveying information to and within a development 
team is face-to-face conversation.

B. Build projects around motivated individuals. Give them the environment and support they need, 
and trust them to get the job done.

C. Our highest priority is to satisfy the customer through early and continuous delivery of valuable 
software.

D. Continuous attention to technical excellence and good design enhances agility.

10. What’s the highest priority of an agile team?

A. Maximizing the work not done
B. Satisfying the customer by delivering valuable software early and often
C. Welcoming changing requirements, even late in development
D. Using iteration to effectively plan the project

11. Which of the following statements is NOT true about the daily standup?

A. The length is kept short by having everyone stand for the duration of the meeting
B. It’s the same thing as a status meeting
C. It is most effective when everyone listens to each other.
D. It’s an opportunity for every team member to get involved in planning the project.

12. Which of the following BEST describes the agile mindset with respect to simplicity?

A. Maximizing the work not done
B. Satisfying the customer by delivering valuable software early and often
C. Welcoming changing requirements, even late in development
D. Using iteration to effectively plan the project

13. A’ja is a project manager on a team that is just starting their agile adoption. The first change 
they made to the way they work was to start holding daily standup meetings. Several team 
members have approached her to say that they don’t like attending. And despite the fact that 
she’s getting some valuable information from the team at each standup, A’ja is concerned that the 
extra lines of communication might not be worth damaging the team cohesion.  



you are here 4  61

agile values and principles

What is the BEST thing for A’ja to do?

A. Stop holding the daily standup and find another way to adopt agile.
B. Make and enforce a rule that every attendee must put away his or her phone and pay attention.
C. Follow up with people individually after the meeting to get more detailed status.
D. Work with the team on changing their mindset.

14. You’re a developer on a software team. A user has approached your team about building a new feature, 
and has provided requirements for it in the form of a specification. She is very certain of exactly how the 
feature will work, and promises there will be no changes. Which agile value BEST applies to this situation?

A. Individuals and interactions over processes and tools
B. Working software over comprehensive documentation
C. Customer collaboration over contract negotiation
D. Responding to change over following a plan

15. Which of the following is NOT a benefit of welcoming changing requirements?

A. It gives the team a way to explain a missed deadline
B. The team builds more valuable software when customers aren’t pressured not to change their minds
C. There’s more time and less pressure so the team can make better decisions
D. Less code is written before changes happen, which minimizes unnecessary rework

16. Which of the following is NOT part of an agile team’s mindset toward working software?

A. It contains the final version of all features
B. It is the primary measure of progress
C. It is delivered frequently
D. It is an effective way to get feedback

17. Which of the following is NOT true about iteration?

A. The team must finish all planned work by the end of an iteration
B. Iterations have a fixed deadline
C. The scope of work performed during an iteration may change by the time it ends
D. Projects typically have multiple sequential iterations

Exam Questions



62  Chapter 2

exam answers

1. Answer: D

Did this situation sound negative, like something was going drastically wrong? If it did, you may want to think about your 
own mindset! This was actually a pretty accurate description of a very successful agile project that uses an iterative 
methodology. It only sounds like the project is running into problems if you approach it with a mindset that considers 
change and iteration to be a mistake rather than a healthy activity. If you see the project this way, then you’ll be tempted 
to “blame” the team for not understanding the requirements, or the users for not knowing what they want, or the process 
for not having adequate controls to prevent and manage changes. Agile teams don’t think about things like that. They 
know that the best way to figure out what the users need is to deliver working software early and frequently.

2. Answer: C

Project managers are very important, but there’s no specific role in Scrum called “project manager.” Scrum has three 
roles: Scrum Master, Product Owner, and Team Member. The project manager will fill one of those roles on a project that 
uses Scrum, but will often still have the “Project Manager” job title.

3. Answer: B

It’s true that agile teams value customer collaboration, believe face-to-face conversation is the most effective method of 
conveying information, and place the highest priority on delivering software. However, the user took the time to write the 
specification, and the information in it could be very helpful in either writing code or having a face-to-face conversation. 

4. Answer: D

When agile teams talk about working software, they mean software that they consider “done” and ready to demonstrate 
to the users. But there’s no guarantee that it fulfills the users’ needs or that it meets the specific requirements in a 
specification. In fact, the most effective way to build software that genuinely helps users is to deliver working software 
frequently. The reason is because the early versions of working software typically don’t fully meet the users’ needs, 
and the only way for everyone to figure that out is to get it into the hands of the users so they can give feedback about it. 

Exam Questions
Answers

When someone takes the time to write 
down information they think is important, 
it’s very UN-collaborative to ignore it.

This is why agile teams value early and 
continuous delivery of working software.

Here are the answers to this chapter’s practice exam questions. 
How many did you get right? If you got one wrong, that’s OK—it’s 

worth taking the time to flip back and re-read the relevant part of the 
chapter so that you understand what’s going on.

When your team follows an agile methodology that has specific roles, the 
role that you fill doesn’t always match the title on your business card, 
especially when your team is just starting to adopt the methodology.



you are here 4  63

agile values and principles

Exam Questions
Answers

5. Answer: C

The Agile Manifesto contains the core values shared by effective agile teams. It doesn’t define a “best” way to 
build software or a set of rules that all teams should follow, because people on agile teams know that there’s no 

“one-size-fits-all” approach that works for all teams.

6. Answer: B

Scrum teams work in sprints, typically (but not always) 30 days long. They plan the next 30 days of work 
(assuming the length is 30 days) at the start of the sprint. At the end of the sprint, they demonstrate working 
software to the users, and also hold a retrospective to review what went well and find ways to improve.

7. Answer: C

The project is suffering because the team is having trouble collaborating with their customer. In this case, the 
network engineers are the customer, because they’re the ones who will be using the software. This is a situation 
where it would be easy to take a contract negotiation approach, laying out specific terms and documents to 
describe what will be built so that software development work can begin. But it’s more effective to genuinely 
collaborate with them and work together to discover the best technical solution.

8. Answer: C

A waterfall project is divided into phases, typically starting with requirements and design phases. Many waterfall 
teams will begin “pre-work” on code once the requirements and design have reached a stable point, even if 
they’re not yet complete. However, this is definitely not the same thing as iteration, because the team doesn’t 
change the plan based on what they learned building and demonstrating working software.

9. Answer: B

Agile projects are built around motivated team members. Keith is taking actions that undermine the whole team’s 
motivation by undercutting a team member who’s taking a good risk and genuinely trying to make the project 
better.



64  Chapter 2

exam answers

10. Answer: B

Flip back and reread the first principle of agile: “Our highest priority is to satisfy the customer through early and 
continuous delivery of valuable software.” The reason this is the highest priority is because agile teams are focused 
first and foremost on delivering software that’s valuable. All of the other things we do on projects—planning, design, 
testing, meetings, discussion, documentation—are really, really important, but it’s all in service of delivering that 
valuable software to our customers. 

11. Answer: B

While some teams treat the Daily Standup as a status meeting where each team member gives an update to a boss 
or project manager, that’s not really its purpose. It works best when everyone listens to each other, and uses it to plan 
the project together as a team.

12. Answer: A

Agile teams value simplicity, because simple designs and code are much easier to work with, maintain, and change 
than complex ones. Simplicity is often called “the art of maximizing the work not done” because—and this is especially 
true of software—the most effective way to keep something simple is often to simply do less.  

13. Answer: D

The reason that the team isn’t paying attention during the daily standup is because they don’t really care about it or 
buy into it as an effective tool, and mainly want it to end as quickly as possible so they can get back to their “real” jobs. 
When teams have this mindset, it’s likely that they will eventually stop attending the meeting altogether, and the agile 
adoption is much less likely to be successful. The daily standup practice will be more effective if the team understands 
how it helps each of them, both individually and as a team. That mindset shift can only be accomplished through 
open and honest discussion about what’s working and what isn’t. That’s why working with the team on changing their 
mindset is the best approach to this situation.

14. Answer: B

It certainly makes sense to read and understand the specification. But the most effective way to truly ascertain 
whether or not the team really understands what she intended is to deliver working software to her, so that she can 
see how the requirements she documented were interpreted and work with the team to determine what works well 
and what needs to change.

Exam Questions
Answers



you are here 4  65

agile values and principles

Exam Questions
Answers

15. Answer: A

There are a lot of great reasons that agile teams welcome changing requirements. When customers are 
encouraged to change their minds (rather than discouraged from it), they give better information to the team, and 
that leads to better software. And even when people keep their mouths shut about changes, they almost always 
eventually get exposed in the end, so when the team gets them early it gives them more time to respond—and 
the earlier the changes arise, the less code has to be reworked. 

However, changes are never an excuse for poor planning or missed deadlines. Effective agile teams generally 
have an agreement with their users: the teams welcome changing requirements from users, customers, and 
managers, and in return they aren’t blamed for the time it takes to respond to those changes, because everyone 
recognizes it’s still the fastest and most effective way to build software. So nobody really sees welcoming 
changing requirements as giving the team a way to explain a missed deadline, because the deadlines should 
already be adjusted to account for the changes.

16. Answer: A

Working software is delivered frequently so that the team can get frequent feedback and make changes early. 
That’s why working software should never be assumed to contain the final version of any requirement. That’s why 
it’s “working” software, not “finished” software.

17. Answer: A

Iterations are timeboxed, which means that the deadline is fixed and the scope varies to fit it. The team starts 
each iteration with a planning meeting to decide what work will be accomplished. But if it turns out that they didn’t 
get the plan right and work takes longer than expected, then any work that didn’t get done is returned to the 
backlog and reprioritized (and often ends up in the next iteration).



66  Chapter 2

exercise solutions

Manifesto Magnets Solution

That is, while there is

following

more

the items on the

We are uncovering better way
s of developing

over

over

over

over

Manifesto for Agile Software Development

processesindividuals and

to
plana

responding change

left

Through this work we have come to value :

and interactions
tools

softwareworking documentationcomprehensive

collaborationcustomer negotiationcontract

value

value

the items on the

in
right ,

we
.

software by doing it and helping others do it.



you are here 4  67

agile values and principles

Dictionary drill
Here are a bunch of definitions for words that you’ve seen in this 
chapter. Can you fill in the words that each definition belongs to?

, noun

work done by the team to change previously written code to make it function differently or serve a different 
purpose, often considered risky by teams due to its increased likelihood of  introducing bugs

, adjective

setting a hard deadline for an activity to be completed, and adjusting the scope of  that activity to meet the 
deadline

, noun

a practice used by teams in which the team works with users, customers, and/or stakeholders to maintain a list 
of  features that will be built in the future, often prioritized with the most valuable features at the top

, adjective

a kind of  methodology in which teams break the project down into smaller parts, delivering working software at 
the end of  each one, and possibly changing direction based on the feedback from the working software

, adjective

a type of  model, process, or method for building software in which the entire project is broken down into 
sequential phases, often including a change control process in which changes force the project into a prior phase

SOLuTION

backlog

rework

timeboxed

iterative

waterfall
Normally “waterfall” is a noun. But in this case it’s actually an adjective that describe a type of process.

Here’s how it’s used in a sentence: “Brian used to work at a company that followed 
a waterfall process, so he’s really excited to try an agile process like Scrum.”

Rework can also be a verb: “We had to rework this bit of code to adapt it to a new purpose.”

We used “rework” as a noun earlier in the 
chapter: “a major source of bugs is rework.”

This can also be used as a verb: “Let’s timebox 
the work we’re doing on this feature to six hours.”

, noun (two words)

developing a project artifact (like a plan) in steps, using knowledge gained from the previous step to improve it

progressive elaboration



68  Chapter 2

compatibility test

Welcome changing requirements, 
even late in development. Agile 
processes harness change for the 
customer’s competitive advantage.

Working software is the 
primary measure of  progress.

Build projects around 
motivated individuals. Give 
them the environment and 
support they need, and trust 
them to get the job done.

Deliver working software 
frequently, from a couple 
of  weeks to a couple of  
months, with a preference 
to the shorter timescale.

Why are you 
asking me questions? I 

already wrote down everything 
the users asked for in the 

specification.

I’m running 
the latest build, but I 

thought we’d be a lot further 
along on that analytics feature. Is 

there a problem I don’t know 
about?

I just found out that 
the audience size calculation 

algorithm we’re using doesn’t work. 
We need to push this feature to 

the next iteration.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

Technical people like Mike are 
often really blunt. But even if the team has a culture where it’s OK to challenge and even insult people, blaming one person for delays or 
quality issues is really demotivating.

ok, which of you idiots 
wrote this buggy block of 
spaghetti code? It’s your 
fault that we’re behind.

INCOMPATIBLE

COMPATIBLE

When Kate discovered this change, they could have delivered software that didn’t work, or delayed the delivery to fix it. But pushing the feature to the next iteration is a better choice, because they’ll still deliver working software with the other features.

If Kate was only relying on her schedule to measure 
progress, she might think the project was going just fine. 
Relying on working software as her primary measure of 
progress helps her spot (and hopefully fix!) problems early.

Getting into a more agile mindset isn’t always easy! Sometimes we 
get it, but sometimes we need a little work. Here are some things we 
overheard Mike, Kate, and Ben saying. Draw a line from each speech 
bubble to either COMPATIBLE or INCOMPATIBLE, and then to 
the agile principle that it’s either compatible or incompatible with.

CALLJUDGMENT

Solution

It’s not fair to ask users for 
requirements at the start of 
the project and then refuse 
to let them change their minds 
(as long as they understand 
that the team needs time to 
make the changes).

www.allitebooks.com

http://www.allitebooks.org


you are here 4  69

agile values and principles

Mindsetcross
SOLUTION

T
1

I M E B O X E
2

D B
3

A C
4

K L O G
A O C

5

F
6

R E Q U E N T L Y O
C

7
T

8
W

9
L T N M

10

H R A Y P
11

I
12

T E R A T I O N
A

13
D J U S T S R N R T S

14

N S E D
15

D
16

O C U M E N T A T I O N
G T R E P

17
G O C V O

E W
18

F M L R U B
19

E S
20

T A W
R

21
C

22
O L L A B O R A T E S A T B

E R L T N S M
23

I S T A K E I
W

24
O R K L I S I D R

O I V T
25

O O L S D
R I

26
N T E R V A L S F

K G T I
F

27
A C E T O F A C E P

28
E O P L E
D



70  Chapter 2

this page intentionally left blank



managing projects with Scrum3

The Rules of Scrum

The rules of  Scrum are simple. Using it effectively is not so simple.  
Scrum is the most common approach to agile, and for good reason: the rules of Scrum are 

straightforward and easy to learn. Most teams don’t need a lot of time to pick up the events, 

roles, and artifacts that make up the rules of Scrum. But for Scrum to be most effective, they 

need to really understand the values of Scrum and the Agile Manifesto principles, which help 

them get into an effective mindset. Because while Scrum seems simple, the way a Scrum team 

constantly inspects and adapts is a whole new way of thinking about projects.

So... which of 
these Product Backlog 

items should we work on 
next?

Wow, 
lady, that decision’s 

way above my pay grade. I’ll 
have to check with my boss, and 

maybe his boss, and...

Elizabeth is wondering 
if Bruce might not be 
the right person to be 
the product owner.

this is a new chapter  71



72  Chapter 3

first person moo-ter

Coming soon From GAMESRANCH HAND  

The team that 
brought you the 

blockbuster 
international hit 

COWS GONE WILD 
video games

BLACK AND 
WHITE OPS

CGW V
HayStation Hs

RHG

COWS 
GONE 
WILD 

V

GAMESRANCH HAND
PrODuCTION

A



you are here 4  73

managing projects with scrum

Meet the Ranch Hand Games team
They’re hot off  the successful release of  Cows Gone Wild IV: The Milk Man Cometh, and about to tackle 
their most ambitious project yet! But while CGW4 may have sold well, it was far from perfect as a 
project, and Amy, Brian, and Rick want CGW5 to be an improvement. Agile to the rescue!

Director

AMY

Creative

Brian

Team
Lead

Rick

Manager
Project

Amy: Wow, I’m so glad you said that. I can’t take another project like that. Just staying on top of  the last-
minute artwork changes was practically impossible.

Brian: Oh man, we can’t have that argument again. You know they were necessary because the levels 
kept changing. I had my whole team working nights and weekends just to keep up.

Amy: I know, I know. We all got overwhelmed trying to tackle too many things at the same time.

Brian: No matter how much planning we did, our schedules never seemed long enough.

Rick: Yeah, that was definitely a problem—and I’ve been doing a lot of  research about how to fix that. 
What do you guys think about using Scrum?

Amy: I’ve been reading about it, too. I think it could help.

Brian: Look, anything that can help make things less insane around here gets my vote.

Amy: But don’t the Scrum rules say that we need a Product Owner and a Scrum Master?

Rick: Well, I’m looking over what a Scrum Master does, and I think I’m up to that task. Amy, you work 
with the business side a lot, right? What do you think about being the Product Owner?

Amy: I’ll try anything once. I’ll start letting the business and PR teams know that I’m the Product Owner.

Brian: Let’s do this!

We 
barely made 

our deadline last 
time. There’s no way we 

can work 90-hour 
weeks like that 

again!



74  Chapter 3

the rules of scrum

The Scrum events help you get your projects done
Scrum is the most popular approach to agile, and for good reason. The rules of  Scrum 
are simple, and teams all around the world have been able to adopt them and improve 
their ability to deliver projects. Every Scrum project follows the same pattern of  
behavior, which is defined by a series of  timeboxed events that always happen in 
the same order. Here’s what the Scrum pattern looks like:

If you’ve read our book Learning Agile then you’ll 
recognize this illustration of the basic Scrum pattern!

Every Scrum project is organized into 
timeboxed iterations called Sprints. Many 
teams use 30-day Sprints, but it’s pretty 
common to see two-week Sprints too.

The team uses the 
Product Backlog 
to keep track of 
the features that 
they’ll build for 

the whole project.

At the beginning 
of each Sprint, 

the Scrum Team 
gets together for 
a Sprint Planning 

session where 
they choose what 
items to include 

in the Sprint.

The items for 
the Sprint are 

pulled off of the 
Product Backlog 
and added to the 
Sprint Backlog. 

During the 
Sprint, all of the 

development 
work is focused 
on building the 

items in the 
Sprint Backlog.

Every day, the team 
holds a Daily Scrum, a 
short meeting where 
each person gives 
an update on their 

progress, what they’ll 
work on next, and any 
roadblocks they’ve hit.

When Sprint is done, 
the team holds 

a meeting called 
the Sprint Review, 
where they meet 

with the users and 
give a demo of the 
working software 

that they built.

The very last thing the team does in the Sprint is meet 
and hold a Sprint Retrospective, where they talk about 

what happened during the Sprint so they can reproduce 
the things that went well and learn from any problems.

This is the single source for requirements and any changes that will be made to the product throughout the project.

The Scrum events:
The Sprint
The Sprint 

Planning session
The Daily Scrum

The Sprint Review
The Sprint 

Retrospective



you are here 4  75

managing projects with scrum

The Scrum roles help you understand who does what
There are three roles that must be filled on every Scrum team. The first role is the one that’s most 
familiar to us: the Development Team. People on the team may have different areas of  expertise, and 
maybe even different job titles in the company, but they all participate in the Scrum events the same way. 
There are also two very important roles filled by team members: the Product Owner and the Scrum 
Master. And when you add them to the Development Team, you get the entire Scrum Team.

The Product Owner helps the team understand 
the users’ needs so they can build the most 
valuable product.
The Product Owner works with the team every day to help them 
understand the features in the Product Backlog: what items are on it 
and why the users need them. This is a really important job because 
it helps the team build the most valuable software they can.

The Scrum Master helps the team understand and execute Scrum.
Scrum may be simple to describe, but it’s not always easy to get right. That’s why there’s one person 
on the team, the Scrum Master, whose whole job is to help the Development Team, the Product 
Owner, and the rest of  the company to do exactly that—get Scrum right.

The Scrum Master is a leader (which is why the word “master” is right there in the name). But he or 
she demonstrates a very particular kind of  leadership: the Scrum Master is a servant leader. This 
means that the person in this role spends all of  his or her time helping (or “serving”) the Product 
Owner, the Development Team, and people throughout the organization:

 ≥ Helping the product owner find effective ways to manage the backlog

 ≥ Helping the Development Team understand the Scrum events, and facilitating them if  needed

 ≥ Helping the rest of  the organization to understand Scrum and work with the team

 ≥ Helping everyone do the best job they can to deliver the most valuable software possible

The Scrum rules are clear that the Product Owner and Scrum Master roles are each filled by a person and not a committee. 

Flip back to the last 
chapter. Can you find 
an agile principle that 
talks about delivering 
valuable software?

The Scrum Guide lays out the rules for how teams use the Scrum framework.
Before you move on to the next page, go to https://www.scrum.org and download a copy of  the Scrum Guide by 
Ken Schwaber and Jeff  Sutherland, the originators of  Scrum. It contains the definition of  Scrum, and is updated 
regularly with the latest ideas about how teams use Scrum: when new thinking is incorporated into Scrum, that’s 
where you’ll find it. Also, did you notice how Scrum, Daily Scrum, Sprint, Sprint Planning, Sprint Review, Product 
Backlog, and other terms are capitalized in this chapter? That’s done to follow the standard in the Scrum Guide.

https://www.scrum.org


76  Chapter 3

the art of artifacts

The Scrum artifacts keep the team informed
Software projects run on information. The team needs to know about the product that they’re working on, 
what they’re building in the current Sprint, and how they’ll get it built. Scrum teams use three artifacts 
to manage all of  this information: the Product Backlog, the Sprint Backlog, and the Increment.

Cows Gone Wild 5 Product Backlog

Item #1: The stealth sheep barn level needs to be designed and play tested

Estimated effort: 27 person-days

Value: Builds on the most popular level from CGW4, gamers will be excited about this

Item #2: The milk gun physics need to be updated to include squirting action

Estimated effort: 4 person-days

Value: Improved gameplay will make the game more fun

Item #3: The mad cow zombie survival level design needs to be finished, including 
zombie AI and zombie horde attacks

Estimated effort: 16 person-days

Value: Zombies are really popular right now, will be a good selling point

Item #4: The strategic silo assault will have an overhead view of the battlefield, giving 
the player placement and command/control of turrets, barnyard troops, tractors, feed 
lots, and snipers

Estimated effort: 19 person-days

Value: Similar to a feature in CGW4, we can add a whole level to the game by reusing code

Page 1 of 7

Every item in the 
Product Backlog 

has four attributes: 
order, description, 

estimate, and value.

There’s no rule 
that says that 

the estimate has 
to be in person-

days. It just needs 
to be in a unit 
that everyone 
on the team 
understands.

The value can be 
a description like 
this, or it can be 

a relative number, 
expected dollar 

value, or another 
way to measure 
or express value.

Here’s an example of a Product Backlog—but there’s no rule that says that it has to look like this. Many 
teams keep spreadsheets, or add entries to a database, or use software tools to manage their backlogs.

The Product Backlog is never complete as long as the project is running. The 
Product Owner will constantly work with users and stakeholders throughout the 
company to add, remove, change, and reorder the items in the Product Backlog.

The Product Owner 
keeps the project on 

track by continuously 
refining the Product 
Backlog: staying up 
to date on what the 

company needs, and 
adding, removing, 

and reordering 
backlog items.



you are here 4  77

managing projects with scrum

Cows Gone Wild 5 Sprint Backlog - Sprint #2

Sprint goal: Create at least one level that can be played from beginning to end

Sprint items:

• Stealth sheep barn level

• Milk gun physics

• Strategic silo assault

Sprint plan:

Tasks for the stealth sheep barn level

• Code the two new enemy heifer types

• Create texture maps

• Design the 3D space for the level in the level editor

• Build the udder stealth mode AI

Tasks for the milk gun physics

• Work out the algorithm for impact splatter

• Implement the milk gun class

• Update code for collision detection
Page 1 of 4

The Increment is the sum of all backlog items that are 
actually completed and delivered at the end of the Sprint
Scrum is incremental, which means the project is broken into “chunks” that are delivered one 
after another. Each of  those“chunks” is called an Increment, and each Increment represents 
the result of  one complete Sprint: the working software that the team demonstrates to the users in 
the Sprint Review. That working software typically includes all of  the features that they previously 
delivered —which makes sense, because they’re not going to delete them!—so the product Increment 
is the sum of  all of  the backlog items completed during this Sprint and all of  the previous Sprints.

Here’s an example of a Sprint Backlog (again, there’s no rule that says that 
it has to be formatted exactly like this). The team creates it during Sprint 

Planning, but it can evolve based on what the team learns as the Sprint unfolds.

The team crafts 
the Sprint Goal, 
or the objective 
that will be met 
by the team by 
completing the 

Sprint items.

In the first part of 
the Sprint Planning 
session, the team 

determines what can 
be done in the Sprint 
by choosing which 

items to include in it.

In the second part of the 
Sprint Planning session, 
the team determines how 
the chosen work will get 

done by decomposing the 
Sprint items into tasks. 

The Sprint Planning session’s 
timebox often expires before 
the team is done decomposing all 
of the items into tasks, so they 
typically start with the items 
that will get built first and 
finish the plan along the way.



78  Chapter 3

page goal header

The Scrum Sprint 
Up Close

The Sprint Planning session is a meeting with the whole team, including the 
Scrum Master and Product Owner. For a 30-day Sprint it’s timeboxed to 8 hours, 
for 2-week Sprints it’s 4 hours, and other Sprint lengths have proportionally sized 
timeboxes. It’s divided into parts, each timeboxed to half  of  the meeting length:

 ≥ In the first half, the team figures out what can be done in the Sprint. First 
the team writes down the Sprint Goal, a one- or two-sentence statement 
that says what they’ll accomplish in the Sprint. Then they work together 
to pull items from the Product Backlog to create the Sprint Backlog, 
which has everything they’ll build during the Sprint.

 ≥ In the second half, they figure out how the work will get done. They 
break down (or decompose) each item on the Sprint Backlog into tasks 
that will take one day or less. This is how they create a plan for the Sprint.

The Sprint is over when its timebox expires.

In the Sprint Review the whole team meets with key users and stakeholders 
who have been invited by the Product Owner. The team demonstrates what they 
built during the Sprint, and gets feedback from the stakeholders. They’ll also 
discuss the Product Backlog, so that everyone knows what will probably be on it 
for the next Sprint. For 30-day Sprints, this meeting is timeboxed to four hours.

The Sprint Retrospective is a meeting that the team uses to figure 
out what went well and what can be improved. Everyone on the team 
participates, including the Scrum Master and Product Owner. By the 
end of  the meeting they’ll have written down specific improvements 
that they can make. It’s timeboxed to three hours for a 30-day Sprint.

The Daily Scrum is a 15-minute timeboxed meeting that’s 
held at the same time every day,  In it, the Development 
Team and Scrum Master meet and the Product Owner is 
strongly encouraged to participate. Each person answers three 
questions:

 ≥ What have I done since the last Daily Scrum to meet 
the Sprint Goal?

 ≥ What will I do between now and the next Daily Scrum?

 ≥ What roadblocks are in my way?

The Sprint is a timeboxed iteration. 
Most teams use a two-week Sprint, but 
it’s common to see 30-day Sprints as well.

All of the work is 
planned, but not all of 
it is decomposed. The 
meeting timebox can 
expire befores the team’s 
done decomposing every 
Sprint Backlog item, so 
they concentrate on 
decomposing work for 
the first days of the 
Sprint.



you are here 4  79

managing projects with scrum

Q: Wait, is that all there is to Scrum?

A: That’s all of the Scrum rules, but 
that’s definitely not all there is to Scrum. 
Scrum was designed to be lightweight 
and simple to understand. But mastering 
Scrum takes a lot more than just following 
the rules. You learned in the last chapter 
how the values of the Agile Manifesto 
can make a big difference in how a team 
uses a practice. That same idea applies to 
Scrum: mindset and experience make the 
difference between a team with an empty 

“just following the rules” approach and an 
effective Scrum team that really “gets” it.

Q: I already break my projects into 
phases. Aren’t Sprints the same thing?

A: Not at all. Traditional waterfall 
projects are often broken into phases, with 
a complete deliverable at the end of each 
phase. But those phases are still planned at 
the beginning of the project. And if there’s a 
change discovered that will affect the next 
phase, the project needs to be replanned, 
which usually involves a separate change 
control process. In other words, the team 
basically assumes the project plan is mostly 
correct, and that it’s the project manager’s 
job to deal with the relatively few changes 
that happen along the way. 
 
Scrum is different because it’s iterative, 
which is a lot more than just breaking 
a project down into phases. The team 
doesn’t even plan the next iteration until 
the current one is complete. The team 
might discover changes partway through 
the Sprint that affect the next one, or which 
may even affect the current one. That’s why 
the Product Owner is such an important 
member of the team: he or she has the 
authority to make decisions on behalf of the 
business or customers about what features 
the team will build, which gives them the 
power to make those changes immediately.

Q: What’s the difference between the 
Product Backlog and the Sprint Backlog?

A: The Product Backlog contains a list 
of everything that might be needed in the 
product. Scrum teams are usually working 
on ongoing releases of a single product, so 
the Product Backlog is never complete. The 
first version they release typically contains 
the requirements that are best understood 
by everyone. As the project goes on, the 
Product Owner will add and remove items 
based on what’s valuable to the company. 
 
The Sprint Backlog contains the specific 
items that the team will build during the 
Sprint, which were moved from the Product 
Backlog during Sprint Planning. The 
software that the team finishes during the 
Sprint is the Increment: the team delivers 
and reviews a complete Increment in each 
Sprint. The Sprint Backlog also contains a 
plan for delivering the Increment. The 
team builds that plan during Sprint Planning 
by decomposing backlog items into tasks.

Q: What exactly is a backlog item?

A: Every item in the Product Backlog 
consists of a brief description, a (usually 
rough) estimate of how long it will take, the 
business value, and an order. The Product 
Owner will routinely refine the Product 
Backlog. This means going through the 
items in the backlog, removing ones that 
are no longer useful, re-evaluating the value 
of each item, and updating the order so the 
most valuable ones are first.

Q: Wait a minute—in the story, Brian 
is a team lead. But there are only three 
roles in Scrum, and “team lead” isn’t one 
of them. What’s going on there?

A: Roles and jobs aren’t the same thing. 
As far as Scrum is concerned, Brian is just 
another member of the Development Team, 

even though his job in the company is team 
lead, giving him more authority than the 
other the developers, and he has his own 
skills and expertise. Scrum may not have a 
distinct role for him to play, but he still plays 
an important and unique role on the team. 
It’s just that there are no Scrum-related 
events or artifacts that are specific to him.

Q: What do you mean by “artifacts”?

A: An artifact is just a by-product specific 
to a process or methodology. Scrum has 
three artifacts: the Product Backlog, the 
Sprint Backlog, and the Increment.

Q: What happens if we get partway 
through a Sprint and discover there’s 
some sort of emergency situation? Do 
we still have to wait for the timebox to 
expire before the Sprint can end?

A: On very rare occasions the Product 
Owner has the authority to cancel the 
Sprint before the timebox is over. When he 
or she does this, a Sprint Review is held 
for any Sprint Backlog items that are done, 
and all other items are put back on the 
Product Backlog and left for the next Sprint 
Planning session. Be really, really careful 
about cancelling a Sprint. It’s an in-case-of-
emergency “break glass” action because it 
can waste a lot of the team’s energy—and 
more importantly, it causes people in the 
company to distrust the team, and to lose 
confidence in the effectiveness of Scrum.

Scrum was designed 
to be lightweight and 
simple to understand, 
but mastering Scrum 
takes a lot more than 
just following the rules.



80  Chapter 3

they followed the rules but something went wrong

Write down the name of each of the Scrum events, when the event 
happens, and the length of the event’s timebox. We filled in the first event. 
Then write down the three Scrum roles and three Scrum artifacts.

Assume that the Sprint 
is timeboxed to 30 days

Event names in the 
order they occur

Sprint

When the events 
happen

Length of the event’s 
timebox

Answers on page 112

Write down the Scrum roles Write down the Scrum artifacts



you are here 4  81

managing projects with scrum

Four months later at a 
Sprint Retrospective...

I don’t think this 
Sprint went so well.

What tipped you 
off, Sherlock? Was it the fact that we 

barely got anything done?

Rick: Hey, there’s no need for insults. We’re all doing our best here!

Amy: Sorry. Things have just been really tense with the business lately, and it’s got 
me on edge. I spend so much time with Scrum that I don’t have time to do my job.

Rick: What do you mean?

Amy: I mean, you guys constantly ask me to make decisions. Like when we were 
planning this Sprint, and I had to decide whether Brian’s team should start the 
strategic silo assault level or improve the milk grenade mechanics.

Rick: Yeah. You had us get started on the strategic silo assault. Was that wrong?

Amy: Oh man, you have no idea! After the demo I got hauled into the CEO’s 
office and screamed at for an hour. Gamers hated the strategic levels in CGW4, and 
the last thing our stakeholders want is to see bad reviews for them in CGW5.

Rick: Wait, what? We worked super hard on those. I thought they came out well!

Amy: Me too. But they said that I had no business making the decision to include 
any strategic levels in the Sprint—or any other decision like that.

Rick: But you’re the Product Owner! Making those decisions is part of  your job 
now.

Amy: Exactly. So I have no idea what to do. Plus, I spend so much time answering 
the team’s questions about features that I barely have time for my real job.

Rick: Well, it’s no easier for me. It’s getting harder and harder to drag Brian’s team 
members into my Daily Scrums—you know how programmers hate meetings.

Amy: You know what? We’re following the Scrum rules, it’s kind of  helping. I think. 
Right? Maybe? Um... are we still sure this Scrum stuff  is actually worth the trouble?

The team followed the Scrum rules to the letter, but 
the project still ran into trouble. What went wrong?



82  Chapter 3

just following rules isn’t enough

The Scrum values make the team more effective
We already saw how agile teams are much more effective when everyone on the team 
has a mindset that’s driven by the values in the Agile Manifesto. Scrum comes with its 
own set of  five values that do exactly the same thing for Scrum teams.

Respect

Openness

You always know what your team members are working on, and you’re 
comfortable that they know what you’re working on. If  you run into a problem 
or an obstacle, you can bring it up with the team.

It’s not always easy to talk to your teammates when you run into problems. None of  us like 
making mistakes, especially at work. That’s why everyone on the team needs to share this 
value: it’s a lot easier to be open with teammates about problems and roadblocks that you 
run into if  they’re just as open with you about theirs—and that helps the whole team.

You and your teammates have mutual respect for each other, and every 
person on your team trusts everyone else to do their jobs.

Trust and respect go hand in hand. People on Scrum teams listen to each other, and when 
they disagree they take the time to understand each other’s ideas. It’s natural for people 
on teams to disagree on an approach. On an effective Scrum team, you’ll listen when your 
teammates disagree with the approach you’re taking, but in the end they’ll respect your 
decisions, and give you the benefit of  the doubt if  you take an approach they disagree with.

Trust doesn’t always come easy to a traditional 
waterfall team where the project manager does 
the planning by demanding estimates from the team members. If things go wrong, the project manager can blame the team for underestimating, and the team can blame the project manager for a bad plan.

I won’t lie, that’s 
going to set us back. But 

we’ll find a way to get you the 
time you need.

I’m really sorry, I know 
I promised I’d be done with the code for 

the silo sniper level by now, but I just can’t 
get the logic right.

It was uncomfortable and a little 
embarrassing for Brian to be open 
about this roadblock, but it’s 
what was best for the project.

Each of the five Scrum values is represented by one word. In this case, the value is “openness”.

Scrum teams need at least three members, and they 
usually max out at nine people. A Scrum team needs at 
least three people in order to get a significant amount 
of work done in a Sprint. But once the team size gets 
up to ten or more people, it becomes really hard for 

them to coordinate with each other—the Daily Scrum 
gets too chaotic, and it gets difficult to plan effectively.



you are here 4  83

managing projects with scrum

Focus

Courage

Every team member is focused on the Sprint Goal, and everything they do in 
the Sprint helps move them toward it. During the Sprint, everyone works only 
on Sprint tasks, and does one task at a time until the Sprint is done.

During a Scrum Sprint, every single person on a Scrum team is focused exclusively on 
items in the Sprint Backlog and tasks that they decomposed them into during the planning 
meeting. Each person works on one item in the Sprint Backlog at a time, focuses exclusively 
on one task in the plan, and moves on to the next task only when the current one is done.

This is why the team writes a 
one- or two-sentence Sprint Goal 
at the beginning of the Sprint 
Planning meeting. It helps keep 
them focused during the Sprint.

Scrum teams have the courage to take on challenges. Individual people on 
the team have the courage to stand up for their project.

What do you do when the boss demands that you and your team meet an impossible goal? 
What if  he demands that they meet a two-week deadline for a project that can’t possibly be 
done in less than two months? Effective Scrum teams have the courage to stand up and say  

“no” to impossible goals because they have the planning tools to show what is possible, and 
users and stakeholders who trust them to deliver the most valuable software that they can.

What about multitasking? 
Aren’t teams more effective 

when people do multiple tasks at 
the same time?

People on Scrum teams know that focusing on one task 
at a time is more effective than trying to multitask.
There’s a myth that switching back and forth between multiple tasks many 
times a day is more effective than concentrating on one at a time. Think 
about it this way: let’s say you have two tasks that will each take one week. 
If  you try to multitask and do them at the same time, the best you’ll do is 
deliver them both at the end of  two weeks. But if  you don’t start the second 
task until the first one is done, you’ll finish the first task a week earlier.

There’s one more Scrum value. Flip the page... 



84  Chapter 3

pigs and chickens

Commitment

Every person on the team is committed to delivering the most valuable product 
that they can—and the rest of  the company is committed, too.

When the team is committed to the project, it means that the tasks that they planned out to 
meet the Sprint Goal are the most important tasks they have to work on. Each team member 
feels that his or her personal success at the company is tied to the success of  the project. Not 
only that, but every single person on the team then feels committed to each item in the Increment, 
not just the items that they’re working on. This is called collective commitment.

But what happens if  something comes up that’s important to the company, but not part of  
the project? For Scrum to be effective, the boss needs to keep that from happening. In other 
words, the company needs to be fully committed to the project, to respecting the 
team’s collective commitment to the Sprint Goal, and to following the rules of  Scrum. 

So how does a company express that kind of  commitment? 

By giving the team the authority to determine what features are going to be developed 
during each Sprint, and trusting that’s how the team will deliver the most valuable software 
possible. The company does that by assigning a full-time Product Owner to the team with 
the authority (and willingness!) to decide what features will be built and accept them as done.

This is the third time 
I accepted a feature, only to get 

yelled at by my boss because I had “no 
business” doing that.

Yeah, it’s like You 
don’t really have the authority to 

make a real commitment on behalf of 
the company.

You know what? I think 
I’m the wrong person to be the 

product owner!

Luckily, I’m the right person 
to be the Scrum Master. Let me talk to 

some senior managers and see if I can fix 
this.

An important part of the Scrum 
Master’s role is helping everyone 
understand Scrum—including senior 
managers and people on other teams.

Collective 
commitment 
means that 
every team 
member feels 
committed to 
delivering 
the complete 
Increment, and 
not just the 
items he or she 
is working on.



you are here 4  85

managing projects with scrum

Story Time

Once upon a time there lived a pig and a chicken who were 
the very best of friends.

One day the chicken said to the pig, “I have a great idea. 
Let’s open a restaurant together!”

The pig said, “That is a great idea! What should we call it?”

The chicken replied, “How about Bacon ‘n Eggs?”

The pig thought about it for a minute. Then he said, “You 
know what? Never mind. You’re just involved, but

I’m committed.”



86  Chapter 3

find the right product owner

 � Scrum is the most popular approach to agile, and is 
most successful when used by software teams of at 
least three and up to nine people.

 � Scrum includes five timeboxed events: the Sprint, Sprint 
Planning, the Daily Scrum, the Sprint Review, and the 
Sprint Retrospective.

 � Scrum has three roles: the Product Owner, the Scrum 
Master, and the Development Team.

 � Scrum uses three artifacts: the Product Backlog, the 
Sprint Backlog, and the Increment.

 � Projects are divided into Sprints, iterations that are 
typically timeboxed to 30 days (but can be shorter).

 � Each Sprint starts with Sprint Planning, a timeboxed 
meeting in which the team decides which items (such 

as features) to include in the Sprint Backlog, and 
decomposes them into tasks for at least the first week.

 � The Daily Scrum is a meeting where each team 
member talks about what they’ve done, what they’ll work 
on next, and if they see any roadblocks ahead.

 � The Product Owner invites key stakeholders to the 
Sprint Review where the team demonstrates working 
software and discusses the next Sprint Backlog.

 � At the Sprint Retrospective the team talks about what 
went well and identifies specific things that can be 
improved.

 � Scrum teams have five values that help them get into 
a more effective mindset: openness, respect, courage, 
focus, and commitment.

Q: Uh... why are you talking about 
farm animals?

A: Because the fable of the pig and 
the chicken is a good way to understand 
commitment (because the chicken just 
lays eggs, but the pig has to let himself get 
eaten—a much greater commitment). In 
fact, some teams even use these terms 
in practice this way, calling people who 
are committed to the project “pigs,” and 
those who have an interest but not a true 
commitment “chickens.” (Occasionally, 
they’ll even call themselves pigs in cultures 
where “pig” is used as an insult!) 
 
The Scrum value of commitment means 
that when you’re on a Scrum team, you 
genuinely believe that your professional 
success or failure rests on your ability to 
deliver valuable software, and that makes 
you a committed “pig.” Your users and 
stakeholders may have a big interest in the 
project getting done, which makes them 

“chickens”—they’re very important to the 

project, but they don’t feel the same sense 
of strong personal commitment as “pigs” do.

Q: What if the team doesn’t really 
“get” some of the Scrum values?

A: An important part of the Scrum 
Master’s job is to help everyone on the 
team to understand the Scrum values, and 
to eventually internalize them so that each 
person has the right mindset for Scrum. 
Very few teams start out Scrum genuinely 
believing in all of these values at first. They 
grow and evolve together over time. The 
Scrum Master helps by using the Scrum 
values to help the team understand and 
deal with project obstacles that come up.

Q: What if my team can’t find a 
Product Owner with enough authority?

A: If the Product Owner doesn’t have the 
authority to decide what the team will build, 

or to accept each item in the Sprint Backlog 
as done, then the company hasn’t given the 
team the authority to do their jobs, and they 
haven’t truly committed to the project—or to 
Scrum. That can be trouble. 
 
A lot of projects fail because the team did 
a great job building the wrong software. 
The Product Owner keeps that from 
happening because his or her full-time 
job is to work with the rest of the company 
and understand what the business needs, 
decide what features will be built, and help 
the team to understand those features.

If the Product Owner 
doesn’t have the authority 
to decide what features 
the team builds, then 
the company isn’t really 
committed to delivering 
the project with Scrum.



you are here 4  87

managing projects with scrum

I’ve got Great 
news! I met with a lot of people on the 

business side about our commitment problems, and they 
agreed to assign Alex to our team as a full-time 

Product Owner.

That’s a 
huge relief! Now I 

can go back to “just” being 
creative director.

The 
developers have 

a lot of questions for 
you! I’ll introduce 

you to them.

Alex is a senior manager who’s been in the gaming industry for a long time. He meets with users, advertisers, and game reviewers. He knows all about what makes games sell.

There’s 
no question about authority. 

If I say it goes into the game, it goes into 
the game. The other senior managers trust my 

judgment, and I trust you guys to get 
the project done.

Good to meet you guys. Rick 
explained how Scrum works, and the 

bosses all think Scrum is so important that 
they assigned me to work full time 

on it.

BLACK AND 
WHITE OPS

CGW V
HayStation Hs

RHG

COWS 
GONE 
WILD 

5

GAMESRANCH HAND
PrODuCTION

A

Sprint 5 Product Backlog

strategic silo assault

CAN’T DO THAT,
GAMERS HATED IT!

With a new Product Owner, the 
team should be able to figure 
out the most valuable features 
to include in the next Sprint.

Owner
Product

so what do we do instead?

ALEX



88  Chapter 3

90% done 90% left to go

It’s 
my turn to talk? OK. 

Since the last Daily Scrum I 
kept working on the same feature, 

and I’ll do the same until the 
next Sprint. No roadblocks. 

Who’s next?

Here are some things we overheard Amy, Rick, and Brian saying. Draw a line 
from each speech bubble to either COMPATIBLE or INCOMPATIBLE, and then 
to the Scrum value that it’s either compatible or incompatible with.

The only thing I’m 
impressed with is technical 

ability. If you can’t code, I have 
no use for you.

Look, Alex, I 
know redoing all of the 

graphics will impress reviewers, 
but there’s absolutely no way the 
team can do that without missing 

the release date.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

I can’t work on 
any Sprint tasks today. 

Another team has a really big 
deadline and they need to 

borrow me.
INCOMPATIBLE

COMPATIBLE

Respect

Focus

Openness

Courage

Answers on page 113

CALLJUDGMENT



you are here 4  89

managing projects with scrum

I thought 
going to the Daily Scrum every 

day would tell me how things are going, 
but I have no idea what’s going on with 

the Black Angus boss battle.

What 
do you mean? The 

developer working on that 
said it’s 90% done.

Yeah, I 
know! But it was 90% done 

yesterday, and 90% done a week ago. 
What am I supposed to do with 

that?
Rick: I... uh...

Alex: Yeah, just what I thought.

Rick: Hey, that’s not fair. I know he’s been working really hard on that feature. It’s 
just taking a lot longer than any of  us thought it would.

Alex: So what are you going to do about it? 

Rick: Hey, we’re all on the same team here. And that includes you, Alex. So I think 
you meant to ask what are we going to do about it?

Alex: OK, fine. Well, since I’m on the team, let me give you an answer. Other teams 
build contingency and padding into their schedules so they never have to tell a senior 
manager like me that they’re running late.

Rick: Sure. Yeah. I’ve done that before on other projects I’ve managed. I’d add extra 
tasks to my schedule to account for things taking a lot longer than we anticipated.

Alex: But you’re not doing that now?

Rick: Well, no. The Scrum rules don’t really give me a way to add contingency, 
padding, or extra tasks. I don’t really see any way to pad the schedule without 
breaking the Scrum rules.

Alex: Then maybe there’s something wrong with Scrum.

What do you do when one of the tasks in the Sprint 
takes a lot longer than the team planned for it to take?

Is padding the 
schedule really 
any different 
than lying about 
the schedule or 
hiding information 
about it from the 
boss, except that 
everyone’s decided 
that it’s OK?



90

27. You’re the Scrum Master for an automotive 

industry software team working on firmware for an 

antilock brake system. Your team just finished writing 

down the objective that will be met when the team 

completes the Sprint items. What is the next thing 

your team should do?

A. Decompose the Sprint Backlog items into tasks

B. Review the working software with the users

C. Meet with the business users

D. Decide what items to include in the Sprint Backlog

Most which-comes-next questions describe 
a situation and ask you what you’d do next. 
Sometimes it’s not immediately obvious that 
it’s asking about the order of events. Watch 
for any question that lay out a scenario and 
then asks what comes next, what happens 
afterward, or how the team should proceed.

Don’t be thrown if the question asks about an industry you don’t know much about.

The key to a “which-comes-
next” question is figuring out 
what the team is currently 
doing. So what’s another 
word for “objective that 
will be met”? That’s the 
definition of the Sprint 
Goal! So this must be 
happening at the beginning of 
the Sprint Planning session.

Question Clinic: The “which-comes-next” question

A lot of practices or events 
happen in a specific order, and you’ll 

be asked about that order in a “Which-comes-next” 
question. These are questions that quiz you on 

how practices fit together on a real project. These 
questions aren’t usually very difficult, but they can be 

a little misleading.

This also happens 
during the Sprint 
Planning session. 
But when you 
compare this with 
the other answers, 
there’s another 
one that happens 
before it.

Neither of these 
answers are things 
that happen during the 
Sprint Planning session.

Aha! If the team is holding a Sprint 
Planning session and just finished writing 
the Sprint Goal, the next thing they’ll 
do is decide what items from the 
Product Backlog will be included in the 
Sprint Backlog. This is what comes next!



91

HEAD LIBS

Fill in the blanks to come up with your own “which-comes-next” question! Start by 
thinking of a Scrum event or activity to be the correct answer, and then figure out exactly 
what the team just finished doing before it—that’s what you’ll describe in the question!

A.

B.

C.

D.

(the correct answer—description of the Scrum activity, tool, or practice that comes next)

(description of a different Scrum activity, tool, or practice)

(the name of activity, tool, or practice that’s part of a different methodology)

(description of one of the Scrum values or roles)

The Which-comes-next question 
doesn’t always look like it’s asking about 
the order of events, tools, or practices! 
Keep an eye out for questions that describe 

specific artifacts that get created or actions 
you’ll perform and then ask you what you’re 

supposed to do next.

You’re a Product Owner on a     project. Your team just finished 

      . A   just informed you that

your project       .

Which of the following does the team do next?

(description of a Scrum activity) (a type of user)

(an industry)

(a problem that came up on the project) The last part of this question doesn’t change the answer at all. A lot of questions are like that.



92  Chapter 3

Sprint Planning relies on the definition of “Done”
During the first part of  the Sprint Planning meeting, the team decides which items to include in the 
Sprint Backlog. But what happens if  there’s an item that doesn’t really have a definition of  “Done” 
that everyone on the team understands? Say one person thinks that it means all the code is done, but 
someone else assumes that it also includes documentation or testing. Even if  they don’t realize that 
there’s a disagreement about what it means for that item to be done, they’ll discover that they can’t 
come to a real agreement on how many other items they can deliver in the Sprint. That’s why Sprint 
Planning only works when every item has a clear definition of  “Done” that the whole team can agree on.

it ain’t over ‘til it’s over

A task isn’t done until it’s “Done” done
When you’re on a Scrum team, you work on one backlog item or task at a time—that’s what the value of  Focus is 
all about—and you work on it until it’s done. But when, exactly, is it done? Is there still some testing left to do? It’s 
easy to think that you’re done... except for this one teeny little thing. That’s why Scrum teams have a definition 
of  “Done” for every item or feature that they add to the backlog. Before an item can go into the Sprint Backlog, 
everyone on the team needs to understand and agree about exactly what it means for it to be not just done, but 

“Done” done. And since every item in the backlog has a definition of  “Done,” the entire Increment has a 
definition of  “Done” and the team is committed to delivering a “Done” Increment at the end of  the Sprint.

That’s 
cool, because I’m 

done with the programming 
for the updated milk 

gun physics.

The 
artwork for the 

hay thresher battle 
arena is done.

I just need to 
package up the 

files and email them 
out to the rest of 

the team.

I still have to do 
some testing and write 
documentation, but the 

code is all finished.

Sounds like Amy and 
Brian are done with 
these features!

Hmm, maybe they’re not 
“Done” done with those 
features after all.

Under the Hood: Sprint Planning

If you look in the Scrum guide, 
you’ll actually see it refer to a 
“Done” product increment.



you are here 4  93

managing projects with scrum

Q: This is starting to sound really 
theoretical. Can you tie it back to the 
real world?

A: Sure. “Transparency” just means 
that every single person understands 
all of the features they’re building in the 
Sprint, and are open about the work they’re 
doing, what they plan to do next, and what 
problems they’ve run into. “Inspection” 
means that they constantly make sure that 
knowledge is up to date using the Scrum 
events (especially the Daily Scrum). And 

“adaptation” means that they’re constantly 
finding ways to change what they plan to 
do next based on this new information. 

Q: If the team plans some of the 
tasks but not all of them, won’t that just 
cause chaos later on in the project?

A: No. Making all of the decisions at 

the beginning of the project lets you feel 
like everything’s under control. But very 
often they aren’t, leaving you surprised 
that somehow your project—which seemed 
fine yesterday—is suddenly late, and now 
everyone’s in crunch mode. That’s why so 
many teams turn to agile: because their 
traditionally planned projects keep blowing 
their schedules, and something needs to 
change. Scrum avoids those pitfalls by 
recognizing that many important decisions 
depend on information that won’t be 
known until partway through the project.

Q: Can you give me an example of 
how that would work in real life?

A: Here’s one that our Cows Gone Wild 
team might face. Brian needs to program 
the behavior for a new tractor vehicle for 
the player to use, but he can’t start until 

Amy finishes the basic behavior for it. If 
Rick used traditional project management, 
he would either have to assume that Amy 
will finish first (and add padding to the 
schedule in case she takes too long), or 
he’d have Brian work on something else 
first, even if the other task is less important. 
 
Now that they’re using Scrum, the team can 
give themselves more options. They know 
Brian can’t start the coding for the tractor 
until Amy finishes designing its behavior. 
But they also know they’ll constantly 
inspect their progress and adapt the 
plan along the way. So instead of deciding 
today whether Brian work on the tractor or 
on a less important task, they can add both 
of them to the Sprint Backlog—and they’ll 
put off the decision until Brian is ready to 
start the code. If Amy is done with her work, 
he can start coding. If she’s not, he’ll pull 
the other task off of the Sprint Backlog and 
come back to the tractor coding when he’s 
done (but only when he’s “Done” done!).

Scrum teams adapt to changes throughout the Sprint
Project teams have to make decisions every day: Which features will we build in this Sprint? What order will we build 
them in? How will users interact with this feature? What technical approach will we take? Traditional waterfall teams 
have one answer: all of  the planning is done at the beginning of  the project. The problem is that at the time the plan 
is being built, most of  those questions don’t have answers yet. So the project manager works with the team to make 
assumptions, and relies on a change control process to change the plan when they guessed incorrectly.

Scrum teams reject the idea that every project question can be answered at the beginning of  the project, or even at the 
beginning of  a Sprint. Instead, they make decisions based on real information as soon as it’s discovered. They do this 
using the three pillars of  Scrum: a cycle of  transparency, inspection, and adaptation:

 ≥ The cycle starts with transparency, where the team decides together what items to include in the Sprint, and 
what it means for each of  them to be done. All work done by everyone is visible to the team all the time.

 ≥ The whole team meets every day in the Daily Scrum to inspect each item that’s being worked on.

 ≥ If  they discover changes, they adapt to them (like adding or removing items from the Sprint Backlog when 
roadblocks happen).

 ≥ The next day the cycle begins again, with team members giving complete transparency into what they’re 
doing at the Daily Scrum. This cycle continues every day until the timebox expires and the Sprint is complete.

 ≥ The team also inspects and adapts at the other Scrum events—Sprint Planning, the Sprint Review, and 
the Sprint Retrospective—by reviewing and modifying the Sprint Goal, items, tasks, and the way they work.



94  Chapter 3

never do today what you can put off ‘til tomorrow

No—because agile teams make decisions as late as possible.
When a lot of  people learn about Scrum, they’re surprised that the Sprint Planning 
session is timeboxed to four hours for a two-week Sprint (sized proportionally for 
different Sprint lengths), because they’re accustomed to having every single task in 
the project completely planned out before any of  the work can begin. But we’ve 
already seen that teams following a traditional waterfall process often have trouble 
when their plans change partway through the project. In fact, changes that would 
deliver more value often get rejected during the change control process simply 
because replanning a months-long schedule is too much work.

Scrum teams rarely (if  ever!) run into this problem because they don’t plan every 
single task at the very beginning of  the project. In fact, usually they don’t even plan 
out all of  the tasks at the beginning of  the Sprint. Instead of  planning everything up 
front, they make decisions at the last responsible moment. What that means is 
that they only need to do the planning that’s absolutely necessary to get started with 
the Sprint. If  more planning needs to be done, it can be done later in the Sprint.

I still don’t see 
how Sprint Planning can possibly 

work. How can you have a timeboxed 
planning session? You said that the timebox 

often expires before all of the work is 
planned. Doesn’t a half-baked plan lead to 

half-finished projects?

This is a new way of thinking about planning 
for a lot of teams. Luckily, we have the 
Agile Manifesto to help our teams get into a 
mindset that’s really effective.

The Agile Manifesto is really useful because it helps get into a mindset 
where concepts like the last responsible moment really make sense. One 
of the twelve Agile Manifesto principles is especially helpful for 
understanding the last responsible moment. Write down which one you 
think it is—you can see our answer on page 98.

MINI



you are here 4  95

managing projects with scrum

That’s right. And it all works because of transparency.
Each team member answers the questions every day, so everyone has current, accurate 
information about the project. Not to get too theoretical, but this is actually a really 
good example of  empirical process control theory, which tells us that when 
a process (in this case, an agile approach) is based on empiricism, it lets the team 
optimize the way they work to reduce risk and give them sustainable, predictable results.

The Daily Scrum 
Way Up Close

em-pir-i-cism, noun

the theory that knowledge comes from experience, and that decisions are to 
be made based on information that is known

The team was driven by empiricism, and rejected the project plan based on guesswork.

DICTIONAry DEfINITION

This is the Three Pillars agan, right? Answering the 
questions is the inspection part, and when they make changes 

that’s the adaptation part.

The “ceremony”
The whole team gets together at the same time every day, and most teams start with a different person 
each time. Everyone (including the Product Owner and Scrum Master) answers three questions:

 ≥ What did I do yesterday to move us toward the Sprint Goal? 

 ≥ What will I do today to help meet the Sprint Goal? 

 ≥ Are there any impediments that prevent me from meeting the Sprint Goal? 

Each person’s answers are brief  and to the point because the meeting is timeboxed to 15 minutes.

Inspect and adapt
The reason that each person answers those three questions is to give complete transparency into what he 
or she is doing. But this only works if  every other person on the team is listening carefully (which is why it’s 
important to keep the updates brief !). One of  the most common things that happens during a Daily Scrum is 
that one team member realizes his or her teammate is going to do something that doesn’t quite make sense: 
maybe they’re starting one Sprint Backlog item when a different one is more valuable, or taking one approach 
when there’s a better alternative, or has hit a roadblock that other team members can help with. 

When this happens, they’ll set up a meeting later in the day to talk about it. More often than not, they’ll have 
a discussion that causes them to change the plan: they may take a different approach, or choose another item 
from the Sprint Backlog, or have to add more work (and possibly remove a different item from the Sprint 
Backlog) to get around the roadblock. This is how the team adapts to the change.

Even though a lot of teams refer to answering the Daily Scrum questions as a “ceremony,” every single person is engaged and paying attention.



96  Chapter 3

trust the team to self-organize

The Agile Manifesto helps you really “get” Scrum
We learned back in Chapter 2 that the most effective way to approach any agile methodology, framework, method, 
or approach—like Scrum, for instance—is with a mindset that’s driven by the values and principles of  the Agile 
Manifesto. Let’s take a closer look at three of  those principles that are especially helpful for Scrum teams.

The Product Owner makes sure the team delivers value
That’s the whole reason that the team needs a Product Owner with the 
authority to accept items in the Sprint Backlog as Done—or, if  they’re not 

“Done” done, refuse to accept them. If  everyone on the Cows Gone Wild 5 team 
really “gets” this principle, then they won’t be mad at Alex for not accepting 
this feature as done yet, because they genuinely want to deliver the most value 
that they can. They want to deliver it early and continuously, and the best 
way to do that is to finish the current item (which means it’s “Done” and ready 
to demo to the users in the Sprint Review) so that they can move on to the next 
one and get as many backlog items done in the Sprint as they can.

Our highest priority is to satisfy the customer through 
early and continuous delivery of  valuable software.

A really important word in 
this principle is “valuable.” 
Everyone on the team takes 
it really seriously, and does 
their best to deliver the 
most value that they can.

There’s no way I can 
accept the hay thresher battle as 

done until you guys get that milk gun 
working.

The Sprint Review is all about maximizing value
During the Sprint Review, the team works with key users and stakeholders invited by the Product Owner to inspect 
the Increment and the Product Backlog, and everyone understands the goal is to maximize value by reviewing the 
value delivered during the Sprint, and maximizing the value of  the items for the next Sprint. Here’s how they do it:

• The Product Owner goes over what was “Done” in the Sprint and the team demonstrates the working software.

• The team talks about what went well and what could be improved, and answers user and stakeholder questions.

• The Product Owner walks everyone through the current Product Backlog, and everyone collaborates on what 
they think should probably go into the next Sprint, so the team learns directly from the users and stakeholders 
what they think is going to be most valuable. This is really important for planning the next Sprint.

• They’ll have an open and honest discussion of  anything that’s changed in the marketplace (in case it changes 
the most valuable thing to do next), the company’s timeline and budget, and anything else that’s relevant.

Under the Hood: The Sprint Review



you are here 4  97

managing projects with scrum

Self-organizing means deciding as a team 
what to work on next
If  you’ve worked on a traditional waterfall team with a project manager, then 
you’ve probably worked on tasks that were part of  a project plan created by a 
project manager and assigned to you by either the project manager or your boss. 
But that’s not how Scrum teams work. Scrum teams are self-organizing, which 
is a new way to work for a lot of  people.

The whole Scrum team works together to plan the project. There isn’t a single 
person building a plan and telling them what to do. The Development Team 
members decide what will be delivered, adding new work to the Sprint Backlog 
as needed. The whole team decides together how they’ll meet those goals.

But self-organization doesn’t just happen during Sprint Planning. They 
constantly adapt their plan by checking in with each other at the Daily 
Scrum: each person tells the whole team what they’re planning on doing next 
to meet the goals they decided on during Sprint Planning. If  a teammate sees a 
problem with the approach, they’ll work together that day to fix it. 

I’m not sure that’s the 
right thing to work on next. Can we 

meet right after this Daily Scrum is over and 
talk it through?

Sounds like Amy may be going down the wrong track. If Brian 
hadn’t been paying attention, he might not have caught this 
the potential problem. Now they can figure it out together.

What did you get for your MINI
answer on page 94? Flip the page to find out ours... 

I finished the chicken coop 
air assault artwork, so that’s another Sprint 

Backlog item done. There are a few items I can choose to 
do next. I was thinking I’d work on the horse corral 

battle level design.

Here’s Amy’s update 
at the Daily Scrum.

The best architectures, requirements, and 
designs emerge from self-organizing teams.

The Daily Scrum is timeboxed, 
so when two team members 
discover an issue like this, 

they’ll meet afterward to work 
it out (inviting other team 

members to join if they have 
input). Brian and Amy will 

meet and talk about how to 
handle this situation. Once 

they’ve got a new plan, they’ll 
review it at the next Daily 

Scrum to make sure everyone 
is on board, and to see if 

anyone has anything to add.



98  Chapter 3

decomposing zombies?

Welcome changing requirements, even late in development. Agile 
processes harness change for the customer’s competitive advantage.

Scrum teams 
make decisions 
at the last 
responsible 
moment. 
They only 
make project 
decisions that 
need to be 
made now, 
and leave the 
rest for later.

Making decisions at the last responsible moment probably sounds really weird if  you’ve 
never done it before. But to someone who genuinely welcomes changing requirements, it really does 
feel as normal as riding a bike.

This is a new way of  thinking about planning for a lot of  teams. 

That’s part of  the mindset shift that we talked about in the last chapter. Here’s how it works 
on a Scrum project in the real world:

 ≥ There’s just enough written down about each item in the Product Backlog to be 
able to start Sprint Planning.

 ≥ During Sprint Planning, the team decomposes enough of  the Sprint Backlog to get 
everyone started, but they don’t feel like they need to decompose everything.  
(Have a look at the Sprint Planning section in the Scrum Guide, which says the team 
decomposes work planned for the first days of  the Sprint by the end of  the meeting.)

 ≥ Self-organizing teams don’t need to decide the exact order of  every single task in 
painstaking detail when they’re planning a Sprint. They trust themselves to make 
good decisions when the time comes.

 ≥ As the team works through the Sprint Backlog over the course of  the Sprint, they 
discover new tasks and changes and bring them up in the Daily Scrum, and they use 
that information to work together to create a plan for the next 24 hours.

 ≥ They’re constantly inspecting and adapting, so they trust themselves to make 
good decisions in the future.

MINI Did you come up with a different answer? This is the agile 
principle we think is most helpful for understanding the last 
responsible moment, but other principles can shed light on it too!

The Mad Cow Zombie 
level we built just isn’t as fun as we 

thought it would be, and gamers won’t like it. Let’s 
push it back to the Product Backlog. Maybe we’ll put 

it out it as downloadable content after the 
game’s released.

It’s a good thing Alex is comfortable making decisions at the last responsible moment! In this case, the only way the team could find out the feature wouldn’t be fun (and deliver the value the project needs from it) was to build it. Notice how he’s staying positive, not blaming anyone for wasting effort, and keeping the option open to release it later.



you are here 4  99

managing projects with scrum

 � The team agrees on the definition of “Done” for every 
item in the Sprint Backlog and for the entire increment.

 � The Product Owner doesn’t accept an item to include 
in the Sprint Review until it’s “Done” (i.e., it meets the 
definition of “Done” that the team decided on for it).

 � Scrum uses empirical process control, based on 
the three pillars of transparency, inspection, and 
adaptation to make decisions based on real facts.

 � Transparency (or visibility) means everyone on the 
team understands what their teammates are doing.

 � Inspection means they frequently check with each 
other on what they’re building and how they’re building it 
at the Daily Scrum and the other Sprint events.

 � The team constantly adapts their plan based on what 
they learn from that inspection.

 � Agile teams make decisions at the last responsible 
moment, and plan only those tasks that absolutely need 
to be planned right now.

 � The team delivers value early (by working on each 
backlog item until it’s done) and continuously (by 
delivering a complete Increment that’s “Done” at each 
Sprint Review).

 � Scrum teams are self-organizing: they decide as a 
team how to meet their goals and who will do the work.

 � Scrum teams welcome changing requirements more 
easily than traditional waterfall teams because they’re 
self-organizing and make decisions as late as possible.

The Daily Scrum is timeboxed to 15 minutes, so make sure everyone 
keeps their updates focused and to the point.

That’s easier said than done. Once you and your team start holding a Daily Scrum every day, you’ll 
discover that some people are really uncomfortable talking about their work in front of everyone 
else on the team, while others just can’t seem to stop talking, and will take up the entire 15 minute 
timebox if you let them.

This is why it’s really important that the Scrum Master takes his or her role seriously—especially 
the responsibility of making sure that the team understands and adheres to the Scrum rules:

• If someone is reluctant to speak up, the Scrum Master can help that team member to accept the 
Scrum value of openness and understand how transparency is critical for making Scrum work.

• When team members give updates that take up too much of the Daily Scrum, the Scrum Master 
can show them which facts are relevant and help them manage their Daily Scrum time better.

• If a team member gives an update that goes beyond just answering the three questions and 
raises issues for discussion, the Scrum Master can remind the team to set up a separate 
meeting for some of the team members to discuss the issue and report back to the whole group.



100  Chapter 3

“customizing” scrum rarely ends well

Who am I?A bunch of Scrum artifacts, events, and roles are playing a party 
game, “Who am I?” They’ll give you a clue, and you try to guess 
who they are based on what they say. Write down its name, and 
what kind of thing it is (like whether it’s an event, role, etc.).
And watch out—another Scrum concept that’s not an event, 
artifact, or role might just show up and crash the party!

Name
Kind of 
thing

I’m a servant leader who guides the team in understanding and 
implementing Scrum, and helps people outside of the team grasp it.

I’m held at the end of the Sprint to do an inspection of each item that 
the team built with users and stakeholders who were invited.

I’m how the team inspects itself, where they look for the things that went 
well, and make a plan to improve things that didn’t.

I’m the sum of all items that the team delivers to the users at the end of 
the Sprint, and I can only be delivered if every item in me is “Done.”

I’m the group of professionals who actually do all of the work that’s 
needed to deliver the software to the users and stakeholders.

I’m responsible for deciding what items will go into the product, and I 
have the authority to accept them as “Done” on behalf of the company.

I’m a 15-minute timeboxed meeting held every day, where team 
members create a plan for the next 24 hours.

I’m what the Product Owner helps the team optimize and maximize, and 
the team tries to prioritize the items that have the most of me.

I’m the set of items the team will build during the Sprint, along with a 
plan to build them (usually a set of tasks the items are decomposed into).

I’m a timeboxed meeting where the team comes up with a Sprint Goal, 
decides which items they’ll deliver, and decomposes them into tasks.

I’m an ordered list of all of the items (with descriptions, estimates, and 
values) that might be needed in the product at some time in the future.

Answers on page 114



you are here 4  101

managing projects with scrum

Q: Is the Cows Gone Wild team’s 
story realistic? Can you really use 
Scrum for something like a video game, 
which requires a lot of creativity and 
on-the-fly—and sometimes last-minute—
changes with heavy deadline pressure?

A: Not only can Scrum be used for 
a complex and dynamic project that 
constantly changes, it’s actually better 
suited to an environment like that than a 
traditional waterfall process. Scrum teams 
constantly look for changes and find ways 
to adapt to them, which makes them much 
better at dealing with complexity and even 
chaos. And the timeboxed nature of Sprints 
helps the team meet their deadlines. Alex 
just showed us a good example of the kind 
of decision that video game teams make 
in real life. The team built a feature but 
it turned out not to be fun enough in its 
current form, so they shelved it for now and 
might revisit it to sell later as downloadable 
content. Scrum gave the team the flexibility 
to handle this on the fly, while a traditional 
waterfall team would probably have to go 
through a lengthy change control process. 
More importantly, a Scrum team sees 
this change as a victory because they’ll 
welcome any change that delivers more 
value to the product. A traditional waterfall 
team is likely to see it as a defeat because 
it “wasted” effort and required a change to 
the plan.

Q: Does “self-organizing team” mean 
that there’s no boss?

A: Of course there’s a boss. If you work 
in a company and you’re not the CEO, then 
you have a boss. But an effective self-
organizing team typically has a manager 
who doesn’t micromanage, and who trusts 
all of his or her employees to deliver the 
most valuable software they can. Self-
organizing teams are given the authority 
to decide which features to include in the 
software, usually by having a Product 

Owner assigned to the team who’s senior 
enough to make those decisions. They’re 
given the freedom to plan the work so that 
they can build those features in the way 
they feel is most effective. And they’re 
given the flexibility to make decisions at the 
last responsible moment, because that’s 
the most effective time to make important 
project decisions.

Q: What exactly happens during the 
Sprint Retrospective?

A: The Sprint Retrospective is how the 
team inspects the Sprint that just ended 
and tries to find ways that they can improve. 
They look at all sorts of things: the people 
on the team can improve the processes 
and tools that they use to do the job, find 
ways to improve the quality of the software 
they’re building, work on their relationships 
with others in the organization, and do 
anything else that might have an impact 
on the work—especially anything that can 
make their work more enjoyable or effective.  
By the time the Sprint Retrospective 
ends, the team has put together a plan for 
improvement. This plan typically consists 
of a small number of discrete and specific 
tasks that individual people on the team 
will carry out. Before the meeting, the 
Scrum Master helps everyone understand 
how it works, and makes sure that they all 
respect the timebox. This happens before 
the meeting because the Scrum Master and 
Product Owner have to participate in the 
retrospective as team members, offering 
their own opinions and ideas.

Q: Hold on—the Product Owner 
goes to the retrospective too? Does the 
Product Owner really need to be at all of 
the Scrum events?

A: Absolutely. The Product Owner is a 
real member of the team, and participates 
in the Scrum events just like everyone 
else. In fact, on a lot of Scrum teams the 

Product Owner does his or her share of the 
development work. But even in that case, 
that person still has the authority to make 
decisions about what items will go into the 
backlog and how to maximize the value of 
what the team delivers, and the company 
still respects his or her decisions.

Q: I’m having trouble finding anyone 
who has the clout to be the Product 
Owner but also has enough time to 
attend all of the Scrum events. Can the 
Product Owner be a committee instead?

A: Absolutely not. The Product Owner 
definitely must be a person. That person 
must have the authority to make the 
decisions about what goes into the software 
and what doesn’t, and the Product Owner 
role must be his or her top priority. 
 
Modifying Scrum like this almost always 
renders it much less effective, usually by 
removing the parts that make its empirical 
process control work. Teams often try to 

“customize” Scrum by bending or breaking 
any rules that highlight a serious flaw in the 
way their team is structured. In this case, 
Scrum makes it really obvious that the team 
doesn’t have the authority to decide what 
features go into the software. It’s scary for 
a manager to say, “The team should build 
this feature, but not that one.” The wrong 
decision will cost the company a lot of 
money, and there will be a lot of blame if 
it goes wrong. That’s why Scrum requires 
the team to have a Product Owner who has 
the authority to make that call.

Teams often try to 
“customize” Scrum when 
they don’t have a true 
Product Owner who can 
make tough decisions 
about what to build.



102  Chapter 3

demo went great we’re halfway there

Great news! I demoed the 
hay thresher level at the Wisconsin 
Game Conference last week and we 

totally killed it!

Yeah! I was just reading some 
great reviews on the top two gamer 

blogs from people who attended. Looks like 
CGW5 is the most anticipated game of 

the year!

218
4

X  Infiltrate barn

    Defeat Bessie

Things are looking good for the team
Cows Gone Wild 5 is this year’s most anticipated video game release! 
Now they just have to get it out the door. (Easier said than done?)



you are here 4  103

managing projects with scrum

Scrumcross

Across
1. The Sprint, Sprint Planning, the Daily Scrum, the Sprint Review, and 
the Sprint Retrospective
4. The Product Owner is allowed to _______ the Sprint, but it wastes the 
team’s energy and damages the company’s trust in the team
8. The most effective time to make a decision is at the last _______ 
moment
10. The Product Owner makes sure the team maximizes this
12. The Product Backlog, the Sprint Backlog, and the Increment
13. When this value isn’t part of your mindset, you don’t trust your 
teammates, and tend to blame them when things go wrong
16. What the team does to turn the Sprint Backlog items into tasks
17. Product Owner, Scrum Master, and Development Team
18. When this is part of your mindset, you don’t even consider trying to 
do two things at once
20. What Product Owners routinely do to keep the Product Backlog 
current
21. Responsible for maximizing the value of the product and managing 
the Product Backlog
23. During Sprint _______ the team chooses what items to include in the 
Sprint and builds a plan
24. The three Daily Scrum questions give the team complete _______ 
into what each team member is doing
25. The _______ Backlog is the single source of requirements and 
changes for the product
26. The timeboxed iteration used in Scrum

Down
2. The Sprint is over when the timebox _______
3. The team decides what can be done in the Sprin during the _______ 
part of the Sprint Planning session
5. Each item in the backlog has a description, the business value, an 
order, and a rough _______
6. The Sprint _______ contains items the team will build during the 
Sprint
7. The Sprint _______ is an objective crafted by the team when they 
plan the Sprint
8. The Sprint _______ is how the team inspects itself and creates a plan 
to improve
9. The theory that knowledge comes from experience
11. A self _______ team decides as a team how they’ll meet their goals
13. The Sprint _______ is how the team inspects what they built and 
adapts the Product Backlog
14. What pigs have, chickens don’t, and everyone on a Scrum team feels 
collectively toward the whole project
15. The Sprint Review is timeboxed to _______ hours for a 30-day sprint
16. What teams do with working software at the Sprint Review
19. The team decides how the work will be done during the _______ part 
of the Sprint Planning session

Answers on page 115

Here’s a great opportunity to seal the Scrum concepts, 
values, and ideas into your brain. See how many answers 
you can get without flipping back to the rest of the chapter.



104  Chapter 3

exam questions

Exam Questions

These practice exam questions will help you review the material in this chapter. You should still try 
answering them even if you’re not using this book to prepare for the PMI-ACP certification. It’s a great 

way to figure out what you do and don’t know, which helps get the material into your brain more quickly.

1. The Scrum Master is responsible for all of the following except:

A. Helping the team understand what goes on during the Daily Scrum
B. Giving the Product Owner guidance in effectively managing the Product Backlog
C. Helping the team understand customer requirements
D. Giving the rest of the organization guidance on understanding Scrum and working with the team

2. Which of the following is NOT an attribute of a Product Backlog item?

A. Status
B. Value
C. Estimate
D. Order

3. Juliette is a Product Owner on a Scrum project in a healthcare organization. She was called into a meeting 
with a steering committee made up of her company’s senior managers because she decided to include a planned 
health privacy feature in the most recent Sprint. At the meeting, the senior managers told her in the future that she 
must consult with the whole committee before making business decisions like that.

Which of the following BEST describes Juliette’s role?

A. She is in a servant-leadership role
B. She is not committed to the project
C. She needs to concentrate on focus and courage
D. She does not have the authority to adequately fill her Product Owner role

4. When is the Increment considered done?

A. When the timebox expires
B. When every item to be delivered meets its definition of “Done” and the Product Owner accepts it
C. When the team holds the Sprint Review and demonstrates it to the users and stakeholders
D. When the team holds the Sprint Retrospective



you are here 4  105

managing projects with scrum

Exam Questions

5. Which of the following is an example of collective commitment?

A. Everyone on the team feels personally responsible for delivering the entire Increment, not just their individual 
parts of it

B. Everyone on the team always stays late and often works weekends
C. Everyone on the team is responsible for delivering an important part of the project
D. Everyone on the team participates in the Sprint Planning and retrospective meetings

6. Which of the following is NOT a Scrum event?

A. Sprint Review
B. Product Backlog
C. Retrospective
D. Daily Scrum

7. Amina is a Scrum Master on a team that is working on adopting Scrum. She wants to make a change to help her 
team get better at self-organizing. Which of the following is the best area to focus their improvement effort?

A. Daily Scrum
B. Sprint Planning
C. Sprint Retrospective
D. Product Backlog

8. When is a Scrum Sprint over?

A. When the team finishes the work
B. When the team completes the Sprint Retrospective
C. When the timebox expires
D. When the team completes the Sprint Review



106  Chapter 3

exam questions

Exam Questions

9. Each person on the team answers all of the following questions during the Daily Scrum except:

A. What roadblocks are in my way?
B. What planned work did I fail to accomplish?
C. What will I do between now and the next Daily Scrum to meet the Sprint Goal?
D. What have I done since the last Daily Scrum?

10. Barry is a developer at an online retailer. His project manager told him the deadline for the current feature that 
he’s working on is three weeks from now, even though Barry made it clear that he would need four weeks, and there 
were no specific deadlines or external pressures that require it to be done earlier than that. Barry’s team is starting 
to adopt Scrum. Which of the Scrum values will make the team’s Scrum adoption difficult or less effective?

A. Openness
B. Respect
C. Courage
D. Focus

11. Sandeep is a product owner on a Scrum team working on a telecommunications project. The business users 
let him know about a major regulatory change in one of his regular meetings with them. Handling this regulatory 
change is now a very high priority for the team, and will need to be the main objective of the next Sprint.

Which of the following is used to describe the main objective of the next Sprint?

A. The Increment
B. The Sprint Backlog
C. The Sprint Goal
D. The Sprint plan

12. What aspect of empirical process control theory involves frequently examining the different Scrum artifacts and 
making sure the team is still on track to meet the current goal?

A. Examination
B. Adaptation
C. Transparency
D. Inspection



you are here 4  107

managing projects with scrum

Exam Questions

13. What is an Increment in Scrum?

A. The items from the Sprint Backlog that the team actually completes during the Sprint
B. The items from the Product Backlog that the team plans to complete during the Sprint
C. The result of decomposing the Sprint Backlog items
D. A statement that describes the objective of the Sprint

14. Which of the following helps Scrum teams focus?

A. Multitasking
B. Holding a Daily Scrum
C. Writing a Sprint Goal
D. Holding a retrospective

15. Danielle is a Product Owner on a Scrum team. She’s talking to one of her business users, who gives her a new 
requirement. Which of the following should Danielle do next?

A. Update the Product Backlog
B. Hold a Sprint Planning session
C. Update the Sprint Backlog
D. Bring up the new requirement at the next Daily Scrum

16. Which of the following BEST describes how the team determines what specific work will be needed to complete 
Sprint Backlog items?

A. The Product Owner works with the business users to determine which items go into the Product Backlog
B. The team decomposes Sprint Backlog items into tasks
C. The team chooses which Product Backlog items to include in the Sprint Backlog
D. The team decides on each Sprint Backlog item’s definition of “Done”

17. Which of the following does NOT take place during a Sprint Review?

A. The Product Backlog is updated to reflect what will probably be in the next Sprint
B. The team collaborates with business users on what they will work on next
C. The working software the team built during the Sprint is demonstrated
D. The team looks back at the Sprint and creates a plan to improve



108  Chapter 3

exam answers

Take a minute and read through the description of the Product 
Backlog in the Scrum Guide. It says that Product Backlog items 
have the attributes of a description, order, estimate, and value.

1. Answer: C

It’s the Product Owner’s job to help the team understand customer requirements, not the Scrum Master’s. The 
other three answers are good examples of the Scrum Master’s servant leadership role.

2. Answer: A

The Product Backlog does not contain any information about the status of a task. This makes sense—none of the 
items on in the Product Backlog are currently being worked on, so they all have the same status of not having 
been started yet.

3. Answer: D

One of the most common problems that Scrum teams run into is that the person in the Product Owner role does 
not have the authority to decide on behalf of the company what features the team will build during the Sprint, or 
accept them as done on behalf of the company.

4. Answer: B

The Increment is done when every item to be delivered by the team meets its definition of “Done” and the Product 
Owner accepts it. Every item in the Sprint Backlog has a definition of “Done” that the team uses to determine 
when it’s ready to release to the users. The Product Owner can only accept an item on behalf of the company if it 
meets its definition of “Done”—any item that isn’t “Done” done when the timebox expires must be pushed to the 
next Sprint. 

5. Answer: A

Collective commitment means that everyone on the team feels a personal sense of responsibility to deliver not 
just the piece that he or she is working on, but to do what it takes to help the team deliver the whole Increment at 
each Sprint.

Exam Questions
Answers

Here are the answers to this chapter’s practice exam questions. 
How many did you get right? If you got one wrong, that’s OK—it’s 

worth taking the time to flip back and re-read the relevant part of the 
chapter so that you understand what’s going on.

Just because everyone on a team works long hours, that doesn’t mean they feel a genuine commitment to it. In fact, they might resent the project and the organization for interfering with their lives, and only work the extra hours out of pressure to keep their jobs.



you are here 4  109

managing projects with scrum

Exam Questions
Answers

6. Answer: B

The Product Backlog is a Scrum artifact, not an event.

7. Answer: A

Self-organizing teams take responsibility for their own planning to meet their objectives, assign work themselves 
(rather than depending on a single manager or project manager to make those assignments), and fix problems 
with the plan as they come up. Of all of the practlices listed as answers, the Daily Scrum is the only one that 
impacts the way the team plans their work and executes that plan.

8. Answer: C

The Sprint is over when the timebox expires. The same is true of any timeboxed event. Answer D seems correct 
because the Sprint Retrospective is typically the last thing that the team does during the Sprint. But if the 
timebox expires before the team has a chance to hold their retrospective, the Sprint still ends. (And that’s a good 
opportunity for the Scrum Master to help them understand how to plan better next time.)

9. Answer: B

The purpose of the Daily Scrum questions is to give everyone a good idea of how each person on the team is 
progressing, so they can help identify problems with the current plan that need to be fixed. But none of the 
questions are about failures—that could create a negative and possibly embarrassing environment, and detract 
from the environment of openness.

10. Answer: B

The project manager is having trouble with the Scrum value of respect. Barry gave an honest assessment of the 
work that needed to be done, but the project manager ignored it and demanded a shorter deadline even though 
there was no business need to apply the extra pressure. That’s disrespectful.

11. Answer: C

When the team holds their Sprint Planning meeting at the start of the Sprint, the first thing they do is to decide on 
the Sprint Goal, a brief description of the objective of the Sprint that will be met by completing backlog items.

The Product Owner is allowed to cancel the Sprint before the timebox is over. But this can waste a lot of the team’s energy, and cause people in the company to lose trust in the team, so it should be extremely rare.

It’s also extremely demotivating!

One reason the Daily Scrum is so important is that it’s 
part of the transparency-inspection-adaptation cycle. 
The team inspects the plan every day, and adjusts it 
as they uncover new information about the project.



110  Chapter 3

exam answers

Exam Questions
Answers

12. Answer: D

The core of empirical process control theory—the theoretical underpinning for Scrum—is the “three 
pillars” cycle of transparency, inspection, and adaptation. In the inspection step, the Scrum team 
members frequently examine the Scrum artifacts, as well as their current progress toward the Sprint Goal. 
They try to detect any differences between where they are versus where they expected to be, so that they 
can take action (which is what adaptation is all about).

13. Answer: A

The Increment is what the team actually delivered during the Sprint. The items that the team intended 
to complete at the beginning of the Sprint often don’t exactly match up with the work they actually 
did. That’s a good thing—it means the team used the information they learned along the way to change 
direction. The Increment is the product of what actually happened, and the team doesn’t know exactly 
what the current Sprint’s Increment will contain until they’ve delivered it.

14. Answer: B

The Sprint Goal helps the team focus on the specific objective that they planned on accomplishing during 
the Sprint. 

15. Answer: A

The Product Backlog is the single source for product requirements, and it’s maintained by the Product 
Owner. When the Product Owner discovers a new requirement, she adds it to the Product Backlog.

We learned earlier that Scrum 
takes an incremental approach. It’s 
the delivery of successive Increments 
that makes it incremental.

Retrospectives and Daily Scrums can be very 
useful, but holding meetings is not typically 
a tool that teams use to help focus.



you are here 4  111

managing projects with scrum

Exam Questions
Answers

16. Answer: B

Scrum teams determine what work will be done during the Sprint to complete Sprint Backlog items by 
decomposing them into tasks. The other answers are also things that the team does during Sprint Planning, but 
it’s not how the team determines what work they’re going to do.

17. Answer: D

During the Sprint Review, the team meets with the business users and customers to review what they’ve done 
and collaborate on what the next Sprint will accomplish. They’ll review the Increment, which typically involves 
demonstrating the working software that they built. They’ll also discuss the backlog and update it to show the 
items that they’ll probably work on in the next Sprint. The Sprint Review isn’t for looking back at what happened 
and making improvements—that’s what the Sprint Retrospective is for.

Did you gEt some of the 
questions wrong? That’s 

absolutely OK! Just Keep track 
of them, and make sure to go back 

and re-read the parts of the 
chapter that covered them.

When you get a question wrong 
now, that actually makes it 
more likely that you’ll get a 
question on the same topic 
right when you take the exam!

The updated backlog only reflects the probable 
items that will be worked on during the next Sprint. 
That’s not the same thing as committing to build 
certain items—the team will come up with the Sprint 
Backlog during Sprint Planning, and the Product 
Owner can make changes to it during the Sprint.



112  Chapter 3

exercise solutions

 Here are the five Scrum events, three Scrum roles, and three Scrum 
artifacts. Remember, each event is timeboxed, but the length of the 
timebox changes proportionally if the team uses a shorter Sprint.

Sprint Planning

Daily Scrum

Sprint Review

retrospective

beginning of the Sprint

every day

end of the Sprint

after the Sprint Review

throughout the project

8 hours

15 minutes

4 hours

3 hours

Assume that the Sprint 
is timeboxed to 30 days

Event names in the 
order they occur

Sprint

When the events 
happen

Length of the event’s 
timebox

Write down the Scrum roles Write down the Scrum artifacts

Product Owner

Development Team

Scrum Master

Product Backlog

Increment

Sprint Backlog



you are here 4  113

managing projects with scrum

Here are some things we overheard Amy, Rick, and Brian saying. Draw a line 
from each speech bubble to either COMPATIBLE or INCOMPATIBLE, and then 
to the Scrum value that it’s either compatible or incompatible with.

The only thing I’m 
impressed with is technical 

ability. If you can’t code, I have 
no use for you.

Look, Alex, I 
know redoing all of the 

graphics will impress reviewers, 
but there’s absolutely no way the 
team can do that without missing 

the release date.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

I can’t work on 
any Sprint tasks today. 

Another team has a really big 
deadline and they need to 

borrow me.
INCOMPATIBLE

COMPATIBLE

Respect

Focus

Openness

Courage

It’s 
my turn to talk? OK. 

Since the last Daily Scrum I 
kept working on the same feature, 

and I’ll do the same until the 
next Sprint. No roadblocks. 

Who’s next?

It takes guts to say “no” to a senior manager, but Rick has the courage to stand up for the project.

Focus means that your top 
priority at work is meeting 
the Sprint Goal and working 
on the Sprint Backlog.

It’s really common for hardcore 
programmers to dismiss anyone who isn’t 
technical like them, and that’s disrespectful. 

When it was Brian’s turn to talk at the Daily Scrum, he didn’t really say anything. Openness means sharing actual details about what you’ve been working on and what you’ll do next.

CALLJUDGMENT

Solution



114  Chapter 3

exercise solutions

Who am I?A bunch of Scrum artifacts, events, and roles are playing a party 
game, “Who am I?” They’ll give you a clue, and you try to guess 
who they are based on what they say. Write down its name, and 
what kind of thing it is (like whether it’s an event, role, etc.).
And watch out—another Scrum concept that’s not an event, 
artifact, or role might just show up and crash the party!

Name
Kind of 
thing

I’m a servant leader who guides the team in understanding and 
implementing Scrum, and helps people outside of the team grasp it.

I’m held at the end of the Sprint to do an inspection with users and 
stakeholders who were invited of each item that the team built.

I’m how the team inspects itself, where they look for the things that went 
well, and make a plan to improve things that didn’t.

I’m the sum of all items that the team delivers to the users at the end of 
the Sprint, and I can only be delivered if every item in me is “Done.”

Scrum Master role

Sprint Review event

Sprint Retrospective event

I’m the group of professionals who actually do all of the work that’s 
needed to deliver the software to the users and stakeholders.

I’m responsible for deciding what items will go into the product, and I 
have the authority to accept them as “Done” on behalf of the company.

I’m a 15-minute timeboxed meeting held every day, where team 
members create a plan for the next 24 hours.

I’m what the Product Owner helps the team optimize and maximize, and 
the team tries to prioritize the items that have the most of me.

I’m the set of items the team will build during the Sprint, along with a 
plan to build them (usually a set of tasks the items are decomposed into).

I’m a timeboxed meeting where the team comes up with a Sprint Goal, 
decides which items they’ll deliver, and decomposes them into tasks.

I’m an ordered list of all of the items (with descriptions, estimates, and 
value) that might be needed in the product at some time in the future.

Increment artifact
Development 

Team role

Product Owner role

Daily Scrum event

value concept

Sprint Backlog artifact

Sprint Planning event

Product Backlog artifact

Solution



you are here 4  115

managing projects with scrum

Scrumcross
SOLUTION

E1 V E2 N T S F3

C4 A N C E5 L X I
B6 S G7 R8 E S P O N S I B L E E9 R

V10 A L U E O11 T O E I M S
C A12 R T I F A C T S R R13 E S P E C14 T
K F15 G M L R D16 E C O M P O S E I O
L O A A R17 O L E S V R M

F18 O C U S19 N T S M I I M
G R20 E F I N E P21 R O D U C T O W N E R C I

A22 C Z E W I T
D O I C S M

P23 L A N N I N G T24 R A N S P A R E N C Y M E
P D G I N
T V P25 R O D U C T
S26 P R I N T O27 P E N N E S S

Across
1. The Sprint, Sprint Planning, the Daily Scrum, 

the Sprint Review, and the Sprint Retrospective 
[EVENTS] 

4. The Product Owner is allowed to _______ the 
Sprint, but it wastes the team's energy and 
damages the company's trust in the team 
[CANCEL] 

8. The most effective time to make a decision is at 
the last _______ moment [RESPONSIBLE] 

10. The Proudct Owner makes sure the team 
maximizes this [VALUE] 

12. The Product Backlog, the Sprint Backlog, and 
the Increment [ARTIFACTS] 

13. When this value isn't part of your mindset, you 
don't trust your teammates, and tend to blame 
them when things go wrong [RESPECT] 

16. What the team does to turn Sprint Backlog items 
into tasks [DECOMPOSE] 

17. Product Owner, Scrum Master, and 
Development Team [ROLES] 

18. When this is part of your mindset, you don't 
even consider trying to do two things at once 
[FOCUS] 

20. What Product Owners routinely do to keep the 
Product Backlog current [REFINE] 

21. Responsible for maximizing the value of the 
product and managing the Product Backlog 
[PRODUCTOWNER] 

23. During Sprint _______ the team chooses what 
items to include in the Sprint and builds a plan 
[PLANNING] 

Down
2. The Sprint is over when the timebox _______ 

[EXPIRES] 
3. The team decides what can be done in the 

Sprint during the _______ part of the Sprint 
Planning session [FIRST] 

5. Each item in the backlog has a description, the 
business value, an order, and an a rough 
_______ [ESTIMATE] 

6. The Sprint _______ contains items the team will 
build during the Sprint [BACKLOG] 

7. The Sprint ______ is an objective crafted by the 
team when they plan the Sprint [GOAL] 

8. The Sprint _______ is how the team inspects 
itself and creates a plan to improve 
[RETROSPECTIVE] 

9. The theory that knowledge comes from 
experience [EMPIRICISM] 

11. A self _______ team decides as a team how 
they'll meet their goals [ORGANIZING] 

13. The Sprint _______ is how the team inspects 
the what they built and adapts the Product 
Backlog [REVIEW] 

14. What that pigs have, chickens don't, and 
everyone on a Scrum team feels collectively 
towards the whole project [COMMITMENT] 

15. The Sprint Review is timeboxed to _______ 
hours for a 30-day sprint [FOUR] 

16. What teams do with working software at the 
Sprint Review [DEMO] 

19. The team decides how the work will be done 
during the _______ part of the Sprint Planning 
session [SECOND] 



116  Chapter 3

this page intentionally left blank



Agile Planning and Estimation4

Generally Accepted
Scrum Practices

Agile teams use straightforward planning tools to get a handle 
on their projects.  Scrum teams plan their projects together so that everybody on 

the team commits to each sprint’s goal. To maintain the team’s collective commitment, 

planning, estimating, and tracking need to be simple and easy for the whole team to do 

as a group. From user stories and planning poker to velocity and burndown charts, 

Scrum teams always know what they’ve done and what’s left to do. Get ready to learn the 

tools that keep Scrum teams informed and in control of what they build!

GASP!

this is a new chapter  117



Meanwhile, back at the ranch...
The demo of  CGW5 was the most exciting thing at the Wisconsin Game conference. But is the team 
a victim of  their own success? Now it seems like everyone in the gaming world expects it to be the 
most innovative and fun game of  the year. That’s a lot of  pressure on the team!

This morning, when I went to get coffee, A total 
stranger saw the company logo on my mug and 
started asking me when this game was coming 

out. All we have is a 15-minute demo!

Look, This is 
a good problem to have. 
We’re definitely on the right 

track.

I’m glad they’re excited 
too. But how are we going to do 

this?

victims of their own success

118  Chapter 4



 How would you solve these problems that have the CGW5 team concerned about meeting their 
users’ expectations? Get creative with this! Just write down a short sentence for each of these.

1. When they started out, the team thought they’d market the product as a kids’ game, but some 
of the content is kind of violent and the gamers at the conference like the more mature focus. 

4. The biggest complaint from gamers about the demo is that the player had to stop running 
in order to change weapons while they were fighting a big battle. That caused them to die 
all the time and made the game less fun. 

2. A lot of the features in the demo are limited. To make them work for a full-length game, the 
team will have to go back and make changes to some pretty old parts of the code.

3. A developer had an idea to add a mini-game as a downloadable add-on. But that feature 
looks like it’s a lot more work than the team initially thought. Is it worth building that 
downloadable content if it means losing one of the team’s best coders for most of the project?

The demo looks really cool, but 

it’s not exactly integrat
ed with 

the CGW5 code base just yet.

you are here 4  119

generally accepted scrum practices



 Here are a few ways that we came up with for the team to handle these situations. Did you come 
up with different answers? Changes happen all the time in agile teams—the way that you and your 
team handle them can make the difference between success and failure.

4. The biggest complaint from gamers about the demo is that the player had to stop running in 
order to change weapons while they were fighting a big battle. That caused them to die all the 
time and made the game less fun.

3. A developer had an idea to add a mini-game as a downloadable add-on. But that feature 
looks like it’s a lot more work than the team initially thought. Is it worth building that 
downloadable content if it means losing one of the team’s best coders for most of the project?

2. A lot of the features in the demo are limited. To make them work for a full-length game, the 
team will have to go back and make changes to some pretty old parts of the code.

Meet with the team and talk about how users will want to play the game 

Writing down the features 
they need to build from a user perspective will help the team get it right the first time.

If the team knows there’s work to do 
that will affect everything else, it’s 
best to do it early in the project.

Since the Product Owner knows what the customer 
wants, he needs to make sure that features like this 
get the right priority.

The Product Owner figures out if this feature is valuable and prioritizes it in the backlog

Add this work to the product backlog and try to do it early in the project

1. When they started out, the team thought they’d market the product as a kids’ game, but some 
of the content is kind of violent and the gamers at the conference like the more mature focus. 

You can’t build a product 
that suits your users’ needs if 
you don’t know who they are. 

Brainstorm real-world users who will use the game and target features to them

looks like the team has some work to do

This is the kind of discussion 
that happens when the Scrum 
Team meets with the important 
stakeholders at the end of each 
sprint during the sprint review.

120  Chapter 4



So... what’s next?
The team had enough backlogged requests to build out a crowd-pleasing 
demo at the beginning of  the project. But now they’ve got to make sure 
that the full-length game will make gamers as happy as the demo did. 

The CGW team needs to find a way to plan and 
track their project. Can you think of tools you’ve 
used on your own projects that might help? How 
effective would they be for working on an agile 
team?

We’re Following all of the rules of 
Scrum, but I’m not sure we’ve got a handle 
on this project just yet. There have to be 

tools to help us make sure we’re planning 
and building the best product we can.

you are here 4  121

generally accepted scrum practices



Introducing GASPs!
When Scrum teams start working on a sprint, they use tools that include the whole 
team in setting goals and tracking them. While these practices are not part of  the core 
Scrum rules, they’ve been used by many Scrum teams to plan work and keep everybody 
on the same page. That’s where the Generally Accepted Scrum Practices —or 

“GASPs”—come in. They’re not technically part of  the Scrum framework, but they’re 
so common among Scrum teams that they’re found on almost every Scrum project.

AS A PlAyer,
I WANT TO SWITch beTWeeN my equIPPed 
WeAPONS WhIle SPrINTINg

SO ThAT I dON’T hAve TO STOP TO See my 
INveNTOry

2 POINTSSWITch WeAPONS WhIle 
SPrINTINg

All of these tools help 
teams share all of the 
information they gather 
for planning so that 
the whole team can plan 
and track the project 
together.

Task boards keep all the status of stories 
transparent to the team.

 User stories and story points
User stories help you to capture what your users need 
from the software so you can build it out in chunks 
that they can use. Story Points are a way of saying how 
much effort will be needed to build a user story. 

1

 Task boards
Task boards keep everybody in the team 
on the same page about the current 
sprint’s progress. It’s a quick, visual way 
to see what everybody is doing.

3

gasps and scrum perfect together

122  Chapter 4



This chart shows seven points burned off of the sprint, which reflects the two stories the team has finished so far.

 Planning poker
Teams use planning poker to get everybody thinking 
about how big each story is and how they’ll build it.

2

 Burndown chart
Everyone on the team can see much 
work they’ve done and how much is 
left to do using burndown charts.

4

In planning poker, the team explains their 
estimates while they decide the number 
of story points for each story, and then 
they end up coming to an agreement on 
both the approach and the estimate.

The Y-axis of this chart 
is labeled story points. 
How do you think the 
team will use them?

The burndown chart is a 
great tool for helping you 
to figure out how much 
work is left to do, and 
get a pretty good sense 
of whether or not you’ll 
finish all of the work 
planned for the Sprint.

The term GASP was created by leading agile thinker Mike Cohn in a widely read  2012 blog post 
called “The Rules vs. Generally Accepted Scrum Practices”

https://www.mountaingoatsoftware.com/blog/rules-versus-generally-accepted-practices-scrum

you are here 4  123

generally accepted scrum practices

https://www.mountaingoatsoftware.com/blog/rules-versus-generally-accepted-practices-scrum


No more 300-page specs... please?
The team used to create detailed specifications, because writing up all of  the requirements for 
the game seemed like the most efficient way to communicate everything the users needed. But 
a lot gets lost in translation when one person tries to write down everything and communicate 
it to a development team. Is there a better, more agile way to write down requirements?

I’ve got 150 pages of reports on the 
features our users have requested. Do I just 
write those up as requirements and turn them 

over to the team to build?

Alex: I was thinking that too. But I need more than just a report of  requested 
features to do that, don’t I?

Rick: Huh, I guess you’re right. It looks like we need to figure out who our 
users are first, and then divide the list of  features into a list of  actions and 
benefits. Do you feel like you have enough information to do that?

Alex: Actually, when I think about it, I do have all of  that. There are three kinds 
of  gamers we target with the CGW series: novices, casual gamers, and experts.

Rick: OK, let’s use those roles to write up our stories.

Alex: Yeah, figuring out the actions the users will take is pretty easy. That’s 
usually the meat of  the feature request. The benefit they receive is easy to 
understand too. Actually, writing our requirements this way won’t be very hard.

Rick: Great! Let’s just get them in the backlog and get started on our first 
sprint.

Alex: Not so fast, Rick. We still need to figure out how to estimate this stuff. 
And we don’t even know what “this stuff ” really is! Seriously... what, exactly, are 
we going to build?

I think we’re going 
to need to talk about those 

features a lot as we build them. Let’s try 
breaking them up into user stories and 

planning them that way. 

it’s easy to get overwhelmed with documentation

124  Chapter 4



User stories help teams understand what users need
Software helps people do things. When a user asks a team to build a feature, it’s because they 
need to be able to do something in the future with it that they can’t do today. The most efficient 
way to make sure the team builds the right thing is to keep those needs in mind throughout the 
development process. A user story is a very short description of  a specific thing that users 
need. A lot of  teams write them on index cards or sticky notes. By organizing all of  their work 
around user stories, Scrum teams make sure they keep user needs front and center in their 
planning and prioritization process. That way, they stay focused on building what their users 
need and there are no surprises when the team demonstrates the stories at the end of  the sprint. 

AS A PlAyer,
I WANT TO SWITch beTWeeN my equIPPed 
WeAPONS WhIle SPrINTINg

SO ThAT I dON’T hAve TO STOP TO See my 
INveNTOry

2 POINTSSWITch WeAPONS WhIle 
SPrINTINg

User Stories
User stories describe how the user will use the software in just a few 
sentences. Many teams write user stories on note cards following a fill-in-the-
blank format:

 As a <type of user>, I want to <specific action I’m taking> so that <what I want 
to happen as a result>.

Because stories are short and modular, they’re a good reminder for the team 
to constantly confirm that they’re building the right features. You can think 
of each story card as a symbol for a conversation that the team is having with 
users to make sure that they’re building features that are useful to them.

This statement tells 

the team why the user 

wants the feat
ure.

Once the team has discussed the relative size of a feature, they write the story point value on the card

The title is just a quick way of summarizing the story

This tells the team the 

role the user is playi
ng 

when they are using t
he 

software

This is the action the user takes in the software. 

you are here 4  125

generally accepted scrum practices



How story points work
Story points are simple: the team just picks a number of points that represents the amount of work 
required for each story, and assigns that number to every story in the sprint backlog. Instead of trying 
to predict exactly how long it will take to build a feature, the team assigns a point value to each story 
based on its size relative to other features they’ve built before. At first, the estimates vary a lot from story 
to story. But after a while, the team gets used to the scale they’re using to estimate and it gets easier to 
figure out how big each story is.

One way that teams start using story points is to divide stories up into T-shirt sizes, and assign a point 
value to each size. For example, they might decide to use 1 point for extra small features, 2 points for 
small features, 3 points for medium features, 4 for large, and 5 for extra large. Once they decide on a scale, 
they just need to decide which category each story fits into. Some teams use the Fibonacci sequence (1, 
2, 3, 5, 8, 13, 21...) for story point scales because they think it provides a more realistic weight for bigger 
features. As long as your team uses a scale consistently, it doesn’t matter which one they use.

Whatever doesn’t get done in a sprint is moved from that sprint to the next and the total number of story 
points that are completed in each sprint is tracked as the project’s velocity. If a team finishes 15 stories 
totalling 55 story points in a sprint, they track the 55 points as the sprint velocity and that gives them a 
general idea of roughly how much they can do in the next sprint.

Over time the team gets better and better at assigning story points and more and more consistent in the 
number of points they deliver in each sprint. That way the team gets a feel for how much they can do in a 
sprint and takes control of planning together. 

Extra 
Small Small Medium Large

Extra 
Large

1 point 2 points 3 points 5 points 8 points

Why could it be better for teams to assign a general 
size value to each story than an exact date?

Extra 
Extra 
Large

13 points

Story points let the team focus on the relative size of each story
The goal of  planning isn’t to predict the order features will be done in or their exact completion dates. Instead, the 
team assigns a point value to each story based on how big it is. That’s why most Scrum teams plan their projects using 
story points, which let them compare stories with each other. By focusing on the relative size of  features rather than 
the exact amount of  time it will take to develop them, Scrum teams keep the team engaged in planning together and 
allow for uncertainty in their plans.

all things being relative

126  Chapter 4



AS A PlAyer,
I WANT TO SWITch TO zOmbIe mOde Where There Are TrIPle The Number Of eNemIeS ANd They Are eASIer TO kIll
SO ThAT I cAN rePlAy The gAme WITh A dIffereNT mOde

fIghT mAd cOW zOmbIeS

These user stories are 
great! We’re really getting 

a handle on what the users want 
from the game. But how do we 

Figure out how much we can 
build in a Sprint?

The team needs to agree on how big this story is before we can assign a story point number to it. 

This story 
applies to all 
of the novice 
players, casual 
players, and 
expert players.

Making the game 
replayable is one 
of the major 
goals of this 
release.

The most efficient and effective method of
conveying information to and within a development

team is face-to-face conversation.

User stories are really simple, which 
is why Scrum teams find them so 
valuable. But the most important 

part of a user story is the discussion 
that’s sparked among the team and 
with their users and stakeholders.

One reason user stories are so effective 
is because of this agile principle.

you are here 4  127

generally accepted scrum practices



Re-write the items in this backlog as user stories

Cows Gone Wild 5.2 Product Backlog

Item #1: Stealth chicken coop level

Value: Adds a different play mode for expert users who want to be able to replay levels.

Item #2: Big Bessie’s fighting sequence needs to anticipate the hero’s attacks and react 
faster in expert play mode

Value: This will make Bessie harder to defeat.

Item #3: Novice gamers wanted the haymaker gun to include a super-baler that doubles 
damage when a bale is fired

Value: Will help novice gamers get through harder battles in Easy mode.

Item #4: Users need to be able to switch weapons while sprinting

Value: Users can see their inventory without stopping
Page 1 of 7

get some practice writing stories

128  Chapter 4



Re-write the items in this backlog as user stories

AS A
I WANT TO
SO ThAT I

AS A
I WANT TO
SO ThAT I

AS A
I WANT TO
SO ThAT I

AS A
I WANT TO
SO ThAT I

Leave the estimates blank for now

you are here 4  129

generally accepted scrum practices



 Re-write the items in the product backlog as user stories.

AS AN exPerT PlAyer

I WANT TO PlAy The chIckeN cOOP level IN 
STeAlTh mOde

SO ThAT I cAN rePlAy The gAme IN A 
dIffereNT mOde

STeAlTh chIckeN cOOP 
level

AS AN exPerT PlAyer

I WANT TO hAve beSSIe ANTIcIPATe my 
mOveS ANd reAcT fASTer

SO ThAT I WIll hAve mOre fuN fIghTINg 
beSSIe

bIg beSSIe fIghT 
mOveS

AS A NOvIce PlAyer

I WANT TO geT dOuble dAmAge by ShOOTINg 
The hAymAker IN SuPer-bAler mOde

SO ThAT I cAN defeAT eNemIeS mOre eASIly

hAymAker - SuPer 
bAler

AS A PlAyer

I WANT TO SWITch beTWeeN my equIPPed 
WeAPONS WhIle SPrINTINg

SO ThAT I dON’T hAve TO STOP TO See my 
INveNTOry

SWITch WeAPONS WhIle 
SPrINTINg

Here are the stories we came up with. It’s OK if the wording that 
you used is different, as long as you got practice writing stories.

invest in stories

130  Chapter 4



User Stories are all about delivering testable software
During the planning for an agile project, the Product Owner will work with end users to identify user stories. Those 
stories identify the user’s needs and their rationale for asking for the feature. But just writing down the user story is 
only the beginning of  the team’s understanding of  the user’s need. Even though the team doesn’t know all of  the 
details of  what’s needed when a user story is first written, they use the card as a reminder that they need to figure out 
the details and plan the work to develop it. By not delving into the details of  each story up front, Scrum teams keep 
their options open and allow themselves to make decisions about each story at the last responsible moment.

User stories were originally developed as an XP practice (we’ll learn more about that in the next chapter), but they’re 
used by many , many Scrum teams. Even though they’re much shorter and less-detailed than traditional software 
requirements, they manage to serve the same purpose while offering teams the flexibility to plan their approach to 
development as late as possible. Here’s how they do it:

• Card: First the Product Owner writes down the user story (often using the “As a... I want to... So that...” template 
we’ve been talking about), and that card reminds them to understand the details of  what needs to be built.

• Conversation: When it’s time to estimate the story, the team has a conversation with the Product Owner, and 
sometimes the users, to figure out the details they need to know to estimate the card. Sometimes the Product 
Owner will work with designers and users to produce mock-ups, or sometimes the team will produce technical 
designs that help them flesh out the approach to building out a story.

• Confirmation: Next, the team turns their attention to the tests they’ll write to make sure the user story has been 
built. This confirmation is an important feedback loop and the fact that user stories are small and self-contained 
helps both the team and users agree on the tests to run.

Some teams will write the tests that confirm each user story on the back of  the user story card. That helps the team 
to remember how the story should work when it’s done. It also helps the users and team come to an agreement on 
how the story will behave when the software’s ready. These tests are alternately called conditions of  satisfaction and 
acceptance criteria.

The guidelines for writing a good user story can be summed up with the acronym INVEST:

I - Independent: user stories should be able to be described apart from one another.

N - Negotiable: all of  the features in a product are the product of  negotiation

V - Valuable: there’s no reason to spend time writing a card that isn’t valuable to your users

E - Estimatable: each user story needs to convey a feature that the team can assign as size or effort number to

S - Small: user stories should describe independent interactions, not huge categories of  functionality

T- Testable: being able to test each user story is what makes it such an effective feedback loop for Scrum teams

Under the Hood: User Stories

INVEST and the three C’s originated with XP, which you’ll learn about in the next 
chapter. You can read more about them in the original 2003 post by Bill Wake:

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
(as he mentions, the three C’s were originated by XP pioneer Ron Jeffries)

you are here 4  131

generally accepted scrum practices



The whole team estimates together
Once the team has a prioritized list of  user stories to get started with, they need to 
figure out how much effort it will take to build them. They usually estimate the story 
points needed to build each story out as part of  the Scrum planning meeting at the 
start of  each sprint. Most often the team knows which stories are the highest priority 
by looking at the backlog, so they try to commit to as many high priority stories as 
they can in each sprint. One way the team does this is planning poker. 

1 21138532
x xx

x
x

AS A NOvIce PlAyer

I WANT TO geT dOuble dAmAge by ShOOTINg 
The hAymAker IN SuPer-bAler mOde

SO ThAT I cAN defeAT eNemIeS mOre eASIly

hAymAker - SuPer 
bAler

The person who 
estimated 8 points 
might know of some 
complexity to the 
feature that the rest 
of the team isn’t 
thinking of. 

2 is the low estimate. Maybe the person who estimated it knows a way to develop the feature faster than the rest of the team is assuming.

3 people thought the feature was 3 points

put on your poker face

 The setup 
Each team member has a deck of cards with valid estimation numbers on each card. Usually the 
Scrum Master moderates the session.

When the team can’t be in the same room to use cards, the team will agree on the point scale 
they’re going to use up front and a method for communicating estimates. Many distributed 
teams will have everybody give their estimates over an instant message system to the 
moderator instead of using physical cards. 

1

 Understanding each story
The team goes through each story in the sprint backlog in 
priority order with the Product Owner and asks questions 
about the story to figure out what the users need.

2

 Explaining the high and low numbers
If the estimates differ between team members, the high 
number and the low number explain their estimates.

4

 Assigning a story point value
Once the team has discussed the feature, each 
person assigns a story point value by choosing a 
card from the deck and shares that value with the 
group.

3

132  Chapter 4



 Adjusting the estimates
Once the team has heard the explanations, they have a chance to choose an estimation 
card again. If the team can’t be in the same room, they communicate their estimate 
using e-mail or IM to the moderator without sharing it out loud to the team. 

5

1 21138532

x

x
x
x
x

AS A NOvIce PlAyer

I WANT TO geT dOuble dAmAge by ShOOTINg 
The hAymAker IN SuPer-bAler mOde

SO ThAT I cAN defeAT eNemIeS mOre eASIly

3 POINTS
hAymAker - SuPer 

bAler
Since the team explains their 
estimates while they decide the 
number of story points for each 
story, they end up coming to an 
agreement on both the approach 
and the estimate using planning 
poker.

After listening to both 
the high and low estimates, 
the team decided that 
this feature was 3 points.

 Converging on an estimate
Usually, teams start with a significant range of estimates but that range narrows over the course of 
explanation and adjustment. After a few iterations through the process, the estimates converge on a 
number that the team is comfortable with. It usually only takes 2-3 iterations of discussion until the 
team can unanimously agree on a story point value. 

6

Planning poker is very effective, in part because it’s collaborative. When the team 
estimates effort for an item, each team member estimates the whole effort, not just 
his or her part of it. So even if you’re not doing the work, you’re estimating it... and 
that helps everyone on the team get a better understanding of the whole project.

you are here 4  133

generally accepted scrum practices



No more detailed project plans
It feels like you’ve got a really good handle on your project if  you create a plan to map out all of  the 
dependencies and figure out who will be doing what from the time you start until the end. Traditional project 
plans make everybody feel like the there’s a guarantee of  success because everything has been thought 
through. More often than not, the information you have at the beginning of  the project isn’t enough to make 
a completely accurate detailed plan. But some of  the decisions traditional project plans ask you to make in the 
beginning turn out to be different than the ones you’d make if  you were in the middle of  the project.

Scrum teams try to make decisions at the last responsible moment and allow for change, because they realize 
that detailed project plans can lead a team to focus on following the plan rather than responding to the changes 
that come up naturally. That’s why Scrum teams work on prioritizing the backlog and doing the highest priority 
work first. That way, they’re always working on the most important tasks, even when things change. 

OK. We’ve played planning 
poker, and I know how many points 

each of these stories will be. But how do I 
build a schedule from story points? I still don’t 

know who will do which task or how long 
they’ll each take.

Um...maybe each team member is 
supposed to take the highest priority 
story in the backlog that’s available 

and get started?

Rick: Wait, no! That’s definitely not right. How do I know when 
we’ll be done? Or who’s doing what?

Brian: You’re right. Assigning a story point value to a user story is 
a lot different than telling you how many days it will take to do the 
work.

Rick: So I’m just supposed to tell upper management that we’ll do 
as much work as we can over the next two-week sprint?

Brian: Well, as long as we’re all working on the highest priority 
features, we’re doing the most valuable work we can be doing. I 
think it’s a combination of  us doing high priority work and demoing 
what we’ve done in every sprint review that keeps everyone in the 
loop.

Rick: OK. But without a project plan, how do I even know if  
everybody is busy working on the right tasks?

perfect accuracy isn’t possible

134  Chapter 4



Estimation Way 
Up Close
Here are a few concepts used in estimating software in general that will help you understand how 
Scrum teams estimate:

Elapsed time
Estimates done in elapsed time predict the date a task will be completed. Estimates like this often 
require buffers and contingency to set expectations. If  a member of  the team is going to be on 
vacation during a project, that person can’t be assigned work during that time, and the overall 
project estimate needs to be adjusted to deal with it. Some projects go as far as trying to predict the 
total number of  hours in a day that each person will be able to work on project work versus the time 
they spend in meetings or other overhead.

Traditional project management practices attempt to account for all of  the possible interruptions 
and schedule adjustments from the beginning of  the project. Projects that are planned in this way 
attempt to forecast a hard-and-fast end date based on the scope of  work and effort estimate.

Ideal time
This is the amount of  time necessary to accomplish a task if  the person who is assigned to it is 
able to work without interruption. When an estimate is made in ideal time, it assumes that there is 
no overhead, no sick days, and no competing priorities that would take the person away from the 
project work and affect your delivery date. Agile teams estimate in ideal time and they use empirical 
measurements of  how much work each team has delivered in past sprints to set expectations of  
what can be done in a given time frame.

Story Point
A numeric indicator of  the relative size of  a feature. Features that require roughly the same amount 
of  effort are given the same story point value. Estimates that are done using story points don’t 
require buffers. When you assign a story point value to a feature, you assume it’s a measure of  
relative size given all of  the normal disruptions and uncertainty your team deals with. Because 
they’re relative size values, they do not translate to specific time values. You can’t say a story point 
is equal to one hour of  work, for example. You can, however, say that a story point is equal to the 
effort required to create a button and link it to an action.

Velocity
The number of  story points completed in a sprint. This number is averaged over time to predict 
the amount of  work that can be accomplished across multiple sprints. Velocity values normally vary 
at the start of  a project and stabilize as team members gets more comfortable with each other and 
the work they’re doing. When a team has been working with a consistent velocity for some time you 
can forecast that they will continue to deliver at that rate. Rather than predicting the delivery date 
for each feature in an agile project, the team focuses on delivering the highest value work possible in 
each sprint and maintaining a sustainable velocity of  work.

Velocity is a historical measure. Teams use it to understand 
their capacity based on past performance. But that capacity can 

change over time—and when it does, your team’s velocity will, too. you are here 4  135

generally accepted scrum practices



Taskboards keep the team informed
Once your team has planned the sprint, they need to get started building it. 
But Scrum teams generally don’t sit down and figure out who will do each task 
at the beginning of  each sprint. They try to make it easy for team members 
to make decisions at the last responsible moment by giving the whole team 
constantly updated information about how the sprint is progressing.

Most teams start by marking a whiteboard with three columns: To Do, In 
Progress, and Done. As a team member starts working on a story, he or she 
will move it from the To Do column to the In Progress column and to the 
Done column when it’s complete.

Task boards keep the status of all stories 
transparent to the team.

1 Sprint Begins
All of the user stories are in the To Do column because no one has started working on them yet. 

keep track of tasks

This task board has just the 
stories, and a lot of agile teams 

do this. But many teams add 
cards or stickies to their board 

for the tasks that the stories 
are decomposed into, grouped 
under each story card. When 
the first task moves into the 

In Progress column, the story 
goes with it. It stays there until 

the last task is Done.

136  Chapter 4



Mid Sprint
Team members move their tickets to In Progress when they start working on them and to the Done column as 
they are completed. The team usually agrees to a definition of done up front so that everyone is clear on what 
it means to be done with a story. 

2

Sprint Ends
If the team estimated well, all of the user stories they put in the backlog have been moved to the Done column. 
If there are leftover user stories, they’re added to the next sprint backlog. 

3

Because the 
team knows which 
stories are being 
worked on, they 
know what they 
can take on next 
to help out. 

Now everyone can pick 
what they should work 
on next instead of 
waiting for someone to 
assign it to them. 

The team finished all 

of the user stories
 in 

the backlog for th
is 

sprint.

If there are any 
stories left in 
the To Do or 
the In Progress 
columns at the 
end of the 
sprint, they 
go back to the 
product backlog 
to be evaluated 
in the next 
planning session.

you are here 4  137

generally accepted scrum practices



 Q: So what’s the difference between 
a user story and requirement? Is it just 
that it’s written on an index card?

A: No. In fact a lot of teams don’t write 
their user stories on cards at all. Often, 
they’re created as tickets in an issue 
tracking system. They can be rows in a 
spreadsheet, or bullets in a document. The 
biggest difference between user stories and 
traditional software requirements is that 
user stories don’t attempt to nail down the 
specific details about the feature that’s being 
described. 
 
The goal when you’re writing a user story 
is to capture just enough information that 
everybody can remember who’s going to 
use the feature, what it is, and why users 
want it. The story itself is a way to make 
sure that the team talks about the feature 
and understands it well enough to do the 
work. Sometimes teams will need to write 
more documentation once they’ve confirmed 
the story with the users. Sometimes just 
having the conversation is enough, and 
the team can build the feature without any 
more documentation. However they do 
it, the most important thing is for them to 
understand what the user needs, and his or 
her perspective.

Q: How do I know how many story 
points to assign to a story?

A: When a team is starting to use story 
points for the first time, the first thing they 
typically do is get together and decide what 
type of work is worth one story point—usually 
a simple task that everyone on the team can 
understand. (For example, a team working 
on a web application might decide that one 
story point is equivalent to the effort it takes 
to add a button with some simple, specific 
functionality to a web page.) Depending 
on the kind of work they usually do, they’ll 
choose a scale that makes sense to the 
team. But once they decide the value of one 

point, it helps the team understand the rest 
of the possible point ranges.  
Some teams use a practice called T-shirt 
sizing to assign all of the stories they’re 
estimating into small, medium, or large 
categories and assign points that way (1 
point for small, 3 points for medium, 5 points 
for large). Other teams use broader scales 
(XS, S, M, L, and XL) with corresponding 
point values. Other teams assign values 
using the Fibonacci sequence (1, 2, 3, 5, 8, 
13, 21...). As long as the team is consistent in 
how they assign points to stories, it doesn’t 
matter which approach they use.

Q: What’s the point of planning poker? 
Can’t developers just estimate their work 
on their own?

A: Like most of the other GASPs, planning 
poker focuses on involving the whole team 
in planning and tracking progress on your 
project. Planning poker is all about getting 
the team to discuss their estimates and 
agree on the right approach for development. 
By being transparent about estimates and 
approach, the team can help each other 
avoid mistakes and think through the most 
efficient method for developing each feature 
together. Planning poker helps teams make 
their estimation reasoning transparent. When 
the team decides on the approach and the 
estimate together, they have a much better 
chance of catching flaws in their approach 
earlier and they have a better handle on the 
work that needs to be done.

Q: What happens if you get the 
estimate wrong?

A: That happens—and it’s OK. You might 
end up thinking that a feature is worth 3 
story points at the beginning of the sprint 
but realize by the end of it that it should’ve 
been a 5. But since story points are used 
to measure your overall velocity over time, 
you’ll find that the whole team gets better 
and better at figuring out which features are 

which as they work with their scale. What’s 
great about planning poker and story points 
is that they don’t expect you to be able to 
predict the future. Once you assign story 
points to your sprint backlog, you build your 
sprint backlog and then track your velocity 
numbers over time. If you have more story 
points in the backlog than you can do in the 
sprint, they go back to the product backlog 
so they can be reprioritized. As the team 
estimates and keeps track of what they’re 
delivering, they get better and better at it. 
 
In the beginning, you’ll see that the number 
of story points your team completes per 
sprint varies a lot. But as the team gets more 
and more comfortable working together, the 
number of story points they can accomplish 
in a sprint becomes more and more 
predictable.  
Rather than focusing on getting each 
estimate right, GASPs help your team to get 
a handle on how much work you can actually 
do. That way you can take on the right 
amount in each sprint and keep your team 
working as efficiently as possible. 

Planning poker, 
story points, and 
velocity get the 
whole team planning 
and tracking work 
together. All of 
these tools are about 
the whole team 
staying accountable 
for the project’s 
vision and plan. 

projects work best when teams plan together

138  Chapter 4



That’s true. Stakeholders who are 
used to traditional status reports and 
project plans will need to adjust to these 
practices.
Traditional project management methods create a plan 
for delivery up front and then track delivery to that 
plan. Getting everybody in your organization to give up 
that feeling that they know exactly how a project will 
be developed from the very beginning can be a major 
challenge for agile teams.

Instead of  planning each detail up front and holding the 
team to that plan, Scrum teams promise transparency, 
the ability to change, and a team focus on building 
the best product possible with the time and resources 
available. By building incrementally and delivering 
frequently, they often have much happier stakeholders 
once they get accustomed to working differently.

my Stakeholders 
want to know when 

the Project will be done, 
Not how many points 
we’ve Burned Down 

today.

Your team can put more than just stories in a backlog.

The Ranch Hand Games team only has stories in their Product Backlog and 
Sprint Backlog right now. But it’s very common to see other types of backlog 
items, too. A lot of teams will add backlog items for important bug fixes, 

performance improvements (or other nonfunctional requirements), dealing with risks, or 
other kinds of work. So you should feel comfortable doing that with your own projects!

you are here 4  139

generally accepted scrum practices



140140

104. You are managing an advertising software project. You have to build an interface for buying space in online publications at an average cost of $75,000 per placement. Your project team consists of an advertising analyst as a Product Owner, and a team of experienced software engineers. Your business case document is complete, and you have met with your stakeholders and sponsor. Your senior managers are now asking you to plan your first sprint. Your team has done four other projects very similar to this one, and you have decided to make your estimate by having the team provide story point values in a group session and converge on an agreed estimate and approach together.What estimation practice involves having the team provide individual estimates and discuss them until they converge on an agreed value?A. Planning Poker
B. Planning method
C. Bottom-up
D. Rough order of magnitude

Did you read that whole paragraph, only to find out the question had 
nothing to do with it?

Question Clinic: The red herring

Sometimes a question will 
give you a lot of extra information that 
you don’t need . It’ll include a rambling 
story or a bunch of extra numbers that 

are irrelevant.

When you see a 
Red Herring question, your 

job is to figure out what part of 
it is relevant and what’s included 

just to distract you. It seems 
tricky, but it’s actually pretty 

easy once you get the hang of it.
Red Herring



You are managing a     project. 

You have      at your disposal, with    . Your   

       contains     . The    

alerts you that     , and suggests           .

          ?

HEAD LIBS

Fill in the blanks to come up with your own red herring question!

(kind of project)

(describe a resource) (how that resource is restricted)

(a project document)

A.

B.

C.

D.

(wrong answer)

(trickily wrong answer)

(correct answer)

(ridiculously wrong answer)

(something that document would contain)

(a problem that affected your project)

(a team member)

(a suggested solution)

(a question vaguely related to one of the things in the paragraph above)



Every time we get to the end of a 
sprint, there are stories left in the sprint 
backlog. it feels like we’re always behind 

before we even get started!

Our Eyes 
are bigger than our 

stomachs. 

We need 
to understand how much we’re 

getting done in each sprint so we know 
how much to take on.

Rick: It feels like we’ve almost got it down. Alex keeps the product backlog 
prioritized. At the start of  each sprint we go through the highest priority stories, 
play planning poker, and assign them story point values. Then we add them into 
the sprint backlog and get started.

Brian: That all works really well. The team likes getting a chance to talk through 
the work before we do it. It helps everybody stay on the same page about what 
needs to get done in a sprint, too.

Rick: It does seem like it’s working, but then we get to the end of  each sprint 
and we’ve always got stories that were bigger than we thought they were. There’s 
always stuff  in the sprint backlog that needs to get carried over the next sprint. 
That’s making Alex nervous and making our sprint reviews with the users more 
tense.

Brian: We need to know whether or not we’re on track during the sprint, so 
we can make adjustments if  we need to. We shouldn’t commit to stories at the 
beginning of  the sprint if  we don’t think we can get them done.

Rick: I think it’s time for us to start tracking our progress more closely. So... um, 
how exactly do we do that with Scrum?

keep an eye on your progress

142  Chapter 4



Burndown charts help the team see how much work is left
Once a team has assigned a story point value to all of  the user stories in the sprint backlog, they can use 
burndown charts to get a handle on how the project is progressing. A burndown chart is a simple line 
chart that shows how many story points are completed each day during the sprint. The burndown chart 
gives everybody a clear sense of  how much work is left to be done at any time. Using a burndown chart, 
it’s clear to everyone on the team how close they are to achieving their sprint goals.

This chart shows 2 stories worth 7 points burned off.

If you add up all of the stories in this sprint backlog, they total 24 points. This line shows 
how many 
points would 
need to be 
burned off 
if the team 
worked at a 
steady rate 
through the 
sprint.

The team plots the number of points in the Done column of the taskboard at the end of every Daily Scrum meeting.

The backlog should be at 0 points by the 30th day of this sprint. 

Burndown charts and velocity help the 
whole team stay in control of the sprint. 

you are here 4  143

generally accepted scrum practices



Velocity tells you how much your team can do in a sprint
At the end of  each sprint, you can count the total number of  story points that have been accepted by 
the Product Owner. The number of  points per sprint is called the velocity, and it’s a great way to 
gauge how consistently the team is delivering work. Many teams plot their velocity per sprint as a bar 
chart so they can see how they did across multiple sprints. Since each team’s scale for estimating story 
points is different, you can’t use velocity to compare teams to one another. But you can use it 
to help figure out how much work your team should commit to based on their past performance. 

Sprint velocity
This is a bar chart of the total number of story 
points completed in each of four sprints. If the 
team is using the same scale for estimation 
in each sprint, you can use this number to 
compare how much work has been done from 
one sprint to the next. To create this chart, the 
team just adds up the number of story points in 
the Done column of the task board at the end of 
each sprint. 

Sprint velocity with committed points
This is a bar chart of the total number of story 
points the team put into the sprint backlog in 
gray and the number they actually completed in 
black. To create this chart, the team just adds up 
the number of story points in the sprint backlog 
after the planning session and marks that as the 
committed number. At the end of the sprint they 
track the velocity number by adding up all of the 
story points in the Done column of the taskboard.

The number of points the team delivered varied from sprint to 
sprint. 

Even though the velocity is different from sprint to sprint, the team is getting more accurate at predicting how much they can do. 

The team is delivering more points in sprint 4 than they did in sprint 1. 

Here the team delivered more points than they planned.

They added more stories than they could finish in these sprints.
By the 4th sprint they new how much to commit to. 

quick and steady wins the race

144  Chapter 4



Here are Rick’s notes from looking at the task board after each day’s Daily 
Scrum. The total estimate for this sprint’s backlog is 40 points. Draw the 
burndown chart.

Day 1: We finished the cleanup on the super-baler feature, that’s 2 points. We can mark the build script as complete too, 
that’s another 2 points. 
 
Day 2: We can’t mark anything complete today. 
 
Day 3: We completed the new finishing move for the big Bessie fight, 3 points. 
 
Day 4: Add two points, we found a refactoring work that has be done to get the haymaker working again. 
 
Day 5: Finished the haymaker refactoring, 2 points. 
 
Day 6: The stealth chicken coop is complete, 8 points. 
 
Day 7: Completed the distribution package script, 5 points. 
 
Day 8: Updated Bessie’s AI to react faster, 10 points. 
 
Day 9: Added animations for the super-baler reload, 2 points. 
 
Day 10: Finished the chicken coop refactor, 7 points. 
 

you are here 4  145

generally accepted scrum practices



Here are Rick’s notes from looking at the task board after each day’s Daily 
Scrum. The total estimate for this sprint’s backlog is 40 points. Draw the 
burndown chart.

Day 1: We finished the cleanup on the super-baler feature, that’s 2 points. We can mark the build script as complete 
too, that’s another 2 points. 
 
Day 2: We can’t mark anything complete today. 
 
Day 3: We completed the new finishing move for the big Bessie fight, 3 points. 
 
Day 4: Add two points, we found a refactoring work that has be done to get the haymaker working again. 
 
Day 5: Finished the haymaker refactoring, 2 points. 
 
Day 6: The stealth chicken coop is complete, 8 points. 
 
Day 7: Completed the distribution package script, 5 points. 
 
Day 8: Updated Bessie’s AI to react faster, 10 points. 
 
Day 9: Added animations for the super-baler reload, 2 points. 
 
Day 10: Finished the chicken coop refactor, 7 points. 
 

burn down burn up

146  Chapter 4



Burn-ups keep your progress and your scope 
separate from each other
Another way to track your progress during a sprint is to use a burn-up chart. Instead of  
subtracting the number you’ve completed from the number you committed to, burn-ups 
track a cumulative total throughout the sprint and show the total committed scope on a 
separate line. When stories are added or deleted from the scope it’s obvious by looking at 
the scope line. When stories are put into the “Done” column on the task board, that’s easy 
to see too, by looking at the total number of  points burned up in the sprint. Because the 
scope is tracked on a different line from the number of  points accomplished, it’s clearer 
when the scope is changing. 

When this sprint started there were 28 story points in the sprint backlog.

Work was added 
to scope on the 
4th day of the 
sprint—that 
brought the 
total number of 
points in the 
backlog up to 32.

2 points were removed from the scope on day 7, bringing the total in the backlog to 30 points.

This line is the total number of points the team accomplished on each day during the sprint. 

you are here 4  147

generally accepted scrum practices



How do we know what to build?
The Product Owner’s role on a sprint team is to keep everybody working on the most important thing in every 
sprint. They’re in charge of  the order of  stories in the sprint backlog and the product backlog. When the team 
has questions about a user story, the Product Owner is the one who tracks down the answers. Many teams set a 
time near the end of  each sprint to make sure that the backlog is in order before the team starts to plan the next 
sprint. That meeting is called the product backlog refinement meeting. 

Backlog refinement 
is a good way for the 
Product Owner to 
prepare for sprint 
planning.

Let’s make sure we’ve got 
all the information we need to kick off 

the next sprint.

AS A NOvIce PlAyer

I WANT TO geT dOuble dAmAge by ShOOTINg 
The hAymAker IN SuPer-bAler mOde

SO ThAT I cAN defeAT eNemIeS mOre eASIly

TrOPhIeS fOr 
exPlOrATION

AS A NOvIce PlAyer

I WANT TO geT dOuble dAmAge by ShOOTINg 
The hAymAker IN SuPer-bAler mOde

SO ThAT I cAN defeAT eNemIeS mOre eASIly

cO-OP PlAy 

AS A NOvIce PlAyer

I WANT TO eASIly AcceSS PrevIOuSly 
PlAyed levelS WITh NeW AbIlITIeS

SO ThAT I cAN rePlAy gAme levelS IN 
NeW WAyS

level-TO level 
NAvIgATION

Product backlog refinement is all about adding detail and estimates to each 
backlog item, and revising the order. Teams usually rely on the estimation 
that they do during Sprint Planning, but should feel comfortable re-estimating 
Product Backlog items any time. This is a collaborative effort between the 
Product Owner and the Development Team—and it’s focused entirely on the 
Product Backlog (the Development Team is solely responsible for the ordering 
of  the Sprint Backlog).

Once the backlog refinement meeting is over, the Product Owner has a couple 
of  days before the start of  the next sprint to follow up on any open questions 
and make sure that the priorities make sense to business stakeholders as well.

I 
forget, 

How did the user 
navigate from Mad 
Cow to Strategy 

Silo?

1

2

3

Some teams refer to product backlog refinement as PBR. In general, 
teams typically spend less than 10% of their time doing this.

plan your releases with story maps

A lot of teams block out 
time 2 or 3 days before 
the end of the sprint to 
do backlog refinement. 
They use the time to come 
up with questions that 
need to be answered before 
the planning session, and to 
double-check the priority 
order of the stories.

148  Chapter 4



Story maps help you prior it ize your backlog
One way to visualize the backlog is to lay it out in a story map. Story maps start by identifying 
the most core features of  your product as its backbone. Then that functionality is broken up 
into the backbone’s most important user stories. Those are called the walking skeleton. Your 
first sprints should be focused on delivering as much of  the walking skeleton as possible. After 
that, you can plan your releases to include features in their prioritized order on the map. 

Backbone

Walking 
Skeleton

Exploration Fighting 
Mechanics

Hero Jumping / 
Running 

Object interaction
Environment 

designBig Bessie 

Silo Farm 
Map

Old 
MacDonald’s 
Farm Map

MilkenatorHaymaker

Roundup 
Super Sprint

Collectibles 

Flapjack 
Ranch Disguises

Release 3

Release 2

Release 1

Once these 
features 
are ready, 
CGW is a 
playable 
game.

The backbone is the 
high-level grouping 
of all of the 
features on the map.

Stories might get moved from one 

release to anothe
r as the team 

learns more about the pro
ject.

By mapping all of the product backlog, the whole team can get a handle on how work is moving around when they prioritize stories.

Stealth 
Chicken 
Coop 

Mad Cow 
Zombies 

Strategic 
Silo

Story maps give teams a way to visualize the release plan

Remember, these practices are not required by Scrum, but are generally accepted!

you are here 4  149

generally accepted scrum practices



Personas help you get to know your users
A persona is a profile of  a made-up user that includes personal facts and often a photo, which Scrum teams 
use to help them understand their users and stakeholders better. Putting a face to each user role and writing 
down what motivates them will help you make the right choices when you’re thinking about how and what to 
develop. Personas make your user stories more personal. Once the Ranch Hand Games team created them, 
they started thinking about how each user would react to the features they were building.

Age: 28
Occupation: IT Consultant
Location: New York, NY
Role: Expert Gamer

Bio: Attends gaming conferences when 
possible. Owns all of the available consoles. 
Plays most games more than once. Has built 
PCs for gaming. 

Goals:
•	 Satisfying story
•	 Multiple play styles/story options
•	 Challenging	puzzles/fights
•	 Co-operative game play
Frustrations:
•	 Poor quality (bugs, getting stuck, crashes)
•	 Plot holes
•	 Poor server performance

Melinda Oglesby

How do personas and story maps fit into the ideas of 
transparency, inspection, and adaptation that make 
Scrum work?

To create this 
persona, Alex 
interviewed 
50 gamers at 
the conference 
about how 
they play CGW 
games. 

These goals and 
frustrations came 
up in many of the 
interviews. 

Now that they have a face and a name 
for their expert gamers, the team often 

thinks about Melinda’s opinion when 
they’re deciding how to design a feature. 

understand your users

150  Chapter 4



 Q: So how do I use points to make 
sure I’m on track for the whole project? 
Do I estimate the whole backlog?

A: Some teams do. Some teams estimate 
the entire backlog to come up with a release 
burndown chart where they track how far 
they’ve come in burning down all of the 
features initially put into the product backlog. 
This is how some teams predict their overall 
release dates for major projects. 
 
But that only works if you’re relatively sure 
that everything that’s in the Product Backlog 
actually needs to be delivered as part of your 
project. In many cases, there are features in 
a product’s backlog that are so low priority 
that they will probably never be built. When 
that’s true, it doesn’t really make sense to 
estimate everything in the product backlog 
and use it to gauge a release date. 
Instead, many teams focus on building the 
highest priority functionality possible in every 
release and releasing software frequently. 

That way the most important features are 
always available as soon as possible.

Q: How do I know how many stories 
to put into a sprint?

A: When your team sits down to plan 
a sprint, they always use the Sprint Goal 
as the starting point to understand the 
priority of each feature in the Sprint Backlog. 
That should be enough for everyone to 
have a good idea of which features are 
most important. This is the idea behind 
commitment-driven planning (created 
by Mike Cohn, one of the most influential 
thinkers in Agile planning): that you deliver 
something tangible and valuable at the end 
of each sprint, and that you make trade-offs 
during the sprint to achieve that. 
 
The other option teams have is velocity-
driven planning. This means starting with 
the team’s average velocity, and adding 
the top stories from the backlog until they 

reach the average velocity. Cohn prefers 
commitment-driven planning because it 
relies on the team members’ judgement of 
what’s necessary to build a valuable product.

Q: Are story maps and task boards the 
same thing?

A: No. Both of them can use whiteboards 
and story cards to show what’s going on 
in your project, but they’re displaying very 
different information.  
You can think of the taskboard as an up-to-
date look at the sprint backlog. Checking it 
will always tell you what’s going on with each 
story in the current sprint.  
The story map gives you a similar view of 
the current plan for all of the stories in the 
product backlog.  
The story map helps everyone on your team 
have the same vision of where the product 
is going. Story maps give teams a way to 
visualize the release plan and understand 
how stories fit together.

 � By involving the whole team in planning, GASPs help 
Scrum teams adapt their plan based on what they learn 
from sprint to sprint.

 � User stories capture a user need that describes the role 
of the user, the action they want to accomplish, and the 
benefit they want to achieve.

 � User stories are often written using the following 
template: As a <role>, I want to <action>, so that 
<benefit>.

 � T-shirt sizing is a method used by many teams to group 
features into sizes (S, M, L, XL, XXL) based on the 
amount of effort necessary to build them.

 � Story points are a way of measuring the size of the 
effort necessary to build a story. They do not correspond 
to hours, or calendar time.

 � Velocity is the total number of story points a team has 
accomplished on average during a past sprint.

 � Planning poker is a collaborative estimation technique 
used by Scrum teams to determine the story point values 
for each story in a sprint by gathering estimates and 
adjusting them after listening to the reasoning behind the 
low and high values team members have given.

 � Teams use burn-down charts to track how many story 
points they’ve accomplished on each day during a sprint.

 � Product owners hold product backlog refinement 
(PBR) meetings near the end of a sprint to get the 
backlog ready for the next planning session.

you are here 4  151

generally accepted scrum practices



Yeah. Looking at this velocity, 
we’re a little all over the place. 
Let’s work with the team to get it 

more consistent.

The news could be bet ter...
Now that the team has simple metrics to track their performance, it’s easier for them to see 
when things don’t go as planned. When they take a look across a number of  sprints, they can 
tell that they aren’t as predictable as they’d hoped they would be. 

It seems like we’re doing a lot in some 
sprints and very little in others. 

Looks like the team 
completed more 
stories than they 
planned in this sprint. 

But they overcommitted on 
the next three sprints and 
it looks like they’re having a 
hard time planning the right 
amount of work for each sprint. 

the team’s making progress but not enough of it

152  Chapter 4



We’ve Planned the project together as a 
team, built the product as a team, and tracked 

our progress together as well. Scrum has to have 
practices to help everybody fix the Problems we 

see with the way we’re working... right?

Can you think of ways to involve the whole team in 
transparency, inspection, and adaptation around the 
process the team is using in each sprint?

you are here 4  153

generally accepted scrum practices



Retrospectives help your team improve the way 
they work
At the end of  each sprint, the team reflects over the experience they just had and works 
together to fix any issues that came up. Retrospectives help your team stay aware of  
how things are going and stay focused on making things better with each sprint. As long 
as the team is learning from their experience, they’ll get better and better at working 
together as your project progresses. In Agile Retrospectives: Making Good Teams Great, Esther 
Derby and Diana Larsen lay out a simple outline for a retrospective meeting.

 Set the stage
At the beginning of the meeting, everybody needs to 
understand the goal and focus of the retrospective. 
Derby and Larsen also recommend getting each team 
member to tell the team their overall mood as an 
opening activity. If everybody gets a chance to talk 
when the meeting starts, it’s more likely they’ll feel 
comfortable sharing their opinions later on.

1

 Gather data
During this part of the meeting the team takes a look at all of the events of the last sprint 
using hard facts. They walk through the timeline and discuss the work that was completed and 
the decisions that were made. Often, team members are asked to vote on these events and 
decisions to determine whether they were high or low points for them in the sprint. 

2

A team might focus a retro
spective on 

why they’re finding
 more defects in 

recent sprints, or 
how to communicate 

better about desi
gn changes. 

?

look back at the sprint find ways to improve

154  Chapter 4



 Generate insights
When the team has gathered the data about the sprint, 
they can zero in on the events that seemed to be the 
most problematic for the group. During this part of 
the meeting, the team identifies the root causes of the 
problems they encountered and spends time thinking 
about what they could do differently in the future. 

3

 Decide what to do
Now that they’ve reviewed what happened during the sprint and spent time thinking 
about what they might do differently, the next step is deciding which improvements 
to implement for the next sprint.

4

Fishbone or Ishikawa diagram

Slow 
Performance

Infrastructure

Design

redundant 
database calls

Old server hardware

Integration

dependent on 
legacy systems

The vertical “fishbone” lines 
are categories to help you 
find and organize the root 
causes of defects.

Horizontal lines show the root causes you’ve found for each category.

Teams use fishbone 
diagrams to understand 

the root causes of
 issues.

!

For this example, a team 
is looking at causes of 
defects in a sprint.

you are here 4  155

generally accepted scrum practices



Some tools to help you get more out of your 
retrospectives
One way Scrum teams implement the Agile Manifesto principle of  periodically reflecting and 
improving they way they work is to use these tools in their retrospective meetings: 

Tools to help you set the stage:
 ≥ Check-ins are a way to get your team to engage at the beginning of  the retrospective. The 

retrospective leader will often ask team members to go around the room with each person 
giving a one- or two-word answer to a question at the start of  the meeting.

 ≥ ESVP is a technique where each member of  the team is asked to categorize themselves 
into one of  four designations: Explorer, Shopper, Vacationer, or Prisoner. Explorers want 
to learn and get as much as they can out of  the retrospective. Shoppers are looking for one 
or two improvements out of  the retrospectives. Vacationers are just happy to be doing 
something different and away from their desks for the meeting. Prisoners would rather be 
doing something else and feel forced to be part of  the retrospective. Asking team members 
to say which group they think they are a part of  helps everybody understand where they’re 
coming from and also helps them to feel more engaged in the meeting. 

Tools to help you gather data:
 ≥ Timeline is a way of  displaying all of  the 

meaningful activities that happened in a sprint 
in chronological order. Each member of  the 
team gets an opportunity to add cards to the 
timeline with the events that were significant 
to him or her. Once the team creates the first 
round of  cards to go on the timeline, they 
review it together and add new cards if  they 
can think of  events that should be on timeline.

 ≥ Color Code Dots are used to indicate how 
team members felt about all of  the events on 
the timeline. The moderator might hand out 
green dots to indicate positive feelings toward 
an event on the timeline and yellow ones for 
negative feelings. Then everyone on the team 
would go through the timeline indicating 
whether the activities on the timeline were 
positive or negative to them.

get some insight

156  Chapter 4



Tools to help you generate insights:
 ≥ Fishbone diagrams are also called cause and effect and Ishikawa diagrams. They are 

used to figure out what caused a defect. You list all of  the categories of  the defects that you 
have identified and then write the possible causes of  the defect you are analyzing from each 
category. Fishbone diagrams help you see all of  the possible causes in one place so you 
can think of  how you might prevent the defect in the future.

 ≥ Prioritize with dots is a technique where each team member is given 10 dots to stick 
on the issues that they want the team to attempt to address first. Then choose the issues that 
have the most dots to focus on in the “decide what to do” phase of  the retrospective.

Tools to help you decide what to do:
 ≥ Short Subjects are a way a categorizing all of  the insights the team has come up 

with into an action plan. Typically the moderator will put short subjects on the top of  
a whiteboard and the team will work together to put all of  their suggestions in the right 
categories. One common set of  short subjects is Stop Doing/Start Doing/Keep Doing. The 
team takes the time to categorize all of  the feedback they’ve given in the retrospective into the 
kinds of  actions that they can take to make sure they preserve the practices they’re doing that 
are working and change the ones that aren’t.

The team had a problem with setting user expectations before they had a planning meeting, so they want to make sure to stop doing that in the next sprint.

you are here 4  157

generally accepted scrum practices



Cubicle Conversation
Scrum teams are always focused on improving. At the end of  each sprint, everyone on the team takes a look 
at their burndown chart, their velocity, and the number of  stories they’ve got on the backlog as input to their 
retrospective. Using the metrics the team has produced through the sprint helps everyone stay on the same page 
about the root causes of  team issues, and that helps the team work together to solve problems that might’ve 
come up along the way. Retrospectives are just one more example of  how Scrum teams use transparency, 
inspection, and adaptation to get better and better at building software. 

Let’s focus our 
retrospective on figuring 

out why our velocity is so 
unpredictable.

Great Idea! 
If we could tell 

stakeholders the right list of 
stories after our planning session, 
we’d have a lot more success 

in our demos at the end of 
the sprint.

Rick: Now that we’ve got velocity numbers for the past four 
sprints, it looks like we really need to get a better handle on how 
much we commit to at the beginning of  the sprint.

Alex: But how do we do that? I’m only putting the stuff  in the 
sprint backlog that the users need.

Rick: I think we should bring these velocity numbers to the 
team retrospective, show them the problem, and figure out some 
solutions together.

making changes for the better

158  Chapter 4



 Here’s what the team had to say about their velocity variance at the most recent sprint 
retrospective. Match the comment with its short subject.

Programmers 
shouldn’t have to pay 

attention to Velocity Numbers. 
that’s the Scrum Master’s 

Job. 

I really like Planning 
Poker, it helps the team to 

figure out a design approach 
really efficiently.

We should probably not 
commit to more story points than 
we delivered in the most recent 

sprint. 

I could wait to talk to the 
Stakeholders about our goals 
after we’ve all agreed on what 

goes in the sprint backlog.

Start Doing

Stop Doing

Continue Doing

Not Constructive

you are here 4  159

generally accepted scrum practices



 Here’s what the team had to say about their velocity variance at the most recent sprint 
retrospective. Match the comment with its short subject.

Start Doing

Stop Doing

Continue Doing

Not Constructive

Programmers 
shouldn’t have to pay 

attention to Velocity Numbers. 
that’s the Scrum Master’s 

Job. 

I really like Planning 
Poker, it helps the team to 

figure out a design approach 
really efficiently.

We should probably not 
commit to more story points than 
we delivered in the most recent 

sprint. 

I could wait to talk to the 
Stakeholders about our goals 
after we’ve all agreed on what 

goes in the sprint backlog.

check your knowledge

160  Chapter 4



1 2 3 4 5 6

7 8

9 10 11 12

13

14

15 16

17

18

19

20

21

Across
1. ____________ diagrams are used to determine 

the root cause of issues.
3. ESVP stands for explorers, shoppers, 

____________, and prisoners
8. ____________ are a way of assigning a name 

and personal facts to a made-up user of your 
system

9. The features needed to implement the minimum 
functionality needed in a product are shown on 
a story map in the ____________ skeleton 

14. A Scrum planning technique that depends on 
the team describing the high and low individual 
estimates from team members until the group 
reaches consensus. 

15. Grouping features in small, medium, large effort 
categories is called ________ sizing

17. An acronym to help you identify a good user 
story

18. When planning a sprint, some teams use 
velocity-driven planning to determine how many 
story points to include.  Others use _________- 
driven planning to do the same thing. 

20. Derby and Larsen's basic progression for a 
retrospective is: set the stage, gather data, 
____________, decide what to do.

21. When estimating effort in story points, some 
teams use __________ series numbers to 
appropriately size features

Down
2. ____________ charts track scope and 

completed story points on different lines
4. A tool for tracking work by showing the state all 

stories are in during a sprint
5. _________ ___________ are a way of 

categorizing follow-up actions from 
retrospectives

6. When the Product Owner prepares the backlog 
for a planning session a few days in advance, 
that's called _____________

7. The topmost line in a story map is called the 
____________

10. The y-axis of a burndown chart is labeled story 
________

11. User stories are signifiers for a three-step 
process that focuses on face-to-face 
communication between development team 
members and stakeholders. That process is 
often described as,  card, conversation, and  
_______________

12. The number of story points completed in a given 
sprint is called _______________

13. Estimates that tell the date features will be 
delivered are done in ____________ time

16. Stakeholder needs written using a template (as 
a <role>, I want to <action>, so that <benefit>) 
are called user __________

GASPcross

Across
1. ____________ diagrams are used to determine the root cause of 
issues
3. ESVP stands for explorers, shoppers, ____________, and prisoners
8. ____________ are a way of assigning a name and personal facts to 
a made-up user of your system
9. The features needed to implement the minimum functionality needed 
in a product are shown on a story map in the ____________ skeleton
14. A Scrum planning technique that depends on the team describing 
the high and low individual estimates from team members until the 
group reaches consensus
15. Grouping features in small, medium, large effort categories is called 

________ sizing
17. An acronym to help you identify a good user story
18. When planning a sprint, some teams use velocity-driven planning 
to determine how many story points to include. Others use _________- 
driven planning to do the same thing
20. Derby and Larsen’s basic progression for a retrospective is: set the 
stage, gather data, ____________, decide what to do
21. When estimating effort in story points, some teams use __________ 
series numbers to appropriately size features

Down
2. ____________ charts track scope and completed story points on 
different lines
4. A tool for tracking work by showing the state all stories are in during 
a sprint
5. _________ ___________ are a way of categorizing follow-up 
actions from retrospectives
6. When the Product Owner prepares the backlog for a planning 
session a few days in advance, that’s called _____________
7. The topmost line in a story map is called the ____________
10. The y-axis of a burndown chart is labeled story ________
11. User stories are signifiers for a three-step process that focuses on 
face-to-face communication between development team members and 
stakeholders; that process is often described as card, conversation, 
and _______________
12. The number of story points completed in a given sprint is called 

_______________
13. Estimates that tell the date features will be delivered are done in 

____________ time
16. Stakeholder needs written using a template (as a <role>, I want to 
<action>, so that <benefit>) are called user __________
16. ____________ charts track scope and completed story points on 
different lines
19. Time required to accomplish a task if it’s done without interruption

Here’s a great opportunity to seal the GASPS into your 
brain. See how many answers you can get without flipping 
back to the rest of the chapter.

you are here 4  161

generally accepted scrum practices



GASPcross solution

F1 I S H B2 O N E V3 A C A T4 I O N E R S S5 R6

U A H E
B7 R P8 E R S O N A S O F

W9 A L K I N G P10 K C11 V12 R I
C U C13 O B O E T N
K P14 L A N N I N G P O K E R N L S E
B L N A F O U M
O E T15 S16 H I R T I C B E
N I17 N V E S T D R I J N
E D O C18 O M M I T M E N T

A I19 R A Y C
R D I T T

G20 E N E R A T E I N S I G H T S
A S O
L F21 I B O N A C C I

Across
1. ____________ diagrams are used to determine 

the root cause of issues. [FISHBONE] 
3. ESVP stands for explorers, shoppers, 

____________, and prisoners [VACATIONERS] 
8. ____________ are a way of assigning a name 

and personal facts to a made-up user of your 
system [PERSONAS] 

9. The features needed to implement the minimum 
functionality needed in a product are shown on 
a story map in the ____________ skeleton  
[WALKING] 

14. A Scrum planning technique that depends on 
the team describing the high and low individual 
estimates from team members until the group 
reaches consensus.  [PLANNINGPOKER] 

15. Grouping features in small, medium, large effort 
categories is called ________ sizing [TSHIRT] 

17. An acronym to help you identify a good user 
story [INVEST] 

18. When planning a sprint, some teams use 
velocity-driven planning to determine how many 
story points to include.  Others use _________- 
driven planning to do the same thing.  
[COMMITMENT] 

20. Derby and Larsen's basic progression for a 
retrospective is: set the stage, gather data, 
____________, decide what to do. 
[GENERATEINSIGHTS] 

Down
2. ____________ charts track scope and 

completed story points on different lines 
[BURNUP] 

4. A tool for tracking work by showing the state all 
stories are in during a sprint [TASKBOARD] 

5. _________ ___________ are a way of 
categorizing follow-up actions from 
retrospectives [SHORTSUBJECTS] 

6. When the Product Owner prepares the backlog 
for a planning session a few days in advance, 
that's called _____________ [REFINEMENT] 

7. The topmost line in a story map is called the 
____________ [BACKBONE] 

10. The y-axis of a burndown chart is labeled story 
________ [POINTS] 

11. User stories are signifiers for a three-step 
process that focuses on face-to-face 
communication between development team 
members and stakeholders. That process is 
often described as,  card, conversation, and  
_______________ [CONFIRMATION] 

12. The number of story points completed in a given 
sprint is called _______________ [VELOCITY] 

13. Estimates that tell the date features will be 
delivered are done in ____________ time 
[CALENDAR] 

nicely done

162  Chapter 4



Pizza party!
The Ranch Hand Games team used their retrospectives to find and fix issues with planning and delivering 
CGW5. Over time, their sprints went more and more smoothly and they found themselves able to demo great 
new features in every sprint. By the time the team was ready to ship the game, the whole company knew they 
had a winner on their hands!

I feel like we have 
real control over what we’re 

building Now! We’re building software 
faster and better than we ever have before 

and I’m really enjoying every day at 
work these days.

The stakeholders 
are really excited to see our 

demos. More importantly, the Product 
Looks great! We’re going to make 

some gamers very happy. 

you are here 4  163

generally accepted scrum practices



Exam Questions

exam questions

These practice exam questions will help you review the material in this chapter. You should still try 
answering them even if you’re not using this book to prepare for the PMI-ACP certification. It’s a great 

way to figure out what you do and don’t know, which helps get the material into your brain more quickly.

1. Burndown charts are used for all of the following except:

A. Helping the team understand how many points have been delivered in a given sprint
B. Helping the team understand how many points are left to be delivered before the end of a sprint
C. How many points each team member has delivered
D. Whether or not the team will deliver everything they committed to in a given sprint

2. The total number of story points delivered in a sprint is called the sprint ____________

A. Increment
B. Review
C. Ideal time
D. Velocity

3. Jim is a Scrum Master on a Scrum project in a media company. His team has been asked to buld a new 
advertising presentation component. They’ve been working together for 5 sprints and have seen increased 
velocity over the past two sprints. The team gets together on the first day of the sixth sprint for a planning 
session. In that session they use a method where the team discusses the features that will be built with the 
Product Owner, provide estimates on cards, and adjust their estimates as a group until they converge on a 
number they all agree to.

Which of the following BEST describes the practice they are using?

A. Planning poker
B. Convergence planning
C. Sprint planning
D. Analogous estimation

164  Chapter 4



Exam Questions

4. What acronym can be used to describe good user stories?

A. INSPECT
B. ADAPT
C. INVEST
D. CONFIRM

5. Velocity can be used for all of the following except:

A. To measure team productivity over multiple sprints
B. To compare teams to each other and find out who’s more productive
C. To understand how much a team can do when they’re estimating a sprint
D. To understand if the team is committing to too much or too little

6. Which tool is used to visualize scope changes?

A. Velocity Bar Charts
B. Burn-up Charts
C. Cumulative Flow Charts
D. Scope Histograms

7. How are user stories commonly written?

A. As a <persona> I want to <action>,  so that <benefit>
B. As a <resource>, I want to <goal>,  so that <rationale>
C. As a <role> I want to <action>,  so that <benefit>
D. None of the above

8. Which of the following BEST describes a taskboard?

A. The Scrum Master uses it to see if the team is following the plan
B. It is used to identify new tasks during a sprint
C. It shows the total number of points accomplished in a sprint
D. It visualizes the work for the current sprint

you are here 4  165

generally accepted scrum practices



exam questions

9. Which of the following BEST describes Derby and Larsen’s retrospective method:

A. Set the stage, gather information, decide what to do, document decisions
B. Check in,  create timelines, interpret the data, decide where to focus, measure
C. Set the stage, gather data, generate insights, decide what to do
D. ESVP, Color Code Dots, Short Subjects

10. What can you tell about this sprint by looking at the burndown chart above?

A. The sprint is ahead of schedule
B. The sprint is behind schedule
C. The project is in trouble
D. The velocity is too low

11. What is the difference between a burndown and a burn-up chart?

A. Burndown charts subtract story points form the total number committed while burn-up charts start at 0 and add 
the story points to the total as they’re completed

B. Burndown charts have a line for scope that tells you how much is added or deleted as you go
C. Burn-up charts have a trend line to show you the constant rate of completion
D. Burn-up charts and burndown charts are the same

Exam Questions

166  Chapter 4



Exam Questions
12. Which of the following is the BEST tool for determining the root cause of a problem?

A. Personas
B. Velocity
C. Fishbone diagrams
D. Short Subjects

13. A Scrum team for a medical software company took all of the user stories in their product backlog and arranged 
them on the wall according to how important the functionality is to a successful product. Then they used that 
information to determine which features to work on first. What term best describes the practice they were using?

A. Release planning
B. A walking skeleton
C. Velocity planning
D. Story mapping

14. The process of identifying requirements based on user stories is often referred to as

A. Card, Call, Confession
B. Story, Conversation, Product
C. Card, Conversation, Confirmation
D. Card, Test, Documentation

15. ESVP stands for

A. Executive, Student, Vice President
B. Explorer, Student, Vacationer, Prisoner
C. Explorer, Shopper, Vacationer, Practitioner
D. Explorer, Shopper, Vacationer, Prisoner

16. Your Scrum team began measuring velocity over the past three sprints and recorded the following numbers: 
30, 42, 23. What can you tell about the team from these measurements?

A. The team is still determining its story point scale
B. The team is becoming less productive and actions must be taken to correct this
C. The velocity is evening out over multiple sprints
D. The velocity has not been measured correctly

you are here 4  167

generally accepted scrum practices



Exam Questions

exam questions

17. Which of the following BEST describes a tool for identifying a representative software user and describing his 
or her needs and motivations?

A. Ishikawa diagrams
B. User Identification Matrices
C. Personas
D. Story Mapping

18. Scrum Planning tools help Scrum teams make project decisions...

A. As early as possible
B. Just in time
C. At the last responsible moment
D. Responsively

19. What can you learn about this project from looking at the velocity bar chart above?

A. The project has too much velocity
B. The team is delivering more story points as the project goes on
C. Too many scope changes are happening
D. The project is running behind

168  Chapter 4



Exam Questions

20. What can you learn about this project by reading the burn-up chart above?

A. Some story points were added to the project scope on day 4 and some were removed on day 7
B. The team is adding stories to the scope each day of the sprint
C. The team is not making progress
D. Stories were added to the project on day 4 and that caused a delay on day 8

you are here 4  169

generally accepted scrum practices



Exam Questions

exam questions

Answers

Here are the answers to this chapter’s practice exam questions. 
How many did you get right? If you got one wrong, that’s OK—it’s 

worth taking the time to flip back and re-read the relevant part of the 
chapter so that you understand what’s going on.

1. Answer: C

Burndown charts help the whole team see how much they’ve accomplished and how much is left to do. They do 
not show individual team member productivity.

2. Answer: D

Teams measure the total number of points they deliver in each sprint as velocity. Velocity can be measured across 
multiple sprints to help teams get better at estimating and committing to work. Velocity is often used to show the 
effect of process changes as well.

3. Answer: A

The team is using planning poker. They are doing sprint planning, but since the question was specific about how 
they were planning, that’s not the best answer. They’re also doing analogous estimation, but that’s not the BEST 
answer for this question because it is not a generally accepted Scrum pratice. Convergence planning is  a made-
up name, so don’t be confused by counterfeit practice names like these.

4. Answer: C

The acronym INVEST stands for Independent, Negotiable, Valuable, Estimatable, Small, and Testable. A good user 
story should be all of these things.

5. Answer: B

Since velocity is the sum of all of the story points estimated in a given sprint, it can only be used within one team. 
Another team would have a different scale since their story point values would come from their sprint planning 
discussions, or from the estimation that they do during product backlog refinement.

Some people will argue that burndown charts are only about understanding work that’s left to do. All three of these things do appear graphically on the chart, so C is technically correct.

170  Chapter 4



Exam Questions
Answers

6. Answer: B

Burn-up charts show scope as a separate line on the chart and make it easy to see when scope is added or 
removed.

7. Answer: C

The correct template for a user story is As a <role>, I want to <action> so that <benefit>. Although the other 
answers were close, there’s a big difference between resources, personas, and roles. Roles help you to identify 
the various perspectives that will need to be accounted for in the application.

8. Answer: D

Taskboards show everyone on the team the status of each task that’s in the sprint backlog. It’s a visual way to 
make sure that everyone has the same information about what’s available to work on, what’s in progress, and 
what the team has completed.

9. Answer: C

Retrospectives start by setting the stage and making sure that the whole team is included in the conversation. 
Then the team reviews the information they can gather from the sprint. Once everybody agrees on the facts, 
they use that inforamation to generate insights on what might be causing problems for the team,  Once they’ve 
identified the problem, they can figure out what they want to do to try to fix the issue.

10. Answer: A

The dotted line shows a constant burn rate for the sprint. It’s normal for the number of points to fluctuate and be 
to the left of the line at some points and to the right of it at others. In this case, the actual completion line is far 
to the left of the dotted line and that indicates that the team is burning story points faster than the constant rate 
necessary for on-time completion.

11. Answer: A

Burndown and burn-up charts track the same information, the rate at which the team is completing story points. 
Burndowns track that rate by subtracting completed points from the total each day. Burn-ups track it by adding 
the number of points to the total each day.

Some agile practitioners really dislike using the term “on schedule” to describe a burndown chart. However, this terminology may appear on the PMI-ACP exam, and a lot of managers talk in these terms. So it’s good to get used to seeing it!

you are here 4  171

generally accepted scrum practices



Exam Questions

exam questions

Answers

12. Answer: C

Ishikawa diagrams are tools that are used to categorize common root causes for defects and issues in projects 
and help you to determine which issues fit into which categories. They’re often used to help you find out where 
you might improve the way you work so that you can fix process problems.

13. Answer: D

The team was mapping their stories so that they could determine the best sequence for delivering them.

14. Answer: C

Card, Conversation, Confirmation is a good way to remember that user stories cards are just reminders to talk to 
the people who have the information you need for building a story. This is one way Scrum teams value face-to-
face communication over comprehensive documentation. They try to write down only what they need out of the 
conversations they have about each user story card.

15. Answer: D

ESVP is used as a means of checking in with each team member at the start of a retrospective. By asking each 
team member to tell if they are approaching the retrospective as an explorer, shopper, vacationer, or prisoner, the 
team can engage each team member in the conversation and let everybody know each person’s mindset from the 
beginning of the discussion.

16. Answer: A

It’s very common for teams to have a lot of variance when they’re first figuring out the scale they’ll use for 
estimation. It’s important not to be alarmed when velocity numbers vary. The goal of measuring velocity is to 
make the team aware of how much they are doing with each sprint so they get better at figuring out how much to 
take on in future planning sessions.

17. Answer: C

Personas are fake users that the team creates to help them understand how a user might be feeling when they 
use the software they’re building. (Some teams use actual people and not fake ones, but this is generally frowned 
upon for privacy reasons.)

172  Chapter 4



Exam Questions
Answers

18. Answer: C

Scrum teams know that making too many decisions up front, when you don’t know as much about the situations 
that will come up in a project, can cause more problems than it solves. That’s why they focus on making 
decisions at the last responsible moment.

19. Answer: B

This team is delivering more points with each successive sprint. That’s a great trend to observe over a project. It 
can mean that the team is continuously improving as they work.

20. Answer: A

Since burn-up charts show the scope line separately from the burn-up line, it’s easy to see when stories are re-
estimated, added, or taken away from scope (as opposed to being completed as part of daily work).

you are here 4  173

generally accepted scrum practices



Congratulations! You know enough to be dangerous.
Scrum is by far the most successful and popular approach to agile. It’s because it’s an empirical method: you 
work together as a team to understand what’s actually going on in your project, you make simple adjustments—
again, as a team!—to fix any problems, and then you go back to real, observed behavior to see if  those 
adjustments actually worked. 

What’s really nice about Scrum is that it gives you a starting point that a huge number of  real teams have 
used on real projects. But the real power of  Scrum comes from working with your team to make your own 
observations, and run your own experiments for improvement. This is what makes it a framework.

But there’s one extremely important guideline that you should always follow:

Use common sense!
The project goals come first
It’s possible to abuse the rules of  Scrum in a way that damages the project. For 
example, if  there’s a huge, critical bug that will cost the company billions of  
dollars if  it’s not fixed in the next day, it’s not right for a developer to say this:

I’m working on something 
already. The Scrum value of Focus tells me 

to keep working on what I’m doing. We’ll plan 
it in the next sprint.

You probably already figured out that Scrum does have a good way to handle this. 
The Product Owner can add work to fix the bug into the current Sprint and work 
with the Scrum Team to prioritize it above everything else.

No silver bullet
Scrum Team members often get caught up in the rules of  Scrum in ways that can 
cause harm to the project. It takes time, effort, and experience to get used to Scrum 
and to really get a deep understanding if  its practices, or to genuinely internalize 
its values. So start experimenting with Scrum, but be careful that you keep the real 
goals of  the project and your organization first! That’s what a great Scrum team 
would always do.

174  Chapter 4



Don’t just change things because they feel different...
Give the practices a try as written—really, genuinely try as a team—
before you try changing or adapting them. It’s very common for teams to 
run into trouble because a Scrum practice feels bad, and then change it:

Isn’t Scrum 
all about being more efficient? We 

all know that Brian is the expert in the fluid dynamics 
algorithm, so why do we need to wait until a Daily Scrum to 
assign it to him! We know he’s going to do it, so let’s just 

assign it now, while we’re planning the sprint. 
That should save some time!

Rick means well! He’s trying to find a way to save the team some time. 
But there’s a little more to it than that. He’s also uncomfortable with 
self-organization. He would feel a lot better if  he know that Brian was 
going to do this particular task, and doesn’t want to wait for the team to 
self-organize. 

Are you OK with it?
One of  the basic rules of  Scrum is that the Development Team decides 
for themselves how they want to meet the Sprint Goal and deliver the 
Increment. The Scrum values help you really “get” that. There are times 
when you want to make a change because it will be a genuine improvement 
to the way that your team works on projects. But there are also times when 
the values of  Scrum don’t quite match the culture of  your team. 

That’s why it’s so important to discuss the values of  Scrum, and to discuss 
collective commitment and self-organization. That’s how your whole team 
can shift their mindset and not just their practices.

When everyone on a team shifts their mindset 
together, they can accomplish astonishing results! 
The Scrum values are a really important tool for 
doing that. If you want to take a deeper dive into 
Scrum, its values, and how teams really learn to 
self-organize, check out Learning Agile.

you are here 4  175

generally accepted scrum practices



this page intentionally left blank

176  Chapter 4



xp (extreme programming)5

Embracing change

Software teams are successful when they build great code.  
Even really good software teams with very talented developers run into problems with their code. 

When small code changes “bloom” into a series of cascading hacks, or everyday code commits 

lead to hours of fixing merge conflicts, work that used to be satisfying becomes annoying, tedious, 

and frustrating. And that’s where XP comes in. XP is an agile methodology that’s focused on 

building cohesive teams that communicate well, and creating a relaxed, energized environment. 

When teams build code that’s simple, not complex, they can embrace change rather than fear it.

Looks like the last 
repair team literally patched 

this up with duct tape, paper clips, and 
bubble gum. 

Well, it seems to 
be working, so we’d better 

leave it alone. If it ain’t broke, 
don’t fix it, right?

this is a new chapter  177



Meet the team behind CircuitTrak
CircuitTrak is a fast-growing startup that builds software that gyms, yoga 
studios, and martial arts dojos use to keep track of  classes and attendance.

Gary’s the founder and CEO
He’s a former college football player who went on 
to coach high school and, later, college teams. He 
started the company in his garage two years ago. It’s 
been successful almost since day one, and they just 
moved into an office downtown. Gary’s proud of  
the company he built, and wants to keep it growing. 

Gary always looks for employees who have an athletic background because he knows they’re naturally motivated to do whatever it takes to get the job done.

His employees always call him 
“Coach” because he’s as much 
their coach as he is their boss.

The new downtown office 
has the latest furnishings, 
and even exercise equipment 
so the team doesn’t have to 
leave in order to work out.

178  Chapter 5

new team new project



Ana and Ryan are the lead engineers
There wouldn’t be a CircuitTrak without Ana and Ryan. They were the company’s first two 
employees, and have been around since the beginning, when it was just the three of  them working 
out of  Gary’s garage. CircuitTrak is up to nine people now—in the last year they hired four other 
engineers and two sales people—but Ryan and Ana are still the core of  the team.

Ana was Gary’s first hire. She played lacrosse, softball, and soccer in high school, and got a softball 
scholarship to put herself  through college, where she majored in computer science. Not long after 
Gary hired her, she recommended that he also hire her college classmate, Ryan. He graduated 
from the same computer science program a year after she did, and was also a college athlete.

Ryan set his high school swim team’s 400-meter freestyle record the same week that he hacked the rival high school’s website. (Nobody ever figured out that he did it.)

Ana was the only student 
at her college who made an 
All-American team and the 
computer science department’s 
honor roll at the same time.

Schedules
Trainers
Attendance
My Account

Schedules
Trainers
Attendance
My Account

edules    Trainers    Attendanc 

My AccountGyms, yoga studios, and 
martial arts dojos use 
CircuitTrak’s software 
to manage their schedules 
and track their customers’ 
attendance using a 
website or a mobile app.

you are here 4  179

xp extreme programming



Late nights and weekends lead to code problems
Ryan and Ana built the first two versions of  CircuitTrak by working 90-hour weeks filled 
with grit, determination, and lots of  caffeine. Now that sales are growing and they’re 
working on version 3.0, they thought they’d be able to relax a little—but they still work 
plenty of  nights and weekends... and Ryan’s worried about the effect it’s having on the code.

You know I 
don’t mind hard work, but I thought 

we’d eventually be able to stop working nights and 
weekends... but we haven’t, and it’s causing us to 

build worse code.

Ana: What’s the problem? And let’s make this fast, I need to get back to coding.

Ryan: That’s my point! We’re always up against some deadline.

Ana: Well, it’s a startup. What do you expect?

Ryan: I expected this for the first year, maybe. But we’ve got customers now. 
We’re growing the team. We shouldn’t be scrambling like this.

Ana: That’s just how software projects are, right?

Ryan: Maybe. But look at what it does to the code.

Ana: What do you mean?

Ryan: Like, look at what we did here. Remember when we had to change the 
way we stored group identifiers in the trainer management service?

Ana: Yeah, that was ugly. We still needed the old ID in some parts of  the code.

Ryan: Right, so some code uses the old format, and some uses the new format.

Ana: Wait, weren’t we supposed to clean that up?

Ryan: Add it to the long list of  things we were “supposed to” clean up.

Ana: Well, it’s basically working, right? If  we clean it up now, we’ll fall behind.

Ryan: So... what? We’ll keep adding lousy code, and never get to clean it up?

Ana: I don’t know what to tell you. I think that’s just how it is.

public class TrainerContact

{

   // TODO: Need to clean up the ugly hack in getTrainer() when

   // we switched from integer group identifiers to GUIDs

   public Object getTrainerByOldId(String oldId) 

      throws TrainerException {

         UUID trainerGroup = GroupManager.convertGuidToId(oldId);

         if (trainerGroup != null) { 

It seems like Ryan and Ana don’t 
have enough time to build the 
code as well as they want, so 
it’s littered with scary TODO 
comments describing cleanup work 
they never actually have time to do.

180  Chapter 5

we’ll clean up the code later



Are any of the 12 agile principles 
especially appropriate here?

XP brings a mindset that helps the team and the code
XP (or Extreme Programming) is an agile methodology that’s been popular with software 
teams since the 1990s. XP is focused not just on project management (like Scrum is), but also on 
how teams actually build code. Like Scrum, XP has practices and values that help teams get 
into an effective mindset. XP’s mindset helps everyone become more cohesive, communicate 
better, and do a better job planning—which allows for enough time to build the code right.

ok, Maybe Ryan’s got a point. It’s Like the great 
UCLA Coach John Wooden said, “Be quick, but don’t hurry.” Can 

we find a way to keep the schedule pressure off of you 
guys?

That would be great, coach. 
But we keep making changes, and those 

changes force us to make other changes, and it 
leaves us with code that’s really miserable 

to work with.

Change, 
change, change. Maybe what you 

guys really need to change is your 
attitude about change.

Gary’s right. The team’s been burned too many times when they made ugly, hacky changes to the code, only to spend hours doing frustrating work that feels like it could have been avoided. Now they’re afraid of making any changes at all. XP can help them reach a new mindset where they’re not afraid of change.

XP was created in the mid-90s by 
lightweight software engineering poineers 
Kent Beck and Ron Jeffries. Jeffries once 
said, “Always implement things when you 
actually need them, never when you just 
foresee that you need them”. you are here 4  181

xp extreme programming



Iterative development helps teams stay on top of changes
The second principle behind the Agile Manifesto is a good description of  how XP teams think about change:

Welcome changing requirements, even late in development. Agile 
processes harness change for the customer’s competitive advantage.

But wait a minute... didn’t we talk about this principle earlier in the book? Yes, we did—it’s also a good way to 
explain iterative development and the idea of  making decisions at the last responsible moment. So it shouldn’t be 
a surprise that XP is an iterative and incremental methodology. XP uses practices that should feel very familiar 
to you now that you’ve learned about Scrum. XP teams use stories, just like Scrum teams do. They plan a 
backlog using a quarterly cycle, which is broken into iterations called the weekly cycle. In fact, the only new 
planning idea here is a simple practice called slack that XP teams use to add extra capacity to each iteration.

XP teams plan their work a quarter at a time
The quarterly cycle practice makes a lot of  sense, because doing long-term planning each 
quarter feels natural: we divide the year into seasons, and many businesses typically work in 
quarters. So once a quarter the XP team organizes meetings to do planning and reflection.

 ≥ Meet and reflect on what happened in the past quarter

 ≥ Talk about the big picture: what the company’s focused on, and how the team fits into it

 ≥ Plan the themes for the quarter to keep track of  their long-term goals (where each 
theme is just an overall goal used to group stories together)

 ≥ Plan the backlog for the quarter by meeting with users and stakeholders to pick the next 
quarter’s worth of  stories that they’ll choose from

XP teams use stories to track their requirements
It’s no surprise that XP teams use stories as one of  their core 
practices, because they’re a really effective way to keep track of  
what you’re planning to build. They work exactly the same way 
that they do in Scrum. 

Many XP teams use the “As a... I want to... so that” story format, 
and often write their stories on index cards or sticky notes. 

They’ll also typically include a rough estimate of  how long the 
story will take. It’s not uncommon to see an XP team use planning 
poker to come up with that estimate.

AS A TrAINer, 
I WANT TO uSe The mObIle APP TO remOve A 
clASS ThAT I TeAch frOm my Schedule 
SO ThAT my STudeNTS kNOW They ShOuldN’T 
ShOW uP AT ThAT TIme

11 hOurS
remOve A clASS frOm A 

TrAINer’S Schedule

Here’s an example of a user story that Ana 
wrote on an index card. The team used 
planning poker to come up with an estimate, 
which she wrote in the corner of the card.

XP teams use themes 
to make sure they 
don’t lose sight of 
the big picture. A 
theme is just like a 
sprint goal in Scrum: a 
sentence or two that 
describes what they 
want to accomplish.

182  Chapter 5

déjà vu this feels really familiar



Slack means giving the team some breathing room
Any time the team creates a plan, the team adds slack—another XP practice—by 
including a small number of  optional or minor items that they can drop 
if  they start to fall behind. For example, the team might include “nice to have” 
stories in the weekly cycle. Some teams like to block out “hack days” or even 

“geek weeks” during the quarter, where the team can work on their own work-
related projects and follow up on good ideas that may have gotten swept under the 
rug. But don’t go crazy with slack! Some teams only include one or two slack items, 
and it’s very rare for slack to take up more than 20% of  the weekly cycle.

XP teams use one-week iterations
The weekly cycle practice is a one-week iteration in which the 
team chooses stories and builds working software that’s “Done” at 
the end the week. 

Each cycle starts with a meeting where they demo the working 
software and plan out what they’re going to accomplish by: 

 ≥ Reviewing the progress they’ve made so far, and doing a 
demo of  exactly what they did last week

 ≥ Working with the customer to pick the stories for this week

 ≥ Decomposing the stories into tasks

XP teams sometimes assign the individual tasks when they plan the 
weekly cycle, but they’ll often self-organize by creating a pile of  tasks 
and have each team member pull his or her next task off  of  the pile.

The weekly cycle starts on the same day each week, usually a 
Tuesday or Wednesday (Mondays are avoided, so that the team doesn’t 
feel pressured to work over the weekend), and the planning meeting 
is typically held at the same time each week. The customer is 
typically a part of  the meeting to help the team select the stories, 
and to stay on top of  the progress.

mOdIfy The dATAbASe lIbrAry ANd 
dATAbASe TO AllOW TrAINer clASSeS TO 
be remOved ANd lOg The AcTION

3 hOurSTASk

Add A “remOve clASS” API cAll TO The 
TrAINer Schedule ServIce

6 hOurSTASk

uPdATe The mObIle APP uI TO Add A 
“remOve clASS” buTTON TO The PAge ThAT 
dISPlAyS A clASS, hAve IT cAll The NeW 
API cAll TO remOve The clASS

2 hOurSTASk

I had an idea for 
optimizing the schedule service 

that could seriously improve 
performance. I bet we can add 

it as a slack story to the next 
weekly cycle.

Ana’s idea might improve 
performance, so that makes 
for a great “nice-to-have” 
feature to add as slack.

you are here 4  183

xp extreme programming



Courage

Courage and respect keep fear out of the project
XP, like every agile method, depends on a team that has the right mindset. That’s why XP 
comes with its own set of  values. The first two values are courage and respect. Do those 
values sound familiar? They should—they’re exactly the same values that you learned about 
earlier in Chapter 3, because Scrum teams also value courage and respect.

Respect

The Outlook calendar 
integration feature absolutely must be done 

by the end of the month.

I understand 
how important that feature 

is, but what you’re asking just isn’t 
possible. Let’s figure out what we can 

realistically deliver.

XP teams have the courage to take on challenges. Individual 
people on the team have the courage to stand up for their project.

Teammates have mutual respect for each other, and every person 
on the team trusts everyone else to do their jobs.

Ryan doesn’t like saying “no” to the boss, 
but he has the courage to do what’s 
best for the project—which means not 
committing to a deadline he can’t meet.

It’s easier for Ryan to have courage when everyone—especially Gary—respects his opinion. Respect goes both ways: Ryan thinks of Gary as not just the boss, but also an important member of the team, and respects his opinion and ideas too.

It’ll be a tough 
sell, but if we show updated appointments 

inside the app’s UI, I think we can make it work... 
for now.

Respect starts with listening to ideas 
and opinions you might not like and 
genuinely taking them into account.

184  Chapter 5

xp is focused on programming



Let me get this straight. XP is 
iterative, just like Scrum. And it has values 
just like scrum, including the same exact 
values of respect and courage. This is 

starting to sound really redundant. So Why 
use XP at all? Why not just stick with 

Scrum?

XP and Scrum each focus on different aspects of 
software development.
XP, like Scrum, is an iterative and incremental methodology. But it 
doesn’t have the same strong focus on project management 
that Scrum has—especially since it doesn’t focus on empirical process 
control, which is a really powerful tool for teams to improve the 
way they manage their projects. It’s also why Scrum teams feel very 
structured: each sprint starts and ends with their timeboxed meetings, 
and every day there’s another timeboxed meeting at the same time.

The “P” in XP stands for programming, and everything in XP is 
optimized to help a programming team improve the way they work. 
XP is different from Scrum because it’s focused on getting the team 
to work well together. XP has a lighter focus on project management, 
and more focus on improving the way the team builds code. 

XP is focused on software development. There’s nothing in Scrum that’s specific to a software team—in fact, a lot of other industries have adopted Scrum to take advantage of its empirical process control.

you are here 4  185

xp extreme programming



So Scrum has a deep focus on project 
management, but doesn’t really get into 
the day-to-day details of how a team 

actually builds code. That’s XP’s domain, so 
it’s lighter on the project management side.

XP includes enough project management 
to get the job done.
What ties them together are common ideas and shared 
values like the ones in the Agile Manifesto. And since 
iteration in XP works like it does in Scrum, and XP 
shares the values of  courage and respect with Scrum, 
many agile teams use a hybrid of  Scrum and XP 
by combining the empirical process control of  Scrum 
with XP’s focus on team cohesion, communication, code 
quality, and programming.

What can people on a software team do to improve 
how well they communicate with each other?

186  Chapter 5

xp plus scrum is really powerful



Venn Magnets
You spent all night arranging magnets on your fridge into a really 
useful Venn diagram that shows which practices and values (and even a 
couple of concepts) are specific to Scrum, which are specific to XP, and 
which are shared by both... and then someone slammed the fridge door 
and all the magnets fell off. Can you put them back in the right places?

Respect

Product 
Backlog

Courage

Themes

Slack

Weekly cycle Quarterly 
cycle

Stories
Focus

Openness

Retrospective

Timeboxed 
Iterations

Commitment

Empiricism

XP

Scrum

Put the magnets that have values, practices, and concepts shared by both XP and Scrum in the middle section of the diagram.

you are here 4  187

xp extreme programming



Respect

Product 
Backlog

Courage

Themes
Slack

Weekly cycle

Quarterly 
cycle

Stories

Focus

Openness

Retrospective

XP teams don’t have one single 
retrospective meeting that they hold 
during each iteration. Instead, they 
constantly talk about ways to improve 
how they work together as a team.

Timeboxed 
Iterations

Openness and commitment are really important, but only Scrum has them as part of the core value system.

Commitment

Empiricism

XP

Scrum

Venn Magnets Solution
XP teams have a different attitude towards planning than Scrum teams do, and it’s 
reflected in the practices and values that they share and the ones that they don’t.

It takes a lot of work 
to manage and refine 
a product backlog. 
That’s why Scrum has 
a full-time Product 
Owner on the team.

XP teams don’t have a full-time 
Product Owner. Instead, the 
whole team meets with users and 
customers to do quarterly planning.

Slack is a really good way to get a sense of the difference between being on a 
Scrum team and being on an XP team. It’s literally just throwing some extra stories 
or tasks into the weekly cycle: it lacks the structure, empiricism, and experimental 

approach of Scrum. But it’s a “good enough” planning tool for a lot of teams.

Themes and timeboxed 
iterations are concepts, not 
necessarily practices or values.

XP and Scrum teams 
share the values of 
respect and courage. 
They also use stories in 
exactly the same way.

188  Chapter 5

some overlap many differences



Q: How do stories get estimated?

A: Planning poker is very popular among 
XP teams, but they also use a lot of other 
methods for estimation. Early versions 
of XP included a practice that was called 
the planning game that guided the team 
through decomposing stories into tasks, 
assigning them to team members, and 
turning them into a plan for the iteration, 
which is still in use on a few XP teams here 
and there. But for most teams, estimation in 
XP is no different from estimation in Scrum. 
Techniques like planning poker are really 
useful, but in the end estimation is a skill: 
the results get better as the team gets more 
practice.

Q: How does a methodology “focus” 
on one thing or another?

A: Scrum is focused on project 
management and product development 
because the practices, values, and 
ideas of Scrum are specifically aimed at 
the problems of project management: 

determining what product will be built, and 
planning and executing the work. Scrum 
practices are primarily built to help the team 
get organized, to manage the expectations 
of the users and stakeholders, and to make 
sure everyone is communicating.  
 
XP has a more limited approach to 
project management. It’s still iterative and 
incremental, and the practices you’ve 
seen so far in this chapter—quarterly cycle, 
weekly cycle, slack, and stories—are an 
effective way to plan and manage those 
iterations. But they lack the structure 
and rigidity of Scrum: there aren’t daily 
meetings, the meetings aren’t timeboxed, 
and everything just feels “loose” compared 
to Scrum. A lot of teams find that the 
structure of Scrum works really well for 
them, so they’ll opt for a Scrum/XP hybrid 
where they replace XP’s quarterly cycle, 
weekly cycle, and slack with a complete 
implementation of Scrum. That means 
including all of the events, artifacts, and 
roles of Scrum.

Q: Wouldn’t a “hybrid” of XP and 
Scrum break the rules of one of them?

A: Yes—but it’s OK! If your team adopts 
a hybrid of XP and Scrum by replacing 
the planning practices of XP with the 
ones in Scrum, then obviously you’re not 
performing every single practice in XP. But 
remember, the rules of a methodology are 
there to help you run your projects well. A 
lot of teams run into trouble when they 
modify an agile methodology because they 
don’t really understand exactly why that 
methodology works. They often change or 
remove an element that may seem minor 
to them, but don’t realize that it’s one of the 
pillars that keeps the whole methodology 
up—like when teams try to replace the 
Product Owner in Scrum with a committee, 
which removes a critical piece of Scrum. 
Luckily, replacing XP’s weekly cycle, 
quarterly cycle, and slack practices with a 
complete and unmodified implementation 
of Scrum impacts only the planning part of 
XP, and it doesn’t remove any of the other 
pillars that make XP work, which is why so 
many teams have had success doing it.

So when teams use a 
hybrid of Scrum and XP, 
they combine the code-focused 

mindset and practices from XP with the 
commitment- and value-based mindset 

and practices of Scrum to get the 
best of both worlds.

you are here 4  189

xp extreme programming



Teams build better code when they work together
A software team is more than just a group of  people who happen to be working on the 
same project. When people work together, listen to each other, and help each other 
solve problems, they write a lot more code (sometimes 10 times as much!), and the code 
they build is much higher quality. XP teams know this, and the whole team practice 
helps to get them there. This practice is about everyone functioning as a team together. 
It means doing whatever it takes to make people feel like they belong, and helping each 
person support everyone else on the team. 

Everyone on an 
XP team feels 
like they’re all in 
it together. They 
consider building 
a really supportive 
environment to be 
a core practice 
for the team.A whole team is built on trust

When people on an XP team encounter obstacles, they all work together to 
overcome them. When they’re facing an important decision that affects the 
direction of  the project, that decision is made together. That’s why trust is so 
important to XP teams. Everyone on the team learns to trust the rest of  the team 
members to figure out which decisions can be made individually, and which 
decisions need to be brought to the rest of  the team.

Uh... I completely 
misunderstood how this feature was 

supposed to work. It’s going to take me at 
least a day to fix it.

Trust means letting your teammates make mistakes
Everyone makes mistakes. When XP teams take the “whole team” 
practice seriously, people aren’t afraid to make those mistakes, because 
each team member knows that the everyone else will understand that 
mistakes happen—and that the only way to move forward is to make 
those inevitable mistakes and learn from them together.

Ryan knows that he can be open 
about this mistake, and the rest 
of the team will understand. But 
he also feels responsible, and will 
work hard to clean things up.

190  Chapter 5

no roles means everyone steps up



XP teams don’t have fixed or prescribed roles
There are a lot of  different jobs to do on any software project: building code, writing 
stories, talking to users, designing user interfaces, engineering the architecture, managing 
the project, and more. On an XP team, everyone does a little bit of  everything—their roles 
change depending on the skills they bring to the table. That’s one reason why XP teams 
don’t have fixed or prescribed roles.

Roles can keep people from feeling a sense of  belonging on the team. For example, it’s not 
uncommon on a Scrum team for a Product Owner or Scrum Master to feel like they’re 
not really part of  the day-to-day work, as if  their “special” role puts pressure on them to be 
more interested than committed. (Remember pigs versus chickens? Sometimes it’s almost as 
if  giving someone’s role on the team a name can encourage some people to be more “pig” 
and others to be more “chicken” on the project.)

I’m getting business 
cards for the team. What’s 

everyone’s title? Who’s the architect? 
Who’s lead engineer?

We don’t 
really work that way. When 

there’s a job to do, we just make sure 
the right person steps up and 

does it.

The “whole team” practice is all about making 
sure people are identified with the team, and 
not just locked into one specific role.

Ana does all sorts of jobs: she’ll write code, 
do project management, work with users... 
whatever it takes to get the job done.

you are here 4  191

xp extreme programming



Teams work best when they sit together
Programming is a highly social activity. Yes, really! Sure, we’re all familiar with the 
image of  the lone coder who sits in the dark for hours on end, emerging from his 
hole after weeks with a complete, finished product. But that’s not really how teams 
build software in the real world. Take another look at this agile principle:

The most efficient and effective method of  conveying information 
to and within a development team is face-to-face conversation.

When you’re on a software team, you need information all the time: you need to 
know what you’re building, how you and your team plan to build it, how the piece 
you’re working on will fit into the rest of  the software, and so on. And that means 
you’re going to have a lot of  face-to-face conversations.

XP teams sit 
together because 
it’s a lot easier 
for programmers 
to innovate when 
they can easily 
talk to each 
other, and don’t 
have to spend 
a lot of time 
walking around 
in order to get 
the information 
they need.

I’ve got a question 
for Ana, but she sits all 

the way on the other side of the 
office. I’ll just send her an 

email instead.

So what happens if  you and your team sit in entirely different parts of  the office? 
This is really common: for example, when the person laying out the office space 
has the “coder in the dark hole” image of  software development, the space gets 
laid out to give managers a lot of  office space, and the programming team is 
sprinkled into whatever space is left over. This is a really ineffective environment 
for a software team.

That’s why XP teams sit together. That’s a simple practice where everyone on 
the team sits in the same part of  the office so that it’s easy and convenient for each 
person to find his or her teammates and have a face-to-face conversation.

What if Ryan has a 
really important question, but Ana doesn’t check her email for an hour?

192  Chapter 5

page goal header



 � XP is an agile methodology focused on team cohesion, 
communication, code quality, and programming.

 � XP has practices that help teams improve the way they 
work and values to help them get into the right mindset.

 � XP teams use stories to track their requirements. They 
work exactly the same way as they do in Scrum.

 � The quarterly cycle practice helps teams plan the 
long-term work by talking about the big picture, choosing 
themes (or overall goals) for the quarter, and selecting 
stories for the quarter’s backlog.

 � The weekly cycle practice is a one-week iteration that 
starts with a planning meeting where the team gives a 
demo of the working software, works with the customer 
to pick the stories for the iteration, and decomposes 
them into tasks.

 � XP teams add slack to each iteration by including 
optional “nice-to-have” stories that can be left out if the 
team falls behind so they can concentrate on delivering 
working software that’s “Done”.

 � Some teams use a Scrum/XP hybrid by replacing XP’s 
planning practices with a complete version of Scrum.

 � The whole team practice is about giving everyone a 
sense of belonging on a team.

 � XP teams don’t have fixed or prescribed roles; each 
team member contributes whatever they can for the 
team.

 � Everyone on the team sits together in the same space.

 � Caves and commons is a common team space layout 
where each person has an area that gives some privacy, 
and a common area that’s central to the space.

This is a pretty effective way to arrange 
the team’s workspace. It’s a variation on 
a design called “caves and commons.”

Each team member has a private 
cube where he or she can get 

work done without interruption.

There’s a place to meet—in this case, a big 
table with chairs right in the middle of the team 
space—that’s convenient for the team so they 

can have group discussions and meetings.

Caves and commons isn’t one 
of the XP practices, but it’s a 

valuable tool that helps teams 
with the XP “sit together” practice.

Sit Together  
Up CloseThe layout of  your team space can have a big impact on 

how effectively everyone works together. Here’s one approach 
that a lot of  teams have found to be particularly effective.

you are here 4  193

xp extreme programming



XP teams value communication
People on XP teams work together. They plan together, collaborate to figure out what they’re going to 
build, and even code together. If  you’re on an XP team, you truly believe that when you’re faced with a 
problem, you’ll come up with the best solution if  you communicate with your teammates. That’s why 
communication is one of  the XP values. One way that XP teams improve the way that they communicate 
is by having an informative workspace. This is an XP practice where the team sets up their working 
environment so that it’s impossible not to constantly absorb information from those around them.

Communication

I ran into a similar problem. 
I bet I can reuse Ana’s 

object in my code.

XP teams take advantage of osmotic communication, 
which is what happens when you absorb information 
about the project because you’re sitting near people 

who talk about it—almost like it’s by osmosis.

XP teams make their team space informative by adding 
information radiators. Those are visual tools (like a big task 

board or burndown chart) posted on a wall that everyone can 
see from the work area. They “radiate” information because 

they're placed in a highly visible area of the workspace.

Hmm, looks like 
we’re running a little 

behind. I’ll have to wait 
for the next weekly 

cycle.

Ryan overheard a useful 
snippet of Ana’s conversation 
and it gave him a good idea. 
Then he saw the burndown 
chart for this week’s cycle 
posted on the wall, and 
realized it made sense to push 
it to the next iteration. The 
team’s informative workspace 
improved their project.

I tweaked 
the scheduling service by 

creating an object that caches the data 
in some of the tables.

A lot of people code best when they wear 
headphones and tune out the rest of the world, 
and that’s just fine. You don’t need to absorb 
everything that goes on around you all the time.

These are two more useful tools 
that help XP teams with the 
informative workspace practice.

194  Chapter 5

code monkey like you



Don’t fall into the “code monkey” trap. Programming is creative and 
intellectual work, not just rote typing.

If you haven’t spent a lot of time writing code, you might think of programming as a “heads-
down” activity: just put a programmer in a dark room in front of a computer for a few hours, and if 
there are no distractions he or she will just start spewing out lines of code. That’s not how most 
professional software teams work. When people work together as a team, they can accomplish a 
lot more than if they work individually. (That’s true of many kinds of teams, not just software teams!)

I’m not sure 
about this. Don’t 

programmers just need 
uninterrupted time in a dark, 
quiet room to start pumping 

out code?

Team programming is social. It’s not an isolated activity.
Programmers don’t like being interrupted—and for good reason. When you’re 
on a roll coding, you get into a kind of  “zone,” a state of  high concentration 
where work seems to just flow. In fact, a lot of  people have a name for this state: 
flow. It’s actually pretty much the same thing as when an athlete is “in the 
zone” (where players feel like the baseball is the size of  a watermelon, or the 
basketball hoop looks like it’s 10-feet wide). This effect has actually been studied, 
and those studies found that it can take 15 to 45 minutes for a programmer to 
reach that state. An interruption, like a phone call or an annoying email, can 
completely break you out of  flow. If  you get two phone calls an hour, you can 
sit at your desk all day and get nothing done.

So wait a minute—doesn’t that mean that to achieve maximum flow, the team 
should work in an environment of  absolute silence? No—just the opposite! 
It’s actually hard to concentrate in dead silence, because every time someone 
coughs or rustles some papers it feels like it’s a freight train went by. If  there’s a 
little activity around you all the time, it’s actually easier to tune it out. (And after 
all, athletes can get themselves in the zone even in front of  screaming fans!)

you are here 4  195

xp extreme programming



Teams work best with relaxed, rested minds
Software teams need to innovate all the time. Every day brings new problems to solve. Programming 
is a really unique job, because it’s a combination of  designing new products, implementing new 
ideas, understanding what people need, solving complex logical problems, and testing what you 
built. This kind of  work requires a relaxed and rested mind. XP’s energized work practice helps 
everyone on the team needs to stays sharp and focused every day. Here are some ideas for how to 
energize your work:

Leave yourself enough time to do the job
Crazy, unrealistic deadlines are the easiest way to destroy 
your team’s productivity, as well as their morale and any 
joy they take from their work. That’s one reason why XP 
teams use iterative development. When the team sees that 
they can’t get all of  the work “Done” for this week’s cycle, 
they’ll push some of  it into the next iteration instead of  
trying to squeeze it all in by working late.

Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace indefinitely.

Get rid of interruptions
What would happen if  everyone on the team 
turned off  email notifications and silenced 
their office phones for two hours a day? Teams 
that try this find that it’s a lot easier to get into 
flow, that state of  deep concentration where 
you barely notice how much time has passed. 

Let yourself make mistakes
It’s OK to make mistakes! Building software means 
constantly innovating: designing new features, coming 
up with new ideas, building code—and failure is the 
foundation of  innovation. Every team goes down the 
wrong path every now and then; it’s much more 
productive to decide as a team to think of  it as a 
learning experience and an opportunity to learn 
important lessons about the code you’re working on.

Work at a sustainable pace
Occasionally having a “crunch” period where you work 
long hours for a couple of  days generally doesn’t hurt, 
but no team can work like that forever. Teams that 
regularly do this find that they actually produce lower 
quality code, and end up writing less code and getting 
less done than they do under normal circumstances. A 
sustainable pace means working 40 hours a week, 
without long nights or weekends, because that’s actually 
the best way to get the most productivity out of  the team.

This is what the agile principle about 
sustainable development means.Remember this principle from 

Chapter 3? A good work-life 
balance is part of the agile 
mindset because it’s the most 
productive way to run a team.

Just make sure everyone knows not to 
interrupt each other, because one tap on your 
shoulder can jar you right out of the zone.

196  Chapter 5

it’s a marathon not a sprint



Who am I?
A bunch of XP practices and values are playing a party game, 

“Who am I?” They’ll give you a clue, and you try to guess who they 
are based on what they say. Write down their names, and what 
kind of things they are (like whether they’re events, roles, etc.).
And watch out—a couple of tools that are not XP practices or 
values might just show up and crash the party!

Name
Kind of 
thing

I’m a great way to absorb information about the project from 
discussions happening around me.

I help you understand your user’s needs, and I’m also used by a 
lot of Scrum teams.

I’m a team space that does a great job communicating 
information about the project.

I help the team work at a sustainable pace, because teams that 
work super-long hours actually build less code with worse quality.

I’m how XP teams do their long-term planning, by meeting with 
the users once a quarter to work on the backlog.

I help people get into a mindset where they treat each other well, 
and value each other’s input and contributions.

I’m the reason people on XP teams will tell the truth about the 
project, even if it’s uncomfortable.

I’m the way that XP teams do iterative development, and teams 
use me to deliver the next increment of “Done” working software.

I’m a large burndown chart or task board put up in the team 
space in a spot where everyone can’t help but notice me.

I make sure that the team has a space where everyone is near 
their teammates.

I help give the team some breathing room in each iteration by 
adding optional stories or tasks.

Answers on page 242

I help XP teams get into a mindset where they know that they’re best 
at solving problems when they share knowledge with each other.

you are here 4  197

xp extreme programming



Q: I don’t believe this “energized” 
and “sustainable” stuff. Isn’t it just an 
excuse that programmers use so they 
don’t have to stay late?

A: Absolutely not! Modern workplaces 
didn’t come up with a 40-hour week by 
accident. There have been many, many 
studies over the years run across many 
different industries that found that while 
teams can work long hours for a short burst, 
it doesn’t take long for their productivity and 
quality to drop off a cliff. And if you’ve ever 
had to work three 7-day, 70-hour weeks 
in a row, you know exactly why—your 
brain gets tired, and is in no condition to 
do the kind of demanding intellectual work 
needed to build great software. That’s why 
people on XP take work-life balance really 
seriously: they go home at a reasonable 
time every day, and have lives and families 
outside of the job.

Q: No, I still don’t buy it. Isn’t 
programming mainly just typing?

A: Programmers may spend the day in 
front of a keyboard, but building code is a 
lot more than just typing. A programmer 
can write anywhere from a dozen to a few 
hundred lines of code in a day. But if you 
hand that programmer a piece of paper 
with a few hundred lines of code on it, it 
might take 10 or 15 minutes to actually 
type them into a computer. The “work” of 
programming isn’t the typing, it’s figuring 
out what the code actually needs to do, and 
making it work correctly and efficiently.

Q: Doesn’t osmotic communication 
interrupt people’s work? Isn’t it hard to 
work in a noisy environment?

A: Osmotic communication works 
best when people on the team are used 
to some noise. Our ears tend to perk up 

when someone is talking about something 
important and relevant—like how you can 
hear your name in a crowded room—so it’s 
not hard to tune out conversations around 
you if you’re used to them. It doesn’t work 
so well in a “dead quiet” office environment 
where everyone feels compelled to whisper, 
or just not talk at all.

Q: I’m still not clear on how planning 
works in XP. When does the team meet? 
How do the stories get estimated?

A: The team estimates stories together 
during the quarterly planning meeting 
which happens at the beginning of the 
quarterly cycle, and they talk about those 
estimates during the weekly planning 
meeting at the start of the weekly cycle. 
They’ll also discover stories along the 
way, so they meet up and estimate those 
stories together. As far as how stories are 
estimated, it’s pretty common to see XP 
teams using planning poker, but they might 
also just talk about the story and come up 
with an estimate that makes sense.

Q: When does the team demo the 
software to the users?

A: At a meeting at the beginning or end 
of the weekly cycle, where the users see 
the software and discuss what the team will 
work on next. The relationship between the 
team and the users isn’t as formal as it is in 
Scrum, which has a specific role—Product 
Owner—for a customer representative who 
can accept the software. XP doesn’t have 
prescribed roles, but XP teams recognize 
that it’s ideal to have real customers 
involved. Really effective XP teams feel 
that the “whole team” practice means 
treating users who help them understand 
what to build as a true part of the team.

Q: So wait—XP really doesn’t have 
prescribed roles?

A: No, it doesn’t. One of the basic ideas 
in XP is that if there’s a job to do, someone 
will step up and do it. Everyone on the 
team brings something unique to the table, 
and each person’s individual role on the 
project will change based on what’s needed, 
and what their expertise is.

Q: I’ve heard programmers complain 
about being assigned “maintenance” 
tasks, like fixing bugs in old systems. Is 
that really creative or innovative?

A: Actually, maintenance work can be 
some of the most intellectually challenging 
work there is for a software team. Think 
about what “maintenance” actually means: 
fixing bugs, often in code you didn’t 
even write yourself. That means taking a 
machine, one that may be really complex, 
figuring out how it works (often without 
much documentation and nobody to ask for 
help), tracking down how it’s broken, and 
figuring out a way to fix it. Programmers 
often groan about having to do 
maintenance, and that gives it a reputation 
as being “grunt” work: it’s intellectually 
demanding and, unlike coming up with a 
cool new feature, it’s rarely rewarded or 
complimented by your boss or coworkers.

People on XP 
teams take work-
life balance really 
seriously: they go 
home at a reasonable 
time every day so 
they can keep up a 
sustainable pace.

198  Chapter 5

go home early get more done who knew



 � Communication—one of XP’s values—is what matters 
most in a software project. 

 � The informative workspace practice means anyone 
can walk into the team space and get a sense of how the 
project is going just by looking around.

 � People absorb information via osmotic communication 
when they sit together and overhear useful discussions.

 � The energized work practice is how the team stays 
relaxed, rested, and in the best mental shape for work.

 � Information radiators are large visual tools like task 
boards or burndown charts that “radiate” information 
because they’re posted in a place that’s hard to miss.

 � XP teams work at a sustainable pace so they don’t burn 
out. This typically means working regular hours.

 � An energized team has enough time to do the job, and 
freedom to make mistakes.

 � Interruptions can break a developer’s concentration and 
take him or her out of flow, a state of high concentration 
where he or she is “in the zone.”

So far, XP’s been about planning the 
project and giving the team a relaxed, code-

friendly environment. But We haven’t talked much 
about code quality or programming yet, even 

though you said earlier that they’re a main focus of 
XP. So the things we learned so far must tie in with 

programming, right?

Yes! XP teams give themselves space to build great code.
Everything we’ve talked about so far has been about removing things that kill 
the team’s momentum. Iteration, slack, and stories help the team build the right 
software, and protect them from unnecessary schedule pressure. An energized 
workspace, a supportive team, and an informative team space give them the 
best possible environment to get work done. It’s not an accident that XP focuses 
on these things—they’re at the root of  the vast majority of  team problems, and 
eliminating them gives the team fertile ground for innovation.

So now the stage is set, and the team is ready. It’s time to dig into the code.

you are here 4  199

xp extreme programming



200

97. Which of the following is NOT shared by both XP and Scrum?
A. Timeboxed iterations
B. Stories
C. Respect and courage
D. Slack

XP and Scrum are both iterative. XP uses weekly cycles and Scrum uses sprints. So this isn’t the right answer.

Question Clinic: The “which-is-NOT” question

You’ll see some questions on the 
exam that list values, practices, tools, or 

concepts and ask you to determine which one of 
them is not part of the group. Usually, you can 
figure them out by going through the answer 

choices one by one and eliminating the one that 
doesn’t belong.

You definitely find 
stories on both Scrum 
and XP teams, so this 
one’s not right either.

The values of respect 
and courage are shared 
by both Scrum and XP 
teams. So the answers 
include values as well as 
practices and tools.

D’s definitely the right answer: slack is NOT 
shared by both XP and Scrum. XP teams use slack 
by including extra stories in their weekly cycles 
that can be skipped if the other stories take 
longer than expected. Scrum teams have a much 
stronger focus on project management, and have 
much more detailed planning practices and tools.

Take your time 
answering 

which-is-NOT 
questions.

Take your time and think your 
way through it. All of them will 
have something in common but one. 

As long as you remember the 
group you’re fitting them into, 
you won’t have any trouble.

Keep your eyes 
out for questions 
that ask for “all 
of the following 

except” (that’s just 
another way of 

wording a which-
is-NOT question).



201

Which of the following is NOT a       ?

HEAD LIBS

Fill in the blanks to come up with your own “which-is-NOT” question!

(value, practice, tool, or concept)

A.

B.

C.

D.

(value, practice, tool, or concept that is in the group)

(the right answer)

(value, practice, tool, or concept that is in the group)

(value, practice, tool, or concept that is in the group)

Ladies and Gentlemen, 
We Now Return You 

To Chapter five



WARNING: The rest of this chapter talks about code

The P in XP stands for programming, and for good reason. While the XP practices 
you’ve seen so far apply to any team doing creative or intellectual work, the 

practices in the rest of this chapter are specifically focused on code.

If you’re not a programmer, it’s still worth reading the chapter! However, some 
of the material is a little more code-oriented than what you’re used to seeing. 
But if you plan on working with a team that builds software, some familiarity 

with these ideas can be REALLY VALUABLE to you and your team. Understanding your 
teammates’ perspectives better can help you reach a more agile mindset together.

If you don’t have any background in programming, you should feel comfortable 
skipping over the sections of this chapter that contain snippets of code. Just 

make sure to read all the text, paying special attention to the words in 
boldface. If you do the exercises and test your knowledge with the crossword 
and exam questions at the end of the chapter, that’s a very effective way to 

get the most important parts of XP into your brain.

And if you’re using this book to study for the PMI-ACP® exam, don’t worry - the 
exam does NOT require you to have programming knowledge.

File  Edit   Window  Help   XP

202  Chapter 5

putting the “p” in xp



Ugh! This change is really 
going to give us a headache... and it 

was avoidable.

Ana: Quit your whining, Ryan.

Ryan: Hey, don’t give me that attitude. This affects you, too.

Ana: OK, I’m listening. What’s the problem?

Ryan: You won’t like this. It’s a change to personal trainer schedules on the mobile app.

Ana: Customers getting notifications about personal training sessions. What’s the problem?

Ryan: The problem is they don’t just want to get notifications. They want to schedule 
classes from the mobile app too.

Ana: Oh no. No, no, no. That is not going to work with the way we built this.

Ryan: Tell that to Coach. He’s been promising that to the customers.

Gary: Did I hear someone mention me?

Ana: You promised customers that we’d let them schedule classes from the app?!

Gary: What’s the problem, guys? How hard can it be to add that?

Ana: We’re going to have to completely redesign the way data goes into the system.

Ryan: You know what’s frustrating? If  you’d just told us this was coming a few 
months ago, we would have built a completely different backend for the last version.

Ana: Now we have to rip out the database entry code and replace it with a new service.

Gary: I know you guys can do it.

Ryan: Of  course we can. But rewriting that much code will leave us with a giant mess.

Ana: You know how they say rework creates bugs? This is a prime example.

Ryan: And that means a lot of  totally avoidable late nights. This stinks.

I admit that I 
was skeptical about this sustainable 

pace stuff, but now I’m convinced. We’re not working 
nights and weekends any more, but I’m getting a lot 

more done! Coding goes a lot faster when my 
brain’s not fried.

Later, back in the 
team’s meeting space...

Back in Chapter 
2 we learned that 
rework is a major 
source of bugs. 
Does that mean 
rework always 
causes bugs?

you are here 4  203

xp extreme programming



XP teams embrace change
Here’s a basic fact about software projects: they change. A lot. Users ask for changes all the time, and 
typically have no idea how much work any one change will require. This wouldn’t be too bad, but 
there’s a problem: a lot of  teams build code that’s difficult to modify: changes require code modifications 
that are painful to make, and leave the code in very bad shape. This often leads to teams that push back 
against those changes. When teams resist change, the project suffers. The XP values and practices fix 
this problem at its source by helping teams to build code that’s easier to modify. And when the code is 
easy to modify, programmers don’t feel the need to resist change. That’s why XP has practices and 
values that are focused on programming. Because these practices help teams build code that’s 
easier to modify, XP helps them reach a mindset where they embrace change instead of  resisting it.

People on 
software teams 
resist changes 
when they’ve had 
bad experiences 
with rework 
causing bugs... but 
rework doesn’t 
have to do that. 
XP helps teams 
embrace change 
with practices 
and values that 
help them to build 
software that’s 
easier to modify.

We’ll change 
the mobile app to 

let trainers modify their 
schedules.

Last time we 
made a change like 

that, we were left 
with fragile and 

buggy code.

But Ryan has a sinking feeling 
that making this change will take a lot of hard, painstaking work, and require “duct tape and paperclips” hacks to get it done on time.

Gary knows the users really need this change, and 
there’s just no way they could have seen it coming.

Ever heard a programmer complain about spaghetti code? 
That’s when the code’s structure is complex and tangled (like 
a pile of spaghetti in a bowl). It’s often the result of rework that 

results in many changes to the same part of the codebase. 
Programming doesn’t have to be that way! XP teams have 

practices and values that make their code easier to modify, so 
the team can do rework without turning the code into a mess.

204  Chapter 5

does rework always have to cause bugs



Feedback

Frequent feedback keeps changes small
Talk to a group of  programmers, and it often doesn’t take long before someone starts to 
complain about how users always change their minds. “They ask for one thing, but when 
we build it exactly like they wanted they turn around and tell us they need something totally 
different. Wouldn’t it be easier if  we just built the right thing in the first place?”

But ask that same group of  programmers how often they designed and built an API, only to 
find that some of  the functions were awkward and difficult to work with. Wouldn’t it be easier 
if  we just built the right API in the first place? Obviously. But you don’t really know if  the 
interface you designed and built is easy to use until someone writes code that actually uses it.

When you put it that way, programmers recognize that it’s really rare to build anything right 
the first time, so they try to get feedback early and continue to get it frequently. That’s why 
XP teams value feedback.

And feedback comes in many forms:

An API (“application 
programing interface”) 
is a set of functions 
that you build into your 
system so that another 
programmer can write 
code to control it. 

Iteration
You’ve already seen a really good 
example of  feedback: iteration. Instead 
of  planning six months of  work doing 
one big demo at the end of  it, your team 
will do a small chunk of  work and then 
get feedback from the users. That lets you 
continually adjust the plan as the 
users learn more about what they need.

Integrating code
When code files on your computer are 
out of  date with the rest of  your team, it 
can lead to frustrating problems. When 
you integrate your new code  frequently 
with your teammates’ code, it gives you 
early feedback. The more frequently you 
integrate, the earlier you catch conflicts, 
which makes them a lot easier to resolve.

Unit tests
One really effective way to get feedback 
is to build unit tests, or automated 
tests that make sure the code that you 
built works. Unit tests are typically stored 
in files along with the rest of  the code. 
When you make a change to your code 
and it breaks a test, that’s some of  the 
most valuable feedback you can get.

Teammate reviews
Open source teams have an old 
saying: “Given enough eyeballs, all 
bugs are shallow.” Your team is no 
different. Getting feedback from 
your teammates helps you catch 
problems with your code—and it 
helps them understand what you 
built so they can work on it later.

That’s called 
Linus’s Law, 
named after the 
creator of Linux.

you are here 4  205

xp extreme programming



I started fixing 
a bug, but to get it to 

work I have to fix these 
other two parts of the 

code...

...And one 
of those changes 

affects this other piece, 
and that requires two 

more changes over 
here...

...Urgh, so 
many changes it 

hurts my brain!

Ryan started making one little change 
to the code, but somehow it rippled out 
to many other areas of the software. By 
the time he gets all the way down the 

chain of fixes, he’s practically forgotten 
what he was supposed to be doing in 
the first place. This is a really familiar 

feeling to a lot of programmers, and it’s 
got a name: shotgun surgery. 

Bad experiences cause a rational fear of change
There’s very little that’s more frustrating to a programmer than being halted in your 
tracks by an annoying, frustrating problem. Most developers will recognize these 
very common—and very frustrating—problems that Ryan and Ana are running into.

Ana’s been working on a change that affects a 
lot of different files. One of her teammates spent 
the last few weeks modifying many of those files, 
and just committed his changes. The good news 

is that when she tried to commit her code, the 
version control system detected the conflicts 
and rejected her update. The bad news is that 

now she has to painstakingly reconcile each of 
her changes with the ones her teammate made.

Noooooooo!  
Someone just committed three 

weeks of changes all at once, and now I’m 
getting dozens of conflicts when I try to 

commit my code.

It’s going to 
take me hours to sort out 

all these conflicts. This is a 
nightmare!

This is going to be so much work, 
Ana’s considering just rewriting the 
whole thing from scratch rather 
than try to merge her changes.

The CircuitTrak code is 
stored in a version control 
system. That’s a software 
tool that teams can use 

to work on a single set of 
files without overwriting 
each other’s changes. It 

keeps track of every code 
change, letting you see 

who made the change and 
see what the code looked 

like before and after.

When you add your 
latest code changes 
to a version control 
system, it’s called a 

commit.

206  Chapter 5

if this happened to you you’d fear change too



How a version control system works

Ana, Ryan, and the rest of  the team have been working on CircuitTrak for years, and the project now 
has thousands of  files, including source code, build scripts, database scripts, graphics, and many other 
files. If  they just used a shared folder on the network to hold the files, it would quickly become a mess:

10 a.m.: Ana copies 
the source folder to her 

computer so she can work 
on the code

11:30 a.m.: Ryan copies 
the source folder to his 

computer so he can work on 
the code, too

Oops! When Ryan saved his changes, they overwrote 
Ana’s changes. That’s going to cause bugs later!

1 p.m.: Ana copies updated 
TrainerContact.java back to 

the shared folder

3 p.m.: Ryan copies 
updated TrainerContact.java 

back to the shared folder

That’s why the team uses a version control system, which provides a repository that contains not just the latest 
copies of  each file, but also a complete history of  changes. It even lets multiple people work on the same file at once:

10 a.m.: Ana checks out the 
source from the repository to a 
working folder on her computer

11:30 a.m.: Ryan has the source 
checked out, so he updates it 

with the latest changes

Ryan and Ana changed different lines of the file, so the version 
control system was able to merge their changes automatically.

Things are a little messy (but still manageable) when two people make conflicting changes to the same file.

Behind 
the Scenes

10 a.m.: Ana and Ryan both 
have working folders updated 

with the latest source

1 p.m.: Ana commits changes 
to TrainerContact.java back 

to the repository

2:30 p.m.: Ryan tries 
to commit a conflicting 
change but it’s rejected

When Ryan tried to commit 
his change, the system found 
that Ana had already checked 

in different changes to the 
same lines in the same file, 

so it rejected the change and 
updated his local file to show 

both sets of changes. Ryan had 
to resolve the conflicts before 

he could commit any more code.
In this case, there were only a few conflicts, so Ryan was able to 
resolve them pretty easily and commit the updated code. But when there are a LOT of conflicts, the merge can be really difficult.

1 p.m.: Ana commits her 
TrainerContact.java changes 

back to the repository

3 p.m.: Ryan commits 
changes to a different part 

of TrainerContact.java

you are here 4  207

xp extreme programming



Automated builds turn source code into packaged binaries
If  you’re not a programmer, you may not be 100% clear on the mechanics of  how software is created. Exactly 
what do programmers type all day, and how does it turn into software that you can run? Here’s what’s going on:

• Software typically starts out as a set of  text files that contain code. This is the source code of  the project.

• Programming languages have compilers that read the source code files and create a binary, or the 
executable file the computer’s operating system is able to run.

• The binary typically needs to be packaged into a single file that contains the binary and any additional files 
that are needed to run (like an executable installer, a mountable disk image, or a deployable archive file).

• Compiling the source code and packaging it up by hand can be time-consuming and error-prone, 
especially if  there are multiple binaries and many files that need to be bundled into a single package.

• This is why teams automate the compile and package steps to create the binaries and other files. There 
are many tools and scripting languages that make it easy for teams to create automated builds.

Under the Hood: Build Automation

208  Chapter 5

early feedback makes changes manageable

XP practices give you feedback about the code
A lot of  agile practices are crafted to give the team feedback early and often—like the ones focused on iteration, 
which give the team feedback about the product they’re planning to build and the work involved. Each iteration 
gives them more information, and they use that information to improve how they plan the next iteration. This 
is an example of  a feedback loop: the team learns from each round of  feedback, and makes adjustments 
and self-corrects, which changes what they learn about in the next round. These next four XP practices are 
especially good tools because they give the team really good feedback about how they design and build the code.

10-minute build
The team maintains an automated 
build that compiles the code, runs 
the automated tests, and creates the 
deployable packages. They make sure 
that it runs in 10 minutes or less.

Pair programming
Two team members sit with each 
other in front of the same computer 
and work together to discuss, design, 
brainstorm, and write the code.

You learn a lot about your code 
when you try to build it and see 
what breaks. When the build 
runs quickly, everyone on the 
team is comfortable running it 
as often as they need to.

Team members give each other 
feedback about the code they’re 
building. They switch pairs often, 
which helps everyone stay on top of 
how the whole codebase is changing.

Here’s a quick overview of 
how an automated build 
works, just in case you 
haven’t used one before.

XP Practice

XP Practice



Ready to take a closer look at each of these practices? Flip the page! 

A system that gives a lot of feedback will often fail fast. You want your system to fail quickly so 
you can fix problems early, before other parts of the system are added which depend on them.

Developers typically run unit tests using a 
specialized program (often a plug-in for a 
build tool or a development environment). 
The unit test results are usually displayed 
with color codes: passing tests are green, 
failed tests are red. Teams that use test-
driven development typically follow a 

cycle of adding failing tests that start off 
red, making them pass so they turn green, 
and then refactoring the code. Teams refer 

to this cycle as red/green/refactor, and 
consider it a valuable development tool.

re-factor, verb
to change the structure of  code 
without changing its behavior

A particularly troublesome block of  code 
that was much less frustrating to work with 
after Ryan took the time to refactor it.

DICTIONAry DEfINITION

you are here 4  209

xp extreme programming

Continuous integration
Everyone on the team constantly 
integrates the code in their working 
folders back into the repository, 
so that nobody’s working folder is 
more than a few hours out of date.

Test-driven development
Before adding new code, the first 
thing a team member does is to 
write a unit test that fails, and only 
after that does he or she write or 
modify code to make it pass.

When each person has the 
latest code in a working folder, 
conflicts show up immediately, 
and they’re a lot easier to fix 
when they’re caught early. 

Unit tests set up a tight feedback 
loop: build the failing test, write 
code that makes it pass, learn 
more about what you’re building, 
write another test, repeat.

A 10-minute build really helps with both continuous integration 
and test-driven development because it executes the unit tests, so 
you find out quickly if you add code that breaks an existing test.

XP Practice

XP Practice



A 10-minute build 
is just long enough for a 

programmer to grab a cup 
of coffee and relax his or 

her brain.

210  Chapter 5

giant merge conflicts are really frustrating

XP teams use automated builds that run quickly
There’s nothing more frustrating to a programmer than waiting. That’s a good 
thing: a lot of  innovation starts with a programmer saying, “I can’t stand how 
long this takes.” So it’s especially frustrating when it takes a lot of  time and effort 
to build the code—and very few things can kill a team’s innovation as quickly as 
frustration. When something repeatedly takes a long time, the first thing that a good 
programmer thinks is, “How do I automate that?” 

That’s where the 10-minute build practice comes in. The idea is straightforward: 
the team creates an automated build, usually using a tool or scripting language 
specifically made for automating builds—and they do it at the beginning of  the 
project. The key here is that they make sure the whole build runs in under 10 
minutes. That’s pretty much the limit of  patience most programmers have to wait 
for the build to finish—and it’s long enough so that you can kick off  a build, then go 
grab a cup of  coffee and think. By keeping the build under 10 minutes, there’s no 
hesitation in running it, which helps find build problems quickly.

When 
the build 
requires a lot 
of manual 
effort or 
takes longer 
than 10 
minutes to 
run, it puts 
stress on the 
team and 
slows down 
the project.

Source 
code 
files

Packaged 
binary

The automated build reads the source 
files and packages up the binary.

When the build runs in 10 minutes 
or less, developers are comfortable 

running it frequently.



you are here 4  211

xp extreme programming

Continuous integration prevents nasty surprises
When you work on a team building code and committing it to a version control system, your day-to-day 
work follows a pattern. You do some work, then you update your working folder with the latest changes 
your teammates have pushed, then you push your own changes back to the version control system. Work, 
update, push... work, update, push... work, update... merge conflict! Uh-oh—one of  your teammates 
made changes to the same line and committed it since the last time you updated. The version control 
system had no way of  knowing whose change is right, so it modified the code files in your working folder 
with both sets of  changes. Your job is to resolve the conflict: you’ll look at them, figure out what the 
code is supposed to do, modify it so that it’s correct, and commit the resolved change back to the repository:

/**

 * Find students by matching a partial name

 * @param partialName Name of the student to search for

 * @return Student collection with the results of the search

 */ 

StudentCollection findStudentsByPartialName(String partialName) {

   StudentRecordCollection records = getStudentRecords(searchString);

<<<<<<<
    RecordManager.lookupRecord(records);

    StudentCollection studentsFound = new StudentCollection();

    records.toList(studentsFound);

=======
    StudentCollectionHelper.buildStudentCollection(records);

>>>>>>>
    return studentsFound;

}

When you try 
to commit a 
conflicting change, 
most version 
control systems 
add marks like 
this to the files 
in your working 
folder so you can 
see exactly what 
conflicts need to 
be resolved.

This code was 
committed since 
the last time 
you updated your 
working folder.

Here’s the conflicting 
change you tried to 
add. Resolving the 
conflict means looking 
at both changes and 
figuring out how it 
needs to work.

Every merge conflict is like a little puzzle, and sometimes those puzzles can be 
annoying to solve because you’re not sure exactly what your teammate was trying to do. 

Now flip back to page 206. Do you see why Ana ran into so much trouble?

Her teammate hadn’t updated his working folder in weeks. Instead, he just kept making 
changes to an old version of  the code—which got more out of  date every day—and 
then committed all of  those changes at once. Ana spent the last few hours working on 
a change to many of  those same files. But instead of  having one or two little puzzles to 
solve, now she has to contend with dozens of  files marked up with conflicts. Few things 
are more frustrating to a programmer than resolving many merge conflicts at once.

That’s why XP teams use continuous integration. It’s a really simple practice: every 
person on the team integrates and tests their changes every few hours, so nobody’s 
working folder is ever out of  date. When everyone on the team does continuous 
integration, they’re all working on a current version of  the code. There will still be 
merge conflicts, but they’re almost always small and manageable, and never a giant, 
frustrating monster of  a change like the one that Ana has to deal with.

When everyone 
keeps their 
working folders 
up to date, 
the merge 
conflicts tend 
to be small and 
manageable.



The weekly cycle starts with writing tests
For many developers, XP brings a different way of  working. One of  the most obvious changes is that 
the team does test-driven development (or TDD). That’s a practice where programmers write unit 
tests before they write the code that it tests. When you’re in the habit of  writing unit tests first, you think 
about what it means for your code to work correctly, which helps you write code that’s “Done” done.

Unit tests change the way the team designs the code
All programmers have had the experience of  writing code, only to wish later 
that they had written it a little differently—looking back, you might realize 
that a different argument would have worked better for a particular function, 
or that you could have used a different data structure, or made other choices. 
But now the code you wrote is called from five other places, and it will be 
more work to change it than it will be to just live with the poor decision.

In other words, some of  the most annoying code problems happen when you 
make a bad design choice, then you add other code that depends on it. Do 
this enough and eventually you get that “shotgun surgery” feeling every time 
you touch that part of  the code.

Unit testing helps prevent that problem. Design problems in your code often 
become apparent the first time that you write code that uses it. And that’s 
exactly what you’re doing when you write a unit test first: you use the code 
that you’re about to write. And you do it in small increments, one bit at a 
time, smoothing out design problems as you encounter them.

Move on to the 
next small piece 
of functionality

TDD makes it really obvious when you add 
extra unnecessary dependencies between 
different parts of your code, and those 
dependencies are exactly what cause the 
“shotgun surgery” feeling.

Think about 
what the code 
has to do

Write a unit 
test that fails

Write code 
that makes 
the test pass

ok, this doesn’t 
make sense. How do you test code 

that you haven’t written yet? Why does it 
matter if I write the tests first or write 

the code first?

The test-driven 
development 

feedback loop
TDD forces you to 
really think through your 
code’s behavior before 
you dive into writing it.

212  Chapter 5

test first then code



Test-Driven Development 
Up Close

Code is always divided into discrete units
In some languages the units are classes; in others they’re 
functions, modules, procedures... the specific unit varies 
from language to language, but every programming 
language works this way. For example, when you write 
Java code, most of  your code goes into “chunks” called 
classes saved in .java files. Those are units of  Java code.

Each unit gets its own unit tests
The name “unit testing” is pretty self-explanatory: you 
write tests for the units of  code. For example, in Java unit 
testing is typically done on a class-by-class basis. Those 
tests are written in the same language as the rest of  the 
code, and are stored in the same repository. The tests 
access whatever part of  the unit is visible to the rest of  
the code—for Java classes, that means the public methods 
and fields—and use them to make sure the unit works.

Writing the unit tests first forces the developer 
to think about how the code is going to be used
Every unit of  code is used by at least one other unit somewhere in 
the system—that’s how code works. But when you’re writing code, 
there’s a paradox: in a lot of  cases, you don’t really know exactly 
how the unit you’re working on will be used until you actually use it. 

Test-driven development helps you catch problems in your code 
early, when they’re much easier to fix. It’s surprisingly easy to 
design a unit that’s difficult to use later, and just as easy to “seal” in 
that poor design by writing additional units that depend on it. But 
if  you write a small unit test every time you make a change to a 
unit, a lot of  those design decisions become obvious.

Hmm, I didn’t realize how weird This 
class was until I started writing code 

in a unit test that uses it. I’m glad I can fix 
it now before anything else depends 

on it!

public class ScheduleFactory {

public class TrainerManager {

public class UserInterfaceModel {

public class ScheduleFactoryTest {

public class TrainerManagerTest {

public class UserInterfaceModelTest {

The XP mindset helps you think 
differently about programming, 
design, and code because its 

practices give you good habits 
that keep your code clean, 

simple, and easy to maintain. 
TDD is one of those good habits.

This is just like how the 
Scrum mindset helps 
you think differently 
about planning.

you are here 4  213

xp extreme programming



Agile teams get feedback from design and testing
Agile teams have great design and testing tools that help the teams get more feedback throughout the project. 
They can use wireframes to sketch out user interfaces before building them, spike solutions to figure out 
difficult technical problems, and usability testing to make sure they’ve made effective design choices. Some 
teams write a charter and list of  test objectives as a very lightweight plan and then set out to break the feature or 
product that was just developed as a way of  finding new combinations of  actions that the developer might not 
have thought about. This kind of  testing is called exploratory testing and it can be really effective at finding 
issues that users will run into. All of  these tools are great at generating feedback, which is why XP teams integrate 
them into their weekly cycles—and rely on them to get feedback to help plan the next weekly cycles.

Wireframes help the team get early feedback 
about the user interface
Of  all the things that software teams build, user interfaces seem 
to generate the most opinions from users and stakeholders, so 
they want to get feedback about the UI early and often. That’s 
why teams use wireframes to sketch out user interfaces. There 
are a lot of  different ways to create wireframes. Some are basic 
sketches of  the system’s navigation, while others are highly 
detailed representations of  individual screens or pages. It’s a lot 
easier to modify a wireframe than it is to modify code, so teams 
often review several iterations of  each wireframe with the users.

Build spike solutions to get an idea 
of a feature’s technical difficulty
It’s not uncommon for a team to have trouble 
estimating a specific feature because they just 
don’t know enough about what’s involved in 
solving specific technical problems. That’s where 
spike solutions come in handy. A spike solution 
is code written by a team member specifically 
meant to figure out a specific technical problem. 
The only purpose of  the spike solution is to learn 
more about the problem, and the code is usually 
thrown out after it’s done.

Usability testing means testing 
your user interface on real users
When you’re trying to figure out how effective a 
user interface is, there’s no substitute for getting 
it in front of  real live users and watching how 
they interact with it. That’s what usability testing 
is all about: sitting users down in front of  an 
early version of  the UI that the team has been 
building and having them use it to perform tasks 
they’ll typically need to use it for. When XP 
teams do usability testing, it’s often done near the 
end of  the weekly cycle so that the information 
they learned from it can be used in the next one, 
setting up an extremely valuable feedback loop.

Wireframes are often low fidelity: sketches drawn by hand 
or with a program that gives them a hand-drawn look. This 

encourages users to feel more comfortable suggesting 
changes than if they were more polished. Some users are 

hesitant to ask for changes if a UI looks really polished 
because it feels like they’re asking the team to do a lot of 

extra work. Making wireframes look hand-drawn increases 
the amount of feedback that they generate.

A small change to the user 
interface can have a huge 
impact on usability. That’s 
why wireframes and usability 
testing are so important.

When teams talk about usability they’re trying to 
measure how easy it is to learn and use the software. It’s 

really common to discuss the usability of a program’s 
user interface, or the visual interface (like windows or 
web pages) that users interact with to use the system.

214  Chapter 5

early feedback makes a better user interface



Here are three scenarios that Ryan and Ana are working on that have to do with getting 
feedback from their project. Write down the name of the tool being used in each scenario.

I’m not happy with how 
this class gets initialized - it’s going 

to be hard to use. Once its unit tests pass, 
I’ll modify it.

I finished 
designing the new user interface. 

Let’s make sure that it works by getting a bunch 
of users in the room and observing them 

while they use it.

We need a new 
way to store trainer schedules 

that will reduce memory. I’m building a proof-
of-concept so we can get a sense of how much 

work it will be.

Answers on page 244.

Spike Solutions 
Up Close

Architectural spike
When XP teams talk about doing a spike 
solution, they’re usually referring to an 
architectural spike. An architectural spike is 
used to prove that a specific technical approach 
works. Teams will often do an architectural 
spike when they have a few different options 
for designing a specific technical solution, or if  
they don’t know if  a certain approach will work. 

A spike solution helps you solve a tough technical or design problem. 
A spike solution is a simple program whose only purpose is to explore solutions to a problem. It’s usually 
timeboxed to a few hours or even a few days, and after the spike is done the code is usually thrown away or set 
aside (so the team can use it later if  they want). This gives the programmer a lot of  freedom to focus single-
mindedly on solving the problem and ignore the rest of  the project. But even though the code is thrown away, 
the spike is still treated as real project work. The team will typically add a story for it to the weekly cycle.

Risk-based spike
Sometimes there’s a problem that presents 
a project risk: the developers are pretty 
sure it will go well, but if  it doesn’t it could 
seriously derail the project. That’s when 
the team will do a risk-based spike. It 
works just like an architectural spike, but 
with a different goal: it’s done specifically 
to remove a risk from the project.

Spike solutions fail fast: if the programmer discovers that the approach won’t 
work, the spike ends... and the team still considers it to be a successful spike.

Wireframes, usability testing, and spike solutions aren’t 
specific to XP... but a lot of XP teams use them.

you are here 4  215

xp extreme programming



Pair programming
XP teams use a pretty unique practice called pair programming, where 
two people sit at a single computer and write code together. This is a new 
experience for people who are used to thinking of  programming as a solitary 
activity. But it can really be an effective tool for building high-quality code 
very quickly, because many people who do pair programming report that 
pairs get more work done together than they do when they work separately.

Ryan and Ana 
help keep each 
other focused.

When Ryan gets stuck, 
Ana can jump in and 
keep things moving, 

and vice versa.

The whole team 
constantly rotates 
pairs, so everyone 

gets experience 
working with every 
part of the system.

They're constantly 
talking about the 
problems they're 
working on and 
brainstorming 

solutions.

You don't always know if you have 
a good handle on an idea until 
you explain it to someone else.

You're a lot 
less likely to 

take shortcuts 
when someone 
else is working 
alongside you.

There are two sets of 
eyes on every change, 
and they catch a lot of 

those little mistakes that 
would cause headaches 
later if they were missed.

Pair programming  
keeps everyone 
focused, helps the 
team catch bugs, 
makes it easy to 
brainstorm, and 
gets everyone on 
the team involved 
in every part of 
the codebase.

216  Chapter 5

two heads are better than one



10-minute 
Build

Slack

continuouS 
integration

teSt-driven 
development

pair 
programming

Weekly 
cycle

informative 
WorkSpace

Sit 
together

energized 
Work

The XP practices are useful individually, but when you combine them they’re 
especially effective. We’ve written down several of the XP practices, and drawn 
arrows between them. Each arrow has blank lines for you to write on. For each set 
of blank lines, write down one way that the practice the line is drawn FROM can 
interact with the practice the line is drawn TO in a way that reinforces and supports it.

osmotic communication is 
more frequent when everyone 
sits close to each other

We’ve started you out by 
filling in this blank to show 
how “sit together” impacts 
“informative workspace”.

you are here 4  217

xp extreme programming



10-minute 
Build

Slack

continuouS 
integration

teSt-driven 
development

pair 
programming

Weekly 
cycle

informative 
WorkSpace

Sit 
together

energized 
Work

There are a lot of different ways to solve this, because there are many ways that the 
XP practices can interact to reinforce and support each other. We’ve written down 
ways that we think are important. Did you come up with similar answers to ours? 

a fast build makes 
it easy to run all of 
the unit tests quickly

extra room in weekly 
iterations makes 
them easier to plan

shorter builds mean 
fewer interruptions 
and less waiting

easier to check if you’re 
done integrating when 
the build runs quickly

easier to be energized 
with less unreasonable 
schedule pressure

people are less likely to 
slack off on tests because 
pairs keep them focused

unit tests make it easier 
to spot integration 
problems early

osmotic communication is 
more frequent when everyone 
sits close to each other easier to pair up with 

people who sit nearby and 
who you talk to every day

The XP practices work 
together to form an ecosystem 

that leads to better, flexible, 
more maintainable code.

218  Chapter 5

no such thing as “pure” xp



Q: The “sit together” and “pair 
programming” practices require 
everyone to be in the same office. Does 
that mean global or distributed teams 
can’t use XP?

A: Many global and distributed teams 
use XP. XP teams know that when they sit 
together, they have more face time, have 
fewer interruptions from phone calls, and 
can share an informative workspace. A 
distributed team where everyone works 
in different offices and communicates via 
email and phone can’t take advantage of 
these things. But an important part of the 
XP mindset is that every practice is about 
making the team work better. If there are 
some practices that are simply impossible, 
they’ll work with what they’ve got.

Q: But doesn’t that mean they aren’t 
doing “pure” XP?

A: Really effective teams know that 
there’s no such thing as “pure” XP. XP 
teams are always looking for ways to 
improve. There’s no “perfect” state that 
they’re trying to get to; they’re just trying 
to get better at what they do together. 
Mindlessly adhering to practices will 
de-energize the environment really quickly. 
And making people feel bad about not 
being “pure” enough is disrespectful. 
Nagging people about XP “purity” is 
counterproductive. It makes people feel 
like you’re judging them and their work. 
That won’t make anyone change—it’ll just 
make them resent you, and resent XP.

Q: So does that mean it’s OK to 
throw out practices I don’t like?

A: No, that’s not OK. The XP practices 
are carefully designed to work with each 
other, and when they’re used together they 
help the team integrate XP values into their 
mindset. For example, teams really start to 

understand the XP value of communication 
when they sit together and have an 
informative workspace. When teams decide 
to throw out a practice, it’s usually because 
their mindset is incompatible with one of the 
values, and that causes the practice to feel 
uncomfortable. When that happens, a really 
good thing to do is to make a genuine 
effort to try the practice. Often, that helps 
the team shift their mindset, which in turn 
helps everyone work better together and 
build better software.

Q: Doesn’t continuous integration 
just mean setting up a build server?

A: No. A build server is a program 
that periodically retrieves the latest code 
from the version control system, runs the 
automated build, and alerts the team if 
there are any failures. It’s a really good 
idea, and almost all agile teams use one. 
But a build server isn’t the same thing 
as continuous integration. Continuous 
integration means that every person on the 
team actively (and continuously!) integrates 
the latest code their teammates wrote into 
his or her own working folder. The reason 
this is often given the same name as a 
build server is that the server is constantly 

“integrating” code from the version control 
system into its own repository, and will alert 
the team any time code is committed that 
won’t compile or causes test failures. But 
that’s no substitute for having each person 
keep his or her working folder up to date.

Q: I don’t get it. If we have a build 
server that constantly integrates the 
code, isn’t that less work for everyone?

A: It’s true that having every member 
of the team continuously integrate the 
latest code from the version control into 
their working folder is more work than just 
setting up a build server. But if they just rely 

on email alerts from a build server to tell 
them when they’re out of sync, it often ends 
badly. For example, you might discover 
that when you commit code that breaks the 
build, everyone gets really mad at you, so 
you commit your code a lot less frequently 
than you normally would. Or the team might 
just be so used to “broken build” emails 
from the build server that they start ignoring 
them and filing them into folders. On the 
other hand, if every person feels like they 
have a responsibility to stop what they’re 
doing every few hours and integrate code 
from the version control system back into 
their own working folders, a broken build 
is rare—and when it happens, the team 
notices quickly and works together to fix it.

Q: So is doing continuous integration 
just a matter of making sure the team 
has enough discipline?

A: Not quite. When a team is really 
good at using practices like continuous 
integration, 10-minute builds, or test-driven 
development, from the outside it looks 
like they’re really disciplined. But it’s not 
really a matter of discipline at all. The team 
does those things because they make 
sense to everyone. Everyone on the team 
simply feels that the work will slow down 
if, say, they don’t take the time to make 
the build faster, or build a unit test before 
writing code. They don’t need to be nagged, 
yelled at, or reprimanded—in other words, 
disciplined—because it wouldn’t occur to 
them not to do those things.

Q: I work with a QA team. Does test-
driven development mean testers write 
my unit tests while I write the code?

A: No. You write your own unit tests 
first, then you write the code to make them 
pass. The reason that the unit tests should 
be written by the same person who writes 
code is that when you write the tests, you 
learn a lot about the problem that you’re 
working on, which makes the code better.

you are here 4  219

xp extreme programming



Something’s really bugging 
me. Pair programming seems like a 

giant waste of time. When two people work 
together, Doesn’t it cause them to deliver 

code half as fast?

Pair programming is actually a really efficient way to code.
Pairing up keeps you focused and eliminates a lot of  distractions (like popping open a 
browser or checking your email). And there’s always another set of  eyeballs to catch 
bugs early instead of  wasting time tracking them down later. But more importantly, it 
means you’re constantly collaborating with your teammates. Programming 
is an intellectual activity: writing code means solving problems and puzzles all 
day long, one problem or puzzle after another. Talking through those puzzles and 
problems with one of  your teammates is a really effective way to solve them. 

ok, I get your points. 
But... Are you sure? Honestly, 
I just don’t buy it. Pair 
programming simply doesn’t 

feel right to me.

A practice “just doesn’t feel right” when it clashes with your mindset. 
Do you think of  yourself  as a better programmer than everyone around you? Is coding a 
solitary activity in your mind? If  so, then you’ll have an irrational dislike of  pair programming. 
Do you think of  yourself  as a “rock star” surrounded by idiots who couldn’t code their way out 
of  a paper bag? Then you’ll have an extremely strong irrational hostility to pair programming. The 
key word here is irrational: yes, you can think of  reasons and rationalizations for disliking pair 
programming, but at the heart of  it what you really have is a feeling that it’s just not right for you 
or your team. And that’s the definition of  irrational: decisions driven by feelings, not reason.

But it turns out that a lot of  really good programmers on real-world projects have discovered 
that not only can their “lesser” teammates (surprisingly!) keep up with them, but when they 
genuinely try pair programming—not just go through the motions, but really try to make it work—
coding really does go a lot faster. Not only that, but their “slower” teammates start to pick up 
many of  the skills and techniques they’ve learned, and the whole team improves together.

That’s why even people who are initially 
resistant to pair programming often 
find that they really like it after 
genuinely trying it out for a few weeks.Is it really fair for us to use 

the word “irrational”? We 
think so. Pair programming is 
a straightforward and—let’s 

face it—unremarkable way to 
work, and many people do it 
every day. A very intense and 
negative emotional reaction 
to something so mundane is, 

by definition, not rational.

220  Chapter 5

a skeptical reaction to pair programming



Then you and your team don’t value the same things that XP teams do. 
XP teams value focus, respect, courage, and feedback. If  you really value these things, pair 
programming makes a lot of  sense. When you value focus, you appreciate how pair programming 
helps keep you and your teammates on track. When you value respect, you won’t have an 
irrational response to the idea of  pairing up with your teammates, because you have respect for 
them and their abilities. When you value courage, then you’ll be willing to look past your own 
feelings of  discomfort and try something that could potentially help the team. And when you value 
feedback, then having two eyes on every line of  code that’s written feels like a really great idea.

On the other hand, if  the last few sentences seem cliché, oversimplistic, overly idealistic, or even 
stupid, then you don’t share the same values as effective XP teams.

Adopting new practices takes work, and shared 
values motivate everyone to do that work.
When teams try to adopt a methodology with values that don’t 
match the team’s culture, it usually doesn’t end well. The team will 
try adding some of  the practices, and a few of  them may work out 
temporarily. But eventually it will just feel like you and your team 
are simply “going through the motions” of  the practices. They’ll 
feel like a burden without much benefit, and within a few weeks or 
months the team will go back to the way things were before. 

But that doesn’t mean there’s no hope! It just means that you and 
your team should talk about the values before you try the practices. 
If  you start working on the culture issues from the beginning, it 
makes XP (or any methodology!) a lot easier to adopt, and gives 
the whole effort a much better chance of  sticking.

Sorry, I still don’t buy it. Pair 
programming is bad, and nothing you 

say is going to change my mind. Doesn’t 
that mean all of XP is wrong for me 

and my team?

So what? What happens 
if I don’t share XP’s 

values?

When you try 
to adopt a 
practice that 
doesn’t match 
your mindset 
or the culture 
of your team, it 
usually doesn’t 
“take” and you 
just end up 
going through 
the motions. 

Speaking of improving the way the team functions, let’s check in on Ryan and Ana 

you are here 4  221

xp extreme programming



Ryan: Ha ha! Good one! ... um ... wait, you’re not joking, are you? 

Ana: No, I’m being serious here. We’re adding a lot more code, but now we’re 
building some pretty complex stuff.

Ryan: Yes! 

Ana: That’s not necessarily a good thing.

Ryan: Uh... what?

Ana: Like this centralized common automated build script that you created.

Ryan: How’s that a problem? We had a bunch of  nearly identical build scripts. That’s 
a lot of  duplicated code. I fixed it.

Ana: Yeah, you saved like 12 lines of  code duplicated in eight different build scripts...

Ryan: OK.

Ana: ...by building this 700-line monstrosity that’s impossible to debug. 

Ryan: Um...OK?

Ana: And now any time I need to modify the build, I have to spend hours trying to 
debug through that enormous script. It’s really painful.

Ryan: But it saves...well...OK. It saves like 12 duplicate lines in a couple of  scripts. I 
get your point—duplicate code is usually bad, but in this case it would be a lot easier 
to maintain a few duplicate lines than keep working with the script I wrote.

Ana: And it’s not just the builds. We built this super complex unit test framework.

Ryan: I see where you’re going with this. I had to debug through it the other day 
because I had to update the test data for just one unit test. It took me two hours to do 
a really simple job that should have taken five minutes.

Ana: You know what? I think adding these new XP practices helped speed up our 
coding. But I’m starting to think that all of  this complexity is starting to slow us down.

Ryan: So what do we do about it?

Our development is 
really humming along! I can’t believe 
how much code we’ve written in the last 

few weeks.

Yeah, 
these new practices made a huge 

difference. But... well, I’m wondering if 
it’s too much of a good thing.

222  Chapter 5

mo code mo problems



Complex code is really hard to maintain
As systems grow, they often become big and complicated, and complex code tends to 
get more complex as you work with it. And when code gets more complex, it gets harder 
to work with, which causes developers to take shortcuts that make the problem worse. 
That’s exactly what happened when Ryan tried to make a change that customers needed:

Trainer class

MasterSchedule class

ScheduleUpdater class

TrainerSchedule class

CustomerTrainers class

Customer class

StudioSchedule class

ScheduleRenderer class

ContactInfo class

Some of CircuitTrak’s yoga studio and martial arts dojo 
customers want to give the trainer the ability to reserve the 
entire studio for seminars, meetings, and day-long classes. 

This is a diagram of one small part of the CircuitTrak codebase 
that Ryan needs to modify in order to make the change.

Ryan discovered that before he could change 
TrainerSchedule, he’d have to modify the 
Customer class. But that would require a 

change to CustomerTrainers. And before he can 
do that, he’ll need to modify ScheduleUpdater 

and Trainer, and ... oops, that will require 
a change to an entirely different part of 

TrainerSchedule. It’ll take days to get this done!

When Ryan started 
working on this change, 

he thought it would 
just require a simple 
modification to the 

TrainerSchedule class.

Ryan hadn’t realized 
how complex the 
TrainerSchedule 

class had become. It 
was built so that it’s 

tightly coupled to 
other classes.

1

2

3

4

So Ryan ended up settling for a hack. He copied 
all of the code in TrainerSchedule to a new class, 

StudioSchedule, to handle just this specific 
situation, made some modifications, and deleted 

everything in it that he didn’t need. Then he 
added “special case” code ScheduleRenderer 

and MasterSchedule. It works, but it’s ugly. And 
it makes the whole system a little more complex.

5

A hack (sometimes called a “kludge”) 
is what programmers call a clumsy, 
quick-and-dirty solution that 
technically gets the job done but 
may cause problems down the road.

Ryan’s solution is definitely a hack. 
The way he implemented it, if they 
ever need to change the way schedules 
work, they’ll need to remember to 
change the new StudioSchedule class 
too—and that will probably cause a 
“shotgun surgery” cascade of changes.

A big, complex 
system gets 
more and more 
complex one little 
hack at a time.

you are here 4  223

xp extreme programming



Simplicity

When teams value simplicity, they build better code
When you’re solving a programming problem, there are an almost infinite number of  ways that you 
can code the solution. Some of  those ways are a lot more complex than others. They might have a 
lot more interconnections between units or add extra layers of  logic. Units can grow far too big to 
understand all at once, or can be written in a way that’s too convoluted to read and comprehend. 

On the other hand, everything works better when your code is simple. It’s easier to modify your 
code to add new behavior, or to modify it to change the way it works. When the code is simple, 
there are fewer bugs, and they’re easier to track down when they happen. 

So how do you know if  a particular unit—like the TrainerSchedule Java class that Ryan was 
working on, for example—is getting too complex? There’s no hard-and-fast rule that governs 
complexity. That’s why instead of  a rule, XP teams have a value. Specifically, people on XP teams 
value simplicity. Of  the many ways to solve any particular coding problem, someone on an XP 
team will choose the simplest one that he or she can think of.

Code gets complex when 
it does too many things.
One of  the most common ways 
that your code can get complex 
is when one unit does too many 
things. Units of  code tend to 
be organized by their behavior. 
When one unit does too many 
things, one of  the most effective 
ways of  reducing complexity is to 
separate it into smaller units 
that each do just one thing.

Refactor existing code to 
make it less complex.
There’s no single “right” way to 
build a specific unit of  code—there 
are many right answers, and it’s rare 
to write code optimally the first time. 
That’s why XP teams refactor their 
code as often as they need to. When 
they refactor (or modify the code to 
change its structure without altering 
its behavior), the code almost always 
ends up less complex than before. 

Great habits are more 
effective than discipline.
If  you try to nag your teammates 
(or yourself) into using practices like 
test-driven development or tools 
like refactoring, they typically won’t 
stick. Instead, people on effective XP 
teams develop great habits. For 
example, they get into the habit of  
refactoring every time they see code 
that can be refactored, just like they 
get into the habit of  writing unit tests 
first. This is part of  the XP mindset.

XP team members are always on the lookout for units 
that are starting to get complex. They know it's 
worth taking the time to refactor as soon as they 
see anything at all that can be made more simple.

What kind of habits could help the CircuitTrak team avoid problems like 
the one Ryan ran into with the studio reservation modification?

224  Chapter 5

refactoring often is a great habit



An effective way 
to maximize the 
amount of work 
not done is to 
only write code 
for a specific, 
concrete purpose 
that you know 
about right now. 
Avoid writing 
code just in case 
you might need 
it later. 

Simplicity is a fundamental agile principle
Let’s take a closer look at one of  the twelve principles behind the Agile Manifesto:

Simplicity—the art of  maximizing the amount of  work not done—is essential.

Hmm... “maximizing the amount of  work not done” sounds like a philosophical musing, 
or something the caterpillar said in Alice in Wonderland. What does that really mean?

When units are tightly coupled, it adds complexity to the project
When you’re renovating a house, the most damaging thing that you can do is to take a 
sledgehammer and knock down a wall. That’s one way that writing code is different from 
engineering physical objects: if  you delete a bunch of  code, it doesn’t cause permanent 
damage to the project—you can easily recover it from the version control system.

If  you really want to make your code worse, build some new code, modify a bunch of  
existing units so that they depend on it, and then modify some additional units so they’re 
all tightly coupled to the ones you modified. That’s practically a guarantee you’ll spend 
many frustrating hours jumping from one unit to another trying to track down a problem.

What was I thinking 
when I wrote this code 

six months ago? I thought I 
was making it reusable, but 

it’s just a mess.

It’s tempting to sacrifice simplicity for reusability
Developers love reusable code. When you’re writing code, you often find that 
you need to solve the same problem in many different parts of  the system. It’s a 
really satisfying “a-ha” moment when you’re working on a tough problem and you 
realize that you can call an existing method or use an object that already exists. 

But there’s a trap a lot of  programmers fall into: optimizing code for reusability, 
while sacrificing simplicity. That’s what Ana was talking about on page 222—
Ryan created a very complex build script just to save a few lines of  duplicated code, 
but the new script made it really hard to modify or fix problems in the build. Ryan 
wanted to avoid duplicate code, but ended up making the project harder to change.

you are here 4  225

xp extreme programming



Don’t be afraid to delete your code.

One of the most common traps that developers 
fall into is an unwillingness to delete code once 

they’ve written it. This can lead to code bloat: extra behavior, dead 
code, or other redundancies or inefficiencies that make code worse. 

Every team accumulates technical debt
Little problems with your code add up over time. It happens to every team. All developers—even really good, highly 
skilled developers —write code that can stand to be improved. This is natural: when we’re writing code to solve a 
problem, we often learn more about that problem as we work on it. It’s very natural to write code that works, look at 
the results, think about it for a while, and then realize that there are ways that you can improve and simplify it.

But a lot of  times developers don’t always go back and improve their code—especially when we feel like we’re under 
enormous pressure to get code out the door as soon as possible, even if  it isn’t as “done” as it could be . And the longer 
those “unfixed” design and code problems linger in the codebase, the more problems compound, which leads to 
complex code that’s painful to work with. Teams refer to these lingering design and code problems as technical debt.

You should feel comfortable 
deleting code, because you 
can always go back and 
recover it from the version 
control repository.

I haven’t touched this part of the code 
in two years, and it’s a giant pile of spaghetti. 

Now I have to fix a bug in it. This is going to be a 
huge headache.

226  Chapter 5

pay down your debt

Use simplicity and refactoring to pay down technical debt

Technical debt happens to all teams. Why? Here’s one reason: it’s easy to write code that’s a little 
too complex. Here are a few tips for achieving greater simplicity and avoiding technical debt:

 ≥ Care: Simplicity is a value, which means that you have to genuinely care about it.

 ≥ Plan: It takes work to simplify your code—in fact, a lot of people feel that it’s harder to 
write simple code than it is to write complex code. That’s why XP teams give themselves 
time to refactor when they plan their weekly cycles.

 ≥ Search: It’s not always easy to see that something is complex, especially when you’re 
used to looking at it. Sometimes you need to work to find candidates for simplification.

 ≥ Act: Found some complex code that could be simpler? Now it’s time to refactor it!

And this brings us back to slack, which is more than just an agile way of padding your project 
schedule. It gives your team the time they need to pay down (or, better, prevent!) technical debt.



XP teams “pay down” technical debt in each weekly cycle
Are you surprised to learn that programmers often don’t get code right the first time they write it? It’s true! 
Developers don’t just “spit out” code and then move on to the next problem. Just like great artists, craftspeople, 
and artisans create sketches and preliminary designs before refining them into finished products, great 
programmers create initial versions of  their code and then refactor that code, often many times. 

That’s why really effective XP teams make sure that they add time to every weekly cycle to “pay down” 
their technical debt and fix those lingering problems before they start to pile up. And the most effective way to 
do that is to refactor your code. XP teams have a name for this great habit: refactor mercilessly.

Let’s look at a specific way that developers refactor their code
Refactoring means modifying the structure of  your code without changing its behavior, and like most things 
that agile teams do, it’s easy to get started (but it takes time and practice to master the subtleties). Here’s an 
example of  a common refactoring that Ana used to simplify her code—it’s called extract method:

Under the Hood: Refactoring

for ( StudioSchedule schedule : getStudioSchedules() ) {
    CustomerTrainers trainers = getTrainersForStudioSchedule( schedule );
    if ( trainers.primaryTrainerAvailable() ) {
          ScheduleUpdater scheduleUpdater = new ScheduleUpdater();
          scheduleUpdater.updateSchedule( schedule );
          scheduleUpdater.setTrainer( trainers.getPrimaryTrainer() );
          scheduleUpdater.commitChanges();
    } else if ( trainers.backupTrainerAvailable() ) {
          ScheduleUpdater scheduleUpdater = new ScheduleUpdater();
          scheduleUpdater.updateSchedule( schedule );
          scheduleUpdater.setTrainer( trainers.getBackupTrainer() );
          scheduleUpdater.commitChanges();
    }
}

These four lines of 
code update a class 
schedule so that 
the primary trainer 
is teaching it.

These four lines 
of code are 
almost identical. 
They do the same 
thing, except 
for the backup 
trainer.

for ( StudioSchedule schedule : getStudioSchedules() ) {
    CustomerTrainers trainers = getTrainersForStudioSchedule( schedule );
    if ( trainers.primaryTrainerAvailable() ) {
          createScheduleUpdaterAndSetTrainer( trainers.getPrimaryTrainer() );
    } else if ( trainers.backupTrainerAvailable() ) {
          createScheduleUpdaterAndSetTrainer( trainers.getBackupTrainer() );
    }
}

Ana refactored the code by moving those four duplicate lines into 
a new method called createScheduleUpdaterAndSetTrainer()Ana eliminated the 

duplicate lines of 
code, which made 
this code simpler. 
And now if she needs 
to do the same thing 
for other trainers, 
she can reuse the new 
method she created.

I know we’ve got a deadline, but it’s worth 
taking the time to fix this code now, because 

the next chunk of work will go a lot faster... and 
it’ll be much less frustrating!

you are here 4  227

xp extreme programming



Incremental design starts (and ends) with simple code
The practices we’ve talked about are really good for helping everyone on the team to develop 
habits to help them create small, decoupled units that work independently of  each other. As they 
start to build up those habits, they can start practicing incremental design. This XP practice 
is exactly what it sounds like: the team creates the design for their project in small increments, 
building only the next bit of  design needed for the current quarterly cycle, and concentrating 
mainly on what’s needed in this weekly cycle. They build small, decoupled units, refactoring as they 
go to remove dependencies, separate units that get too big, and simplify the design of  each unit.

When an XP team uses incremental design, the first set of  units that they build typically evolve 
into a small, stable core. As the system grows, they add or modify a small number of  units in 
each weekly cycle. They’ll use test-driven development to make sure that each unit has minimal 
dependencies on the other units, which in turn makes the whole system easier to work with. In 
each iteration, the team adds only the design needed to build the next set of  stories. When units 
interact in a simple way, it lets the whole system grow organically, bit by bit.

All designs change. Incremental designs are built to change.
Generations of  software engineers were taught in school that the design of  a system 
needs to be complete before the team can start coding. This idea is built into the 
waterfall process: the project needs to complete the design phase before moving on 
to the development phase. Incremental design works when teams make design 
decisions at the last responsible moment, exactly the same way that teams 
using iterative development make planning decisions.

Incremental design really does work in the real world. One of  the most successful 
examples is the Unix toolset (the set of  Unix shell commands—cat, ls, tar, gzip, 
etc.). These tools weren’t all developed at once. Instead, the Unix tools were based on 
a philosophy of  simplicity: each tool does one specific, straightforward job, producing 
output that every other tool can use as input. This allowed thousands of  different 
people to contribute to the entire toolset over many years. It grew incrementally, with 
individual tools being added one by one as the need for them arose.

XP teams take a very similar approach, starting with the same idea of  embracing the 
value of  simplicity. And just like with the Unix toolset, it’s an effective way to work.

Incremental design can’t 
possibly work. How can you build 

a large system without creating a big 
design on paper first?

When teams do 
incremental design 
they discover, 
uncover, and evolve 
the design bit by 
bit—just like when 
they do incremental 
development, they 
discover, uncover, 
and evolve the plan 
bit by bit.

228  Chapter 5

design at the last responsible moment



So because the team values simplicity, it makes 
sense to them to build only the units that are needed 

for the next set of stories, and because the design is 
already simple it’s easy to modify.

That’s right. And software that’s designed to be modified 
makes it easy for the team to embrace change.
The whole point of  XP is to improve the way that the team writes code, and 
just as importantly, to improve and energize the working environment. When 
everyone on the team really “gets” incremental design, the whole system 
becomes much easier to work with. That makes the work much more 
satisfying: the most tedious parts of  the software development job are 
reduced and often eliminated. 

All of  this leads to a very positive feedback loop: the weekly cycle and slack give 
the team enough time to do the work and constantly refactor the code, which 
lets them incrementally create a simple design, which helps everyone stay 
energized and approach problems with a fresh and clear mind, which lets them 
make progress quickly, which gives them success in the company. That success 
lets the team work with the business more effectively, and that gives 
them the ability to keep planning the project using weekly cycles and slack.

That feedback loop is what drives an XP team’s ability to embrace change.

 �  XP teams embrace change instead of resisting it.

 � A 10-minute build gives the team constant feedback 
about the build, and reduces frustration from waiting.

 � The team uses continuous integration by making sure 
everyone’s working folder is no more than a few hours 
out of date.

 � Test-driven development, or building unit tests first 
and then building the code that makes the tests pass, 
helps teams keep units of code simple and reduce 
dependencies.

 � People who do pair programming, with a pair of 
developers sitting at a single computer, produce better 
code more quickly than when they work separately.

 � If it’s not clear whether a technical approach will work, a 
spike solution, or a small, throwaway program to test it 

out, will help the team determine if it’s a good approach.

 � The XP practices reinforce each other to create an 
ecosystem effect.

 � XP teams develop good habits, which leads to great 
software without forcing discipline on the team.

 � When a methodology’s practices don’t feel right, it 
usually points to a clash between the values of the 
methodology and the mindset or culture of the team.

 � Agile teams value simplicity because it leads to better 
code, and helps them to build less code.

 � XP teams don’t sacrifice simplicity for reusability.

 � Incremental design, or building only the design that’s 
needed for the current iteration, is an effective practice 
for helping to keep your system from getting complex.

you are here 4  229

xp extreme programming



Q: Does XP really make the job more 
satisfying?

A: Yes, really! Keeping the workplace 
energized means everyone watches for 
signs of exhaustion, boredom, and agitation. 
Those feelings are often indicators that 
team members are dealing with avoidable 
code problems, or are being forced to work 
late because of irresponsible planning.

Q: How do you know that Ryan’s 
studio schedule change was a hack?

A: There were a few glaring warning 
signs. The first one was that he copied an 
entire class, left a bunch of it intact, and 
just deleted the bits he didn’t need. That 
led to a lot of duplicate code. And then he 
added “special case” code to other parts 
of the system. That’s code that looks for a 
particular state—in this case, scheduling 
a whole studio instead of a single yoga or 
martial arts class—and performs specific 
behavior just for that case. Developers 
try to avoid those things because they 
make the system more difficult to maintain. 
There’s almost always a more elegant way 
to solve a problem like that.

Q: OK, now I’m confused about 
duplicate code. Ryan shouldn’t have 
made a complex build script just to 
avoid a few duplicated lines, but he also 
shouldn’t have made that hack with a 
class that had a lot of duplicate code. So 
is duplicate code good, or is it bad?

A: There’s very little that’s more 
aesthetically unpleasant to a programmer 
than a block of code that’s duplicated in 
two (or worse, more!) places. It’s almost 
always better to reuse the duplicate code 
by moving it into its own unit (like a class, 
function, module, etc.). But sometimes 
the situation isn’t so straightforward. A few 
lines of duplicate code aren’t necessarily 

particularly easy to reuse. Occasionally 
it takes a lot of work to extract them into 
their own unit. When we’re coding, we 
sometimes go to such great lengths to 
avoid a small block of duplicate code that 
we end up adding complexity instead of 
removing it. That’s the trap Ryan fell into 
with his build script.

Q: Hold on... “aesthetically 
unpleasant?” Since when do aesthetics 
have anything to do with code?

A: Code aesthetics matter a lot! If you’re 
not a developer, it might seem weird to talk 
about code being “aesthetically pleasing” 
or not. But one sign of a great developer is 
a sense of aesthetics and even beauty in 
the code that he or she writes. Duplicate 
code is particularly aesthetically offensive 
to developers, because it’s almost always a 
sign that something can be simplified.

Q: So how do I know if my code is 
too complex, or not simple enough? Is 
there a rule that I can apply?

A: No, there’s no rule about how 
much complexity is too much. That’s why 
simplicity is a value, not a rule. The more 
experience you have as a programmer on 
a team that values simplicity, the better you 
get at making your code simple. That said, 
there are definitely warning signs that your 
code might be too complex. For example, 
you know a block of code is probably too 
complex if you’re afraid to touch it, or if 
there’s a scary comment that says Don’t 
edit this! at the top. Build scripts 
and unit tests are too complex if you find 
yourself avoiding a change because the 
change itself is easy, but modifying the 
build script or unit test will be really difficult 
or annoying.

Q: I still don’t get the point about 
test-driven development and simplicity. 

Does writing unit tests first really help 
keep code simple?

A: Yes. A lot of complexity happens 
when you build units of code that have 
many dependencies on other parts of 
the system. If you can avoid adding 
those dependencies, it makes your whole 
system a lot easier to maintain, and helps 
you avoid that “shotgun surgery” feeling 
when you’re working on the code. Unit 
tests are really good at helping you avoid 
unnecessary dependencies, because a 
test for a single unit has to provide all of 
the input that the unit needs. If that unit 
has a lot of dependencies, it makes the 
test extremely annoying to write—and 
it becomes very obvious exactly which 
dependencies you really need. Often, that 
will also show you another part of the 
system that could be refactored. And it 
gives you incentive to do that refactoring 
immediately, because it will make the job at 
hand less annoying, tedious, or frustrating.

Q: And reducing annoyance and 
tedium... that’s good for the team, right?

A: Yes! One of the best ways to make 
your team more productive is to make the 
work everyone is doing less annoying, 
tedious, boring, or frustrating. That’s a 
really effective way to build an energized 
workplace. It’s why people on XP teams 
really can’t imagine working any other way.

Exhaustion, 
boredom, and 
agitation can be 
early indicators of 
code problems that 
can be avoided.

230  Chapter 5

exhaustion and boredom slow down the project



This Java 
class is too big and does 

too many things. I’ll refactor it 
into two separate classes.

Here are some things we overheard Ana, Ryan, and Gary saying. Some 
of them are compatible with XP values, others are incompatbile. Identify 
the XP value that each of them is either compatible or incompatible with. 
Then draw a line from each speech bubble to either COMPATIBLE or 
INCOMPATIBLE, and another line to the appropriate Scrum value.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

INCOMPATIBLE

COMPATIBLE
Feedback

Communication

Simplicity

Respect

Answers on page 243

CALLJUDGMENT

INCOMPATIB
LE

You’re assigning 
that to the new guy? 

He’s pretty young, maybe we 
should give him some grunt work 

until he gets a little more 
experience.

There’s a bug in 
my code? Enter a ticket 

for it, I’ll get to it when I 
have time.

I always run the build before 
I commit my code to make sure 

everything compiles and all of the unit 
tests pass.

you are here 4  231

xp extreme programming



Four months later...
Hey, Ryan! When’s the 

last time you had to stay 
late?

You know what? It’s been a 
while. Our code used to be really 
frustrating, but it’s been a lot 
easier to work with lately.

Somewhere 
along the way, refactoring 

and pair programing stopped 
feeling like a chore and just became a 
habit. Now, whenever anyone runs across 

code that’s in bad shape, they just 
take the time to fix it.

 

Whatever you guys did, 
it worked. I’ve been negotiating with the 

largest national chain of yoga studios in the country. 
That feature was a must-have for them, I demoed it to 

their senior VP, and just us got our biggest 
sale of the year!

Exactly! 
Remember that studio scheduling 

hack I made a while back? George needed a 
change to let clients combine studio 

reservations.

I thought it would 
be awful and take three weeks, but someone 

already refactored the code, and that made it really easy to 
clean up my old mess. I got the whole thing done in 

just three days.

232  Chapter 5

the team’s happy the business succeeds



1 2 3 4

5 6 7

8 9

10 11

12 13

14 15

16 17

18 19 20

21

22 23 24 25 26 27 28

29

30

31

32

33

Across
1. Scrum has a strong focus on _______

management
3. The XP practices work together and reinforce

each other to form this
5. XP teams create automated _______ that run in

10 minutes or less
7. A clumsy, quick-and-dirty solution
8. Everyone on the team continually _______ the

code in their working folders back into the
version control system

10. The kind of loop that teams use to repeatedly
get useful information and make adjustments

12. What a version control system provides for the
team to store their code

14. What XP teams do together to help them
communicate well

17. When people have this value, they don't mind a
little chatter in their office environment

18. What XP teams do with change
19. What teams add when they include optional or

minor items

Down
1. Nagging people to achieve this is not only

annoying and ineffective, but actually
counterproductive

2. Agile teams welcome _______ requirements,
even late in development

4. It's a lot less stressful to work with code that's
easy to _______

6. All code is broken down into these
7. They're better than discipline for making

practices "stick"
9. The pace that XP teams strive for, and the kind

of development that agile processes promote
11. If you agree to a deadline you know you won't

meet because it's easier to apologize later, you
lack this value

13. A burndown chart or task board posted where
you can't help but absorb its data is an
information _______

14. The kind of solution where you run an
experiment by creating a small, throwaway
program

Across
1. Scrum has a strong focus on _______ management
3. The XP practices work together and reinforce each other to form this
5. XP teams create automated _______ that run in 10 minutes or less
7. A clumsy, quick-and-dirty solution
8. Everyone on the team continually _______ the code in their working 
folders back into the version control system
10. The kind of loop that teams use to repeatedly get useful information 
and make adjustments
12. What a version control system provides for the team to store their 
code
14. What XP teams do together to help them communicate well
17. When people have this value, they don't mind a little chatter in their 
office environment
18. What XP teams do with change
19. What teams add when they include optional or minor items
20. Another name for a clumsy, quick-and-dirty solution (rhymes with 

“stooge”)
22. The kind of programming where two people sit at one computer
24. A programmer takes 15 to 45 minutes to reach this state of high 
concentration
26. What you do when you run across complex code that can be 
simplified
29. They add complexity to your code
30. Practice used in XP and Scrum to manage requirements
31. How often XP iterations happen
32. This value maximizes the amount of work not done
33. The _______ cycle is how XP teams do mid- to long-term planning

Down
1. Nagging people to achieve this is not only annoying and ineffective, 
but actually counterproductive
2. Agile teams welcome _______ requirements, even late in 
development
4. It’s a lot less stressful to work with code that’s easy to _______
6. All code is broken down into these
7. They’re better than discipline for making practices “stick”
9. The pace that XP teams strive for, and the kind of development that 
agile processes promote
11. If you agree to a deadline you know you won’t meet because it’s 
easier to apologize later, you lack this value
13. A burndown chart or task board posted where you can’t help but 
absorb its data is an information _______
14. The kind of solution where you run an experiment by creating a 
small, throwaway program
15. The kind of design where teams make design decisions at the last 
responsible moment
16. When XP teams replace their planning practice with a complete and 
unmodified implementation of Scrum
21. When you try to commit a code change, but find that your 
teammate already committed a change to the same lines of code
23. XP and Scrum value that helps team members trust each other
24. TDD means writing unit tests _______
25. The kind of communication that happens when you absorb 
information from conversations all around you
27. A set of changes that you’re pushing to a version control system
28. XP teams don’t have fixed or prescribed _______

XP
cr

os
s

An
sw

er
s o

n 
pa

ge
 2

44

you are here 4  233

xp extreme programming



234  Chapter 5

exam questions

Exam Questions

These practice exam questions will help you review the material in this chapter. You should still try 
answering them even if you’re not using this book to prepare for the PMI-ACP certification. It’s a great 

way to figure out what you do and don’t know, which helps get the material into your brain more quickly.

1. Which of the following is NOT true about how XP teams plan their work?

A. XP teams often self-organize by having team members pull their next tasks from a pile of index cards
B. XP teams use week-long iterations
C. XP teams focus on code, so they do very little planning
D. XP is iterative and incremental

2. How do XP’s values and practices help teams embrace change?

A. By helping them build code that’s easier to modify
B. By placing strict limits on how users request changes
C. By enforcing a change control process
D. By limiting the amount of contact between the business users and the team

3. Amy is a developer on a team that builds mobile apps for commuters. They’ve adopted XP, but instead of using 
weekly cycles, quarterly cycles, and slack, they hold a Daily Scrum, do sprint planning, and hold retrospectives. 
Which of the following BEST describes Amy’s team?

A. They do not do adequate planning
B. They are in the process of adopting XP
C. They use a hybrid of Scrum and XP
D. They are transitioning from XP to Scrum

4. Which of the following are NOT common to both XP and Scrum?

A. Roles
B. Iterations
C. Respect 
D. Courage



you are here 4  235

xp extreme programming

Exam Questions

5. Which of the following is a valid way for XP teams to do estimation?

A. Planning poker
B. The planning game
C. Traditional project estimation techniques
D. All of the above

6. Evan is a project manager on an XP team. He noticed that over the last few weekly cycles, everyone had 
their headphones on and listened to music all day while coding. Evan is concerned that the lack of osmotic 
communication is making the workspace less informative. He called a team meeting to explain XP’s informative 
workspace practice, and suggested that they adopt a rule against wearing headphones at work.

Which BEST describes this situation?

A. The team is not performing the informative workspace practice
B. Evan has a responsibility to help the team adopt XP, and is demonstrating servant-leadership
C. Evan needs to improve his understanding of the XP values
D. The team is using a hybrid of Scrum and XP

7. Which of the following is true about test-driven development?

A. Unit tests are written immediately after writing the code that they test
B. Writing unit tests first can have a profound impact on the design of the code
C. Test-driven development is used exclusively by XP teams
D. Writing unit tests causes the whole project to take longer because the team spends more time writing code, but 

it’s worth it for the extra quality

8. What is involved in continuous integration?

A. Setting up a build server that constantly integrates new code into a working folder and alerts the team on build or 
test failures

B. Using iteration to continuously produce working software
C. Each person on the team keeps their working folders up to date with the latest code from the version control 

system
D. Continuously reducing technical debt by improving the structure of the code without modifying its behavior, and 

integrating those changes back in



236  Chapter 5

exam questions

Exam Questions

9. Which of the following is NOT an example of an information radiator?

A. The team sitting together so they can absorb information from conversations that happen around them
B. Posting a burndown chart in a place where everyone can see it
C. Keeping the team’s task board on a wall in a common area
D. Maintaining a list of stories the team has finished so far in the weekly cycle on a whiteboard that 

everyone can see

10. The following practices all establish feedback loops for XP teams except:

A. Test-driven development
B. Continuous integration
C. 10-minute build
D. Stories

11. Why do teams use wireframes that are low fidelity?

A. Users give more feedback when a user interface mock-up looks less polished
B. Agile teams rarely build software that contains detailed audio
C. The team only builds and reviews one set of wireframes per weekly cycle
D. They’re only used for less complex user interfaces, and XP teams value simplicity

12. Which of the following promotes sustainable development?

A. Thoroughly planning the next six months of work so that there are no surprises for the team
B. Making sure everyone gets everything right the first time they build it, so no rework is required
C. Making sure everyone leaves on time and nobody feels pressured to work weekends, so the team 

doesn’t burn out
D. Setting tight deadlines, so everyone is motivated to meet them

13. Which of the following is NOT a benefit of pair programming?

A. Everyone on the team gets experience working with many different parts of the system
B. There are two sets of eyes on every change
C. Pairs help each other stay focused
D. People take turns working, so fatigue is reduced



you are here 4  237

xp extreme programming

Exam Questions

14. Joanne is a developer on a team that constantly refactors, does continuous integration, writes unit tests first, 
and does many other XP practice. What BEST explains this team’s culture?

A. They have a strict manager who enforces the rules of XP
B. They have good habits
C. They are highly disciplined
D. They are worried about getting fired if they don’t work this way

15. What happens when a build takes longer than 10 minutes to run?

A. It causes errors in the packaging process
B. Team members run the build infrequently
C. Merge conflicts occur that are difficult to resolve
D. The unit tests fail

16. Joy is a developer working on a team building a mobile operating system. She tried to commit code for a 
feature that she’s been working on, but the version control system won’t let her complete the commit until she 
resolves many conflicts. Which practice will BEST prevent this problem in the future?

A. Sustainable pace
B. Continuous integration
C. 10-minute build
D. Test-driven development

17. Kiah is a developer on an XP project. Her team is doing quarterly planning. One of the features is extremely 
important, and failing to deliver it will have serious consequences for the project. Kiah is the expert on this 
part of the project, and she’ll be the one doing the programming work. She feels that the design is relatively 
straightforward, and she’s pretty sure that she knows exactly how to build it.

What is the BEST action for Kiah and her team to take?

A. Add a story for an architectural spike to an early weekly cycle
B. Build a low-fidelity wireframe to get early feedback
C. Add a story for a risk-based spike to an early weekly cycle
D. Do extra usability testing



This also helps keep rework from 
causing quite so many bugs.

They also don’t have a Scrum Master or Product 
Owner. What other Scrum practices have they 
ignored? What do you think all of this indicates 
about the mindset among Amy’s team members?

238  Chapter 5

exam answers

Exam Questions
Answers

Here are the answers to this chapter’s practice exam questions. 
How many did you get right? If you got one wrong, that’s OK—it’s 

worth taking the time to flip back and re-read the relevant part of the 
chapter so that you understand what’s going on.

1. Answer: C

XP teams might not focus on project management to the extent that Scrum teams do, but XP is still an iterative 
and incremental methodology that values self-organizing teams. Those reasons are part of why it’s an agile 
methodology.

2. Answer: A

It’s a lot easier for teams to embrace change when they know those changes won’t be a headache for them to 
make. XP helps with this by including practices and values that help teams build code that’s easier to modify.

3. Answer: A

Teams that use a Scrum/XP hybrid have replaced the planning-related XP practices with a complete 
implementation of Scrum. Amy’s team hasn’t done that. They adopted some of the Scrum practices, but since 
they dropped the quarterly cycle without adding any sort of product backlog, they’ve pretty much stopped doing 
any sort of long-term planning.

4. Answer: A

XP and Scrum both value respect and courage, and both use timboxed iterations for planning. But XP has no fixed 
roles, while Scrum teams must always have team members who fill the Product Owner and Scrum Master roles.

5. Answer: D

XP teams use many different technique for estimating, and there is no specific rule that says the team must use 
any specific technique. So all of the techniques listed are valid. So is having the team simply meet and talk about 
how long they think the work will take.

The planning game is a practice that was part of an early version of XP. 
It guided the team through creating an iteration plan by helping them 
decompose stories into tasks and assign them to team members. It’s still in 
use by a few teams, but planning poker is a lot more popular.



you are here 4  239

xp extreme programming

Exam Questions
Answers

6. Answer: C

Evan has decided that the team is doing something wrong because they are not following his personal 
interpretation of the XP practices. When he called the team meeting and proposed a rule against wearing 
headphones, he was ignoring the fact that this is how the team prefers to work. This is very disrespectful, and 
shows that he doesn’t trust them to find an effective way to work. Respect is a core XP value, and when people 
ignore it, that hurts the whole team by stirring up resentment and other negative feelings.

7. Answer: B

When you write unit tests first, it can have a profound impact on the design of the code. The reason is that when 
you’re writing the tests, awkward constructions and unnecessary coupling between units can become much more 
apparent. Test-driven development is not exclusive to XP teams—many teams do it, even on waterfall projects. 
And even though it requires developers to write more code overall, most people who do test-driven development 
find that it actually saves time overall because it makes fixing bugs and making changes much, much faster.

8. Answer: C

Continuous integration is a straightforward practice that can have an outsized effect on the project. The team 
continuously integrates the latest code from the version control system into their working folders every few hours. 
This prevents them from having to deal with time-consuming and annoying merge conflicts that span many files 
at the same time.

9. Answer: A

An information radiator is any sort of visual tool or display that conveys useful information about the project 
and is highly visible so that team members can’t help but absorb the information on it as they walk by. The first 
answer describes osmotic communication.

10. Answer: D

Stories are very useful, but they don’t really establish a feedback loop the way some practices like test-driven 
development, continuous integration, or 10-minute builds do. The reason is that most of the time the story doesn’t 
change very much once it’s written, so there’s no opportunity for feeding information back into it repeatedly. The 
other three practices establish feedback loops that occur many times over the course of a weekly cycle.

It may seem weird to talk about feelings at work, but they’re actually 
really important for getting a team to run smoothly. It’s really 
difficult to innovate and do the difficult intellectual and creative 
work when you’re distracted by negative feelings like resentment.

The total time teams spend writing the extra code for the unit tests is more than made up for by the time saved making changes. This isn’t a long-term effect—it’s easily noticeable within days or even hours.

Osmotic information and information radiators are both tools that can help with the informative workspace practice.



Kent Beck, the guy who created 
XP, once said, “I’m not a great 
programmer. I’m just a good 

programmer with great habits.”

240  Chapter 5

exam answers

Exam Questions
Answers

11. Answer: A

Wireframes are often low fidelity, which means they look like rough sketches or hand-drawn mock-ups. Users 
are often a lot more willing to give feedback about a sketch that looks like it was easy to draw than they are for a 
highly polished, accurate mock-up, because it feels intimidating to ask for changes to a design that looks like it 
required a lot of work. A low-fidelity wireframe can still capture all of the detail of a rich user interface, and is no 
more complex or simple than a mock-up that’s highly polished.

12. Answer: C

Sustainable development happens when the team works at a pace that they can comfortably manage, which 
almost always means working normal 40-hour weeks. 

13. Answer: D

Pair programming is a very effective and efficient practice because two people working at the same computer 
keep each other focused, constantly collaborate, catch many problems, and get more done than if they were 
working alone. But both people are always working together at the same time—they don’t take turns working.

14. Answer: B

XP teams use great practices every day because they have great habits. They don’t do it out of a sense of 
discipline, and they certainly don’t do it out of fear. Raw discipline and fear can cause temporary, short-term 
changes to the way teams work, but eventually teams revert back to their habits. 

A lot of teams have one or two people who make a point of staying late to show how 
“committed” they are (or to impress the boss). This often puts a lot of pressure on everyone 
else to stay late, too, which can easily create an unsustainable pace and burn the team out.

The way to build great habits is to try out the practices, see great results, 
and use those to slowly change the way you think about your work. That’s 
why adopting the XP practices helps get the team into the XP mindset.

Low-fidelity wireframes are usually a lot less work than ones that are a lot more 
polished, which lets teams review several different versions with the users. They can 
help the team try out several iterations of the same UI in a single weekly cycle.



And if it turns out there are 
unforeseen problems, it’s a lot 
better to discover them early in 
the project than later.

you are here 4  241

xp extreme programming

Exam Questions
Answers

15. Answer: B

When an automated build takes a really long time to run, the team runs it a lot less frequently. That means the 
team gets less frequent feedback about the state of the build.

16. Answer: B

Continuous integration is a simple practice in which the team members keep their working folders up to date 
with the latest changes in the version control system. That prevents many merge conflicts, which can needlessly 
waste the team’s time and cause a lot of frustration.

17. Answer: C

A risk-based spike is a spike solution that the team undertakes specifically to reduce project risk. In this case, 
Kiah already knows the technical approach that she will take, so there’s no need for an architectural spike. But 
since the risk for this particular feature is very high, it makes sense to add a risk-based spike to a weekly cycle 
early in the project. That way the risk will be eliminated early on.



Who am I?

Name
Kind of 
thing

I’m a great way to absorb information about the project from 
discussions happening around me.

I help you understand your user’s needs, and I’m also used by a 
lot of Scrum teams.

I’m a team space that does a great job communicating 
information about the project.

I help the team work at a sustainable pace, because teams that work 
super-long hours actually build less code with worse quality.

I’m how XP teams do their long-term planning, by meeting with 
the users once a quarter to work on the backlog.

I help people get into a mindset where they treat each other well, 
and value each other’s input and contributions.

I’m the reason people on XP teams will tell the truth about the 
project, even if it’s uncomfortable.

I’m the way that XP teams do iterative development, and teams 
use me to deliver the next increment of “Done” working software.

I’m a large burndown chart or task board put up in the team 
space in a spot where everyone can’t help but notice me.

I make sure that the team has a space where everyone is near 
their teammates.

I help give the team some breathing room in each iteration by 
adding optional stories or tasks.

stories practice

quarterly cycle practice

weekly cycle practice

slack practice

informative 
workspace practice

sit together practice

energized work practice

communication value

courage

value

osmotic 
communication tool

information radiator tool

respect

value

I help XP teams get into a mindset where they know that they’re best 
at solving problems when they share knowledge with each other.

solution

A bunch of XP practices and values are playing a party game, 
“Who am I?” They’ll give you a clue, and you try to guess who they 
are based on what they say. Write down their names, and what 
kind of things they are (like whether they’re events, roles, etc.).
And watch out—a couple of tools that are not XP practices or 
values might just show up and crash the party!

242  Chapter 5

exercise solutions



This Java 
class is too big and does 

too many things. I’ll refactor it 
into two separate classes.

COMPATIBLE

COMPATIBLE

INCOMPATIB
LE

INCOMPATIB
LE

COMPATIBLE

INCOMPATIBLE

COMPATIBLE
Feedback

Communication

Simplicity

Respect

CALLJUDGMENT

INCOMPATIB
LE

You’re assigning 
that to the new guy? 

He’s pretty young, maybe we 
should give him some grunt work 

until he gets a little more 
experience.

Solution

It’s pretty disrespectful to think of someone as a “second-class citizen” on your team and only give them work that’s somehow not “good enough” for others.

There’s a bug in 
my code? Enter a ticket 

for it, I’ll get to it when I 
have time.

When someone wants to talk about a problem in your code, it’s always worth taking the time to listen.

I always run the build before 
I commit my code to make sure 

everything compiles and all of the unit 
tests pass.

Running the tests before you commit gives you 
immediate feedback so you can find out if you 
added a bug that broke another part of the code.

When a unit does two different things, 
splitting into two separate, independent 
units makes the code a little less complex.

Here are some things we overheard Ana, Ryan, and Gary saying. Some 
of them are compatible with XP values, others are incompatbile. Identify 
the XP value that each of them is either compatible or incompatible with. 
Then draw a line from each speech bubble to either COMPATIBLE or 
INCOMPATIBLE, and another line to the appropriate Scrum value.

you are here 4  243

xp extreme programming



XP
cr

os
s

SO
L

U
T

IO
N P

1
R O J E C

2
T E

3
C O S Y S T E M

4

U H O
R A B

5
U

6
I L D S H

7
A C K

I I
8

N T E G R A T E S
9

N I A
T G U I F

10
E E D B A C

11
K

Y I R
12

E P O S I T O R
13

Y I O
S

14
I T N I

15
T S A T U

P G N A D S R
I H

16
C

17
O M M U N I C A T I O N A

K Y R N A G
E

18
M B R A C E S

19
L A C K T K

20
L U D G E

R M C
21

B O
P

22
A I R

23
E O F

24
L O

25
W R

26
E F A C

27
T O R

28

D
29

E P E N D E N C I E S O O
S T F R M M L
P A L S

30
T O R I E S M E

W
31

E E K L Y I T T I S
C C S

32
I M P L I C I T Y

Q
33

U A R T E R L Y T C

Here are three scenarios that Ryan and Ana are working on that have to do with getting 
feedback from their project. Write down the name of the tool being used in each scenario.

architectural spike

red/green/refactor

usability testing

I’m not happy with how 
this class gets initialized - it’s going 

to be hard to use. Once its unit tests pass, 
I’ll modify it.

I finished 
designing the new user interface. 

Let’s make sure that it works by getting a bunch 
of users in the room and observing them 

while they use it.

We need a new 
way to store trainer schedules 

that will reduce memory. I’m building a proof-
of-concept so we can get a sense of how much 

work it will be.

244  Chapter 5

crossword solution



I’m never too busy to 
eliminate waste!

lean/kanban6

Eliminating Waste and 
Managing Flow

Agile teams know that they can always improve they way they 
work.  Team members with a Lean mindset are great at finding where they spend 

time on things that aren’t helping them deliver value. Then they get rid of the waste 

that’s slowing them down. Many teams with a Lean mindset use Kanban to set work 

in progress limits and create pull systems to make sure that people are not getting 

sidetracked by work that doesn’t amount to much. Get ready to learn how seeing your 

software development process as a whole system can help you build better software!

this is a new chapter  245



Trouble with Audience Analyzer 2.5
Let’s check back in on Kate, Ben, and Mike. The last release worked out really well because the team had a 
good idea of  what their users needed from the beginning. When they started thinking about what features will 
go into Audience Analyzer 2.5, some of  the problems they set out to correct using Agile practices came back.

new process same problems

I know how you feel. Yes, 
We need to Collaborate to get the 

project done. But I’ve got Sales Quotas 
to deal with and we need to tell our 
customers what the team will deliver 

at the end of the quarter.

We made 
all of these agile changes, 

but I’m starting to think it wasn’t worth 
it. It’s starting to feel like we’re running into 

the same old project problems that agile was 
supposed to fix! We used to obsess about development 
hours and head count. Now we’re constantly talking 

about how many story points we can fit into 
each release. Remind me again... how is 

that an improvement?

Ben loves seeing the team’s 
progress at the end of each 
sprint, but as Product Owner 
he needs to know how much 
they can do in a quarter to 
make sure the product will hit 
sales projections, too.

Everyone on Mike’s development team was really happy when they first started with agile, but he’s had to have a lot of talks with people lately about how stressful the project’s become.
246  Chapter 6



I agree. This does feel 
really Familiar, but not in a good way. I 

think there’s something really wrong with 
the way we’re working.

Ben: Is it so hard for the team to tell me what features will be in the next major 
release? We can’t just tell our customers to come to every demo and hope we’ll get 
around to doing their requests.

Kate: Look, I get it. We all get it. You’re asking for a really important feature, 
and everyone wants it yesterday.

Mike: The problem is that they’re all really important features.

Kate: Right. And everyone wants all of  them yesterday.

Ben: Hold on, guys. I’m not the bad guy here, but we’ve got a business to run. 
This used to be a well-oiled machine. The first few iterations were great. We all 
knew what we needed to do, I could always tell the senior managers exactly what 
would be in the next release. But lately, it seems like one, then two, then three 
features don’t quite make it in. And worse, it seems like we keep finding bugs, and 
you guys never used to deliver low-quality work. What’s the deal? 

Kate: Honestly, Ben, I don’t have a good answer. Something’s just, well, off  
about the way we plan our work. I can see us slowing down, but I don’t know 
what to do about it. I feel helpless here.  We’ve got a backlog of  work that we pull 
into each iteration, and that’s good because it means we can deal with uncertainty. 
It’s not that we’re uncomfortable doing long-term planning, but... well...

Mike: I see where you’re heading with this, Kate. We used to basically just be 
responsive: do this task now, then do this next task. Now everyone on the team has 
a good idea of  what features we’ll be doing in two months, three months, even six 
months. It’s almost like that future work is so important that we feel like whatever 
we’re working on today is just blocking us from doing what we need to do tomorrow. We 
feel like we’re always late, and that’s causing us to make mistakes and cut corners. 
It feels like there’s all this work that hasn’t been done yet, so we have to get 
everything done as fast as possible. It’s really stressful, and it’s affecting our quality.

Ben: I know that our projects don’t have to be like this. I have no idea how to get 
there. Do you have any idea how we can improve things?

Have you ever been on a team that just doesn’t seem to be 
running as smoothly as they used to? What do you think causes 
that? Is there any way for a team to improve the way they work?

Kate sees the problem more clearly than anyone. The project manager often does. She can see how everyone on the team feels like things are getting slower and slower, and there’s more and more pressure to get things done.

you are here 4  247

lean kanban



Lean is a mindset (not a methodology)
We’ve explored Scrum and XP, which each have a mindset component (values) and a method 
component (practices). Lean is different. It’s not a methodology, and it doesn’t include 
practices. Lean is a mindset based on principles that are all about making sure that the 
process your team is following is lined up to help you build products that are valuable to your 
customers. Where Scrum gives you a process to follow as a template (roles, planning meetings, 
sprints, sprint reviews, retrospectives), Lean asks you to take a look at the way you’re working 
today, figure out where you’re running into trouble, and apply Lean principles to correct 
those problems. Rather than telling you exactly what to do, Lean gives you the tools to see 
where the process you’re using is actually getting in the way of  meeting your goals. 

Lean teams look 
at the way they’re 
working today, 
and figure out 
where they are 
habitually running 
into problems. 
Then they make 
changes to 
improve the way 
they work. 

Lean, Scrum, and XP are compatible
You don’t have to have a Product Owner or a Scrum Master on your team to use Lean. You don’t 
have to hold sprint planning meetings on the first day of  your sprint, or retrospectives on the last 
day to do Lean. You don’t have to do pair programming, or sit together, or ruthlessly refactor. But 
both XP and Scrum were developed with Lean in mind. So if  you’ve started using XP or Scrum (or 
even if  you haven’t), you can use Lean to find ways to improve the way your team is working. 

a mindset with a name

248  Chapter 6



Lean principles help you see things differently
Lean is divided into Lean principles and thinking tools that help you use those principles 
when you build software. All of  the Agile methodologies are influenced by Lean thinking, so many 
of  the ideas you’ll learn about in this chapter will be familiar to you or build on concepts you’ve 
learned in previous chapters. But Lean asks you to apply these concepts to the process you’re 
using to develop software and to constantly improve the way you work. Teams that use Lean even 
have a name for applying these principles and thinking tools: they call it Lean thinking.

It takes a lot of work to build a product. But teams often do more work 
than they need to: they’ll add unneeded features, waste time trying to 
multitask, and spend time just sitting around waiting. When a team has a 
Lean mindset, they try to find all of this waste and work hard to eliminate 
it from the project, often by removing anything that distracts the team 
from creating the software their users need. 

Eliminate waste

Amplify learning
This principle is all about learning from what you do and using feedback 
to keep improving. As you make changes in the way your team works, 
observe what those changes do and then use your observations to decide 
what to change next.

Decide as late as possible
Make every important decision for your project when you have the most 
information about it—at the last responsible moment. Don’t force yourself 
to decide things that don’t need to be decided just yet. 

Deliver as fast as possible
Things that delay your project are costly. Keep track of how you work, 
where you’re running into delays, and how those delays impact your team. 
Set up pull systems, queues, and buffers to even out the work because 
that will get your product done as quickly and efficiently as possible. 

We’ll learn more about 

these later in the 
chapter. 

If you need to refresh your memory on 
what “last responsible moment” means, 
take a minute and flip back to Chapter 3.

you are here 4  249

lean kanban



Empower the team 
There’s no better expert in the world on how a team works than a member of 
that team. This principle is about helping every team member to have access 
to all of the information they need about the goals of the project and their 
progress, and about letting the team decide on the most effective way to work. 

Build integrity in
Users best understand the purpose of the software that the team builds 
and can evaluate the quality of the work when the team builds software that 
meets the users’ needs. If the software you’re building is intuitive and does 
something valuable for your users, it’s a lot more likely to be worth the effort 
everyone is putting into building it.

Take time to understand how the team is working on the project—and take 
the right kind of measurements, so that everyone is exposed to all of the 
information they need to make good decisions about it. When everyone 
on the team can see what everyone else is doing (and not just their own 
contributions), the team can collaborate on the best way to get the work done. 

See the whole

A Lean mindset keeps your team focused on building 
the most valuable product possible in the time available. 

More Lean principles
Remember the meeting of  the minds at Snowbird we 
talked about back in Chapter 2? When they talked 
about the Agile principles of  self-organization, simplicity, 
and continuous improvement, these last three Lean 
principles were an important part of  that discussion.

Just like Scrum applies transparency, 
inspection, and adaptation to your project 

to help your team get better Sprint by 
Sprint, Lean teams measure the effects 

of the changes they make and use those 
measurements to determine if those changes 
are working, or if they need to try a different 

approach. Lean teams use the principles 
and thinking tools to find the fastest and 

most efficient route from concept to actually 
putting software in their customers’ hands. 

not so different after all

250  Chapter 6



Venn Magnets
You spent all night arranging magnets on your fridge into a really useful Venn 
diagram that shows which values and principles are specific to Scrum, which are 
specific to XP, which are specific to Lean, and which are shared by all... and then 
someone slammed the fridge door and all the magnets fell off. Can you put them 
back in the right places?

Respect

Last 
Responsible 

Moment

Courage

Build 
Integrity In

Deliver 
as Fast as 
Possible

Eliminate 
Waste

Amplify 
Learning 
(Feedback, 
Iterations)

Simplicity

Openness

Empower the 

Team (Whole 
Team)

Energized 
Work(Focus)

Commitment

See the 
Whole

XP
Lean

Put the magnets that have values, practices, and concepts shared by XP, Scrum, and Lean in the middle section of the diagram. Scrum

you are here 4  251

lean kanban



Venn Magnets Solution
Here are the magnets restored to the correct order. Lean and XP share a focus on 
empowering the team and all three of them focus on the last responsible moment 
and feedback loops. Lean and Scrum share an explicit focus on commitment.

Respect

Last 
Responsible 

Moment

Courage

Build 
Integrity In

Deliver 
as Fast as 
Possible

Eliminate 
Waste

Amplify 
Learning 
(Feedback, 
Iterations)

Simplicity

Openness

Energized 
Work

Commitment

See the 
Whole

XP
Lean

Scrum

Commitment is important to all three, but only Scrum calls it out as a value.

Empower the 

Team (Whole 
Team)

Both Lean and XP call 
out the need to keep 
decision-making authority 
in the hands of each team 
member.

tools to help you understand how you work

252  Chapter 6



Since Lean was an important consideration when creating the Agile Manifesto. It’s not surprising that many of  the 
thinking tools are part of  Scrum and XP as well. Here are some thinking tools you already know from previous 

chapters. Match the tool’s name with its description.

The last responsible moment Changing code to make it more readable 
and maintainable without changing its 
behavior.

Iterations and feedback Making decisions about which work 
will be done without requiring external 
approval.

Refactoring Making decisions when you have the most 
information about them.

Self-determination, motivation, leadership 
expertise 

Delivering software in increments so that 
new features can be evaluated while still 
more features are being developed. 

So Thinking Tools are sort of like Practices. They 
help Lean teams Use Lean Principles to Improve their 

Process.

That’s right. They are the things Lean teams do to 
support the decisions they make.
The whole point of  Lean is to see where the team is doing work that is 
getting in the way of  building a valuable product. If  teams make use of  the 
iterations and feedback thinking tool, they’ll be able to see the impact 
of  the changes they’re making and use that impact to amplify learning. 
If  they use the last responsible moment thinking tool, they’ll be able to 
decide as late as possible while building their product. That’s how the 
thinking tools and the principles are linked. 

you are here 4  253

lean kanban



Some thinking tools you haven’t seen before
Now that you’re familiar with the Lean principles and some of  the thinking tools that have been 
used in Scrum and XP, it’s time to take a look at the thinking tools specific to Lean. Lean teams 
use these tools to get a handle of  the root causes of  their process problems, and then fix them.

eliminating waste with a stream of value

Seeing Waste

Before you can eliminate waste, you need to see it—but that’s easier 
said than done. Have you ever had a pile of clutter in your home that 
stubbornly stuck around for a while? After a few days, you don’t see it 
anymore. That’s exactly how waste in your process works, too, and it’s 
why seeing waste is an important Lean thinking tool. 

Find the work your team is doing that isn’t helping you build a valuable 
product, and stop doing it. Is your team writing documents that nobody 
reads? Are you spending a ton of time manually doing work that could 
be automated? Putting a lot of effort into discussing and estimating 
features that probably won’t make it into the finished product?

Value Stream Mapping

This tool will help a Lean team find the waste in the process they’re 
using to build software. To build a value stream map, find the 
smallest “chunk” of the product that the customers are willing to 
prioritize on your backlog. Then think back through all of the steps 
the team took to build it, from when it was first discussed until it was 
delivered. Draw a box for every one of these steps, using arrows 
to connect the boxes. Next, track the amount of time it took you 
to perform each of the steps and the amount of time you waited in 
between each step. The time you spent waiting in between steps 
is waste. Draw a line that moves up to show that the project is 
working, and moves down to show that the project is waiting. Now 
you’ve got a visual representation of the work and the waste! The line on the value stream map 

dips down to show waiting time, and 
rises back up to show working time. 
Now you can see exactly how much 
time this one “chunk” of work had 
to wait between spurts of progress.

254  Chapter 6



Queuing Theory

Queuing theory is the mathematical study of queues. Lean teams 
use queuing theory to make sure that people are not overloaded with 
work, so that they have time to do things the right way. The queue that 
needs to be optimized in software development could be a list of tasks, 
features, or to-do items for a team or for an individual developer. If you 
think of a backlog as an example of a queue, you’ll recognize that tasks 
that go into the backlog first are usually the first ones to be completed...
unless someone, like a product owner, explicitly changes the order. 
Lean tells us that making a team’s queue of work public, and making 
it central to the decision-making process, helps teams to deliver more 
quickly. Queuing theory is often used by Lean teams to experiment with 
adding queues in a system to even out the flow of work through it. 

Pull Systems

When a team organizes all of its work into a backlog and then has developers pick up a new 
task as they finish an old one, they’re using a pull system. The backlog is a queue of work. 
Instead of having users, managers, or product owners push tasks, features, or requests down 
to a team, they’ll add those requests to a queue that the team pulls from. Pull systems are 
about only working on one thing at a time and pulling work into the next phase of a process 
as a person frees up to work on it. That way people get to focus on doing the best work they 
can for each task they take up, and the product is built with attention to quality and efficiency. 

Lean teams use value stream 
maps to find and eliminate waste. 

One way that Lean helps teams focus on delivering value as early as 
possible is by asking them to identify the smallest thing of value that they 

can deliver and then focus the team on delivering it as fast as possible. 
Lean teams often talk about Minimally Marketable Features (MMFs)  as a 
goal for a release increment. Similarly, they’ll try to identify the smallest 

product that they deliver that will be valuable to their customers—the name 
for that is a Minimally Viable Product (MVP). By focusing on delivering 

MMFs and MVPs, Lean teams make sure that they get a valuable products 
in the hands of their customers as soon as possible.

you are here 4  255

lean kanban



Options Thinking

When a team is deciding which features will be included in an upcoming release, 
most people think of scoping as a commitment between the team and end users. 
Lean teams know that what the process is really doing is determining the options 
that the team might take in order to deliver value with each release. When we 
discussed Scrum, we talked about how a Scrum team doesn’t spend a lot of time 
modeling and tracking dependencies between tasks. Instead, the team is free to 
add and remove tasks on the task board every day during the Daily Scrum. These 
tasks are options, not commitments: the tasks don’t have due dates, and there’s 
no such thing as a “late” task that causes the rest of the project to blow a deadline. 
By freeing up the team to think about their work plans as options, they can make 
changes when they need to and make sure that they can do what’s best for the 
product instead of over-committing.

Cost of Delay

If a task is higher risk, it costs more to delay work on it than it would if it were 
low risk. Some features aren’t useful at all if they’re not completed within a 
certain time window. Understanding the cost of delaying each of the tasks 
in your team’s queue can help you make better decisions about which tasks 
must be completed first. 

This is one reason that Lean teams develop a delivery cadence for 
releasing new features. This means that instead of committing to deliver a 
certain set of features on a specific schedule, the team commits to delivering 
the most value that they can at regular intervals.

Perceived Integrity/Conceptual Integrity

Lean teams are always looking to build integrity into their products 
from the very beginning. They divide their thinking about this 
Lean principle into perceived and conceptual integrity. Perceived 
integrity means thinking about how well a feature meets the 
needs of the user. Conceptual integrity means thinking about how 
well features work together to form a single unified product. 

More Lean thinking tools
The rest of  the tools help teams keep their options 
open when they’re working, and constantly make 
sure that they are working on the most valuable thing.

give yourself options

I asked Amy a 
simple 10-second question, 

and I’ve been stuck waiting for 
two hours for her to get back 

to me.

Delays happen. But if everyone 
understands the costs of those 
delays, they might give some 
things more priority. That’s an 
important way that Lean thinking 
helps teams eliminate waste.

256  Chapter 6



Set-Based Development

When teams practice set-based development, they spend time 
talking about their options, and change the way that they work in 
order to give themselves additional options in the future. The team 
will do extra work to pursue more than one option, trusting that the 
extra work will pay for itself by giving the team more information so 
that they can make a better decision later. This allows the team to 
gather more information about multiple options at once, and make the 
decision about which option to pursue at the last responsible moment.

Measurements

Just like Scrum focused on transparency, inspection, and adaptation, Lean teams measure the way their 
system is working before making changes and then measure the impact of the changes they do make. 

 ≥ One measurement is cycle time, or the amount of time it takes for a feature or task to be 
completed from the time a developer begins to work on it until it’s delivered. 

 ≥ Another measurement is lead time, or the amount of time it takes from when a feature is 
identified until it is delivered. Cycle time is often used to measure the effectiveness of changes 
to the development process, while lead time is used to measure changes to the requirements 
gathering and support processes as well. 

 ≥ Teams will also measure flow efficiency, or the percentage of the total time for a feature that 
the team spent actually working on it (as opposed to waiting).

Lean teams 
establish a 
delivery cadence 
in which they 
release the latest 
set of completed 
work at regular 
intervals. 

Cycle time and lead time help you think about your process 
from two different perspectives.

When you’re on a team working on a work item,  you usually think in 
terms of  cycle time, or the amount of  time that elapsed from when you 
and your team started planning the work item until it’s “Done” done. 

But your customers don’t really see cycle time. Let’s say that a customer 
asks your team for a feature, but you don’t actually get started on it for 
six weeks. Once you finally get started, it takes eight weeks to finish. 
The cycle time is eight weeks, but the lead time is fourteen weeks—and 
that’s the measurement that your customer really cares about.

you are here 4  257

lean kanban



Cubicle Conversation
The people on the Audience Analyzer team know they’ve got a 
problem with their process. But they don’t agree about what’s causing it. 

this seems theoretical can it make a real difference?

Maybe 
your team is just bad at 

estimating. We’re running a business 
here! You need to come up with a better 

way of figuring out how much we 
can do.

I know you want 
us to be really accurate about how 

long things will take to build. The team and I 
try to deliver everything our business users ask for in 

each iteration, but we usually find that some of the 
features aren’t done when the release 

date rolls around. 

Ben: I’m fine with cutting down our scope. I’m happy to 
compromise. But the team really needs to get their estimates right.

Mike: OK...but it’s not always that simple. Remember that privacy 
option feature in the last release? I think it’s a pretty good example of  
why this isn’t so easy. First you wanted it to be really intrusive, so that 
all users had to set their desired level of  privacy. Then you wanted 
it to be set by our customers. Then, just about three days before we 
were going release it, you decided that we should default it to a strict 
privacy profile and allow both of  them to change the profile at will. 

Ben: Well, our initial market analysis told us to do it one way, but 
then our subsequent research showed that we needed to change 
our approach. Making those changes made our last release a huge 
success. I know they were late in the game, but we needed to react to 
what the market was telling us.

Mike: I’m glad we made those changes too. But you have to see 
that it’s really hard to estimate how long it’s going to take to build a 
feature weeks in advance when requirements are always changing. 

Ben: But you’re supposed to embrace change, right? Can’t you get 
better at estimating the work and tracking dependencies so we can 
make more informed decisions when those changes come up? 

258  Chapter 6



We try really hard to estimate 
Everything we need to do to release 

features on time.  And we’re always working 
really hard but missing our dates.  Something 

must be Going On that we’re not seeing 
clearly. Can Lean help our team to make 

our projects run better?

Can you think of a way that Mike can use 
the Lean principles and Lean thinking to 
make a real-world improvement to the 
way the project is run?

you are here 4  259

lean kanban



Categorizing waste can help you see it better
Lean tells us that we need to eliminate waste. But what, exactly, does that waste look like? 
How do we spot it? One thing that can be really helpful is to think of  categories of  waste 
in software development projects. Many Lean teams use value stream maps to see how much 
time is wasted in the development of  the features they deliver. Once the team sees that there’s 
waste in their process, figuring out what type of  waste it is can help them come up with 
improvements to eliminate it. Luckily, you don’t need to come up with these categories on your 
own. Lean practitioners have identified seven wastes of  software development:

understand your waste to eliminate it

 ≥ Partially done work
If  you start doing many different things at once and don’t finish the tasks you start, you’ll end up with a lot of  
work that’s not ready to be demonstrated or released at the end of  your iteration. Partially done work happens all 
the time on software projects, whether or not the team is thinking about the costs of  multitasking. Sometimes it 
just feels really productive to start something new while you’re waiting for information or approval on another task 
and that can lead to that first task being partially done when the timebox is complete. 

 ≥ Extra processes
Extra processes are those that don’t actually help you deliver the software but add work to the team. Sometimes 
teams will put a lot of  effort into documenting a feature that never gets delivered. Sometimes there are a never-
ending series of  status meetings that are meant to show the team that they’ve got management support, but 
which really just boil down to a lot of  extra processes—like asking the team to create special status reports and 
gather information about each task in development.

 ≥ Extra features
Team members often get really excited about a new piece of  technology. Sometimes they insist on including 
extra features that they think are brilliant but which no one asked for. It’s a common misconception that any kind 
of  innovation on an existing idea is a benefit to a project. In truth, any new features that are added on by the 
team are taking time away from the features that the end users have asked for. That doesn’t mean that teams can 
never be the source of  good ideas, but those ideas need to be vetted and presented as options before the team 
wastes effort building them out, instead of  what was asked for. 

 ≥ Task switching
It’s really common for managers to lose track of  the number of  requests they’ve made to a team, and just assume 
that there’s no cost to giving the team more work to do without adjusting anyone’s expectations. Couple that with 
the fact that software developers often want to overcommit in order to impress their bosses and teammates, and 
you see how people end up switching between three, four, five or more tasks that are all supposed to get done at 
the same time. That’s why task switching is an extremely useful concept in identifying software project waste. Any 
time a software developer needs to multitask between two competing priorities, time is wasted. 

260  Chapter 6



 ≥ Waiting
Sometimes teams need to wait for someone to review a specification and they can’t 
get started until that’s done. Sometimes they’ll need to wait for infrastructure to set 
up physical hardware, or a database administrator to provision a database. There 
are many legitimate reasons that your team will need to wait during a software 
project. But all of  that time is waste, and should be reduced wherever possible. 

 ≥ Motion
When teams sit in many different locations, just the effort it takes to get from one 
person’s desk to another’s can add a lot of  waste to your project. Motion is all that 
time wasted in transit while working. 

 ≥ Defects
The later a defect is found in the process of  building software, the more time that’s 
wasted finding and fixing it. It’s much better if  defects are found as soon as they’re 
injected, by the developer who put it there, rather than by any testing process later in 
the development process. The more a team focuses on quality-driven development 
practices and shared code ownership, the less time they waste on fixing defects. 

The seven wastes of software development help your team 
see the waste in your process, so that you can eliminate it.

Sometimes it’s just not possible 
to eliminate certain waste—for 
example, if you’re waiting for 
hardware to be delivered, and 
you couldn’t pre-order it. 
That’s why it’s so important 
to identify as much waste 
as possible, so that you can 
eliminate what you can.

File form
at 

changes

Modify the 
Audience profiler

Update the 
analytics algorithm

Database code 
changes

UI updates

Improvements to 
the stats service

Stat mapper 
report changes

Fix concurrency 
bugs

Feed in from 
data provider

Improved stat 
mapper UIAudience machine 

learning feature

I’m just starting the design 
for these TWO features NOW. BUT EVERY 
HOUR I SPEND ON THEM IS AN HOUR THAT I’M 
DELAYING THESE OTHER FEATURES still 

WAITING TO BE DONE.

Have you ever felt a huge amount of pressure to finish whatever you’re 
working on right now because there’s so much that still has to get done? 
Lean thinking helps you get past that. Taking the time to understand the 

types of waste on your project is the first step to fixing the problem.

...but he feels a 
crushing weight 
from all the 
work the team 
still has to do.

These are the 
features Mike is 
just starting now...

you are here 4  261

lean kanban



agile is built on lean

Q: It sounds like Lean teams never 
tell people when they’re going to be 
done with any specific feature. Do 
they just decide what to do at the last 
moment and deliver as fast as they can? 
That would never fly where I work. 

A: Teams that use a method that was 
developed with Lean thinking in mind—like 
Scrum or XP—focus on delivering small 
batches frequently. But rather than trying 
to figure out each and every task up front, 
they agree to build the most valuable thing 
they can build within the time frame. Lean 
teams know that just because customers 
say they need something at the beginning 
of the planning period, that doesn’t stay 
true the whole way through the project. So 
Lean teams see it as positive that they can 
change their priorities when the business 
needs it. 
 
A traditional team might create a Gantt 
chart that seems to predict exactly which 
team members will work on each task, 
which are on the critical path, and when 
each milestone will occur. While that 
gives everybody in the organization a lot 
of confidence that the team has spent 
time planning, the plan is almost always 
inaccurate before the work even gets 
started. 
 

A team that’s using Lean thinking tools will 
focus on getting the process right. If the 
process is right, the highest value work 
rises to the top of the work queue at the 
start of every increment. That helps the 
team to focus on eliminating waste in the 
way that they approach and build each 
feature and deliver it as quickly as possible. 
A Lean team sees planning as a way to 
identify options, and they’ll make the best 
choice from those options as new variables 
come into play.  

Q: Oh, OK. So Lean teams develop in 
sprints, like a Scrum team? 

A: Not necessarily. Lean teams establish 
a delivery cadence, which typically means 
setting a timebox for each delivery. It could 
be two weeks or two months—Lean teams 
deliver frequently and in small batches 
on predictable timetables. They plan their 
releases to coincide with those timeboxes. 
In Scrum, the sprints are a combination 
of planning and cadence. But many 
Kanban teams decouple the cadence 
from the planning: they’ll plan new work 
items, move them through the workflow, 
and release whatever happens to be in 
releasable state when the cadence is done. 

Some people refer to this as iterationless 
development because the timebox is not 
tightly coupled to the planning.

Q: So about those seven wastes. Do 
teams really build in extra processes 
and features? My team always feels like 
we don’t have time for anything extra.

A: Yes, they really do! Sometimes the 
teams that are under the most pressure are 
the ones that create the most wasteful work. 
It’s the projects that are under the tightest 
deadlines that often set up multiple status-
gathering meetings a day, or create new 
practices for developers to log their time 
and scrutinize the number of hours spent 
on each activity. Those activities amount 
to waste that makes it harder to get the 
product delivered.  
 
Options thinking helps you counter waste. 
The more complex a problem is, the less 
you know about it up front. That’s why 
Lean teams commit to objectives, but not 
to specific plans. They agree to the overall 
objective, and to deliver the most valuable 
thing they can toward that objective 
within the timeframe. Thinking about the 
commitment in this way gives both the team 
and the organization the freedom to focus 
on delivery and that usually means higher 
quality products, faster. 

I’m getting it. All of the 
Agile Methodologies are 

influenced by Lean. For example, 
the XP practice of Incremental 

Design is one way that XP teams give 
themselves Options to handle 

changes in the future.

262  Chapter 6



I have to do support for the 
Version 1.8 while I work on the 

current version.

Here are some things we overheard Mike, Kate, and Ben saying. Some of 
them are describing waste in the project, and some are not. Identify the 
type of waste each of them is describing. Then draw a line from each speech 
bubble to either waste or not waste. If it’s not waste, add another line 
to the appropriate type of waste in Lean. 

Waste

Waste

Not Waste

Not Waste

Waste

Not Waste

WASTE

Extra Features

Partially Done Work

Task Switching

Answers on page 299

CALLJUDGMENT

Not Waste

I want to make sure that 
people are Always busy so I ask 

for more than I need.

I make sure I finish a 
task before I pick up a new 

one.

While I was waiting for the 
Devops folks to do their work, I got 

started on another feature so I’m Not 
sitting idle. 

you are here 4  263

lean kanban



work floats down the value stream

Value stream maps help you see waste
A value stream map is a simple diagram that helps you see exactly how much of  your project time 
is wasted waiting and not working. Sometimes it helps to draw out the process your team is using on a 
time line to show where waste is slowing you down. A value stream map can make it painfully clear how 
much of  your team’s time is spent on work that doesn’t result in value for your customers. Once your 
team can clearly see the waste, they can work together to figure out ways to reduce the time waiting.

Creating a value stream map of 
your most recent delivery is a great 
way to get your team thinking 
about how to improve their process. 

All of the time that 
falls below the “wait” 
line is wasted time. 

This feature took 7 weeks 
and 6 days from the time 
requirements gathering 
began until the team 
started developing it. 

But when you subtract the 
time spent waiting, only 3 weeks 
and 2 days of the total time 
spent on this feature were 
actually spent working on it.

It looks like the team waited 
for spec approval for a longer 
time than it took to write the 
specification in the first place!

The goal of value stream mapping is to help you 
understand the balance between work and waste. 

You can’t eliminate all waiting time from every 
project—but seeing the waste by knowing exactly 
how long the team is waiting and when they do it 
is a valuable first step in eliminating that waste.

A value stream map shows all of 
the steps a specific feature went 

through from start to finish. Each of 
those steps is represented by one 

of these boxes at the top of the map. 
These steps represent what actually 
happened to that feature in the real 
world—which may be different than 

what the team had planned for it.

A lot of teams use flow efficiency to measure 
their value stream, expressed as a percentage:

100 * Time working ÷ Lead time %

264  Chapter 6



The Audience Analyzer team decided to create a value stream map for 
their most recent feature release, the Stat Mapper. Read the team’s 
account of what happened and create a value stream map to show how 
much time was spent working versus waiting in that feature’s delivery 
process. 

Step 1: Focus groups, research on the client requirements (3 weeks) 
Step 2: Writing user stories, creating story map/personas (2 weeks) 
Step 3: Wait for upper management spproval (3 weeks) 
Step 4: Prioritize work in backlog (1 day) 
Step 5: Wait for development to start (3 days) 
Step 6: Develop and unit test the feature/write integration tests (5 days) 
Step 7: Wait for integration test environment and automation (3 days) 
Step 8: Integration Test (2 days) 
Step 9: Fix bugs (1 day) 
Step 10: Wait for integration test environment and automation (3 days) 
Step 11: Integration test (2 days) 
Step 12: Wait for demo environment installs (3 days) 
Step 13: Deploy to demo environment (1 day) 
Step 14: Demo/gather feedback (2 days) 
Step 15: Wait for production release window (2 weeks) 
Step 16: Release to production (1 day) 
 
What is the lead time (the time from when the feature is identified until it is delivered) for this feature?____________ 
 
How much time was wasted building this feature? _________ 
 
What was the flow efficiency? _________

Work
Wait

you are here 4  265

lean kanban



The Audience Analyzer team decided to create a value stream map for their 
most recent feature release, the Stat Mapper. Read the team’s account of 
what happened and create a value stream map to show how much time 
was spent working versus waiting in that feature’s delivery process. 

Step 1: Focus groups, research on the client requirements (3 weeks) 
Step 2: Writing user stories, creating story map/personas (2 weeks) 
Step 3: Wait for upper management spproval (3 weeks) 
Step 4: Prioritize work in backlog (1 day) 
Step 5: Wait for development to start (3 days) 
Step 6: Develop and unit test the feature/write integration tests (5 days) 
Step 7: Wait for integration test environment and automation (3 days) 
Step 8: Integration Test (2 days) 
Step 9: Fix bugs (1 day) 
Step 10: Wait for integration test environment and automation (3 days) 
Step 11: Integration test (2 days) 
Step 12: Wait for demo environment installs (3 days) 
Step 13: Deploy to demo environment (1 day) 
Step 14: Demo/gather feedback (2 days) 
Step 15: Wait for production release window (2 weeks) 
Step 16: Release to production (1 day) 
 
What is the lead time (the time from when the feature is identified until it is delivered) for this feature?____________ 
 
How much time was wasted building this feature? _________ 
 
What was the flow efficiency? _________

37 days

too much going on

77 days

52%
The team spent 40 days working and 37 days 
waiting,so the lead time is 77 days, and the flow 
efficiency is 40 ÷ 77 = .5194..., or about 52%

We combined steps 1 and 2 into a single 5-week step because it made sense to us. It’s OK if you didn’t do that! The most important thing is that it’s clear on the value stream map what happened.

266  Chapter 6



Trying to do too many things at once
After taking a look at the Stat Mapper’s development time line, the team found a lot of  time was getting wasted 
waiting for testing resources and environments. They investigated a little further, and realized that developers 
were starting up a new feature every time they finished the development and unit testing. That meant that each 
developer sometimes had four and five features at various places in the test and development pipeline. And since 
the design was highly coupled, features had to be released in batches that translated to test and deployment delays.

But what 
will developers do When 

the testers are working on it? Just 
Sit Around? That doesn’t Seem 

Right.

I think the Testing 
and Operations teams 

can’t keep up with the number 
of requests we’re making. What if 

we each try to finish the feature we’re 
working on, all the way through until 
it’s ready to deploy to production, 

before we pick up a new 
feature?

I was thinking we’d help test and 
troubleshoot. That way we won’t lose 

time diagnosing and fixing bugs. 

Once the team had the process mapped out as a value stream, it was easier for the whole team to come up with 
suggestions for how to spend more time working and less time waiting. When the team met as a group to take a 
look at the value stream map, they came up with a few easy-to-implement suggestions: 

• Testers suggested automating their integration tests to cut down on time in test.

• Developers suggested simplifying the design of  components so that they could be released independently.

• The operations team suggested automating the deployment pipeline so that it’s easier to release frequently. 

you are here 4  267

lean kanban



Lean thinking comes from the Toyota Production System (or TPS). From about 1948 to 1975, industrial engineers at Toyota, led by 
visionaries Taiichi Ohno and Kiichiro Toyoda, created a new way of  thinking about manufacturing systems. They focused on being 
able to look at the entire flow of  the manufacturing system, and eliminate places where work was not contributing to the end product. 
They found that by limiting the amount of  work in each step and managing flow through the system, they could get much higher 
quality products in much less time than they had seen prior to the introduction of  TPS.

Mary and Tom Poppendieck are software engineering experts, trainers, and consultants who adapted Lean thinking to software 
development, popularized in their book Lean Software Development: An Agile Toolkit (Addison-Wesley Professional, 2003). They started 
with these concepts from the TPS and applied them to the way teams work together to develop software. And as it turned out, the 
process for building cars and the one for building software have a lot more in common than you might think at first glance.

Three sources of waste must be removed
TPS is focused on the idea that there are three types of  waste that slow down the workflow and must be eliminated:

 ≥ Muda (無駄), which means “futility; uselessness; idleness; superfluity; waste; wastage; wastefulness”

 ≥ Mura (斑), which means “unevenness; irregularity; lack of  uniformity; non uniformity; inequality”

 ≥ Muri (無理), which means “unreasonableness; impossible; beyond one’s power; too difficult; by force; perforce; forcibly; 
compulsorily; excessiveness; immoderation.”

Software teams deal with all of  these sources of  waste as well. When teams start to look at the process they’re using to develop, they 
find all kinds of  things that people are doing to cope with futility, impossible goals, or unevenness. Finding those sources of  waste and 
getting rid of  them can help teams to develop smaller increments more frequently. That’s exactly what TPS was trying to do, too. 

Seven types of manufacturing waste
Another foundational development of  TPS was the identification of  the seven types of  manufacturing waste. Shigeo Shingo 
documented them in his book, A Study of  the Toyota Production System (Productivity Press, 1981):

The types of  waste in software development are really similar to the types of  waste in manufacturing. At first glance, it seems like the 
two processes would be really different. But they both require team members to constantly problem solve and think about the quality 
of  their work. 

Under the Hood: Toyota Production System

Inventory
Overproduction

Waiting Extra Processing

Transportation

Motion

Defects

history of process improvement

Mary and Tom Poppendieck, who adapted Lean thinking 
from manufacturing to the software development domain, 

developed the seven categories of waste that software teams 
run into from these seven types of manufacturing waste. 

268  Chapter 6



Foundational concepts of flow, continuous improvement, and quality 
The Poppendiecks translated the seven wastes of  manufacturing to develop the seven wastes of  software development. They also 
applied the TPS goals of  designing muda, mura, and muri out of  the process that’s used to develop a product. There are several 
other ideas from TPS that are translated directly into Lean for software development:

 ≥ Jidoka: creating automated ways to stop production as soon as a problem is detected. In TPS each step in the process has 
automated checks to make sure that problems are fixed right where they are found and not pushed to the next person on 
the manufacturing line. 

 ≥ Kanban: signal card. Signal cards were used in the TPS manufacturing system to indicate that a step in the process was 
ready for more inventory.

 ≥ Pull Systems: each step in the process indicates to the step before it that it needs more inventory when parts are depleted. In this way, 
work was pulled through the system at the most efficient pace and never became uneven or backed-up. 

 ≥ Root cause analysis: figuring out the “deep” reason that something happened. Taiichi Ohno talked about using the “5 Whys” 
(or repeating why five times) to figure out what caused a problem

 ≥ Kaizen: continuous improvement. Putting in place activities that improve all of  the functions every day can only happen 
when the team pays attention to what’s happening along the flow of  work, and suggests ways to make things better.

Taiichi Ohno implemented TPS with a series of  experiments. He worked team by team to figure out how to create the optimal flow 
through their system and create products as quickly and with as high quality as possible. He focused on empowering the team and 
giving them the freedom and responsibility to determine the best way to build products quickly and with as little waste as possible.

Lean thinking was foundational to all of  the Agile methodologies, and it was explicitly discussed at Snowbird. 
That’s why you’ll find that many of these ideas appear in one form or another in both XP and Scrum.

“There is no magic method. Rather, a total management system 
is needed that develops human ability to its fullest capacity 
to best enhance creativity and fruitfulness, to utilize facilities 
and machines well, and to eliminate all waste.” 

- Taiichi Ohno 
(Toyota Production System, p. 9, CRC Press 1988)

you are here 4  269

lean kanban



DESIGN DEVELOPMENT TESTING

When the team did their planning, they had an idea of how they wanted to do the work. But 
they thought of this as just one option, and left themselves freedom to choose another path.

Anatomy of an Option
Lean teams use options thinking to give them leeway to make decisions. They plan their projects 
just like any other team does—but the difference is the attitude each person on a Lean team has 
about those plans. They see all of  the work they’ve planned to do as options, not commitments. The team 
commits to an objective, but not a plan. This allows them to focus on meeting the objective and change 
the plan if  a better way of  accomplishing the goal presents itself.  By not committing to each step in 
the plan, the team leaves themselves free to change the plan when new information presents itself.

Here’s how you might use options thinking on a project:

so many options

1 Define your objective and commit to that.

Goal: Release an Audience Analyzer enhancement that will store 
data from three new sources and serve that data to our Stat 
Mapper application.

2 Define the tasks needed to accomplish that objective and consider the completion of  those 
tasks one option for achieving the goal. 

The team planned 
to do the work 
to populate the 

database and 
then move on 

to changes that 
are needed to 

incorporate that 
data into the 
application...

The Audience Analyzer 
application needs a 
bunch of changes, and 
this is what the team is 
planning on doing first.

Option #1

Stat Mapper 
Reporting 

Enhancement

Unit Test Framework 
Updates

Audience Analyzer 
Algorithm Changes The team is planning 

on populating this 
database after they 
finish changing the 
Audience Analyzer. 
That’s going to be a 
lot of work, so they’re 
leaving it for later.

Populate Analysis 
Database with Data 

from External 
Sources

270  Chapter 6



DESIGN DEVELOPMENT TESTING

Change Stat Mapper 
Database Code to 
Access New Data

Stat Mapper 
Reporting 

Enhancement

Unit Test Framework 
Updates

Audience Analyzer 
Algorithm Changes

3 Start working!

The DBA lead 
let me know that they already 

have the data we need In A Database. We 
just need to modify the stat mapper to 

access that data.

4 Change the plan as needed.

On a traditional team, a change in technical approach can be really disruptive. 
If  you’ve committed to a detailed schedule, you might have set aside time and 
resources—say, development and DBA team members to work on a task that 
has programming and database work. You might have created milestones that 
you report status on to upper management for when the task was complete, or 
maybe you made this task a predecessor to work being done in the application, 
for example. That’s a lot of  up-front planning.

What if  one of  your team members discovers that a solution already exists? 
That could cause your whole schedule to be recalculated, and resources would 
need to be redistributed. That kind of  thing happens all the time! By treating 
the team’s original plan as an option, you don’t have a number of  tasks and 
resource assignments that are dependent on that task to re-assign and re-orient. 

Option #2

It’s a good thing the 
team gave themselves 
options for how they 
wanted to do this work! 
Based on what they 
learned from the DBA, 
they can replace the 
large database population 
task with this much 
smaller code change.

Options 
thinking 
lets Lean 
teams give 
themselves 
the freedom 
to decide 
as late as 
possible 
and reduce 
the cost of 
changes 
when they 
occur.

...but when Mike started working with the DBA team, he 
realized that most of the database work was already done!

you are here 4  271

lean kanban



Systems thinking helps Lean teams see the whole
Every team has a way of  working. It might seem like you make it up as you’re going along, but there are always rules 
that everybody on the team follows (even if  you don’t realize you’re following them). That’s what the Lean principle is 
about. It’s called see the whole, and it starts with recognizing that each person’s work is part of  a bigger system. 

When a team sees itself  as a group of  individuals with different functions, they tend to focus only on the improvements 
that can be made to their job. A programmer might focus on improvements that will make programming easier, a tester 
will focus on improvements to testing, a project manager might focus on improvements to scheduling or reporting on 
status. But when all of  the team members see how their jobs contribute to a larger system, they can all start coming up 
with improvements that help the team reach its objectives together instead of  optimizing one role above the others.

it’s all connected

When you create a value stream map, 
you’re really mapping how long it takes 
for your system to take ideas and turn 
them into work products. Once you 
realize that a system exists, it’s much 

easier to figure out how to make improvements that will really 
help you build higher quality software, faster. It’s by recognizing 
that you are working within a system that you can start thinking 
about changes to the process your team is using, instead of just 
improvements to the job you’re doing on your own. 

Behind 
the Scenes

So if I step back and look at the 
system as a whole, it shows me all of the 

little “hacks” that individual team members did that 
might make their jobs easier, but which could be 

slowing down the whole team.

When everyone sees the whole, the whole team gets better together.
Say for example, a project is running late, so a project manager optimizes his job function 
by asking for written status twice a day from every member of  the team. That will probably 
make the project manager’s job easier, because he always knows where the team is on every 
task. But it will also slow the team down and make it harder for them to get work done on 
time. Or, think of  a programmer who believes that she can get so much more code written if  
she doesn’t have to write unit tests. That programmer might produce a lot more code, but the 
cost of  finding and fixing defects in it will probably outweigh her added productivity. 

Lean teams work to remove local optimizations like those and optimize the system 
together. They look at the system together and remove any activities that are getting in the 
way of  building software fast and with high quality. Lean teams know that limiting their work 
to the micro-problem of  how to make each team member more productive actually gets in 
the way of  operating as a team. 

272  Chapter 6



Some “improvements” didn’t work out
The team took a hard look at their value stream map and realized that they needed to focus on finishing each 
task before they start a new one.  Next, they started to think of  ways to improve their coordination with the 
Operations team.  Instead of  trying to see the whole system, they focused on just the work that they could control.  

Right. I could 
write scripts that would 

deploy us to an integration 
environment.  From there, it’s 

not our problem.

I think 
we could be a lot faster 

delivering if we just focused on 
getting the software code complete 

and deployed to an integration 
environment.  

All of the delays 
will be the operations 

team’s responsibility, then. So  
we can use that to show upper 

management that they need 
to get more agile. 

A failed experiment (and that’s a good thing!)
Mike and Kate had a good idea! They could just get the code working, then dump 
it on another team. How do you think this worked out? Well, they tried this change 
for two weeks... until it started to blow up in their faces. All of  the software they were 
building started to get backed up in the integration environment and customers started 
complaining that they weren’t getting fixes fast enough.  The team realized that their 
improvements needed to take the whole system into account (including the other 
teams they worked with) if  they were going to see real improvements to their lead time.  

Not every experiment works out, and that’s OK! With Lean 
thinking, teams are comfortable trying new approaches and ideas. A small failure is a stepping stone to a big success later on.

you are here 4  273

lean kanban



Lean teams use pull systems to make sure they’re 
always working on the most valuable tasks
Traditional project teams push work through their systems. They attempt to plan all of  the work up 
front and then control changes to that plan throughout the project’s execution. By predicting exactly 
how much work will occur and who will need to do it, traditional projects attempt to maintain the 
right resource mix through meticulous planning. 

Teams with a Lean mindset work in the opposite way: they use pull systems. In a pull system, each 
step in the process is triggered by the later step, pulling the output of  that previous step only when 
it’s completed. By having the later step in the process pull tasks from the former, Lean teams finish 
each feature as quickly as possible. Pulling work through the system establishes a constant flow of  
finished work through it and doesn’t overload it with local optimizations.

Set up a pull system by establishing WIP limits
Here’s an example. Let’s say a traditional test team is always overloaded trying to keep up with code being 
generated by a development team. If  they moved to a pull system, work wouldn’t begin on development 
items until the test team requested more work from development. So how would they do this?

One effective way is to limit work in progress (WIP). A Lean team will establish a WIP limit, or a 
number of  work items that can be worked on at any given time for each step in their system. If  a team 
can only test four features at a time before their system begins to slow down, they can establish a WIP 
limit in the previous stage so that the development team is never building more than four distinct 
features at a time. By establishing a limit, they can define the shortest path through the process, and 
reduce the total lead time from when the feature is identified until it is released.

In a pull 
system, the 
later step in 
the process 
pulls work 
from the step 
before it. 

Moving to a pull system is as much about changing the way everyone thinks about the work as it is about changing the way they do it.

Kanban is a method for improving your process that implements pull systems and 
builds on Lean thinking. We’ll talk about it a lot more in the rest of this chapter.

push me pull you

274  Chapter 6



The development 
team is pulling nights and 

weekends again. It seems like it’s 
always crunch time. 

Pull Systems Up Close

Adding a WIP limit sets up a pull system to smooth out the flow
Look what happened when everyone agreed to a WIP limit. Before, every feature that they finished designing 
got pushed straight into development. With the WIP limit, the developers only pull in the next feature when 
they’re ready to work on it. This is how pull systems establish a smooth flow through the system—by making 
sure that the later step in the process controls how much work the team can take on.

File form
at 

changes

Modify the 
Audience profiler

Design Development Testing

Update the 
analytics algorithm

Database code 
changes

UI updates

Improvements to 
the stats service

Stat mapper 
report changes

The team has started too 
much work in development 
but hasn’t finished any of 
it enough to start testing.  
That means a lot of work is 
partially done and none of 
it has been validated or is 
shippable right now. 

File form
at 

changes

Design Testing

Update the 
analytics algorithm

Database code 
changes

Stat mapper 
report changes

Fix concurrency 
bugs

Modify the 
Audience profiler

UI updates

Improvements to 
the stats service

Fix concurrency 
bugs

Feed in from 
data provider

Improved stat 
mapper UI

Audience machine 
learning feature

Feed in from 
data provider

Improved stat 
mapper UI

Audience machine 
learning feature

Sometimes the development pipeline gets clogged with work
When you see your system as a whole, you start to figure out which steps happen in which 
order to get a product delivered. A pull system is a specific way that work flows through the 
system. When a team pushes work through a system they can find themselves running into 
logjams. That’s the situation that Mike, Kate, and Ben are running into with their project.

Development
WIP limit = 4

We can 
get more features done 

This sprint if I help out with the 
testing.

Mike knows a thing or two about testing. 
And that’s really valuable right now—once 

development hit its WIP limit, he was able to 
test other features that were done. This is why 
Lean teams value generalizing specialists who 

are experts in one area but can help out in other 
stages of the process to move work along. you are here 4  275

lean kanban



understand the system

Q: Options thinking seems weird. 
Isn’t it better to have a really accurate 
picture of what will happen on a project, 
and to be as predictable as possible?

A: Think about the last time you started 
a project. How much did you know about 
how it was actually going to play out? If it 
was like most projects, there were surprises 
from the time you started right up until you 
were done. Lean teams recognize this—
rather than try to predict exactly what’s 
going to happen and then measure against 
that prediction, they treat even the broad 
strokes of the project as optional. That 
doesn’t mean they won’t happen, but if a 
better option comes along, they’ll take it.

Q: That sounds pretty theoretical. 
What does that mean in practice?

A: Options thinking in practice can mean 
starting down multiple paths at the same 
time to solve a tough technical problem that 
doesn’t have a clear answer. It can mean 
being open to changing scope and strategy 
in order to meet an objective and deliver 
the most value. Lean teams keep their 
options open by focusing on the business 
outcome that’s needed. They don’t plan out 
every detail of the implementation of each 
task it will take to accomplish their goal and 
try to stick to that plan.  
 
You’ve seen this idea before. Another name 
for options thinking is making decisions 
at the last responsible moment—just like 
you learned about in Chapter 3. And that’s 
another example of how the Agile Manifesto 
signers had Lean thinking tools in mind 
when they wrote the agile principles.

Q: I have enough to worry about 
just developing my projects. Now I’m 
supposed to think about the whole 
system I’m working in, too? 

A: A lot of people feel that way. But 
focusing just on the job you’re doing can 
lead you to work in a way that makes it 
harder for your team to actually get work 
done. While it might seem to you like you’re 
getting a lot more done when you make an 
improvement that’s focused just on your 
role, it’s more important that the whole 
process you’re working in is producing high-
value software than it is that you are able to 
do more in your functional silo.  
 
While it might seem like each person 
focusing on doing their own jobs as well 
as they can will get a product out the 
door sooner, that’s rarely true. The act of 
building software most often depends on a 
lot of people collaborating with each other 
to figure out what should be built, develop it, 
make sure it works, and make it available to 
the people who need it. Focusing too much 
on any of those steps can lead to problems 
in the software itself. Lean teams solve 
this problem by asking each person on 
the team to think about the whole system 
and not just the work they are personally 
responsible for. That’s where the Lean 
thinking tools from earlier in the chapter 
can help—like seeing waste, using options 
thinking, taking measurements, and figuring 
out the cost of delay for each feature.

Q: I get some of the other thinking 
tools, but I’m still not clear on cost of 
delay. How do you figure that out?

A: For some features it can be pretty 
obvious. If you’re building software to 
implement a new rule in a tax code, then 
the cost of missing tax day is probably 
pretty big. For other features, however, it 
can be a lot harder to understand. That’s 
why Lean teams focus on trying to figure 
out not just the priority of the features 
they’re working on, but each feature’s cost 
of delay too. Making sure that the team 
talks about the cost of delay can make sure 
that teams are working on the highest-value 

feature at any given time.  
 
One way to figure out cost of delay is to 
ask about it. When a product owner is 
describing the feature to the team in sprint 
planning, or when the team is committing 
to what will be in an upcoming release, 
have a discussion with the person who 
prioritized the features to make sure the 
team understands the cost of delaying that 
feature.  
 
Sometimes asking questions about it is 
enough to cause the product owner to 
re-think the current priorities. Some teams 
use heuristics and practices like assigning 
a business value or cost of delay number 
to each of the features being planned in a 
sprint planning session so that it’s easier 
for teams to understand the cost of not 
releasing it quickly.  
 
The most important thing to remember here 
though is that you should consider the 
cost of delay when you’re determining the 
priority order of work in an increment. 

Q: What does that “queuing theory” 
stuff have to do with anything?

A: Once you see your software process 
as a system, it’s not hard to start thinking 
of all of the work that goes through it as 
part of a queue. If you think of each feature 
as queued to go from the first step to the 
second, and then the third, and so on, you’ll 
start to see how queuing theory applies to 
the work your team is doing. Have you ever 
noticed how some supermarket checkout 
lines move more quickly than others? The 
same principles that govern why some lines 
are faster or slower also explain why your 
team builds features quickly or slowly.  
 
Lean teams think about their process as 
one big (mostly) straight line, and then set 
about trying to find the most direct route 
from identifying a feature to be delivered to 
releasing that feature with as little waste in 
between as possible. 

276  Chapter 6



Mike: We’re setting aside a little time in each increment 
to make headway on the test automation, and we’ve 
started refactoring the components so we can release them 
independently. Everything is popping into place. In a few 
months we’ll be cruising at twice the speed we are now. 

Kate: Wait, what? A few months?! When we started tracking 
our velocity I thought we were giving everyone visibility into 
how much we can do. Now the whole company is obsessed 
with it. Whenever our velocity number goes down, I have to go 
to meetings with senior managers and explain why.

Mike: But... but that’s not how velocity and story points work!

Kate: Tell that to the steering committee. They’ve asked us 
to come up with story point estimates for features earlier and 
earlier, and set schedules way out into the future based on them. 

Mike: Ugh, that’s so frustrating! The steering committee 
needs to understand that we’re sharing our velocity with them 
so they can help us make the right choices, not so they can use 
it to push more work onto us. How is this any different from 
when we used to plan big releases with big specs? 

How could you use the concept of a pull system to 
address the problem Kate and Mike are describing?

Now if we could 
Just get the rest of the 

Stakeholders on the same page 
with us.

Now that we’re using Lean to Think 
about the way we develop, I can see the team 

getting a much better handle on what we can do and 
what’s most important! 

you are here 4  277

lean kanban



278278

109. You are a leader of an agile team. A stakeholder identifies an urgent change during a sprint. Which is an action you would take?

A. Be a servant leader
B. Add the change to the backlog
C. Tell the team member to talk to the product ownerD. Tell the team member to write up the change for the change management board

This answer isn’t great, because it’s not clear 
if the change would be added to the sprint 
backlog or the product backlog. It’s the only one that looks like the change might get done, though. 

Question Clinic: Least worst option

Sometimes A question on the 
Exam will present you with no clear right 
answer. If all of the answers seem wrong, 

choose the Least worst Option and move 
on to the next question.

The rest of the answers 
are worse, because they 
don’t actually get the 
change implemented at all. 

If none of the answers 
seem right, choose the 
one that seems the 
closest to right.



You are a     on a Scrum team. 

Your team would like to use     as part of their regular sprint activities. How would you 

help them get started?

HEAD LIBS

Fill in the blanks to come up with your own least worst option question!

(kind of agile practitioner)

A.

B.

C.

D.

(wrong answer)

(sort of wrong, possibly right answer)

(ambiguous but correct answer)

(ridiculously wrong answer)

(agile practice)



illustrated instruction manual

Kanban uses a pull system to make your process better
Kanban is a method for improving your process. It’s based on the Lean mindset, the same way that XP 
and Scrum are based on their specific values. But it’s a little bit different from XP or Scrum, in 
that it doesn’t prescribe roles or specific project management or development practices that tell 
you how to work on a team. Instead, Kanban is all about taking a look at the way you work today, 
figuring out how work is flowing through your system, and then experimenting with small changes 
and WIP limits to help your team establish a pull system and eliminate waste. 

Kanban Core Practices

 ≥ Visualize Workflow

 ≥ Limit WIP

 ≥ Manage Flow

 ≥ Make Process Policies Explicit

 ≥ Implement Feedback Loops

 ≥ Improve Collaboratively, 
Evolve Experimentally

Once the team has a 
good view of where 
most of their work 
is in the workflow, 

they can start 
experimenting with 
WIP limits to see if 
it helps them focus 
and get more done. 

Kanban teams need 
to see the whole, so 

the first thing the 
team does is to look 

at the way they’re 
currently working and 

create an accurate 
visual representation 

of their workflow.

As the team learns 
how to work with 

flow, they set policies 
for the team to use 
to guide them with 
their work. Kanban 

teams make a 
point of clearly 

communicating those 
policies so they can 

be evaluated and 
changed if necessary. 

By setting explicit policies, the team builds 
feedback loops, which are the building blocks that 
let the team collaborate to continuously improve 
the process and make it more and more efficient. 

The team can start 
to manage the flow 
through the system  
by paying attention 
to how quickly work 
is getting through 

their process. 

Kanban was formulated by David Anderson, 
who first started experimenting with the ideas 
of Lean while working at Microsoft and Corbis.

Feedback loops are 
all about testing all 
of the policies and 

improvements the team is 
implementing to measure 

their effects and make 
sure they are working. 

280  Chapter 6



Use Kanban boards to visualize the workflow
A Kanban board is a tool that Lean/Kanban teams use to visualize the workflow. It consists of  a board—
often a whiteboard—divided into columns, with cards in each column to represent work items flowing 
through the process. 

A Kanban board looks a lot like a task board, but they’re not the same thing. You’ve seen task boards in our 
discussions of  Scrum and XP, so it’s easy to look at a Kanban board and assume it’s basically the same thing. 
It’s not. The purpose of  a task board is to make the state of  current tasks clear to everybody on a team. Task 
boards help a team stay on top of  the current status of  their project. Kanban boards are a little different. They 
are created to help a team understand how work flows through their process. Because work items are kept at 
a feature level on a Kanban board, they aren’t the best way to know exactly which task each team member is 
working on—but they’re great for helping you see how much work is in progress in each state of  your process. 

To Do In 
Progress

Done

vs.

Define Build and 
Test 

Integrate UAT Complete

 ≥ Shows the state of  all of  the 
tasks on the board

 ≥ Can be used to track progress 
and make adjustments when 
things don’t go as planned

 ≥ Makes the work in a sprint or 
project increment clear and 
transparent to the team

 ≥ Shows priority and helps 
team members self-organize

 ≥ Shows the state of  all of  the 
features on the board

 ≥ Clearly displays WIP limits so 
that new work is not brought into 
a state that has reached its limit

 ≥ Aligns to workflow states defined 
by the team

 ≥ Shows flow and helps team 
members experiment with small 
changes to their process

Task Board Kanban Board

2 3 2 

Build and 
Test 3 

When the team 
agrees to a WIP limit 
for process step, they 
write that limit at the 
top of the column in 
the Kanban board, 
and they never allow 
the number of work 
items in that column 
to exceed the limit.

you are here 4  281

lean kanban



How to use Kanban to improve your process
The core practices of  Kanban are a series of  steps that teams execute in order to see how their 
system is working, and then create a pull system that moves work efficiently through their workflow.

1 Visualize Workflow: create a picture of  the process you’re using today. 

Define Design Build Test Deploy

4 Make Process Policies Explicit: find out the unwritten rules that are guiding 
your team when they make decisions and then write them down.  

2 Limit WIP: watch how work items flow through the system and experiment with limiting 
the number of  work items in each step until work flows evenly. 

Define Design Build Test Deploy9  
6

     
2

     
2      ?      

?

3 Manage Flow: measure the lead time and see which WIP limits give you the shortest 
time to delivering features to your clients. Try to keep the pace of  delivery constant. 

Define Design Build Test Deploy
     
2

     
2

     
4

     
2

     
6

Define Design Build Test      
2

     
4

5 Implement Feedback Loops: for each step in the process create a check to make sure the 
process is working. Measure lead and cycle time to make sure the process isn’t slowing down.  

Deploy     
2

     
2

     
6

Review Design Meeting Unit Test 
Coverage

Automated Test 
Results

6 Improve Collaboratively: share all of  the measurements you gather and encourage the 
team to come up with suggestions to keep on experimenting.

Lead Time

A value stream map is a great way to create this picture! These are the same boxes that you’d see at the top of the map.

let’s look at the board

282  Chapter 6



Why Limit WIP?
The fastest way to get something done is to start it, do the work, and finish it without letting anything 
get in your way. That seems pretty simple, right? But there are many reasons why teams don’t do that. 
The most common reason is that they’re focused on making sure that everybody on the team is busy. 
When a developer finishes coding and unit testing his or her work, for example, the next step is often to 
hand it off  to a QA team to integration test it. What should the developer do while the feature is being 
tested? More often than not, he or she starts working on another feature. That sounds fine individually, 
but what if  all of  the developers on the team start new features halfway through an increment while 
they wait for testing? If  they do that, there’s a pretty good chance that there will be a number of  
half-finished features when the increment ends. But what if  those same people focused on having 
complete, shippable features instead of  starting new work? Then the team would get more 
done in each increment. If  everyone on the team is motivated to keep themselves busy above all other 
priorities, they will keep themselves busy... but they won’t finish each feature as quickly as they could. 

The team that ends up with an iteration full of  half-finished work is an example of  what happens 
when the focus is entirely on resource utilization (keeping everyone busy) instead of  finding the shortest 
path for features to take through their workflow. This happens a lot when teams have work requests 
coming in from many different sources, like several managers pushing features onto one team. If  those 
managers don’t know about each other, they can expect that their priorities are the most important 
ones the team faces. A sales person, for example, will usually have different feature requests than a 
support person. Unless they can clearly see how their requests stack up in relation to each other, they 
might each put pressure on the team to do more work than they planned. 

Kanban’s answer to this problem is to visualize the way the features are moving through the workflow, 
and to experiment with setting limits to the number of  requests the team will work on at any given time. 
By showing how many features are currently in progress and limiting the number of  requests the team 
can work on in each state, Kanban establishes a steady pull of  work through the system and frequent 
delivery of  completed features. Teams usually start by observing the flow of  work on a Kanban 
board, and continue by experimenting with WIP limits in states where more work seems to be started 
than is getting finished. Usually a team will write a WIP limit in the column header on the task board 
and refuse to take work into that state when the limit is reached instead of  overloading the system. 
People focus on helping to get the feature all the way to complete before starting work on a new one. 
Once a team is limiting the amount of  work that can be in progress in a state at one time, they start to 
establish a predictable flow of  work through their system. Teams find that their lead and cycle times go 
down, just by focusing everyone on finishing work, rather than on keeping themselves busy. 

Behind 
the Scenes

you are here 4  283

lean kanban



The team creates a workflow
The first step in improving a workflow is to visualize it, and that’s what’s going on here. The Audience 
Analyzer team got together to talk through the set of  steps the team follows every time they build a new feature. 
There are exceptions, of  course: Sometimes the team never schedules a feature to be delivered. Sometimes the 
product manager asks for it to be built as an urgent priority because a user needs it right now, and everybody 
drops what they’re doing to make it happen. Or bugs might get found in test too late, and they don’t get fixed. 
Even though the process isn’t always followed exactly in this order, the team tried to create a picture of  phases a 
feature is supposed to go through when the team builds and delivers it.

After spending a while discussing those exceptions (and a few more) the team agreed that most often, they follow 
a workflow that looks something like this:

workflow time

Define: Product Manager gets 
a feature request from a user 

and writes stories

Plan: The team decides the 
features for the next release

Build/Test: Team builds the 
feature and code reviews it

How does visualizing the process help the team improve it?

We met, talked it over, and 
agreed that This is a pretty 

accurate picture of how our 
process works today.

284  Chapter 6



Integrate:Team tests 
integrated features and fixes 

bugs

User Acceptance Test:End 
users evaluate the feature

Complete:The feature is 
included in the next release 

and released

Define Build and 
Test 

Integrate UAT Complete

Next, they mapped out their process on a Kanban board so they could see which features 
were in which workflow state. They drew out columns on a task board that match the states 
they’d defined and then figured out which state each of  their current features were in. For 
each feature, they created a sticky note and put it in the correct column on the board. 

When they created their Kanban board, they decided not to put a Plan column on 
the board. The team always held a two-hour meeting at the beginning of  each delivery 
increment to plan out the work they’d do, so features would never be in the “Plan” state for 
longer than two hours. It just didn’t seem useful to track that meeting as a state. 

Each of the stickies 
on the board is 
a work item that 
represents a feature 
(not a task!) 

you are here 4  285

lean kanban



Kanban is not a project management methodology. 
It’s a method for process improvement that works by 
visualizing your team’s actual, real-world process.
One of  the biggest misconceptions about Kanban is that it’s basically 
just Scrum without sprints. It’s not. Kanban is not intended to be 
a project management methodology. You use a Kanban board 
differently than you use a task board: a task board is for managing a 
project, while a Kanban board is for understanding your process.

Remember how you used a value stream map to visualize the actual 
path that a real feature took through a project? A Kanban board does 
the same thing, except instead of  just following a single feature, it follows 
all of  the work. Once you and your team can see the whole workflow 
visualized on the board with work items moving through it, you make 
adjustments to it in order to make it as accurate a picture as possible.

The goal of  Kanban is to help the team inspect its own way of  working, 
so that they can make changes collaboratively in order to release small 
increments as frequently as possible. Kanban doesn’t tell teams exactly 
how long their timeboxes should be, or what roles should be on their 
teams, or what meetings they should have on a frequent basis. It helps 
the team figure those things out for themselves.

So how does the Kanban board fit in? Every team works a little 
differently, and those differences are reflected in the columns on 
the Kanban board. If  your team always spends a few weeks building a 
proof  of  concept for each new feature and does a demo with a group 
of  users before a project really gets started, then you’ll add a column to 
your Kanban board that represents that state. And as you work, you’ll 
discover new columns and add them, so that the whole team gets a 
clearer and clearer picture of  how they work.

Wait a minute. Isn’t 
that “Kanban board” just 
a task board with a few 

more columns? 

Teams that use Scrum, XP, or a hybrid will often use Kanban too. One common way that Scrum teams use 
Kanban is to visualize their workflow by creating a Kanban board alongside their task board. This helps them 
establish WIP limits and create a pull system within their Scrum implementation. Kanban and Scrum can be 
combined to help teams focus on getting more done in their sprints and improving the quality of  the work they do. 

method for improvement not a methodology for building software

Everyone on the team 
should take part in updating 
the Kanban board—more 
eyes means more chances to 
discover the extra states 
you didn’t realize were 
there, so you visualize the 
workflow more accurately.

286  Chapter 6



Cubicle Conversation
The team spent a few increments just watching how features moved through their process. As they 
observed, they learned a lot about how they were working. 

Define Build and 
Test 

Integrate UAT Complete

This might explain 
why we have such a hard time predicting 

our release dates. The Release team releases these all 
in one batch and it looks like they’re not in sync 

with us.

Looking at this 
board, something seems wrong. Look 

at how many work items are piling up IN UAT. They’re 
done, but we can’t call them complete until 

they’ve been deployed. 

Define Build and 
Test 

Integrate UAT Complete

The WIP Limit on 
the Deploy Column means the Release 

Team is deploying a lot more frequently now. Ben’s 
going to like how Much More predictable that 

makes us.

Now that we’ve added 
a Deploy column to the board it’s a lot 

easier to see how many work items are tested and 
ready to go. 

Deploy

4 weeks later...

3

Avg Lead: 

35 days

Avg Lead: 

30 days

you are here 4  287

lean kanban



reading the signal cards

Q: I’ve heard about “Lean/Kanban” 
before, and I see how Lean and Kanban 
work. But how do they fit together?

A: Lean is the mindset behind Kanban. 
Kanban relies on Lean, just like Scrum and 
XP rely on their values. Kanban builds on 
the thinking tools in Lean, and Lean teams 
use systems thinking to improve their 
process.  
 
If you’re working on a team that’s been 
building software for a while, it’s likely that 
you and the rest of your teammates are 
following an unwritten set of processes and 
policies to do your work. Because those 
rules and processes are not explicit, small 
misunderstandings can evolve over time 
that end up making the team less deliberate 
than they could be in the choices that they 
make during development. 
 
Kanban helps teams to think about the 
way they’re working, and to really examine 
the decisions that they they make when 
they’re building a product. By asking the 
team to visualize the system together and 
then measure how work flows through it, 
the team can see the impact of the way 
that they work on the amount that they get 
done—and on the time it takes to do it.  
  
By creating a visual map of their process, 
they can see the effect of any changes they 

might make together. Kanban’s practices of 
visualizing the workflow, experimenting with 
WIP limits, and managing flow effectively 
get everyone on the team to start using the 
Lean thinking tools—like see the whole, 
cost of delay, pull systems, and queuing 
theory—collaboratively.

Q:Earlier you said that Kanban 
means “signal card.” What does that 
mean? Are those the same as stickies?

A: Good question. In manufacturing, a 
Kanban is a physical token—like a card 
with a part number written on it—and 
it’s the basis for a pull system in that 
environment. In the Toyota Production 
System, when the team is running low on 
a specific part, they put a kanban card 
(literally “signboard” in Japanese, 看板) 
with its part number into a bin. A supply 
team exchanges the kanban for more parts 
from a central supply. The team uses cards 
to pull parts as needed. 
 
For a software team, Kanban uses 
work items on a board to implement a 
pull system. And the same ideas still 
apply, even though software teams are 
doing creative intellectual work and not 
assembly line manufacturing. Just like TPS 
uses Kanbans to cut down on wasteful 
processes and excess inventory in building 

cars, software teams using Kanban to 
improve their software development 
processes cut down on wasteful work using 
the same Lean principles. 

Q:I’m starting to get it, but something 
doesn’t make sense. Can you explain 
again how limiting the work you do gets 
more work done?

A: When people are focused on a 
lot of different goals and have their own 
ideas about how to work, they can end up 
working really hard toward different ends. 
When that happens, everybody seems busy, 
and they feel like they’re doing the most 
they can to get a product released. But the 
truth is, until they are all focused on the 
same goal, they might actually be slowing 
the release of a product down. 
  
By limiting the number of work items “in 
flight,” Kanban asks teams to think about 
the end goal and eliminate any work they’re 
doing that isn’t related to it. Since Kanban 
teams measure the lead time of a feature 
before and after limiting WIP, they always 
know whether an experiment with WIP 
limits is slowing things down or delivering 
features faster. By focusing on delivering 
small increments as fast as possible, 
Kanban helps teams remove the waste in 
their process, and build software faster and 
with higher quality than they could before.

So By Limiting WIP, Teams 
actually get more done 

because they do the most important 
work first and they don’t let Other 

goals get in the way. 

288  Chapter 6



Take a look at the Audience Analyzer team’s Kanban board and 
determine what to do next. Write the new WIP limit on the task board 
below. 

Scenario: After visualizing their process, the team got together every day to map out how the features they were working 
on moved through each step for the next increment. Their team was used to working on a two-week cadence and 
releasing regularly, so they observed the features for two weeks. The team has a product manager, four developers, and 
one dedicated tester who integration tests all of the features. At the end of the two weeks, this is what their board looked 
like. Everyone on the team was very busy—in fact a couple of developers had put in a lot of weekend work to make 
progress on the features in build and test. 

What should the board look like at the end of the two-week cadence? 

 
Where should the Audience Analyzer team try adding a WIP limit? 

What limit would you try first? Why?

Define Build and 
Test 

Integrate UAT Deploy Complete
3

you are here 4  289

lean kanban



Take a look at the Audience Analyzer team’s Kanban board and 
determine what to do next. 

give it a try

Define Build and 
Test 

Integrate UAT Complete

There’s no right answer to this exercise. Here are the answers 

that we came up with. The most important thing is that you 

think about how you might use WIP limits to manage flow.

UAT

4 24

Scenario: After visualizing their process, the team got together every day to map out how the features they were working 
on moved through each step for the next increment. Their team was used to working on a two-week cadence and 
releasing regularly, so they observed the features for two weeks. The team has a product manager, four developers, and 
one dedicated tester who integration tests all of the features. At the end of the two weeks, this is what their board looked 
like. Everyone on the team was very busy—in fact a couple of developers had put in a lot of weekend work to make 
progress on the features in build and test. 

What should the board look like at the end of the two-week cadence? 

 
Where should the Audience Analyzer team try adding a WIP limit? 

What limit would you try first? Why?

4 for Define, and Build and Test because there are four developers. two in Integrate because there’s one tester 
and a developer could help test after committing their code

Ideally, all of the features that were scoped would be in the Complete column. 

Define, Build and Test, Integrate

290  Chapter 6



The team is delivering faster
It took a couple of  tries, but after some experimentation (and a lot of  lead time measurements) everyone could 
see real improvement. The first time they set a limit, it ended up slowing the team down a bit. So everyone 
got together and had a great discussion, and they decided to try making the number a little higher for the next 
increment. That seemed to do the trick. Once the team had that WIP limit in place, they found that they were 
starting and completing more features in each increment than ever before. Even better, they all started helping 
each other when they ran into problems. Pretty soon it felt like the work was more under control than it had ever 
been. Ben was especially happy, because the team was much more predictable than they had been in the past.

Our lead 
time is getting better 

and we’re getting more donE! 
Our Kanban Board shows everybody 

where all of the features are 
in the system.

Some teams find that counting the 
number of work items in each stage 
of the process can help them to get 
an understanding of the flow of work. 
Why do you think that might help 
the team understand their workflow 
better?

Define Build and 
Test 

Integrate UAT Complete
2 3 2 

Deploy
3

Avg Lead: 

15 days

you are here 4  291

lean kanban



Cumulative flow diagrams help you manage flow
Kanban teams use cumulative flow diagrams (or CFDs) to find out where they are 
systematically adding waste and interrupting their flow. They chart the counts of  work items 
in each state over time, and use that to look for patterns that might be affecting the team’s 
throughput (the rate that they can complete work items). CFDs give the team a visual way to 
keep track of  how the system is working. 

Once the team gets used to reading CFDs, they can get a good idea of  the impact of  process 
and policy changes a lot more quickly. Teams are always looking to have a stable development 
process with predictable throughput. Once a team has identified the right WIP limits to 
establish pull, they can start to look at how their working agreements and policies affect the 
way they work as well. If  a team makes it a habit to constantly review their CFD, they all get a 
sense of  how their suggestions and changes affect the amount of  work the team can get done. 

diagram your flow

This is just a broad overview of CFDs—we wanted to give you enough exposure to CFDs so that 
you can get a sense of how your process is working. Once you’ve been using Lean and Kanban 
for a while, you’ll want to know more about common patterns in CFDs and how to interpret them. 

CFDs can be a really valuable tool, and they’re actually pretty easy to build. We give you a step-by-
step guide to building CFDs and using them to improve your workflow in our book, Learning Agile.

This area 
represents all 
of the features 
in scope. It 
tracks the work 
items in the To 
Do state.

This is all 
the work In 
Progress.

Some features 
were removed 
from scope here. 

These are all of 
the completed 
features.

When these two lines are parallel the throughput is stable.

This is an uptick 
in throughput. 

292  Chapter 6



Kanban teams talk about their policies
One you’ve got the steps in your process written down and you’ve started looking at how 
features flow through it, you’re ready to think about all of  the rules team members are following 
when they do their day-to-day work. It’s pretty common for people to come up with their own 
rules as they’re working that guide their behavior and the decisions they make. Many of  the 
misunderstandings and miscommunications that your team will run into while they’re working 
come from these unwritten rules. But when you really start talking about the polices, and people 
on your team are having a truly open and collaborative discussion, your whole team can begin to 
work together to avoid many misunderstandings up front. Teams use these policy discussions to 
come up with working agreements together that make team interactions smoother and keep 
everyone focused on changing policies rather than fighting with each other when things go wrong.

Here’s the working agreement the Audience Analyzer team came up with when they decided to 
make their policies explicit:

Audience Analyzer Team Working Agreement

 ≥ All team members participate in estimation and 
use our agreed story point scale

 ≥ When a team member finishes a work item, he 
or she takes the highest ranked one from the 
backlog that they can work on next

 ≥ No one will pull a work item into a state that’s 
reached its WIP limit

 ≥ All work items must satisfy our definition of 
“Done” to be considered complete

 ≥ No one will work on a work item that is not in 
our backlog

Initially the people 
who were testing 
the application 
didn’t want to 
estimate. The team 
agreed that good 
discussions about the 
estimates came from 
discussions about 
both development 
and testing.

Team members had 
varied understandings of 
what to do when they 
finished a work item. 

It’s hard for team members to 
say “no” when someone calls and 
asks for a quick code change. 
Making this policy explicit 
helped them to know what to do. Talking about the policies your team is 

following and writing them down helps 
you get everybody on the same page.

you are here 4  293

lean kanban



loop-the-loop

Feedback loops show you how it’s working
Kanban teams are really focused on understanding the improvements they make to their process, so they explicitly 
create feedback loops to measure the impact of  every change they make. They do this by taking measurements, then 
using the data from those measurements to make changes to the way they work. As they change their process, their 
measurements change, which they use to make more changes to their process, and over and over and over...

Teams use their feedback loops to establish a culture of  continuous improvement, making sure that everyone helps to 
take measurements and suggest changes. When everyone is involved in measuring, changing, and repeating, the whole 
team starts to see each process change as its own experiment.

Kanban teams use lead time to create feadback loops
Kanban teams agree on how they’ll measure all of  the changes they make, and use the data they collect about their 
process to drive further decisions. And one of  the most common ways that Kanban teams create feedback loops is to 
measure the lead time, make changes—by establishing WIP limits, but also by trying other things—and then see if  
those changes cause their lead time to go down. For example, let’s say they want to try out a policy that team members 
should focus every Thursday on personal projects. The team can run an experiment by doing it for two releases, and 
then find the impact that policy has on their throughput by measuring their lead time before and after it goes into effect.

Which of these scenarios are examples of teams establishing feedback 
loops and which are changes the team is making to improve their process?

1. Kate knows the design documents sometimes add extra features and that can slow down the speed of 
development. She suggests that for all new features, they review the design team’s architecture to make sure 
they’re following the architect’s vision for the product. They check to make sure this actually speeds things up.

	 c Feedback Loop c Change

2. Mike realizes that the development team isn’t writing enough unit tests to cover the functionality in the 
product.  He sets a standard of 70% coverage for all new features. 

	 c Feedback Loop  c Change

3. Ben uses his client meetings to talk through functionality with end users before writing a spec.

	 c Feedback Loop c Change

4. Mike starts calculating the cycle time of all of the work items in each increment. He realizes that the team is 
getting faster across the board.

	 c Feedback Loop c Change

Answers on page 297294  Chapter 6



I really love being on this team! 
Good Suggestions are Coming from 

everywhere and our Lead time is getting 
better by the release! 

Define Build and 
Test 

Integrate UAT Complete
2 3 2 

Avg Lead: 

8 days

Now the whole team is collaborating on 
finding better ways to work!
Now that the CFD and lead time are shared with the whole team, 
they’re coming up with suggestions to make things work better every 
couple of  weeks. Not all of  them work, but that’s OK, because the team 
learns together from every experiment they try.  They’ve dramatically 
improved their lead time, and everyone feels engaged and in control. 

Now that the team is improving collaboratively, they 
have more control and they’re getting more done!

Deploy
3 

you are here 4  295

lean kanban



check your knowledge

Lean/
Kanbancross

Here’s a great opportunity to seal Lean 
and Kanban into your brain. See how many 
answers you can get without flipping back to 
the rest of the chapter.

Across
1. This type of waste is the Japanese word for unreasonableness
4. _____________ thinking gives a Lean team choices until the last 
responsible moment
7. The first practice a team needs to master when using Kanban is to 

___________ their workflow
9. Lean teams try to quantify how time-critical a feature is using a 
metric called _________________
10. Kanban means ____________ card in Japanese
11. This type of waste is often identified through testing
12. Kanban teams set ______ limits on steps in their process in order 
to optimize for flow
16. Teams that pursue multiple options when developing features are 
using a Lean thinking tool called _________________
17. Lean is derived from the __________ production system
18. Lean teams are always working to_____________ waste
19. The Japanese word for continuous improvement is __________

Down
1. Unlike Scrum and XP, Lean is a _______________, not a 
methodology
2. In Kanban, teams identify their ____________ and make them 
explicit
3. Lean teams use ___________ theory to analyze how work flows 
through their system
5. When the later step gets its work from the step before it in a process
6. Lean thinking asks people to “see the ___________” when they 
analyze a process
7. Lean teams create a map of the ___________ stream to find out 
how much time is spent waiting
8. A type of waste that you see when people try to do too many things 
at once
9. Lean teams don’t use sprints, they develop on a delivery _______
13. When a product is intuitive to use and does what it is meant to do, it 
has ___________  integrity
14. Kanban teams use metrics to establish ____________ loops
15. Sometimes teams build _______ processes and features

Untitled Puzzle
Header Info 1
Header Info 2

etc...
1

2 3 4

5 6

7 8

9

10

11 12 13

14

15

16

17 18

19

Across
1. This type of waste is the Japanese word for 

unreasonableness. 
4. _____________ thinking gives a lean team 

choices until the last responsible moment
7. The first practice a team needs to master when 

using Kanban is to ___________ their workflow
9. Lean teams try to quantify how time-critical a 

feature is using a metric called 
_________________

10. Kanban means ____________ card in 
Japanese

11. This type of waste is often identified through 
testing. 

12. Kanban teams set ______ limits on steps in 
their process in order to optimize for flow

16. Team that pursue multiple options when 
developing features are using a lean thinking 
tool called _________________

17. Lean is derived from the __________ 
production system

Down
1. Unlike Scrum and XP, Lean is a 

_______________, not a methodology
2. In Kanban, teams identify their ____________ 

and make them explicit.
3. Lean teams use ___________ theory to analyze 

how work flows through their system 
5. When the later step gets its work from the step 

before it in a process.
6. Lean thinking asks people to "see the 

___________" when they analyze a process
7. Lean teams create a map of the ___________ 

stream to find out how much time is spent 
waiting

8. A type of waste that you see when people try to 
do too many things at once.

9. Lean teams don't use sprints, they develop on a 
delivery _________

13. When a product is intuitive to use and does 
what it is meant to do, it has ___________ 
integrity. 

296  Chapter 6



1. Kate knows the design documents sometimes add extra features and that can slow down the speed of 
development. She suggests that for all new features, they review the design team’s architecture to make sure 
they’re following the architect’s vision for the product. They check to make sure this actually speeds things up.

	 c Feedback Loop c Change

2. Mike realizes that the development team isn’t writing enough unit tests to cover the functionality in the 
product.  He sets a standard of 70% coverage for all new features. 

	 c Feedback Loop  c Change

3. Ben uses his client meetings to talk through functionality with end users before writing a spec.

	 c Feedback Loop c Change

4. Mike starts calculating the cycle time of all of the work items in each increment. He realizes that the team is 
getting faster across the board.

	 c Feedback Loop c Change

Since Lean was an important consideration when creating the Agile Manifesto. It’s not surprising that many of  the 
thinking tools are part of  Scrum and XP as well. Here are some thinking tools you already know from previous 

chapters. Match the tool’s name with its description.

The last responsible moment Changing code to make it more readable 
and maintainable without changing its 
behavior.

Iterations and feedback Making decisions about which work 
will be done without requiring external 
approval.

Refactoring Making decisions when you have the most 
information about them.

Self-determination, motivation, leadership 
expertise 

Delivering software in increments so that 
new features can be evaluated while still 
more features are being developed. 

Which of these scenarios are examples of teams establishing feedback 
loops and which are changes the team is making to improve their process?

you are here 4  297

lean kanban



Lean/
Kanbancross

Here’s a great opportunity to seal Lean 
and Kanban into your brain. See how many 
answers you can get without flipping back to 
the rest of the chapter.

exercise solutions

Untitled Puzzle
Header Info 1
Header Info 2

etc...
M1 U R I
I

P2 Q3 O4 P T I O N S
P5 O U W6 D

V7 I S U A L I Z E H S T8

A L I U C9 O S T O F D E L A Y
L L C S10 I G N A L T S
U S I N D11 E F E C T S K W12 I P13

E Y E G E S E
S S N F14 W R
T C E I E15 C

S16 E T B A S E D D E V E L O P M E N T X E
M D C T I

B H R V
T17 O Y O T A E18 L I M I N A T E

C N D
K19 A I Z E N G

Across
1. This type of waste is the Japanese word for 

unreasonableness.  [MURI] 
4. _____________ thinking gives a lean team 

choices until the last responsible moment 
[OPTIONS] 

7. The first practice a team needs to master when 
using Kanban is to ___________ their workflow 
[VISUALIZE] 

9. Lean teams try to quantify how time-critical a 
feature is using a metric called 
_________________ [COSTOFDELAY] 

10. Kanban means ____________ card in 
Japanese [SIGNAL] 

11. This type of waste is often identified through 
testing.  [DEFECTS] 

12. Kanban teams set ______ limits on steps in 
their process in order to optimize for flow [WIP] 

Down
1. Unlike Scrum and XP, Lean is a 

_______________, not a methodology 
[MINDSET] 

2. In Kanban, teams identify their ____________ 
and make them explicit. [POLICIES] 

3. Lean teams use ___________ theory to analyze 
how work flows through their system  
[QUEUING] 

5. When the later step gets its work from the step 
before it in a process. [PULLSYSTEM] 

6. Lean thinking asks people to "see the 
___________" when they analyze a process 
[WHOLE] 

7. Lean teams create a map of the ___________ 
stream to find out how much time is spent 
waiting [VALUE] 

8. A type of waste that you see when people try to 
do too many things at once. [TASKSWITCHING] 

9. Lean teams don't use sprints, they develop on a 
delivery _________ [CADENCE] 

SOLUTION

298  Chapter 6



I have to do support for the 
Version 1.8 while I work on the 

current version.

Here are some things we overheard Ana, Ryan, and Gary saying. Some of 
them are describing waste in the project, and some are not. Identify the 
type of waste each of them is describing. Then draw a line from each speech 
bubble to either waste or not waste. If it’s not waste, add another line 
to the appropriate type of waste in Lean. 

Waste

Waste

Not Waste

Not Waste

Waste

Not Waste

WASTE

Extra Features

Partially Done Work

Task Switching

CALLJUDGMENT

Not Waste

I want to make sure that 
people are Always busy so I ask 

for more than I need.

I make sure I finish a 
task before I pick up a new 

one.

While I was waiting for the 
Devops folks to do their work, I got 

started on another feature so I’m Not 
sitting idle. 

SOLUTION

you are here 4  299

lean kanban



Exam Questions

1. Value stream maps are used for all of the following except:

A. Understanding a feature’s lead time
B. Finding waste in a process
C. Discovering new features to build
D. Understanding a feature’s cycle time

2. Sean is a developer on a team that’s building financial software.  His team has been asked to build a new 
trading system.  He and his team had a meeting to come up with a picture of the workflow they’re using. Then 
they put the process on a whiteboard with columns for each step in the process. After a few weeks of watching 
the work items the team was working on progress through the columns on the board, the team noticed that there 
were a couple steps in the process that seemed to get overloaded. 

What’s the BEST thing for the team do next? 

A. Work with the team to get better at doing the work in the steps where work is slowing down
B. Add more people to the steps that are slower
C. Focus on finishing the work on the board
D. Limit the amount of work in progress allowed in the steps that are overloaded

3. Lean is different than methodologies like Scrum and XP because it is a ________________ with 
____________________ 

A. Mindset, thinking tools
B. Methodology, practices
C. Process improvement plan, measurements
D. School of thought, principles

4. A Lean team looked at all of the work items in their process and paid attention to how they were progressing 
between each stage in their process. They then focused on how to keep the line of work moving at an even rate.   
What thinking tool helps them see work as a line of features being removed from the system when they are done?

A. Seeing waste
B. Last responsible moment
C. Queuing theory
D. Measurements

These practice exam questions will help you review the material in this chapter. 
You should still try answering them even if you’re not using this book to 

prepare for the PMI-ACP certification. It’s a great way to figure out what you do 
and don’t know, which helps get the material into your brain more quickly.

exam questions

300  Chapter 6



Exam Questions

5. Which of the following BEST describes the Lean thinking tool “Cost of Delay”? 

A. Ranking features based on how soon your client needs them 
B. Assigning a dollar value to the time you spend building a product
C. Understanding the time-criticality of each of the tasks in your team’s queue so that you make better decisions 

about which tasks must be completed first 
D. Understanding how much money you are losing when you delay your project

6. What are the seven types of waste in software development?

A. Partially Done Work, Extra Processes, Task Switching, Heroics, Over-commitment, Defects, and Extra Features
B. Partially Done Work, Extra Processes, Extra Features, Task Switching, Communication, Waiting, and Defects
C. Partially Done Work, Extra Processes, Task Switching, Waiting, Motion, Defects, and Extra Features
D. Partially Done Work, Extra Processes, Task Switching, Detailed Planning, Motion, Defects, and Extra Features

7. Which of the following BEST describes Kanban’s core practices:

A. Visualize Workflow, Create Kanban Board,  Limit WIP, Manage Flow, Make Process Policies Explicit, Implement 
Feedback Loops, Improve Collaboratively, Evolve Experimentally

B. Plan Do Check Act
C. Visualize Workflow, Observe Flow, Limit Work In Progress, Change Process, Measure Result
D. Visualize Workflow, Limit WIP, Manage Flow, Make Process Policies Explicit, Implement Feedback Loops, 

Improve Collaboratively, Evolve Experimentally

8. Which of the following is NOT a Lean principle?

A. Eliminate Waste
B. Implement Feedback Loops
C. Decide as Late as Possible
D. See the Whole

you are here 4  301

lean kanban



9.  Which of the following BEST describes how a Kanban board is used?

A. To observe how features flow through a process so that teams can determine how to limit WIP and identify the 
most even flow of work through the steps in a workflow

B. To track WIP limits and current task status so that a team knows how much work they have left to do
C. To track defects and issues and create the fastest path for resolving problems in a product
D. To help a team self-organize and see where bottlenecks are in their workflow

10. What is the lead time and cycle time for this feature based on the value stream map below?

A. Lead: 22 days, Cycle: 30 days
B. Lead: 30 days, Cycle: 22 days
C. Lead: 52 days, Cycle: 30 days
D. Lead: 70 days, Cycle: 42 days

11. When a team has established WIP limits and started managing flow, what’s the NEXT step in applying Kanban 
to their workflow?

A. Implement feedback loops
B. Make process policies explicit
C. Improve collaboratively
D. Deliver as fast as possible

exam questions

Exam Questions

302  Chapter 6



12. Members of your co-located team are having a hard time meeting their commitments.  They keep committing 
to more and more work each increment, but they’re not accomplishing their goals.  Now there are many features 
in the first two columns of your Kanban board and very few in the later columns.  Which of the following kinds of 
waste is NOT likely the cause of this team’s problem with meeting commitments? 

A. Task Switching
B. Defects
C. Motion
D. Partially Complete Work

13. Which of the following is NOT a principle that is shared between Lean and Scrum? 

A. Last responsible moment
B. Iterations and feedback
C. Self-determination and motivation
D. Eliminate waste

14. When the later step in a process moves work from the step before it, this is referred to as... 

A. Queuing Theory
B. Waste
C. A pull system
D. Inventory

15. Which of the following is NOT an example of options thinking?

A. A team tries two parallel approaches to developing a high risk feature that they have little experience with
B. A team identifies goals that can be delivered early in a project to validate the design approach
C. A team sets a hard deadline and list of dependencies to deliver a feature they’re unsure about
D. A team spends time sharing knowledge together so that more people can work on all of the tasks that are 

planned for a sprint

Exam Questions

you are here 4  303

lean kanban



Exam Questions
Answers

1. Answer: C

Teams use value stream maps to find waste in their process. Value stream maps can give us valuable information 
about lead time and cycle time, but rarely provide insight into future product needs.

2. Answer: D

This question is describing the initial steps a team takes when they are doing Kanban.  The first step is to 
visualize the workflow, the second is to limit WIP. 

3. Answer: A

Lean is a mindset with thinking tools to help you think about problems in a way that identifies and eliminates 
waste. XP and Scrum are methodologies with practices that help you deliver software while adhering to Agile 
principles.  

4. Answer: C

Lean teams use Queuing Theory to examine the order in which work is done in their system.  Then they try to 
find waste that is causing the team to spend time waiting when they could be making progress and removing 
completed work from the line. 

5. Answer: C

Cost of Delay is one of the criteria you can use to determine the order in which features should be developed.  
Understanding a feature’s cost of delay means thinking about the risk involved in it as well as demand, and 
missed opportunities you’re encountering because the team is working on the current feature. 

6. Answer: C

Lean’s seven wastes of software development (Partially Done Work, Extra Processes, Task Switching, Waiting, 
Motion, Defects, and Extra Features) are derived from the Toyota Production System’s seven wastes of 
manufacturing (Transportation, Waiting, Motion, Defects, Over-Production, and Extra Processing). Both lists are 
a useful way to categorize the common types of behavior that slow down production when building products and 
features. 

Answer D is a pretty good answer, but 
answer A is definitely more accurate.

exam answers

304  Chapter 6



Exam Questions
Answers

7. Answer: D

Only answer D includes all of the core practices of Kanban.  

8. Answer: B

“Implement Feedback Loops” is a core practice of Kanban, but it’s not a principle of Lean. The principles of Lean 
are: Eliminate Waste, Amplify Learning, Decide as Late as Possible, Deliver as Fast as Possible, Empower the 
Team, Build Integrity In, and See the Whole. 

9. Answer: A

Kanban boards are used to track how features progress through your workflow.  When teams implement Kanban, 
they do it to understand how their process is working, not to track progress on a specific project.  They are not 
used for tracking tasks, task boards are used for that. 

10. Answer: C

Lead time is the total time the feature is in the system. In this case adding up all of the numbers on the Value 
Stream Map gives 52 days. Cycle time is the total time spent working, that’s 30 days.

11. Answer: B

The order of the practices in Kanban is: visualize workflow, limit WIP, manage flow, make process policies explicit, 
implement feedback loops, improve collaboratively, evolve experimentally.

12. Answer: C

The question mentioned that the team was co-located, so it’s least likely that time in transit is causing the team’s 
problem delivering.  On the other hand, if they are constantly taking on new work without finishing the work they 
already have, it’s likely they will run into problems with task switching, partially complete work, and defects.

This is what people mean when they 
say that Kanban is a method for 
process improvement, and not a 
methodology for project management.

you are here 4  305

lean kanban



Exam Questions
Answers

13. Answer: D

The concepts of deciding as late as possible, releasing in short iterations in order to get frequent feedback, and 
self-organizing are common to both Scrum and Lean.  Although Lean and Scrum are compatible with one another, 
Lean is focused on eliminating waste, while that’s not something that Scrum emphasizes.

14. Answer: C

In a pull system, the later step in a process pulls work from the previous one.  This keeps the workload even and 
is the least wasteful way to get work from the beginning to the end of a process. 

15. Answer: C

By setting a hard deadline and determining which tasks will depend on which, the team is locking themselves into 
an approach and cutting down the options they have to achieve their goal. 

How’d you Do? If you had 
trouble remembering any 

of the answers to the Questions, 
now’s the time to flip back through 

the chapter and seal it into your 
brain.

exam answers

306  Chapter 6



Boy, exam day is my 
favorite day of the year! 
I only wish we could 

have school all summer, 
too.

preparing for the pmi-acp® exam7

Check your knowledge

Wow, you sure covered a lot of ground in the last six chapters!   
You’ve delved into the values and principles of the agile manifesto and how they drive an agile 

mindset, explored how teams use Scrum to manage projects, discovered a higher level of 

engineering with XP, and seen how teams improve themselves using Lean/Kanban. Now it’s time to 

take a look back and drill in some of the most important concepts that you learned. But there’s more 

to the PMI-ACP® exam than just understanding agile tools, techniques, and concepts. To really ace 

the test, you’ll need to explore how teams use them in real-world situations. So let’s give your brain 

a fresh look at agile concepts with a complete set of exercises, puzzles, and practice questions 

(along with some new material) specifically constructed to help prepare you for the PMI-ACP® exam.

this is a new chapter  307



The PMI-ACP® certification is valuable...
The PMI Agile Certified Practitioner (PMI-ACP)® credential is one of  the 
hottest and fastest-growing certifications out there, and it’s getting more and 
more valuable every day. But don’t take our word for it! Go to your favorite 
job search website and do a search for jobs with the keyword “agile”. You’ll 
find that many of  them prefer or require an agile certification—and employers 
recognize that job candidates who are PMI-ACP® certified are a perfect fit.

...but you really need to know your stuff
The PMI-ACP® exam is all about understanding situations that 
teams experience in the real world. Agile teams use a lot of  specific 
tools, techniques, and practices like user stories, value stream maps, 
information radiators, burn down charts—you’ve learned about 
them throughout this book. But cramming a bunch of  tools into your 
head is not going to help you pass the PMI-ACP® exam, because it’s 
based on understanding situations that agile teams run into.

The PMI-ACP® 
exam focuses 
more heavily 
on how teams 
react in specific 
situations than 
it does on tools, 
techniques, and 
practices that 
are used by 
agile teams—but 
you still need 
to know tools, 
techniques, and 
practices.

63. You are an agile practitioner. A member of your team has asked you 

for clarification on one of the items that you added to the prioritized list 

of features, stories, and other items the team will build in future iterations. 

You don’t know the answer to the question. What should you do next?

A. Bring up the question at the next retrospective

B. Advise the team to self-organize in order to find an answer themselves

C. Meet with the stakeholder whose requirements are relevant to the item

D. Update the appropriate information radiator 

Here’s an example of a question that asks you 
about a situation. Can you figure out the answer?

What do you think this question means when it asks about an “agile 
practitioner”? It mentions a “prioritized list”—what do you think that refers to?

308  Chapter 7

help your career along with your projects



The PMI-ACP® exam is based on the content outline
The Project Management Institute put a LOT of  effort into designing and maintaining the 
PMI-ACP® exam, and they work very hard to make sure that the material is correct and 
current, and that the exam has an appropriate level of  difficulty. The main way that they’ve 
accomplished this is by creating the PMI-ACP® Examination Content Outline. The 
content outline tells you everything that’s covered by the exam. Here’s what you’ll find in it:

 ≥ The exam is divided into seven domains that represent separate aspects of  agile 
projects that questions will focus on

 ≥ Each domain contains a series of  tasks that represent discrete actions that agile teams 
often take, or responses to specific situations that agile teams might find themselves in

 ≥ The content outline contains a set of  tools and techniques that might appear in 
exam questions

 → But it’s not an exhaustive list—there could be agile practices that appear on the 
exam but are not in that list! We’ve made sure to cover those practices in this book.

 ≥ It also includes a list of  knowledge and skills that agile practitioners are expected 
to understand and apply to the situations that they encounter on the job

The content outline is an important preparation tool
If  you understand all of  the domains and tasks in the content outline, that will give you a 
huge advantage when you take the exam, especially when you combine it with all of  the 
knowledge that you’ve already absorbed in the first six chapters of  this book. We’ll help you 
do this by giving you a series of  carefully designed exercises, puzzles, and practice questions 
that combine the material in the content outline with the agile ideas, topics, tools, techniques, 
methodologies, and practices that you’ve already learned.

The PMI website, http://www.pmi.org, has two important PDFs that you need to read in order 
to effectively study for the PMI-ACP® exam. The PMI-ACP® Handbook tells you how to apply 
to take the exam, the specific exam requirements, how (and how much) to pay for the exam, 
what you need to do to maintain your certification, and other rules, policies, and procedures 

set by PMI that govern the exam. Make sure that you download and read this PDF.

But the most important information is in the PMI-ACP® Examination Content Outline, which 
tells you what specific topics are going to be on the exam. Understanding the material in the 

Examination Content Outline is an important key to doing well on the PMI-ACP® exam.

You can find both of these PDFs by opening http://www.pmi.org in your browser and entering 
“PMI-ACP examination content outline” or “PMI-ACP handbook” in the search box. 

Questions on the 
exam are based on 
specific tasks in 
the content outline.

Most of these tools 
and techniques should 
be familiar, because 
they were covered in 
the first six chapters.

You can also 
find the 
content outline by using your 
favorite search engine to search for “PMI-ACP Examination 
Content Outline” 

you are here 4  309

preparing for the pmi-acp

http://www.pmi.org
http://www.pmi.org


“You are an agile practitioner...”
The PMI-ACP® exam is all about understanding real-world situations that happen to agile 
teams. You’ll be asked about what someone on an agile team should do when specific things 
happen on a project. You’ll be tested on your knowledge of  different project situations, and 
how agile teams respond to those situations. One approach that many questions on the exam 
take is to ask you about how an agile practitioner would respond to a specific situation. 
Handling questions like this is an important key to passing the exam. Here’s how to do that:

 Understand what the question is asking
A really good starting point is to understand what kind of  question 
this is. Is it a “which-comes-next” question, where you’re being asked 
to figure out what happens next or how to handle a situation? Is it a 

“which-is-NOT” question, where you need to choose a response that isn’t 
appropriate? Make sure you take the time to read the whole question.

1

Use clues in the question to figure out your role
A lot of  questions lay out a specific situation and ask how you would 
respond. But your response will vary depending on what your role is on 
the project. You could be in the role of  scrum master, product owner, 
team member, stakeholder, senior manager, or something else. So when 
you see a question that asks about an agile practitioner, always look in 
that question for any clue about what the practitioner’s role is.

3

Determine what the team is doing
Understanding what the team is currently doing is an important key to figuring 
out the answer to the question. Is the team holding a retrospective? Are they 
in the middle of  a daily stand-up meeting? Are they refactoring their code, 
doing continuous integration, or writing unit tests? Are they planning the next 
iteration, or giving a demo of  the work they completed to the stakeholders? 
The answer to the question depends on which of  these things are going on.

2

Unless told otherwise, assume it’s a Scrum team
The PMI-ACP® exam is not dependent on any specific agile 
methodology. Some questions might ask about a specific method or 
methodology, but often they won’t. When this happens, it’s really 
useful to assume you’re working on a Scrum team. The question 
might not be asking about Scrum specifically, but following the rules 
of  Scrum will always help you figure out the correct answer.

4

Don’t be surprised if terms like “scrum master” or “product owner” appear in lowercase on the exam. We’ll sometimes use lowercase for these terms to get you used to seeing it.

The better you understand 
the material in the first 

six chapters, the easier it 
will be to figure out what’s 

happening in each situation. 
We recommend that you 

return to Chapters 2–6 and 
re-take all of the end-of-
chapter exam questions 
before you do any of the 
exercises in this chapter.

Do this!

310  Chapter 7

the “a” and “p” in pmi-acp®



63. You are an agile practitioner. A member of your team has asked you 
for clarification on one of the items that you added to the prioritized list 
of features, stories, and other items the team will build in future iterations. 
You don’t know the answer to the question. What should you do next?

A. Bring up the question at the next retrospective
B. Advise the team to self-organize in order to find an answer themselves
C. Meet with the stakeholder whose requirements are relevant to the item
D. Update the appropriate information radiator 

Answer: C
This question is asking about what a product owner should do when a 
team member asks for clarification about a product backlog item. The 
question asked about a “prioritized list of  features, stories, and other 
items that the team will build in future iterations”—that’s a description 
of  the product backlog. The clue to your role on the team is that you 
added items to the product backlog, and the product owner is responsible 
for updating the product backlog, and is the only member of  the team 
who updates it. A team member asked you for more information about 
an item in the backlog, but you don’t know the answer. So the best thing 
to do is to go back to the stakeholder who provided the requirements that 
drive this backlog item, and understand exactly what he or she needs so 
that you can communicate it to the team and help them understand it.

If you’re asked about what an agile practitioner would do 
in a situation, use clues in the question to determine the 
practitioner’s role—and if the question doesn’t specify a specific 
method, it’s safe to assume that the team is using Scrum.

The key to answering this 
question is figuring out that 
you’re the product owner, and 
knowing that when product 
owners need more information 
about a backlog item they talk 
directly to their stakeholders.

This is an example of a question that puts you in the role of an agile 
practitioner. It has enough information to tell you what your role is and 
what the team is doing, and that’s the key to getting the correct answer.

you are here 4  311

preparing for the pmi-acp



Q: Why should the exam assume that 
you’re using Scrum? Isn’t that showing 
a specific bias toward Scrum?

A: Scrum is by far the most popular 
approach to agile—it’s used by the 
majority of agile teams, according to recent 
surveys—which is why we focused so 
heavily on it in this book. However, the 
exam doesn’t necessarily assume that 
you’re using Scrum. The exam is testing 
you on specific situations that any agile 
team might run into. But if you imagine that 
the team is using Scrum, it makes the 
question much easier to answer.

Q: Do I need to spend a lot of 
time memorizing all of the tools and 
techniques from this book?

A: Not necessarily—but a good 
familiarity with them is definitely a really 
helpful staring point. The first six chapters 
covered most of the tools and techniques 
that you might see on the exam. That’s 
why we recommend that you do all of 
the exercises and puzzles in the first six 
chapters before you start preparing for the 
exam.  
 
But keep in mind that the PMI-ACP® exam 
is highly focused on situations. You will 
definitely see questions that involve tools, 
techniques, and practices, but they are 
almost always used as part of resolving a 
problem similar to one you would see on an 
agile team in real life.

Q: Did you just say that “most” of 
the tools and techniques in the content 
outline were covered in the first six 
chapters? Why not all of them?

A: There are a few things that appear 
in the “tools and techniques” section of the 
PMI-ACP® Examination Content Outline 
which are important and very useful, but 
not quite so common in the experience 
of a typical, day-to-day agile team—and 
in the first six chapters of this book, we 
concentrated on teaching real-world agile 
as much as possible. But don’t worry, we’ll 
definitely fill in the gaps and make sure that 
every tool and technique from the content 
outline that you haven’t seen yet is covered 
in this chapter, so there won’t be any 
surprises when you take the exam.

Before you apply for the exam, make sure that you meet the 
eligibility requirements that are described in the Examination 

Handbook. You need to have at least 2,000 hours (or 12 months) 
of experience working on project teams in the last five years. 
And in addition to that, you need to have at least 1,500 hours 
(or 8 months) of experience working on a team using an agile 
methodology in the last three years. And finally, you need to 
have at least 21 contact hours of training in agile practices.

You can find the handbook and content outline PDFs at http://www.pmi.org 
by entering “PMI-ACP” in the search box. You can also use your favorite 
search engine to search for “PMI-ACP 2014 examination content outline” or 
“PMI-ACP examination handbook” to find the PDFs.

Download the PMI-ACP® Examination Content Outline 
from the PMI website right now. You’ll use it as a study 
tool throughout the rest of this chapter. Make sure that 
you are using the PDF that was revised in December 
2014 (that’s the version the current exam is based on).

While you’re there, download the PMI-ACP® Handbook.

PMI-ACP® 
Examination 

Content Outline

Revised December 2014

Do this!

312  Chapter 7

understand the exam content outline



I think I see what you’re saying! 
You’ll break this chapter into 
several different “pieces” that 
feel similar to each other, but 

reinforce different ideas that I’ve 
already learned throughout the book. 

And it’ll work best if I do my 
part by concentrating on one 

“piece” at a time.

Yes! Cognitive psychologists call it chunking, and it’s a really 
effective way of  getting information into your long-term 
memory. When you have a collection of  things that are strongly 
associated with one another, it gives your brain a sort of  

“guideline” for storing it. And the weaker associations with the 
other “chunks” give it a bigger framework for managing this 
large amount of  information, so that it’s all mutually reinforcing.

A long-term relationship for your brain
Take a minute and think back over everything you’ve learned throughout this book. Does it seem 
just a little bit…well, overwhelming? Don’t worry, that’s absolutely normal. You’ve got all of  this 
information that’s floating around in your brain, and your brain is still trying to organize it.

Your brain is an amazing machine, and it’s really good at organizing information. Luckily, when 
you feed it so much new data, there are ways that you can help make it “stick.” That’s what 
you’re going to do in this chapter. Your brain wants its new information to be categorized, and 
we want to make sure everything you need to know for the exam sticks in your brain. 

So for this study guide to be as effective as possible, we need you to work with us. We’re 
going to concentrate on one specific area of  the exam material at a time. But unlike the rest of  
the book, these areas don’t necessarily line up with specific methodologies. Your job is to try to 
clear your mind of  distractions, and concentrate only on the specific topic that we’re presenting.

Luckily, the PMI-ACP® exam content 
is already divided neatly into chunks that 
we can take advantage of—the domains 
that we talked about a few pages ago.

Yes, we recognize 
that it can be hard to stick to a plan 
like this, especially 
when you’ve learned 
so much material 
already. But this is 
a highly effective 
way to get it all 
into your brain.

Let’s get started!
you are here 4  313

preparing for the pmi-acp



Domain 1: Agile Principles and Mindset
In your own words

Writing things in your own words is one of the most effective ways to get a set of concepts and ideas into 
your brain. There’s a description of each domain on page 4 of the PMI-ACP® Examination Content Outline. 
In your own words, write down what you think Domain I (“Agile Principles and Mindset”) is about:

The tasks in Domain 1 are listed on page 5 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

314  Chapter 7

domain 1 exercises



We are uncovering better ways of  developing

software by doing it and helping others do it.

Through this work we have come to  :

  and  over  and  
   over   
   over   

  to  over  a  

That is, while there is  in the items on

the  , we  the items on the   .

Pool Puzzle
Your job is to take words and phrases from the pool and place them into the blank 
lines in the Agile Manifesto. You may not use the same word or phrase more than once, 
and you won’t need to use all the words or phrases. Don’t worry about the order of the 
values. See how much of this you can get without looking at the answer!

Note: each word/phrase from 
the pool can only be used 
once! But some words 
appear more than 
once in the pool.

build
use
contract
create

innovate
engage
following
stakeholder
ideal
connect
documentation
encourage

discuss
communicate
comprehensive
negotiation
interested
value
software
understand
change

more
responding
restricting
processes
connecting
individuals
people
places

inventions
interactions
influences
collaboration
emerging
customer

after
working
before
right
before
value

ahead
left
tools
constant
value
deliver

plan
practice
strategy

Some of the 
blanks will 
contain a phrase 
that consists of 
several words 
from the pool.

you are here 4  315

preparing for the pmi-acp



Domain 1: Exam Questions
In your own words

In your own words, write down what you think Domain I (“Agile Principles and Mindset”) is about:

How you apply the values and principles of agile to your project, team, and organization

The tasks in Domain 1 are listed on page 5 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

Help everyone around you develop an agile mindset through your own words and actions

Educate and influence people around your organization to help them become more agile

Use information radiators to show your progress and build trust and transparency

Be an active advocate for agile ideas in your organization and with your customers

Always keep learning and experimenting in order to find new and better ways to work

Make sure everyone feels comfortable making mistakes without being blamed feeling threatened

Collaborate with your teammates so knowledge doesn’t stay locked up with one person

Help your team to self-organize and feel comfortable determining their approach to the work

Use servant leadership to help everyone on the team to stay positive and keep improving

SOLUTIONHere’s how we interpreted the tasks in our own words. It’s OK if you used different words!

316  Chapter 7

domain 1 exercise solutions



Pool Puzzle Solution
Your job is to take words and phrases from the pool and place them into the blank 
lines in the Agile Manifesto. You may not use the same word or phrase more than once, 
and you won’t need to use all the words or phrases. Don’t worry about the order of the 
values. See how much of this you can get without looking at the answer!

Note: each word/phrase 
from the pool can only 
be used once!

build
use
contract
create

innovate
engage
following
stakeholder
ideal
connect
documentation
encourage

discuss
communicate
comprehensive
negotiation
interested
value
software
understand
change

more
responding
restricting
processes
connecting
individuals
people
places

inventions
interactions
influences
collaboration
emerging
customer

after
working
before
right
before
value

ahead
left
tools
constant
value
deliver

plan
practice
strategy

We are uncovering better ways of  developing

software by doing it and helping others do it.

Through this work we have come to value :

 Individuals and interactions over processes and tools 
 Working software over comprehensive documentation 
 Customer collaboration over contract negotiation 

 Responding to change over following a plan 

That is, while there is value in the items on

the right , we value the items on the left more .

you are here 4  317

preparing for the pmi-acp

It’s OK if you 
put the values in 
a different order. 
They’re all equally 
important.



1. Agile teams highly value all of the following except:

A. Customer collaboration
B. Working software
C. Responding to change
D. Precise up-front planning

2. Joanne is a developer on a team that builds games. She put a lot of time into building a key feature of their 
upcoming release. When end users tested it, she discovered that it needed some fundamental changes and bug 
fixes. The users were still happy to play the game and gave it mid-range reviews during the test, but she knows 
the changes they’ve suggested would make it better. The game is due to be released in two weeks, but Joanne 
thinks that she’ll be done with all of their requests in that time. What’s the BEST thing to do next?

A. Refuse to make the changes and release the features the way they are today
B. Prioritize the work and let the team self-organize to get as many of the highest priority features in the first 

release as possible. Then release patches with the fixes and changes after the product is live.
C. Do a root cause analysis on why the requirements were missed
D. Delay the release by a few months so all of the features can be finished first

3. Ajay is an agile practitioner for a co-located software team. In his Daily Scrum meeting, the team often asks to 
review the current burn down chart and cumulative flow diagram. What’s the BEST thing for him to do next?

A. Create an information radiator where the team sits
B. Ask the team to review the data prior to the meeting so it doesn’t waste everybody’s time every day
C. Move the burn down and CFD review to the retrospective
D. All of the above

4. Which is NOT a core focus of agile teams?

A. Releasing early and often
B. Simplicity
C. Getting estimates right
D. Self-organization

5. You are an agile practitioner on a Scrum team. Your team is being asked to create elaborate schedules and 
lists of milestones. Any schedule delay is treated as a cause for concern in weekly steering committee meetings 
mandated by your Portfolio Management group. What is the BEST thing for you to do?

A. Make sure your team creates a plan and report any changes as requested
B. Educate your upper management on agile principles and work with the Portfolio Management group on a 

different approach to status
C. Refuse to cooperate with the Portfolio Management group
D. Create a status report for the Portfolio Management group on your own and don’t bother the team with it

Exam Questions

318  Chapter 7

domain 1 exam questions



Exam Questions

6. You are a Scrum Master on a five-person co-located software team. In the most recent retrospective, 
someone on your team suggested that the team might be overloaded with too much work in progress. What is 
the BEST thing for you to do?

A. Tell the team to finish the work within the sprint
B. Tell the customers to funnel all requests through you so the team doesn’t get overloaded
C. Experiment with setting WIP limits
D. All of the above

7. You are a Scrum Master on a five-person co-located software team. Your team has a sprint planning meeting 
planned for four days from now. What is the BEST thing for you to do?

A. Nothing, because the team is self-organizing so they can plan without you
B. Make sure that every item in the backlog has complete documentation so that estimation is easier
C. Talk to the end users about when they need all of the items in the backlog, and tell the team when they need to 

commit to each of them
D. Work with the product owner to refine the backlog so that it’s ready for the estimation session

8. Which of the following is NOT an agile principle?

A. Satisfy the customer by releasing early and often
B. Under-commit and over-deliver
C. Focus on technical excellence
D. Work at a sustainable pace

9. What is the best indicator of success on an agile project?

A. Status reports that show no critical issues
B. A well-developed plan
C. Working software delivered to customers
D. Happy teams

10. How do agile teams create the best architectures and designs?

A. Prototyping
B. Self-organizing
C. Documenting
D. Planning

you are here 4  319

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: D

While agile teams do value the act of planning, they focus on responding to changing conditions rather than 
sticking to up-front plans. That’s why the more precise the plan is at the beginning of the project, the less 
flexible it is in the face of change. 

2. Answer: B

If the users are happy to play the game in its current state, so delaying the release is a bad choice. The features 
can be added in future frequent releases. It wouldn’t make sense to refuse changes that the end users request or 
to spend time trying to figure out why the requirements were missed instead of making the changes. 

3. Answer: A

An agile practitioner should focus on creating information radiators so that teams have access to all of the data 
about their work and can make decisions about how to keep their work on track on their own.

4. Answer: C

Agile teams focus on delivering software frequently, self-organizing, and simplicity in design and approach. 
Those are all principles that drive an agile mindset; getting estimates right is not.

5. Answer: B

You can’t expect that everyone will understand agile immediately. If you’re working on a Scrum team in an 
organization that hasn’t fully embraced agile, the best thing you can do for your team and your company is to 
help to educate people around you and influence the processes you work with to align with the principles and 
mindset your team is using. 

6. Answer: C

It’s important for a Scrum Master to be open to experimenting with new practices to make the team’s work more 
efficient. Just telling the team to finish the work doesn’t seem like it would solve the problem and telling the 
customers to talk to you instead of the team would make it hard for the team to self-organize and collaborate 
with the customer. 

320  Chapter 7

domain 1 exam answers



7. Answer: D

As a servant leader, you are not responsible for documenting all of the backlog items or committing the team 
to dates. The best thing you can do is help the product owner refine the backlog and get it ready for the team to 
estimate. 

8. Answer: B

Under-committing and over-delivering is not an agile principle. Agile teams try to commit to what they can 
deliver, giving their customers an accurate picture of their project, and satisfying their customers by delivering 
frequently.

9. Answer: C

The best indicator of success on an agile team is working software delivered to customers.

10. Answer: B

Teams do their best work when they’re able to self-organize. That’s how they create the best architectures, 
designs, and products.

Exam Questions
Answers

I’ve noticed that there are a lot 
of ways to phrase a “which-is-best 

question: “What is the best way”, 
“Which is the best option”, “what is 
the Best thing to do next”. They’re 

all asking the you to choose the best 
option from the four choices that 

are offered. 

you are here 4  321

preparing for the pmi-acp



Domain 2: Value-Driven Delivery
In your own words

In your own words, write down what you think Domain II (“Value-Driven Delivery”) is about:

The tasks in Domain 2 are listed on pages 6 and 7 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

Task 10

322  Chapter 7

get some practice

Answers on page 330



You might see the 
word “grooming” 

on the test in place 
of “product backlog 

refinement.” We 
avoided it in the 
book because in 

some cultures, that 
word has a very 

negative association. 
But keep an eye out 

for it!

Task 11

Task 12

Task 13

Task 14

Let’s reinforce some of  the ideas behind Value-Driven Delivery. Match each of  the items on 
the left with the descriptions of  what they do or how they impact the project on the right.

Operational work Repairing bugs and defects, and fixing 
other problems in the software

Maintenance Activities related to the day-to-day 
functioning of  the organization

Technical debt A deliverable with just enough features to 
meet a specific, basic need

Backlog grooming Activities related to hardware, networking, 
physical equipment, and facilities

Infrastructure work Work that needs to be done to make code 
more maintainable in the long term

Minimal Viable Product (MVP) Adding, removing, and reprioritizing items 
in the list of  features to be developed

you are here 4  323

preparing for the pmi-acp

Answers on page 331



customer-valued prioritization

minimal viable product (MVP)

minimal marketable feature (MMF)

definition of done

exploratory testing

frequent verification and validation

usability testing

continuous integration

task board

Putting backlog items in order based on 
what the stakeholder most needs

Getting the customers’ hands on the product 
to find problems they have operating it

The smallest possible piece of  functionality 
that is still coherent and deliverable

A tool for visualizing the progress of  
individual work items through an iteration

Everyone keeping working folders up to date 
with the source code repository

A complete deliverable that is as small as 
possible but still meets stakeholder needs

An agreed-upon condition which, when 
satisfied, means a feature is complete

Activities to verify whether or not a 
particular approach will work

Constantly checking that requirements are 
correct and that deliverables meet them

You might see any of the tools and techniques that you learned about in this book on the exam—but the 
questions won’t necessarily refer to them by name. Instead, the question or answer might describe a tool 
or technique using words. In this exercise, we’ll describe a tool or technique. Your job is to choose the 
right one from the bottom of the page and write it in the blank.

Oh no! Someone was 
careless and spilled a 
bottle of ink on the 
answers. Can you 
figure out the solution 
without seeing all of 
the words?

324  Chapter 7

domain 2 exercises

Answers on page 329



Agile teams use customer value to prioritize requirements
The very first principle of  the Agile Manifesto does a great job of  describing the attitude that agile 
teams have toward their customers and stakeholders:

Our highest priority is to satisfy the customer through early and continuous delivery of  valuable software.

This is why agile teams—and especially teams using Scrum—pay so much attention to the 
product backlog, and how the items in it are ranked. That’s why the PMI-ACP® exam might 
cover customer-valued prioritization tools and techniques, including these:

MoSCoW method

This is a simple technique where requirements 
or backlog items are divided into “Must have,” 

“Should have,” “Could have,” and “Won’t 
have”—the first letter of  each option form the 
word MoSCoW to make it easier to remember.

Relative prioritization/ranking

When teams use relative prioritization or 
ranking, they take work items or requirements, 
assign a numeric value to each one to represent 
customer value, and sort them using that value.

Kano analysis

The Kano model was developed in the 1980s by Noriaki 
Kano, a Japanese professor who studies quality and 
engineering management. His model of  customer 
satisfaction can be used to track how innovations that 
previously delighted customers become basic needs over 
time that will disappoint them if  not present in a product.

Basic needs

Delighters
Not Implemented

Fully Implemented

Dis
sat

isf
ied

Sat
isf

ied

As users get accustomed to 
those features, they eventually 

turn into basic needs that 
increase dissatisfaction when 
they’re not fully implemented.

The Kano model shows how 
some features are “delighters” 
that increase user satisfaction 

when they’re fully implemented.

you are here 4  325

preparing for the pmi-acp



Value calculations help you figure out which projects to do
There are a few types of  calculations that will appear on the PMI-ACP® exam as definitions. You 
won’t need to calculate these, but you should know what each term means. All of  these numbers can 
help a team determine which projects have the most value. If  you’re trying to decide between two 
projects, these can help you determine which one is the best.

Net present value (NPV)

This is the actual value at a given time of  the project minus all of  the 
costs associated with it. This includes the time it takes to build it and 
labor as well as materials. People calculate this number to see if  it’s 
worth doing a project. 

Internal rate of  return (IRR)

This is the amount of  money the project will return to the company 
that is funding it. It’s how much money a project is making the 
company. It’s usually expressed as a percentage of  the funding that 
has been allocated to it. 

Money you’ll get in three years isn’t worth as much to you as money you’re getting today. NPV takes the “time value” of money into consideration, so you can pick the project with the best value in today’s dollars.

The higher t
he 

rate of ret
urn, 

the better
 for 

the project
. 

Return on Investment (ROI)

This number is the money you expect to make from a project that 
you are building. Ranch Hand Games expect to sell a million units of  
CGW5 within the first month of  release. Of  course, the longer it takes 
to develop, the higher the cost to get that return. 

This number is just a 
straight total amount that the company expects to make on the investment it makes. 

Earned Value Management (EVM) for Agile

If  you studied for the PMP® exam, you learned about earned value 
calculations, which measure how well the project is performing 
by putting an actual cost in money or hours on value the product 
is delivering, and figuring out how much of  that value has been 
delivered so far. Agile projects can use this too.

In the real world, agile teams typically 
only do value calculations when they’re 
required by the company. They’re much 

more likely to use the relative sizing 
techniques from Chapter 4 like story 

points or T-shirt sizing. They’ll sometimes 
use a technique called affinity estimating 

to come up with the estimates. That’s 
where the team members divide a 

whiteboard into groups (like XS, S, M, L, 
XL T-shirt sizes or Fibonacci sequence 

story points) and take turns sticking each 
item to estimate into a category.

326  Chapter 7

a few tools and techniques you might see on the exam



Hold on! Why didn’t you cover 
these tools and techniques in the 

first six chapters?

We kept chapters coherent to get them into your brain.
Most of  the tools, techniques, and practices that we cover in this chapter 
but nowhere else in the book are on the PMI-ACP® exam mainly because 
they’re traditional project management techniques—they’re relevant to 
the exam because they are also used by some agile teams, but they’re not 
really a core part of  Scrum, XP, or Lean/Kanban. Including them would 
have been a distraction... and distractions reduce the coherence of  
a topic that you’re trying to learn, and that can keep information from 
getting into your brain as effectively. (This is actually an application of  
chunking, which we talked about in the beginning of  this chapter!)

The PMI-ACP® exam is much more heavily focused on understanding specific situations than it is on specific tools and techniques. The tools in this chapter are not as common on agile teams, so they’re more likely to appear on the exam as incorrect answers than they are to be the direct subject of a question.

you are here 4  327

preparing for the pmi-acp



Rick, the product manager from Ranch Hand Games in Chapters 3 and 4, is using value 
calculations. Match each scenario to the cost numbers that Rick is using in each one.

1. The minute the demo was done, Ranch Hand 
Games released it as a playable demo for $1.00 on all 
of  the major gaming consoles. The company is making 
about $1,000 a week while they’re working on the game. 

2. Alex, the product owner, was having trouble figuring 
out whether or not certain features should be in the 
product backlog, so Rick helped him use MoSCoW to 
choose the ones that were really important.

3. Even though the team is developing on the latest 
console hardware, they know that new generations 
of  the consoles will be released within the next three 
years. That means that all of  the games developed on 
the current hardware will sell for about half  of  their 
current price once the upgrade happens. 

4. Rick wants to figure out how much the project 
is worth so far. So he adds up the value of  all of  
the materials and licenses the team has used, and 
subtracts the labor and any depreciation that needs to 
be accounted for. The number he ends up with gives 
the value of  the overall project right now. Then he 
subtracts that from the projected sales for the game.

5. Alex divided gamers who might buy CGW5 into 
categories and used Kano analysis to determine how 
much each of  them might like different features.

6. Before the team decided to do the original demo, 
they compared how much the project was going to cost 
to how much they thought they’d make from it once it 
was released. 

A. Return on Investment

B. Internal rate of return

C. Net present value

D. Relative prioritization/ranking

328  Chapter 7

test your knowledge

Answers on page 331



customer-valued prioritization

minimal viable product (MVP)

minimal marketable feature (MMF)

definition of done

exploratory testing

frequent verification and validation

usability testing

continuous integration

task board

Putting backlog items in order based on 
what the stakeholder most needs

Getting the customers’ hands on the product 
to find problems they have operating it

The smallest possible piece of  functionality 
that is still coherent and deliverable

A tool for visualizing the progress of  
individual work items through an iteration

Everyone keeping working folders up to date 
with the source code repository

A complete deliverable that is as small as 
possible but still meets stakeholder needs

An agreed-upon condition which, when 
satisfied, means a feature is complete

Activities to verify whether or not a 
particular approach will work

Constantly checking that requirements are 
correct and that deliverables meet them

You might see any of the tools and techniques that you learned about in this book on the exam—but the 
questions won’t necessarily refer to them by name. Instead, the question or answer might describe a tool 
or technique using words. In this exercise, we’ll describe a tool or technique. Your job is to choose the 
right one from the bottom of the page and write it in the blank.

customer-valued prioritization

usability testing

minimal marketable feature (MMF)

Oh no! Someone was 
careless and spilled a 
bottle of ink on the 
answers. Can you 
figure out the solution 
without seeing all of 
the words?

task board

continuous integration

minimal viable product (MVP)
definition of done

exploratory testing

frequent verification and validation

SOLUTION

you are here 4  329

preparing for the pmi-acp



Domain 2: Exam Questions
In your own words

Here’s how we interpreted the tasks in our own words. It’s OK if you used different words!

The tasks in Domain 2 are listed on pages 6 and 7 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

Task 10

Using iterative and incremental development to deliver as much value as possible to stakeholders

Break the work down into minimal units and build the ones that deliver the most value

Figure out what “Done” done means for each work item at the last responsible moment

Use a methodology with practices and values that match the culture of the team and organization

Break your product down into MMFs and MVPs and deliver the most valuable ones first

Adjust the length of your iterations so that you can get frequent feedback from stakeholders

Review the results of each iteration with stakeholders to make sure you’re delivering value

Make sure your stakeholders are helping you prioritize the work so you deliver value quickly

Build maintainable software and constantly fix technical debt to keep long-term costs down

Operational and infrastructure factors can impact your project, so take them into account

Meet with your stakeholders frequently and make corrections to the work and the plan

SOLUTION

330  Chapter 7

domain 2 exercise solutions



Task 11

Task 12

Task 13

Task 14

Take the time to identify project risks, and add items to reduce risk to the backlog

Your stakeholders’ needs and environment change all the time, so keep refining the backlog

Make sure the team understands non-functional requirements like security and operations needs

Continually inspect and test all of your artifacts (including the plan), use the results to adapt

Let’s reinforce some of  the ideas behind value-driven delivery. Match each of  the items on the 
left with the descriptions of  what they do or how they impact the project on the right.

Operational work Repairing bugs and defects, and fixing 
other problems in the software

Maintenance Activities related to the day-to-day 
functioning of  the organization

Technical debt A deliverable with just enough features to 
meet a specific, basic need

Backlog grooming Activities related to hardware, networking, 
physical equipment, and facilities

Infrastructure work Work that needs to be done to make code 
more maintainable in the long term

Minimal Viable Product (MVP) Adding, removing, and reprioritizing items 
in the list of  features to be developed

Solution

Solution: 1–B, 2–D, 3–C, 4–A, 5–D, 6–A

you are here 4  331

preparing for the pmi-acp



Exam Questions

1. For an agile team, the most important attribute of a product is...

A. Technical excellence
B. Quality
C. Frequency of delivery
D. The value it brings the customer

2. Which of the following BEST describes the goal of an agile product release?

A. To release the smallest increment that provides value to a customer as soon as possible
B. To release the largest increment that a team can produce in a time frame
C. To include as many customer requests as possible
D. To find the smallest market possible for a product

3. Which Scrum ceremony provides customer feedback on working software?

A. Planning
B. Backlog refinement
C. Sprint retrospective
D. Sprint review

4. Some agile teams use a practice called _________________ to collaboratively prioritize work based on value to 
a customer.

A. Fist-of-Five voting
B. Planning poker
C. Backlog refinement
D. Joint design sessions

5. You and your team are holding a backlog refinement meeting. In the course of the discussion, it occurs to a 
few of your teammates that one of the features in the backlog could have multiple technical approaches. Your 
team is concerned that if they don’t take the correct approach, it might result in serious performance problems. 
What’s the BEST thing for your team to do next?

A. Research and document the right approach before starting work on it
B. Move the risky feature to the end of the backlog so the team has more time to think about the solution
C. Move the risky feature to the start of the backlog so the team focuses on it first
D. Write down the risk in a risk register and report it to upper management

332  Chapter 7

domain 2 exam questions



6. Paul is a developer on an agile software team. During a planning session, the Product Owner tells everyone 
that customers have asked for performance improvements in their upcoming release. Performance problems 
have caused a few cancellations recently and the situation is quickly becoming a priority for many customers. 
What should the team do next?

A. Prioritize the performance improvement toward the top of the sprint backlog so the team focuses on it
B. Create a persona for the user who requested the feature
C. Add the feature request to the product backlog for later consideration
D. Create a non-functional requirements document and include the performance requirements in it

7. In XP, developers use the _________________ practice  in order to review code changes as early as possible. 

A. Sit together
B. Pair programming
C. See the whole
D. Regression testing

8. You are an agile practitioner on a team that is using Scrum. Halfway through a sprint, you find out that the 
main feature you’re working on is no longer needed by clients. Which is the BEST thing to do next?

A. Finish the sprint and take the new priorities into account at the next backlog refinement session
B. Re-prioritize the sprint backlog and have the team start working on the next highest priority as soon as 

possible
C. Try to understand why the change happened so you can avoid having a change like that again
D. A and C

9. Your team is getting ready to start a new sprint. The product owner refers to a requirements document for a 
large feature, and begins to break it down into user stories that can be planned in small increments. What is 
this practice called?

A. Work breakdown structure
B. Big requirements up front
C. Just-in-time requirements refinement
D. Waterfall approach

10. A tool for keeping agile teams focused on building small increments that solve a user need is:

A. Kano analysis
B. User stories
C. Short subjects
D. Emergent design

Exam Questions

you are here 4  333

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: D

The reason for developing a product is the value it brings to a customer. Value is what makes the product viable, 
and drives all of the decisions an agile team makes during development.

2. Answer: A

Agile teams try to break the product down into increments that provide value to the customer but can be 
released as soon as possible. These increments are sometimes called minimally marketable features (or MMFs).

3. Answer: D

In the sprint review, the team demonstrates working software to the customer and gets feedback. 

4. Answer: C

Backlog refinement (also called product backlog review, or PBR) is an opportunity for the Product Owner to 
prioritize work collaboratively with the rest of the team.

5. Answer: C

Doing the highest-risk work first is the best way to approach this problem. That way, if the project is going to fail 
and you can’t find the solution, it will fail fast and you’ll have the information the team learned by working on the 
feature to help you figure out what to do next. 

6. Answer: A

Non-functional requirements, like performance and quality concerns, should be prioritized along with features in 
the team’s backlog.

7. Answer: B

Pair programming is a core XP practice that helps developers find defects before they’re more permanently 
embedded as technical debt in the codebase. 

334  Chapter 7

domain 2 exam answers



Exam Questions
Answers

8. Answer: B

There’s no point in finishing out the sprint if the work the team is doing won’t be useful. The best thing to do is 
to tell the team about the priority change right away, so that they can help determine the best way to deal with it. 
The sooner they can get working on the next high priority feature, the better. 

9. Answer: C

Decomposing the work into stories just before you plan an increment is called just-in-time requirements 
refinement. By breaking down the work right before the work begins, you’re sure to take any changes that 
might have happened to the requirements into account before you build. 

10. Answer: B

Teams use user stories to stay focused on building small, valuable pieces of software that solve specific user 
needs.

Kano analysis and other tools are more likely to appear as incorrect answers than they are to appear as correct ones.

you are here 4  335

preparing for the pmi-acp



Domain 3: Stakeholder Engagement
In your own words

In your own words, write down what you think Domain III (“Stakeholder Engagement”) is about:

The tasks in Domain 3 are listed on page 8 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

336  Chapter 7

domains 3 and 4 in your own words



Domain 4: Team Performance
In your own words

In your own words, write down what you think Domain IV (“Team Performance”) is about:

The tasks in Domain 4 are listed on page 9 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

you are here 4  337

preparing for the pmi-acp



Domain 3: Exam Questions
In your own words

In your own words, write down what you think Domain III (“Stakeholder Engagement”) is about:

Building trust with your project’s stakeholders by engaging and collaborating with them

The tasks in Domain 3 are listed on page 8 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

The team identifies stakeholders and routinely meets with them to review the project

Share all project information early and often with stakeholders so they stay engaged

Help important stakeholders form a working agreement with each other to collaborate

Stay on top of changes to your organization in order to identify new stakeholders

Help everyone make better decisions more quickly through collaboration and conflict resolution

Build trust with stakeholders by working with them to set a high-level goal for each increment

Make sure everyone agrees on a definition of “done”, and what trade-offs are acceptable

Make your project transparent by clearly communicating status, progress, roadblocks, and issues

Give forecasts so stakeholders can plan, help them understand how certain the forecasts are

SOLUTIONHere’s how we interpreted the tasks in our own words. It’s OK if you used different words!

338  Chapter 7

domains 3 and 4 in your own words solutions



Domain 4: Exam Questions
In your own words

Here’s how we interpreted the tasks in our own words. It’s OK if you used different words! :

Helping the team collaborate, trust each other, and create an energized work environment

The tasks in Domain 4 are listed on page 9 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

The team should work together to set ground rules that bring everyone together

The team is committed to building up technical and interpersonal skills needed for the project

Team members strive to be “generalizing specialists” who can contribute to all aspects of the project

The team is self-organizing, and feels empowered to make important project decisions

Teammates find ways to keep each other motivated and keep from demotivating each other

The team should be co-located in the same office if possible, and use collaboration tools

Distractions should be kept to a minimum to make sure the team achieves “flow”

Everyone “gets” the project vision and understands how each piece of work contributes to it

Measure project velocity and use it to figure out how much the team can do in each iteration

SOLUTION

you are here 4  339

preparing for the pmi-acp



Exam Questions

1. Scrum teams demo working software at the end of each sprint in an event called _______________

A. Sprint demo
B. Sprint retrospective
C. Sprint review
D. Product demo

2. You are an agile practitioner on a newly created Scrum team. As part of the preparation for the team’s first 
sprint, you meet with some of the stakeholders for the product you’re going to build to understand their 
objectives. In that meeting, the group creates a list of features categorized as “Must have,” “Could have,” 

“Should have,” and “Won’t have.”

 What is the BEST way to describe the method of prioritization they’re using?

A. Relative prioritization
B. Stack ranking
C. Kano analysis
D. MoSCoW

3. What are the three questions each team member answers in a Daily Scrum meeting?

A. What did I commit to doing today? What will I commit to doing by tomorrow? What mistakes have I made?
B. What am I working on today? What will I work on tomorrow? What problems have I run into?
C. What did I do today that brings us closer to our sprint goal? What will I do tomorrow that brings us closer to our 

sprint goal? What obstacles are in the team’s way?
D. None of the above

4. Who makes decisions on behalf of business stakeholders on a Scrum team?

A. Scrum master
B. Product owner
C. Agile practitioner
D. Team member

5. Julie is working on a team that’s using Kanban to improve their process. Every day they put index cards on a 
board to show how many features are in each state of their process. Next, they add up the number of features in 
each column on the board and create an area chart that shows those totals over time. What tool are they using? 

A. Cumulative flow diagram
B. Task board
C. Burn down chart
D. Burnup chart

340  Chapter 7

domain 3 exam questions



Exam Questions

6. Agile teams commit to business ___________ and sprint __________. They know that plans can change, and 
welcome those changes no matter when they happen. By focusing on what the team needs to achieve, they 
keep their options open. 

A. Leadership, deadlines
B. Objectives, goals
C. Forecasts, plans
D. Demands, retrospectives

7. Which of the following is NOT a tool for providing stakeholder transparency in an agile team?

A. Information radiators
B. Feature demos
C. Task boards
D. Net present value

8. An agile team updated a daily burn down chart on the wall where they sit. What can stakeholders understand 
from looking at this chart?

A. The project is running late
B. The team is on track to meet its sprint goal
C. The team ran into trouble on day 3
D. Only project managers need the information in this chart

you are here 4  341

preparing for the pmi-acp



1. You are an agile practitioner on a newly created Scrum team. As part of the team’s first planning session they 
decide to come up with a series of policies that the team will follow while working on their upcoming project. 
These policies include the following: “The Daily Scrum meeting is timeboxed to 15 minutes and will start on time 
every day. A team member will never mark a feature complete until it satisfies the team’s definition of ‘done’. The 
team will use pre-defined coding standards and check code in for nightly builds.”

 What is the BEST way to describe the list of policies they’ve defined? 

A. Definition of ready
B. Administrative guidelines
C. Team charter
D. Working agreements

2. You are an agile practitioner on a team building software for an advertising company. About halfway through 
your first increment, you notice that many features are showing as “In Progress” on your task board, but very 
few are in the “Done” column. One closer inspection, you see that developers are starting work on new features 
whenever they are waiting on code review or testing. What is the BEST thing for you to do next? 

A. Ask the team to help code review and testing to finish existing tasks before starting a new one
B. Assume that the work will get done by the end of the sprint because the team has made progress on so many 

features
C. Bring more testers onto the team to deal with the glut of features
D. Tell the stakeholders that the team will not have anything ready to demo at the end of the sprint

3. Kim is an agile team member. Her team has four people on it and is four days into a two-week sprint. She just 
completed work on “Story 1,” the highest priority story in a five-story priority-ranked sprint backlog. This image 
shows the current state of her team’s task board. What should she do next?

A. Move story 4 or story 5 to the “In Progress” column and start working on it
B. Find a way to help work on story 2 or story 3 if possible
C. Add a feature from the product backlog to the “In Progress” column and start working on it
D. Wait for the Scrum Master to assign a new story

Exam Questions

To Do In Progress Done

Story 3
Story 1

Story 2

Story 5

Story 4

342  Chapter 7

domain 4 exam questions



Exam Questions

4. A software company is transforming its organization from using traditional software development practices 
to using agile methodologies. Which of the following is NOT a factor when deciding how to form agile teams?

A. Teams should be co-located where possible
B. Teams should be small 
C. Teams should have a documented change management process for dealing with late changes 
D. All of the above

5. You are an agile practitioner on a five-person team that is currently six days into a two-week sprint. An 
external stakeholder calls a team member to request an urgent change. What is the BEST thing for the team 
member to do?

A. Drop what she is doing and make the change that the stakeholder requested
B. Ask the stakeholder to work with the product owner to prioritize the change 
C. Advise the stakeholder to wait until the next sprint planning session and then bring it up
D. Remind the stakeholder to prioritize the change in the product backlog

6. You are an agile practitioner on a team that builds financial software. During a sprint planning session with 
the team, a tester and a developer get into an argument about how big a story is. The developer says that the 
story is a small code change, so it should happen immediately. The tester says that it impacts many crucial 
areas of the software, and many tests will need to be run to make sure that it works. What should you do next?

A. Side with the tester and recommend that the team allot more time for the feature
B. Side with the developer and cut tests to make sure that the feature is delivered sooner
C. Suggest that the team use planning poker to discuss their assumptions and come up with an approach and 

size for the feature that everyone agrees to
D. Ask the product owner to prioritize the tests based on how important the functionality is to the end users

7. You are an agile practitioner on a team that builds software. One of your teammates is expected to work on 
two projects at once. The person’s functional manager has asked the team to expect him to be 50% allocated on 
the agile team and 50% allocated to a functional support team. What is the BEST thing for you to do next?

A. Help your teammate find a way to avoid over-committing to stories in sprint planning
B. Tell the functional manager that agile teams require team members focus on their tasks, and the team member 

should not be allocated to two teams at once
C. Make sure the team doesn’t over-commit because resources are not fully allocated
D. Make sure that the person only spends four hours per day working on the other team

you are here 4  343

preparing for the pmi-acp

We gave you questions for domains 3 and 4 back to back. See if you can do them all in a 
row, then look at the answers. This will help you get ready for the big final exam in Chapter 9.



Exam Questions
Answers

1. Answer: C

The sprint review is the main opportunity for the team to demonstrate working software at the end of each 
sprint. All of the project stakeholders attend the demo and provide feedback on the software. That feedback is 
incorporated back into the product backlog, which the team uses to plan future sprints. 

2. Answer: D

These stakeholders are using the MoSCoW method for prioritization. It helps the team understand the business 
perspective on the features in the backlog. 

3. Answer: C

The Daily Scrum questions focus on what the team is doing to get closer to achieving this sprint goal. Just 
telling the team what each individual is working on can cause team members to focus too much on their own 
perspective, and to lose sight of the goal the team is working toward. 

4. Answer: B

The Product Owner acts as a proxy for business stakeholders in a Scrum team. The Product Owner 
communicates business priorities, and makes decisions for the team that will help them meet each sprint goal. 

5. Answer: A

The question describes the process that a team would take to create a cumulative flow diagram (CFD). They’re 
also using a Kanban board as a means of figuring out the numbers to map on the CFD, but “Kanban board” was 
not one of the choices available for this question. 

6. Answer: B

Agile teams commit to business objectives and sprint goals. They try to decide on the exact route they’ll take to 
achieving those objectives as late as possible. 

344  Chapter 7

domain 3 exam answers



Exam Questions
Answers

7. Answer: D

Net Present Value (NPV) might help your team decide whether or not to do a project, but it’s not a practical tool 
for keeping stakeholders informed about what’s going on with your project. 

8. Answer: B

A burn down chart is an effective way to keep everyone on the team and all of your stakeholders in the loop 
about daily progress toward a goal. This burn down shows that the team will most likely complete the work they 
committed to by the end of the sprint because the line that shows the amount of work left is below the line.

you are here 4  345

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: D

Agile teams work to define their working agreements when they start working together. That way, all team 
members know what to expect when they’re working with the group.

2. Answer: A

Teams work most efficiently when they focus on getting each task completely finished (“Done” done) before 
moving on to the next one. That’s why agile teams value members who focus on being “generalizing specialists” 
that do whatever they can to move their work through all stages of development. By focusing on collaborating 
and making the work flow, the whole team gets more done and creates a higher-quality product together. In this 
case, it means that everyone on the team has the skills to help with code review and testing.

3. Answer: B

The team works on the stories in order of priority, so we know that stories 2 and 3 in the “In Progress” column 
are more valuable than stories 4 and 5 in the “To Do” column. Teams should focus on completing the highest 
priority work as soon possible and on finishing work before starting new work. If Kim can help her teammates 
get story 2 or 3 done faster, she should do that instead of starting work on another story. Since agile teams are 
self-organizing, she shouldn’t have to wait for the Scrum Master to tell her which story to work on next. 

4. Answer: C

Teams should be small and co-located so that they can easily collaborate with one another and find new and 
better ways of working. Agile teams also value responding to change, especially changes in priority, as urgently 
as possible. However, they typically do not focus on creating well-documented change management processes, 
as they are often focused on slowing down the rate of change in a project. 

5. Answer: B

The product owner maintains the backlog and the priority order of work for the team. If an external stakeholder 
needs a change, the team member should ask that stakeholder to work with the product owner to figure out 
where the change fits into the team’s backlog. 

346  Chapter 7

domain 4 exam answers



Exam Questions
Answers

6. Answer: C

Planning poker is built for situations like this, because it helps teams to come together on an approach and 
agree on the size of the effort. In this case, the tester could explain why the code change affects so many tests, 
and the developer and tester could jointly come up with approaches for dealing with the problem.

There are a lot of different approaches that this particular team can take. Developers can write automated unit 
tests (serving as generalizing specialists and helping to shoulder some of the quality work). They can also pay 
special attention to pair programming and unit testing, if the area they are modifying is critical to the product. 
Testers could write tests in parallel with development, and take part in code reviews so that they know what 
to expect from the feature when it’s delivered. These are all ideas that might come up during a planning poker 
session. Choosing a specific approach will help them come up with a relative size for the story, and get a more 
accurate sense of what they need to do in order to deliver it.

7. Answer: B

Agile teams expect 100% of a team member’s focus and time, and recognize that compromising on that 
can lead to significant problems. When one person is shared between teams, it leads to a large amount of 
task-switching that causes a lot of waste. As an agile practitioner, you should work to influence the person’s 
functional manager, and try to convince him or her to allocate that person 100% to the agile team.

you are here 4  347

preparing for the pmi-acp



Domain 5: Adaptive Planning
In your own words

In your own words, write down what you think Domain V (“Adaptive Planning”) is about:

The tasks in Domain 5 are listed on page 10 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

Task 10

348  Chapter 7

domain 5 exercises

Answers on page 372



Adapt your leadership style as the team evolves
You may see a few questions on the PMI-ACP® exam about adaptive leadership, 
a useful theoretical concept that can help leaders improve how they lead their teams. 
Applying adaptive leadership to a specific team starts the stages of  team formation.

Situational leadership
People have a tough time creating team bonds initially, but a good leader can use his or her adaptive leadership skills 
to help the team to progress through the stages quickly. Paul Hershey and Kenneth Blanchard came up with the 
situational leadership theory in the 1970s to help guide leaders through this. That theory includes four different 
leadership styles. Adaptive leadership means matching different leadership styles to stages of  team formation:

 ≥ Directing: Initially, the team needs a lot of  direction to help get used to the specific tasks they need to 
accomplish. They don’t really need a lot of  emotional support yet. This is matched with the forming stage.

 ≥ Coaching: A good coach knows how to give a lot of  direction, but also provide the emotional support the team 
needs to get through the temper flare-ups and disagreements. This is matched with the storming stage.

 ≥ Supporting: As everyone on the team gets used to each other and their work, the leader doesn’t need to direct 
as much, but still needs to provide a high level of  support. This is matched with the norming stage.

 ≥ Delegating: Now the team is running smoothly, and the leader doesn’t need to provide much direction or 
much support, only handle specific situations as they come up. This is matched with the performing stage.

Forming: People are still trying to figure out their roles in the 
group; they tend to work independently, but are trying to get 
along. 

Storming: As the team learns more about the project, 
members form opinions about how the work should be done. 
This can lead to temper flare-ups in the beginning, when people 
disagree about how to approach the project. 

Norming: As team members become better acquainted, they 
begin to adjust their own work habits to help each other and the 
team as a whole. Here’s where the individuals on the team start 
learning to trust one another. 

Performing: Once everyone understands the problem and 
what the others are capable of  doing, they start acting as a 
cohesive unit and being efficient. Now the team is working like a 
well-oiled machine.

Adjourning: When the work is close to completion, the team 
starts dealing with the fact that the project is going to be closing 
soon. (This is sometimes called “mourning” by teams.)

Every team
 goes through these stages during a project

}Researcher Bruce Tuckman 
came up with these five 

stages in 1965 as a model 
for team decision making. 

Although this is the normal 
progression, it’s possible 

that the team can get stuck 
in any one of the stages. 

you are here 4  349

preparing for the pmi-acp



1.  Joe and Tom are both programmers on the Global Contracting project. They disagree on the overall 
architecture for the software they’re building, and frequently get into shouting matches over it. Joe thinks 
Tom’s design is too short-sighted and can’t be reused. Tom thinks Joe’s design is too complicated and 
probably won’t work. They’re at a point right now where they’re barely talking to each other. 

Stage of development:  
Leadership style:  Level of direction:  Level of support:  

2.  Joan and Bob are great at handling the constant scope changes on the Business Intelligence project. 
Whenever the stakeholders request changes, they shepherd them through the change control process and 
make sure the team doesn’t get bothered with them unless it’s absolutely necessary. That leaves Darrel and 
Roger to focus on building the main product. Everybody is focusing on their area and doing a great job. It 
seems like it’s all just clicking for the group.

Stage of development:  
Leadership style:  Level of direction:  Level of support:  

3.  Derek just got to the team, and he’s really reserved. Folks on the team aren’t quite sure what to make of him. 
Everybody’s polite, but it seems like some people are a little threatened by him. 

Stage of development:  
Leadership style:  Level of direction:  Level of support:  

4.  Danny just realized that Janet is really good at developing web services. He’s starting to think of ways to 
make sure that she gets all of the web service development work and Doug gets all of the client software 
work. Doug seems really happy about this too—he seems to really enjoy building Windows applications.

Stage of development:  
Leadership style:  Level of direction:  Level of support:  

The PMI-ACP® exam focuses on specific scenarios, so we can use scenarios to explore adaptive 
leadership. Each of the following scenarios demonstrates one of the stages of team development. 
Write down which stage each scenario describes. Then write down the leadership style, and fill in 
either “High” or “Low” for the level of direction and support that leadership style provides.

350  Chapter 7

adaptive leadership exercise

Answers on page 354



A few last tools and techniques
There are just a few more tools and techniques that you might see 
on the PMI-ACP® exam. Luckily, they’re very straightforward, 
and should fit in easily with what you’ve already learned.

you are here 4  351

preparing for the pmi-acp

Risk-adjusted backlog, pre-mortem, and risk burn down charts
When a team maintains a risk-adjusted backlog, they include risk items in the backlog and prioritize them along with 
the other backlog items. This means:

 ≥ When the team encounters a risk, it gets added to the backlog—risk backlog items are prioritized by value and 
effort, just like any other backlog item

 ≥ One way teams identify risks is to hold a pre-mortem, where they imagine that the project has failed 
catastrophically and brainstorm the reasons that caused the failure

 ≥ When the team plans an iteration, they include risk items along with other items in the iteration backlog

 ≥ They create an estimate for each risk backlog, using exactly the same estimation techniques that they already 
use to generate estimates for other product backlog items 

 ≥ When the team performs backlog refinement (which they sometimes call “grooming” or “PBR”), they update, 
review, re-estimate, and re-prioritize the risk backlog items along with the rest of  the items in the backlog

 ≥ You might see risks referred to as threats and potential issues on the exam

 ≥ When the team maintains a risk-adjusted backlog that includes relative size estimates for risk items, they can 
use those estimates to create a risk burn down chart for each iteration (so, for example, a Scrum team might 
create a risk burn down graph that shows the sum of  the story points for all risk items left in the sprint backlog)

A risk burn-down chart works 
exactly like a regular one, 
except that it only shows 
points that are assigned to 
risk items in the backlog.



A few last tools and techniques
There are just a few more tools and techniques that you might see 
on the PMI-ACP® exam. Luckily, they’re very straightforward, 
and should fit in easily with what you’ve already learned.

Collaboration games
Teams sometimes play collaboration games to help them work together to brainstorm, gain consensus, and 
make decisions as a group. There are many different collaboration games. A few that you might see on the 
exam include:

 ≥ Planning poker is an estimating game that you learned about in Chapter 4

 ≥ Affinity estimating (explained on page 326) is actually a kind of  collaboration game, too

 ≥ Mind maps is a brainstorming game where four or five people write an item to focus on in a 
circle in the middle of  a whiteboard, and draw a tree branching out from it that shows related ideas

 ≥ Fist of  five voting is similar to “rock-paper-scissors” that teams use to gauge the group’s opinion 
on a topic by showing the number of  fingers that indicate how strongly they like or hate the idea

 ≥ Dot voting is a decision-making game where a set of  options are evaluated by writing them on a 
large piece of  paper, and distributing sheets of  sticky dots so that everyone can stick their dots next 
to different options—the options with the most dots are the ones that are chosen by the group

 ≥ 100 point voting is similar to dot voting, where team members get 100 points to distribute among 
the options

You probably won’t need to know the details of how most of these games work, but you may see their names (most likely in an incorrect answer).

BYOQ – Bring Your Own Questions
Want to give yourself an edge on the exam? Try writing your own questions! You can use the “question clinic” templates from Chapters 2 through 6 as your guide. Try it out:* Write a “which-is-BEST” question about holding a Daily Scrum meeting* Write a “which-comes-next” question about value stream mapping

* Write a “red herring” question about adaptive planning
* Write a “which-is-NOT” question about refactoring
* Write a “least-worst-option” question about the Scrum value of openness

352  Chapter 7

a few more tools and techniques that might be on the exam



product backlog refinement

ideal time

user story

planning poker

risk burn down graph

pre-mortem

risk-adjusted backlog

risk-based spike

progressive elaboration

A game that team members play using cards 
to help them agree on estimates

A minimal description of  a feature that 
explains who needs it and why they need it

Starting with an initial version of  an artifact 
and updating it as more information is known

A thought experiment where you imagine 
things failed and figure out what caused it

Experimental work to determine the impact 
of  a specific potential problem, issue, or threat

Reviewing, re-estimating, and re-prioritizing 
the list of  planned features and work items

The list of  planned features and work items 
that also includes problems, issues, and threats

An estimate of  work that assumes no 
interruptions, distractions, or problems

A chart that shows the total daily estimated 
impact of  problems, issues, and threats

You might see any of the tools and techniques that you learned about in this book on the exam—but the 
questions won’t necessarily refer to them by name. Instead, the question or answer might describe a tool 
or technique using words. In this exercise, we’ll describe a tool or technique. Your job is to choose the 
right one from the bottom of the page and write it in the blank.

Oh no! Someone was 
careless and spilled a 
bottle of ink on the 
answers. Can you 
figure out the solution 
without seeing all of 
the words?

you are here 4  353

preparing for the pmi-acp

Answers on page 355



1.  Joe and Tom are both programmers on the Global Contracting project. They disagree on the overall 
architecture for the software they’re building, and frequently get into shouting matches over it. Joe thinks 
Tom’s design is too short-sighted and can’t be reused. Tom thinks Joe’s design is too complicated and 
probably won’t work. They’re at a point right now where they’re barely talking to each other. 

Stage of development: Storming 
Leadership style: Coaching Level of direction: High Level of support: High 

2.  Joan and Bob are great at handling the constant scope changes on the Business Intelligence project. 
Whenever the stakeholders request changes, they shepherd them through the change control process and 
make sure the team doesn’t get bothered with them unless it’s absolutely necessary. That leaves Darrel and 
Roger to focus on building the main product. Everybody is focusing on their area and doing a great job. It 
seems like it’s all just clicking for the group.

Stage of development: Performing 
Leadership style: Delegating Level of direction: Low Level of support: Low 

3.  Derek just got to the team, and he’s really reserved. Folks on the team aren’t quite sure what to make of him. 
Everybody’s polite, but it seems like some people are a little threatened by him. 

Stage of development: Forming 
Leadership style: Directing Level of direction: High Level of support: Low 

4.  Danny just realized that Janet is really good at developing web services. He’s starting to think of ways to 
make sure that she gets all of the web service development work and Doug gets all of the client software 
work. Doug seems really happy about this too—he seems to really enjoy building Windows applications.

Stage of development: Norming 
Leadership style: Supporting Level of direction: Low Level of support: High 

The PMI-ACP® exam focuses on specific scenarios, so we can use scenarios to explore adaptive 
leadership. Each of the following scenarios demonstrates one of the stages of team development. 
Write down which stage each scenario describes. Then write down the leadership style, and fill in 
either “High” or “Low” for the level of direction and support that leadership style provides.

354  Chapter 7

domain 5 exercise solutions



product backlog refinement

ideal time

user story

planning poker

risk burn down graph

pre-mortem

risk-adjusted backlog

risk-based spike

progressive elaboration

A game that team members play using cards 
to help them agree on estimates

A minimal description of  a feature that 
explains who needs it and why they need it

Starting with an initial version of  an artifact 
and updating it as more information is known

A thought experiment where you imagine 
things failed and figure out what caused it

Experimental work to determine the impact 
of  a specific potential problem, issue, or threat

Reviewing, re-estimating, and re-prioritizing 
the list of  planned features and work items

The list of  planned features and work items 
that also includes problems, issues, and threats

An estimate of  work that assumes no 
interruptions, distractions, or problems

A chart that shows the total daily estimated 
impact of  problems, issues, and threats

You might see any of the tools and techniques that you learned about in this book on the exam—but the 
questions won’t necessarily refer to them by name. Instead, the question or answer might describe a tool 
or technique using words. In this exercise, we’ll describe a tool or technique. Your job is to choose the 
right one from the bottom of the page and write it in the blank.

planning poker

user story

progressive elaboration

Oh no! Someone was 
careless and spilled a 
bottle of ink on the 
answers. Can you 
figure out the solution 
without seeing all of 
the words?

pre-mortem

risk-based spike

product backlog refinement

risk-adjusted backlog

ideal time

risk burn down graph

SOLUTION

you are here 4  355

preparing for the pmi-acp



1. An agile team just finished a sprint planning session for sprint 5 of an ongoing project. They used planning 
poker to come up with the following story point values for their stack-ranked backlog: 

Story 1: 8 points
Story 2: 5 points
Story 3: 3 points
Story 4: 5 points
Story 5: 13 points
Story 6: 5 points
Story 7: 2 points
Story 8: 3 points

Based on the team’s velocity histogram above, what is the last story they should expect to deliver in this 
sprint?
A. Story 3
B. Story 5
C. Story 6
D. Story 4

2. An agile team is four days into a two-week sprint when one of their stakeholders asks for the status of the 
current sprint. The team directs the stakeholder to the team’s burn up chart. What can the stakeholder tell from 
the information in the chart?

A. The team is running behind
B. Scope has been added
C. The team is ahead of schedule
D. There isn’t enough data to know status

Exam Questions

Product 
Backlog

Historical Velocity

356  Chapter 7

domain 5 exam questions



Exam Questions

3. You’re an agile practitioner on a team that builds mobile apps. One of your teammates identified a problem 
during the last retrospective, pointing out that the team’s velocity was getting lower with each two-week sprint. 
Afterward, you find that the user stories the team is working on are often too big to be completed in one sprint, 
often carrying over into the next three or four sprints before they are completed. What do you do next?

A. Work with the product owner to identify a sprint goal that can be accomplished in the next sprint, and then 
decompose the stories in that sprint so that all of them can be delivered in two weeks

B. Carry the stories over from sprint to sprint, but forecast that they will all be completed in the product’s next 
major release

C. Work with the team to get better at delivering big stories faster
D. Stop committing to individual sprint goals, and commit to release goals instead

4. Sarah is a scrum master on a team that develops games. She’s noticed that her team often commits to 
much more work in a sprint than they can accomplish. When she brought it up in the team’s retrospective, she 
learned that her teammates are often pulled off of development tasks to deal with maintenance requests for 
production software, which interrupts the flow of work for them. What should she do next? 

A. Create backlog items for the maintenance requests, estimate them, and include them in sprint planning so that 
the team can include those requests in its sprint commitments

B. Work with the team to create a buffer in the amount the team commits to, so that they don’t over-commit when 
they know the maintenance requests will happen

C. Tell the support group that the development team will no longer be responding to maintenance requests
D. None of the above

5. Agile teams often create special tasks for teams to investigate approaches to solving high-risk design 
problems. What are these special tasks called?

A. Exploratory work
B. Buffers
C. Slack
D. Risk-based spikes

6. Teams will often prioritize risks, issues, and threats above other work because solving those items will mean 
success or failure for the whole project. What is the practice of prioritizing these items called?

A. Risk-ranking
B. Backlog refinement
C. Risk-adjusted backlog
D. None of the above

you are here 4  357

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: D

Since the stories are in priority order, the team should try to deliver stories 1-4. The total size of the effort for those 
four stories adds up to 21 story points, which is what the team delivered in the last sprint. 

2. Answer: C

According to the chart, the team committed to deliver around 28 points in this sprint. On day 4 they were already at 20 
points complete. It’s very likely that they’re ahead of schedule. 

3. Answer: A

All of the stories in the sprint backlog should be sized so that they can be completed within a sprint, which according 
to the question lasts two weeks. The product owner should be working to help the team to deliver as much value as 
possible at the end of each increment. If the team stays focused on large releases, they won’t get the benefits of early 
validation that come with releasing small increments more frequently. 

4. Answer: A

The team can’t plan their work if they don’t put all of it in the backlog. Just because a work item is coming from a 
different stakeholder than usual (in this case, the support team), that doesn’t mean that the team should ignore it. 
If the work is valuable to the organization, that work should be prioritized, estimated, and planned along with new 
feature work by the product owner as part of the backlog refinement and sprint planning process.

5. Answer: D

Risk-based spikes allow agile teams to time box their effort in researching high-risk functionality so that teams can 
“fail fast” if there is no solution to the problem.

6. Answer: C

A risk-adjusted backlog includes planned features and work items, but also includes problems, issues, and threats—in 
other words, a backlog that also includes risk items that can be prioritized by risk as well as value. This helps you and 
your team to focus on understanding your risks first, which can help prevent your project from running into trouble 
(and even failing!) later on.

358  Chapter 7

domain 5 exam answers



Agile teams Try to do the 
most important work first - and they 

Fail Fast if they’re going to fail. When 
A team identifies Risks, they can sometimes Sink 
a whole project. But it’s  Better to Fail After a 

Sprint or two than find out you’ve gone down 
the wrong road After the team’s put in 

months of effort!

How can you make sure that you work on the 
highest priority items first, even when you’re 
fixing defects in your project?

you are here 4  359

preparing for the pmi-acp



Domain 6: Problem Detection and Resolution
In your own words

In your own words, write down what you think Domain VI (“Problem Detection and Resolution”) is about:

The tasks in Domain 6 are listed on page 11 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

BYOQ – Bring Your Own Questions
Writing your own questions is a great way to get knowledge into your brain. And when you 

recognize different question strategies, it actually helps you kee
p calm during the exam.

* Write a “which-is-BEST” question about continuous integration

* Write a “which-comes-next” question about limiting work in progress

* Write a “red herring” question about holding a sprint planning meeting

* Write a “which-is-NOT” question about servant leadership

* Write a “least-worst-option” question about information radiators

360  Chapter 7

domains 6 and 7 in your own words

Answers on page 373 



Domain 7: Continuous Improvement
In your own words

In your own words, write down what you think Domain VII (“Continuous Improvement”) is about:

The tasks in Domain 7 are listed on page 12 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

BYOQ – Bring Your Own Questions
* Write a “which-is-BEST” question about osmotic communication
* Write a “which-comes-next” question about the Product Owner approving a sprint* Write a “red herring” question about demonstrating working software at a sprint review* Write a “which-is-NOT” question about risk burn-down graphs
* Write a “least-worst-option” question about the XP value of simplicity

you are here 4  361

preparing for the pmi-acp

Answers on page 374 



Exam Questions

1. Agile teams often maintain an ordered list of work items and put the highest-risk items at the top of the list so 
that they get worked on first. What is the BEST name of this practice?

A. Rank ordering
B. Mitigation plan 
C. Risk-adjusted backlog
D. Weighted shortest job first

2. You are an agile practitioner on a software team. Your team is holding a meeting to plan the next sprint. During 
the team’s estimation for one of the work items, two team members disagree about the technical approach to the 
problem. Both of their solutions seem plausible to the rest of the team. The team needs to come to a resolution 
quickly, because that specific work item is a core piece of functionality that later sprints will depend on.

What is the BEST solution to the problem?

A. Have the whole team work on solving this problem before starting any other work
B. Create an architectural spike for each of the two solutions, building them both over the course of the sprint in 

order to learn which one works best
C. Preserve your options by not starting the work until later in the project
D. Write down the disagreement as a risk and decide a solution later in the project

3. You are an agile practitioner on a software team. Your team has been together for three sprints, but lately 
they’ve been having a hard time getting along. Some members of the team think that others don’t have the 
technical experience to make changes to core sections of the code base that the team is working on. This 
results in many disagreements during Daily Scrum and sprint planning meetings. How would you BEST describe 
the team and the managing technique you should use to deal with it? 

A. Forming stage, Directing managing technique
B. Storming stage, Coaching managing technique
C. Norming stage, Supporting managing technique
D. Performing stage, Delegating managing technique

4. When a Scrum team meets to inspect the plan that they are working on and make adjustments so that they can 
accomplish their goals, that practice is called ____________________.

A. The plan inspection meeting
B. The planning approval gate
C. The Daily Scrum
D. The status report

362  Chapter 7

domain 6 exam questions

We gave you questions for domains 6 and 7 back to back. See if you can do them all in a 
row, then look at the answers. This will help you get ready for the big final exam in Chapter 9.



Exam Questions

5. Whenever a programmer commits code to the repository, tests are automatically run on it and the code is 
compiled. Which of the followng BEST describes this?

A. Code review
B. Breaking the build
C. Using a build server
D. Continuous deployment

6. You are an agile practitioner on a software team that has been together for the last two years now. You and 
your teammates have developed a rapport. Any time there’s a problem, everyone generally knows who to call or 
what to do. Individual team members have different interests and focus on different kinds of problems, but they 
generally have no trouble coming together to accomplish their sprint goals. How would you BEST describe the 
team and the managing technique you should use to deal with it? 

A. Forming stage, Directing managing technique
B. Storming stage, Coaching managing technique
C. Norming stage, Supporting managing technique
D. Performing stage, Delegating managing technique

7. You are an agile practitioner on a software team. This is the first sprint that your team has worked together, 
and they don’t know much about each other. They all have their own skills and goals, and haven’t really worked 
out a good way to communicate about the project just yet. How would you BEST describe the team and the 
managing technique you should use to deal with it? 

A. Forming stage, Directing managing technique
B. Storming stage, Coaching managing technique
C. Norming stage, Supporting managing technique
D. Performing stage, Delegating managing technique

8. At the beginning of the project, a team identifies a list of possible threats to project success. They printed 
out all of the risks in a large font, and taped them to a whiteboard for everyone to see in a central location in 
the office. The team gathers periodically to discuss and review these identified risks. What practice is the team 
using?

A. Weekly risk review
B. Steering committee meeting
C. Risk approval gate
D. Information radiator

you are here 4  363

preparing for the pmi-acp



1. Agile team members are always learning new skills to help their teams complete work. Instead of having a very 
narrow and deep focus, they are ____________________ who can do multiple things on a team.

A. Generalizing specialists
B. Shallow contributors
C. Experienced development leads
D. Highly specialized developers

2. The main artifact of a sprint retrospective is ____________________.

A. A list of accomplishments
B. A set of improvement actions
C. A set of meeting minutes
D. A list of challenges

3. You are an agile practitioner on a software team. At the end of each sprint, you and your team demonstrate to 
the product owner the changes the team has made, and listen to his or her feedback about those changes. What 
is the BEST way to describe this practice?

A. Daily scrum
B. Product demo
C. Product owner approval
D. Sprint review

4. You are an agile practitioner on a team that builds mobile games. A member of your team has a new technical 
design for one of the features that’s in the product backlog. When she brings it up to the team, some teammates 
are skeptical that it will work. Everyone agrees that if it does work it will be a significant improvement to the 
game’s performance, and will be much easier to maintain than the current design. What is the BEST thing for the 
team to do next? 

A. Suggest that the team member stick with the current design since the team already knows it will work
B. Suggest that the team member write up a design document and run it by the stakeholders for approval
C. Suggest that the team member create a spike and try out the solution to see if it will work
D. Suggest that the team stop work on the existing design because it’s slower than the one the team member 

described

Exam Questions

364  Chapter 7

domain 7 exam questions



5. You are on a software development team. During a retrospective, one person says most of the work in the last three 
sprints has focused on part of the codebase that only half of the team is familiar with, and as a result those people 
have been doing most of the valuable work during those sprints, and that they’ve been forced to add lower-value items 
to the sprint backlog in order to keep the rest of the team busy. Another person agrees with this assessment, and adds 
that there were serious bugs caused by unfamiliarity with that code. What is the BEST way to improve this situation?

A. Break the work down into smaller chunks so the team can feel like they’re accomplishing more
B. Start pair programming all of the work that the team does so that people get more familiar with the code and can 

help each other catch bugs earlier
C. Plan the work so that everyone is busy
D. Limit the amount of work in progress so that team members don’t have so much to do

6. Which of the following is NOT a tool used in retrospectives to get team consensus on improvements?

A. Dot voting
B. MoSCoW
C. Fist-of-five voting
D. Ishikawa diagrams

7. An agile team has just completed a two-week sprint. One of the team’s stakeholders asks for the status of the 
risks that were identified in planning. The team directs the stakeholder to the team’s risk burn down chart. What can 
the stakeholder tell from the information in the chart?

A. The team did not close out all of the risks that they identified in planning
B. Scope has been added
C. The team is ahead of schedule
D. There isn’t enough data to understand the status of the risks

Exam Questions

you are here 4  365

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: C

Agile teams maintain a risk-adjusted backlog to ensure that they work through the highest-risk items in the 
earliest sprints possible. Sometimes failing to solve a high-risk item can cause a whole project to fail and agile 
teams are always trying to fail as fast as possible, so they do those items first.

2. Answer: B

When the team has two equally viable solutions but can’t decide on one, it often makes sense to pursue both of 
them at the same time. Creating an architectural spike to let the team explore both options will most likely give 
the team the information they need in order to make an informed decision in the next sprint planning session. 

3. Answer: B

This team hasn’t been together very long and they are arguing in Daily Scrums and planning meetings. It sounds 
like they’re in the Storming phase of development. They will need the agile practitioner to take on a coaching 
role to help them get through their disagreements. 

4. Answer: C

Scrum teams use the Daily Scrum to inspect their plan and make adjustments so that they can achieve 
their sprint goals. If some team members are having trouble with their work, others help them get rid of any 
impediments and finish what they set out to accomplish. 

5. Answer: C

This is an example of a team using a build server. Whenever a team member makes a commit, all of the unit 
tests are run on the code and the entire repository is compiled. That way the whole team will know if there’s a 
breaking change to the code as early as possible. If the tests fail or the code won’t compile, the team knows that 
the problem is coming from the change that was just committed. Then the programmer who made that change 
can fix it before it causes other problems down the line. 

Were you expecting to see “Continuous integration” as one of the answers? Using a build server isn’t the same thing as continuous integration, which is when team members continuously integrate code from their working folders back into the version control system to find problems early.

366  Chapter 7

domain 6 exam answers



Exam Questions
Answers

6. Answer: D

This team is performing. They all know what their teammates are capable of and have established a way of 
working that takes advantage of each other’s strengths. It’s typically most effective to delegate to them, and to 
let them keep doing what they’re doing.

7. Answer: A

This team is forming. They will look to you to make most of the decisions until they become more comfortable 
with each other, so the directing style of management is most appropriate.

8. Answer: D

Displaying the risks up on a whiteboard for everyone in the project to see and review is an example of an 
information radiator. It’s a good way to keep the risks that the team identified in everyone’s mind so that 
everyone’s aware of them, and can ask for help if they cause problems.

you are here 4  367

preparing for the pmi-acp



Exam Questions
Answers

1. Answer: A

Agile teams value generalizing specialists who can apply a wide range of skills wherever they’re needed, so that 
they can add value in many ways throughout a product’s delivery timeline.

2. Answer: B

The goal of a retrospective should be specific actions that the team can take to make the process, system, or 
method that they’re following more useful, streamlined, and collaborative for the team.

3. Answer: D

This question is describing the sprint review that occurs at the end of every Scrum sprint. In it, the product 
owner provides valuable feedback on the work product of the sprint. In some cases, that product owner will 
provide feedback, which will be added to the product backlog and incorporated into upcoming sprints in order of 
relative priority. 

4. Answer: C

The team member should build a spike solution, in which she tries out her idea to see if it will work. Everyone on 
the team needs to be able to make mistakes. If the expectations on the team are so closely managed that team 
members have no freedom to decide as they go, they will not be able innovate or keep their options open.

5. Answer: B

When teams are highly specialized, pair programming can be a good way to break down barriers and help 
people to understand code they might not have worked with before. Pairing someone who’s less familiar with the 
code with someone who knows it very well can spark great discussions between them; this is a very effective 
way to ramp people up on parts of the codebase that they are not familiar with yet. Pair programming also helps 
teams to catch bugs earlier and deliver a higher quality product, because pairs are constantly reviewing the 
code even as it’s writtten.

368  Chapter 7

domain 7 exam answers



Exam Questions
Answers

6. Answer: B

MoSCoW is a tool for prioritization. The rest of the answers offered are used in retrospectives. 

7. Answer: A

The team identified more story points in risk reduction than they were able to complete within the sprint. In the 
last four days of the sprint the team did not make progress on any risk items. Instead, the sprint closed with 
roughly 15 points of risk mitigation effort still outstanding. Therefore, there are still planned risks that were not 
closed out.

you are here 4  369

preparing for the pmi-acp



Examcross
Get ready for one last test of your knowledge before you take the final practice 
exam! How much of this crossword can you do without looking at the answers?

1 2 3 4

5 6 7 8 9 10 11

12 13

14 15 16

17 18 19

20

21 22 23 24

25 26

27 28 29

30

31 32 33 34 35

36 37

38 39 40 41

42 43 44

45 46

47 48 49

50 51 52

53 54 55

56 57

Across
5. Scrum value that tells us it's most effective to 

work on one item at a time
8. Meeting at the end of the sprint where the team 

talks about how it went and what can improve
10. The team determines what work will be 

performed in the sprint during the sprint 
__________ meeting

12. Scrum artifact that includes all items completed 
during the sprint

14. Planning __________ is a collaboration game to 
help the team estimate

15. Agile teams value responding to change over 
following a __________

16. Amount of money the project will return to the 
company that is funding it

17. The kind of leadership where you adjust 
leadership style to match the stage of team 
formation

18. __________ time is an estimate that assumes 
no delays, interruptions, or problems

Down
1. The kind of cycle where you determine if you 

can improve efficiency and quality
2. The __________ backlog is the Scrum artifact 

that includes the items to be completed in the 
current iteration

3. The stage of development for which the 
coaching leadership style is best applied

4. The leadership style most appropriate for the 
performing stage of team formation

6. Scrum and XP value that helps team members 
stand up for the project

7. The kind of leadership the Scrum Master 
provides

9. XP and Scrum value that tells team members to 
treat each other the way they would want to be 
treated themselves

11. XP practice—the kind of design that helps the 
team embrace change

13. The kind of elaboration where an item is 
updated incrementally as more information is 
known

Across
5. Scrum value that tells us it’s most effective to work on one item at a 
time
8. Meeting at the end of the sprint where the team talks about how it 
went and what can improve
10. The team determines what work will be performed in the sprint 
during the sprint __________ meeting
12. Scrum artifact that includes all items completed during the sprint
14. Planning __________ is a collaboration game to help the team 
estimate
15. Agile teams value responding to change over following a 

__________

16. Amount of money the project will return to the company that is 
funding it
17. The kind of leadership where you adjust leadership style to match 
the stage of team formation
18. __________ time is an estimate that assumes no delays, 
interruptions, or problems
19. Money you expect to make from a project that you are building
20. Smallest possible piece of functionality that can be delivered
21. The style of leadership that matches the forming stage of team 
development
23. Low fidelity tool for sketching a user interface
27. The number of points’ worth of work the team accomplishes on 
average per iteration

370  Chapter 7

pmi-acp® crossword

Answers on page 375 



Across
28. Contains features and work items to be built, may contain risks
30. Kind of programming where two people work together at the same 
computer
31. Dot voting and fist-of-five voting are examples of collaboration 

_________
32. Kind of solution that is also referred to as “exploratory work”
34. Transparency, inspection, and adaptation are the three pillars of 

__________ process control 
36. A description of a fictional user
38. Simple requirements prioritization technique where you decide if 
you must, could, should, or won’t have each requirement
40. Product Owner, Scrum Master, and team member are examples of 
these
41. Actual value at a given time of the project minus all of the costs 
associated with it
44. The __________ backlog is the Scrum artifact that contains the 
single source of all changes and features
45. XP value that is helped by creating loosely coupled or decoupled 
code
47. In __________ estimating, team members create groups and take 
turns assigning items to them
48. Agile teams value individuals and interactions over processes and 

__________
50. Agile teams value __________ software over comprehensive 
documentation
53. The average time a work item spends in the process is its 

__________ time
54. An information __________ is posted in a visible area in the team 
space
55. Kind of testing that helps ensure you’re making effective design 
choices
56. Scrum teams are __________ organizing
57. The kind of communication where you absorb information 
overheard in the team space

Down
1. The kind of cycle where you determine if you can improve efficiency 
and quality
2. The __________ backlog is the Scrum artifact that includes the 
items to be completed in the current iteration
3. The stage of development for which the coaching leadership style is 
best applied
4. The leadership style most appropriate for the performing stage of 
team formation
6. Scrum and XP value that helps team members stand up for the 
project

7. The kind of leadership the Scrum Master provides
9. XP and Scrum value that tells team members to treat each other the 
way they would want to be treated themselves
11. XP practice—the kind of design that helps the team embrace change
13. The kind of elaboration where an item is updated incrementally as 
more information is known
22. Meeting at the end of a sprint where work is demonstrated to the 
stakeholders
24. Actual cost in money or hours on value the product is delivering
25. Only the Product Owner has the authority to __________ a sprint, 
but it can cause the stakeholders to lose trust in the team
26. The stage of development for which the supporting leadership style 
is appropriate
29. Scrum value that tells us that team members should feel 
comfortable with everyone having visibility into their work
30. Working at a sustainable __________ means working 40 hours a 
week so the team doesn’t burn out
33. The kind of feedback loop where you determine if what you’re 
delivering meets expectations
35. A story __________ shows planned releases 
36. Story __________ are a relative sizing technique
37. How you modify code structure without changing its behavior
38. Smallest possible product that the team can deliver which still 
satisfies the users’ and stakeholders’ needs
39. Brief description of functionality from a user’s perspective
42. What many teams fear, but effective XP teams embrace
43. How often the team meets to inspect the work by answering 
questions about their progress, planned work, and roadblocks
46. Relative sizing technique where you assign XS, S, M, L, or XL to 
each item
49. The average time a stakeholder spends waiting for a work item to be 
completed is its __________ time
50. Limit __________ in progress in order to improve throughput of 
work items through your process
51. Product feedback methods reduce the __________ of evaluation, or 
the difference between what was asked for and what the team built
52. Type of analysis that shows you how features that once delighted 
users are now seen as basic requirements

you are here 4  371

preparing for the pmi-acp



Domain 5: Exam Questions

In your own words
Here’s how we interpreted the tasks in our own words. It’s OK if you used different words!

The tasks in Domain 5 are listed on page 10 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Task 7

Task 9

Task 8

Task 10

Evolve your project plan as you learn more about your project, stakeholders, and roadblocks

Iterate at every level of the project (daily meetings, sprints, quarterly cycles, etc.)

Be completely transparent with your stakeholders about how you plan the project

Start out with broad commitments, and make more specific ones as the project unfolds

Use retrospectives and your understanding of deliverables to change how and how often you plan

Use an inspection-adaptation cycle to stay on top of scope, priority, budget, and schedule changes

Collaborate to understand the ideal size of work items before taking velocity into account

Don’t forget about maintenance and operations activities, which can affect your project plan

Create initial estimates that take into account the fact there are still a lot of unknowns

Keep refining your estimates as you learn more about how much effort the project will require

Continue to update your plan as you get a clearer picture of the team’s velocity and capacity

SOLUTION

372  Chapter 7

domains 5 and 6 in your own words solution



Domain 6: Exam Questions

In your own words, write down what you think Domain VI (“Problem Detection and Resolution”) is about:

In your own words

Watch for problems and fix them, then improve how you work to prevent them from reoccurring

The tasks in Domain 6 are listed on page 11 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Give everyone on the team freedom to experiment and make mistakes

Constantly watch for risks to the project, and make sure the whole team is aware of them

When problems happen, make sure they’re fixed—or, if they can’t be fixed, set expectations

Be completely transparent about the risks, problems, issues, and threats to the project

Make sure risks and issues actually get fixed by including them in product and iteration backlogs

SOLUTIONHere’s how we interpreted the tasks in our own words. It’s OK if you used different words!

you are here 4  373

preparing for the pmi-acp



Domain 7: Exam Questions

Here’s how we interpreted the tasks in our own words. It’s OK if you used different words!

In your own words

The team works together to keep improving the way that they do project work

The tasks in Domain 7 are listed on page 12 of the content outline. Write down what you think each task is about:

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Constantly look at the practices, values, and goals, and use that information to adapt the process

Hold retrospectives frequently, and experiment with improvements to address issues you find

Demonstrate working software at the end of every iteration, and genuinely listen to feedback

Generalizing specialists are really valuable, so give everyone opportunities to improve their skills

Use value stream analysis to discover waste, and make individual and team efforts to eliminate it

When you gain knowledge from making improvements, share it with the rest of the organization

SOLUTION

374  Chapter 7

domain 7 in your own words solution



L1 S2 S3 D4

F5 O C6 U S7 R8 E T R9 O S P E C T I V E P10 L A N N I11 N G
O E A E R O L N
U R R S I12 N C R E M E N T P13 C

P14 O K E R V N P15 L A N M G R I16 R R
A17 D A P T I V E T I18 D E A L R19 O I E
G N N C N T G M20 M F

D21 I R22 E C T I N G T G W23 I R E24 F R A M E
E C25 N V E N N26

V27 E L O C I T Y B28 A C K L O29 G M S T O
I N P S P30 A I R

G31 A M E S S32 P33 I K E C E34 M35 P I R I C A L M
W R P36 E R37 S O N A V C I

M38 O S39 C O W R40 O L E N41 P V E E N
V T D I F E G

C42 D43 P44 R O D U C T N A S
H A R C T C S45 I M P L I C I T46 Y
A47 F F I N I T Y T48 O O L49 S T S
N L E W50 O R K I N G51 K52 H
G C53 Y C L E R54 A D I A T O R U55 S A B I L I T Y
E D R L N R

K S56 E L F O57 S M O T I C

Across
5. Scrum value that tells us it's most effective to 

work on one item at a time [FOCUS] 
8. Meeting at the end of the sprint where the team 

talks about how it went and what can improve 
[RETROSPECTIVE] 

10. The team determines what work will be 
performed in the sprint during the sprint 
__________ meeting [PLANNING] 

12. Scrum artifact that includes all items completed 
during the sprint [INCREMENT] 

14. Planning __________ is a collaboration game to 
help the team estimate [POKER] 

15. Agile teams value responding to change over 
following a __________ [PLAN] 

16. Amount of money the project will return to the 
company that is funding it [IRR] 

17. The kind of leadership where you adjust 
leadership style to match the stage of team 
formation [ADAPTIVE] 

18. __________ time is an estimate that assumes 
no delays, interruptions, or problems [IDEAL] 

Down
1. The kind of cycle where you determine if you 

can improve efficiency and quality [LEARNING] 
2. The __________ backlog is the Scrum artifact 

that includes the items to be completed in the 
current iteration [SPRINT] 

3. The stage of development for which the 
coaching leadership style is best applied 
[STORMING] 

4. The leadership style most appropriate for the 
performing stage of team formation 
[DELEGATING] 

6. Scrum and XP value that helps team members 
stand up for the project [COURAGE] 

7. The kind of leadership the Scrum Master 
provides [SERVANT] 

9. XP and Scrum value that tells team members to 
treat each other the way they would want to be 
treated themselves [RESPECT] 

11. XP practice—the kind of design that helps the 
team embrace change [INCREMENTAL] 

Examcross Solution

you are here 4  375

preparing for the pmi-acp



Are you ready for the final exam?

Congratulations! Take a minute and think about how much you’ve learned about 
agile. Now it’s time to test your knowledge and see how well you’re prepared to take 
the PMI-ACP® exam. The last chapter in this book is a full length, 120-question, 
simulated PMI-ACP® exam, carefully constructed using the same exam content 
outline as the real thing and using questions that have style and content similar to 
what you’ll see on exam day. Here are a few tips to make it as effective as possible:

 ≥ When you take the final exam in the next chapter, 
make it the only study activity that you do that day.

 ≥ Give yourself plenty of time to do it, and take the 
whole exam all at once.

 ≥ Make sure you drink lots of water while you’re 
answering the questions.

 ≥ As you’re answering the questions, think about each 
answer and only mark down one response, even if 
you’re not 100% sure.

 ≥ After every 10 questions, go back and read through 
each of them again, and see if you still agree with your 
answer.

 ≥ Don’t look at any of the exam answers until you’ve 
gone through all of the questions.

 ≥ Make sure you get plenty of sleep the night after you 
take the practice exam. That helps the information 
stick in your brain!

Cognitive psychologists 
recognize that sleep 

plays a really important role in 
helping your brain organize and 

consolidate information into 
your long-term memory.

Good luck!

Your brain actually 
learns better when 
it’s well-hydrated!

376  Chapter 7

page goal header



this is a new chapter  377

Professional responsibility8

Making good choices

It’s not enough to just know your stuff. You need to make good 
choices to be good at your job.  Everyone who has the PMI-ACP credential 

agrees to follow the Project Management Institute Code of Ethics and Professional 

Conduct, too. The Code helps you with ethical decisions that aren’t really covered in the 

body of knowledge—you may get a few questions about it on the PMI-ACP exam. Most of 

what you need to know is really straightforward, and with a little review, you’ll do well.

0h, really? 
Well, does it say 

anything about taking 
the garbage out?

Knowing the 
PMI Code of Ethics 
and Professional 

Conduct has made me a 
better agile practitioner 

AND a better 
husband. 



378  Chapter 8

meet the code of ethics and professional conduct

Doing the right thing
You’ll get some questions on the exam that present situations that 
you might run into while managing your projects and then ask 
you what to do. Usually, there’s a clear answer to these questions: 
it’s the one where you stick to your principles. Questions 
will make the decisions tougher by offering rewards for doing the 
wrong thing (like money for taking a project shortcut), or they 
will make the infraction seem really small (like photocopying 
a copyrighted article out of  a magazine). If  you stick to the 
principles in the PMI Code of  Professional Conduct regardless of  
the consequences, you’ll always get the answers right. 

So if you find out that someone has stolen questions from the PMI-ACP exam, cheated on the PMI-ACP exam, falsely claimed to have a PMI-ACP certification, or lied about anything related to the PMI-ACP certification process, then you MUST report that to PMI.

The main ideas
In general, there are a few kinds of problems that the 
code of ethics prepares you to deal with. 

1. Follow all laws and company policies.

2. Treat everybody fairly and respectfully.

3. Have respect for the environment and the community 
you’re working in.

4. Give back to the community by writing, speaking, and 
sharing your experience with other agile professionals.

5. Keep learning and getting better and better at your job. 

6. Respect other people’s cultures.

7. Respect copyright laws.

8. Always be honest with everyone on the project.

9. If you find that another person has done something to 
damage the PMI-ACP or any other PMI credential in any 
way, you must report it to PMI.

The PMI-ACP 
exam content 
outline includes 
knowledge of ethics 
and professional 
conduct, because 
ethical behavior 
should be part 
of any agile 
practitioner’s 
knowledge and 
skills. That means 
there may be a 
small number 
of questions 
about ethics 
and professional 
conduct scattered 
throughout the 
exam. 



you are here 4  379

professional responsibility

Being PMI-ACP® certified means that you know 
how to do your job and that you will do it with 
integrity.
It might seem like it doesn’t really matter how you will handle 
these situations, but think about it from an employer’s perspective 
for a minute. Because of  the PMI Code of  Ethics and Professional 
Conduct, employers know that when they hire a PMI-ACP® 
certified agile practitioner, they are hiring someone who will follow 
company policies and do everything aboveboard and by the book. 
That means that you’ll help to protect their company from litigation 
and deliver on what you promise, which is actually pretty important. 

So you should definitely not be surprised to see at least a few 
questions about ethics and professional responsibility on the exam. 

Keep your eye out for “red herring” questions that turn out to be 
about ethics and social responsibility. They might lay out a situation 
that sounds like a normal project management problem, but requires 
you to use one of  the principles in the PMI Code of  Ethics and 
Professional Conduct.

Can you think of some situations where you might need to 
make decisions using these principles in your own projects?

Come on. Is this really on 
the test? I know how to do my 

job. Do I really need a morality 
lesson?



380  Chapter 8

never take bribes

Keep the cash?
It is never, under any circumstances, OK 
to accept a bribe—even if  your company 
and customer might benefit from it 
somehow. And bribes aren’t always cash. 
They can be anything from free trips to 
tickets to a ball game. Any time you’re 
offered anything to change your opinion 
or the way you work, you must decline 
the offer and disclose it to your company.

Kate, you were so great to 
work with. We’d like to send 
you $1,000 as a token of our 

appreciation.

Awesome. I’ve 
been wanting to go 
shopping for a while. 
And what about that 
vacation? Acapulco, 

here we come!

I would never 
accept a gift like 
that. Doing a good 

job is its own 
reward!

I’m sorry, I can’t 
accept the gift. I 

really appreciate the 
gesture, though. 

In some countries, even though 
you may be “expected” to pay 
a bribe, it’s not OK to do 
it—even if it’s customary or 
culturally acceptable.

The easy way

The right way



you are here 4  381

professional responsibility

Fly business class?
Any time there’s a policy in your company, you 
need to follow it. Even if  it seems like no harm will 
be done if  you don’t follow the policy, and even 
if  you will be able to get away with it, you should 
not do it. And that goes double for laws—under no 
circumstances are you ever allowed to break a law, no 
matter how much good it “seems” to do you or  
your project.

Did you know 
that those chairs 
go into totally flat 

beds? This is so cool. 
i’ve worked so hard, i’ve 

totally earned it!

There’s 
no excuse for 

not following 
the rules. The 

travel policy says 
fly coach. No 

exceptions!

We’ve got some 
extra money in the 

budget and you’re really 
doing a great job. I know the 
travel policy says we always 

fly coach. But we can afford to 
splurge a bit. Why don’t you buy a 

business ticket this time?

Wow, Ben. That’s 
really nice of you. 

But the economy fare 
will be fine. 

And if you ever see someone in your 
company breaking the law, you need 
to report it to the authorities.



382  Chapter 8

respect intellectual property

New software
When it comes to copyright, it’s never OK to use 
anything without permission. Books, articles, music, 
software…you always need to ask before using it. For 
example, if  you want to use some copyrighted music 
in a company presentation, you should write to the 
copyright owner and ask for permission.

Absolutely! 
This will totally 

make my job about 100 
times faster, and it’s 
free? It’s my lucky 

day.

Thanks for 
letting me know 

it’s available. I’ll 
go buy a copy. 

Hey Kate, I just got a 
copy of that scheduling 
software you wanted. You 
can borrow my copy and 

install it.

That software 
was created by a 

company that deserves 
to be paid for their work. 

It’s just wrong not to 
buy a licensed copy. 



you are here 4  383

professional responsibility

Shortcuts
You might see a question or two asking if  you really 
need to follow all of  the processes. Or you might be 
asked by your boss to keep certain facts about your 
project hidden from stakeholders or sponsors. You 
have a responsibility to make sure your projects are 
run properly, and to never withhold information 
from people who need it.

All right, Less 
work for me! let’s 

face it, it’s not like i have 
all the time in the world 

for writing plans!

I know we don’t 
have much time, but 

taking this shortcut 
could actually cost us 
more time than it saves 

in the end.

We don’t have time for all of 
this documentation. Let’s cut 
out a couple of these plans to 
keep our project on schedule.

I would never do 
a project without 

following ALL of the 
47 processes outlined 

in The PMBOK Guide.



384  Chapter 8

respect our environment

A good price or a clean river?
Being responsible to the community is 
even more important than running a 
successful project. But it’s more than 
being environmentally aware—you 
should also respect the cultures of  
everyone else in your community, and 
the community where your project 
work will be done.

We just found out 
that one of our suppliers 

dumps harmful chemicals in 
the river. They’ve always given 
us great rates, and our budget 
will go through the roof if we 

switch suppliers now. The whole 
thing gives me a headache. What 

should we do?

We can’t let the project 
fail for a bunch of stupid 

fish. 

The earth is 
our home and is 
so much more 

important than this 
project. We have to 
do what’s right…

Ben, I know it could 
cause us problems, but 

we’re gonna have to find 
another supplier. 

That means even though languages, customs, 
holidays, and vacation policies might be 
different from country to country, you need 
to treat people the way they are accustomed 
to being treated.



you are here 4  385

professional responsibility

We’re not all angels
We know that the choices you make on your project are not always black and 
white. Remember that the questions on the exam are designed to test your 
knowledge of  the PMI Code of  Professional Conduct and how to apply it. A lot 
of  situations you will run into in real life have a hundred circumstances around 
them that make these decisions a little tougher to make than the ones you see here. 
But if  you know what the code would have you do, you’re in a good position to 
evaluate those scenarios as well. 

Now, go read PMI’s Code of Ethics and Professional 
Conduct before you take these exam questions. 

To find it, search for “PMI Code of Ethics and 
Professional Conduct” using the search feature on the 

PMI website, or using your favorite search engine.

Seriously, it’s a quick 
read—and it’ll help 
you on the exam.

I may not be the life of 
the party, but think like me, 
and you’ll nail the ethics part 

of the exam.



386  Chapter 8

exam questions

1. You read a great article over the weekend, and you think your team could really benefit from it. What should you do?

A. Photocopy the article and give it to the team members.
B. Type up parts of the article and email it to the team.
C. Tell everyone that you thought of the ideas in the article yourself.
D. Buy a copy of the magazine for everyone.

2. You find out that a contractor that you’re working with discriminates against women. The contractor is in another 
country, and it’s normal in that country. What should you do?

A. Respect the contractor’s culture and allow the discrimination to continue.
B. Refuse to work with the contractor, and find a new seller.
C. Submit a written request that the contractor no longer discriminate.
D. Meet with your boss and explain the situation.

3. You’re working on a project when the client demands that you take him out to lunch every week if you want to keep 
his business. What’s the BEST thing to do?

A. Take the client out to lunch and charge it to your company.
B. Refuse to take the client out to lunch because it’s a bribe.
C. Take the client out to lunch, but report him to his manager.
D. Report the incident to PMI.

4. You are working on one of the first financial projects your company has attempted, and you have learned a lot about 
how to manage the project along the way. Your company is targeting financial companies for new projects next year. 
What’s the BEST thing for you to do?

A. Talk to your company about setting up some training sessions so that you can teach others what you have learned on 
your project.

B. Keep the information you’ve learned to yourself so that you’ll be more valuable to the company in the next year.
C. Decide to specialize in financial contracts.
D. Focus on your work with the project and don’t worry about helping other people to learn from the experience.

5. You find out that you could save money by contracting with a seller in a country that has lax environmental 
protection rules.  What should you do?

A. Continue to pay higher rates for an environmentally safe solution.
B. Take advantage of the cost savings.
C. Ask your boss to make the decision for you.
D. Demand that your current contractor match the price.

Exam Questions



you are here 4  387

professional responsibility

Exam Questions
6. You overhear someone on your team using a racial slur. This person is a critical team member and 
you are worried that if he leaves your company it will cause project problems. What should you do?

A. Pretend you didn’t hear it so that you don’t cause problems.
B. Report the team member to his boss.
C. Bring it up at the next team meeting.
D. Meet in private with the team member and explain that racial slurs are unacceptable.

7. You’ve given a presentation for your local PMI chapter meeting. This is an example of what?

A. A PDU
B. Contributing to the Project Management Body of Knowledge
C. Donating to charity
D. Volunteering

8. You are about to hold a bidder conference, and a potential seller offers you great tickets to a 
baseball game for your favorite team. What should you do?

A. Go to the game with the seller but avoid talking about the contract.
B. Go to the game with seller and discuss the contract.
C. Go to the game, but make sure not to let him buy you anything because that would be a bribe.
D. Politely refuse the tickets.

9. Your company has sent out a request for proposals for consulting work, and your brother wants to 
bid on it. What’s the BEST thing for you to do?

A. Give your brother inside information to make sure that he has the best chance at getting the project.
B. Publicly disclose your relationship with him and excuse yourself from the selection process.
C. Recommend your brother but don’t inform anyone of your relationship.
D. Don’t tell anyone about your relationship, but be careful not to give your brother any advantage 

when evaluating all of the potential sellers.



388  Chapter 8

Exam Questions
Answersexam answers

1. Answer: D

You should never copy anything that’s copyrighted. Make sure you always respect other people’s 
intellectual property!

2. Answer: B

It’s never OK to discriminate against women, minorities, or others. You should avoid doing 
business with anyone who does.

3. Answer: B

The client is demanding a bribe, and paying bribes is unethical. You should not do it. If your 
project requires you to bribe someone, then you shouldn’t do business with that person.

4. Answer: A

You should always try to help other people learn, especially about improving the way they run 
their projects.

5. Answer: A

You should never contract work to a seller who pollutes the environment.  Even though it costs 
more to use machinery that doesn’t damage the environment, it’s the right thing to do.

6. Answer: D

You should make sure that your team always respects other people.

7. Answer: B

Any time you help share your knowledge with others, you are contributing to the Project 
Management Body of Knowledge, and that’s something you should do any time you have any 
kind of PMI certification!



you are here 4  389

professional responsibility

Exam Questions
Answers

8. Answer: D

You have to refuse the tickets even if the game sounds like a lot of fun. The tickets amount to a 
bribe, and you shouldn’t do anything that might influence your decision in awarding your contract.

9. Answer: B

You have to disclose the relationship. It’s important to be up front and honest about any conflict of 
interest that could occur on your projects.

Even if I 
don’t see many questions 

about this on the PMI-ACP exam, it’s 
still a great topic to be familiar 

with as a professional.



390  Chapter 8

this page intentionally left blank



I know we’re 
supposed to be 

studying, but I can’t 
stop thinking about 

fudge.

practice makes perfect9

Practice PMI-ACP Exam

Bet you never thought you’d make it this far!  It’s been a long journey, 

but here you are, ready to review your knowledge and get ready for exam day. You’ve put 

a lot of new information about agile into your brain, and now it’s time to see just how much 

of it stuck. That’s why we put together this full-length, 120-question PMI-ACP® practice 

exam for you. We followed the exact same PMI-ACP® Examination Content Outline 

that the experts at PMI use, so it looks just like the one you’re going to see when you 

take the real thing. Now’s your time to flex your mental muscle. So take a deep breath, get 

ready, and let’s get started.

this is a new chapter  391



1. A Scrum team’s stakeholder discovers a new requirement and approaches a team member to build it. The team member 
builds a prototype for the stakeholder, who is able to start using it immediately. The product owner discovers this and 
demands that the team member include her in any future decisions, but the team member feels this is the most efficient 
way to work. The product owner and team member approach the scrum master to resolve the conflict. What should the 
scrum master do? 

A. Help the product owner understand how the team member is improving stakeholder communications
B. Side with the product owner
C. Help the team member follow the rules of Scrum by showing the correct use of user stories
D. Help the product owner and team member compromise and find a middle ground

2. After the team gives a demonstration of the work they built during an iteration, a stakeholder complains that the 
software is difficult to use. What technique can the team employ to prevent this in the future?

A. Develop user interface requirements that cover usability
B. Define organizational usability standards
C. Observe stakeholders interacting with a preliminary version of the user interface
D. Create a wireframe and review it with the stakeholders

3. The main project stakeholder for a Scrum project emails the product owner to notify them that one of the primary 
deliverables must be delivered two months earlier than planned. The team members meet and agree on an approach that 
will achieve the goal, but it will cause a delay to several features of other deliverables. The product owner warns the team 
that this will be unacceptable to the stakeholder. How should the team proceed?

A. Initiate the change control procedure
B. Have the product owner meet with the stakeholder to discuss acceptable trade-offs
C. Begin exploratory work on a spike solution
D. Start working on the approach that the team collaboratively agreed on

4. You are reviewing your team’s kanban board, and you discover that many work items tend to accumulate in a specific 
step in the process. What is the best way to handle this situation?

A. Work with the team to remove work items from that step of the process
B. Use Little’s law to calculate the long-term average inventory
C. Increase the arrival rate of work items into the process
D. Work with project stakeholders to establish a WIP limit for that column

392  Chapter 9

exam questions



5. A tester on a Scrum team has expressed interest in taking on some programming tasks. One of the developers is 
concerned that this may lead to quality problems. How should the team proceed?

A. The scrum master should look for opportunities to provide development training for the tester
B. The developer should serve as a full-time mentor to the tester
C. The scrum master should call a meeting to get consensus on letting the tester do development work
D. The tester should start to take on development tasks as they become available during the sprint

6. A new member of an agile team disagrees with the ground rules that team members currently adhere to. How should the 
team proceed?

A. Explain the reason for the rule and encourage the new team member to try following it
B. Throw out the rule and collaborate on a replacement
C. Have the scrum master explain the rules of scrum to the new team member
D. Show the new team member which principle in the Agile Manifesto the rule is based on

7. You are a leader on an agile team. Which of the following is not an action that you would take?

A. Set an example by acting the way you would like other team members to act
B. Make sure everyone on the team understands the goal of the project
C. Make important decisions about how the team will design the software
D. Prevent external problems from taking up too much of the team’s time

8. You are in a sprint planning meeting. Two members of your team are arguing over one of the stories. They cannot agree 
on whether they will be able to reuse an existing aspect of the user interface, or if they will need to build out new user 
interface elements. What is the best way for the team to resolve this issue?

A. The product owner resolves the issue by determining how the team will solve the problem
B. The team adds buffers to the plan to account for the uncertainty
C. The Scrum Master resolves the issue by determining how the team will solve the problem
D. The team uses negotiation to reach an agreement on the specific acceptance criteria for the feature

you are here 4  393

practice pmi-acp exam



9. You are an agile practitioner working directly with several business stakeholders. One of the stakeholders has provided 
a requirement that is proving difficult to implement. Several team members have called a meeting to propose an alternative 
to the requirement that will be much less expensive to implement. How should you handle this situation?

A. Use servant leadership to engage the team
B. Invite the stakeholder to the next daily standup
C. Explain the team’s alternative to the stakeholder
D. Explain the stakeholder’s expectations and needs to the team and collaborate on a solution

10. An agile team is in their second iteration. Some team members’ disagreements are starting to turn into arguments, and 
one team member recently accused another of shirking responsibility. What best describes this team?

A. The team is in the storming phase, and needs directing
B. The team is in the norming phase, and needs supporting
C. The team is in the norming phase, and needs coaching
D. The team is in the storming phase, and needs coaching

11. A Scrum team claims to be self-organizing. What does that mean?

A. The team plans each sprint together and makes decisions about individual task assignments at the last responsible 
moment

B. The team delivers working software at the end of each sprint, and adjusts the next sprint plan to maximize value delivered 
to stakeholders

C. The team does not need a manager, and instead relies on the scrum master to provide servant leadership
D. The team only needs to plan on a sprint-by-sprint basis, and does not have to commit to any deadline beyond the length 

of the sprint

12. An agile practitioner is working with a vendor to implement an important product feature. The practitioner is concerned 
that the vendor is working on low-priority features in early iterations, while neglecting higher priority features. What is the 
best way to handle this situation?

A. The practitioner raises the issue at the next daily standup
B. The practitioner raises the issue at the next iteration planning meeting
C. Value of the deliverables are optimized through collaboration between the practitioner and the vendor
D. The practitioner moves high priority items into the backlog

394  Chapter 9

exam questions



13. You are an agile practitioner on a team at a vendor of software services. One of your clients is having trouble planning 
their iterations. Your team ran into a similar problem, and used a specific technique to resolve it. What action should you 
take?

A. Explain the practice to your contacts at the client
B. Create a document that describes the improvement
C. Offer to attend the client’s daily standup meetings
D. Do nothing in order to respect the organizational boundaries

14. A scrum master on another team asks you for advice about how to handle a user who keeps changing his mind about 
what the team should build. You should:

A. Show the scrum master the company’s standards for creating a project plan and implementing a change control process
B. Show how your own users have changed their minds in the past, and that you worked with the team to make adjustments 

during sprints and in sprint planning
C. Offer to run the other team’s daily standup and retrospective meetings
D. Explain that agile teams value responding to change, and that the scrum master should help the team understand this 

principle

15. Which of the following is not valuable for fostering an effective team environment?

A. Pay attention during retrospectives and contribute wherever possible
B. Make it clear that it’s OK to make mistakes
C. When team members disagree on an approach, have a constructive argument
D. Be very careful that you follow all of the company’s ground rules for working on projects

16. You are an agile practitioner on a team using Kanban for process improvement. What metrics would you use to 
measure the effectiveness of your improvement effort, and how would you visualize the data?

A. Use a resource histogram to visualize resource allocation over the course of the project
B. Use a burndown chart to visualize velocity and points completed per day
C. Use a value stream map to visualize time worked versus time spent waiting
D. Use a cumulative flow diagram to visualize arrival rate lead time, and work in progress

you are here 4  395

practice pmi-acp exam



17. Your team can choose between two feasible solutions to a technical problem. One solution uses encryption but runs 
more slowly, the other solution does not use encryption and runs more quickly. What is the best way to choose between 
the two solutions?

A. Choose the faster solution
B. Use a spike solution to determine which approach will work
C. Choose the more secure solution
D. Elicit relevant non-functional requirements from stakeholders

18. You are an agile practitioner in the scrum master role. Your team is holding a retrospective. What is your responsibility?

A. Observe the team identify improvements and create a plan to implement them, and help team members understand their 
roles in the meeting

B. Make yourself available to the project team if they have questions about the rules of Scrum
C. Participate in identifying improvements and creating a plan to implement them, and help team members understand their 

roles in the meeting
D. Help the team understand the needs of the stakeholders and represent their viewpoint

19. You are a scrum master. A member of your team is concerned that there are too many team meetings, and would like to 
skip the daily standup meeting once a week. What should you do?

A. Explain that the rules of Scrum require that everyone attend the meeting
B. Help the team member understand how the daily meeting helps everyone on the team find problems early and fix them
C. Partner with the team member’s manager because attending the daily standup is a job requirement
D. Work with the team to set ground rules that everyone attend the daily standup

20. Your agile team is working with a vendor to build some of the product components, including a component that will be 
used in the next sprint. After meeting with the representative from the vendor to discuss the project’s goals and objectives, 
the vendor representative emails you their scope and objectives document, explaining that they use a waterfall process 
and this is how the high-level vision and supporting objectives are communicated in their organization. What is the best 
way to handle this situation?

A. Request that the vendor team creates user stories to express requirements
B. Advocate for agile principles and explain that your team values working software over comprehensive documentation
C. Carefully read the scope and objectives document and follow up with the vendor representative about any discrepancies 

with your team’s understanding of the project
D. Invite the vendor representative to the sprint review meetings

396  Chapter 9

exam questions



21. You are an agile practitioner on a Scrum team developing financial analytics software. You and your teammates are 
very interested in trying a new technology. The product owner expresses concern that the extra time required to ramp up 
on it will cause delays. How should the team proceed?

A. Have the scrum master negotiate an agreement between the team and the product owner to use the new technology
B. Have the product owner explain the new technology to the primary stakeholders
C. Reject the new technology and stick with technology familiar to the team to avoid the extra time required
D. Have the team members collaborate with the product owner to find ways to align their technology goals with the project 

objectives

22. You are an agile practitioner on an XP team. A teammate discovered a serious problem with the architecture of the 
software that the team has been working on which will require a major redesign of several large components. What should 
the team do next?

A. Refactor the code and practice continuous integration
B. Use pair programming to help everyone understand the scope of the problem
C. Use incremental design and delay design decisions until the last responsible moment
D. Work with the stakeholders to help them understand the impact on the project

23. The timebox for doing the work for an iteration has expired. What is the next action the team takes?

A. Conduct a demonstration of all fully and partially completed features to the stakeholders
B. Conduct a retrospective to enhance the effectiveness of the team, project, and organization
C. Begin planning the next iteration
D. Conduct a demonstration of all features that were fully completed to the stakeholders

24. You are the product owner on a Scrum team building software that will be used by a team of financial services analysts. 
At the last two sprint reviews, the manager of the financial services analyst team was angry that your team did not build all 
of the features that she was expecting. What is the appropriate response?

A. Meet with the manager throughout the next sprint to discuss each story’s acceptance criteria, and update the sprint 
backlog based on that discussion

B. Send a daily email to each stakeholder with the latest version of the sprint backlog
C. Invite the manager to the next daily standup meeting
D. Invite the manager to the next sprint planning meeting

you are here 4  397

practice pmi-acp exam



25. You overhear two senior managers discussing a company-wide problem with software teams that deliver software late, 
and that the software often fails to deliver much value. What is the best way to handle this situation?

A. Take the opportunity to evangelize about Scrum and insist that more teams be required to use it
B. Offer to speak with other teams about your own team’s past success with agile
C. Engage your product owner to determine how best to take advantage of this situation
D. Explain that agile teams always follow the values and principles of agile

26. What is the most effective way to communicate progress in a team space?

A. Visualize project progress and team performance information
B. Position desks so everyone is face to face
C. Hold a retrospective
D. Communicate progress at the daily standup

27. You are an agile practitioner working on exploratory work that your team included in the current iteration plan. The goal 
of this work is to find problems, issues, and threats. The output of this exploratory work is that certain results should be 
surfaced to the team. Which of the following is not a valid reason to surface a specific issue?

A. It will slow down progress
B. It might prevent the team from delivering value
C. It isn’t the result that you expected
D. It is a problem or impediment

28. A software team at a company with a strict waterfall process is having engineering problems which are causing them 
to build features that do not adequately meet users’ needs. How can this team address the situation?

A. Assign team members to the product owner and scrum master role and mange the work using sprints
B. Use quarterly and weekly cycles, refactoring, test-driven development, pair programming, and incremental design
C. Use Kaizen and practice continuous improvement
D. Establish a team space that uses caves and commons, osmotic communication, and information radiators.

398  Chapter 9

exam questions



29. A stakeholder calls a meeting halfway through the sprint and explains that due to a change in business priorities one 
of the backlog items is no longer needed. What is the best way for the team to handle this?

A. The product owner and stakeholder present the change to the team at the sprint review
B. The product owner works with the team to remove the item from the sprint backlog, and the team delivers any other 

working software they have built when the sprint ends
C. The product owner removes the item from the sprint backlog, and extends the end date of the sprint to accommodate the 

change in plan
D. The product owner cancels the sprint and the team starts planning a new sprint

30. You are an agile practitioner on a team that uses a Scrum/XP hybrid. Two team members disagree on how much effort 
it will take to implement a story in the current sprint. Which of the following is not an effective action to take?

A. Use wideband Delphi to generate an estimate for the story
B. Have the product owner decide if the longer estimate is acceptable to the stakeholders
C. Have an informal group discussion about the factors that cause the estimates to differ
D. Call a team meeting to play a round of planning poker

31. Your company implements a requirement that teams create highly detailed documentation as part of the company-wide 
software development lifecycle. What is the correct response?

A. Use negotiation techniques to help the organization become more agile
B. Agile teams do not value comprehensive documentation, so the team should not produce it
C. Select a process for the team that delivers the highly detailed documentation without sacrificing delivery of customer value
D. Ensure that the team is delivering working software, while still producing the minimal documentation needed to build the 

software

32. You are an agile practitioner. Several members of your team have expressed concern that the project is not 
progressing as well as they would like. What is the best course of action?

A. Post a burn-down chart in a highly visible part of the team space
B. Consult the communications plan and distribute project performance information
C. Discuss the status of the project at the next daily standup meeting
D. Distribute status reports that include burn-down charts

you are here 4  399

practice pmi-acp exam



33. During a retrospective, a Scrum team finds that their velocity was reduced significantly at the same time that two 
teammates were taking vacations that had been planned for a long time. How is this most likely to affect the release plan?

A. The team must reduce the size or number of deliverables that they committed to in the release plan
B. The release plan will not be affected
C. The team can increase the size or number of deliverables that they committed to in the release plan
D. The team must change the frequency of releases in the release plan

34. The team is planning the next iteration. They just finished reviewing the overall list of features that will eventually be 
delivered. What is the next thing that they should do?

A. Have each team member answer questions about work completed, future work, and known impediments
B. Define a release plan that includes the correct level of detail
C. Extract individual requirements to focus on for the next increment
D. Establish communication with the appropriate stakeholders

35. A team member is working on an important deliverable. At the retrospective, she says it is less complex than expected. 
Which of the following is not true?

A. The release plan should be adjusted to reflect changes to expectations about the deliverable
B. The team should expect more progress to be made on the deliverable in the next iteration
C. The velocity should increase in the next iteration
D. The effort required to create the deliverable should be less than the team originally expected

36. You are on a team using Kanban. What of the following is best used as the main indicator of project progress for 
specific increments?

A. Value stream map
B. Task board
C. Kanban board
D. Cumulative flow diagram

37. A junior team member suggests a new way of estimating user stories. How should you respond?

A. Try the new technique at the next opportunity
B. Help coach the junior team member by explaining how the team currently estimates user stories
C. Use Kaizen to improve the process
D. Encourage the team member to respond to change rather than following a plan based on estimates

400  Chapter 9

exam questions



38. Your Scrum team just completed inspecting the project plan. One team member raised a potential issue that is likely to 
require a change to the planned work. What is the next step?

A. The team will hold a sprint retrospective and discuss the impact to the product and sprint backlogs
B. The product owner will alert the stakeholder that the team has discovered an important issue
C. Knowledgeable team members will meet to determine what changes need to be made to the sprint backlog
D. The scrum master raises a change request to modify the plan while the team proceeds with planned work so they meet 

their commitments

39. Your team has completed a brainstorming session to identify risks, issues, and other potential problems and threats to 
the project. Which of the following is not a useful next step?

A. Assign a relative priority to each of the issues, risks, and problems
B. Assign owners to each of the problems and risks and keep track of the status
C. Use Kano analysis to prioritize the requirements for the project
D. Encourage action on specific issues that were raised

40. Your project is changing frequently, and you are concerned that you are not delivering business value as effectively as 
possible. How do you make sure that your team is delivering value and increasing that value throughout the project?

A. Use information radiators
B. Meet with executives after each increment
C. Meet with executives every day
D. Brainstorm improvement ideas with the team

41. A member of your project team suddenly leaves the company. She was the only one on the team with the expertise to 
solve a major technical problem, and without her the team has no way to meet commitments promised to the stakeholders. 
How should you proceed?

A. The team should continue working on the project  as usual and only alert the stakeholders at the last responsible moment
B. The team members should collaborate together to get past the obstacle
C. The product owner should work with stakeholders to reset their expectations because the issue cannot be resolved
D. The scrum master should educate the stakeholders on the rules of Scrum

you are here 4  401

practice pmi-acp exam



42. Your team discovers that the velocity decreased by 20% three iterations ago, and that it has stayed steady at that lower 
level since then. How is this most likely to affect the release plan?

A. The team must reduce the size or number of deliverables that they committed to in the release plan
B. The release plan will not be affected
C. The team can increase the size or number of deliverables that they committed to in the release plan
D. The team must change the frequency of releases in the release plan

43. Two stakeholders disagree on important product requirements. How should the product owner handle this situation?

A. Schedule a meeting with the stakeholders and attempt to establish a working agreement
B. Practice servant leadership to encourage collaboration
C. Have two team members perform separate spike solutions for each requirement
D. Choose the stakeholder requirement that delivers the most value early

44. A product owner reports that an important stakeholder is concerned that the team’s implementation of a business 
requirement may not take certain external factors into account. Several team members acknowledged that this is a 
potential issue, but agree that it is extremely unlikely. How should the team members handle this situation?

A. Reassure the product owner that the risk is very low, so no action needs to be taken
B. Add the issue to an information radiator that tracks the status and ownership of threats and issues
C. The team members should work together to resolve the problem on their own so that the product owner has plausible 

deniability
D. Calculate the net present value of the issue and use it to reprioritize the risk register

45. You are an agile practitioner on a team that uses 30-day iterations. A stakeholder requests a forecast of the next six 
months. What do you do?

A. Use a story map to build a release plan for the next six months from the current product backlog
B. Explain that the team uses 30-day timeboxed iterations, and cannot forecast so far in advance
C. Create a Gantt chart that has a high level of detail for the next sprint and milestones for the following ones
D. Hold a team meeting and use face-to-face communication to collaborate on a strategy

402  Chapter 9

exam questions



46. You are an agile practitioner who maintains a prioritized list of requirements for the team. You receive a company-wide 
memo that your division has been restructured, and that there are now new senior managers. One of those managers will 
be directly impacted by one of the project’s requirements. What do you do?

A. Engage with the senior manager
B. Raise the issue at the next daily standup meeting
C. Update the product backlog to reflect the new priorities
D. Add the senior manager to the stakeholder register

47. During a sprint planning meeting the team is working for stories written on index cards. They discuss the acceptance 
criteria for a story and write it on the back of the card. This is repeated for every story in the increment. Which of the 
following describes this activity?

A. Collaborating to deliver maximum value
B. Refining requirements based on relative value
C. Gaining consensus on a definition of done
D. Refining the backlog

48. A senior manager is forming a committee to decide on a company-wide methodology. You are asked to speak to this 
committee. What should you do?

A. Put up an information radiator on the floor where the committee meets
B. Show how previous Scrum projects made the organization more effective and efficient
C. Explain that waterfall methodologies are bad, and agile methodologies are good
D. Insist that the organization follow Scrum because it’s an industry best practice

49. An agile practitioner is attending a daily scrum meeting. She is expected to report on the status of tasks that were 
assigned to her by the scrum master. What best describes this situation?

A. This team is not self-organizing
B. This team is self-organizing
C. The agile practitioner is emerging as a team leader
D. The scrum master is showing servant leadership

you are here 4  403

practice pmi-acp exam



50. During a review of the deliverables, several team members identified a problem with software quality that could 
increase overall project cost. What is the best way to figure out the next steps for the team to take?

A. Refactor the code
B. Hold a retrospective
C. Use an Ishikawa diagram
D. Limit work in progress

51. A Scrum team is planning their fourth sprint. Team members who disagreed in the previous sprints are starting to see 
eye to eye, and previous clashes have given way to an emerging spirit of cooperation. What best describes this team?

A. The team is in the norming phase, and needs coaching
B. The team is in the storming phase, and needs directing
C. The team is in the storming phase, and needs coaching
D. The team is in the norming phase, and needs supporting

52. An office manager is working with an agile team to optimize their workspace. Which is the most efficient approach?

A. Adopt an open office plan that eliminates individual desks and promotes a shared environment
B. Give individuals or pairs private offices next to a shared meeting room
C. Adopt an open office plan that eliminates partitions and positions team members face to face
D. Give individuals or pairs semi-private cubicles that open into a shared meeting space

53. What is the most effective way for an agile team to prioritize the work to do during the increment?

A. The team decides which stories are most valuable and gives them a higher priority in the product backlog
B. The product owner determines the relative priority at the sprint review
C. The team selects the features with the highest NPV
D. The business representative collaborates with stakeholders to optimize value

54. You are an agile practitioner on a team that just completed work for an iteration. The team just finished demonstrating 
the working software to the stakeholders. One of the stakeholders is upset that one of the features he expected the team 
to deliver was pushed to the next sprint. How can this be avoided in the future?

A. Send daily status reports to all stakeholders
B. Review the lines of communication and update the communication management plan
C. Keep the stakeholders up to date on any changes to the deliverables and trade-offs the team has made
D. Require the stakeholders to attend all daily standups

404  Chapter 9

exam questions



55. A senior manager has announced that she is going to attend a sprint planning session. The Scrum team often has 
unrestrained discussion about which items should go into the sprint that often include disagreements and sometimes 
even arguments. The product owner is concerned that even though disagreements typically end with a positive result, 
being exposed to this will cause that manager to lose trust in the team’s ability to meet their commitments. How should 
this situation be handled?

A. The senior manager should be discouraged from attending the sprint planning session
B. Team members should be encouraged to openly disagree, even if it involves arguing with each other
C. The team should plan to hold a second sprint planning session without the senior manager
D. The product owner should encourage the team to be on their best behavior for the senior manager

56. An agile practitioner needs to get feedback to determine whether the work currently in progress and the work planned 
for future iterations needs correction. What is the best way to accomplish this?

A. Prioritize the backlog based on work item value and risk
B. Hold daily standup meetings to get feedback from the team
C. Checkpoint with stakeholders at the end of each iteration
D. Use a Kanban board to visualize the workflow

57. One of your project’s stakeholders indicates a potentially severe risk to the current sprint. Which approach is most 
appropriate?

A. Increase the length of the timebox
B. Re-estimate the backlog for the project
C. Include fewer stories in the sprint
D. Include the stakeholders in the daily standup

58. You are a scrum master on a 14-person Scrum team. You notice that the team is having difficulty concentrating during 
the daily scrum. What should the team do?

A. Establish a group norm that requires everyone to concentrate during the daily scrum
B. Hold two separate 7-person daily scrum meetings
C. Replace the daily scrum with a virtual meeting that uses comments in a social media platform
D. Divide team members into two smaller teams

you are here 4  405

practice pmi-acp exam



59. You are informed that a new stakeholder for your project is in a region with a time zone difference of eight hours from 
the rest of your team. What is the best way for your Scrum team to interact with this person?

A. Use digital videoconferencing tools and accommodate to the stakeholder’s time zone
B. Primarily communicate with email so that people can work in their comfortable time zones
C. Request a conference call at a time that’s convenient for the whole team to attend
D. Fly the stakeholder to the team space to co-locate with the team for several weeks

60. How should an agile practitioner on a Scrum team interpret this chart?

A. The team finished coding after only 50% of the project calendar time had elapsed, which is an opportunity to eliminate 
waste

B. The team spent 38 days working and 35 days waiting, so there are many opportunities to eliminate waste
C. The project took 74 days to complete, without many opportunities to eliminate waste
D. The project is behind schedule

406  Chapter 9

exam questions



61. A team member approaches the scrum master for guidance on the best way to forecast how much work the team can 
accomplish in the next sprint. What should the scrum master advise?

A. Use planning poker to estimate the actual time in hours for each story in the sprint
B. Assign a relative numeric size to each story in past sprints and use it to estimate the average velocity
C. Hold a wideband Delphi estimation session to generate data for a detailed Gantt chart
D. Use a story map to build a release plan for the rest of the project

62. You are the scrum master on an agile team. Two team members are having a disagreement about an important project 
issue. Assuming all of these actions resolve the disagreement equally well, what is the best way for you to proceed?

A. Collaborate with the product owner to find a solution to the problem and present it to the team members
B. Allow the team members to come to their own resolution, even if it involves an argument with strong opinions
C. Step in and help the team members find common ground
D. Create ground rules that prevent disagreements from turning into arguments

63. You are a member of a Scrum team. You discover an important problem that directly affects one of the stakeholders, 
and the team needs feedback from that stakeholder as quickly as possible in order to avoid a delay. Your team’s product 
owner meets with this stakeholder once a week, but due to a schedule conflict this week’s meeting is postponed. What do 
you do?

A. Schedule a meeting with the product owner
B. Have a face-to-face meeting with the stakeholder as quickly as possible
C. Send an email to the stakeholder with details about the problem
D. Invite the stakeholder to the next daily standup meeting

64. The team determines that one of the work items is low priority, but could lead to serious problems in the final product if 
the implementation does not work. How should they handle this situation?

A. Add a highly visual indicator in the team space so they don’t lose track of the issue
B. Use the internal rate of return to evaluate the work item
C. Refactor the software to remove the problem
D. Increase the priority of the work item in the product backlog

you are here 4  407

practice pmi-acp exam



65. Which of the following is not a benefit of encouraging team members to become generalizing specialists?

A. Reducing team size
B. Creating a high performing, cross-functional team
C. Improve the team’s ability to plan
D. Reducing bottlenecks in the project work

66. You are an agile practitioner on a project that has been running for several iterations. The team’s understanding of 
the effort required to complete several major deliverables has changed over the last three iterations, and it continues to 
change. How do you handle this situation?

A. Add story points to each work item in the backlog to reflect the increased complexity
B. Add buffers to account for the uncertainty of the project
C. Hold planning activities at the start of each iteration to refine the estimated scope and schedule
D. Increase the frequency of retrospectives to gather more information

67. Several bugs were discovered by users, and the product owner has determined that they are critical and must be fixed 
as soon as possible. How should the team respond?

A. Create a change request and assign the bug fixes to a maintenance team
B. Stop other project work immediately and fix the bugs
C. Add items for fixing the bugs to the backlog and include them in the next iteration
D. Add buffers to the next iteration to account for maintenance work

68. A senior manager asks the team for a project schedule that shows how team members will spend their time. The team 
meets and creates a highly detailed schedule that shows how each team member will spend every hour of the next six 
months. What should the scrum master do?

A. Use servant leadership and recognize that the team members actually get work done
B. Ask the team to build a less detailed schedule
C. Post the schedule in a highly visible place in the team space
D. Send the schedule directly to the senior manager

408  Chapter 9

exam questions



69. A team member complains to the scrum master that their manager calls several meetings every week to give updates 
that are not relevant to their project. The team member is frustrated because the interruptions are slowing down work. 
What should the scrum master do?

A. Give the team member permission to skip the meetings and focus on the work
B. Raise the issue with the product owner
C. Prepare a report on the impact that the meetings are having on the work
D. Approach the manager to discuss alternatives to interrupting the team

70. A member of a Scrum team routinely arrives late to the daily standup meeting. How should the team handle this 
situation?

A. Hold a face-to-face meeting between the scrum master and the team member to discuss the issue
B. Have the product owner bring up the issue with the stakeholders
C. Hold a meeting to collaborate on establishing team norms that includes a penalty for being late
D. Raise the issue at the next retrospective and create a plan for improvement

71. An agile practitioner is starting a new project. The team has the first meeting for planning work. What should the 
practitioner expect this meeting to produce?

A. A detailed project plan that shows how the team will create working software
B. A shared understanding of deliverables defined by units of work that the team can produce incrementally
C. Information radiators that show the progress of the project in a highly visible part of the team space
D. An informal project plan that describes agreements and face-to-face meetings

72. Which of the following best describes the level of commitment made by agile teams?

A. Agile teams make commitments to deliver all deliverables at the beginning of the project
B. Agile teams commit to deliverables for the current iteration, but are not required to make long-term commitments
C. Agile teams commit only to a minimum viable product at the start of the project
D. Agile teams commit to broad deliverables early in the project, and make more specific commitments as it unfolds

you are here 4  409

practice pmi-acp exam



73. A team member reports at a daily standup that she ran into a serious technical problem that will delay the story 
that she is working on. The product owner has decided to remove the story from the sprint. This story was specifically 
requested by a senior manager who is the main project stakeholder. What action should be taken next?

A. Update the information radiators
B. Re-estimate the items in the backlog
C. Share the information with the primary stakeholders
D. Bring up the problem at the retrospective

74. You are a scrum master on a team in the financial services industry. Your PMO director sends an organization-wide 
email about a regulatory compliance change that will require you to adjust the way requirements are managed. The PMO 
has provided several possible alternative methods for managing requirements that are in compliance with this regulation 
change, but none of them match the way that your team currently manages requirements. What should you do?

A. Do not make any changes that would violate the rules of Scrum
B. Support organizational change by educating the PMO about Scrum
C. Review the new techniques at the next sprint planning meeting
D. Use Kaizen and practice continuous improvement

75. In a sprint review, one of the team members raises a serious issue. He’s known about this issue for some time, but this 
is the first the rest of the team has heard about it. What is the next thing that you should do?

A. Use an Ishikawa diagram
B. Speak with the team member about raising issues like this as soon as they are known
C. Schedule the sprint retrospective
D. Arrange the team space to encourage osmotic communication

76. A Scrum team is planning their next sprint. How can they best establish a shared vision of what they plan to 
accomplish during the sprint?

A. Post information radiators and keep them updated
B. Set ground rules for the team
C. Re-estimate the items in backlog
D. Agree on a sprint goal

410  Chapter 9

exam questions



77. Your team has delivered fewer items than expected for the third iteration in a row. You suspect that there is a 
significant amount of time wasted waiting for development, operations, and maintenance work to be completed by other 
teams. What is the best way to detect where this waste is occurring?

A. Perform a value stream analysis
B. Create a more detailed iteration plan
C. Use an Ishikawa diagram
D. Impose limits on work in progress

78. What is the most effective strategy for prioritizing stories in the sprint backlog?

A. Plan an early product release that has just enough features
B. Prioritize high-risk items first
C. Collaborate with stakeholders to maximize early delivery of value
D. Identify high-value features and develop them in early iterations

79. The product owner of a Scrum team discovers that stakeholder priorities have changed, and a deliverable they have 
not yet started is now more important than the one they are currently working on. How can the team best handle this 
situation?

A. Complete the current sprint and adapt the plan during the next sprint planning session
B. Reduce the number of bottlenecks by limiting work in progress
C. Cancel the current sprint immediately and create a new plan to reflect the new priorities
D. Begin refactoring the code to reflect the updated priorities

80. During a daily scrum meeting a team member raises a serious risk as a potential problem. Which of the following is not 
a useful action for the team to take?

A. The team should refactor the source code and perform continuous integration
B. The team should consider doing exploratory work during the next sprint to mitigate the risk
C. The stakeholders should be kept informed of any potential threat to the team’s commitments
D. The product owner should incorporate activates in the product backlog to manage the risk

you are here 4  411

practice pmi-acp exam



81. The team members and product owner are having an argument about whether or not a feature can be accepted. They 
are unable to agree on an answer, and the project is now in danger of being late. How can this problem be prevented in the 
future?

A. Agree on a strict chain of command
B. Agree on a process for conflict resolution
C. Agree on a definition of “done” for each work item
D. Agree on a timebox length for discussions about feature acceptance

82. An XP team is notified that an important server upgrade will be delayed by six months due to budget constraints. The 
upgrade included several important features that their plan depended on, and the delay will require two team members to 
spend three entire weekly cycles on a workaround. How should the team account for this?

A. Track the work done by the two team members separately from the rest of the project work
B. Update the release plan to reflect the change in the team’s capacity to work on main deliverables
C. Use a risk-based spike to reduce the uncertainty
D. Expect the velocity to be reduced and update the release plan accordingly

83. Halfway through the sprint, the team discovers a serious problem while testing the code. It’s critical that they fix this 
problem as soon as possible, but it will take more time than they have left in the sprint. What should they do?

A. The product owner adds items to the sprint and product backlogs
B. The product owner extends the sprint deadline to accommodate the fix
C. The product owner should call a team meeting and discuss potential solutions
D. The product owner adds a high-priority item to the product backlog to fix the problem

84. A stakeholder asks the product owner of a scrum team for a list of features, stories, and other items to be delivered 
during the sprint. What team activities are used to create this information?

A. Hold daily scrum meetings
B. Hold sprint planning meetings
C. Perform product backlog refinement
D. Perform sprint retrospectives

412  Chapter 9

exam questions



85. At a retrospective, several members of a Scrum team raised serious potential risks to the project. How can this best be 
managed by the team?

A. Add stories to the next sprint backlog to handle every risk that was raised
B. Keep an up-to-date information radiator that shows the priority and status of each risk
C. Handle each risk at the last responsible moment by delaying any action until it becomes a real problem
D. Create a risk register and add it to the project management information system

86. A team is estimating the size of the items in the product backlog using ideal time. What does this mean?

A. The team determines the actual calendar date that each item will be delivered
B. The team estimates the actual time required to build each item without taking velocity or interruptions into account
C. The team assigns a relative size to each item using units specific to the team
D. The team applies a formula to determine the size of each item based on its complexity

87. Two members of your XP team are arguing about which engineering approach will lead to a better solution. They are 
unable to reach a conclusion, and the conflict is starting to create a negative environment. How should you handle this 
situation?

A. Use fist-of-five voting to determine the correct approach
B. Encourage them to begin pair programming on a minimal first step that will support both approaches
C. Refactor the code and practice continuous integration
D. Set team ground rules that prohibit arguments between team members

88. You discover that you have made a serious mistake when refactoring code, and it’s going to cause your team to miss 
an important deadline. Which of the following is not an acceptable response?

A. Keep working on the highest priority tasks and bring up the issue in the retrospective
B. Tell your teammates and make every attempt to correct the problem
C. Bring up the problem in the next Daily Scrum
D. Send an email to the rest of your team letting them know that there are going to be consequences for the timebox

you are here 4  413

practice pmi-acp exam



89. You are a team lead on an XP team holding a retrospective meeting. One of your team members says that the team 
could have done a better job planning the work if they had tried a different planning technique, and that the project would 
benefit from using it next time. What is an appropriate response?

A. Determine whether the technique is compliant with the practices and principles of XP
B. Use Kaizen to improve the process
C. Determine the impact of using the new technique
D. Suggest that the team member take the lead in working with the team to try out the new approach

90. Which of the following is not an effective way to encourage an effective environment for your team?

A. Let team members experiment and make mistakes without negative consequences
B. Help team members trust each other when they talk about their own mistakes
C. Use mistakes as opportunities for improvement
D. Allow team members’ mistakes to go uncorrected

91. You are the project manager for a team at a vendor of software services. One of your clients sent you a value stream 
map that indicates that the team working on a feature spent significant non-working time waiting for the legal departments 
of both companies to reach agreements on scope changes. How does this affect the project?

A. The non-working time is extra work in progress that might be able to be limited
B. The clients and vendor have a contract negotiation relationship
C. The non-working time is project waste that might be able to be eliminated
D. No meaningful conclusion can be drawn

92. member says that he did not make much progress because he was interrupted by five phone calls throughout the day 
from stakeholders. This is the third time that he has made this complaint. What is the best way for the team to handle this 
situation?

A. Use a “caves and commons” office layout to limit interruptions
B. Implement a policy barring the stakeholders from reaching out to team members directly
C. Establish a daily “no-call” window during which team members working on project tasks can turn the ringers on their 

phones down and ignore calls
D. Adjust the sprint backlog to account for the decrease in productivity

414  Chapter 9

exam questions



93. During a sprint review, the project sponsor feels that a feature was built incorrectly and gets angry at the team member 
who coded it, but gives no constructive feedback. How should the scrum master respond?

A. Work with the product owner to update the product backlog
B. Speak with the sponsor about encouraging a safe environment
C. Make sure the sponsor does not know which team member coded each feature in the future
D. Getting angry at the team member is a mistake, and the sponsor should be free to make mistakes

94. Your team is in the early stages of planning, and work has not yet begun. Several key stakeholders have been identified 
and engaged, but there is still uncertainty about particular kinds of users, what they need from the project, and how to 
best meet those needs. What is the best way to handle this situation?

A. Create a kanban board to visualize the workflow
B. Use agile modeling to envision a high-level architecture
C. Hold a brainstorming session to create personas
D. Create user stories to document and manage requirements

95. The team has identified a severe database problem that can only be addressed by the infrastructure administrators 
performing a database server upgrade. How should the team handle this situation?

A. A developer with database experience is made responsible for upgrading the server
B. The team should identify the issue in the daily standup meeting
C. The product owner refines the backlog and adds a high-priority work item for the upgrade
D. The team must perform the database server upgrade themselves

96. Two senior managers sponsoring your project have expressed disappointment with the current release plan. Which of 
the following is not an effective strategy for engaging them?

A. Have the product owner engage the senior managers to better understand their needs
B. Invite both senior managers to periodic working software demonstrations
C. Invite both senior managers to a project planning meeting and require their sign-off on a project plan before proceeding
D. Call a team meeting to discuss the senior managers’ interests and expectations

you are here 4  415

practice pmi-acp exam



97. How should an agile practitioner on a Scrum team interpret this chart?

A. The velocity is constant
B. The sprint goal is in jeopardy
C. The team did a poor job planning
D. The velocity is increasing

98. Members of your team are arguing about whether they are required to make a change that the product owner asked for. 
As an agile practitioner, what is your response?

A. Review the change control procedure
B. Work with each team member so that everyone understands the way that your team responds to change
C. Allow the team to come up with ground rules to manage this situation
D. Re-estimate the items in the backlog and work with team to self-organize and meet the new goals

416  Chapter 9

exam questions



99. Partway through a sprint, the product owner gets an email from the DevOps group responsible for deploying the 
software built by the team with a reminder about a new policy that requires a modification to the installation scripts that 
must be included in all future deployments. Deployment is required for the sprint review. Modifying the script will delay 
other work past the end of the sprint. What should the product owner do next?

A. Add the script modification to the sprint backlog and move the lowest priority item to the product backlog
B. Add the script modification to the product backlog
C. Extend the sprint deadline to include the script modification
D. Schedule a face-to-face meeting with the manager of the DevOps group

100. Your team needs to determine what stories to work on in the next iteration. Which is not an effective way to proceed?

A. The team starts the iteration by working on riskiest or most valuable stories
B. The scrum master helps the team understand the methodology they use to decompose stories and identify tasks
C. The product owner helps everyone understand the relative priority of each story
D. The scrum master helps lead the team through planning by deciding the order that the team works on the stories

101. Which primary XP practice facilitates osmotic communication?

A. Whole team
B. Continuous integration
C. Sit together
D. Pair programming

102. An agile team is defining a release plan. What is the best way to organize the requirements so that value is delivered 
early?

A. Define minimally marketable features
B. Re-estimate the items in backlog
C. Post a visible burn-down chart in the team space
D. Use an Ishikawa diagram

you are here 4  417

practice pmi-acp exam



103. Team members are concerned that a technical problem will cause a serious issue later in the project. One team 
member points out that if the problem occurs, then they will need to find a different technical approach. What should the 
team do next?

A. Have the product owner add an item to the list of long-term features and deliverables
B. Update the release plan to reflect a delay
C. Perform exploratory work in an early sprint in order to determine whether their solution will work
D. Alert the stakeholders to the impact the technical problem will have on the team’s commitments

104. You are a product owner on a Scrum team. One of your stakeholders is a senior manager who just joined the company. 
She did not come to the last two sprint reviews. What should you do?

A. Collaborate with the scrum master to help educate the stakeholder on the rules of Scrum
B. Meet with the stakeholder’s manager and explain the rules of Scrum require her to attend the sprint review
C. Set up a meeting with the stakeholder to bring her up to date and get her feedback on the project
D. Post an information radiator about the project outside the stakeholder’s office

105. You are meeting with several stakeholders partway through in iteration late in the project. One of them mentions that a 
senior manager you have not met would disagree with one of the features that the team has built into the software. What is 
the next thing you should do?

A. Reprioritize the backlog to reflect the potential risk of requirements change
B. Identify the potential issue at the next daily standup
C. Schedule a meeting with the senior manager
D. Add the issue to the risk register

418  Chapter 9

exam questions



106. How should an agile practitioner on a Scrum team interpret this chart?

A. The velocity is increasing
B. The velocity is constant
C. The team did a poor job planning
D. The sprint goal is in jeopardy

107. After a retrospective, one of the other team members tells you in confidence that he is concerned the team is making 
poor design and architecture decisions. How should you respond?

A. Offer to raise the issue yourself so he doesn’t have to feel like he’s causing problems
B. Tell the product owner and scrum master in confidence
C. Encourage the team member to bring this up with the whole team
D. Promise that you will not break his confidence so that you don’t threaten team cohesion

you are here 4  419

practice pmi-acp exam



108. The team has just completed planning activities for an iteration. What should they do next?

A. Review the project management plan
B. Hold a daily standup meeting
C. Determine the length of the timebox
D. Update stakeholders about the expected deliverables

109. An agile practitioner on a hybrid Scrum/XP team discovers that several team members spend many hours each week 
resolving commit conflicts, and feels that improving the way they perform continuous integration will fix the issue. Which 
of the following is not a useful next step?

A. Create and distribute a detailed process document that covers continuous integration best practices
B. Engage the team throughout the project to help them learn better continuous integration techniques
C. Educate the rest of the team on how out-of-date working folders can lead to commit conflicts
D. Help the team improve their overall continuous integration process

110. You are a member of an XP team planning the next weekly cycle. There is a database design task that needs to be 
done. One of your team members is an expert in database design, and says that he is the only team member who should 
be allowed to do that. What is the best way to proceed?

A. Encourage the application of individual expertise in order to increase productivity
B. Encourage the team to use pair programming
C. Encourage the expert to serve as a mentor to a junior member of the team
D. Raise the issue at the next daily standup meeting

111. An agile practitioner encounters a stakeholder who insists that the team create a complete, highly detailed plan before 
any work begins. The agile practitioner should:

A. Correct the stakeholder, because agile teams only use working software and not comprehensive documentation
B. Show that the team has had success in the past with periodic product demonstrations and changing course mid-stream
C. Review the product backlog with the stakeholder and identify the stories that are likely to go into each release
D. Create the complete, highly detailed plan to satisfy the stakeholder

112. An agile team is starting a new project. What is the best way to provide a starting point for managing the project?

A. Create a release plan that includes buffers to account for maintenance
B. Create a release plan that reflects a high-level understanding of the effort
C. Create a Gantt chart that has a high level of detail
D. Create a story map based on highly detailed effort estimates

420  Chapter 9

exam questions



113. An agile team is conducting a periodic review of their practices and team culture. What is the purpose of this review?

A. To adhere to a methodology that requires periodic retrospectives
B. To review and update the list of features, stories, and tasks that comprise the team’s long-term work
C. To improve their project process in order to increase the effectiveness of the team
D. To identify the root cause of a specific problem

114. An agile practitioner discovers that an important project stakeholder feels that she cannot trust the team to meet their 
commitments. What is the best way to improve this situation?

A. Work with the team to improve how they communicate success criteria and collaborate with stakeholders on product 
trade-offs

B. Meet with the stakeholder and make a strong commitment to delivering specific features
C. Work with the team to set up a binding service-level agreement with the stakeholder on acceptance criteria for each 

increment
D. Meet with the stakeholder to explain that the rules of Scrum require her to trust the team

115. You are an agile practitioner and you just finished meeting with a stakeholder who identified several important priority 
changes.  You have assigned a relative value to each item in the list of planned features, but the team is not yet able to 
prioritize them. What is the next action that the team should take?

A. Re-estimate the items in the backlog
B. Perform an architectural spike
C. Update the information radiators
D. Initiate the change control procedure

116. Which of the following is not a benefit of co-location?

A. Osmotic communication
B. Ability to create an informative workspace
C. Increased access to teammates
D. Reduced distractions

117. What is the best way to ensure that the work products being delivered have the maximum value?

A. The scrum master collaborates with the stakeholders
B. The team collaborates with the product owner
C. The product owner collaborates with stakeholders
D. The project manager collaborates with senior managers

you are here 4  421

practice pmi-acp exam



118. The team has identified a problem that caused a delay in the previous iteration. They now want to understand exactly 
what went wrong, and all of the factors that led up to the problem, so that they can improve their overall method for 
running their projects. What is an appropriate tool for this?

A. Ishikawa diagram
B. Spike solution
C. Information radiator
D. Burn-down chart

119. You are an agile practitioner on a team in a company that builds medical devices. Quality, specifically with regards 
to patient safety, is the most important factor in your project’s success. What is the most effective way to ensure product 
quality?

A. Use root cause analysis to identify the source of problems
B. Include quality items in the iteration backlog
C. Maximize value by periodically meeting with stakeholders
D. Inspect, review, and test work products frequently and incorporate identified improvements

120. Company-wide budget cuts require your team to reduce the schedule by three months. The product owner indicates 
that stakeholders will be angry about the lack of delivery. What should you do next?

A. Follow your methodology’s rules to inspect the plan and adapt it to reflect the change in budget and schedule
B. Present an alternative to senior management to make a case for increasing the budget
C. Alert the product owner to scope and schedule changes just before they happen, so you can make decisions at the last 

responsible moment
D. Find a way to keep the project going without alerting the product owner to serious problems

422  Chapter 9

exam questions



Before you look at the answers...
Before you find out how you did on the exam, here are a few 
ideas to help make the material stick to your brain. Remember, 
once you look through the answers, you can use these tips to 
help you review anything you missed.

 Don’t get caught up in the question.
If  you find yourself  a little confused about a question, the first thing you 
should do is try to figure out exactly what it is the question is asking. It’s 
easy to get bogged down in the details, especially if  the question is really 
wordy. Sometimes you need to read a question more than once. The 
first time you read it, ask yourself, “What’s this question really about?”

1

This is especially useful 
for conflict resolution 
questions—the ones where 
you’re presented with a 
disagreement between 
team members, and asked 
how you’d handle it.

 Write your own questions.
Is there a concept that you’re just not getting? One of  the best ways that 
you can make it stick to your brain is to write your own question about 
it! We included Question Clinic exercises in Head First Agile to help you 
learn how to write questions like the ones you’ll find on the exam. 

3When you write your own question, you do a few things: 
• You reinforce the idea and make it stick to your brain. 
• You think about how questions are structured. 
• By thinking of a real-world scenario where the concept is used, you put the idea in context and learn how to apply it.

 And all that helps you recall it better.!

Try this stuff out on your job.
Everything you’re learning about for the PMI-ACP® exam is really 
practical, and based on real-world agile ideas. If  you’re actively 
working on projects, then there’s a really good chance that some of  
the ideas you’re learning about can be applied to your job. Take a 
few minutes and think about how you’d use these things to make your 
projects go more smootly.

2

Get some help!
If  you’re not a member of  PMI yet, join today! There 
are local PMI chapters all around the world. They’re 
a great way to connect with the PMI community. Most 
chapters feature speakers and study groups that help you 
learn.

4

Looking for a great way to meet the PMI-ACP® exam’s training requirements? 
Check out Safari Live Online Training from O’Reilly! Courses on agile pop up 

there all the time. It’s included with your Safari membership: 
 

http://www.safaribooksonline.com/live-training/

you are here 4  423

practice pmi-acp exam

http://www.safaribooksonline.com/live-training/


1. Answer: B

This is a case where the product owner is right, and the team member is doing something that is potentially dangerous. 
The reason that Scrum teams have a product owner role is so that someone can stay on top of  all stakeholder 
communications. There’s nothing wrong with team members working directly with stakeholders, but they should never 
cut the product owner out of  the discussion.

2. Answer: C

Usability testing is an important way that teams can test their software to make sure it is easy to use, and agile teams 
conduct frequent reviews by testing the software and incorporating the improvements back into the deliverables. A very 
common way to perform usability testing is to observe users while they interact with early versions of  the software.

3. Answer: B

When problems occur, agile teams work closely with their stakeholders to understand acceptable trade-offs. On a 
Scrum team,  the product owner is responsible for interacting with the stakeholders to help them understand how the 
project is going. So when a problem happens on a Scrum project that will impact what the team delivers, the product 
owner needs to meet with the stakeholder and discuss exactly how the team will proceed. Agile teams work with their 
stakeholders to maintain a shared understanding of  important trade-offs that affect delivery, which helps build a mutual 
trust between them.

4. Answer: D

When teams use a kanban board to visualize their workflow, they use columns to represent workflow steps, and typically 
use sticky notes or index cards to show individual work items flowing through the process. If  items tend to accumulate 
in one column, it tells the team that step is a potential root cause for the process flow slowing down. The way to fix it 
is to work with the stakeholders to impose a work in progress (WIP) limit, usually by writing the maximum allowable 
number of  work items for that step.

Capturing user interface requirements and using wireframes to plan the user interface are both valuable ways to improve the usability of the software, and agile teams use both of them. But agile teams also value working software over comprehensive documentation, so they typically opt for usability testing over UI requirements and wireframes.

A spike solution doesn’t make sense here, 
because the question didn’t mention anything 
about exploring a potential technical solution.

The stakeholders need to be involved because the team will need 
to change their behavior when the WIP limit for the step is 
reached—and that often affects the stakeholders. This helps 
everyone get to the root cause of the flow problem more quickly.

Did it bother you that “scrum master” was not capitalized in the exam question? Get used to it! Questions on the actual exam might not have capitaliztion that matches your expectations.

424  Chapter 9

exam answers



5. Answer: D

Generalizing specialists can come in really handy, and agile teams do everything that they can to help encourage people 
to broaden their skills. When everyone on the team has a broader skill set, it lets the team do more work with fewer 
people, and helps them to avoid bottlenecks. Agile teams try to provide as many opportunities as possible for their team 
members to develop generalized skills. So when there’s an opportunity for a team member to expand their skills—like a 
tester taking on development work—agile teams take advantage of  it. 

6. Answer: A

The main reason for teams to set ground rules is so that they can foster coherence, and continue to increase their 
collective commitment to the project’s goals and to delivering value to the stakeholders. Teams should always have good, 
sensible, sound reasons for setting ground rules. So the best way to help the new team member fit in with the new team 
is to explain those reasons, and encourage him or her to try following the new rule.

7. Answer: C

Leaders on agile teams practice servant leadership. This means making sure that the individual team members get 
credit for their work, feel appreciated, and get work done. Servant leaders spend a lot of  time working behind the 
scenes to remove roadblocks that will cause problems down the road. Servant leaders do not typically assign work or 
decide how the team should build their products.

8. Answer: D

One of  the most important aspects of  how agile teams manage their requirements is that they gain consensus among 
the whole team on the definition of  “done” for each item in an iteration. Everyone on the team needs to agree on clear 
and specific acceptance criteria for every feature that they are going to deliver at the end of  the iteration. An effective 
way to reach consensus on acceptance criteria is to use negotiation.

This is especially true of Scrum teams. 
Because they’re self-organizing, they can 
make decisions about who can do the work at the last responsible moment.

If there isn’t a good, sensible reason for the rule, then 
the new team member might be right and the rule might 
not be a good idea. But that person should still try it 
out first, because keeping an open mind about the team’s 
culture is the best way to encourage team coherence.

A common way for teams to negotiate this 
is to have “give and take” where the current 
iteration’s definition of “done” includes 
some of the work, but agrees to include the 
rest of the work in a future iteration.

Did you notice that the practice exam had a LOT of which-is-BEST questions and 
least-worst-option questions? One of the most difficult aspects of the PMI-ACP® exam 
is choosing the best answer when several might be correct, or when none seem to be.

you are here 4  425

practice pmi-acp exam



9. Answer: D

An agile practitioner working directly with multiple stakeholders is in the product owner role.  A product owner meets 
periodically with stakeholders to identify expectations and requirements, and works with the team to help them 
understand those requirements. In this case, a stakeholder has a requirement, so the product owner’s job is to make sure 
that the team is knowledgeable about that stakeholder’s needs and expectations.

10. Answer: D

Once teams have been together long enough to get into the work they sometimes enter a phase—referred to as 
“storming”—in which team members often develop strong negative opinions about each other’s character. Adaptive 
leadership, where leaders modify their style based on the stage of  group development, tells us that teams in the 

“storming” phase need supportive leadership, which involves high levels of  direction and high levels of  support.

11. Answer: A

Self-organizing teams plan the work together and make decisions about who does specific tasks at the last responsible 
moment. During sprint planning meetings Scrum teams typically break down the stories, features, or requirements from 
the sprint backlog into individual tasks and work items. But because they are self-organizing, instead of  assigning those 
tasks to team members at the beginning of  the sprint, most Scrum teams rely on the individuals to assign the tasks to 
themselves during the Daily Scrum.

12. Answer: C

The primary focus of  an agile team is to deliver value early, and the way the team does that is by collaborating with the 
stakeholder and prioritizing the highest value work. However, in this question the agile practitioner is the stakeholder, 
not the team member—the agile team doing the work is at the vendor, and the agile practitioner will work with 
that team’s product owner. So in this case, the product owner on the vendor’s team must collaborate with the agile 
practitioner.

13. Answer: A

One reason that agile teams are able to improve over time is that they pay attention not just to their individual projects, 
but to the entire system that they’re working within. One way that they do that is by disseminating knowledge and 
practices—not just across their own organization, but across organizational boundaries.

This question is based on Tuckman’s model of group development and Hershey’s 
situational leadership model, theories developed in the 1960s and 1970s about how 
teams form and how leaders should adapt to them. But it’s more important to 
understand the ideas of what happens to teams when they form and how effective 
leaders should adapt to them than to remember the names Tuckman or Hershey.

Assigning work at the last responsible moment doesn’t necessarily mean that tasks are only self-assigned during the Daily Scrum. If there’s a really important reason to assign a task to a team member during sprint planning, it wouldn’t be responsible to delay that assignment until the first Daily Scrum.

When you see a question asking about working 
with a vendor, part of your job is to figure 
out if the practitioner is the stakeholder 
and the vendor’s team members are filling the 
product owner, scrum master, and team roles.

426  Chapter 9

exam answers



14. Answer: B

Agile practitioners must always advocate for agile principles, and one of  the core principles of  agile is that agile teams 
value responding to change over following a plan. Explaining the value to the scrum master is a good idea, but the best 
way to advocate for agile principles is by modeling those principles.

15. Answer: D

Every individual person on an agile team is encouraged to show leadership. To do this, agile teams foster an 
environment where it’s safe to make mistakes, and where everyone is treated with respect. However, the company does 
not typically set ground rules for the team.

16. Answer: D

Kanban teams typically use cumulative flow diagrams to visualize the flow of  work through the process. This allows 
them to get a visual sense of  the average arrival rate (how frequently work items are added), lead time (the amount of  
time between when a work item is requested and when it’s delivered), and work in progress (the number of  work items 
in the process at any time).

You should always favor showing examples of agile principles from successful projects over simply explaining them.

However, following the company’s rules for project management isn’t 
usually a particularly effective way to bring a team together.

This is an especially tough 
question. None of the answers seem like 
they’re particularly good examples of 

something not to do if you want to foster 
an effective team environment.

The least worst option is being 
careful about following the company’s ground 

rules for project management.  That can (but doesn’t 
always) help your project run more smoothly, but it’s 
not really a great way to help make your team more 

cohesive or effective.

you are here 4  427

practice pmi-acp exam



17. Answer: D

Security and performance requirements (like the use of  encryption or how quickly the software runs) are good examples 
of  non-functional requirements. Agile teams elicit non-functional requirements that are relevant to their project by 
considering the environment that the code will run in, and they work with stakeholders to understand and prioritize 
those requirements.

18. Answer: C

Agile teams conduct frequent retrospectives so that they can improve the way they do their work. On a Scrum team, 
everyone—including the scrum master, who participates as a peer, just like the other team members—participates in the 
retrospective by identifying improvements and working on a plan to implement those improvements. The scrum master 
also has an additional job, to help teach the rest of  the team the rules of  Scrum, including how to fill their roles in the 
meeting and maintain the meeting timebox.

19. Answer: B

The scrum master is a servant leader whose job it is to help ensure that everyone has a common knowledge 
of  the practices used by the team. When a servant leader is approached by a team member with a question or 
misunderstanding about a practice, he or she helps that person understand how the practice works and why it helps the 
team achieve the project’s goals.

20. Answer: C

When an agile team works with a vendor, that vendor will typically use a methodology that is different from the one 
used by the agile team. In this case, the vendor is using a waterfall methodology—and that’s OK. What’s important 
here is that agile teams establish a shared vision of  each project increment. In this question, the roles are flipped around, 
so you are the stakeholder, but aligning your expectations with the team doing the work and building trust with that 
team is still critically important to the project’s success. So if  the vendor uses scope and objectives documents to do that, 
then your job is to make sure that your team’s view of  the high-level vision and supporting objectives matches the view 
of  the vendor team, and take action to fix any disagreements.

21. Answer: D

People and teams always have their own professional and personal goals on every project. One reason that agile teams 
are so effective is because they take this into account by making sure that the team goals and the project goals are 
aligned. Scrum teams, for example, write down a simply stated, straightforward goal for every sprint. When the team 
has their own specific goal, they should collaborate to find common ground so that they accomplish the sprint goal 
while still making progress towards their team goal.

When you’re presented with several potential technical approaches, a spike 
solution is a good way to determine which one will work. However, in this case the 
team already knows that both solutions are feasible and what the results of each 
approach will be, so they wouldn’t actually learn anything from a spike solution.

Agile teams might value working software over 
comprehensive documentation, but they still value 
documentation. Don’t assume that an answer is wrong 
just because it involves working with documentation.

There are often disagreements between team members—in this case, 
between the product owner and the rest of the team. Collaboration 
will almost always work better than negotiation in a situation like this.

428  Chapter 9

exam answers



22. Answer: D

When teams run into serious problems, one of  the first things that they should do is make sure that everyone—
especially the stakeholders—understands the impact of  the problem. And when that problem is going to cause serious 
delays, they need to reset everyone’s expectations in order to make sure they still deliver as much value as possible.

23. Answer: D

When an agile team—and especially a Scrum team—completes a timeboxed iteration, the next step is to get feedback 
on the work that they completed by holding a demonstration for the stakeholders. However, agile teams only 
demonstrate work that is fully completed. If  the work has not been completed, the team will usually include it as the 
first thing to be done when planning the next iteration.

24. Answer: A

When your team’s stakeholders’ expectations are in line with the working software that your team delivers, it builds 
trust. That trust grows over time as each stakeholder sees that the working software increasingly incorporates his or 
her requirements, and that the team is able to adjust as those requirements change. The product owner plays a very 
important part in this on a Scrum team by making sure that each stakeholders’ expectations about what the team will 
deliver is always in line with the work they are doing. 
 

25. Answer: B

Part of  your job as an agile practitioner is to always keep an eye out for ways to support change at the organization level. 
One of  your goals is educating and influencing people in the broader organization, and the best way to do this is to 
speak about your own team’s success.

26. Answer: A

Information radiators are an effective tool that agile teams use to create an informative workspace. An information 
radiator is a highly visual display (like a chart posted in a central location in the team space) that shows real progress 
and team performance.

When the stakeholder and team agree on the definition of “done” for the increment, it prevents nasty surprises at the sprint review. A really effective way to do that is for the product owner and stakeholder to review the acceptance criteria for each story.

When you’re trying to influence others, it’s much more effective 
to talk about your own team’s success, rather than simply 
explaining how agile works or acting like a pushy agile zealot.

This is an especially tough question. Did you choose the incorrect answer about 
engaging the product owner? Understanding why that answer is wrong requires you to 
be really familiar with what a product owner does—and doesn’t do—on a Scrum team. 
The product owner role is entirely focused on the project and the project’s specific 
stakeholders. This question asked about the company as a whole, not about the 
specific project. So this is really a question about the agile practitioner’s responsibility 
to support change at the organizational level by educating others in his or her company.

you are here 4  429

practice pmi-acp exam



27. Answer: C

Agile teams are encouraged to do experimentation in order to surface problems and impediments to the team, and 
exploratory work (like spike solutions) is a really good way to do that. The results of  that work should be surfaced to the 
team when they are problems or impediments that might slow the team down or impact the team’s ability to deliver 
value to the stakeholders.

28. Answer: B

Agile teams select and tailor their process based not only on agile practices and values, but also on the characteristics 
of  the organization. This team is having engineering problems, which is one hint that XP is the right solution for them. 
They might want to switch to Scrum, but assigning a team member to the product owner role is not an effective way to 
do that because the product owner will not have the authority to accept items on behalf  of  the team.

This is an especially tough question, because it requires you 
to understand a very specific task in one of the domains 

in the examination content outline, specifically task #1 in 
domain VI (Problem Detection and Resolution): “Create an 
open and safe environment by encouraging conversation 
and experimentation, in order to surface problems and 

impediments that are slowing the team down or preventing 
its ability to deliver value.” This question is worded in a 

way that references specific parts of that task (slow down 
progress, prevent its ability to deliver value). This problem 
domain accounts for 10% of the scored questions on the 
test, and there are only five tasks in that domain, so you 

may potentially see two scored questions based on this task.

Kaizen and continuous 
improvement are 
generally a good 
approach for improving 
a team, but that 
answer is not very 
specific. It is better 
to go with the answer 
that offers specific 
improvements that the 
team can make.

This is an especially tough question
. Did you choose the incorrect answ

er 

about assigning team members to the product owner and scrum master 

role? This sounds like a good idea! The problem is that it’s almost 

never a good idea to simply choose an existing team member to be the 

product owner, because product owners must have enough authority 

to adequately make decisions and accept feature
s as done on behalf 

of the company, and it’s extremely unlikely that someone like that is 

already on the team. Instead of simply assigning a team member to the 

product owner role, teams must work with their users, stakeholders, 

and senior managers to find a product owner with that level of 

authority. Since that answer is incorrect, the next best an
swer is to 

adopt XP’s delivery-focused practices—especially quarterly and weekly 

cycles—because that is an effective way to solve the team’s problem.
430  Chapter 9

exam answers



29. Answer: B

When a stakeholder needs a change to an item the team is currently working on, the product owner has the authority 
to immediately make that change. The most important thing is that the team is working on maximizing the value, so 
the item should be removed from the sprint backlog and the sprint should continue as usual: work on the other items 
continues, and the team holds a sprint review with the stakeholder when the timebox expires.

30. Answer: B

Teams that have been using agile methodologies effectively for a long time tend to be really good at estimating, and 
there are many different ways to estimate. The important thing is that deciding on estimates, like any other decision 
made by an agile team, is most effective when it’s done collaboratively. Planning poker and wideband Delphi are 
methods for collaborative estimation that allow several team members to work together to come up with an estimate.  
Having an informal discussion is also a good way to collaborate. But simply leaving it in the hands of  the product owner 
isn’t collaborative at all. And simply taking the maximum estimate generated by a team member is a great way to pad 
your schedule, but it is definitely not open or transparent, which goes against the Scrum value of  openness.

31. Answer: C

When your company has a requirement for all teams, you need to comply with it. That’s why agile teams tailor their 
process based on how the wider organization functions. But they still make sure that they are focused first and foremost 
on delivering value to the customer.

32. Answer: A

An agile practitioner should practice visualization of  important project information by maintaining information 
radiators that are highly visible. It’s important that they show the team’s real progress, and a burn-down chart is a great 
way to do that.

33. Answer: B

Teams often experience temporary drops in velocity, especially when multiple team members are on vacation. If  those 
vacations have been planned for a long time, then that information should have been taken into account already in the 
release plan, so it should not change.

34. Answer: C

This question is describing a Scrum team’s sprint planning meeting. During that meeting, the team first reviews the 
product backlog, which involves reviewing the overall list of  features that will be delivered. The next thing the team 
should do is create the sprint backlog, which involves extracting items from the product backlog to deliver in the 
increment for the sprint.

Technically, the product owner has the authority to cancel a sprint, but it should be done in very rare occasions because it can seriously damage the trust that the team has built up with the stakeholders.

Also, agile teams do value comprehensive documentation. 
They just value working software more.

you are here 4  431

practice pmi-acp exam



35. Answer: C

The complexity of  deliverables plays a major role in how much work it will require to build. When the team member 
discovers that a deliverable was less complex than anticipated, the team should use that information to adapt the way 
they plan their project. Since the deliverable will require less work than expected, it means they’ll make more progress 
during each iteration toward completing the deliverable, and they can plan to release the deliverable earlier. But their 
velocity shouldn’t increase in the next iteration, because the team should take the reduced complexity into account 
when calculating the velocity for that iteration.

36. Answer: B

Kanban is a method for process improvement, not project management. So while kanban boards, cumulative flow 
diagrams, and value stream maps are valuable tools for visualizing and understanding the workflow for your process, 
they aren’t tools for tracking project progress. A task board, on the other hand, is a great tool for tracking project 
progress.

37. Answer: A

Agile teams enhance their creativity by experimenting with new techniques whenever they can. This helps them 
discover ways of  working that can improve efficiency and effectiveness. The only way to determine whether or not this 
new technique is an improvement is to try it out.

38. Answer: C

In this question, a Scrum team just finished inspecting the project plan, and Scrum teams always do that during their 
daily scrum meeting. When issues are raised at the daily scrum, team members with knowledge of  the issue schedule a 
follow-up meeting so that they can figure out how to adapt to the change, which almost always involves modifying the 
sprint backlog.

The velocity of the iteration that the team just completed probably 
increased temporarily because the team member got more work done 
than she anticipated due to the unexpectedly low complexity of the 
deliverable. But now that they know it’s less complex, they’ll adjust 
their plan, and the velocity should return to normal.

It’s important for the product owner to keep the stakeholders up to date. However, the team hasn’t even determined whether this is a real issue, so it’s premature to alert stakeholders.

This is a tough question. It requires you to have a good understanding not 
just of how Scrum teams hold their daily scrum meetings, but also why they do 
it. The rules of Scrum don’t explicitly include an artifact called “project 
plan,” but teams still do planning, so you need to understand how that works. 
Scrum teams meet every day as part of the process of transparency, inspection, 
and adaptation. The purpose of the daily scrum is to inspect the current plan 
and the work being done. If there are any potential issues, team members with 
knowledge about the issue have a follow-up meeting to figure out whether or 
not they need to adapt the plan. By doing this every day, Scrum teams are 

able to constantly adjust their plan to keep it up to date with changes to the 
schedule, budget, and stakeholder requirements and priorities.

File  Edit   Window  Help   Ace the Test

432  Chapter 9

exam answers



39. Answer: C

When teams have identified threats and issues, they should maintain a prioritized list that they keep visible and 
constantly monitor. The reason for this is to encourage the team to take action on the issues (rather than ignore them), 
and to make sure that each issue has an owner and that the team keeps track of  the status of  each issue.

40. Answer: B

Getting frequent feedback from users and customers is an effective way to confirm that you’re delivering business 
value and enhancing that value. You get that feedback at the sprint review, which is the meeting where you review the 
increment.

41. Answer: C

Sometimes teams run into issues that simply cannot be resolved. When this happens, the most important thing is to 
make sure everyone—especially the stakeholders—understands as soon as possible exactly how this will impact the 
commitments.

42. Answer: A

When velocity drops, it’s often temporary. For example, the amount of  work the team produces in an iteration might 
decrease temporarily if  a team member is on vacation or if  a specific work item turns out to be more difficult or 
complex than anticipated. But if  the velocity drops significantly and stays at that lower level for several iterations, the 
team needs to adjust their release plan to reflect the fact that they won’t get deliverables done as quickly. That way they 
can maintain commitments to their stakeholders that are realistic, and not overly optimistic because they’re based on 
outdated information.

43. Answer: A

An important part of  stakeholder engagement on an agile team is to help the stakeholders to establish their own 
relationships so that they can more effectively collaborate. Meeting with them to set up a working agreement for the 
sake of  the project is an effective way to accomplish this.

44. Answer: B

When teams encounter risks, issues, and threats to the project, an important priority should always be to communicate 
the status of  those issues. An information radiator is a very good tool for doing that.

The first sentence is a red herring. 
That’s true of every project!

Agile teams typically schedule releases that align with the end of their iterations, releasing work that’s been completed during the iteration. Often, a lower velocity won’t require the team to change the frequency of those releases. They’ll just deploy fewer deliverables at each release. That way the steady flow of completed deliverables will continue (even if the project takes longer).

Servant leadership typically refers to the 
way someone in a leadership position—often 
the scrum master—relates to the rest of 
the team, recognizing that they’re the 
ones actually getting the work done.

you are here 4  433

practice pmi-acp exam



45. Answer: A

A story map gives your team a way to collaborate with each other and create a visual release plan by organizing stories 
into releases. This helps your team provide forecasts for future releases to your stakeholders. And it does it at a level 
of  detail that gives them enough information to plan effectively, without including specific details that the team can’t 
possibly know or honestly commit to this early on.

46. Answer: A

Agile teams—and especially Scrum teams—work so well because they maintain a very high level of  stakeholder 
involvement. One way that product owners do that is by constantly looking for changes in the project and the 
organization, and immediately acting on those changes to see if  that change affects the project’s stakeholders. In this 
case, an organizational change created a new project stakeholder, so the product owner needs to engage with that 
person as soon as possible.

47. Answer: C

Teams refine the requirements for the software that they build by gaining consensus on the acceptance criteria for each 
feature or work item, and these acceptance criteria combine to form the definition of  “done” for the product increment.

48. Answer: B

It’s part of  an agile practitioner’s job to support change at the organization level, to educate people in the organization, 
and to influence behaviors and people in order to make the organization more effective and efficient.

49. Answer: A

When one person assigns work to the team and expects them to report status, that’s the opposite of  self-organizing, and 
the Scrum implementation is broken. On a self-organizing team, individual team members are empowered to make 
decisions together about what tasks they work on next. The daily scrum is where the whole team reviews these decisions.

50. Answer: C

Determining the root cause of  a quality problem is an important first step to fixing a problem, and an Ishikawa (or 
fishbone) diagram is an effective tool for doing root cause analysis.

This question starts off by describing the product owner role: “an agile practitioner who maintains a prioritized list of requirements for the team”—in other words, the person who maintains the product backlog.

A lot of people will have endless arguments disagreeing on how the terms 
“definition of ‘done’” and “acceptance criteria” differ slightly in meaning. 
Some people believe that definition of “done” applies only to the increment, 
while acceptance criteria apply only to individual stories or features. But for 
the exam, you may see the  terms used interchangeably, and you will probably 
not be asked a question that requires you to differentiate between them.

In an effective daily scrum, the agile practitioner would tell the rest of the team what task she plans to work on next. If this doesn’t seem like an effective approach, another team member will raise that as an issue, and they’ll meet together after the daily scrum to work out the details.

434  Chapter 9

exam answers



51. Answer: D

After teams have been together for a while, they often enter a phase—referred to as “norming”—in which they start to 
resolve their differences and personality clashes, and a cooperative quality starts to emerge among the team members. 
According to adaptive leadership, a management and leadership approach that involves changing the way that leaders 
work with teams as they move through their stages of  formation, the “norming” stage requires supporting, or leadership 
that features a lot of  support but allows the team more freedom to determine their own direction.

52. Answer: D

The “caves and commons” office layout, in which developers or pairs have semi-private spaces adjacent to a shared 
meeting space, is effective because it limits interruption while still allowing for osmotic communication (where team 
members learn important project information from overheard conversations). Open plans—especially ones where team 
members sit facing each other—can be very distracting, which makes it difficult to focus. And while closed-door offices 
do a great job of  limiting interruptions (and team members definitely prefer them because they provide both privacy 
and status), they don’t allow for osmotic communication.

53. Answer: D

The product owner is responsible for maximizing the value of  the deliverables. The main way that he or she does this is 
by prioritizing the units of  work in the product backlog so that the team delivers the most valuable ones first, and he or 
she determines that value by collaborating with stakeholders. The team does not determine the value of  the work items 
by themselves—this is only done by the product owner in collaboration with the stakeholders.

54. Answer: C

No stakeholder likes to be told that a feature he or she is expecting to be done at the end of  the current iteration will 
be delayed until the next one or later. That’s why agile teams work especially hard to establish a clear picture of  exactly 
what they will deliver at the end of  the iteration—and they work really hard to maintain that shared understanding 
between the team and the stakeholders. So when the definition of  “done” for the increment changes (in other words, 
when the team discovers a change in what they’re planning to deliver at the end of  the iteration), they need to let the 
stakeholders know immediately.

55. Answer: B

Constructive disagreement—and even the occasional argument—is normal and even valuable for teams. That’s why 
agile teams always strive to create an open and safe environment by encouraging conversation, disagreement, and even 
constructive arguments. The presence of  a senior manager should not change this.

This question is about adaptive leadership, which is based on Tuckman’s theory 
of group development and Hershey’s situational leadership model, which were 
developed in the 1960s and 1970s. It’s more important to understand the ideas 
of what happens to teams when they form and how effective leaders should 
adapt to them than to remember the names of these management theories.

You might see terms like 
“business representative” or 
“proxy customer”—they’re 
referring to the Product Owner.

you are here 4  435

practice pmi-acp exam



56. Answer: C

Feedback and corrections to planned work and work in progress is done using periodic checkpoints with stakeholders. 
Most agile teams accomplish this by holding a review at the end of  each iteration.

57. Answer: C

Making the increment size smaller is an effective way to identify risks and respond to them as early as possible in the 
project. Including fewer stories in each iteration is a good way to limit the increment size.

58. Answer: D

There is an upper limit on the number of  people who can be on a Scrum team—it typically can support a maximum of  
nine people (but some teams make it work with up to twelve). Fourteen is definitely too large for a Scrum team, and an 
early sign that the team is too large is that people have trouble concentrating during the daily scrum. The best thing for 
this team to do is to split into two smaller teams.

59. Answer: A

Agile teams always prefer face-to-face communications whenever possible, and digital videoconferencing tools are a 
great way to facilitate face-to-face communications. The team should always accommodate stakeholders whenever 
possible, but should not expect stakeholders to necessarily accommodate them (so requiring a stakeholder to fly out and 
co-locate with the team for several weeks is an unreasonable thing for a team to ask).

60. Answer: B

The value stream map displayed in the chart shows time that the team spent working on the top, and time that the team 
wasted waiting on the bottom. If  you add up the days, the team spent a total of  38 days actively working on the project, 
and 35 days waiting for approvals, stakeholders, and SA and DBA activities. That is a very large portion of  the project 
spent waiting, which means there are plenty of  opportunities to eliminate waste.

61. Answer: B

Velocity is a very effective way to use the team’s actual performance from past sprints to understand their actual 
capacity for doing work, and using that information to forecast how much work they can accomplish in future iterations. 
Teams do this by assigning a relative size—typically using made-up units like story points—to each story, feature, 
requirement, or other item being worked on, and using the number of  points per iteration to calculate the team’s 
capacity.

62. Answer: B

It’s normal and healthy for team members to have constructive disagreements. It happens all the time on effective teams, 
especially when the team members feel personally committed to the project. While leaders sometimes need to step in 
and prevent arguments from getting out of  hand, letting the team members resolve their own disagreements is always 
better for the team, because it creates cohesion and lets them reach common ground together.

436  Chapter 9

exam answers



63. Answer: A

When you’re working on a Scrum team, it’s the product owner’s job to meet with the stakeholders, help them 
understand problems, and communicate the solutions to the team. Team members should never go directly to 
stakeholders with problems; they need to make sure the product owner is always involved.

64. Answer: D

Agile teams are concerned not just with delivering high-value features, but with maximizing the total value that’s 
delivered to the stakeholders. That’s why they balance delivery of  high-value work items with reducing risk. An 
important way agile teams do that is to increase the priority of  high-risk work items in the backlog. This particular work 
item presents a high risk because it’s a low-priority work item, but if  there’s a problem it will have a large impact.

65. Answer: C

A generalizing specialist, or someone who has expertise in a specific area but is also improving in several other areas of  
expertise, is very valuable to an agile team. Generalizing specialists can help reduce team size by filling several different 
roles. Bottlenecks are less likely to occur, because one source of  project bottlenecks comes from having only one team 
member able to do a certain task but not being available to perform it. Generalizing specialists help to create high-
performing, cross-functional teams. However, they don’t necessarily have better planning skills than any other team 
member.

66. Answer: C

Agile teams recognize that they learn a lot about the work that they will do along the way, so they expect their plans to 
improve as the project progresses. They do this by adapting their plan at the start of  each iteration, and meeting every 
day to find and address any issues with that plan. This is how they refine their estimates of  the scope and the schedule 
so that their plans always reflect a current understanding of  what’s going on in the real world.

67. Answer: C

Agile teams handle maintenance and operations work exactly the same way that they handle any other work. If  bug 
fixes are critical, the team will work on them at the next opportunity. And the next opportunity, in most cases, is the 
start of  the next iteration.

The part of the question about the product owner’s schedule 
conflict is a red herring. There’s only one answer to this question that doesn’t have the team member exclude the product owner.

Stopping work immediately to change directions 
introduces chaos, and is not an effective way to 
change priorities. Agile teams use iterations so 
that they can respond to change quickly without 
letting their projects spin out of control.

you are here 4  437

practice pmi-acp exam



68. Answer: B

One reason that agile teams are easy to work with is that they provide their stakeholders with forecasts and schedules 
that are at a level of  detail that gives the stakeholders the information that they need without an unrealistically high 
level of  detail. The scrum master should understand this, and recognize that there’s absolutely no way that the team 
could possibly know how each person will spend each hour for the next six months.

69. Answer: D

Scrum teams value focus because even a small number of  interruptions every week can cause significant delays, and 
the frustration from interruptions can seriously demotivate the team. As a servant leader, the scrum master needs to 
pay attention to anything that demotivates the team in order to keep morale high and the team productive. So while 
a servant leader typically doesn’t have the authority to grant permission to skip meetings called by the manager, it’s 
absolutely within the scrum master’s role to approach that manager and find ways to keep the interruptions to a 
minimum.

70. Answer: C

Dealing with a non-cooperative team member is always difficult. On an agile team it’s especially hard because agile, 
more than most other ways of  working, relies on a shared mindset among the team. That’s why it’s so important for 
team members to cooperate with each other. One way that they do that is to come up with ground rules that help 
improve the team’s coherence and strengthen each other’s shared commitment to the project’s goals and to the team.

71. Answer: B

The first step in planning an agile project is defining deliverables. In other words, the team needs to know what they’re 
building. Agile teams typically use incremental methodologies, so the deliverables are defined by identifying specific 
units that the team will build incrementally.

72. Answer: D

Managing the expectations of  stakeholders is an important part of  how agile teams work. One way that they do it 
is to make broad commitments at the beginning of  the project, typically by coming up with general goals for the 
project deliverables. As the project unfolds and project uncertainty reduces, they can make more and more specific 
commitments. This helps give their stakeholders a good idea of  exactly what will be delivered, without the team 
overcommitting or agreeing to deliver something that turns out to be impossible or unrealistic within the project’s time 
and cost constraints.

When you give stakeholders a schedule that has an unrealistically high level of detail, you’re basically lying to them. That’s 
definitely not something agile teams do!

One way that a lot of Scrum teams handle a situation like 
this is to create a rule where anyone who arrives late to the 
daily scrum twice in a row has to wear a silly hat for the rest 
of the day or put a small amount of money into a “tip jar” 
that pays for a pizza or a round of drinks when it gets full.

438  Chapter 9

exam answers



73. Answer: C

Agile teams always provide as much transparency as they can to their primary stakeholders, especially when it comes to 
problems that could impact the project. Keeping the primary stakeholder informed is more important than updating 
information radiators, refining the backlog, or holding a retrospective.

74. Answer: C

When you experiment with new techniques and process ideas, it helps you and your team discover more efficient and 
effective ways to get your project done, and this is an important way that agile teams enhance creativity. So when you 
are presented with a set of  alternative techniques to use, you should consider them. On a Scrum team, the appropriate 
time for doing this is during the sprint planning meeting.

75. Answer: B

It’s really important to encourage all of  the team members to share knowledge. Agile teams collaborate and work 
together, because sharing knowledge is an important way that agile teams avoid risks and improve productivity.

Any time a stakeholder is impacted, he or she 
needs to be kept informed. This is especially true 
on Scrum teams, where openness is highly valued.

This is a tough question. All of 
the answers to this question seem like pretty 
good options, so which one do you choose? The 
key to reasoning your way through a question 

like this is understanding the principles that drive 
an agile mindset... especially customer 

collaboration.

The rules of Scrum are important and give you a highly 
effective way to manage projects and build software, but 
if they specifically conflict with company-wide rules, you’ll 
need to find a way to work within your company’s guidelines.

It’s true that the sprint retrospective typically comes after the sprint review. However, there’s a more pressing issue that you have to handle first.

you are here 4  439

practice pmi-acp exam



76. Answer: D

When a Scrum team plans the next sprint, one thing that they do is craft a sprint goal. This is their objective for the 
sprint that they’ll meet by completing the work in the sprint backlog and delivering the increment. The sprint goal 
is how they stablish a shared, high-level vision of  what they will accomplish for their stakeholders by delivering the 
increment.

77. Answer: A

Value stream analysis is a very valuable tool for detecting waste, especially waste that is caused by waiting for other 
teams.

78. Answer: A

All of  these answers are good ideas. But the question specifically asked about the most effective strategy for prioritizing 
stories in the sprint backlog. Agile teams need to deliver stakeholder value early, which is why they plan their releases 
around minimally marketable features or minimally viable products. An early product release that has just enough 
features is the definition of  a minimally viable product. The other answers are good strategies to get there.

79. Answer: A

Scrum teams plan their work by dividing the project into increments, and delivering a “done” increment at the end of  
each sprint. Scrum teams typically don’t make  major adjustments to their long-term plans mid-sprint. Instead, they 
make sure they are working on the most valuable deliverables they can during any individual sprint, so that even if  
priorities changes, they can meet the commitments they made for the current sprint and still deliver value. They’ll adapt 
their plans to the new priorities as soon as the current sprint is done.

80. Answer: A

When teams discover risks or other issues that could threaten the project, they need to communicate the status of  
those issues to the stakeholders, and if  possible, incorporate activities into the backlog to deal with the risk. One useful 
activity is exploratory work, where team members take time during  a sprint to build a risk-basked spike solution to 
help mitigate the risk. But while refactoring the source code and performing continuous integration might be useful for 
lowering risk due to technical debt, it is unlikely to help with this situation.

Information radiators are a good way to 
communicate information about how the 
project is going, but they don’t really do a 
lot to establish a shared vision for the sprint.

An Ishikawa (or fishbone) diagram can help you describe the root cause of project 
problems, but it isn’t tailored to finding specific causes of waste due to waiting time.

If you see a question where several 
answers look like they could be correct, choose the answer that’s most specific 
to the question being asked.

Completing the current sprint isn’t the same thing as stubbornly sticking 
to an outdated plan. But if the alternative is cancelling the sprint, it’s 
much better to complete the current sprint and deliver the backlog 
items that the team promised the stakeholders at the last sprint review.

When you see a “which-is-NOT” question, be really careful to read all of the answers, and make sure you pick the WORST answer, not the BEST.

440  Chapter 9

exam answers



81. Answer: C

When the team doesn’t have a consensus on what it means for a work item to be done, it can lead to problems, 
arguments, and delays late in the iteration. This is why the team needs to determine a definition of  “done” that can be 
used as acceptance criteria. This is usually done on a “just-in-time” basis by leaving the decision for the last responsible 
moment—but for the team in this question, they waited too long to make that decision.

82. Answer: B

The team was notified of  an operations problem, and they need to modify their plan to take it into account. They have 
an estimate for the impact: two team members will need to spend three iterations on the workaround. So they’ll treat 
this change the way they treat any other change, by adding stories to their weekly cycles, and adjusting their release plan 
to reflect the change. Since this workaround is just more project work, it won’t reduce the velocity, because work on the 
stories for the workaround will count towards the velocity just like any other work.

83. Answer: A

When a serious risk happens early on in the project, that’s when iteration is most important. In this case, the team 
discovered a problem that needs to be fixed as soon as possible, so work needs to start right away—that means the 
product owner should add an item to the sprint backlog to start that work immediately. But the work will continue into 
the next sprint, so he or she also adds another item to the product backlog to make sure the fix is completed.

84. Answer: B

Agile teams plan their projects at multiple levels. For example, Scrum teams use the product backlog to do long-term 
strategic planning, hold sprint planning meetings at the beginning of  each sprint to build the sprint backlog, and review 
their plan every day at the daily scrum. In this case, the stakeholder wants to know about the sprint backlog, which is 
created at the sprint planning meetings.

85. Answer: B

Agile teams should always think about risks and potential issues that could threaten the project. When they encounter 
them, the team should maintain them in a way that ensures that the status and priority of  each risk is visible and 
monitored.

There’s no need to run a risk-based spike, because 
there is no uncertainty. The team knows that the 
server upgrade will be delayed, and that they’ll 
have to spend time and effort on the workaround.

This question doesn’t use the term 
“sprint backlog” but instead describes it 
(“a list of features, stories, and other 
items to be delivered during the sprint”).

It’s a great idea to add items to the backlog 
in order to deal with risks. However, the team 
should not necessarily do it for every single 
risk that was raised in the retrospective. 
Sometimes risks can be accepted, and 
sometimes it’s enough just to be aware of them.

you are here 4  441

practice pmi-acp exam



86. Answer: B

Teams often size the items that they will work on using ideal time. This means working together to figure out how much 
time it would take for a team member to work on each item in an “ideal” situation: he or she has everything needed 
to complete the work, there are no interruptions, and no other external factors or issues that could get in the way of  
completing the work. Unlike relative size techniques (like assigning story points to each item), ideal time is the team’s 
best estimate of  the absolute time required.

87. Answer: B

People on teams have conflicts all the time. The difference on an agile team is that they genuinely try to collaborate 
with each other. In this case, the XP team practice incremental design by finding a minimal first step that leaves the 
design open to either person’s approach. Having the two team members use pair programming to build that approach 
together is a highly collaborative way to handle the situation. (Also, setting team ground rules to prohibit arguments is a 
terrible idea. Some arguments are healthy, and can lead to a better product and a more cohesive team.)

88. Answer: B

A really important part of  an agile team is that everyone is allowed to experiment and make mistakes. When you make 
a mistake, you need to be open and public about it with your team. It’s tempting to try to cover up the problem, but 
when problems happen you can’t shield the rest of  the team from the consequences. You need to be open about what 
happened, and work through the problem together.

89. Answer: D

When new leaders emerge on an agile team, your job is to encourage that leadership. It’s often difficult to try out new 
techniques, so your job as an agile practitioner is to establish a safe and respectful environment for that.

90. Answer: D

Agile teams are highly innovative because they create a safe environment where they’re allowed to make mistakes so 
they can improve. An important part of  the mindset of  allowing mistakes is to think of  them as problems that need to 
be corrected, rather than learning experiences. And it’s important to be open about mistakes that you’ve made, and 
encourage others to do the same.

91. Answer: C

A value stream map is the result of  value stream analysis. Typically, a value stream map shows the flow of  an actual 
work item (such as a product feature) through a process, with each step categorized as either working or waiting (non-
working) time. One goal of  value stream analysis is identification of  waste in the form of  non-working time that can be 
eliminated.

Fist-of-five voting is a way for teams of people to express their opinions. But in this case the team is arguing over which technical approach is superior, and swaying opinions is not necessarily the best way to reach the best technical solution. 

When you’re open about your own 
mistakes, it helps build a safe and 
trustful team environment.

If you “allow” a mistake to go “uncorrected” you’re still viewing 
it as a mistake that you were generous enough to let slip by. 
Part of developing an effective agile mindset is learning to see 
mistakes as genuine opportunities for improvement.

442  Chapter 9

exam answers



92. Answer: C

Interruptions can be extraordinarily damaging to the team’s productivity. Even a brief  interruption can take a team 
member—especially a developer writing code—out of  his or her state of  “flow,” and it can take up to 45 minutes to get 
back into it. So four or five phone calls a day might not sound too bad, but that level of  interruption can cause someone 
to sit at their desk all day and get literally no work done. It’s unrealistic to change the office layout (and that won’t fix 
the phone call problem, anyway). And while it makes sense to adjust the sprint backlog, that doesn’t fix the problem. So 
the best option is to establish a daily “no-call” window to limit interruptions.

93. Answer: B

Teams work best when they have a safe and trustful environment where people are allowed to experiment and make 
mistakes. As a servant leader, the scrum master must do everything that he or she can to establish that environment, 
even when it means having uncomfortable conversations with senior managers.

Having the product owner approach the stakeholders makes sense, but if the 
stakeholders need to talk to team members, it’s unreasonable to ask them 
to go through an intermediary. Agile teams value face-to-face (or phone) 
conversations, and those conversations can be very important to the project.

This is an especially tough 
question. All of those answers have 
potential downsides, so you need to 
figure out which is the “least worst” 
option. In this case, the “no-call” 

window will limit the interruptions without 
placing unreasonable demands on the 

team or the stakeholders.

This is going to be a difficult discussion for the 
scrum master, and it’s a good example of how it’s 
not always easy for Scrum teams to value courage.

you are here 4  443

practice pmi-acp exam



94. Answer: C

A persona is a profile of  a made-up user that includes personal facts and often a photo. It’s a tool that a lot of  Scrum 
teams use to help them understand who their users and stakeholders are and what they need. Agile teams need to 
identify all of  their stakeholders—including future ones they don’t necessarily know about today. Personas are a great 
tool for doing that. 

95. Answer: C

Agile teams don’t work in a vacuum—they constantly look at all of  the infrastructure, operational, and environmental 
factors that could affect their project, even when those factors happen outside of  the team. When they run across the 
problem, it’s handled like any other problem: the product owner prioritizes it in the backlog based on its value. In this 
case, this is a severe problem, so the work item that the product owner adds to the backlog must be given high priority 
so that the team resolves it quickly.

96. Answer: C

Agile team members work hard to identify their project’s business stakeholders and make sure that everyone on the 
team has a good understanding about what they need and expect from the project. But requiring stakeholders to attend 
planning meetings and requiring a sign-off  on the plan does the opposite—it will make them feel less engaged, and 
create bureaucratic hurdles that prevent the team from responding to change.

97. Answer: B

This is a burn down chart for a team whose current sprint is running into trouble. They’re two-thirds of  the way  
through the current 30-day iteration, and the velocity has slowed down significantly. If  they don’t remove stories from 
their sprint backlog, it’s unlikely that they will meet their sprint goal.

98. Answer: B

Your job as an agile practitioner includes helping to ensure that everyone on your team shares a common understanding 
of  the agile practices that you are using.  Common knowledge of  agile practices is a basic part of  working together 
effectively. So in this situation, you need to sit down with each team member and make sure they understand the 
practices that you use to respond to change.

Read every question carefully, and especially 
watch out for “which-is-not” questions.

You can’t determine that the team did a poor job planning just because the velocity is slower than expected. There are plenty of problems that teams can’t anticipate—for example, a team member could have gotten sick. This is why Scrum teams constantly inspect and adapt, and why agile teams value responding to change over following a plan.

444  Chapter 9

exam answers



99. Answer: A

Product owners must prioritize any relevant non-functional requirements exactly like they do with all other 
requirements, and this includes operational requirements that might come from a DevOps group. In this case, the script 
needs to be modified in order to hold the sprint review, so the change has to be included in the current sprint—and 
since that will cause some work to be delayed past the end of  the sprint, that work must be moved back to the sprint 
backlog.

100. Answer: D

Agile teams are self-organizing and empowered to make decisions about how to meet their iteration goals. This means 
that they work together to determine what tasks they need to perform in order to meet the sprint goals, and they’ll 
often prioritize the stories with the most risk early in the iteration. The scrum master can help them self-organize and 
understand the methodology that they use, but he or she does not decide the order of  the work, because that’s not part 
of  servant leadership.

101. Answer: C

Osmotic communication happens when team members absorb important project information from the discussions 
that take place around them. The XP primary practice of  sitting together in a shared team space is an effective way to 
encourage osmotic communication.

102. Answer: A

Agile teams organize their requirements into minimally marketable features that they can deliver incrementally. By 
planning releases that deliver the most valuable features first, they can deliver value to the stakeholders as early as 
possible. 

103. Answer: C

This team is concerned about a potential problem, but currently there has not been any actual impact on their project—
and there won’t be an impact if  the problem turns out not to exist. This is a good opportunity to perform exploratory 
work (which some people refer to as spike solutions). That’s a useful way for teams to determine if  a technical problem 
can be resolved, or if  they need to find a different approach. 

104. Answer: C

One of  the most important jobs that a product owner has on a Scrum team is making sure that new stakeholders are 
appropriately engaged in the project. Ideally, all stakeholders will attend every sprint review. However, there’s no rule 
that says that every stakeholder must attend all sprint review meetings. Some stakeholders don’t have time to attend 
them, or are in another time zone that makes it difficult for them to attend, or simply don’t want to. It’s the product 
owner’s job to do whatever it takes to make sure those stakeholders are involved, using whatever manner works best for 
them.

Any time work will extend past the end of a sprint, it needs 
to be moved back to the sprint backlog and planned for a 
future sprint. It’s never an option to break the timebox and 
extend the length of the sprint to include additional work.

You might also see the exam mention “minimally 
viable products,” which are very closely related 
to minimally marketable features.

you are here 4  445

practice pmi-acp exam



105. Answer: C

Agile teams—and especially the product owners on those teams—must identify all of  the stakeholders and engage 
them throughout the whole project. In this case, you are meeting with stakeholders partway through an iteration, 
which means you are in the product owner role, so when you hear that there is a stakeholder who might impact the 
requirements for the project, you have identified a new stakeholder, so the next thing you should do is engage with that 
person.

106. Answer: B

This burn down chart shows a 30-day sprint that’s going exactly as the team expects it to. They’ve probably been 
working together for a long time, because the velocity is constant. You can tell that because the burn down line is always 
very close to the guideline. There might be a few days where it’s just above or below the line, but when you’re looking at 
a burn down chart you care more about the trend than about individual days.

107. Answer: C

People work most effectively when they’re in an open and safe environment where they’re encouraged to talk about 
anything related to the project—especially issues that could potentially cause problems.

108. Answer: D

Once the team has finished planning an iteration, it’s important that they make the results public to all of  the project 
stakeholders. That’s a really effective way to build trust between the team and the business because it shows that the 
team has committed to specific goals for the iteration. It also helps reduce uncertainty by making it clear exactly what 
the team intends to accomplish.

109. Answer: A

When people on an agile team discover issues that could affect the project, they make sure that their team members 
know—and more importantly, work with them to find ways to fix the problem. In fact, they’ll do two things: they’ll 
fix the problem today, and they’ll make sure the process or methodology they follow addresses the issue so it doesn’t 
happen again in the future.

110. Answer: B

Agile teams members should always be encouraged to collaborate with each other and share their knowledge. Pair 
programming is a highly effective practice for both collaboration and knowledge sharing.

111. Answer: B

Agile teams value working software over comprehensive documentation, and the best way to help stakeholders 
understand this is to show that past projects have gone well when they followed this value.  However, it’s always better to 
show success than to simply insist on a certain way of  working. 

Agile teams value working software over comprehensive documentation. But that doesn’t 
mean they never use comprehensive documentation! They just value working software more.

446  Chapter 9

exam answers



112. Answer: B

Agile teams working on a new project need a starting point that they can use going forward. A good first step is to create 
a release plan, or a high-level plan of  when specific deliverables will be released. Creating this plan involves creating 
very broad estimates of  the scope of  the items being delivered and the work required to build them, and using that 
information to come up with a very rough schedule. This schedule will not have a lot of  detail, because that reflects the 
team’s current high level understanding of  the project. 

113. Answer: C

Agile teams are always working to improve their effectiveness by continuously tailoring and adapting their project 
process. One way that they do this is by periodically reviewing the practices that they use, the culture of  the team and 
the organization, and their goals.

114. Answer: A

One of  the most effective ways for a team to build trust with a stakeholder is to establish a shared understanding of  
exactly what will be delivered during each sprint, and genuinely collaborate with him or her when trade-offs need to be 
made for technical or schedule reasons.

115. Answer: A

You are an agile practitioner meeting with stakeholders, which means that you are in the product owner role—and 
the product owner’s job is to collaborate with stakeholders to understand the value of  each deliverable, and use that 
information to prioritize the items in the backlog. Product owners need to take two things into account when they 
prioritize the backlog: the relative value of  each feature, and the amount of  work required to build it. Since you are 
able to assign relative value to each item in the backlog but you don’t yet know how to prioritize them, the missing 
information is the amount of  work required. The way to get that information is to re-estimate the items in the backlog.

A story map is a great way to build a release plan for a team that 
uses stories. However, that plan should not be based on highly detailed 
effort estimates, especially at the beginning of the project.

Agile teams value collaborating with 
their stakeholders over setting up 
contract-like agreements with them.The question mentioned “the list 

of planned features”—this is the definition of the product backlog.

This is an especially tough question. A lot of questions on the exam ask about a 
specific tool, technique, or practice—this one is about the product backlog. But a lot of 
questions won’t specifically mention it by name. Instead of calling it a product backlog, 
this question describes it (“list of planned features”). The key to questions like this is to 
break them down using terms that you know. “You have just assigned a relative value to 

each item in the list of planned features”—that means you just finished assigning a relative 
business value to the items in the product backlog. It also means that you must be the 

product owner, because that’s the only person on the team who meets with stakeholders 
and assigns a business value to backlog items. So if the product owner has assigned a 
relative business value to each item in the product backlog, what’s the next step for the 

team to take in order for the plan to work? Scrum teams plan their work based on business 
value and effort, so the next step for the team is to re-estimate the backlog.

you are here 4  447

practice pmi-acp exam



116. Answer: D

Co-location—or team members working in close proximity to each other in a shared team space—is a great way to 
encourage osmotic communication (or absorbing of  important project information from overheard conversations). It 
makes it easier to create an informative workspace (for example, by posting information radiators), and team members 
benefit because they have access to their teammates. However, one downside of  co-located teams is that there’s a lot 
more potential for distractions.

117. Answer: C

Agile teams maximize and optimize the value of  the deliverables that they build by collaborating with stakeholders. On 
a Scrum team, it’s the role of  the product owner to collaborate with the stakeholder, understand the value, and help the 
team to deliver that value.

118. Answer: A

This team is attempting to do root cause analysis on a problem that they ran into so that they can fix the underlying 
problem and prevent it from happening in the future. An Ishikawa (or fishbone) diagram is an effective tool for 
performing root cause analysis.

119. Answer: D

Agile teams use frequent verification and validation to ensure product quality. This means doing product testing and 
conducting frequent reviews and inspections. These verification steps will help the team identify improvements, which 
must then be incorporated in the product.

120. Answer: A

Agile teams value responding to change, even when those changes are bad news—like a budget cut that will require the 
team to scale back the scope of  what they’ll deliver. And they value collaborating with their stakeholders, even when 
it means delivering that bad news. That’s why every agile methodology includes some sort of  mechanism or rule that 
lets them inspect the plan that the team is currently following (like holding daily standup meetings and retrospectives), 
changing the plan any time it becomes unrealistic, and alerting their stakeholders to the change.

There’s no “perfect” way to organize your team space, and there are trade-offs that come with every strategy. However, the benefits of co-located teams in a shared team space far outweigh the costs.

Sometimes it may seem like working around a product owner is a good 
idea. It’s not—you always need the product owner in the loop on 
every change so that the stakeholders can be kept in the loop. That’s 
how agile teams make sure they deliver the most valuable products.

So how’d you do?
The PMI-ACP® handbook (which you can download from the PMI.org website) explains how they use subject matter experts from all around the world to determine the passing score. That makes a lot of sense—it’s a sound technique that lets PMI establish the examination point of difficulty with a lot of precision. That does make it a little hard to predict exactly how many questions you’ll need to get right to achieve a passing score, but if you’re scoring in the 80% to 90% range on this exam, then you’re in really good shape.448  Chapter 9

exam answers



This is the index 449

Index

A
adaptation (Scrum pillar)  93, 95, 98–99, 151

adaptive leadership  349

adaptive planning
practice exam exercises  348–359, 372
Scrum framework on  93, 95, 97–99
self-organizing teams and  97

adjourning stage (team formation)  349

affinity estimating  326, 352

Agile Manifesto. See also specific values and principles
about  25–26, 33
chapter exercises  34, 66
four values  25–33
principles behind  41–54
Scrum and  96–98

agile mindset
about  10
chapter exercises  15, 17, 20–21, 36–37, 49, 57, 67–69
chapter questions and answers  14, 35, 50, 54
Lean mindset and  262
practice exam exercises  58–65, 314–321
principles and practices  1–21
values and principles  23–69

agile practitioner  310–311

Agile Retrospectives (Derby and Larsen)  154

amplify learning (Lean principle)  249, 253

Anderson, David  280

API (application programming interface)  205

application programming interface (API)  205

architectural spike  215

artifacts (Scrum)  76–77, 79, 86. See also specific artifacts

automated builds  208, 210

B
backbone (product)  149

backlog
about  47, 54
Increment. See Increment
PBR meeting and  148, 151
Product Backlog. See Product Backlog
refinement. See PBR (product backlog refinement)
risk-adjusted  351
Sprint Backlog. See Sprint Backlog
story maps visualizing  149
types of  items as  139
XP and  182

backlog grooming  323. See also PBR (product backlog 
refinement)

Beck, Kent  181

bribes, accepting  380

Brooks, Fred  25

build automation  208, 210

build in integrity (Lean principle)  250

burndown charts
about  11, 13, 19, 123, 143, 151
release  151
risk-based  351
story points and  143
velocity and  143–146

burn-up charts  147



the index 

450 index

C
card (user story)  125, 131–133, 138

cause and effect diagrams  155, 157

caves and commons design  193

ceremony (Scrum)  95

CFDs (cumulative flow diagrams)  292

change management
about  15, 20, 32–33
Agile Manifesto on  41, 43, 54–55, 68, 98
over following a plan  25, 32–33, 36
Scrum framework and  93–95, 99
XP and  15, 20, 204–207, 229

check-ins (retrospective tool)  156

chunking  313

coaching style (situational leadership)  349

code bloat  226

code maintenance  223

code monkey trap  195, 198

Cohn, Mike  123, 151

collaboration, customer. See customer collaboration

collaboration games  352

collaborative improvement (Kanban)  280, 282, 295

collective commitment  84

color code dots (data gathering tool)  156

commitment-driven planning  151

commitment (Scrum value)  84–85, 188

commit (version control system)  206–207, 211

communication
agile on  4–9, 11, 13, 31, 50, 52–53
GASP on  124, 138, 154, 160, 172
Scrum on  74, 86, 95–99, 113
XP on  182, 188–190, 192–195, 198–199

complex code  223–227, 230

conceptual integrity (Lean tool)  256

confirmation (user story)  125, 131, 138

conflict (version control system)  206–207, 211

content outline (PMI-ACP exam)  309–313

continuous attention to excellence and design  41

continuous delivery of  software
about  54, 99
Agile Manifesto on  41–42, 46, 96, 325

continuous improvement
practice exam exercises  361–369

continuous integration  19, 209, 211, 219, 229

contract negotiation  25, 31, 33

conversation (user story)
about  131
agile principle on  15, 20, 41, 53–54, 127
in XP teams  192–193

copyrighted material  382

cost of  delay (Lean tool)  256

courage
as Scrum value  83, 88, 188
as XP value  184, 188

cumulative flow diagrams (CFDs)  292

customer collaboration
about  31
Agile Manifesto on  41, 52, 54
over contract negotiation  25, 31, 33, 36

customer-valued prioritization tools  325

cycle time (Lean measurement)  257

D
Daily Scrum

about  12, 14, 86
as a ceremony  95
in Scrum Sprint  78
task board example  145–146
timeboxed events and  74, 99

daily standup  4–11, 14, 16

decide as late as possible
Lean principle  249, 253, 271
Scrum framework  94, 99



the index

you are here � 451

defects
as Lean waste category  261
as manufacturing waste  268

delegating style (situational leadership)  349

deliver as fast as possible (Lean principle)  249

delivery cadence (Lean)  256–257, 262

Derby, Esther  154

Development Team role (Scrum)  12, 75, 78, 148

directing style (situational leadership)  349

Done column (task boards)  136–137

done, definition of   92, 99

dot voting  352

E
early delivery of  software

about  54, 99
Agile Manifesto on  41–42, 96, 325

Earned Value Management (EVM)  326

elapsed time  135

eliminate waste (Lean principle)
about  249
categories of  waste  260–262

embracing change. See change management

empirical process control theory  95, 99, 185

empiricism  95

empower the team (Lean principle)  250

energized work (XP)  196, 198–199

estimatable (INVEST acronym)  131

estimation considerations
concepts used  135
in INVEST acronym  131
PBR meeting  148, 151
planning poker  123, 132–134, 138, 151, 352
Product Backlog  76, 79, 108, 138
Sprint Backlog  138, 142, 151
story maps  149
story points  132–135, 138, 151
trust and respect in  82

T-shirt sizes  126, 138, 151, 326
user stories  126–127, 131–134, 138
velocity in  135, 138, 151

ESVP technique  156

ethical decisions. See professional responsibility

events (Scrum)  74, 86

EVM (Earned Value Management)  326

exam question help
getting brain to think about exam  xxiii–xxv

exploratory testing  214

explorers (ESVP technique)  156

extra features (waste category)  260

extra processes
as Lean waste category  260
as manufacturing waste  268

extreme programming. See XP

F
face-to-face conversations. See conversation (user story)

fail fast concept  215, 359

feedback and feedback loops
agile teams and  33, 42, 62, 65, 67
Kanban method  280, 282, 294
Lean mindset tool  253
Scrum teams and  131, 157
XP teams and  205, 208–209, 214–215

Fibonacci sequence  326

firmware  29–30

fishbone diagrams  155, 157

fist of  five voting  352

five why’s technique  269

flow efficiency (Lean measurement)  257, 264

flow management (Kanban)
cumulative flow diagrams and  292
process overview  274–275, 280–286, 288
queuing theory and  255
Toyota Production System  268–269

flow state (XP)  195–196, 199



the index 

452 index

focus
as Scrum value  83, 88, 186
as XP value  185–186, 189

forming stage (team formation)  349

G
Gantt charts  262

GASPs (Generally Accepted Scrum Practices)
about  122–123
burndown charts. See burndown charts
burn-up charts  147
chapter exercises  128–130, 141, 159–162
chapter questions and answers  138, 151
personas  15, 20, 150
practice exam exercises  164–173
product backlog refinement  148, 151, 323
red herring questions  140–141
story maps  149, 151
story points. See story points
task boards. See task boards
user stories. See user stories

Generally Accepted Scrum Practices. See GASPs

grooming  323. See also PBR (product backlog refinement)

H
hack (code)  177, 223, 230, 272

I
ideal time  135

improve collaboratively (Kanban)  280, 282, 295

incremental design  15, 20, 228–229

Increment (Scrum)  76–77, 79

independent (INVEST acronym)  131

individuals and interactions. See team performance

information radiators
about  194, 199, 239, 429
as communication tool  433, 440
example of   367
importance of   431

informative workspace (XP)  194, 199, 219, 239, 429, 448

In Progress column (task boards)  136–137

inspection (Scrum pillar)  93, 95, 98–99

integrity built in (Lean principle)  250

internal rate of  return (IRR)  326

inventory (manufacturing waste)  268

INVEST acronym  131

IRR (internal rate of  return)  326

Ishikawa diagrams  155, 157

iteration
about  46–47, 54
Lean mindset tool  253
timeboxed  46, 54, 78, 188
XP on  182–183, 205

iterationless development  262

J
Jeffries, Ron  181

just the facts ma’am question  19

K
Kaizen  269

Kanban boards  281, 285–286

Kanban method
about  12–14, 245, 274, 286
applying practices  15, 20, 280
chapter exercises  289–290, 294, 296–299
chapter questions and answers  288
Lean mindset and  288
practice exam exercises  300–306
process improvement  280–286, 291–295

kanban (signal card)  288

Kano analysis  325

Kano, Noriaki  325

kludge (code)  223, 230



the index

you are here � 453

L
Larsen, Diana  154

last responsible moment
Lean mindset and  249, 253, 271
Scrum framework on  94, 99

leadership styles
adaptive leadership  349
servant leaders  75
situational leadership theory  349

lead time (Lean measurement)  257

Lean mindset. See also specific principles and tools
about  12–14, 245, 248, 262
chapter exercises  251–253, 263, 265–266, 279, 

296–299
chapter questions and answers  262, 276, 288
Kanban method and  288
practice exam exercises  300–306
principles and thinking tools  249–250, 253–257
Scrum framework and  248
XP and  248

Lean Software Development (Poppendieck)  268

learning amplification (Lean principle)  249, 253

least-worst-option question  278

low fidelity wireframes  214

M
maintaining code  223

managing flow (Kanban). See flow management (Kanban)

manufacturing waste  268

mind maps  352

mindset
Agile Manifesto and  25–26
daily standups and  7–9, 14
Lean mindset. See Lean mindset
methodology versus  10, 50
PMI-ACP exam exercises  314–321
XP teams  184

Minimally Marketable Feature (MMF)  255

Minimally Viable Product (MVP)  255

mistakes
agile principles on  13, 33, 35, 52, 54
Scrum framework on  82, 138
XP on  190, 196, 199, 216

MoSCoW method  325

motion
as Lean waste category  261
as manufacturing waste  268

motivation  52, 54

muda (TPS waste type)  268

mura (TPS waste type)  268

muri (TPS waste type)  268

N
negotiable (INVEST acronym)  131

net present value (NPV)  326

norming stage (team formation)  349

NPV (net present value)  326

O
Ohno, Taiichi  268–269

100 point voting  352

openness (Scrum value)  82, 88, 188

options thinking (Lean tool)  256, 262, 270–271, 276

osmotic communication  194, 198–199

overproduction (manufacturing waste)  268

P
pair programming  208, 216, 219–220, 229

partially done work (waste category)  260

PBR (product backlog refinement)  148, 151, 323

perceived integrity (Lean tool)  256

performing stage (team formation)  349

personas  15, 20, 150

planning game (XP)  189



the index 

454 index

planning poker  123, 132–134, 138, 151, 352

PMI-ACP exam
about  18–19, 307–309, 376
adaptive planning exercises  348–359, 372
agile practitioner  310–311
agile principles and mindset exercises  314–321
chapter questions and answers  312
content outline  309–313
continuous improvement exercises  361–369
examcross  370–371, 375
practice exam answers  424–448
practice exam questions  xviii–xxx, 391–422
problem detention and resolution exercises  360, 

362–369, 373
professional responsibility  386–389
stakeholder engagement exercises  336, 338, 340–347
team performance exercises  337, 339–347
value-driven delivery exercises  322–335

PMI Code of  Professional Conduct  378

Poppendieck, Mary and Tom  268–269

practices. See also GASPs
agile methodology  1–21
Kanban method  15, 20, 280
principles versus  48, 50
real-world challenges  26
XP supported  181–182, 188–199, 202–230

pre-mortems  351

principles
Agile Manifesto  41–54
agile methodology and  1–21
Lean mindset  249–250
PMI-ACP exam exercises  314–321
practices versus  48, 50

prioritize with dots technique  157

prisoners (ESVP technique)  156

problem detention and resolution exercises  360, 362–369, 
373

process policies (Kanban)  280, 282, 292

product backlog refinement (PBR)  148, 151, 323

Product Backlog (Scrum)
about  12, 79
estimation considerations  76, 79, 108, 138
evaluating from task boards  137
PBR meeting  148, 151
prioritizing features  120, 142
Product Owner and  75–76, 96, 148
timeboxed events and  74

Product Owner role (Scrum)
about  12, 31, 42, 47, 50, 75
authority and  84, 86, 96
identifying user stories  131
PBR meeting and  148, 151
prioritizing features  120
Product Backlog and  75–76, 96, 148
Sprint Retrospective and  78, 101
Sprint Review and  79, 86, 96

professional responsibility
about  377, 385
accepting bribes  380
community responsibility and  384
copyrighted material  382
doing the right thing  378–379
following company policy  381
practice exam exercises  386–389
process shortcuts and  383

progressive elaboration  32, 67, 355

project plans  134

pull systems  249, 255, 274–275, 280, 286

Q
quarterly cycle (XP)  182, 193, 198

questions
just the facts ma’am  19
least-worst-option  278
red herring  140
which-comes-next  90
which-is-best  36
which-is-not  200

queuing theory (Lean)  255, 276



the index

you are here � 455

R
red/green/refactor  209

red herring question  140–141

refactoring code  11, 19, 209, 224, 226–227

reject update (version control system)  206–207

relative prioritization/ranking  325

relative sizing techniques  326

release burndown chart  151

release plan, visualizing  149, 151

remove local optimizations (Lean)  272

repository (version control system)  207, 211

respect
as Scrum value  82, 88, 188
as XP value  184, 188

responding to change. See change management

retrospectives. See Sprint Retrospective

return on investment (ROI)  326

reusable code  225, 229

reworking code  39, 44, 67, 203–204

risk-adjusted backlog  351

risk-based spike  215

risk burndown charts  351

ROI (return on investment)  326

roles. See also specific roles
in Scrum framework  12, 31, 47, 75–76
in XP teams  190–193, 198

root cause analysis  269

S
Safari Books Online  xxix

satisfied users  42

Schwaber, Ken  75

scientific method  15, 20

Scrum framework
about  12–14, 47, 71–73, 81, 86–89, 102

Agile Manifesto and  96–98
artifacts in  76–77, 79, 86
chapter exercises  80, 91, 100, 103, 112–115, 119–120
chapter questions and answers  79, 86, 93, 101
events in  74, 86
GASPs. See GASPs
important guideline  174–175
last responsible moment in  94, 99
Lean mindset and  248
practice exam exercises  90, 104–111
roles in  12, 31, 47, 75–76. See also specific roles
Sprint overview  78
tasks in  77–79, 83–84, 86, 92–93
three pillars of   93–95, 99
values in  82–86, 88, 188
XP differences  185–188

Scrum Guide  75, 97

Scrum Master role
about  12, 75, 84, 99
moderating planning poker  132–133
Sprint Retrospective and  78

Scrum Team role  75, 82

seeing waste (Lean tool)  254, 264

see the whole (Lean principle)  250, 272, 276

self-organizing teams  41, 97–101

servant leadership  75

set-based development (Lean tool)  257

seven wastes of  software development  260–262

shoppers (ESVP technique)  156

shortcuts, process  383

short subjects (decision-making tool)  157

shotgun surgery  206, 212

signal card (kanban)  288

simplicity
Agile Manifesto on  41, 64, 224–225
XP on  224–230

situational leadership theory  349

slack (XP)  182–183, 188, 193, 226

small (INVEST acronym)  131



the index 

456 index

Snowbird ski resort  24, 40

sources of  waste  268

spaghetti code  204

spike solutions  214–215, 229

Sprint Backlog (Scrum)
about  12, 76–79
Development Team and  148
estimation considerations  138, 142, 151
Sprint Planning session and  77, 98
timeboxed events and  74

Sprint Goal (Scrum)  77–78, 83, 151

Sprint Planning session (Scrum)
about  12, 14, 78, 86
“Done” tasks and  92
last responsible moment and  94
Sprint Backlog and  77, 98
timeboxed events and  74

Sprint Retrospective (Scrum)
about  11–12, 19, 78, 86, 101
outline for  154–155
Product Owner and  78, 101
timeboxed events and  74
tools supporting  156–157

Sprint Review (Scrum)
about  12, 14, 78
Product Owner and  79, 86, 96

Sprint (Scrum)
about  12, 14, 78, 86
iteration practice and  47
timeboxed events and  74
tracking progress during  136–137, 142–147, 151
walking skeleton and  149

stages of  team formation  349

stakeholder engagement
adjusting to agile practices  139
practice exam exercises  336, 338

stories. See user stories

storming stage (team formation)  349

story maps  149, 151

story points
about  122, 126, 135
burndown charts and  143
estimation considerations  132–135, 138, 151
T-shirt sizes  126, 138, 151, 326

supporting style (situational leadership)  349

sustainable development
Agile Manifesto on  41–42, 196
XP on  190, 196, 198–199, 202–230

Sutherland, Jeff   75

systems thinking (Lean)  250, 272, 276

T
task boards

about  11, 13, 122, 151
Daily Scrum example  145–146
Kanban boards and  281, 286
tracking progress on  136–137

tasks (Scrum)  77–79, 83–84, 86, 92–93

task switching (waste category)  260

TDD (test-driven development)  209, 212–214, 219, 
229–230

team performance
Agile Manifesto on  25, 27, 41, 50, 52–53, 55, 68, 97
daily standup meetings  4–11, 14, 16
Lean mindset on  250, 262
mindset and  7–9
motivation and  52, 54
over processes and tools  25, 27, 33
practice exam exercises  337, 339–347
Scrum framework on  75, 82–84, 96–98
Scrum/XP hybrid  186–189, 193
self-organizing teams  41, 97–101
stages of  team formation  349
working agreements  293
XP and  184, 190–199

team space  192–193

technical debt  226–227

10-minute build  208–210, 229



the index

you are here � 457

testable (INVEST acronym)  131

test-driven development (TDD)  209, 212–214, 219, 
229–230

themes (XP)  182, 188, 193

thinking tools (Lean)  249–250, 254–258, 262

throughput rate  292

tightly coupled code  223, 225

timeboxed iterations  46, 54, 78, 188

timeline (data gathering tool)  156

To Do column (task boards)  136–137

Toyoda, Kiichiro  268

Toyota Production System (TPS)  268–269

TPS (Toyota Production System)  268–269

transparency (Scrum pillar)
about  93, 99
Daily Scrum and  95
stakeholder engagement and  139
task boards and  136

transportation (manufacturing waste)  268

travel policies  381

trust
as Scrum value  82
as XP value  190

T-shirt sizes  126, 138, 151, 326

Tuckman, Bruce  349

U
unit tests  205, 209, 212–213

usability testing  214

user interface  214

user stories
about  11, 122, 124–125, 138, 151
estimation considerations  126–127, 131–134, 138
INVEST acronym  131
purpose of   131
task boards tracking status  136–137
walking skeleton  149
XP and  131, 182, 188, 193

V
vacationers (ESVP technique)  156

valuable (INVEST acronym)  131

value-driven delivery
agile principles and  42–47
practice exam exercises  322–335

value(s)
about  10, 14
Agile Manifesto on  25–34
calculating for projects  326
Scrum framework on  82–86, 96
XP and  181, 184–186, 189, 193, 204–205

value stream maps (Lean)  254–255, 264, 267, 273

velocity
about  126, 135, 144, 151
burndown charts and  143–146
in estimation considerations  135, 138, 151

velocity-driven planning  151

Venn diagrams  187–188, 251–252

version control systems  206–207, 211

visualize workflow (Kanban)  280–285

W
waiting

as Lean waste category  261
as manufacturing waste  268

Wake, Bill  131

walking skeleton (product)  149

waste elimination (Lean principle)
about  249
categories of  waste  260–262
types of  manufacturing waste  268
types of  TPS waste  268

waterfall process  24, 35, 53

weekly cycle (XP)  182–183, 193, 198, 227

which-comes-next question  90

which-is-best question  36



the index 

458 index

which-is-not question  200

whole team (XP)  190–191, 193, 198

WIP (work in progress) limits  274–275, 280–283, 286, 
288, 291

wireframes  214

Wooden, John  181

workflow (Kanban). See flow management (Kanban)

working agreements  293

working software
about  15, 20
Agile Manifesto on  25, 28–30, 41, 44, 46, 55, 68
continuous delivery of   41, 46, 54, 96, 99, 325
early delivery of   41–42, 54, 96, 99, 325
over comprehensive documentation  25, 28–30, 33

work in progress (WIP) limits  274–275, 280–283, 286, 
288, 291

work items (Kanban boards)  281, 285

work-life balance (XP)  183, 198–199, 230

X
XP (extreme programming)

about  12, 14, 177, 181, 193
burndown charts. See burndown charts
change management and  15, 20, 204–207, 229
chapter exercises  187–188, 197, 200–201, 215, 

217–218, 231, 233, 242–244
chapter questions and answers  189, 198, 219, 230
feedback and  205, 208–209, 214–215
incremental design  15, 20
iterative development  182–183
Lean mindset and  248
planning in  182–183, 193, 198
practice exam exercises  234–241
practices supported  181–182, 188–199, 202–230
Scrum differences  185–188
sustainable development  202–230
team mindset and  184, 190–199
user stories and  131, 182, 188
values and  181, 184–186, 188–189, 193, 204–205
work-life balance and  183, 198–199, 230


	Praise for Head First Agile
	Copyright
	Author bios
	Table of Contents
	Intro: How to Use This Book
	Who is this book for?
	Metacognition: thinking about thinking
	Here's what WE did
	Here's what YOU can do to bend your brain into submission
	Read me
	The technical review team
	Acknowledgments

	Chapter 1: What is agile? 
	The new features sound great...
	...but things don't always go as expected
	Agile to the rescue!
	Kate tries to hold a daily standup
	Different team members have different attitudes
	A better mindset makes the practice work better
	So what is agile, anyway?
	Scrum is the most common approach to agile
	The PMI-ACP certification can help you be more agile

	Chapter 2: Agile values and principles
	Something big happened in Snowbird
	The Agile Manifesto
	Adding practices in the real world can be a challenge
	Individuals and interactions over processes and tools
	Working software over comprehensive documentation
	Customer collaboration over contract negotiation
	Responding to change over following a plan
	Question Clinic: The "which-is-BEST" question
	They think they've got a hit...
	...but it's a flop!
	The principles behind the Agile Manifesto
	The agile principles help you deliver your product
	The agile principles help your team communicate and work together
	The new product is a hit!
	Exam Questions

	Chapter 3: Managing projects with Scrum
	Meet the Rand Hand Games team
	The Scrum events help you get your projects done
	The Scrum roles help you understand who does what
	The Scrum artifacts keep the team informed
	The Scrum values make the team more effective
	Question Clinic: The "which-comes-next" question
	A task isn't done until it's "Done" done
	Scrum teams adapt to changes throughout the Sprint
	The Agile Manifesto helps you really "get" Scrum
	Things are looking good for the team
	Exam Questions

	Chapter 4: Agile planning and estimation
	Meanwhile, back at the ranch...
	So...what's next?
	Introducing GASPs!
	No more 300-page specs...please?
	User stories help teams understand what users need
	Story points let the team focus on the relative size of each story
	The whole team estimates together
	No more detailed project plans
	Taskboards keep the team informed
	Question Clinic: The red herring
	Burndown charts help the team see how much work is left
	Velocity tells you how much your team can do in a sprint
	Burn-ups keep your progress and your scope separate from each other
	How do we know what to build?
	Story maps help you prioritize your backlog
	Personas help you get to know your users
	The news could be better...
	Restrospectives help your team improve the way they work
	Some tools to help you get more out of your retrospectives
	Exam Questions

	Chapter 5: XP (eXtreme Programming)
	Meet the team behind CircuitTrak
	Late nights and weekends lead to code problems
	XP brings a mindset that helps the team and the code
	Iterative development helps teams stay on top of changes
	Courage and respect keep fear out of the project
	Teams build better code when they work together
	Teams work best when they sit together
	XP teams value communication
	Teams work best with relaxed, rested minds
	Question Clinic: The "which-is-NOT" question
	XP teams embrace change
	Frequent feedback keeps changes small
	Bad experiences cause a rational fear of change
	XP practices give you feedback about the code
	XP teams use automated builds that run quickly
	Continuous integration prevents nasty surprises
	The weekly cycle starts with writing tests
	Agile teams get feedback from design and testing
	Pair programming
	Complex code is really hard to maintain
	When teams value simplicity, they build better code
	Simplicity is a fundamental agile principle
	Every team accumulates technical debt
	XP teams "pay down" technical debt in each weekly cycle
	Incremental design starts (and ends) with simple code
	Exam Questions

	Chapter 6: Lean/Kanban
	Trouble with Audience Analyzer 2.5
	Lean is a mindset (not a methodology)
	Lean principles help you see things differently
	More Lean principles
	Some thinking tools you haven't seen before
	More Lean thinking tools
	Categorizing waste can help you see it better
	Value stream maps help you see waste
	Trying to do too many things at once
	Anatomy of an Option
	Systems thinking helps Lean teams see the whole
	Some "improvements" didn't work out
	Lean teams use pull systems to make sure they're always working on the most valuable tasks
	Question Clinic: Least worst option
	Kanban uses a pull system to make your process better
	Use Kanban boards to visualize the workflow
	How to use Kanban to improve your process
	The team creates a workflow
	The team is delivering faster
	Cumulative flow diagrams help you manage flow
	Kanban teams talk about their policies
	Feedback loops show you how it's working
	Now the whole team is collaborating on finding better ways to work!
	Exam Questions

	Chapter 7: Preparing for the PMI-ACP Exam
	The PMI-ACP certification is valuable...
	The PMI-ACP exam is based on the content outline
	"You are an agile practitioner..."
	A long-term relationship for your brain
	Domain 1: Agile Principles and Mindset
	Domain 1: Exam Questions
	Domain 2: Value-Driven Delivery
	Agile teams use customer value to prioritize requirements
	Value calculations help you figure out which projects to do
	Domain 2: Exam Questions
	Domain 3: Stakeholder Engagement
	Domain 4: Team Performance
	Domain 3: Exam Questions
	Domain 4: Exam Questions
	Domain 5: Adaptive Planning
	Adapt your leadership style as the team evolves
	A few last tools and techniques
	Domain 6: Problem Detection and Resolution
	Domain 7: Continuous Improvement
	Domain 5: Exam Questions
	Domain 6: Exam Questions
	Domain 7: Exam Questions
	Are you ready for the final exam?

	Chapter 8: Professional responsibility
	Doing the right thing
	Keep the cash?
	Fly business class?
	New software
	Shortcuts
	A good price or a clean river?
	We're not all angels
	Exam Questions

	Chapter 9: Practice makes perfect
	Complete PMI-ACP Practice Exam
	Before you look at the answers...

	Index



