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Preface

We wrote this book for data engineers and data scientists who are looking to get the
most out of Spark. If you’ve been working with Spark and invested in Spark but your
experience so far has been mired by memory errors and mysterious, intermittent fail‐
ures, this book is for you. If you have been using Spark for some exploratory work or
experimenting with it on the side but have not felt confident enough to put it into
production, this book may help. If you are enthusiastic about Spark but have not seen
the performance improvements from it that you expected, we hope this book can
help. This book is intended for those who have some working knowledge of Spark,
and may be difficult to understand for those with little or no experience with Spark or
distributed computing. For recommendations of more introductory literature see
“Supporting Books and Materials” on page x.

We expect this text will be most useful to those who care about optimizing repeated
queries in production, rather than to those who are doing primarily exploratory
work. While writing highly performant queries is perhaps more important to the data
engineer, writing those queries with Spark, in contrast to other frameworks, requires
a good knowledge of the data, usually more intuitive to the data scientist. Thus it may
be more useful to a data engineer who may be less experienced with thinking criti‐
cally about the statistical nature, distribution, and layout of data when considering
performance. We hope that this book will help data engineers think more critically
about their data as they put pipelines into production. We want to help our readers
ask questions such as “How is my data distributed?”, “Is it skewed?”, “What is the
range of values in a column?”, and “How do we expect a given value to group?” and
then apply the answers to those questions to the logic of their Spark queries.

However, even for data scientists using Spark mostly for exploratory purposes, this
book should cultivate some important intuition about writing performant Spark
queries, so that as the scale of the exploratory analysis inevitably grows, you may have
a better shot of getting something to run the first time. We hope to guide data scien‐
tists, even those who are already comfortable thinking about data in a distributed
way, to think critically about how their programs are evaluated, empowering them to

Preface | ix



1 Though we may be biased.
2 Although it’s important to note that some of the practices suggested in this book are not common practice in

Spark code.

explore their data more fully, more quickly, and to communicate effectively with any‐
one helping them put their algorithms into production.

Regardless of your job title, it is likely that the amount of data with which you are
working is growing quickly. Your original solutions may need to be scaled, and your
old techniques for solving new problems may need to be updated. We hope this book
will help you leverage Apache Spark to tackle new problems more easily and old
problems more efficiently.

First Edition Notes
You are reading the first edition of High Performance Spark, and for that, we thank
you! If you find errors, mistakes, or have ideas for ways to improve this book, please
reach out to us at high-performance-spark@googlegroups.com. If you wish to be
included in a “thanks” section in future editions of the book, please include your pre‐
ferred display name.

Supporting Books and Materials
For data scientists and developers new to Spark, Learning Spark by Karau, Konwin‐
ski, Wendell, and Zaharia is an excellent introduction,1 and Advanced Analytics with
Spark by Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills is a great book for
interested data scientists. For individuals more interested in streaming, the upcoming
Learning Spark Streaming by François Garillot may also be of use once it is available.

Beyond books, there is also a collection of intro-level Spark training material avail‐
able. For individuals who prefer video, Paco Nathan has an excellent introduction
video series on O’Reilly. Commercially, Databricks as well as Cloudera and other
Hadoop/Spark vendors offer Spark training. Previous recordings of Spark camps, as
well as many other great resources, have been posted on the Apache Spark documen‐
tation page.

If you don’t have experience with Scala, we do our best to convince you to pick up
Scala in Chapter 1, and if you are interested in learning, Programming Scala, 2nd Edi‐
tion, by Dean Wampler and Alex Payne is a good introduction.2
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Examples prefixed with “Evil” depend heavily on Apache Spark
internals, and will likely break in future minor releases of Apache
Spark. You’ve been warned—but we totally understand you aren’t
going to pay much attention to that because neither would we.

Preface | xi



Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download from
the High Performance Spark GitHub repository and some of the testing code is avail‐
able at the “Spark Testing Base” GitHub repository and the Spark Validator repo.
Structured Streaming machine learning examples, which are generally in the “evil”
category discussed under “Conventions Used in This Book” on page xi, are available
at https://github.com/holdenk/spark-structured-streaming-ml.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. The code is also avail‐
able under an Apache 2 License. Incorporating a significant amount of example code
from this book into your product’s documentation may require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance Spark by Holden
Karau and Rachel Warren (O’Reilly). Copyright 2017 Holden Karau, Rachel Warren,
978-1-491-94320-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
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How to Contact the Authors
For feedback, email us at high-performance-spark@googlegroups.com. For random
ramblings, occasionally about Spark, follow us on twitter:

Holden: http://twitter.com/holdenkarau

Rachel: https://twitter.com/warre_n_peace

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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1 From http://spark.apache.org/.

CHAPTER 1

Introduction to High Performance Spark

This chapter provides an overview of what we hope you will be able to learn from this
book and does its best to convince you to learn Scala. Feel free to skip ahead to Chap‐
ter 2 if you already know what you’re looking for and use Scala (or have your heart
set on another language).

What Is Spark and Why Performance Matters
Apache Spark is a high-performance, general-purpose distributed computing system
that has become the most active Apache open source project, with more than 1,000
active contributors.1 Spark enables us to process large quantities of data, beyond what
can fit on a single machine, with a high-level, relatively easy-to-use API. Spark’s
design and interface are unique, and it is one of the fastest systems of its kind.
Uniquely, Spark allows us to write the logic of data transformations and machine
learning algorithms in a way that is parallelizable, but relatively system agnostic. So it
is often possible to write computations that are fast for distributed storage systems of
varying kind and size.

However, despite its many advantages and the excitement around Spark, the simplest
implementation of many common data science routines in Spark can be much slower
and much less robust than the best version. Since the computations we are concerned
with may involve data at a very large scale, the time and resources that gains from
tuning code for performance are enormous. Performance does not just mean run
faster; often at this scale it means getting something to run at all. It is possible to con‐
struct a Spark query that fails on gigabytes of data but, when refactored and adjusted
with an eye toward the structure of the data and the requirements of the cluster,

1
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succeeds on the same system with terabytes of data. In the authors’ experience writ‐
ing production Spark code, we have seen the same tasks, run on the same clusters,
run 100× faster using some of the optimizations discussed in this book. In terms of
data processing, time is money, and we hope this book pays for itself through a
reduction in data infrastructure costs and developer hours.

Not all of these techniques are applicable to every use case. Especially because Spark
is highly configurable and is exposed at a higher level than other computational
frameworks of comparable power, we can reap tremendous benefits just by becoming
more attuned to the shape and structure of our data. Some techniques can work well
on certain data sizes or even certain key distributions, but not all. The simplest exam‐
ple of this can be how for many problems, using groupByKey in Spark can very easily
cause the dreaded out-of-memory exceptions, but for data with few duplicates this
operation can be just as quick as the alternatives that we will present. Learning to
understand your particular use case and system and how Spark will interact with it is
a must to solve the most complex data science problems with Spark.

What You Can Expect to Get from This Book
Our hope is that this book will help you take your Spark queries and make them
faster, able to handle larger data sizes, and use fewer resources. This book covers a
broad range of tools and scenarios. You will likely pick up some techniques that
might not apply to the problems you are working with, but that might apply to a
problem in the future and may help shape your understanding of Spark more gener‐
ally. The chapters in this book are written with enough context to allow the book to
be used as a reference; however, the structure of this book is intentional and reading
the sections in order should give you not only a few scattered tips, but a comprehen‐
sive understanding of Apache Spark and how to make it sing.

It’s equally important to point out what you will likely not get from this book. This
book is not intended to be an introduction to Spark or Scala; several other books and
video series are available to get you started. The authors may be a little biased in this
regard, but we think Learning Spark by Karau, Konwinski, Wendell, and Zaharia as
well as Paco Nathan’s introduction video series are excellent options for Spark begin‐
ners. While this book is focused on performance, it is not an operations book, so top‐
ics like setting up a cluster and multitenancy are not covered. We are assuming that
you already have a way to use Spark in your system, so we won’t provide much assis‐
tance in making higher-level architecture decisions. There are future books in the
works, by other authors, on the topic of Spark operations that may be done by the
time you are reading this one. If operations are your show, or if there isn’t anyone
responsible for operations in your organization, we hope those books can help you.

2 | Chapter 1: Introduction to High Performance Spark
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2 MiMa is the Migration Manager for Scala and tries to catch binary incompatibilities between releases.

Spark Versions
Spark follows semantic versioning with the standard [MAJOR].[MINOR].[MAINTE‐
NANCE] with API stability for public nonexperimental nondeveloper APIs within
minor and maintenance releases. Many of these experimental components are some
of the more exciting from a performance standpoint, including Datasets—Spark
SQL’s new structured, strongly-typed, data abstraction. Spark also tries for binary
API compatibility between releases, using MiMa2; so if you are using the stable API
you generally should not need to recompile to run a job against a new version of
Spark unless the major version has changed.

This book was created using the Spark 2.0.1 APIs, but much of the
code will work in earlier versions of Spark as well. In places where
this is not the case we have attempted to call that out.

Why Scala?
In this book, we will focus on Spark’s Scala API and assume a working knowledge of
Scala. Part of this decision is simply in the interest of time and space; we trust readers
wanting to use Spark in another language will be able to translate the concepts used
in this book without presenting the examples in Java and Python. More importantly,
it is the belief of the authors that “serious” performant Spark development is most
easily achieved in Scala.

To be clear, these reasons are very specific to using Spark with Scala; there are many
more general arguments for (and against) Scala’s applications in other contexts.

To Be a Spark Expert You Have to Learn a Little Scala Anyway
Although Python and Java are more commonly used languages, learning Scala is a
worthwhile investment for anyone interested in delving deep into Spark develop‐
ment. Spark’s documentation can be uneven. However, the readability of the code‐
base is world-class. Perhaps more than with other frameworks, the advantages of
cultivating a sophisticated understanding of the Spark codebase is integral to the
advanced Spark user. Because Spark is written in Scala, it will be difficult to interact
with the Spark source code without the ability, at least, to read Scala code. Further‐
more, the methods in the Resilient Distributed Datasets (RDD) class closely mimic
those in the Scala collections API. RDD functions, such as map, filter, flatMap,
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3 Although, as we explore in this book, the performance implications and evaluation semantics are quite
different.

4 Of course, in performance, every rule has its exception. mapPartitions in Spark 1.6 and earlier in Java suffers
some severe performance restrictions that we discuss in “Iterator-to-Iterator Transformations with mapParti‐
tions” on page 98.

reduce, and fold, have nearly identical specifications to their Scala equivalents.3 Fun‐
damentally Spark is a functional framework, relying heavily on concepts like immut‐
ability and lambda definition, so using the Spark API may be more intuitive with
some knowledge of functional programming.

The Spark Scala API Is Easier to Use Than the Java API
Once you have learned Scala, you will quickly find that writing Spark in Scala is less
painful than writing Spark in Java. First, writing Spark in Scala is significantly more
concise than writing Spark in Java since Spark relies heavily on inline function defini‐
tions and lambda expressions, which are much more naturally supported in Scala
(especially before Java 8). Second, the Spark shell can be a powerful tool for debug‐
ging and development, and is only available in languages with existing REPLs (Scala,
Python, and R).

Scala Is More Performant Than Python
It can be attractive to write Spark in Python, since it is easy to learn, quick to write,
interpreted, and includes a very rich set of data science toolkits. However, Spark code
written in Python is often slower than equivalent code written in the JVM, since Scala
is statically typed, and the cost of JVM communication (from Python to Scala) can be
very high. Last, Spark features are generally written in Scala first and then translated
into Python, so to use cutting-edge Spark functionality, you will need to be in the
JVM; Python support for MLlib and Spark Streaming are particularly behind.

Why Not Scala?
There are several good reasons to develop with Spark in other languages. One of the
more important constant reasons is developer/team preference. Existing code, both
internal and in libraries, can also be a strong reason to use a different language.
Python is one of the most supported languages today. While writing Java code can be
clunky and sometimes lag slightly in terms of API, there is very little performance
cost to writing in another JVM language (at most some object conversions).4
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While all of the examples in this book are presented in Scala for the
final release, we will port many of the examples from Scala to Java
and Python where the differences in implementation could be
important. These will be available (over time) at our GitHub. If you
find yourself wanting a specific example ported, please either email
us or create an issue on the GitHub repo.

Spark SQL does much to minimize the performance difference when using a non-
JVM language. Chapter 7 looks at options to work effectively in Spark with languages
outside of the JVM, including Spark’s supported languages of Python and R. This
section also offers guidance on how to use Fortran, C, and GPU-specific code to reap
additional performance improvements. Even if we are developing most of our Spark
application in Scala, we shouldn’t feel tied to doing everything in Scala, because spe‐
cialized libraries in other languages can be well worth the overhead of going outside
the JVM.

Learning Scala
If after all of this we’ve convinced you to use Scala, there are several excellent options
for learning Scala. Spark 1.6 is built against Scala 2.10 and cross-compiled against
Scala 2.11, and Spark 2.0 is built against Scala 2.11 and possibly cross-compiled
against Scala 2.10 and may add 2.12 in the future. Depending on how much we’ve
convinced you to learn Scala, and what your resources are, there are a number of dif‐
ferent options ranging from books to massive open online courses (MOOCs) to pro‐
fessional training.

For books, Programming Scala, 2nd Edition, by Dean Wampler and Alex Payne can
be great, although much of the actor system references are not relevant while working
in Spark. The Scala language website also maintains a list of Scala books.

In addition to books focused on Spark, there are online courses for learning Scala.
Functional Programming Principles in Scala, taught by Martin Ordersky, its creator, is
on Coursera as well as Introduction to Functional Programming on edX. A number
of different companies also offer video-based Scala courses, none of which the
authors have personally experienced or recommend.

For those who prefer a more interactive approach, professional training is offered by
a number of different companies, including Lightbend (formerly Typesafe). While we
have not directly experienced Typesafe training, it receives positive reviews and is
known especially to help bring a team or group of individuals up to speed with Scala
for the purposes of working with Spark.
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Conclusion
Although you will likely be able to get the most out of Spark performance if you have
an understanding of Scala, working in Spark does not require a knowledge of Scala.
For those whose problems are better suited to other languages or tools, techniques for
working with other languages will be covered in Chapter 7. This book is aimed at
individuals who already have a grasp of the basics of Spark, and we thank you for
choosing High Performance Spark to deepen your knowledge of Spark. The next
chapter will introduce some of Spark’s general design and evaluation paradigms that
are important to understanding how to efficiently utilize Spark.
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1 MapReduce is a programmatic paradigm that defines programs in terms of map procedures that filter and
sort data onto the nodes of a distributed system, and reduce procedures that aggregate the data on the mapper
nodes. Implementations of MapReduce have been written in many languages, but the term usually refers to a
popular implementation called Hadoop MapReduce, packaged with the distributed filesystem, Apache
Hadoop Distributed File System.

2 DryadLINQ is a Microsoft research project that puts the .NET Language Integrated Query (LINQ) on top of
the Dryad distributed execution engine. Like Spark, the DryadLINQ API defines an object representing a dis‐
tributed dataset, and then exposes functions to transform data as methods defined on that dataset object.
DryadLINQ is lazily evaluated and its scheduler is similar to Spark’s. However, DryadLINQ doesn’t use in-
memory storage. For more information see the DryadLINQ documentation.

3 See the original Spark Paper and other Spark papers.

CHAPTER 2

How Spark Works

This chapter introduces the overall design of Spark as well as its place in the big data
ecosystem. Spark is often considered an alternative to Apache MapReduce, since
Spark can also be used for distributed data processing with Hadoop.1 As we will dis‐
cuss in this chapter, Spark’s design principles are quite different from those of Map‐
Reduce. Unlike Hadoop MapReduce, Spark does not need to be run in tandem with
Apache Hadoop—although it often is. Spark has inherited parts of its API, design,
and supported formats from other existing computational frameworks, particularly
DryadLINQ.2 However, Spark’s internals, especially how it handles failures, differ
from many traditional systems. Spark’s ability to leverage lazy evaluation within
memory computations makes it particularly unique. Spark’s creators believe it to be
the first high-level programming language for fast, distributed data processing.3

To get the most out of Spark, it is important to understand some of the principles
used to design Spark and, at a cursory level, how Spark programs are executed. In this
chapter, we will provide a broad overview of Spark’s model of parallel computing and
a thorough explanation of the Spark scheduler and execution engine. We will refer to
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the concepts in this chapter throughout the text. Further, we hope this explanation
will provide you with a more precise understanding of some of the terms you’ve
heard tossed around by other Spark users and encounter in the Spark documenta‐
tion.

How Spark Fits into the Big Data Ecosystem
Apache Spark is an open source framework that provides methods to process data in
parallel that are generalizable; the same high-level Spark functions can be used to per‐
form disparate data processing tasks on data of different sizes and structures. On its
own, Spark is not a data storage solution; it performs computations on Spark JVMs
(Java Virtual Machines) that last only for the duration of a Spark application. Spark
can be run locally on a single machine with a single JVM (called local mode). More
often, Spark is used in tandem with a distributed storage system (e.g., HDFS, Cassan‐
dra, or S3) and a cluster manager—the storage system to house the data processed
with Spark, and the cluster manager to orchestrate the distribution of Spark applica‐
tions across the cluster. Spark currently supports three kinds of cluster managers:
Standalone Cluster Manager, Apache Mesos, and Hadoop YARN (see Figure 2-1).
The Standalone Cluster Manager is included in Spark, but using the Standalone man‐
ager requires installing Spark on each node of the cluster.

Figure 2-1. A diagram of the data processing ecosystem including Spark

Spark Components
Spark provides a high-level query language to process data. Spark Core, the main
data processing framework in the Spark ecosystem, has APIs in Scala, Java, Python,
and R. Spark is built around a data abstraction called Resilient Distributed Datasets
(RDDs). RDDs are a representation of lazily evaluated, statically typed, distributed
collections. RDDs have a number of predefined “coarse-grained” transformations
(functions that are applied to the entire dataset), such as map, join, and reduce to
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4 GraphX is not actively developed at this point, and will likely be replaced with GraphFrames or similar.

5 Datasets and DataFrames are unified in Spark 2.0. Datasets are DataFrames of “Row” objects that can be
accessed by field number.

6 See the MLlib documentation.

manipulate the distributed datasets, as well as I/O functionality to read and write data
between the distributed storage system and the Spark JVMs.

While Spark also supports R, at present the RDD interface is not
available in that language. We will cover tips for using Java,
Python, R, and other languages in detail in Chapter 7.

In addition to Spark Core, the Spark ecosystem includes a number of other first-party
components, including Spark SQL, Spark MLlib, Spark ML, Spark Streaming, and
GraphX,4 which provide more specific data processing functionality. Some of these
components have the same generic performance considerations as the Core; MLlib,
for example, is written almost entirely on the Spark API. However, some of them
have unique considerations. Spark SQL, for example, has a different query optimizer
than Spark Core.

Spark SQL is a component that can be used in tandem with Spark Core and has APIs
in Scala, Java, Python, and R, and basic SQL queries. Spark SQL defines an interface
for a semi-structured data type, called DataFrames, and as of Spark 1.6, a semi-
structured, typed version of RDDs called called Datasets.5 Spark SQL is a very
important component for Spark performance, and much of what can be accom‐
plished with Spark Core can be done by leveraging Spark SQL. We will cover Spark
SQL in detail in Chapter 3 and compare the performance of joins in Spark SQL and
Spark Core in Chapter 4.

Spark has two machine learning packages: ML and MLlib. MLlib is a package of
machine learning and statistics algorithms written with Spark. Spark ML is still in the
early stages, and has only existed since Spark 1.2. Spark ML provides a higher-level
API than MLlib with the goal of allowing users to more easily create practical
machine learning pipelines. Spark MLlib is primarily built on top of RDDs and uses
functions from Spark Core, while ML is built on top of Spark SQL DataFrames.6

Eventually the Spark community plans to move over to ML and deprecate MLlib.
Spark ML and MLlib both have additional performance considerations from Spark
Core and Spark SQL—we cover some of these in Chapter 9.

Spark Streaming uses the scheduling of the Spark Core for streaming analytics on
minibatches of data. Spark Streaming has a number of unique considerations, such as

How Spark Fits into the Big Data Ecosystem | 9

http://spark.apache.org/docs/latest/mllib-guide.html


the window sizes used for batches. We offer some tips for using Spark Streaming in
“Stream Processing with Spark” on page 255.

GraphX is a graph processing framework built on top of Spark with an API for graph
computations. GraphX is one of the least mature components of Spark, so we don’t
cover it in much detail. In future versions of Spark, typed graph functionality will be
introduced on top of the Dataset API. We will provide a cursory glance at GraphX in
“GraphX” on page 269.

This book will focus on optimizing programs written with the Spark Core and Spark
SQL. However, since MLlib and the other frameworks are written using the Spark
API, this book will provide the tools you need to leverage those frameworks more
efficiently. Maybe by the time you’re done, you will be ready to start contributing
your own functions to MLlib and ML!

In addition to these first-party components, the community has written a number of
libraries that provide additional functionality, such as for testing or parsing CSVs,
and offer tools to connect it to different data sources. Many libraries are listed at
http://spark-packages.org/, and can be dynamically included at runtime with spark-
submit or the spark-shell and added as build dependencies to your maven or sbt
project. We first use Spark packages to add support for CSV data in “Additional for‐
mats” on page 59 and then in more detail in “Using Community Packages and Libra‐
ries” on page 269.

Spark Model of Parallel Computing: RDDs
Spark allows users to write a program for the driver (or master node) on a cluster
computing system that can perform operations on data in parallel. Spark represents
large datasets as RDDs—immutable, distributed collections of objects—which are
stored in the executors (or slave nodes). The objects that comprise RDDs are called
partitions and may be (but do not need to be) computed on different nodes of a dis‐
tributed system. The Spark cluster manager handles starting and distributing the
Spark executors across a distributed system according to the configuration parame‐
ters set by the Spark application. The Spark execution engine itself distributes data
across the executors for a computation. (See Figure 2-4.)

Rather than evaluating each transformation as soon as specified by the driver pro‐
gram, Spark evaluates RDDs lazily, computing RDD transformations only when the
final RDD data needs to be computed (often by writing out to storage or collecting an
aggregate to the driver). Spark can keep an RDD loaded in-memory on the executor
nodes throughout the life of a Spark application for faster access in repeated compu‐
tations. As they are implemented in Spark, RDDs are immutable, so transforming an
RDD returns a new RDD rather than the existing one. As we will explore in this
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chapter, this paradigm of lazy evaluation, in-memory storage, and immutability
allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient.

Lazy Evaluation
Many other systems for in-memory storage are based on “fine-grained” updates to
mutable objects, i.e., calls to a particular cell in a table by storing intermediate results.
In contrast, evaluation of RDDs is completely lazy. Spark does not begin computing
the partitions until an action is called. An action is a Spark operation that returns
something other than an RDD, triggering evaluation of partitions and possibly
returning some output to a non-Spark system (outside of the Spark executors); for
example, bringing data back to the driver (with operations like count or collect) or
writing data to an external storage storage system (such as copyToHadoop). Actions
trigger the scheduler, which builds a directed acyclic graph (called the DAG), based
on the dependencies between RDD transformations. In other words, Spark evaluates
an action by working backward to define the series of steps it has to take to produce
each object in the final distributed dataset (each partition). Then, using this series of
steps, called the execution plan, the scheduler computes the missing partitions for
each stage until it computes the result.

Not all transformations are 100% lazy. sortByKey needs to evaluate
the RDD to determine the range of data, so it involves both a trans‐
formation and an action.

Performance and usability advantages of lazy evaluation
Lazy evaluation allows Spark to combine operations that don’t require communica‐
tion with the driver (called transformations with one-to-one dependencies) to avoid
doing multiple passes through the data. For example, suppose a Spark program calls a
map and a filter function on the same RDD. Spark can send the instructions for
both the map and the filter to each executor. Then Spark can perform both the map
and filter on each partition, which requires accessing the records only once, rather
than sending two sets of instructions and accessing each partition twice. This theoret‐
ically reduces the computational complexity by half.

Spark’s lazy evaluation paradigm is not only more efficient, it is also easier to imple‐
ment the same logic in Spark than in a different framework—like MapReduce—that
requires the developer to do the work to consolidate her mapping operations. Spark’s
clever lazy evaluation strategy lets us be lazy and express the same logic in far fewer
lines of code: we can chain together operations with narrow dependencies and let the
Spark evaluation engine do the work of consolidating them.
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Consider the classic word count example that, given a dataset of documents, parses
the text into words and then computes the count for each word. The Apache docs
provide a word count example, which even in its simplest form comprises roughly
fifty lines of code (excluding import statements) in Java. A comparable Spark imple‐
mentation is roughly fifteen lines of code in Java and five in Scala, available on the
Apache website. The example excludes the steps to read in the data mapping docu‐
ments to words and counting the words. We have reproduced it in Example 2-1.

Example 2-1. Simple Scala word count example

  def simpleWordCount(rdd: RDD[String]): RDD[(String, Int)] = {
    val words = rdd.flatMap(_.split(" "))
    val wordPairs = words.map((_, 1))
    val wordCounts = wordPairs.reduceByKey(_ + _)
    wordCounts
  }

A further benefit of the Spark implementation of word count is that it is easier to
modify and improve. Suppose that we now want to modify this function to filter out
some “stop words” and punctuation from each document before computing the word
count. In MapReduce, this would require adding the filter logic to the mapper to
avoid doing a second pass through the data. An implementation of this routine for
MapReduce can be found here: https://github.com/kite-sdk/kite/wiki/WordCount-
Version-Three. In contrast, we can modify the preceding Spark routine by simply
putting a filter step before the map step that creates the key/value pairs.
Example 2-2 shows how Spark’s lazy evaluation will consolidate the map and filter
steps for us.

Example 2-2. Word count example with stop words filtered

  def withStopWordsFiltered(rdd : RDD[String], illegalTokens : Array[Char],
    stopWords : Set[String]): RDD[(String, Int)] = {
    val separators = illegalTokens ++ Array[Char](' ')
    val tokens: RDD[String] = rdd.flatMap(_.split(separators).
      map(_.trim.toLowerCase))
    val words = tokens.filter(token =>
      !stopWords.contains(token) && (token.length > 0) )
    val wordPairs = words.map((_, 1))
    val wordCounts = wordPairs.reduceByKey(_ + _)
    wordCounts
  }

Lazy evaluation and fault tolerance
Spark is fault-tolerant, meaning Spark will not fail, lose data, or return inaccurate
results in the event of a host machine or network failure. Spark’s unique method of
fault tolerance is achieved because each partition of the data contains the dependency
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information needed to recalculate the partition. Most distributed computing para‐
digms that allow users to work with mutable objects provide fault tolerance by log‐
ging updates or duplicating data across machines.

In contrast, Spark does not need to maintain a log of updates to each RDD or log the
actual intermediary steps, since the RDD itself contains all the dependency informa‐
tion needed to replicate each of its partitions. Thus, if a partition is lost, the RDD has
enough information about its lineage to recompute it, and that computation can be
parallelized to make recovery faster.

Lazy evaluation and debugging
Lazy evaluation has important consequences for debugging since it means that a
Spark program will fail only at the point of action. For example, suppose that you
were using the word count example, and afterwards were collecting the results to the
driver. If the value you passed in for the stop words was null (maybe because it was
the result of a Java program), the code would of course fail with a null pointer excep‐
tion in the contains check. However, this failure would not appear until the program
evaluated the collect step. Even the stack trace will show the failure as first occurring
at the collect step, suggesting that the failure came from the collect statement. For this
reason it is probably most efficient to develop in an environment that gives you
access to complete debugging information.

Because of lazy evaluation, stack traces from failed Spark jobs
(especially when embedded in larger systems) will often appear to
fail consistently at the point of the action, even if the problem in
the logic occurs in a transformation much earlier in the program.

In-Memory Persistence and Memory Management
Spark’s performance advantage over MapReduce is greatest in use cases involving
repeated computations. Much of this performance increase is due to Spark’s use of
in-memory persistence. Rather than writing to disk between each pass through the
data, Spark has the option of keeping the data on the executors loaded into memory.
That way, the data on each partition is available in-memory each time it needs to be
accessed.

Spark offers three options for memory management: in-memory as deserialized data,
in-memory as serialized data, and on disk. Each has different space and time advan‐
tages:

In memory as deserialized Java objects
The most intuitive way to store objects in RDDs is as the original deserialized
Java objects that are defined by the driver program. This form of in-memory
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storage is the fastest, since it reduces serialization time; however, it may not be
the most memory efficient, since it requires the data to be stored as objects.

As serialized data
Using the standard Java serialization library, Spark objects are converted into
streams of bytes as they are moved around the network. This approach may
be slower, since serialized data is more CPU-intensive to read than deserial‐
ized data; however, it is often more memory efficient, since it allows the user
to choose a more efficient representation. While Java serialization is more
efficient than full objects, Kryo serialization (discussed in “Kryo” on page 288)
can be even more space efficient.

On disk
RDDs, whose partitions are too large to be stored in RAM on each of the
executors, can be written to disk. This strategy is obviously slower for
repeated computations, but can be more fault-tolerant for long sequences of
transformations, and may be the only feasible option for enormous compu‐
tations.

The persist() function in the RDD class lets the user control how the RDD is
stored. By default, persist() stores an RDD as deserialized objects in memory, but
the user can pass one of numerous storage options to the persist() function to con‐
trol how the RDD is stored. We will cover the different options for RDD reuse in
“Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files” on page 116. When persist‐
ing RDDs, the default implementation of RDDs evicts the least recently used parti‐
tion (called LRU caching) if the space it takes is required to compute or to cache a
new partition. However, you can change this behavior and control Spark’s memory
prioritization with the persistencePriority() function in the RDD class. See “LRU
Caching” on page 121.

Immutability and the RDD Interface
Spark defines an RDD interface with the properties that each type of RDD must
implement. These properties include the RDD’s dependencies and information about
data locality that are needed for the execution engine to compute that RDD. Since
RDDs are statically typed and immutable, calling a transformation on one RDD will
not modify the original RDD but rather return a new RDD object with a new defini‐
tion of the RDD’s properties.

RDDs can be created in three ways: (1) by transforming an existing RDD; (2) from a
SparkContext, which is the API’s gateway to Spark for your application; and (3) con‐
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7 Prior to Spark 2.0, the SparkSession was called the SQLContext.

verting a DataFrame or Dataset (created from the SparkSession7). The SparkCon
text represents the connection between a Spark cluster and one running Spark
application. The SparkContext can be used to create an RDD from a local Scala
object (using the makeRDD or parallelize methods) or by reading from stable storage
(text files, binary files, a Hadoop Context, or a Hadoop file). DataFrames and Data
sets can be read using the Spark SQL equivalent to a SparkContext, the SparkSes
sion.

Internally, Spark uses five main properties to represent an RDD. The three required
properties are the list of partition objects that make up the RDD, a function for com‐
puting an iterator of each partition, and a list of dependencies on other RDDs.
Optionally, RDDs also include a partitioner (for RDDs of rows of key/value pairs rep‐
resented as Scala tuples) and a list of preferred locations (for the HDFS file). As an
end user, you will rarely need these five properties and are more likely to use prede‐
fined RDD transformations. However, it is helpful to understand the properties and
know how to access them for debugging and for a better conceptual understanding.
These five properties correspond to the following five methods available to the end
user (you):

partitions()

Returns an array of the partition objects that make up the parts of the distributed
dataset. In the case of an RDD with a partitioner, the value of the index of each
partition will correspond to the value of the getPartition function for each key
in the data associated with that partition.

iterator(p, parentIters)

Computes the elements of partition p given iterators for each of its parent parti‐
tions. This function is called in order to compute each of the partitions in this
RDD. This is not intended to be called directly by the user. Rather, this is used by
Spark when computing actions. Still, referencing the implementation of this
function can be useful in determining how each partition of an RDD transforma‐
tion is evaluated.

dependencies()

Returns a sequence of dependency objects. The dependencies let the scheduler
know how this RDD depends on other RDDs. There are two kinds of dependen‐
cies: narrow dependencies (NarrowDependency objects), which represent parti‐
tions that depend on one or a small subset of partitions in the parent, and wide
dependencies (ShuffleDependency objects), which are used when a partition can

Spark Model of Parallel Computing: RDDs | 15



only be computed by rearranging all the data in the parent. We will discuss the
types of dependencies in “Wide Versus Narrow Dependencies” on page 17.

partitioner()

Returns a Scala option type of a partitioner object if the RDD has a function
between element and partition associated with it, such as a hashPartitioner.
This function returns None for all RDDs that are not of type tuple (do not repre‐
sent key/value data). An RDD that represents an HDFS file (implemented in
NewHadoopRDD.scala) has a partition for each block of the file. We will discuss
partitioning in detail in “Using the Spark Partitioner Object” on page 142.

preferredLocations(p)

Returns information about the data locality of a partition, p. Specifically, this
function returns a sequence of strings representing some information about each
of the nodes where the split p is stored. In an RDD representing an HDFS file,
each string in the result of preferredLocations is the Hadoop name of the node
where that partition is stored.

Types of RDDs
The implementation of the Spark Scala API contains an abstract class, RDD, which
contains not only the five core functions of RDDs, but also those transformations and
actions that are available to all RDDs, such as map and collect. Functions defined
only on RDDs of a particular type are defined in several RDD function classes,
including PairRDDFunctions, OrderedRDDFunctions, and GroupedRDDFunctions.
The additional methods in these classes are made available by implicit conversion
from the abstract RDD class, based on type information or when a transformation is
applied to an RDD.

The Spark API also contains implementations of the RDD class that define more spe‐
cific behavior by overriding the core properties of the RDD. These include the NewHa
doopRDD class discussed previously—which represents an RDD created from an
HDFS filesystem—and ShuffledRDD, which represents an RDD that was already par‐
titioned. Each of these RDD implementations contains functionality that is specific to
RDDs of that type. Creating an RDD, either through a transformation or from a
SparkContext, will return one of these implementations of the RDD class. Some
RDD operations have a different signature in Java than in Scala. These are defined in
the JavaRDD.java class.

Find out what type an RDD is by using the toDebugString func‐
tion, which is defined on all RDDs. This will tell you what kind of
RDD you have and provide a list of its parent RDDs.
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We will discuss the different types of RDDs and RDD transformations in detail in
Chapters 5 and 6.

Functions on RDDs: Transformations Versus Actions
There are two types of functions defined on RDDs: actions and transformations.
Actions are functions that return something that is not an RDD, including a side
effect, and transformations are functions that return another RDD.

Each Spark program must contain an action, since actions either bring information
back to the driver or write the data to stable storage. Actions are what force evalua‐
tion of a Spark program. Persist calls also force evaluation, but usually do not mark
the end of Spark job. Actions that bring data back to the driver include collect,
count, collectAsMap, sample, reduce, and take.

Some of these actions do not scale well, since they can cause mem‐
ory errors in the driver. In general, it is best to use actions like
take, count, and reduce, which bring back a fixed amount of data
to the driver, rather than collect or sample.

Actions that write to storage include saveAsTextFile, saveAsSequenceFile, and
saveAsObjectFile. Most actions that save to Hadoop are made available only on
RDDs of key/value pairs; they are defined both in the PairRDDFunctions class (which
provides methods for RDDs of tuple type by implicit conversion) and the NewHa
doopRDD class, which is an implementation for RDDs that were created by reading
from Hadoop. Some saving functions, like saveAsTextFile and saveAsObjectFile,
are available on all RDDs, and they work by adding an implicit null key to each
record (which is then ignored by the saving level). Functions that return nothing
(void in Java, or Unit in Scala), such as foreach, are also actions: they force execution
of a Spark job. foreach can be used to force evaluation of an RDD, but is also often
used to write out to nonsupported formats (like web endpoints).

Most of the power of the Spark API is in its transformations. Spark transformations
are coarse-grained transformations used to sort, reduce, group, sample, filter, and
map distributed data. We will discuss transformations in detail in both Chapter 6,
which deals exclusively with transformations on RDDs of key/value data, and Chap‐
ter 5.

Wide Versus Narrow Dependencies
For the purpose of understanding how RDDs are evaluated,the most important thing
to know about transformations is that they fall into two categories: transformations
with narrow dependencies and transformations with wide dependencies. The narrow
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versus wide distinction has significant implications for the way Spark evaluates a
transformation and, consequently, for its performance. We will define narrow and
wide transformations for the purpose of understanding Spark’s execution paradigm
in “Spark Job Scheduling” on page 19 of this chapter, but we will save the longer
explanation of the performance considerations associated with them for Chapter 5.

Conceptually, narrow transformations are those in which each partition in the child
RDD has simple, finite dependencies on partitions in the parent RDD. Dependencies
are only narrow if they can be determined at design time, irrespective of the values of
the records in the parent partitions, and if each parent has at most one child parti‐
tion. Specifically, partitions in narrow transformations can either depend on one par‐
ent (such as in the map operator), or a unique subset of the parent partitions that is
known at design time (coalesce). Thus narrow transformations can be executed on
an arbitrary subset of the data without any information about the other partitions. In
contrast, transformations with wide dependencies cannot be executed on arbitrary
rows and instead require the data to be partitioned in a particular way, e.g., according
the value of their key. In sort, for example, records have to be partitioned so that
keys in the same range are on the same partition. Transformations with wide depen‐
dencies include sort, reduceByKey, groupByKey, join, and anything that calls the
rePartition function.

In certain instances, for example, when Spark already knows the data is partitioned in
a certain way, operations with wide dependencies do not cause a shuffle. If an opera‐
tion will require a shuffle to be executed, Spark adds a ShuffledDependency object to
the dependency list associated with the RDD. In general, shuffles are expensive. They
become more expensive with more data and when a greater proportion of that data
has to be moved to a new partition during the shuffle. As we will discuss at length in
Chapter 6, we can get a lot of performance gains out of Spark programs by doing
fewer and less expensive shuffles.

The next two diagrams illustrate the difference in the dependency graph for transfor‐
mations with narrow dependencies versus transformations with wide dependencies.
Figure 2-2 shows narrow dependencies in which each child partition (each of the blue
squares on the bottom rows) depends on a known subset of parent partitions. Nar‐
row dependencies are shown with blue arrows. The left represents a dependency
graph of narrow transformations (such as map, filter, mapPartitions, and flat
Map). On the upper right are dependencies between partitions for coalesce, a narrow
transformation. In this instance we try to illustrate that a transformation can still
qualify as narrow if the child partitions may depend on multiple parent partitions, so
long as the set of parent partitions can be determined regardless of the values of the
data in the partitions.
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Figure 2-2. A simple diagram of dependencies between partitions for narrow
transformations

Figure 2-3 shows wide dependencies between partitions. In this case the child parti‐
tions (shown at the bottom of Figure 2-3) depend on an arbitrary set of parent parti‐
tions. The wide dependencies (displayed as red arrows) cannot be known fully before
the data is evaluated. In contrast to the coalesce operation, data is partitioned
according to its value. The dependency graph for any operations that cause a shuffle
(such as groupByKey, reduceByKey, sort, and sortByKey) follows this pattern.

Figure 2-3. A simple diagram of dependencies between partitions for wide
transformations

The join functions are a bit more complicated, since they can have wide or narrow
dependencies depending on how the two parent RDDs are partitioned. We illustrate
the dependencies in different scenarios for the join operation in “Core Spark Joins”
on page 73.

Spark Job Scheduling
A Spark application consists of a driver process, which is where the high-level Spark
logic is written, and a series of executor processes that can be scattered across the
nodes of a cluster. The Spark program itself runs in the driver node and sends some
instructions to the executors. One Spark cluster can run several Spark applications
concurrently. The applications are scheduled by the cluster manager and correspond
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to one SparkContext. Spark applications can, in turn, run multiple concurrent jobs.
Jobs correspond to each action called on an RDD in a given application. In this sec‐
tion, we will describe the Spark application and how it launches Spark jobs: the pro‐
cesses that compute RDD transformations.

Resource Allocation Across Applications
Spark offers two ways of allocating resources across applications: static allocation and
dynamic allocation. With static allocation, each application is allotted a finite maxi‐
mum of resources on the cluster and reserves them for the duration of the application
(as long as the SparkContext is still running). Within the static allocation category,
there are many kinds of resource allocation available, depending on the cluster. For
more information, see the Spark documentation for job scheduling.

Since 1.2, Spark offers the option of dynamic resource allocation, which expands the
functionality of static allocation. In dynamic allocation, executors are added and
removed from a Spark application as needed, based on a set of heuristics for estima‐
ted resource requirement. We will discuss resource allocation in “Allocating Cluster
Resources and Dynamic Allocation” on page 279.

The Spark Application
A Spark application corresponds to a set of Spark jobs defined by one SparkContext
in the driver program. A Spark application begins when a SparkContext is started.
When the SparkContext is started, a driver and a series of executors are started on
the worker nodes of the cluster. Each executor is its own Java Virtual Machine
(JVM), and an executor cannot span multiple nodes although one node may contain
several executors.

The SparkContext determines how many resources are allotted to each executor.
When a Spark job is launched, each executor has slots for running the tasks needed to
compute an RDD. In this way, we can think of one SparkContext as one set of con‐
figuration parameters for running Spark jobs. These parameters are exposed in the
SparkConf object, which is used to create a SparkContext. We will discuss how to use
the parameters in Appendix A. Applications often, but not always, correspond to
users. That is, each Spark program running on your cluster likely uses one SparkCon
text.

RDDs cannot be shared between applications. Thus transforma‐
tions, such as join, that use more than one RDD must have the
same SparkContext.
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Figure 2-4 illustrates what happens when we start a SparkContext. First, the driver
program pings the cluster manager. The cluster manager launches a number of Spark
executors (JVMs shown as black boxes in the diagram) on the worker nodes of the
cluster (shown as blue circles). One node can have multiple Spark executors, but an
executor cannot span multiple nodes. An RDD will be evaluated across the executors
in partitions (shown as red rectangles). Each executor can have multiple partitions,
but a partition cannot be spread across multiple executors.

Figure 2-4. Starting a Spark application on a distributed system

Default Spark Scheduler
By default, Spark schedules jobs on a first in, first out basis. However, Spark does
offer a fair scheduler, which assigns tasks to concurrent jobs in round-robin fashion,
i.e., parceling out a few tasks for each job until the jobs are all complete. The fair
scheduler ensures that jobs get a more even share of cluster resources. The Spark
application then launches jobs in the order that their corresponding actions were
called on the SparkContext.
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The Anatomy of a Spark Job
In the Spark lazy evaluation paradigm, a Spark application doesn’t “do anything”
until the driver program calls an action. With each action, the Spark scheduler builds
an execution graph and launches a Spark job. Each job consists of stages, which are
steps in the transformation of the data needed to materialize the final RDD. Each
stage consists of a collection of tasks that represent each parallel computation and are
performed on the executors.

Figure 2-5 shows a tree of the different components of a Spark application and how
these correspond to the API calls. An application corresponds to starting a SparkCon
text/SparkSession. Each application may contain many jobs that correspond to one
RDD action. Each job may contain several stages that correspond to each wide trans‐
formation. Each stage is composed of one or many tasks that correspond to a paralle‐
lizable unit of computation done in each stage. There is one task for each partition in
the resulting RDD of that stage.

Figure 2-5. The Spark application tree

The DAG
Spark’s high-level scheduling layer uses RDD dependencies to build a Directed Acy‐
clic Graph (a DAG) of stages for each Spark job. In the Spark API, this is called the
DAG Scheduler. As you have probably noticed, errors that have to do with connect‐
ing to your cluster, your configuration parameters, or launching a Spark job show up
as DAG Scheduler errors. This is because the execution of a Spark job is handled by
the DAG. The DAG builds a graph of stages for each job, determines the locations to
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run each task, and passes that information on to the TaskScheduler, which is respon‐
sible for running tasks on the cluster. The TaskScheduler creates a graph with
dependencies between partitions.8

Jobs
A Spark job is the highest element of Spark’s execution hierarchy. Each Spark job
corresponds to one action, and each action is called by the driver program of a Spark
application. As we discussed in “Functions on RDDs: Transformations Versus
Actions” on page 17, one way to conceptualize an action is as something that brings
data out of the RDD world of Spark into some other storage system (usually by bring‐
ing data to the driver or writing to some stable storage system).

The edges of the Spark execution graph are based on dependencies between the parti‐
tions in RDD transformations (as illustrated by Figures 2-2 and 2-3). Thus, an opera‐
tion that returns something other than an RDD cannot have any children. In graph
theory, we would say the action forms a “leaf” in the DAG. Thus, an arbitrarily large
set of transformations may be associated with one execution graph. However, as soon
as an action is called, Spark can no longer add to that graph. The application launches
a job including those transformations that were needed to evaluate the final RDD
that called the action.

Stages
Recall that Spark lazily evaluates transformations; transformations are not executed
until an action is called. As mentioned previously, a job is defined by calling an
action. The action may include one or several transformations, and wide transforma‐
tions define the breakdown of jobs into stages.

Each stage corresponds to a shuffle dependency created by a wide transformation in
the Spark program. At a high level, one stage can be thought of as the set of computa‐
tions (tasks) that can each be computed on one executor without communication
with other executors or with the driver. In other words, a new stage begins whenever
network communication between workers is required; for instance, in a shuffle.

These dependencies that create stage boundaries are called ShuffleDependencies. As
we discussed in “Wide Versus Narrow Dependencies” on page 17, shuffles are caused
by those wide transformations, such as sort or groupByKey, which require the data to
be redistributed across the partitions. Several transformations with narrow depen‐
dencies can be grouped into one stage.
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As we saw in the word count example where we filtered stop words (Example 2-2),
Spark can combine the flatMap, map, and filter steps into one stage since none of
those transformations requires a shuffle. Thus, each executor can apply the flatMap,
map, and filter steps consecutively in one pass of the data.

Spark keeps track of how an RDD is partitioned, so that it does not
need to partition the same RDD by the same partitioner more than
once. This has some interesting consequences for the DAG: the
same operations on RDDs with known partitioners and RDDs
without a known partitioner can result in different stage bound‐
aries, because there is no need to shuffle an RDD with a known
partition (and thus the subsequent transformations happen in the
same stage). We will discuss the evaluation consequence of known
partitioners in Chapter 6.

Because the stage boundaries require communication with the driver, the stages asso‐
ciated with one job generally have to be executed in sequence rather than in parallel.
It is possible to execute stages in parallel if they are used to compute different RDDs
that are combined in a downstream transformation such as a join. However, the
wide transformations needed to compute one RDD have to be computed in sequence.
Thus it is usually desirable to design your program to require fewer shuffles.

Tasks
A stage consists of tasks. The task is the smallest unit in the execution hierarchy, and
each can represent one local computation. All of the tasks in one stage execute the
same code on a different piece of the data. One task cannot be executed on more than
one executor. However, each executor has a dynamically allocated number of slots for
running tasks and may run many tasks concurrently throughout its lifetime. The
number of tasks per stage corresponds to the number of partitions in the output
RDD of that stage.

Figure 2-6 shows the evaluation of a Spark job that is the result of a driver program
that calls the simple Spark program shown in Example 2-3.

Example 2-3. Different types of transformations showing stage boundaries

  def simpleSparkProgram(rdd : RDD[Double]): Long ={
  //stage1
    rdd.filter(_< 1000.0)
      .map(x => (x, x) )
  //stage2
      .groupByKey()
      .map{ case(value, groups) => (groups.sum, value)}
  //stage 3
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      .sortByKey()
      .count()
  }

The stages (blue boxes) are bounded by the shuffle operations groupByKey and sort
ByKey. Each stage consists of several tasks: one for each partition in the result of the
RDD transformations (shown as red rectangles), which are executed in parallel.

Figure 2-6. A stage diagram for the simple Spark program shown in Example 2-3

A cluster cannot necessarily run every task in parallel for each stage. Each executor
has a number of cores. The number of cores per executor is configured at the applica‐
tion level, but likely corresponding to the physical cores on a cluster.9 Spark can run
no more tasks at once than the total number of executor cores allocated for the appli‐
cation. We can calculate the number of tasks from the settings from the Spark Conf
as (total number of executor cores = # of cores per executor × number of executors).
If there are more partitions (and thus more tasks) than the number of slots for run‐
ning tasks, then the extra tasks will be allocated to the executors as the first round of
tasks finish and resources are available. In most cases, all the tasks for one stage must
be completed before the next stage can start. The process of distributing these tasks is
done by the TaskScheduler and varies depending on whether the fair scheduler or
FIFO scheduler is used (recall the discussion in “Default Spark Scheduler” on page
21).
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In some ways, the simplest way to think of the Spark execution model is that a Spark
job is the set of RDD transformations needed to compute one final result. Each stage
corresponds to a segment of work, which can be accomplished without involving the
driver. In other words, one stage can be computed without moving data across the
partitions. Within one stage, the tasks are the units of work done for each partition of
the data.

Conclusion
Spark offers an innovative, efficient model of parallel computing that centers on lazily
evaluated, immutable, distributed datasets, known as RDDs. Spark exposes RDDs as
an interface, and RDD methods can be used without any knowledge of their imple‐
mentation—but having an understanding of the details will help you write more per‐
formant code. Because of Spark’s ability to run jobs concurrently, to compute jobs
across multiple nodes, and to materialize RDDs lazily, the performance implications
of similar logical patterns may differ widely, and errors may surface from misleading
places. Thus, it is important to understand how the execution model for your code is
assembled in order to write and debug Spark code. Furthermore, it is often possible
to accomplish the same tasks in many different ways using the Spark API, and a
strong understanding of how your code is evaluated will help you optimize its perfor‐
mance. In this book, we will focus on ways to design Spark applications to minimize
network traffic, memory errors, and the cost of failures.
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CHAPTER 3

DataFrames, Datasets, and Spark SQL

Spark SQL and its DataFrames and Datasets interfaces are the future of Spark per‐
formance, with more efficient storage options, advanced optimizer, and direct opera‐
tions on serialized data. These components are super important for getting the best of
Spark performance (see Figure 3-1).

Figure 3-1. Relative performance for RDD versus DataFrames based on SimplePerfTest
computing aggregate average fuzziness of pandas

These are relatively new components; Datasets were introduced in Spark 1.6, Data
Frames in Spark 1.3, and the SQL engine in Spark 1.0. This chapter is focused on
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helping you learn how to best use Spark SQL’s tools and how to intermix Spark SQL
with traditional Spark operations.

Spark’s DataFrames have very different functionality compared to
traditional DataFrames like Panda’s and R’s. While these all deal
with structured data, it is important not to depend on your existing
intuition surrounding DataFrames.

Like RDDs, DataFrames and Datasets represent distributed collections, with addi‐
tional schema information not found in RDDs. This additional schema information
is used to provide a more efficient storage layer (Tungsten), and in the optimizer
(Catalyst) to perform additional optimizations. Beyond schema information, the
operations performed on Datasets and DataFrames are such that the optimizer can
inspect the logical meaning rather than arbitrary functions. DataFrames are Datasets
of a special Row object, which doesn’t provide any compile-time type checking. The
strongly typed Dataset API shines especially for use with more RDD-like functional
operations. Compared to working with RDDs, DataFrames allow Spark’s optimizer to
better understand our code and our data, which allows for a new class of optimiza‐
tions we explore in “Query Optimizer” on page 69.

While Spark SQL, DataFrames, and Datasets provide many excel‐
lent enhancements, they still have some rough edges compared to
traditional processing with “regular” RDDs. The Dataset API,
being brand new at the time of this writing, is likely to experience
some changes in future versions.

Getting Started with the SparkSession (or HiveContext or
SQLContext)
Much as the SparkContext is the entry point for all Spark applications, and the
StreamingContext is for all streaming applications, the SparkSession serves as the
entry point for Spark SQL. Like with all of the Spark components, you need to import
a few extra components as shown in Example 3-1.

If you are using the Spark Shell you will automatically get a Spark
Session called spark to accompany the SparkContext called sc.
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Example 3-1. Spark SQL imports

import org.apache.spark.sql.{Dataset, DataFrame, SparkSession, Row}
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions._

Scala’s type alias of DataFrame = Dataset[Row] is broken in Java
—you must use Dataset<Row> instead.

SparkSession is generally created using the builder pattern, along with getOr
Create(), which will return an existing session if one is already running. The builder
can take string-based configuration keys config(key, value), and shortcuts exist
for a number of common params. One of the more important shortcuts is enableHi
veSupport(), which will give you access to Hive UDFs and does not require a Hive
installation—but does require certain extra JARs (discussed in “Spark SQL Depen‐
dencies” on page 30). Example 3-2 shows how to create a SparkSession with Hive
support. The enableHiveSupport() shortcut not only configures Spark SQL to use
these Hive JARs, but it also eagerly checks that they can be loaded—leading to a
clearer error message than setting configuration values by hand. In general, using
shortcuts listed in the API docs, is advised when they are present, since no checking
is done in the generic config interface.

Example 3-2. Create a SparkSession

    val session = SparkSession.builder()
      .enableHiveSupport()
      .getOrCreate()
    // Import the implicits, unlike in core Spark the implicits are defined
    // on the context.
    import session.implicits._

When using getOrCreate, if an existing session exists your config‐
uration values may be ignored and you will simply get the existing
SparkSession. Some options, like master, will also only apply if
there is no existing SparkContext running; otherwise, the existing
SparkContext will be used.

Before Spark 2.0, instead of the SparkSession, two separate entry points (HiveCon
text or SQLContext) were used for Spark SQL. The names of these entry points can
be a bit confusing, and it is important to note the HiveContext does not require a
Hive installation. The primary reason to use the SQLContext is if you have conflicts
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1 UDFs allow us to extend SQL to have additional powers, such as computing the geospatial distance between
points.

with the Hive dependencies that cannot be resolved. The HiveContext has a more
complete SQL parser compared to the SQLContext as well as additional user-defined
functions (UDFs).1 Example 3-4 shows how to create a legacy HiveContext. The
SparkSession should be preferred when possible, followed by the HiveContext, then
SQLContext. Not all libraries, or even all Spark code, has been updated to take the
SparkSession and in some cases you will find functions that still expect a SQLCon
text or HiveContext.

If you need to construct one of the legacy interfaces (SQLContext or HiveContext)
the additional imports in Example 3-3 will be useful.

Example 3-3. Spark SQL legacy imports

import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.hive.thriftserver._

Getting a HiveContext or SQLContext from a SparkSession is not
well supported outside of the org.apache.spark scope—however,
getOrCreate can be used.

Example 3-4. Creating the HiveContext

    val hiveContext = new HiveContext(sc)
    // Import the implicits, unlike in core Spark the implicits are defined
    // on the context.
    import hiveContext.implicits._

Spark SQL Dependencies
Like the other components in Spark, using Spark SQL requires adding additional
dependencies. If you have conflicts with the Hive JARs you can’t fix through shading,
you can just limit yourself to the spark-sql JAR—although you want to have access to
the Hive dependencies without also including the spark-hive JAR.

To enable Hive support in SparkSession or use the HiveContext you will need to
add both Spark’s SQL and Hive components to your dependencies.
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For Maven-compatible build systems, the coordinates for Spark’s SQL and Hive
components in 2.0.0 are org.apache.spark:spark-sql_2.11:2.0.0 and org.apache
.spark:spark-hive_2.11:2.0.0. Example 3-5 shows how to add them to a “regular”
sbt build, and Example 3-6 shows the process for Maven users.

Example 3-5. Add Spark SQL and Hive component to “regular” sbt build

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-sql" % "2.0.0",
  "org.apache.spark" %% "spark-hive" % "2.0.0")

Example 3-6. Add Spark SQL and Hive component to Maven pom file

 <dependency> <!-- Spark dependency -->
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.11</artifactId>
  <version>2.0.0</version>
</dependency>
<dependency> <!-- Spark dependency -->
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-hive_2.11</artifactId>
  <version>2.0.0</version>
</dependency>

Managing Spark Dependencies
While managing these dependencies by hand isn’t particularly challenging, some‐
times mistakes can be made when updating versions. The sbt-spark-package plug-in
can simplify managing Spark dependencies. This plug-in is normally used for creat‐
ing community packages (discussed in “Creating a Spark Package” on page 271), but
also assist in building software that depends on Spark. To add the plug-in to your sbt
build you need to create a project/plugins.sbt file and make sure it contains the code
in Example 3-7.

Example 3-7. Including sbt-spark-package in project/plugins.sbt

resolvers += ["Spark Package Main Repo" at
  "https://dl.bintray.com/spark-packages/maven"]

addSbtPlugin("org.spark-packages" % "sbt-spark-package" % "0.2.5")

For spark-packages to work you will need to specify a Spark version and at least one
Spark component (core), which can be done in sbt settings as shown in Example 3-8.
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Example 3-8. Configuring Spark version and “core” component

sparkVersion := "2.1.0"
sparkComponents ++= Seq("core")

Once you have sbt-spark-package installed and set up, you can add the Spark com‐
ponents by just adding SQL and Hive to your list of sparkComponents as shown in
Example 3-9.

Example 3-9. Add Spark SQL and Hive component to sbt-spark-package build

sparkComponents ++= Seq("sql", "hive", "hive-thriftserver", "hive-thriftserver")

While it’s not required, if you do have an existing Hive Metastore to which you wish
to connect with Spark, you can copy your hive-site.xml to Spark’s conf/ directory.

The default Hive Metastore version is 1.2.1. For other versions of
the Hive Metastore you will need to set the spark.sql.hive.meta
store.version property to the desired versions as well as set
spark.sql.hive.metastore.jars to either “maven” (to have
Spark retrieve the JARs) or the system path where the Hive JARs
are present.

Avoiding Hive JARs
If you can’t include the Hive dependencies with your application, you can leave out
Spark’s Hive component and instead create a SQLContext, as shown in Example 3-10.
This provides much of the same functionality, but uses a less capable SQL parser and
lacks certain Hive-based user-defined functions (UDFs) and user-defined aggregate
functions (UDAFs).

Example 3-10. Creating the SQLContext

    val sqlContext = new SQLContext(sc)
    // Import the implicits, unlike in core Spark the implicits are defined
    // on the context.
    import sqlContext.implicits._

As with the core SparkContext and StreamingContext, the Hive/SQLContext is used
to load your data. JSON is a very popular format, in part because it can be easily
loaded in many languages, and is at least semi–human-readable. Some of the sample
data we’ve included in the book is in JSON format for exactly these reasons. JSON is
especially interesting since it lacks schema information, and Spark needs to do some
work to infer the schema from our data. JSON can also be expensive to parse; in some
simple cases parsing the input JSON data can be greater than the actual operation.
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We will cover the full loading and saving API for JSON in “JSON” on page 52, but to
get started, let’s load a sample we can use to explore the schema (see Example 3-11).

Example 3-11. Load JSON sample

    val df1 = session.read.json(path)

Feel free to load your own JSON data, but if you don’t have any handy to test with,
check out the examples GitHub resources directory. Now that you’ve got the JSON
data loaded you can start by exploring what schema Spark has managed to infer for
your data.

Basics of Schemas
The schema information, and the optimizations it enables, is one of the core differ‐
ences between Spark SQL and core Spark. Inspecting the schema is especially useful
for DataFrames since you don’t have the templated type you do with RDDs or Data
sets. Schemas are normally handled automatically by Spark SQL, either inferred
when loading the data or computed based on the parent DataFrames and the trans‐
formation being applied.

DataFrames expose the schema in both human-readable or programmatic formats.
printSchema() will show us the schema of a DataFrame and is most commonly used
when working in the shell to figure out what you are working with. This is especially
useful for data formats, like JSON, where the schema may not be immediately visible
by looking at only a few records or reading a header. For programmatic usage, you
can get the schema by simply calling schema, which is often used in ML pipeline
transformers. Since you are likely familiar with case classes and JSON, let’s examine
how the equivalent Spark SQL schema would be represented in Examples 3-12 and
3-13.

Example 3-12. JSON data that would result in an equivalent schema

{"name":"mission","pandas":[{"id":1,"zip":"94110","pt":"giant", "happy":true,
        "attributes":[0.4,0.5]}]}

Example 3-13. Equivalent case class

case class RawPanda(id: Long, zip: String, pt: String,
                            happy: Boolean, attributes: Array[Double])
case class PandaPlace(name: String, pandas: Array[RawPanda])
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Now with the case classes defined you can create a local instance, turn it into a Data
set, and print the schema as shown in Example 3-14, resulting in Example 3-15. The
same can be done with the JSON data, but requires some configuration as discussed
in “JSON” on page 52.

Example 3-14. Create a Dataset with the case class

  def createAndPrintSchema() = {
    val damao = RawPanda(1, "M1B 5K7", "giant", true, Array(0.1, 0.1))
    val pandaPlace = PandaPlace("toronto", Array(damao))
    val df = session.createDataFrame(Seq(pandaPlace))
    df.printSchema()
  }

Example 3-15. Sample schema information for nested structure (.printSchema())

root
 |-- name: string (nullable = true)
 |-- pandas: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- id: long (nullable = false)
 |    |    |-- zip: string (nullable = true)
 |    |    |-- pt: string (nullable = true)
 |    |    |-- happy: boolean (nullable = false)
 |    |    |-- attributes: array (nullable = true)
 |    |    |    |-- element: double (containsNull = false)

In addition to the human-readable schema, the schema information is also available
for you to use programmatically. The programatic schema is returned as a Struct
Field, as shown in Example 3-16.

Example 3-16. StructField case class

case class StructField(
    name: String,
    dataType: DataType,
    nullable: Boolean = true,
    metadata: Metadata = Metadata.empty)
....
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Example 3-17 shows the same schema as Example 3-15, in machine-readable format.

Example 3-17. Sample schema information for nested structure (.schema())—manually
formatted

org.apache.spark.sql.types.StructType = StructType(
  StructField(name,StringType,true),
  StructField(pandas,
    ArrayType(
      StructType(StructField(id,LongType,false),
                     StructField(zip,StringType,true),
                     StructField(pt,StringType,true),
                     StructField(happy,BooleanType,false),
                     StructField(attributes,ArrayType(DoubleType,false),true)),
                true),true))

From here you can dive into what this schema information means and look at how to
construct more complex schemas. The first part is a StructType, which contains a list
of fields. It’s important to note you can nest StructTypes, like how a case class can
contain additional case classes. The fields in the StructType are defined with Struct
Field, which specifies the name, type (see Tables 3-1 and 3-2 for a listing of types),
and a Boolean indicating if the field may be null/missing.

Table 3-1. Basic Spark SQL types

Scala type SQL type Details

Byte ByteType 1-byte signed integers (–128,127)

Short ShortType 2-byte signed integers (–32768,32767)

Int IntegerType 4-byte signed integers (–2147483648,2147483647)

Long LongType 8-byte signed integers (–9223372036854775808,
9223372036854775807)

java.math.BigDecimal DecimalType Arbitrary precision signed decimals

Float FloatType 4-byte floating-point number

Double DoubleType 8-byte floating-point number

Array[Byte] BinaryType Array of bytes

Boolean BooleanType true/false

java.sql.Date DateType Date without time information

java.sql.Timestamp TimestampType Date with time information (second precision)

String StringType Character string values (stored as UTF8)
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Table 3-2. Complex Spark SQL types

Scala type SQL type Details Example

Array[T] ArrayType(element
Type, containsNull)

Array of single type of element,
containsNull true if any
null elements.

Array[Int] => Array
Type(IntegerType, true)

Map[K, V] MapType(elementType, 
valueType, valueCon
tainsNull)

Key/value map, valueCon
tainsNull if any values are
null.

Map[String, Int] => Map
Type(StringType, Integer
Type, true)

case class Struct
Type(List[Struct
Fields])

Named fields of possible
heterogeneous types, similar to
a case class or JavaBean.

case class Panda(name: 
String, age: Int) => 
StructType(List(Struct
Field("name", StringType, 
true), StructField("age", 
IntegerType, true)))

As you saw in Example 3-17, you can nest StructFields and all of
the complex Spark SQL types.

Now that you’ve got an idea of how to understand and, if needed, specify schemas for
your data, you are ready to start exploring the DataFrame interfaces.

Spark SQL schemas are eagerly evaluated, unlike the data under‐
neath. If you find yourself in the shell and uncertain of what a
transformation will do, try it and print the schema. See
Example 3-15.

DataFrame API
Spark SQL’s DataFrame API allows us to work with DataFrames without having to
register temporary tables or generate SQL expressions. The DataFrame API has both
transformations and actions. The transformations on DataFrames are more relational
in nature, with the Dataset API (covered next) offering a more functional-style API.

Transformations
Transformations on DataFrames are similar in concept to RDD transformations, but
with a more relational flavor. Instead of specifying arbitrary functions, which the
optimizer is unable to introspect, you use a restricted expression syntax so the opti‐
mizer can have more information. As with RDDs, we can broadly break down
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2 A row at a time allows for narrow transformations with no shuffle.

transformations into simple single DataFrame, multiple DataFrame, key/value, and
grouped/windowed transformations.

Spark SQL transformations are only partially lazy; the schema is
eagerly evaluated.

Simple DataFrame transformations and SQL expressions

Simple DataFrame transformations allow us to do most of the standard things one
can do when working a row at a time.2 You can still do many of the same operations
defined on RDDs, except using Spark SQL expressions instead of arbitrary functions.
To illustrate this we will start by examining the different kinds of filter operations
available on DataFrames.

DataFrame functions, like filter, accept Spark SQL expressions instead of lambdas.
These expressions allow the optimizer to understand what the condition represents,
and with filter, it can often be used to skip reading unnecessary records.

To get started, let’s look at a SQL expression to filter our data for unhappy pandas
using our existing schema. The first step is looking up the column that contains this
information. In our case it is happy, and for our DataFrame (called df) we access the
column through the apply function (e.g., df("happy")). The filter expression
requires the expression to return a boolean value, and if you wanted to select happy
pandas, the entire expression could be retrieving the column value. However, since
we want to find the unhappy pandas, we can check to see that happy isn’t true using
the !== operator as shown in Example 3-18.

Example 3-18. Simple filter for unhappy pandas

    pandaInfo.filter(pandaInfo("happy") !== true)

To look up the column, we can either provide the column name on
the specific DataFrame or use the implicit $ operator for column
lookup. This is especially useful when the DataFrame is anony‐
mous. The ! binary negation function can be used together with $
to simplify our expression from Example 3-18 down to df.fil
ter(!$("happy")).
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3 A column literal is a column with a fixed value that doesn’t change between rows (i.e., constant).

This illustrates how to access a specific column from a DataFrame. For accessing
other structures inside of DataFrames, like nested structs, keyed maps, and array ele‐
ments, use the same apply syntax. So, if the first element in the attributes array rep‐
resent squishiness, and you only want very squishy pandas, you can access that
element by writing df("attributes")(0) >= 0.5.

Our expressions need not be limited to a single column. You can compare multiple
columns in our “filter” expression. Complex filters like that shown in Example 3-19
are more difficult to push down to the storage layer, so you may not see the same
speedup over RDDs that you see with simpler filters.

Example 3-19. More complex filter

    pandaInfo.filter(
      pandaInfo("happy").and(pandaInfo("attributes")(0) > pandaInfo("attributes")(1))
    )

Spark SQL’s column operators are defined on the column class, so
a filter containing the expression 0 >= df.col("friends") will
not compile since Scala will use the >= defined on 0. Instead you
would write df.col("friend") <= 0 or convert 0 to a column lit‐
eral with lit.3

Spark SQL’s DataFrame API has a very large set of operators available. You can use
all of the standard mathematical operators on floating points, along with the standard
logical and bitwise operations (prefix with bitwise to distinguish from logical). Col‐
umns use === and !== for equality to avoid conflict with Scala internals. For columns
of strings, startsWith/endsWith, substr, like, and isNull are all available. The full
set of operations is listed in org.apache.spark.sql.Column and covered in Table 3-3
and Table 3-4.
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Table 3-3. Spark SQL Scala operators

Scala
operator

Java equivalent Input column
types

Output
type

Purpose Sample Result

!== notEqual Any Boolean Check if expressions
not equal

"hi" !== 
"bye"

true

% mod Numeric Numeric Modulo 10 % 5 0

&& and Boolean Boolean Boolean and true && false false

* multiply Numeric Numeric Multiply expressions 2 * 21 42

+ plus Numeric Numeric Sum expression 2 + 2 4

- minus Numeric Numeric Subtraction 2 - 2 0

- unary_- Numeric Numeric Unary subtraction -42 -42

/ division Numeric Double Division 43/2 21.5

< lt Comparable Boolean Less than "a" < "b" true

<= leq Comparable Boolean Less than or equal to "a" <= "a" true

=== equals Any Any Equality test (unsafe
on null values)

"a" === "a" true

<=> eqNullSafe Any Any Equality test (safe on
null values)

"a" <=> "a" true

> gt Comparable Boolean Greater than "a" > "b" false

>= gt Comparable Boolean Greater than or equal
to

"a" >= "b" false

Table 3-4. Spark SQL expression operators

Operator Input column
types

Output type Purpose Sample Result

apply Complex types Type of field
accessed

Get value from complex
type (e.g.,
structfield/map 
lookup or array index)

[1,2,3].apply(0) 1

bitwiseAND Integral Type a Same as input Computes and bitwise 21.bitwiseAND(11) 1

bitwiseOR Integral Type a Same as input Computes or bitwise 21.bitwiseOR(11) 31

bitwiseXOR Integral Type a Same as input Computes bitwise
exclusive or

21.bitwiseXOR(11) 30

a Integral types include ByteType, IntegerType, LongType, and ShortType.

Not all Spark SQL expressions can be used in every API call. For
example, Spark SQL joins do not support complex operations, and
filter requires that the expression result in a boolean, and similar.
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In addition to the operators directly specified on the column, an even larger set of
functions on columns exists in org.apache.spark.sql.functions, some of which we
cover in Tables 3-5, 3-6, and 3-7. For illustration, this example shows the values for
each column at a specific row, but keep in mind that these functions are called on
columns, not values.

Table 3-5. Spark SQL standard functions

Function name Purpose Input types Example usage Result

lit(value) Convert a Scala symbol to a
column literal

Column & Symbol lit(1) Column(1)

array Create a new array column Must all have the same
Spark SQL type

array(lit(1),lit(2)) array(1,2)

isNaN Check if not a number Numeric isNan(lit(100.0)) false

not Opposite value Boolean not(lit(true)) false

Table 3-6. Spark SQL common mathematical expressions

Function name Purpose Input types Example usage Result

abs Absolute value Numeric abs(lit(-1)) 1

sqrt Square root Numeric sqrt(lit(4)) 2

acos Inverse cosine Numeric acos(lit(0.5)) 1.04…. a

asin Inverse sine Numeric asin(lit(0.5)) 0.523… a

atan Inverse tangent Numeric atan(lit(0.5)) 0.46… a

cbrt Cube root Numeric sqrt(lit(8)) 2

ceil Ceiling Numeric ceil(lit(8.5)) 9

cos Cosine Numeric cos(lit(0.5)) 0.877…. a

sin Sine Numeric sin(lit(0.5)) 0.479… a

tan Tangent Numeric tan(lit(0.5)) 0.546… a

exp Exponent Numeric exp(lit(1.0)) 2.718… a

floor Ceiling Numeric floor(lit(8.5)) 8

least Minimum value Numerics least(lit(1), lit(-10)) -10
a Truncated for display purposes.
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Table 3-7. Functions for use on Spark SQL arrays

Function name Purpose Example usage Result

array_contains If an array contains a value. array_contains(lit(Array(
  2,3,-1), 3))

true

sort_array Sort an array (ascending default). sort_array(lit(Array(
  2,3,-1)))

Array(-1,2,3)

explode Create a row for each element in
the array—often useful when
working with nested JSON records.
Either takes a column name or
additional function mapping from
row to iterator of case classes.

explode(lit(Array(
  2,3,-1)), "murh")

Row(2), 
Row(3), Row(-1)

Beyond simply filtering out data, you can also produce a DataFrame with new col‐
umns or updated values in old columns. Spark uses the same expression syntax we
discussed for filter, except instead of having to include a condition (like testing for
equality), the results are used as values in the new DataFrame. To see how you can use
select on complex and regular data types, Example 3-20 uses the Spark SQL
explode function to turn an input DataFrame of PandaPlaces into a DataFrame of
just PandaInfo as well as computing the “squishness” to “hardness” ratio of each
panda.

Example 3-20. Spark SQL select and explode operators

    val pandaInfo = pandaPlace.explode(pandaPlace("pandas")){
      case Row(pandas: Seq[Row]) =>
        pandas.map{
          case (Row(
            id: Long,
            zip: String,
            pt: String,
            happy: Boolean,
            attrs: Seq[Double])) =>
            RawPanda(id, zip, pt, happy, attrs.toArray)
        }}
    pandaInfo.select(
      (pandaInfo("attributes")(0) / pandaInfo("attributes")(1))
        .as("squishyness"))

When you construct a sequence of operations, the generated col‐
umn names can quickly become unwieldy, so the as or alias oper‐
ators are useful to specify the resulting column name.
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4 StringIndexer in the ML pipeline is designed for string index encoding.

While all of these operations are quite powerful, sometimes the logic you wish to
express is more easily encoded with if/else semantics. Example 3-21 is a simple
example of this, and it encodes the different types of panda as a numeric value.4 The
when and otherwise functions can be chained together to create the same effect.

Example 3-21. If/else in Spark SQL

  /**
    * Encodes pandaType to Integer values instead of String values.
    *
    * @param pandaInfo the input DataFrame
    * @return Returns a DataFrame of pandaId and integer value for pandaType.
    */
  def encodePandaType(pandaInfo: DataFrame): DataFrame = {
    pandaInfo.select(pandaInfo("id"),
      (when(pandaInfo("pt") === "giant", 0).
      when(pandaInfo("pt") === "red", 1).
      otherwise(2)).as("encodedType")
    )
  }

Specialized DataFrame transformations for missing and noisy data
Spark SQL also provides special tools for handling missing, null, and invalid data. By
using isNan or isNull along with filters, you can create conditions for the rows you
want to keep. For example, if you have a number of different columns, perhaps with
different levels of precision (some of which may be null), you can use coalesce(c1,
c2, ..) to return the first nonnull column. Similarly, for numeric data, nanvl
returns the first non-NaN value (e.g., nanvl(0/0, sqrt(-2), 3) results in 3). To
simplify working with missing data, the na function on DataFrame gives us access to
some common routines for handling missing data in DataFrameNaFunctions.

Beyond row-by-row transformations

Sometimes applying a row-by-row decision, as you can with filter, isn’t enough.
Spark SQL also allows us to select the unique rows by calling dropDuplicates, but as
with the similar operation on RDDs (distinct), this can require a shuffle, so is often
much slower than filter. Unlike with RDDs, dropDuplicates can optionally drop
rows based on only a subset of the columns, such as an ID field, as shown in
Example 3-22.
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Example 3-22. Drop duplicate panda IDs

    pandas.dropDuplicates(List("id"))

This leads nicely into our next section on aggregates and groupBy since often the
most expensive component of each is the shuffle.

Aggregates and groupBy
Spark SQL has many powerful aggregates, and thanks to its optimizer it can be easy
to combine many aggregates into one single action/query. Like with Pandas’ Data
Frames, groupBy returns special objects on which we can ask for certain aggregations
to be performed. In pre-2.0 versions of Spark, this was a generic GroupedData, but in
versions 2.0 and beyond, DataFrames groupBy is the same as one Datasets.

Aggregations on Datasets have extra functionality, returning a GroupedDataset (in
pre-2.0 versions of Spark) or a KeyValueGroupedDataset when grouped with an arbi‐
trary function, and a RelationalGroupedDataset when grouped with a relational/
Dataset DSl expression. The additional typed functionality is discussed in “Grouped
Operations on Datasets” on page 65, and the common “untyped” DataFrame and Data
set groupBy functionality is explored here.

min, max, avg, and sum are all implemented as convenience functions directly on
GroupedData, and more can be specified by providing the expressions to agg.
Example 3-23 shows how to compute the maximum panda size by zip code. Once
you specify the aggregates you want to compute, you can get the results back as a
DataFrame.

If you’re used to RDDs you might be concerned by groupBy, but it
is now a safe operation on DataFrames thanks to the Spark SQL
optimizer, which automatically pipelines our reductions, avoiding
giant shuffles and mega records.

Example 3-23. Compute the max panda size by zip code

  def maxPandaSizePerZip(pandas: DataFrame): DataFrame = {
    pandas.groupBy(pandas("zip")).max("pandaSize")
  }

While Example 3-23 computes the max on a per-key basis, these aggregates can also
be applied over the entire DataFrame or all numeric columns in a DataFrame. This is
often useful when trying to collect some summary statistics for the data with which
you are working. In fact, there is a built-in describe transformation which does just
that, although it can also be limited to certain columns, which is used in
Example 3-24 and returns Example 3-25.
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Example 3-24. Compute some common summary stats, including count, mean, stddev,
and more, on the entire DataFrame

    // Compute the count, mean, stddev, min, max summary stats for all
    // of the numeric fields of the provided panda infos. non-numeric
    // fields (such as string (name) or array types) are skipped.
    val df = pandas.describe()
    // Collect the summary back locally
    println(df.collect())

Example 3-25. Result of describe and collect on some small sample data (note:
summarizes all of the numeric fields)

Array([count,3,3], [mean,1.3333333333333333,5.0],
  [stddev,0.5773502691896258,4.358898943540674], [min,1,2], [max,2,10])

The behavior of groupBy has changed between Spark versions.
Prior to Spark 1.3 the values of the grouping columns are discarded
by default, while post 1.3 they are retained. The configuration
parameter, spark.sql.retainGroupColumns, can be set to false to
force the earlier functionality.

For computing multiple different aggregations, or more complex aggregations, you
should use the agg API on the GroupedData instead of directly calling count, mean, or
similar convenience functions. For the agg API, you either supply a list of aggregate
expressions, a string representing the aggregates, or a map of column names to aggre‐
gate function names. Once we’ve called agg with the requested aggregates, we get
back a regular DataFrame with the aggregated results. As with regular functions, they
are listed in the org.apache.spark.sql.functions Scaladoc. Table 3-8 lists some com‐
mon and useful aggregates. For our example results in these tables we will consider a
DataFrame with the schema of name field (as a string) and age (as an integer), both
nullable with values ({"ikea", null}, {"tube", 6}, {"real", 30}).
Example 3-26 shows how to compute both the min and mean for the pandaSize col‐
umn on our running panda example.

Computing multiple aggregates with Spark SQL can be much sim‐
pler than doing the same tasks with the RDD API.
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Example 3-26. Example aggregates using the agg API

  def minMeanSizePerZip(pandas: DataFrame): DataFrame = {
    // Compute the min and mean
    pandas.groupBy(pandas("zip")).agg(
      min(pandas("pandaSize")), mean(pandas("pandaSize")))
  }

Table 3-8. Spark SQL aggregate functions for use with agg API

Function name Purpose Storage
requirement

Input
types

Example usage Example
result

approxCount
Distinct

Count
approximate
distinct values
in column a

Configurable
through rsd
(which
controls error
rate)

All df.agg(approxCountDistinct
(df("age"), 0.001))

2

avg Average Constant Numeric df.agg(avg(df("age"))) 18

count Count
number of
items
(excluding
nulls). Special
case of “*”
counts
number of
rows

Constant All df.agg(count(df("age"))) 2

countDistinct Count distinct
values in
column

O(distinct
elems)

All df.agg(countDistinct
(df("age")))

2

first Return
the first
element b

Constant All df.agg(first(df("age"))) 6

last Return the
last element

Constant All df.agg(last(df("age"))) 30

stddev Sample
standard
deviation c

Constant Numeric df.agg(stddev(df("age"))) 16.97…

stddev_pop Population
standard
deviation c

Constant Numeric df.agg(stddev_pop(df("age"))) 12.0

sum Sum of the
values

Constant Numeric df.agg(sum(df("age"))) 36

sumDistinct Sum of the
distinct values

O(distinct
elems)

Numeric df.agg(sumDistinct
(df("age")))

36
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Function name Purpose Storage
requirement

Input
types

Example usage Example
result

min Select the
minimum
value

Constant Sortable
data

df.agg(min(df("age"))) 5

max Select the
maximum
value

Constant Sortable
data

df.agg(max(df("age"))) 30

mean Select the
mean value

Constant Numeric df.agg(mean(df("age"))) 18

a Implemented with HyperLogLog: https://en.wikipedia.org/wiki/HyperLogLog.
b This was commonly used in early versions of Spark SQL where the grouping column was not preserved.
c Added in Spark 1.6.

In addition to using aggregates on groupBy, you can run the same
aggregations on multidimensional cubes with cube and rollups
with rollup.

If the built-in aggregation functions don’t meet your needs, you can extend Spark
SQL using UDFs as discussed in “Extending with User-Defined Functions and
Aggregate Functions (UDFs, UDAFs)” on page 66, although things can be more com‐
plicated for aggregate functions.

Windowing
Spark SQL 1.4.0 introduced windowing functions to allow us to more easily work
with ranges or windows of rows. When creating a window you specify what columns
the window is over, the order of the rows within each partition/group, and the size of
the window (e.g., K rows before and J rows after OR range between values). If it helps
to think of this visually, Figure 3-2 shows a sample window and its results. Using this
specification each input row is related to some set of rows, called a frame, that is used
to compute the resulting aggregate. Window functions can be very useful for things
like computing average speed with noisy data, relative sales, and more. A window for
pandas by age is shown in Example 3-27.

Example 3-27. Define a window on the +/-10 closest (by age) pandas in the same zip
code

    val windowSpec = Window
      .orderBy(pandas("age"))
      .partitionBy(pandas("zip"))
      .rowsBetween(start = -10, end = 10) // can use rangeBetween for range instead
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Figure 3-2. Spark SQL windowing

Once you’ve defined a window specification you can compute a function over it, as
shown in Example 3-28. Spark’s existing aggregate functions, covered in “Aggregates
and groupBy” on page 43, can be computed on an aggregation over the window.
Window operations are very useful for things like Kalman filtering or many types of
relative analysis.

Example 3-28. Compute difference from the average using the window of +/-10 closest
(by age) pandas in the same zip code

    val pandaRelativeSizeCol = pandas("pandaSize") -
      avg(pandas("pandaSize")).over(windowSpec)

    pandas.select(pandas("name"), pandas("zip"), pandas("pandaSize"), pandas("age"),
      pandaRelativeSizeCol.as("panda_relative_size"))

As of this writing, windowing functions require Hive support to be
enabled or using HiveContext.
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Sorting
Sorting supports multiple columns in ascending or descending order, with ascending
as the default. These sort orders can be intermixed, as shown in Example 3-29. Spark
SQL has some extra benefits for sorting as some serialized data can be compared
without deserialization.

Example 3-29. Sort by panda age and size in opposite orders

    pandas.orderBy(pandas("pandaSize").asc, pandas("age").desc)

When limiting results, sorting is often used to only bring back the top or bottom K
results. When limiting you specify the number of rows with limit(numRows) to
restrict the number of rows in the DataFrame. Limits are also sometimes used for
debugging without sorting to bring back a small result. If, instead of limiting the
number of rows based on a sort order, you want to sample your data, “Sampling” on
page 209 covers techniques for Spark SQL sampling as well.

Multi-DataFrame Transformations
Beyond single DataFrame transformations you can perform operations that depend
on multiple DataFrames. The ones that first pop into our heads are most likely the
different types of joins, which are covered in Chapter 4, but beyond that you can also
perform a number of set-like operations between DataFrames.

Set-like operations

The DataFrame set-like operations allow us to perform many operations that are most
commonly thought of as set operations. These operations behave a bit differently
than traditional set operations since we don’t have the restriction of unique elements.
While you are likely already familiar with the results of set-like operations from regu‐
lar Spark and Learning Spark, it’s important to review the cost of these operations in
Table 3-9.

Table 3-9. Set operations

Operation name Cost

unionAll Low

intersect Expensive

except Expensive

distinct Expensive
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Plain Old SQL Queries and Interacting with Hive Data
Sometimes, it’s better to use regular SQL queries instead of building up our opera‐
tions on DataFrames. If you are connected to a Hive Metastore we can directly write
SQL queries against the Hive tables and get the results as a DataFrame. If you have a
DataFrame you want to write SQL queries against, you can register it as a temporary
table, as shown in Example 3-30 (or save it as a managed table if you intend to reuse
it between jobs). Datasets can also be converted back to DataFrames and registered
for querying against.

Example 3-30. Registering/saving tables

  def registerTable(df: DataFrame): Unit = {
    df.registerTempTable("pandas")
    df.write.saveAsTable("perm_pandas")
  }

Querying tables is the same, regardless of whether it is a temporary table, existing
Hive table, or newly saved Spark table, and is illustrated in Example 3-31.

Example 3-31. Querying a table (permanent or temporary)

  def querySQL(): DataFrame = {
    sqlContext.sql("SELECT * FROM pandas WHERE size > 0")
  }

In addition to registering tables you can also write queries directly against a specific
file path, as shown in Example 3-32.

Example 3-32. Querying a raw file

  def queryRawFile(): DataFrame = {
    sqlContext.sql("SELECT * FROM parquet.`path_to_parquet_file`")
  }

Data Representation in DataFrames and Datasets
DataFrames are more than RDDs of Row objects; DataFrames and Datasets have a
specialized representation and columnar cache format. The specialized representa‐
tion is not only more space efficient, but also can be much faster to encode than even
Kryo serialization. To be clear, like RDDs, DataFrames and Datasets are generally
lazily evaluated and build up a lineage of their dependencies (except in DataFrames
this is called a logical plan and contains more information).
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Tungsten
Tungsten is a new Spark SQL component that provides more efficient Spark opera‐
tions by working directly at the byte level. Looking back on Figure 3-1, we can take a
closer look at the space differences between the RDDs and DataFrames when cached
in Figure 3-3. Tungsten includes specialized in-memory data structures tuned for the
types of operations required by Spark, improved code generation, and a specialized
wire protocol.

Figure 3-3. RDD versus DataFrame storage space for same data

For those coming from Hadoop, you can think of Tungsten data
types as being WritableComparable types on steroids.

Tungsten’s representation is substantially smaller than objects serialized using Java or
even Kryo serializers. As Tungsten does not depend on Java objects, both on-heap
and off-heap allocations are supported. Not only is the format more compact, but
serialization times can be substantially faster than with native serialization.

Since Tungsten no longer depends on working with Java objects,
you can use either on-heap (in the JVM) or off-heap storage. If you
use off-heap storage, it is important to leave enough room in your
containers for the off-heap allocations, which you can get an
approximate idea for from the web UI.

Tungsten’s data structures are also created closely in mind with the kind of process‐
ing for which they are used. The classic example of this is with sorting, a common
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and expensive operation. The on-wire representation is implemented so that sorting
can be done without having to deserialize the data again.

In the future Tungsten may make it more feasible to use certain
non-JVM libraries. For many simple operations the cost of using
BLAS, or similar linear algebra packages, from the JVM is domina‐
ted by the cost of copying the data off-heap.

By avoiding the memory and GC overhead of regular Java objects, Tungsten is able to
process larger datasets than the same handwritten aggregations. Tungsten became the
default in Spark 1.5 and can be enabled in earlier versions by setting spark.sql.tung
sten.enabled to true (or disabled in later versions by setting this to false). Even
without Tungsten, Spark SQL uses a columnar storage format with Kryo serialization
to minimize storage cost.

Data Loading and Saving Functions
Spark SQL has a different way of loading and saving data than core Spark. To be able
to push down certaintypes of operations to the storage layer, Spark SQL has its own
Data Source API. Data sources are able to specify and control which type of opera‐
tions should be pushed down to the data source. As developers, you don’t need to
worry too much about the internal activity going on here, unless the data sources you
are looking for are not supported.

Data loading in Spark SQL is not quite as lazy as in regular Spark,
but is still generally lazy. You can verify this by quickly trying to
load from a data source that doesn’t exist.

DataFrameWriter and DataFrameReader
The DataFrameWriter and the DataFrameReader cover writing and reading from
external data sources. The DataFrameWriter is accessed by calling write on a Data
Frame or Dataset. The DataFrameReader can be accessed through read on a
SQLContext.

Spark SQL updated the load/save API in Spark 1.4, so you may see
code still using the old-style API without the DataFrame reader or
writer classes, but under the hood it is implemented as a wrapper
around the new API.
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Formats
When reading or writing you specify the format by calling format(formatName) on
the DataFrameWriter/DataFrameReader. Format-specific parameters, such as num‐
ber of records to be sampled for JSON, are specified by either providing a map of
options with options or setting option-by-option with option on the reader/writer.

The first-party formats JSON, JDBC, ORC, and Parquet methods are
directly defined on the reader/writers taking the path or connec‐
tion info. These methods are for convenience only and are wrap‐
pers around the more general methods we illustrate in this chapter.

JSON
Loading and writing JSON is supported directly in Spark SQL, and despite the lack of
schema information in JSON, Spark SQL is able to infer a schema for us by sampling
the records. Loading JSON data is more expensive than loading many data sources,
since Spark needs to read some of the records to determine the schema information.
If the schema between records varies widely (or the number of records is very small),
you can increase the percentage of records read to determine the schema by setting
samplingRatio to a higher value, as in Example 3-33 where we set the sample ratio to
100%.

Example 3-33. Load JSON data, using all (100%) of records to determine the schema

    val df2 = session.read.format("json")
      .option("samplingRatio", "1.0").load(path)

Spark’s schema inference can be a compelling reason to use Spark
for processing JSON data, even if the data size could be handled on
a single node.

Since our input may contain some invalid JSON records we may wish to filter out, we
can also take in an RDD of strings. This allows us to load the input as a standard text
file, filter out our invalid records, and then load the data into JSON. This is done by
using the built-in json function on the DataFrameReader, which takes RDDs or paths
and is shown in Example 3-34. Methods for converting RDDs of regular objects are
covered in “RDDs” on page 56.
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5 Some types may not be correctly implemented for all databases.

Example 3-34. jsonRDD load

    val rdd: RDD[String] = input.filter(_.contains("panda"))
    val df = session.read.json(rdd)

JDBC
The JDBC data source represents a natural Spark SQL data source, one that supports
many of the same operations. Since different database vendors have slightly different
JDBC implementations, you need to add the JAR for your JDBC data sources. Since
SQL field types vary as well, Spark uses JdbcDialects with built-in dialects for DB2,
Derby, MsSQL, MySQL, Oracle, and Postgres.5

While Spark supports many different JDBC sources, it does not ship with the JARs
required to talk to all of these databases. If you are submitting your Spark job with
spark-submit you can download the required JARs to the host you are launching
and include them by specifying --jars or supply the Maven coordinates to --
packages. Since the Spark Shell is also launched this way, the same syntax works and
you can use it to include the MySQL JDBC JAR in Example 3-35.

Example 3-35. Include MySQL JDBC JAR

spark-submit --jars ./resources/mysql-connector-java-5.1.38.jar $ASSEMBLY_JAR $CLASS

In earlier versions of Spark --jars does not include the JAR in the
driver’s class path. If this is the case for your cluster you must also
specify the same JAR to --driver-class-path.

JdbcDialects allow Spark to correctly map the JDBC types to the corresponding Spark
SQL types. If there isn’t a JdbcDialect for your database vendor, the default dialect
will be used, which will likely work for many of the types. The dialect is automatically
chosen based on the JDBC URL used.

If you find yourself needing to customize the JdbcDialect for your
database vendor, you can look for a package or spark-packages or
extend the JdbcDialect class and register your own dialect.

As with the other built-in data sources, there exists a convenience wrapper for speci‐
fying the properties required to load JDBC data, illustrated in Example 3-36. The
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convenience wrapper JDBC accepts the URL, table, and a java.util.Properties
object for connection properties (such as authentication information). The properties
object is merged with the properties that are set on the reader/writer itself. While the
properties object is required, an empty properties object can be provided and proper‐
ties instead specified on the reader/writer.

Example 3-36. Create a DataFrame from a JDBC data source

    session.read.jdbc("jdbc:dialect:serverName;user=user;password=pass",
      "table", new Properties)

    session.read.format("jdbc")
      .option("url", "jdbc:dialect:serverName")
      .option("dbtable", "table").load()

The API for saving a DataFrame is very similar to the API used for loading. The
save() function needs no path since the information is already specified, as illustra‐
ted in Example 3-37, just as with loading.

Example 3-37. Write a DataFrame to a JDBC data source

    df.write.jdbc("jdbc:dialect:serverName;user=user;password=pass",
      "table", new Properties)

    df.write.format("jdbc")
      .option("url", "jdbc:dialect:serverName")
      .option("user", "user")
      .option("password", "pass")
      .option("dbtable", "table").save()

In addition to reading and writing JDBC data sources, Spark SQL can also run its
own JDBC server (covered in “JDBC/ODBC Server” on page 70).

Parquet
Apache Parquet files are a common format directly supported in Spark SQL, and they
are incredibly space-efficient and popular. Apache Parquet’s popularity comes from a
number of features, including the ability to easily split across multiple files, compres‐
sion, nested types, and many others discussed in the Parquet documentation. Since
Parquet is such a popular format, there are some additional options available in Spark
for the reading and writing of Parquet files. These options are listed in Table 3-10.
Unlike third-party data sources, these options are mostly configured on the SQLCon
text, although some can be configured on either the SQLContext or DataFrameR
eader/Writer.
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Table 3-10. Parquet data source options

SQLConf DataFrameReader/
Writer option

Default Purpose

spark.sql.parquet
.mergeSchema

mergeSchema False Control if schema should be merged
between partitions when reading. Can be
expensive, so disabled by default in 1.5.0.

spark.sql.parquet
.binaryAsString

N/A False Treat binary data as strings. Old versions
of Spark wrote strings as binary data.

spark.sql.parquet
.cacheMetadata

N/A True Cache Parquet metadata, normally safe
unless underlying data is being modified
by another process.

spark.sql.parquet
.compression.codec

N/A Gzip Specify the compression codec for use
with Parquet data. Valid options are
uncompressed, snappy, gzip, or lzo.

spark.sql.parquet
.filterPushdown

N/A True Push down filters to Parquet (when
possible).a

spark.sql.parquet
.writeLegacyFormat

N/A False Write in Parquet metadata in the legacy
format.

spark.sql.parquet
.output.commit
ter.class

N/A org.apache.par
quet.hadoop.Par
quetOutput
Committer

Output committer used by Parquet. If
writing to S3 you may wish to try
org.apache.spark.sql.par
quet.DirectParquetOutputCom
mitter.

a Pushdown means evaluate at the storage, so with Parquet this can often mean skipping reading unnecessary rows or files.

Reading Parquet from an old version of Spark requires some special options, as
shown in Example 3-38.

Example 3-38. Read Parquet file written by an old version of Spark

  def loadParquet(path: String): DataFrame = {
    // Configure Spark to read binary data as string,
    // note: must be configured on session.
    session.conf.set("spark.sql.parquet.binaryAsString", "true")

    // Load parquet data using merge schema (configured through option)
    session.read
      .option("mergeSchema", "true")
      .format("parquet")
      .load(path)
  }

Writing parquet with the default options is quite simple, as shown in Example 3-39.
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Example 3-39. Write Parquet file with default options

  def writeParquet(df: DataFrame, path: String) = {
    df.write.format("parquet").save(path)
  }

Hive tables
Interacting with Hive tables adds another option beyond the other formats. As cov‐
ered in “Plain Old SQL Queries and Interacting with Hive Data” on page 49, one
option for bringing in data from a Hive table is writing a SQL query against it and
having the result as a DataFrame. The DataFrame’s reader and writer interfaces can
also be used with Hive tables, as with the rest of the data sources, as illustrated in
Example 3-40.

Example 3-40. Load a Hive table

  def loadHiveTable(): DataFrame = {
    session.read.table("pandas")
  }

When loading a Hive table Spark SQL will convert the metadata
and cache the result. If the underlying metadata has changed you
can use sqlContext.refreshTable("tablename") to update the
metadata, or the caching can be disabled by setting spark.sql.par
quet.cacheMetadata to false.

Saving a managed table is a bit different, and is illustrated in Example 3-41.

Example 3-41. Write managed table

  def saveManagedTable(df: DataFrame): Unit = {
    df.write.saveAsTable("pandas")
  }

Unless specific conditions are met, the result saved to a Hive man‐
aged table will be saved in a Spark-specific format that other tools
may not be able to understand.

RDDs

Spark SQL DataFrames can easily be converted to RDDs of Row objects, and can also
be created from RDDs of Row objects as well as JavaBeans, Scala case classes, and
tuples. For RDDs of strings in JSON format, you can use the methods discussed in
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“JSON” on page 52. Datasets of type T can also easily be converted to RDDs of type
T, which can provide a useful bridge for DataFrames to RDDs of concrete case classes
instead of Row objects. RDDs are a special-case data source, since when going to/from
RDDs, the data remains inside of Spark without writing out to or reading from an
external system.

Converting a DataFrame to an RDD is a transformation (not an
action); however, converting an RDD to a DataFrame or Dataset
may involve computing (or sampling some of) the input RDD.

Creating a DataFrame from an RDD is not free in the general case.
The data must be converted into Spark SQL’s internal format.

When you create a DataFrame from an RDD, Spark SQL needs to add schema infor‐
mation. If you are creating the DataFrame from an RDD of case classes or plain old
Java objects (POJOs), Spark SQL is able to use reflection to automatically determine
the schema, as shown in Example 3-42. You can also manually specify the schema for
your data using the structure discussed in “Basics of Schemas” on page 33. This can
be especially useful if some of your fields are not nullable. You must specify the
schema yourself if Spark SQL is unable to determine the schema through reflection,
such as an RDD of Row objects (perhaps from calling .rdd on a DataFrame to use a
functional transformation, as shown in Example 3-42).

Example 3-42. Creating DataFrames from RDDs

  def createFromCaseClassRDD(input: RDD[PandaPlace]) = {
    // Create DataFrame explicitly using session and schema inference
    val df1 = session.createDataFrame(input)

    // Create DataFrame using session implicits and schema inference
    val df2 = input.toDF()

    // Create a Row RDD from our RDD of case classes
    val rowRDD = input.map(pm => Row(pm.name,
      pm.pandas.map(pi => Row(pi.id, pi.zip, pi.happy, pi.attributes))))

    val pandasType = ArrayType(StructType(List(
      StructField("id", LongType, true),
      StructField("zip", StringType, true),
      StructField("happy", BooleanType, true),
      StructField("attributes", ArrayType(FloatType), true))))
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    // Create DataFrame explicitly with specified schema
    val schema = StructType(List(StructField("name", StringType, true),
      StructField("pandas", pandasType)))

    val df3 = session.createDataFrame(rowRDD, schema)
  }

Case classes or JavaBeans defined inside another class can some‐
times cause problems. If your RDD conversion is failing, make sure
the case class being used isn’t defined inside another class.

Converting a DataFrame to an RDD is incredibly simple; however, you get an RDD of
Row objects, as shown in Example 3-43. Since a row can contain anything, you need to
specify the type (or cast the result) as you fetch the values for each column in the row.
With Datasets you can directly get back an RDD templated on the same type, which
can make the conversion back to a useful RDD much simpler.

While Scala has many implicit conversions for different numeric
types, these do not generally apply in Spark SQL; instead, we use
explicit casting.

Example 3-43. Convert a DataFrame

  def toRDD(input: DataFrame): RDD[RawPanda] = {
    val rdd: RDD[Row] = input.rdd
    rdd.map(row => RawPanda(row.getAs[Long](0), row.getAs[String](1),
      row.getAs[String](2), row.getAs[Boolean](3), row.getAs[Array[Double]](4)))
  }

If you know that the schema of your DataFrame matches that of
another, you can use the existing schema when constructing your
new DataFrame. One common place where this occurs is when an
input DataFrame has been converted to an RDD for functional fil‐
tering and then back.

Local collections

Much like with RDDs, you can also create DataFrames from local collections and
bring them back as local collections, as illustrated in Example 3-44. The same mem‐
ory requirements apply; namely, the entire contents of the DataFrame will be in-
memory in the driver program. As such, distributing local collections is normally
limited to unit tests, or joining small datasets with larger distributed datasets.
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Example 3-44. Creating from a local collection

  def createFromLocal(input: Seq[PandaPlace]) = {
    session.createDataFrame(input)
  }

The LocalRelation’s API we used here allows us to specify a
schema in the same manner as when we are converting an RDD to
a DataFrame.

In pre-1.6 versions of PySpark, schema inference only looked at the
first record.

Collecting data back as a local collection is more common and often done post aggre‐
gations or filtering on the data. For example, with ML pipelines collecting the coeffi‐
cents or (as discussed in our Goldilocks example in Chapter 6) collecting the
quantiles to the driver. Example 3-45 shows how to collect a DataFrame back locally.
For larger datasets, saving to an external storage system (such as a database or HDFS)
is recommended.

Just as with RDDs, do not collect large DataFrames back to the
driver. For Python users, it is important to remember that toPan
das() collects the data locally.

Example 3-45. Collecting the result locally

  def collectDF(df: DataFrame) = {
    val result: Array[Row] = df.collect()
    result
  }

Additional formats
As with core Spark, the data formats that ship directly with Spark only begin to
scratch the surface of the types of systems with which you can interact. Some vendors
publish their own implementations, and many are published on Spark Packages. As
of this writing there are over twenty formats listed on the Data Source’s page with the
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6 spark-csv is now included as part of Spark 2.0.

7 For example, only reading the required partitions when a filter matches one of our partitioning schemes.

most popular being Avro, Redshift, CSV,6 and a unified wrapper around 6+ databases
called deep-spark.

Spark packages can be included in your application in a few different ways. During
the exploration phase (e.g., using the shell) you can include them by specifying --
packages on the command line, as in Example 3-46. The same approach can be used
when submitting your application with spark-submit, but this only includes the
package at runtime, not at compile time. For including at compile time you can add
the Maven coordinates to your builds, or, if building with sbt, the sbt-spark-package
plug-in simplifies package dependencies with spDependencies. Otherwise, manually
listing them as in Example 3-47 works quite well.

Spark CSV is now included as part of Spark 2.0+, so you only need
to include this for earlier versions of Spark.

Example 3-46. Starting Spark shell with CSV support

./bin/spark-shell --packages com.databricks:spark-csv_2.11:1.5.0

Example 3-47. Include spark-csv as an sbt dependency

"com.databricks" % "spark-csv_2.11" % "1.5.0"

Once you’ve included the package with your Spark job you need to specify the for‐
mat, as you did with the Spark provided ones. The name should be mentioned in the
package’s documentation. For spark-csv you would specify a format string of
com.databricks.spark.csv. For the built-in CSV format (in Spark 2.0+) you would
instead just use csv (or the full name org.apache.spark.sql.csv).

There are a few options if the data format you are looking for isn’t directly supported
in either Spark or one of the libraries. Since many formats are available as Hadoop
input formats, you can try to load your data as a Hadoop input format and convert
the resulting RDD as discussed in “RDDs” on page 56. This approach is relatively
simple, but means Spark SQL is unable to push down operations to our data store.7

For a deeper integration you can implement your data source using the Data Source
API. Depending on which operations you wish to support operator push-down for,
in your base relation you will need to implement additional traits from the

60 | Chapter 3: DataFrames, Datasets, and Spark SQL

http://spark-packages.org/package/databricks/spark-avro
http://spark-packages.org/package/databricks/spark-redshift
http://spark-packages.org/package/databricks/spark-csv
http://spark-packages.org/package/Stratio/deep-spark
https://github.com/databricks/sbt-spark-package
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html
https://databricks.com/blog/2015/01/09/spark-sql-data-sources-api-unified-data-access-for-the-spark-platform.html


org.apache.spark.sql.sources package. The details of implementing a new Spark
SQL data source are beyond the scope of this book, but if you are interested the Scala‐
doc for org.apache.spark.sql.sources and spark-csv’s CsvRelation can be good
ways to get started.

Save Modes
In core Spark, saving RDDs always requires that the target directory does not exist,
which can make appending to existing tables challenging. With Spark SQL, you can
specify the desired behavior when writing out to a path that may already have data.
The default behavior is SaveMode.ErrorIfExists; matching the behavior of RDDs,
Spark will throw an exception if the target already exists. The different save modes
and their behaviors are listed in Table 3-11. Example 3-48 illustrates how to configure
an alternative save mode.

Table 3-11. Save modes

Save Mode Behavior

ErrorIfExists Throws an exception if the target already exists. If target doesn’t exist write the data out.

Append If target already exists, append the data to it. If the data doesn’t exist write the data out.

Overwrite If the target already exists, delete the target. Write the data out.

Ignore If the target already exists, silently skip writing out. Otherwise write out the data.

Example 3-48. Specify save mode of append

  def writeAppend(input: DataFrame): Unit = {
    input.write.mode(SaveMode.Append).save("output/")
  }

Partitions (Discovery and Writing)
Partition data is an important part of Spark SQL since it powers one of the key opti‐
mizations to allow reading only the required data, discussed more in “Logical and
Physical Plans” on page 69. If you know how your downstream consumers may access
your data (e.g., reading data based on zip code), when you write your data it is benefi‐
cial to use that information to partition your output. When reading the data, it’s use‐
ful to understand how partition discovery functions, so you can have a better
understanding of whether your filter can be pushed down.

Filter push-down can make a huge difference when working with
large datasets by allowing Spark to only access the subset of data
required for your computation instead of doing effectively a full
table scan.
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When reading partitioned data, you point Spark to the root path of your data, and it
will automatically discover the different partitions. Not all data types can be used as
partition keys; currently only strings and numeric data are the supported types.

If your data is all in a single DataFrame, the DataFrameWriter API makes it easy to
specify the partition information while you are writing the data out. The parti
tionBy function takes a list of columns to partition the output on, as shown in
Example 3-49. You can also manually save out separate DataFrames (say if you are
writing from different jobs) with individual save calls.

Example 3-49. Save partitioned by zip code

  def writeOutByZip(input: DataFrame): Unit = {
    input.write.partitionBy("zipcode").format("json").save("output/")
  }

In addition to splitting the data by a partition key, it can be useful to make sure the
resulting file sizes are reasonable, especially if the results will be used downstream by
another Spark job.

Datasets
Datasets are an exciting extension of Spark SQL that provide additional compile-
time type checking. Starting in Spark 2.0, DataFrames are now a specialized version of
Datasets that operate on generic Row objects and therefore lack the normal compile-
time type checking of Datasets. Datasets can be used when your data can be enco‐
ded for Spark SQL and you know the type information at compile time. The Dataset
API is a strongly typed collection with a mixture of relational (DataFrame) and func‐
tional (RDD) transformations. Like DataFrames, Datasets are represented by a logi‐
cal plan the Catalyst optimizer (see “Query Optimizer” on page 69) can work with, and
when cached the data is stored in Spark SQL’s internal encoding format.

The Dataset API is new in Spark 1.6 and will change in future ver‐
sions. Users of the Dataset API are advised to treat it as a “pre‐
view.” Up-to-date documentation on the Dataset API can be found
in the Scaladoc.

Interoperability with RDDs, DataFrames, and Local Collections
Datasets can be easily converted to/from DataFrames and RDDs, but in the initial
version they do not directly extend either. Converting to/from RDDs involves encod‐
ing/decoding the data into a different form. Converting to/from DataFrames is
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almost “free” in that the underlying data does not need to be changed; only extra
compile-time type information is added/removed.

In Spark 2.0 the DataFrame type has been replaced with a type alias
to Dataset[Row].

The type alias for DataFrame is not visible in Java for Spark 2.0, so
updating Java code will require changing from DataFrame to Data
set<Row>.

To convert a DataFrame to a Dataset you can use the as[ElementType] function on
the DataFrame to get a Dataset[ElementType] back as shown in Example 3-50. The
ElementType must be a case class, or similar such as tuple, consisting of types Spark
SQL can represent (see “Basics of Schemas” on page 33). To create Datasets from
local collections, createDataSet(...) on the SQLContext and the toDS() implicit
function are provided on Seqs in the same manner as createDataFrame(...) and
toDF(). For converting from RDD to Dataset you can first convert from RDD to
DataFrame and then convert it to a Dataset.

For loading data into a Dataset, unless a special API is provided by
your data source, you can first load your data into a DataFrame and
then convert it to a Dataset. Since the conversion to the Dataset
simply adds information, you do not have the problem of eagerly
evaluating, and future filters and similar operations can still be
pushed down to the data store.

Example 3-50. Create a Dataset from a DataFrame

  def fromDF(df: DataFrame): Dataset[RawPanda] = {
    df.as[RawPanda]
  }

Converting from a Dataset back to an RDD or DataFrame can be done in similar
ways as when converting DataFrames, and both are shown in Example 3-51. The toDF
simply copies the logical plan used in the Dataset into a DataFrame—so you don’t
need to do any schema inference or conversion as you do when converting from
RDDs. Converting a Dataset of type T to an RDD of type T can be done by call‐
ing .rdd, which unlike calling toDF, does involve converting the data from the inter‐
nal SQL format to the regular types.
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Example 3-51. Convert Dataset to DataFrame and RDD

  /**
   * Illustrate converting a Dataset to an RDD
   */
  def toRDD(ds: Dataset[RawPanda]): RDD[RawPanda] = {
    ds.rdd
  }

  /**
   * Illustrate converting a Dataset to a DataFrame
   */
  def toDF(ds: Dataset[RawPanda]): DataFrame = {
    ds.toDF()
  }

Compile-Time Strong Typing
One of the reasons to use Datasets over traditional DataFrames is their compile-time
strong typing. DataFrames have runtime schema information but lack compile-time
information about the schema. This strong typing is especially useful when making
libraries, because you can more clearly specify the requirements of your inputs and
your return types.

Easier Functional (RDD “like”) Transformations
One of the key advantages of the Dataset API is easier integration with custom Scala
and Java code. Datasets expose filter, map, mapPartitions, and flatMap with simi‐
lar function signatures as RDDs, with the notable requirement that your return Ele
mentType also be understandable by Spark SQL (such as tuple or case class of types
discussed in “Basics of Schemas” on page 33). Example 3-52 illustrates this using a
simple map function.

Example 3-52. Functional query on Dataset

  def funMap(ds: Dataset[RawPanda]): Dataset[Double] = {
    ds.map{rp => rp.attributes.filter(_ > 0).sum}
  }

Beyond functional transformations, such as map and filter, you can also intermix
relational and grouped/aggregate operations.

Relational Transformations
Datasets introduce a typed version of select for relational-style transformations.
When specifying an expression for this you need to include the type information, as
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shown in Example 3-53. You can add this information by calling as[ReturnType] on
the expression/column.

Example 3-53. Simple relational select on Dataset

  def squishyPandas(ds: Dataset[RawPanda]): Dataset[(Long, Boolean)] = {
    ds.select($"id".as[Long], ($"attributes"(0) > 0.5).as[Boolean])
  }

Some operations, such as select, have both typed and untyped
implementations. If you supply a Column rather than a TypedCol
umn you will get a DataFrame back instead of a Dataset.

Multi-Dataset Relational Transformations
In addition to single Dataset transformations, there are also transformations for
working with multiple Datasets. The standard set operations, namely intersect,
union, and subtract, are all available with the same standard caveats as discussed in
Table 3-9. Joining Datasets is also supported, but to make the type information eas‐
ier to work with, the return structure is a bit different than traditional SQL joins.

Grouped Operations on Datasets
Similar to grouped operations on DataFrames (described in “Aggregates and
groupBy” on page 43), groupBy on Datasets prior to Spark 2.0 returns a GroupedDa
taset or a KeyValueGroupedDataset when grouped with an arbitrary function, and a
RelationalGroupedDataset when grouped with a relational/Dataset DSL expres‐
sion. You can specify your aggregate functions on all of these, along with a functional
mapGroups API. As with the expression in “Relational Transformations” on page 64,
you need to use typed expressions so the result can also be a Dataset.

Taking our previous example of computing the maximum panda size by zip in
Example 3-23, you would rewrite it to be as shown in Example 3-54.

The convenience functions found on GroupedData (e.g., min, max,
etc.) are missing, so all of our aggregate expressions need to be
specified through agg.

Example 3-54. Compute the max panda size per zip code typed

  def maxPandaSizePerZip(ds: Dataset[RawPanda]): Dataset[(String, Double)] = {
    ds.map(rp => MiniPandaInfo(rp.zip, rp.attributes(2)))
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      .groupByKey(mp => mp.zip).agg(max("size").as[Double])
  }

Beyond applying typed SQL expressions to aggregated columns, you can also easily
use arbitrary Scala code with mapGroups on grouped data as shown in Example 3-55.
This can save us from having to write custom user-defined aggregate functions
(UDAFs) (discussed in “Extending with User-Defined Functions and Aggregate
Functions (UDFs, UDAFs)” on page 66). While custom UDAFs can be painful to
write, they may be able to give better performance than mapGroups and can also be
used on DataFrames.

Example 3-55. Compute the max panda size per zip code using map groups

  def maxPandaSizePerZipScala(ds: Dataset[RawPanda]): Dataset[(String, Double)] = {
    ds.groupByKey(rp => rp.zip).mapGroups{ case (g, iter) =>
      (g, iter.map(_.attributes(2)).reduceLeft(Math.max(_, _)))
    }
  }

Extending with User-Defined Functions and Aggregate
Functions (UDFs, UDAFs)
User-defined functions and user-defined aggregate functions provide you with ways
to extend the DataFrame and SQL APIs with your own custom code while keeping
the Catalyst optimizer. The Dataset API (see “Datasets” on page 62) is another per‐
formant option for much of what you can do with UDFs and UDAFs. This is quite
useful for performance, since otherwise you would need to convert the data to an
RDD (and potentially back again) to perform arbitrary functions, which is quite
expensive. UDFs and UDAFs can also be accessed from inside of regular SQL expres‐
sions, making them accessible to analysts or others more comfortable with SQL.

When using UDFs or UDAFs written in non-JVM languages, such
as Python, it is important to note that you lose much of the perfor‐
mance benefit, as the data must still be transferred out of the JVM.
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8 As of this writing, the Sparkling Pandas project development is on hold but early releases still contain some
interesting examples of using JVM code from Python.

If most of your work is in Python but you want to access some
UDFs without the performance penalty, you can write your UDFs
in Scala and register them for use in Python (as done in Sparkling
Pandas).8

Writing nonaggregate UDFs for Spark SQL is incredibly simple: you simply write a
regular function and register it using sqlContext.udf().register. A simple string
length UDF is shown in Example 3-56. If you are registering a Java or Python UDF
you also need to specify your return type.

Example 3-56. String length UDF

  def setupUDFs(sqlCtx: SQLContext) = {
    sqlCtx.udf.register("strLen", (s: String) => s.length())
  }

Even with JVM languages UDFs are generally slower than the
equivalent SQL expression would be if it exists. Some early work is
being done in SPARK-14083 to parse JVM byte code and generate
SQL expressions.

Aggregate functions (or UDAFs) are somewhat trickier to write. Instead of writing a
regular Scala function, you extend the UserDefinedAggregateFunction and imple‐
ment a number of different functions, similar to the functions one might write for
aggregateByKey on an RDD, except working with different data structures. While
they can be complex to write, UDAFs can be quite performant compared with
options like mapGroups on Datasets or even simply written aggregateByKey on
RDDs. You can then either use the UDAF directly on columns or add it to the func‐
tion registry as you did for the nonaggregate UDF.

Example 3-57 is a simple UDAF for computing the average, although you will likely
want to use Spark’s built in avg in real life.

Example 3-57. UDAF for computing the average

  def setupUDAFs(sqlCtx: SQLContext) = {
    class Avg extends UserDefinedAggregateFunction {
      // Input type
      def inputSchema: org.apache.spark.sql.types.StructType =
        StructType(StructField("value", DoubleType) :: Nil)
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      def bufferSchema: StructType = StructType(
        StructField("count", LongType) ::
        StructField("sum", DoubleType) :: Nil
      )

      // Return type
      def dataType: DataType = DoubleType

      def deterministic: Boolean = true

      def initialize(buffer: MutableAggregationBuffer): Unit = {
        buffer(0) = 0L
        buffer(1) = 0.0
      }

      def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
        buffer(0) = buffer.getAs[Long](0) + 1
        buffer(1) = buffer.getAs[Double](1) + input.getAs[Double](0)
      }

      def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
        buffer1(0) = buffer1.getAs[Long](0) + buffer2.getAs[Long](0)
        buffer1(1) = buffer1.getAs[Double](1) + buffer2.getAs[Double](1)
      }

      def evaluate(buffer: Row): Any = {
        buffer.getDouble(1) / buffer.getLong(0)
      }
    }
    // Optionally register
    val avg = new Avg
    sqlCtx.udf.register("ourAvg", avg)
  }

This is a little more complicated than our regular UDF, so let’s take a look at what the
different parts do. You start by specifying what the input type is, then you specify the
schema of the buffer you will use for storing the in-progress work. These schemas are
specified in the same way as DataFrame and Dataset schemas, discussed in “Basics of
Schemas” on page 33.

From there the rest of the functions are implementing the same functions you use
when writing aggregateByKey on an RDD, but instead of taking arbitrary Scala
objects you work with Row and MutableAggregationBuffer. The final evaluate
function takes the Row representing the aggregation data and returns the final result.

UDFs, UDAFs, and Datasets all provide ways to intermix arbitrary code with Spark
SQL.
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9 Scala Quasi Quotes are part of Scala’s macro system.

Query Optimizer
Catalyst is the Spark SQL query optimizer, which is used to take the query plan and
transform it into an execution plan that Spark can run. Much as our transformations
on RDDs build up a DAG, as we apply relational and functional transformations on
DataFrames/Datasets, Spark SQL builds up a tree representing our query plan, called
a logical plan. Spark is able to apply a number of optimizations on the logical plan
and can also choose between multiple physical plans for the same logical plan using a
cost-based model.

Logical and Physical Plans
The logical plan you construct through transformations on DataFrames/Datasets (or
SQL queries) starts out as an unresolved logical plan. Much like a compiler, the Spark
optimizer is multiphased and before any optimizations can be performed, it needs to
resolve the references and types of the expressions.

This resolved plan is referred to as the logical plan, and Spark applies a number of
simplifications directly on the logical plan, producing an optimized logical plan.

These simplifications can be written using pattern matching on the tree, such as the
rule for simplifying additions between two literals. The optimizer is not limited to
pattern matching, and rules can also include arbitrary Scala code.

Once the logical plan has been optimized, Spark will produce a physical plan. The
physical plan stage has both rule-based and cost-based optimizations to produce the
optimal physical plan. One of the most important optimizations at this stage is predi‐
cate pushdown to the data source level.

Code Generation
As a final step, Spark may also apply code generation for the components. Code gen‐
eration is done using Janino to compile Java code. Earlier versions used Scala’s Quasi
Quotes,9 but the overhead was too high to enable code generation for small datasets.
In some TPCDS queries, code generation can result in >10× improvement in perfor‐
mance.

In some early versions of Spark for complex queries, code genera‐
tion can cause failures. If you are on an old version of Spark and
run into an unexpected failure, it can be worth disabling codegen
by setting spark.sql.codegen or spark.sql.tungsten.enabled to
false (depending on version).
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Large Query Plans and Iterative Algorithms
While the Catalyst optimizer is quite powerful, one of the cases where it currently
runs into challenges is with very large query plans. These query plans tend to be the
result of iterative algorithms, like graph algorithms or machine learning algorithms.
One simple workaround for this is converting the data to an RDD and back to Data
Frame/Dataset at the end of each iteration, as shown in Example 3-58. Although if
you’re in Python, be sure to use the underlying Java RDD rather than round-tripping
through Python (see Example 7-5 for how to do this). Another, somewhat more
heavy option, is to write the data to storage and continue from there.

Example 3-58. Round trip through RDD to cut query plan

    val rdd = df.rdd
    rdd.cache()
    sqlCtx.createDataFrame(rdd, df.schema)

This issue is being tracked in SPARK-13346 and you can see the
workaround used in GraphFrames.

Debugging Spark SQL Queries
While Spark SQL’s query optimizer has access to much more information, we still
sometimes need to take a peek under the hood and to make sure it’s working as we
expected. Similar to toDebugString on RDDs, we have explain and printSchema
functions on DataFrames.

One thing that can make a big difference is figuring out if Spark SQL was able to push
down a filter. In early versions of Spark SQL filter pushdown didn’t always happen as
expected, so the filter sometimes needed to be reordered to be right next to the data
load. In newer versions filter pushdown is more likely to fail due to a misconfigura‐
tion of your data source.

JDBC/ODBC Server
Spark SQL provides a JDBC server to allow external tools, such as business intelli‐
gence GUIs like Tableau, to work with data accessible in Spark and to share resour‐
ces. Spark SQL’s JDBC server requires that Spark be built with Hive support.
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Since the server tends to be long lived and runs on a single context,
it can also be a good way to share cached tables between multiple
users.

Spark SQL’s JDBC server is based on the HiveServer2 from Hive, and most corre‐
sponding connectors designed for HiveServer2 can be used directly with Spark SQL’s
JDBC server. Simba also offers specific drivers for Spark SQL.

The server can either be started from the command line or started using an existing
HiveContext. The command-line start and stop commands are ./sbin/start-
thriftserver.sh and ./sbin/stop-thriftserver.sh. When starting from the com‐
mand line, you can configure the different Spark SQL properties by specifying
--hiveconf property=value on the command line. Many of the rest of the
command-line parameters match that of spark-submit. The default host and port is
localhost:10000 and can be configured with hive.server2.thrift.port and
hive.server2.thrift.bind.host.

When starting the JDBC server using an existing HiveContext, you
can simply update the config properties on the context instead of
specifying command-line parameters.

Examples 3-59 and 3-60 illustrate two different ways to configure the port used by
the thrift server.

Example 3-59. Start JDBC server on a different port

./sbin/start-thriftserver.sh --hiveconf hive.server2.thrift.port=9090

Example 3-60. Start JDBC server on a different port in Scala

    hiveContext.setConf("hive.server2.thrift.port", "9090")
    HiveThriftServer2.startWithContext(hiveContext)

When starting the JDBC server on an existing HiveContext, make
sure to shut down the JDBC server when exiting.
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Conclusion
The considerations for using DataFrames/Datasets over RDDs are complex and
changing with the rapid development of Spark SQL. One of the cases where Spark
SQL can be difficult to use is when the number of partitions needed for different
parts of your pipeline changes, or if you otherwise wish to control the partitioner.
While RDDs lack the Catalyst optimizer and relational style queries, they are able to
work with a wider variety of data types and provide more direct control over certain
types of operations. DataFrames and Datasets also only work with a restricted subset
of data types—but when your data is in one of these supported classes the perfor‐
mance improvements of using the Catalyst optimizer provide a compelling case for
accepting those restrictions.

DataFrames can be used when you have primarily relational transformations, which
can be extended with UDFs when necessary. Compared to RDDs, DataFrames benefit
from the efficient storage format of Spark SQL, the Catalyst optimizer, and the ability
to perform certain operations directly on the serialized data. One drawback to work‐
ing with DataFrames is that they are not strongly typed at compile time, which can
lead to errors with incorrect column access and other simple mistakes.

Datasets can be used when you want a mix of functional and relational transforma‐
tions while benefiting from the optimizations for DataFrames and are, therefore, a
great alternative to RDDs in many cases. As with RDDs, Datasets are parameterized
on the type of data contained in them, which allows for strong compile-time type
checking but requires that you know your data type at compile time (although Row or
other generic type can be used). The additional type safety of Datasets can be benefi‐
cial even for applications that do not need the specific functionality of DataFrames.
One potential drawback is that the Dataset API is continuing to evolve, so updating
to future versions of Spark may require code changes.

Pure RDDs work well for data that does not fit into the Catalyst optimizer. RDDs
have an extensive and stable functional API, and upgrades to newer versions of Spark
are unlikely to require substantial code changes. RDDs also make it easy to control
partitioning, which can be very useful for many distributed algorithms. Some types of
operations, such as multicolumn aggregates, complex joins, and windowed opera‐
tions, can be daunting to express with the RDD API. RDDs can work with any Java or
Kryo serializable data, although the serialization is more often more expensive and
less space efficient than the equivalent in DataFrames/Datasets.

Now that you have a good understanding of Spark SQL, it’s time to continue on to
joins, for both RDDs and Spark SQL.

72 | Chapter 3: DataFrames, Datasets, and Spark SQL



1 As the saying goes, the cross product of big data and big data is an out-of-memory exception.

CHAPTER 4

Joins (SQL and Core)

Joining data is an important part of many of our pipelines, and both Spark Core and
SQL support the same fundamental types of joins. While joins are very common and
powerful, they warrant special performance consideration as they may require large
network transfers or even create datasets beyond our capability to handle.1 In core
Spark it can be more important to think about the ordering of operations, since the
DAG optimizer, unlike the SQL optimizer, isn’t able to re-order or push down filters.

Core Spark Joins
In this section we will go over the RDD type joins. Joins in general are expensive
since they require that corresponding keys from each RDD are located at the same
partition so that they can be combined locally. If the RDDs do not have known parti‐
tioners, they will need to be shuffled so that both RDDs share a partitioner, and data
with the same keys lives in the same partitions, as shown in Figure 4-1. If they have
the same partitioner, the data may be colocated, as in Figure 4-3, so as to avoid net‐
work transfer. Regardless of whether the partitioners are the same, if one (or both) of
the RDDs have a known partitioner only a narrow dependency is created, as in
Figure 4-2. As with most key/value operations, the cost of the join increases with the
number of keys and the distance the records have to travel in order to get to their
correct partition.
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Figure 4-1. Shuffle join

Figure 4-2. Both known partitioner join

Figure 4-3. Colocated join

Two RDDs will be colocated if they have the same partitioner and
were shuffled as part of the same action.
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Core Spark joins are implemented using the cogroup function. We
discuss cogroup in “Co-Grouping” on page 139.

Choosing a Join Type
The default join operation in Spark includes only values for keys present in both
RDDs, and in the case of multiple values per key, provides all permutations of the
key/value pair. The best scenario for a standard join is when both RDDs contain the
same set of distinct keys. With duplicate keys, the size of the data may expand dra‐
matically causing performance issues, and if one key is not present in both RDDs you
will lose that row of data. Here are a few guidelines:

• When both RDDs have duplicate keys, the join can cause the size of the data to
expand dramatically. It may be better to perform a distinct or combineByKey
operation to reduce the key space or to use cogroup to handle duplicate keys
instead of producing the full cross product. By using smart partitioning during
the combine step, it is possible to prevent a second shuffle in the join (we will
discuss this in detail later).

• If keys are not present in both RDDs you risk losing your data unexpectedly. It
can be safer to use an outer join, so that you are guaranteed to keep all the data in
either the left or the right RDD, then filter the data after the join.

• If one RDD has some easy-to-define subset of the keys, in the other you may be
better off filtering or reducing before the join to avoid a big shuffle of data, which
you will ultimately throw away anyway.

Join is one of the most expensive operations you will commonly
use in Spark, so it is worth doing what you can to shrink your data
before performing a join.

For example, suppose you have one RDD with some data in the form (Panda id,
score) and another RDD with (Panda id, address), and you want to send each
panda some mail with her best score. You could join the RDDs on id and then com‐
pute the best score for each address, as shown in Example 4-1.
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Example 4-1. Basic RDD join

  def joinScoresWithAddress1( scoreRDD : RDD[(Long, Double)],
   addressRDD : RDD[(Long, String )]) : RDD[(Long, (Double, String))]= {
    val joinedRDD = scoreRDD.join(addressRDD)
    joinedRDD.reduceByKey( (x, y) => if(x._1 > y._1) x else y )
  }

However, this is probably not as fast as first reducing the score data, so that the first
dataset contains only one row for each panda with her best score, and then joining
that data with the address data (as shown in Example 4-2).

Example 4-2. Pre-filter before join

  def joinScoresWithAddress2(scoreRDD : RDD[(Long, Double)],
    addressRDD: RDD[(Long, String)]) : RDD[(Long, (Double, String))]= {
   val bestScoreData = scoreRDD.reduceByKey((x, y) => if(x > y) x else y)
   bestScoreData.join(addressRDD)
  }

If each Panda had 1,000 different scores then the size of the shuffle we did in the first
approach was 1,000 times the size of the shuffle we did with this approach!

If we wanted to we could also perform a left outer join to keep all keys for processing 
even those missing in the right RDD by using leftOuterJoin in place of join, as in
Example 4-3. Spark also has fullOuterJoin and rightOuterJoin depending on
which records we wish to keep. Any missing values are None and present values are
Some('x').

Example 4-3. Basic RDD left outer join

  def outerJoinScoresWithAddress(scoreRDD : RDD[(Long, Double)],
   addressRDD: RDD[(Long, String)]) : RDD[(Long, (Double, Option[String]))]= {
    val joinedRDD = scoreRDD.leftOuterJoin(addressRDD)
    joinedRDD.reduceByKey( (x, y) => if(x._1 > y._1) x else y )
  }

Choosing an Execution Plan
In order to join data, Spark needs the data that is to be joined (i.e., the data based on
each key) to live on the same partition. The default implementation of a join in Spark
is a shuffled hash join. The shuffled hash join ensures that data on each partition will
contain the same keys by partitioning the second dataset with the same default parti‐
tioner as the first, so that the keys with the same hash value from both datasets are in
the same partition. While this approach always works, it can be more expensive than
necessary because it requires a shuffle. The shuffle can be avoided if:

76 | Chapter 4: Joins (SQL and Core)



1. Both RDDs have a known partitioner.
2. One of the datasets is small enough to fit in memory, in which case we can do a

broadcast hash join (we will explain what this is later).

Note that if the RDDs are colocated the network transfer can be avoided, along with
the shuffle.

Speeding up joins by assigning a known partitioner

If you have to do an operation before the join that requires a shuffle, such as aggrega
teByKey or reduceByKey, you can prevent the shuffle by adding a hash partitioner
with the same number of partitions as an explicit argument to the first operation and
persisting the RDD before the join. You could make the example in the previous sec‐
tion even faster, by using the partitioner for the address data as an argument for the
reduceByKey step, as in Example 4-4 and Figure 4-4.

Example 4-4. Known partitioner join

  def joinScoresWithAddress3(scoreRDD: RDD[(Long, Double)],
   addressRDD: RDD[(Long, String)]) : RDD[(Long, (Double, String))]= {
    // If addressRDD has a known partitioner we should use that,
    // otherwise it has a default hash parttioner, which we can reconstruct by
    // getting the number of partitions.
    val addressDataPartitioner = addressRDD.partitioner match {
      case (Some(p)) => p
      case (None) => new HashPartitioner(addressRDD.partitions.length)
    }
    val bestScoreData = scoreRDD.reduceByKey(addressDataPartitioner,
      (x, y) => if(x > y) x else y)
    bestScoreData.join(addressRDD)
  }

Figure 4-4. Both known partitioner join
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Always persist after repartitioning.

Speeding up joins using a broadcast hash join
A broadcast hash join pushes one of the RDDs (the smaller one) to each of the
worker nodes. Then it does a map-side combine with each partition of the larger
RDD. If one of your RDDs can fit in memory or can be made to fit in memory it is
always beneficial to do a broadcast hash join, since it doesn’t require a shuffle. Some‐
times (but not always) Spark SQL will be smart enough to configure the broadcast
join itself; in Spark SQL this is controlled with spark.sql.autoBroadcastJoinThres
hold and spark.sql.broadcastTimeout. This is illustrated in Figure 4-5.

Figure 4-5. Broadcast hash join

Spark Core does not have an implementation of the broadcast hash join. Instead, we
can manually implement a version of the broadcast hash join by collecting the
smaller RDD to the driver as a map, then broadcasting the result, and using mapParti
tions to combine the elements.

Example 4-5 is a general function that could be used to join a larger and smaller
RDD. Its behavior mirrors the default “join” operation in Spark. We exclude ele‐
ments whose keys do not appear in both RDDs.

Example 4-5. Manual broadcast hash join

 def manualBroadCastHashJoin[K : Ordering : ClassTag, V1 : ClassTag,
 V2 : ClassTag](bigRDD : RDD[(K, V1)],
  smallRDD : RDD[(K, V2)])= {
  val smallRDDLocal: Map[K, V2] = smallRDD.collectAsMap()
  bigRDD.sparkContext.broadcast(smallRDDLocal)
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2 If the number of distinct keys is too high, you can also use reduceByKey, sort on the value, and take the top k.

  bigRDD.mapPartitions(iter => {
   iter.flatMap{
    case (k,v1 ) =>
     smallRDDLocal.get(k) match {
      case None => Seq.empty[(K, (V1, V2))]
      case Some(v2) => Seq((k, (v1, v2)))
     }
   }
  }, preservesPartitioning = true)
 }
 //end:coreBroadCast[]
}

Partial manual broadcast hash join
Sometimes not all of our smaller RDD will fit into memory, but some keys are so
overrepresented in the large dataset that you want to broadcast just the most com‐
mon keys. This is especially useful if one key is so large that it can’t fit on a single
partition. In this case you can use countByKeyApprox2 on the large RDD to get an
approximate idea of which keys would most benefit from a broadcast. You then filter
the smaller RDD for only these keys, collecting the result locally in a HashMap. Using
sc.broadcast you can broadcast the HashMap so that each worker only has one
copy and manually perform the join against the HashMap. Using the same HashMap
you can then filter your large RDD down to not include the large number of dupli‐
cate keys and perform your standard join, unioning it with the result of your manual
join. This approach is quite convoluted but may allow you to handle highly skewed
data you couldn’t otherwise process.

Spark SQL Joins
Spark SQL supports the same basic join types as core Spark, but the optimizer is able
to do more of the heavy lifting for you—although you also give up some of your con‐
trol. For example, Spark SQL can sometimes push down or reorder operations to
make your joins more efficient. On the other hand, you don’t control the partitioner
for DataFrames or Datasets, so you can’t manually avoid shuffles as you did with
core Spark joins.

DataFrame Joins
Joining data between DataFrames is one of the most common multi-DataFrame trans‐
formations. The standard SQL join types are all supported and can be specified as the
joinType in df.join(otherDf, sqlCondition, joinType) when performing a join.
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3 The quotes are optional and can be left out. We use them in our examples because we think it is easier to read
with the quotes present.

As with joins between RDDs, joining with nonunique keys will result in the cross
product (so if the left table has R1 and R2 with key1 and the right table has R3 and R5
with key1 you will get (R1, R3), (R1, R5), (R2, R3), (R2, R5)) in the output. While we
explore Spark SQL joins we will use two example tables of pandas, Tables 4-1 and
4-2.

While self joins are supported, you must alias the fields you are
interested in to different names beforehand, so they can be
accessed.

Table 4-1. Table of pandas and sizes (our left DataFrame)

Name Size
Happy 1.0

Sad 0.9

Happy 1.5

Coffee 3.0

Table 4-2. Table of pandas and zip codes (our right DataFrame)

Name Zip
Happy 94110

Happy 94103

Coffee 10504

Tea 07012

Spark’s supported join types are “inner,” “left_outer” (aliased as “outer”), “left_anti,”
“right_outer,” “full_outer,” and “left_semi.”3 With the exception of “left_semi” these
join types all join the two tables, but they behave differently when handling rows that
do not have keys in both tables.

The “inner” join is both the default and likely what you think of when you think of
joining tables. It requires that the key be present in both tables, or the result is drop‐
ped as shown in Example 4-6 and Table 4-3.
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Example 4-6. Simple inner join

    // Inner join implicit
    df1.join(df2, df1("name") === df2("name"))
    // Inner join explicit
    df1.join(df2, df1("name") === df2("name"), "inner")

Table 4-3. Inner join of df1, df2 on name

Name Size Name Zip
Coffee 3.0 Coffee 10504

Happy 1.5 Happy 94110

Happy 1.5 Happy 94103

Happy 1.0 Happy 94110

Happy 1.0 Happy 94103

Left outer joins will produce a table with all of the keys from the left table, and any
rows without matching keys in the right table will have null values in the fields that
would be populated by the right table. Right outer joins are the same, but with the
requirements reversed. A sample left outer join is in Example 4-7, and the result is
shown in Table 4-4.

Example 4-7. Left outer join

    // Left outer join explicit
    df1.join(df2, df1("name") === df2("name"), "left_outer")

Table 4-4. Left outer join df1, df2 on name

Name Size Name Zip
Sad 0.9 null null

Coffee 3.0 Coffee 10504

Happy 1.0 Happy 94110

Happy 1.0 Happy 94103

Happy 1.5 Happy 94110

Happy 1.5 Happy 94103

A sample right outer join is in Example 4-8, and the result is shown in Table 4-5.

Example 4-8. Right outer join

    // Right outer join explicit
    df1.join(df2, df1("name") === df2("name"), "right_outer")
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Table 4-5. Right outer join df1, df2 on name

Name Size Name Zip
Coffee 3.0 Coffee 10504

Happy 1.0 Happy 94110

Happy 1.0 Happy 94103

Happy 1.5 Happy 94110

Happy 1.5 Happy 94103

null null Tea 07012

To keep all records from both tables you can use the full outer join, which results in
Table 4-6.

Table 4-6. Full outer join df1, df2 on name

Name Size Name Zip
Sad 0.9 null null

Coffee 3.0 Coffee 10504

Happy 1.0 Happy 94110

Happy 1.0 Happy 94103

Happy 1.5 Happy 94110

Happy 1.5 Happy 94103

null null Tea 07012

Left semi joins (as in Example 4-9 and Table 4-7) and left anti joins (as in Table 4-8)
are the only kinds of joins that only have values from the left table. A left semi join is
the same as filtering the left table for only rows with keys present in the right table.
The left anti join also only returns data from the left table, but instead only returns
records that are not present in the right table.

Example 4-9. Left semi join

    // Left semi join explicit
    df1.join(df2, df1("name") === df2("name"), "left_semi")

Table 4-7. Left semi join

Name Size
Coffee 3.0

Happy 1.0

Happy 1.5
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Table 4-8. Left anti join

Name Size
Sad 0.9

Self joins

Self joins are supported on DataFrames, but we end up with duplicated columns
names. So that you can access the results, you need to alias the DataFrames to differ‐
ent names—otherwise you will be unable to select the columns due to name collision
(see Example 4-10). Once you’ve aliased each DataFrame, in the result you can access
the individual columns for each DataFrame with dfName.colName.

Example 4-10. Self join

    val joined = df.as("a").join(df.as("b")).where($"a.name" === $"b.name")

Broadcast hash joins

In Spark SQL you can see the type of join being performed by calling queryExecu
tion.executedPlan. As with core Spark, if one of the tables is much smaller than the
other you may want a broadcast hash join. You can hint to Spark SQL that a given DF
should be broadcast for join by calling broadcast on the DataFrame before joining it
(e.g., df1.join(broadcast(df2), "key")). Spark also automatically uses the
spark.sql.conf.autoBroadcastJoinThreshold to determine if a table should be
broadcast.

Dataset Joins
Joining Datasets is done with joinWith, and this behaves similarly to a regular rela‐
tional join, except the result is a tuple of the different record types as shown in
Example 4-11. This is somewhat more awkward to work with after the join, but also
does make self joins, as shown in Example 4-12, much easier, as you don’t need to
alias the columns first.

Example 4-11. Joining two Datasets

    val result: Dataset[(RawPanda, CoffeeShop)] = pandas.joinWith(coffeeShops,
      $"zip" === $"zip")

Example 4-12. Self join a Dataset

    val result: Dataset[(RawPanda, RawPanda)] = pandas.joinWith(pandas,
      $"zip" === $"zip")

Spark SQL Joins | 83



Using a self join and a lit(true), you can produce the cartesian
product of your Dataset, which can be useful but also illustrates
how joins (especially self joins) can easily result in unworkable data
sizes.

As with DataFrames you can specify the type of join desired (e.g., inner, left_outer,
right_outer, left_semi), changing how records present only in one Dataset are han‐
dled. Missing records are represented by null values, so be careful.

Conclusion
Now that you have explored joins, it’s time to focus on transformations and the per‐
formance considerations associated with them.
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CHAPTER 5

Effective Transformations

Most commonly, Spark programs are structured on RDDs: they involve reading data
from stable storage into the RDD format, performing a number of computations and
data transformations on the RDD, and writing the result RDD to stable storage or
collecting to the driver. Thus, most of the power of Spark comes from its transforma‐
tions: operations that are defined on RDDs and return RDDs.

At present, Spark contains specialized functionality for about a half-dozen types of
RDDs, each with its own properties and scores of different transformation functions.
In this section, we hope to give you the tools to think about how your RDD transfor‐
mation, or series of transformations, will be evaluated. In particular: what kinds of
RDDs these transformations return, whether persisting or checkpointing RDDs
between transformations will make your computation more efficient, and how a
given series of transformations could be executed in the most performant way
possible.

The transformations in this section are those associated with the
RDD object used in Spark Core (and MLlib). RDDs are also used
inside of DStreams with Spark Streaming, but they have different
functionality and performance properties. Likewise, most of the
functions discussed in this chapter are not yet supported in Data
Frames. Since Spark SQL has a different optimizer, not all of the
conceptual lessons of this chapter will carry over to the Spark SQL
world.

As Spark moves forward, more RDD transformations will become
available on Datasets, which can be used in Spark SQL, and which
are discussed in “Datasets” on page 62.
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Narrow Versus Wide Transformations
In Chapter 2, we introduced one important distinction between types of transforma‐
tions: those with wide dependencies and those with narrow dependencies. This distinc‐
tion is important because it has strong implications for how transformations are
evaluated and, consequently, for their performance. In this subsection, we will more
precisely define the wide and narrow transformations, demonstrate how to determine
whether a transformation is wide or narrow, and explain why this distinction matters
for evaluation and performance.

Recall that Spark is lazily evaluated, meaning that a transformation
is not executed until an action that depends on that transformation
is called. This, as we discussed in detail in “Lazy Evaluation” on
page 11, has important consequences for fault tolerance, perfor‐
mance, and debugging. If the information in this tip is confusing,
please refer back to Chapter 2, which will give you the basic under‐
standing of the Spark execution engine needed for this chapter.

To summarize what we covered in Chapter 2: wide transformations are those that
require a shuffle, while narrow transformations are those that do not. In “Wide Ver‐
sus Narrow Dependencies” on page 17 we explained that in narrow transformations,
the child partitions (the partitions in the resulting RDD) depend on a known subset
of the parent partitions. While this definition is correct, it is less precise than the for‐
mal definition of narrow transformations.

The 2012 paper that first presented the evaluation semantics for Spark defines trans‐
formations with narrow dependencies as those in which “each partition of the parent
RDD is used by at most one partition of the child RDD.” The creators define trans‐
formations with wide dependencies as transformations in which “multiple child par‐
titions may depend on [each partition in the parent].” This definition states the
analogue of what we explained in Chapter 2, in which we defined narrow and wide
dependencies in relation to the child RDD’s dependencies. In contrast, the creators’
definition defined narrow and wide dependencies in terms of the dependencies on
the parent RDD, rather than those on the child RDD.

We think the definition presented in Chapter 2 is easier to conceptualize since one
usually designs a program by thinking from the input data (parent RDD) to the out‐
put data (child RDD). However, the Spark evaluation engine (the “DAG”) builds an
execution plan in reverse: from the output (the last action) to the input RDD. Thus,
the Spark creators’ definition mirrors the way that Spark is evaluated and conse‐
quently it is more precise in two important ways. First, the founders’ definition rules
out the case of one parent partition having multiple children in a narrow depend‐
ency. It explains why coalesce is only a narrow transformation when it is reducing
rather than increasing the number of partitions. Second, the founders’ definition
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clarifies why the number of tasks used to complete a computation corresponds to
each output partition rather than each input partition—when RDDs are evaluated;
the tasks needed to compute a transformation are computed on the child partitions.

Figure 5-1 shows dependencies between parent and child partitions for narrow and
wide transformations for the Spark program in Example 5-1. Assume RDD1 is an RDD
of integers.

Figure 5-1. Narrow versus wide dependencies between partitions

Example 5-1. Narrow versus wide example

    //Narrow dependency. Map the rdd to tuples  of (x, 1)
    val rdd2 = rdd1.map(x => (x, 1))
    //wide dependency groupByKey
    val rdd3 = rdd2.groupByKey()

We use the same structure as the diagrams presented in Figures 2-2 and 2-3. Arrows
represent partition dependencies. Each child partition has arrows pointing to the par‐
ent partitions upon which it depends; if an arrow points from partition y to partition
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x, that means that x depends on y. Blue arrows represent narrow dependencies and
red arrows represent wide dependencies.

We assume the RDD has four partitions. Unlike the diagrams presented in Chapter 2,
here we will show how actual records in a very small RDD might be distributed
amongst the partitions. In this case we show how RDD1, RDD2, and RDD3 would be par‐
titioned if RDD1 was an RDD of the integers 3, 3, 9, 2, 8, 5, 6, 7.

As you can see, to compute the map step, each child partition depends on just one
parent, since the data doesn’t need to be moved between partitions for the operation
to be computed. However, in the groupByKey step, Spark needs to move an arbitrary
number of the records so that those with the same key are in the same partition in
order to combine records corresponding to a single key into one iterator (recall that
iterator is a local, rather than a distributed collection). Thus, the child partitions
depend on many partitions in the parent RDD.

This diagram is intended to show how partitions, an abstract con‐
cept used in Spark evaluation, depend on each other, rather than
any physical data movement across machines. Each line of squares
in the diagram represents the same executors at different points in
time. The arrows denote dependencies between partitions. In fact
repartitioning data does not necessarily require data movement
across machines, since partitions may reside on the same executor.
When changing the partition of a record does require data move‐
ment between executors, the records have to be passed through the
driver rather than transferred directly between the executors.

Implications for Performance
In “Wide Versus Narrow Dependencies” on page 17 we asserted that transformations
with narrow dependencies are faster to execute partly because narrow transforma‐
tions can be combined and executed in one pass of the data. In this section we hope
to explain why this is from an evaluation perspective.

Narrow dependencies do not require data to be moved across partitions. Conse‐
quently narrow transformations don’t require communication with the driver node,
and an arbitrary number of narrow transformations can be executed on any subset of
the records (any partition) given one set of instructions from the driver. In Spark ter‐
minology, we say that each series of narrow transformations can be computed in the
same “stage” of the query execution plan.

In contrast, as we stated in “The Anatomy of a Spark Job” on page 22, a shuffle asso‐
ciated with a wide dependency marks a new stage in the RDD’s evaluation. Because
tasks must be computed on a single partition and the data needed to compute each
partition of a wide dependency may be spread across machines, transformations with
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wide dependencies may require data to be moved across partitions. Thus, the down‐
stream computations cannot be computed before the shuffle finishes.

For example, it should be intuitive that sorting cannot be accomplished with narrow
transformations because sorting requires an order to be defined on all of the records
—not just within each partition. Indeed, the sortByKey function has wide dependen‐
cies. It requires the data to be partitioned, so all the keys within a certain range live
on the same partition. That way, sorting the data on each partition leads to a sorted
result. Any narrow transformations following the sort cannot be done until after the
shuffle completes because the records on each partition may change.

Stage boundaries have important performance consequences. Except in the case of
multiple RDD operations like join, the stages associated with one RDD must be exe‐
cuted in sequence (see Chapter 4). Thus, not only are shuffles expensive since they
require data movement and potential disk I/O (for the shuffle files), they also limit
parallelization.

Implications for Fault Tolerance
The cost of failure for a partition with wide dependencies is much higher than for one
with narrow dependencies, since it requires more partitions to be recomputed. If one
partition in the parent of a mappedRDD (the resulting RDD type of a map operations)
fails, for example, only one of its children must be recomputed, and the tasks needed
to recompute that child partition can be distributed across the executors to make this
recomputation faster. In contrast, if the parent of the sorted RDD loses a partition, it
is possible (in the worst case) that all the child partitions will need to be recomputed.
For this reason, the cost of recomputing a partition in the case of failure for a parti‐
tion with wide dependencies is much higher than for a partition with narrow
dependencies.

Chaining together transformations with wide dependencies only increases the risk of
a very expensive recomputation particularly if any of the wide transformations have a
high probability of causing memory errors. In some instances, the cost of recomputa‐
tion may be high enough that it is worth checkpointing an RDD, so the intermediate
results are saved. We will discuss checkpointing in detail in “Reusing RDDs” on page
112.

The Special Case of coalesce
The coalesce operation is used to change the number of partitions in an RDD. As
shown by the diagram in Figure 2-2 in Chapter 2, when coalesce reduces the num‐
ber of output partitions, each parent partition is used in exactly one child partition
since the child partitions are the union of several parents. Thus, according to our def‐
inition of narrow dependencies, coalesce is a narrow transformation even though it
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changes the number of partitions in the RDD. Since tasks are executed on the child
partition, the number of tasks executed in a stage that includes a coalesce operation
is equivalent to the number of partitions in the result RDD of the coalesce transfor‐
mation.

Using coalesce, the number of partitions can decrease in one stage
without causing a shuffle. However, coalesce causes the upstream
partitions in the entire stage to execute with the level of parallelism
assigned by coalesce, which may be undesirable in some cases.
Avoid this behavior at the cost of a shuffle by setting the shuffle
argument of coalesce to true or by using the repartition func‐
tion instead.

However, when coalesce increases the number of partitions, each parent partition
necessarily depends on several child partitions. Thus, according the more precise def‐
inition of wide dependencies presented in “Narrow Versus Wide Transformations”
on page 86, using coalesce to increase the number of partitions is a wide transfor‐
mation. The coalesce function prioritizes evenly distributing the data across the
child partitions. Consequently, the location of records in the output cannot be deter‐
mined at design time because it depends on how many records are stored on each
input partition, and the number of records on each partition of course cannot be
determined without reading the data and evaluating the upstream transformations.
Ergo, increasing the number of partitions with either a coalesce or repartition call
requires a shuffle.

What Type of RDD Does Your Transformation Return?
RDDs are an abstracted concept in two ways: they can be of almost any arbitrary type
of record (e.g., String, Row, Tuple), and they can also be members of one of several
implementations of the RDD interface with varying properties. Both distinctions are
important for performance and evaluation. The first is important, because some
transformations can only be applied to RDDs with certain record types. The second is
important because each transformation returns one of the several implementations of
the RDD interface, and therefore the same transformation called on two different
RDD implementations (such as a mappedRDD versus a GoGroupedRDD) may be evalu‐
ated differently. In particular, some RDD implementations retain information about
the ordering or locality of the records in the RDD from previous transformations.
Understanding the data locality and partitioning information associated with the
resulting RDD of a transformation can help avoid unnecessary shuffles. We will save
a more detailed discussion of this for “Preserving Partitioning Information Across
Transformations” on page 144 since it is most relevant to Pair RDDs. In this section we
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will discuss preserving record type information because it can be important for per‐
formance and surprisingly difficult as Spark programs get complicated.

The RDD is a collection type which, much like collection types in Scala, Java, and
most other strongly typed languages, is instantiated with a type parameter indicating
the type of the members in the collection.

In Scala, the syntax for a type parameter is brackets; e.g.,
List[String], which indicates a sequence of String objects. It is
equivalent to the Java syntax < > (e.g., List<String>).

RDDs are similarly typed. For example, if you use sc.textfile to read in your RDD,
you will end up with an RDD of String type (denoted RDD[String] in Scala and
RDD<String> in Java).

The RDD’s record type information is important because many transformations are
only defined on RDDs that are of a particular type, so trying to use methods on an
RDD of generic type will return compile-time or runtime errors. For example, if an
RDD of tuples has lost its type information and is interpreted by the compiler to be of
type RDD[Any] or even RDD[(Any, Int)], calling sortByKey will not compile. The
compilation error occurs because sortByKey can only be called on RDDs of key/value
pairs where the keys have some implicit ordering. Similarly, numeric functions such
as max, min, and sum can only be called on RDDs of Long, Int, or Double.

Record type information is one of many places in the Spark API where implicit con‐
versions are likely to cause difficulties. If you are writing subroutines to be used in
RDD transformation, it is often best to specify the helper function’s input and return
types concretely and avoid writing them on a generic type.

One instance that often leads to problems losing type information is when working
with DataFrames as RDDs. DataFrames can be implicitly converted to RDDs of Rows.
However, since the Spark SQL Row object is not strongly typed (it can be created from
sequences of any value type), the Scala compiler cannot “remember” the type of value
used to create the row. Indexing a row will return a value of type Any, which must be
cast to a more specific type, such as a String or an Int, to perform most calculations.
The type information for the rows is stored in the schema. However, converting to an
RDD throws away a DataFrame’s schema information, so it is important to bind the
DataFrame schema to a variable. One of the advantages of the Dataset API is that it is
strongly typed, so the values in each row will retain their type information even after
conversion to an RDD.
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Minimizing Object Creation
“Garbage collection” is the process of freeing up the memory allocated for an object
once that object is no longer needed. Since Spark runs in the JVM, which has auto‐
matic memory management and large data structures, garbage collection can quickly
become an expensive part of our Spark job. Garbage collection or “GC” errors are a
common cause of failure. Even if garbage collection overhead doesn’t prohibit a job
from running, garbage collection creates additional serialization time, which can sig‐
nificantly slow it down. We can minimize the GC cost by reducing the number of
objects and the size of those objects. We can reduce the size and number of our
objects by reusing existing objects and by using data structures (such as primitive
types) that take up less space in memory.

Reusing Existing Objects
Some RDD transformations allow us to modify the parameters in the lambda expres‐
sion rather than returning a new object. For example, in the sequence function of the
aggregation function for aggregateByKey and aggregate, we can modify the original
accumulator argument and define the combine function in such a way that the com‐
bination is created by modifying the first of the two accumulators. A common and
effective paradigm for complicated aggregations is to define a Scala class with
sequence and combine operations that return the existing object using the this.type
annotations.

For example, suppose that we wanted to do some custom aggregation that is not
already defined in Spark. Let’s say that we have an RDD of key/value pairs where the
keys are the panda’s instructors and the values are the pupils’ panda report cards. For
each instructor we want to know the length of the longest word used, the average
number of words used per report card, and the number of instances of the word
“happy.” One valid, easy-to-read approach would be to use the aggregateByKey
function, which takes three arguments: a zero value that represents an empty accu‐
mulator, a sequence function that takes the accumulator and a value and adds the
value to the accumulator, and a combine operator that defines how the accumulators
should be combined. In this instance we could define our accumulator to be an object
with four fields: the total count of all the words, the total number of reports, the
longest word seen so far, and the total number of mentions of the word “happy.”

For clarity we can define this as its own object with methods for sequence and com‐
bine. We have named this object MetricsCalculator, and it might be coded as
shown in Example 5-2.
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Example 5-2. Custom aggregation object

 class MetricsCalculator(
  val totalWords : Int,
  val longestWord: Int,
  val happyMentions : Int,
  val numberReportCards: Int) extends Serializable {

  def sequenceOp(reportCardContent : String) : MetricsCalculator = {
    val words = reportCardContent.split(" ")
    val tW = words.length
    val lW = words.map( w => w.length).max
    val hM = words.count(w => w.toLowerCase.equals("happy"))

    new MetricsCalculator(
      tW + totalWords,
      Math.max(longestWord, lW),
      hM + happyMentions,
      numberReportCards + 1)
  }

   def compOp(other : MetricsCalculator) : MetricsCalculator = {
     new MetricsCalculator(
       this.totalWords + other.totalWords,
       Math.max(this.longestWord, other.longestWord),
       this.happyMentions + other.happyMentions,
       this.numberReportCards + other.numberReportCards)
   }

   def toReportCardMetrics =
     ReportCardMetrics(
       longestWord,
       happyMentions,
       totalWords.toDouble/numberReportCards)
}

We could then use this object in the arguments to our aggregation function, as shown
in Example 5-4, in a routine that maps the RDD of instructors, and report text to a
case class with the three metrics we care about in Example 5-3.

Example 5-3. Case class for aggregations

case class ReportCardMetrics(
  longestWord : Int,
  happyMentions : Int,
  averageWords : Double)
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Example 5-4. Aggregation example without object reuse

  /**
   * Given an RDD of (PandaInstructor, ReportCardText) aggregate by instructor
   * to an RDD of distinct keys of (PandaInstructor, ReportCardStatistics)
   * where ReportCardMetrics is a case class with
   *
   * longestWord -> The longest word in all of the reports written by this instructor
   * happyMentions -> The number of times this intructor mentioned the word happy
   * averageWords -> The average number of words per report card for this instructor
   */
  def calculateReportCardStatistics(rdd : RDD[(String, String)]
  ): RDD[(String, ReportCardMetrics)] ={

    rdd.aggregateByKey(new MetricsCalculator(totalWords = 0,
      longestWord = 0, happyMentions = 0, numberReportCards = 0))(
      seqOp = ((reportCardMetrics, reportCardText) =>
        reportCardMetrics.sequenceOp(reportCardText)),
      combOp = (x, y) => x.compOp(y))
    .mapValues(_.toReportCardMetrics)
  }

This method is superior to using a two map and one reduceByKey method. The aggre‐
gate function combines each partition locally, then does a shuffle to perform the
cross-partition reduction. However, it has the disadvantage of creating a new
instance of our custom object for each record in the dataset and for each combine
step. A very simple way to reduce the cost of object creation would be to modify our
MetricsCalculator to use Scala’s this.type design paradigm so that the sequence
operation modifies the original accumulator and the combine operation modifies the
first accumulator rather than returning a new one, as shown in Example 5-5.

Example 5-5. Aggregation example with object reuse

class MetricsCalculatorReuseObjects(
  var totalWords : Int,
  var longestWord: Int,
  var happyMentions : Int,
  var numberReportCards: Int) extends Serializable {

  def sequenceOp(reportCardContent : String) : this.type = {
    val words = reportCardContent.split(" ")
    totalWords += words.length
    longestWord = Math.max(longestWord, words.map( w => w.length).max)
    happyMentions += words.count(w => w.toLowerCase.equals("happy"))
    numberReportCards +=1
    this
  }
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  def compOp(other : MetricsCalculatorReuseObjects) : this.type = {
    totalWords += other.totalWords
    longestWord = Math.max(this.longestWord, other.longestWord)
    happyMentions += other.happyMentions
    numberReportCards += other.numberReportCards
    this
  }

  def toReportCardMetrics =
    ReportCardMetrics(
      longestWord,
      happyMentions,
      totalWords.toDouble/numberReportCards)
}

Our aggregation routine will remain the same.

It should be obvious that the Scala code within the sequence opera‐
tor is slower than it needs to be. Rather than performing three dif‐
ferent functional calls on the words array we ought to go through
the string as a string buffer, counting the words, keeping track of
the longest word, and counting the occurrence of the word “happy”
(or at least use a while loop to parse the words array rather than
three recursive calls). We have left this solution since we think it is
easier to read and the primary intention of the example is to show
how to optimize the aggregateByKey Spark routine.

Reduce (which calls aggregate) and the fold operations (foldLeft, fold, foldRight)
can also benefit from object reuse. However, these aggregation functions are unique.
It is best to avoid mutable data structures in Spark code (and Scala code in general)
because they can lead to serialization errors and may have inaccurate results. For
many other RDD functions, particularly narrow transformations, modifying the first
value of the argument is not safe because the transformations may be chained
together with lazy evaluation and may be evaluated multiple times. For example, if
you have an RDD of mutable objects, modifying the arrays with a map function may
lead to inaccurate results since the objects may be reused more times than you expect
—especially if the RDD is recomputed.

Using Smaller Data Structures
Spark can be a memory hog. An important way to optimize Spark jobs for both time
and space is to stick to primitive types rather than custom classes. Although it may
make code less readable, using arrays rather than case classes or tuples can reduce GC
overhead. Scala arrays, which are exactly Java arrays under the hood, are the most
memory-efficient of the Scala collection types. Scala tuples are objects, so in some
instances it might be better to use a two- or three-element array rather than a tuple
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for expensive operations. The Scala collection types in general incur a higher GC
overhead than arrays.

Notice that our ReportCardMetrics object is just a wrapper for a few numeric values.
Although it is less readable and less object-oriented, it is more space-efficient to use a
four-element array of integers. We can maintain the same readable code paradigm by
using a Scala object instead of a class and defining the sequence, and combine
operations as functions on strings and arrays as shown in Example 5-6.

Example 5-6. Using an array as the aggregation object

object MetricsCalculator_Arrays extends Serializable {
  val totalWordIndex = 0
  val longestWordIndex = 1
  val happyMentionsIndex = 2
  val numberReportCardsIndex = 3

  def sequenceOp(reportCardMetrics : Array[Int],
    reportCardContent : String) : Array[Int] = {

    val words = reportCardContent.split(" ")
    //modify each of the elements in the array
    reportCardMetrics(totalWordIndex) += words.length
    reportCardMetrics(longestWordIndex) = Math.max(
      reportCardMetrics(longestWordIndex),
      words.map(w => w.length).max)
    reportCardMetrics(happyMentionsIndex) += words.count(
      w => w.toLowerCase.equals("happy"))
    reportCardMetrics(numberReportCardsIndex) +=1
    reportCardMetrics
  }

  def compOp(x : Array[Int], y : Array[Int]) : Array[Int] = {
    //combine the first and second arrays by modifying the elements
    // in the first array
    x(totalWordIndex)  += y(totalWordIndex)
    x(longestWordIndex) = Math.max(x(longestWordIndex), y(longestWordIndex))
    x(happyMentionsIndex) += y(happyMentionsIndex)
    x(numberReportCardsIndex) += y(numberReportCardsIndex)
    x
  }

  def toReportCardMetrics(ar : Array[Int]) : ReportCardMetrics =
    ReportCardMetrics(
      ar(longestWordIndex),
      ar(happyMentionsIndex),
      ar(totalWordIndex)/ar(numberReportCardsIndex)
    )
}

96 | Chapter 5: Effective Transformations



We would then need to modify our aggregation code slightly. We are not using the
same custom aggregation object, and the zero value has changed. This is shown in
Example 5-7.

Example 5-7. Aggregation with arrays to minimize expensive object creation

  def calculateReportCardStatisticsWithArrays(rdd : RDD[(String, String)]
  ): RDD[(String, ReportCardMetrics)] = {

    rdd.aggregateByKey(
      //the zero value is a four element array of zeros
      Array.fill[Int](4)(0)
    )(
    //seqOp adds the relevant values to the array
      seqOp = (reportCardMetrics, reportCardText) =>
        MetricsCalculator_Arrays.sequenceOp(reportCardMetrics, reportCardText),
    //combo defines how the arrays should be combined
      combOp = (x, y) => MetricsCalculator_Arrays.compOp(x, y))
    .mapValues(MetricsCalculator_Arrays.toReportCardMetrics)
  }

Within a function, it is often beneficial to avoid intermediate object creation. It is
important to remember that converting between types (such as between different fla‐
vors of Scala collections) creates intermediate objects. This is yet another place in
which implicit conversions may have unfortunate performance implications.

For example, suppose that observing our note in the previous section, you wanted to
speed up the sequence function of the MetricsCalculator_ReuseObjects object.
Then, you realized that your coworker had written a general-purpose utility that
finds the instances of the word “happy” and the longest word in a collection of strings
(shown in Example 5-8).

Example 5-8. Function with implicit sequence conversions

  def findWordMetrics[T <:Seq[String]](collection : T ): (Int, Int)={
    val iterator = collection.toIterator
    var mentionsOfHappy = 0
    var longestWordSoFar = 0
    while(iterator.hasNext){
      val n = iterator.next()
      if(n.toLowerCase == "happy"){
        mentionsOfHappy +=1
      }
      val length = n.length
      if(length> longestWordSoFar) {
        longestWordSoFar = length
      }

    }
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    (longestWordSoFar, mentionsOfHappy)
  }

Your coworker helpfully defined her function on any type that extends a Scala Tra
versable index. Thus, you won’t need to convert the array of words at all and can
happily write the code shown in Example 5-9.

Example 5-9. Aggregation with bad implicit conversions

  val totalWordIndex = 0
  val longestWordIndex = 1
  val happyMentionsIndex = 2
  val numberReportCardsIndex = 3
  def fasterSeqOp(reportCardMetrics : Array[Int], content  : String): Array[Int] = {
    val words: Seq[String] = content.split(" ")
    val (longestWord, happyMentions) = CollectionRoutines.findWordMetrics(words)
    reportCardMetrics(totalWordIndex) += words.length
    reportCardMetrics(longestWordIndex) = longestWord
    reportCardMetrics(happyMentionsIndex) += happyMentions
    reportCardMetrics(numberReportCardsIndex) +=1
    reportCardMetrics
  }

Unfortunately, in terms of object creation, this new implementation is actually worse
than the previous one. It creates two extra objects containing the collection with the
words each time a sequence operation is called! First when you call the findWordMet
rics routine, since the input array has to be implicitly converted to a Traversable
object (creating a new object of the same size), and again when your coworker’s code
casts the Traversable object to an Iterator.

Modifying a value passed into your transformation is not always
safe, so double-check the documentation for the function you are
using.

Beyond reducing the objects that are directly allocated, Scala’s
implicit conversions can sometimes cause additional allocations in
the process of converting.

Iterator-to-Iterator Transformations with mapPartitions
The RDD mapPartitions function takes as its argument a function from an itera
tor of records (representing the records on one partition) to another iterator of
records (representing the output partition).
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The mapPartitions transformation is one of the most powerful in Spark since it lets
the user define an arbitrary routine on one partition of data. The mapPartitions
transformation can be used for very simple data transformations like string parsing,
but it can also be used for complex, expensive data-processing work to solve prob‐
lems such as secondary sort or highly custom aggregations. Many of Spark’s other
transformations, like filter, map, and flatMap, can be built using mapPartitions.
Optimizing the mapPartitions routines is an important part of writing complicated
and performant Spark code, as we will see in Chapter 6. To allow Spark the flexibility
to spill some records to disk, it is important to represent your functions inside of
mapPartitions in such a way that your functions do not force loading the entire par‐
tition in-memory (e.g., implicitly converting to a list). Iterators have many methods
we can use to write functional-style transformations. You may also construct your
own custom iterator extending the Iterator interface. When a transformation
directly takes and returns an iterator without forcing it through another collection,
we call it an iterator-to-iterator transformation.

What Is an Iterator-to-Iterator Transformation?
A Scala iterator object is not actually a collection, but a function that defines a pro‐
cess of accessing the elements in a collection one-by-one. Not only are iterators
immutable, but the same element in an iterator can only be accessed one time. In
other words, iterators can only be traversed once, and they extend the Scala interface
TraversableOnce. Iterators have some of the same methods defined on them as other
immutable Scala collections, such as mappings (map and flatMap), additions (++),
folds (foldLeft, reduceRight, reduce), element conditions (forall and exists),
and traversals (next and foreach). In some instances, these methods behave differ‐
ently than other Scala collections. Since the iterator can only be traversed once, any of
the iterator methods that require looking at all the elements in the iterator will leave
the original iterator empty.

Java has its own implementation of iterators, java.util.Iterator,
which have the same benefits as Scala iterators for Spark’s evalua‐
tion.

Beware of your function calls. It is easy to accidentally consume an
iterator by calling an object that traverses through the iterator such
as size, or to trigger an implicit conversion. Iterators can be con‐
verted to any other Scala collection type. However, converting
them requires accessing each of the elements. Thus, after it has
been converted to a new collection type, an iterator will be at its
last element (empty).
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In some ways it can be helpful to conceptualize iterator methods as we would RDD
methods—as either transformations or actions—because like an RDD, an iterator is
actually a set of evaluation instructions rather than a stored state. Some iterator
methods, like next, size, and foreach, traverse the iterator and evaluate it (more like
an action). Others, like map and flatMap, return a new iterator—which is really a set
of evaluation instructions—much like RDD transformations return a new RDD.
However, in contrast to Spark transformations, iterator transformations are executed
linearly, one element at at time, rather than in parallel. This makes iterators slower
but much easier to use than if they could be executed in parallel. For example, if we
needed to store some information about the records we have seen, we can do that in a
filter or a map function on the iterator, since the map/filter routine will be applied
to each element sequentially. (See Example 5-12 at the end of this section.) One-to-
one functions are also not chained together in iterator operations so using three map
calls still requires looking at each element in the iterator three times.

By “iterator-to-iterator transformation” we mean using one of these iterator “trans‐
formations” to return a new iterator rather than a) converting the iterator to a differ‐
ent collection or b) evaluating the iterator with one of the iterator “actions” and
building a new collection. To reiterate: using a while loop to traverse the elements of
an iterator and build a new collection (even a new iterator) does not qualify as an
iterator-to-iterator transformation. Converting an iterator to a more intuitive collec‐
tion type, manipulating it, and converting back to an iterator is not an iterator-to-
iterator transformation. Indeed, converting the iterator argument in mapPartitions
to a collection object eliminates all the benefits of iterator-to-iterator transforma‐
tions.

Space and Time Advantages
The primary advantage of using iterator-to-iterator transformations in Spark rou‐
tines is that their transformations allow Spark to selectively spill data to disk. Con‐
ceptually, an iterator-to-iterator transformation means defining a process for
evaluating elements one at a time. Thus, Spark can apply that procedure to batches of
records rather than reading an entire partition into memory or creating a collection
with all of the output records in-memory and then returning it. Consequently,
iterator-to-iterator transformations allow Spark to manipulate partitions that are too
large to fit in memory on a single executor without out memory errors.

Furthermore, keeping the partition as an iterator allows Spark to use disk space more
selectively. Rather than spilling an entire partition when it doesn’t fit in memory, the
iterator-to-iterator transformation allows Spark to spill only those records that do not
fit in memory, thereby saving disk I/O and the cost of recomputation. Lastly, using
methods defined on iterators avoids defining intermediary data structures. Reducing
the number of large intermediate data structures is a way to avoid unnecessary object
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creation, which can slow down garbage collection as we talked about in “Minimizing
Object Creation” on page 92.

Unfortunately the Spark Streaming mapPartitions API is one of
relatively few places where the Scala API decisively outperforms its
Java counterpart. Prior to Spark 1.6, mapPartitions in Spark
Streaming was defined on objects of type Java Iterable rather
than Java Iterator and thus automatically reads the entire collec‐
tion into memory. In the Spark Core, the Java API still uses Itera
ble rather than iterators as the grouped result of groupByKey, thus
eliminating the possibility of using an iterator-to-iterator transfor‐
mation after a groupByKey call.

An Example
For all their advantages, iterators can be a much harder abstraction to conceptualize
and use than collection types such as arrays and hash maps, with which users may be
more familiar from other languages. Here we provide an example of a complicated
mapPartitions routine, which given a sorted RDD of (value, columnIndex),

count) tuples and a list of rank statistics on this partition, returns the (value, colum
nIndex) pairs that represent ranks statistics, shown in Example 5-10. This method is
part of the optimal solution to the “Goldilocks problem,” which is presented in full in
“Goldilocks Version 4: Reduce to Distinct on Each Partition” on page 165 and intro‐
duced in “The Goldilocks Example” on page 127.

Example 5-10. Example mapPartitions

  private def findTargetRanksIteratively(
          sortedAggregatedValueColumnPairs : RDD[((Double, Int), Long)],
          ranksLocations : Array[(Int, List[(Int, Long)])]): RDD[(Int, Double)] = {

    sortedAggregatedValueColumnPairs.mapPartitionsWithIndex((partitionIndex : Int,
      aggregatedValueColumnPairs : Iterator[((Double, Int), Long)]) => {

      val targetsInThisPart: List[(Int, Long)] = ranksLocations(partitionIndex)._2
     if (targetsInThisPart.nonEmpty) {
       FindTargetsSubRoutine.asIteratorToIteratorTransformation(
         aggregatedValueColumnPairs,
         targetsInThisPart)
     } else {
       Iterator.empty
     }
    })
  }
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This routine is a good example of a place where we are likely to see performance
gains from an iterator-to-iterator transformation, since it is a complicated routine
performed on partitions that we anticipate will be too large to fit in memory. How‐
ever, it is an instance where using iterators is, from a design perspective, a non-
obvious choice because we have to keep a map of running totals with the number of
elements for each column we have seen so far. A more straightforward way to design
this routine would be as follows: loop through the iterator, store the running totals in
a hashMap, and build a new collection of the elements we want to keep using an array
buffer—then convert the array buffer to an iterator, shown in Example 5-11.

Example 5-11. MapPartitions example without an iterator-to-iterator transformation

  def withArrayBuffer(valueColumnPairsIter : Iterator[((Double, Int), Long)],
    targetsInThisPart: List[(Int, Long)] ): Iterator[(Int, Double)] = {

      val columnsRelativeIndex: Predef.Map[Int, List[Long]] =
        targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))

    // The column indices of the pairs that are desired rank statistics that live in
    // this partition.
      val columnsInThisPart: List[Int] = targetsInThisPart.map(_._1).distinct

    // A HashMap with the running totals of each column index. As we loop through
    // the iterator, we will update the hashmap as we see elements of each
    // column index.
      val runningTotals : mutable.HashMap[Int, Long]= new mutable.HashMap()
      runningTotals ++= columnsInThisPart.map(columnIndex => (columnIndex, 0L)).toMap

    //we use an array buffer to build the resulting iterator
      val result: ArrayBuffer[(Int, Double)] =
      new scala.collection.mutable.ArrayBuffer()

      valueColumnPairsIter.foreach {
        case ((value, colIndex), count) =>

          if (columnsInThisPart contains colIndex) {

            val total = runningTotals(colIndex)
            //the ranks that are contained by this element of the input iterator.
            //get by filtering the
            val ranksPresent = columnsRelativeIndex(colIndex)
              .filter(index => (index <= count + total) && (index > total))
            ranksPresent.foreach(r => result += ((colIndex, value)))
            //update the running totals.
            runningTotals.update(colIndex, total + count)
        }
      }
    //convert
    result.toIterator
  }
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At first this looks like an okay solution since we are estimating that the number of
elements we are returning is small, and because array buffers are usually a relatively
performant way to build up Scala collections. However, if the input data is very large
relative to the cluster size, we still see out-of-memory errors and failures in this step.
A more efficient solution would be to use an iterator-to-iterator transformation. We
can convert this subroutine to an iterator-to-iterator transformation although our
routine is not parallelizable (it requires keeping a list of running totals). We can do
this because the subroutine we need can be completed on one element of the iterator
without any information about the other elements. The final solution uses the filter
function of iterators—to eliminate any elements that are not in the final data—and a
flatMap to build the new iterator of elements in the resulting partitions, as shown in
Example 5-12.

Example 5-12. MapPartitions with iterator-to-iterator transformations

  def asIteratorToIteratorTransformation(
    valueColumnPairsIter : Iterator[((Double, Int), Long)],
    targetsInThisPart: List[(Int, Long)] ): Iterator[(Int, Double)] = {

    val columnsRelativeIndex = targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))
    val columnsInThisPart = targetsInThisPart.map(_._1).distinct

    val runningTotals : mutable.HashMap[Int, Long]= new mutable.HashMap()
     runningTotals ++= columnsInThisPart.map(columnIndex => (columnIndex, 0L)).toMap

    //filter out the pairs that don't have a column index that is in this part
    val pairsWithRanksInThisPart = valueColumnPairsIter.filter{
      case (((value, colIndex), count)) =>
        columnsInThisPart contains colIndex
     }

    // map the valueColumn pairs to a list of (colIndex, value) pairs that correspond
    // to one of the desired rank statistics on this partition.
    pairsWithRanksInThisPart.flatMap{

      case (((value, colIndex), count)) =>

          val total = runningTotals(colIndex)
          val ranksPresent: List[Long] = columnsRelativeIndex(colIndex)
                                         .filter(index => (index <= count + total)
                                           && (index > total))

          val nextElems: Iterator[(Int, Double)] =
            ranksPresent.map(r => (colIndex, value)).toIterator

          //update the running totals
          runningTotals.update(colIndex, total + count)
          nextElems
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    }
  }

This approach allows the function to spill to disk selectively by working with each
element in the iterator one at a time. This implementation saves space by incremen‐
tally building the result rather than storing the new collection type in memory as an
array buffer. It saves a penny on garbage collection by not creating the array buffer as
an intermediate step.

If you are using an ArrayBuffer to build a new collection for map
Partitions, it is always possible (and likely more performant) to
use a map or flatMap on the iterator to incrementally add new
elements.

Set Operations
Spark has a variety of set-like operations, some of which are expensive and some of
which have different behavior than the mathematical definitions of the equivalent
operations. In this section we hope to explain how to use these operations safely and
effectively.

Since RDDs aren’t distinct, they mainly differ from mathematical set operations in
how they handle duplicates. For example, union merely combines its arguments, so
the result of union will always have the size of both RDDs combined. intersection
and subtract are defined similarly to their set-theoretic counterparts, but since the
input RDDs (unlikely mathematical sets) can have duplicates the results may be
unexpected. Subtracting will remove all of the elements in the first RDD that have a
key present in the second RDD. Thus it is possible that by subtracting, the result will
be smaller than the size of the first RDD minus the size of the second, breaking one of
the laws of set theory.

For example, the simple unit test in Example 5-13 will pass.

Example 5-13. Subtract example

    val a = Array(1, 2, 3, 4, 4, 4, 4)
    val b = Array(3, 4)
    val rddA = sc.parallelize(a)
    val rddB = sc.parallelize(b)
    val rddC = rddA.subtract(rddB)
    assert(rddC.count() < rddA.count() - rddB.count())

In Spark, intersection co-groups the argument RDDs using their values as keys and
filters out those elements that don’t appear in both. Consequently the result of RDD
intersection contains no duplicates. Although this is the expected behavior for
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1 If A and B are sets, (A - B) ∪ (B ∩ A)= A in all cases. This is not true in Spark. If rddA or rddB have duplicate
keys or if rddA and rddB have overlapping keys, then (A - B) ∪ (B ∩ A) is a subset of A.

intersection, using several set operations on RDDs containing duplicates can lead
to unexpected behavior. The union of the two RDDs in Example 5-13 is an RDD con‐
taining two elements, 1 and 2. Thus, as the unit test in Example 5-14 demonstrates,
we cannot always “re-create” rddA as the union of the intersection and the subtrac‐
tion.1

Example 5-14. Intersection example

    val a = Array(1, 2, 3, 4, 4, 4, 4)
    val b = Array(3, 4)
    val rddA = sc.parallelize(a)
    val rddB = sc.parallelize(b)
    val intersection = rddA.intersection(rddB)
    val subtraction = rddA.subtract(rddB)
    val union = intersection.union(subtraction)
    assert(!rddA.collect().sorted.sameElements(union.collect().sorted))

To make an RDD more like a set, you can use distinct prior to
computing any set operations. However, calling distinct will
cause a shuffle if the partitioner is not known.

Reducing Setup Overhead
Some operations require setup work per-worker or per-partition, like creating a data‐
base connection or setting up a random number generator. For transformations you
can use mapPartitions, do the setup work per partition in the map function, and
then perform your desired transformation on the iterator for the partition. We will
illustrate doing this with a pseudorandom number generator in Example 5-15.

Example 5-15. Create one random number generator per partition using broadcast
variable

    rdd.mapPartitions{itr =>
      // Only create once RNG per partitions
      val r = new Random()
      itr.filter(x => r.nextInt(10) == 0)
    }
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It is important to remember to use an iterator-to-iterator transfor‐
mation to allow spilling to disk selectively, as discussed in
“Iterator-to-Iterator Transformations with mapPartitions” on page
98.

Beyond using this pattern to reduce setup overhead in transformations, another com‐
mon pattern is to create a connection inside of an action to save the data. If your
work is writing out the data you can use the same pattern as with mapPartitions
except with foreachPartition.

If the setup work can be serialized, a broadcast variable can distribute the object that
we cover next. If the setup work can’t be serialized, a broadcast variable with a transi
ent lazy val can be used as well. See Example 5-17 in the next section.

Shared Variables
Spark has two types of shared variables—broadcast variables and accumulators—each
of which can only be written in one context (driver or worker, respectively) and read
in the other. Broadcast variables can be written in the driver program and read on the
executors, whereas accumulators are written onto the executors and read on the
driver.

Broadcast Variables
Broadcast variables give us a way to take a local value on the driver and distribute a
read-only copy to each machine rather than shipping a new copy with each task.
Broadcast variables might not seem especially useful, since we can just capture a local
variable in our closure to transfer data from the driver to the workers; however, the
savings of only sending one copy per machine versus sending one copy per task can
make a huge difference, especially when the same broadcast variable is used in addi‐
tional transformations. Two common examples of using broadcast variables are a)
broadcasting a small table to join against and b) broadcasting a machine learning
model to be able to run the predictions on our data.

Creating a broadcast variable is done by calling broadcast on the SparkContext. This
distributes the value to the workers and gives us back a wrapper that allows us to
access the value on the workers by calling value, as shown in Examples 5-16 and
5-17. If a broadcast variable is created with a variable input, the input should not be
modified after the variable has been created since existing workers will not see the
updates and new workers may see the new value.
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Example 5-16. Sample broadcast of a hashset of invalid panda locations to filter out

    val invalid = HashSet() ++ invalidPandas
    val invalidBroadcast = sc.broadcast(invalid)
    input.filter{panda => !invalidBroadcast.value.contains(panda.id)}

Example 5-17. Create one random number generator per worker

  class LazyPrng {
    @transient lazy val r = new Random()
  }
  def customSampleBroadcast[T: ClassTag](sc: SparkContext, rdd: RDD[T]): RDD[T]= {
    val bcastprng = sc.broadcast(new LazyPrng())
    rdd.filter(x => bcastprng.value.r.nextInt(10) == 0)
  }

The value for a broadcast variable must be a local, serializable
value: no RDDs or other distributed data structures.

Internally, Spark uses broadcast variables for the Hadoop job configuration objects
and large blocks of Python code for UDFs. If a broadcast variable is no longer
needed, you can explicitly remove it by calling unpersist() on the broadcast vari‐
able.

Accumulators
Accumulators are the second type of Spark’s shared variables, allowing us to collect
by-product information from a transformation or action on the workers and then
bring the result back to the driver. With Spark’s execution model, Spark adds to accu‐
mulators only once the computation has been triggered (e.g., by an action). If the
computation happens multiple times, Spark will update the accumulator each time.
This multiple counting can be desirable for process-level information, like computing
the entire time spent parsing records. However, it can be disastrous for data-related
information like counting the number of invalid records.

Spark accumulators have had an API update for 2.0—these exam‐
ples are updated for the 2.X API, although 1.X examples are still
available in the examples repo.
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Accumulators can be unpredictable. In their current state, they are
best used where potential multiple counting is the desired behav‐
ior.

Accumulators have a number of built-in types that make it easy to create an accumu‐
lator for common use cases. Accumulators are not intended for collecting large
amounts of information, so if you find yourself adding a large number of elements to
a collection or appending to a string you may wish to consider a separate action
instead of an accumulator. The default operation for numeric accumulators is the +
operation, so we could use this to sum the fuzzyness of all of the pandas as shown in
Example 5-18.

Example 5-18. Compute fuzzyness of pandas with accumulators

  def computeTotalFuzzyNess(sc: SparkContext, rdd: RDD[RawPanda]):
      (RDD[(String, Long)], Double) = {
    // Create a named accumulator for doubles
    val acc = sc.doubleAccumulator("fuzzyNess")
    val transformed = rdd.map{x => acc.add(x.attributes(0)); (x.zip, x.id)}
    // accumulator still has zero value
    // Note: This example is dangerous since the transformation may be
    // evaluated multiple times.
    transformed.count() // force evaluation
    (transformed, acc.value)
  }

Additionally, accumulators support a wide variety of data types provided the opera‐
tion is associative, but some are easier to get in trouble with than others. To use an
accumulator of a different type, you need to implement the AccumulatorV2[Input
Type, ValueType] interface and provide reset, copy, isZero, value , merge, and add
methods. You are responsible for the specifics of the class that keeps track of the
accumulated values. In general, a simple var or two will do the trick. In addition to
the required method, override resetAndCopy to improve performance in certain
cases.

Generally the reset and copy methods are used together with the resetAndCopy
method, which can often be more efficiently implemented to avoid the copy stage (as
is done in both of the custom accumulator examples, Examples 5-19 and 5-20). The
reset method resets the value of the current accumulator back to “zero” so that
isZero, if called, will return true. The copy method needs to create a copy of the pro‐
vided accumulator, with the new accumulator having the same value as the current
accumulator. This is called when copying the value to the workers so that Spark can
avoid the expense (and confusion) of copying any of the previously accumulated
work to the drivers.
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The type parameters of the AccumulatorV2 interface specify the type being accumula‐
ted over (add) and the final return type (value). Importantly, this does not constrain
or specify the type used to hold the accumulation itself. A single variable is used to
keep track of values in the following examples. However, you need not limit yourself
to one variable. Inside of many of Spark’s numeric accumulators, two vars are used.

The merge method for the accumulator API’s type signature takes the same base Accu
mulatorV2 type. Since the AccumulatorV2 trait doesn’t specify anything about how
workers should keep track of the values as they are evaluated, you will need to cast
the accumulator you receive to the expected type so you can access your own internal
accumulation field(s). A basic implementation of this is shown in Example 5-19.

Example 5-19. Compute maximum panda id

  def computeMaxFuzzyNess(sc: SparkContext, rdd: RDD[RawPanda]):
      (RDD[(String, Long)], Option[Double]) = {
    class MaxDoubleAccumulator extends AccumulatorV2[Double, Option[Double]] {
      // Here is the var we will accumulate our value in to.
      var currentVal: Option[Double] = None
      override def isZero = currentVal.isEmpty

      // Reset the current accumulator to zero - used when sending over the wire
      // to the workers.
      override def reset() = {
        currentVal = None
      }

      // Copy the current accumulator - this is only really used in context of
      // copy and reset - but since it's part of the public API let's be safe.
      def copy() = {
        val newCopy = new MaxDoubleAccumulator()
        newCopy.currentVal = currentVal
        newCopy
      }

      // We override copy and reset for "speed" - no need to copy the value if
      // we are going to zero it right away. This doesn't make much difference
      // for Option[Double] but for something like Array[X] could be huge.

      override def copyAndReset() = {
        new MaxDoubleAccumulator()
      }

      // Add a new value (called on the worker side)
      override def add(value: Double) = {
        currentVal = Some(
          // If the value is present compare it to the new value - otherwise
          // just store the new value as the current max.
          currentVal.map(acc => Math.max(acc, value)).getOrElse(value))
      }
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      override def merge(other: AccumulatorV2[Double, Option[Double]]) = {
        other match {
          case otherFuzzy: MaxDoubleAccumulator =>
            // If the other accumulator has the option set merge it in with
            // the standard add procedure. If the other accumulator isn't set
            // do nothing.
            otherFuzzy.currentVal.foreach(value => add(value))
          case _ =>
            // This should never happen, Spark will only call merge with
            // the correct type - but that won't stop someone else from calling
            // merge so throw an exception just in case.
            throw new Exception("Unexpected merge with unsupported type" + other)
        }
      }
      // Return the accumulated value.
      override def value = currentVal
    }
    // Create a new custom accumulator
    val acc = new MaxDoubleAccumulator()
    sc.register(acc)
    val transformed = rdd.map{x => acc.add(x.attributes(0)); (x.zip, x.id)}
    // accumulator still has None value.
    // Note: This example is dangerous since the transformation may be
    // evaluated multiple times.
    transformed.count() // force evaluation
    (transformed, acc.value)
  }

This still requires that the result is the same as the type we are accumulating. If we
wanted to collect all of the distinct elements, we would likely want to collect a set and
the types would be different. This is shown in Example 5-20.

Example 5-20. Compute unique panda ids

  def uniquePandas(sc: SparkContext, rdd: RDD[RawPanda]): HashSet[Long] = {
    class UniqParam extends AccumulatorV2[Long, HashSet[Long]] {
      var accValue: HashSet[Long] = new HashSet[Long]()

      def value = accValue

      override def copy() = {
        val newCopy = new UniqParam()
        newCopy.accValue = accValue.clone
        newCopy
      }
      override def reset() = {
        this.accValue = new HashSet[Long]()
      }
      override def isZero() = {
        accValue.isEmpty
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      }

      // We override copy and reset for speed - no need to copy the value if
      // we care going to zero it right away.
      override def copyAndReset() = {
        new UniqParam()
      }
      // For adding new values
      override def add(value: Long) = {
        accValue += value
      }
      // For merging accumulators
      override def merge(other: AccumulatorV2[Long, HashSet[Long]]) = {
        other match {
          case otherUniq: UniqParam =>
            accValue = accValue ++ otherUniq.accValue
          case _ =>
            throw new Exception("only support merging with same type")
        }
      }
    }
    // Create an accumulator for keeping track of unique values
    val acc = new UniqParam()
    // Register with a name
    sc.register(acc, "Unique values")
    val transformed = rdd.map{x => acc.add(x.id); (x.zip, x.id)}
    // accumulator still has Double.MinValue
    transformed.count() // force evaluation
    acc.value
  }

The value function can perform complex work and return a differ‐
ent type than the input type or internal accumulated value. For
example, if you were computing the average, you might have a
value function that divides two longs returning a double.

You may provide a name for accumulators in Scala so they show
up in the web UI. Simply add a name as the second param. This
does involve calling toString on the accumulator, though—so if
that is an expensive operation, leave your accumulator unnamed.

When working with cached data our accumulators can seem almost consistent, but as
discussed in “Interaction with Accumulators” on page 123 this is not the case.
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2 Originally planned for 2.0.

3 Some notable exceptions are inside of certain ML algorithms, which if passed in an unpersisted RDD will
automatically persist and unpersist the RDD.

There is a proposal to add data property (or “consistent”) accumu‐
lators in Spark 2.1.2 Property accumulators would avoid double
counting—but this remains unmerged. You can follow its progress
in this pull request.

Internally, beginning in Spark 2.0, Spark uses accumulators to keep track of task
metrics.

Reusing RDDs
Spark offers several options for RDD reuse, including persisting, caching, and check‐
pointing. However, Spark does not perform any of these automatically3 because stor‐
ing RDD for reuse breaks some pipelining, which can be a waste if the RDD is only
used once or if the transformation is inexpensive to recompute. All kinds of persis‐
tence (of which caching is one type) and checkpointing have some cost and are
unlikely to improve performance for operations that are performed only once. Fur‐
thermore, on large datasets the cost of persisting or checkpointing can be so high that
recomputing is more desirable. However, for some specific kinds of Spark programs,
reusing an RDD can lead to huge performance gains, both in the terms of speed and
reducing failures.

Cases for Reuse
In this section we cover some instances when persisting or checkpointing RDDs may
foster performance gains. Broadly speaking, the most important cases for reuse are
using an RDD many times; performing multiple actions on the same RDD; and for
long chains of (or very expensive) transformations.

Iterative computations
For transformations that use the same parent RDD multiple times, reusing an RDD
forces evaluation of that RDD and so can help avoid repeated computations. For
example, if you were performing a loop of joins to the same dataset, persisting that
dataset could lead to huge performance improvements since it ensures that the parti‐
tions of that RDD will be available in-memory to do each join.

In Example 5-21 we are computing the root mean squared error (RMSE) on a num‐
ber of different RDDs representing predictions from different models. To do this we
have to join each RDD of predictions to an RDD of the data in the validation set.
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In this example we use persist(), which persists the RDD in
memory. As we will explain in “Types of Reuse: Cache, Persist,
Checkpoint, Shuffle Files” on page 116, cache() is equivalent to per
sist(), which is equivalent to persist("MEMORY_ONLY").

Example 5-21. A function with iterative computations

    val testSet: Array[RDD[(Double, Int)]] =
      Array(
        validationSet.mapValues(_ + 1),
        validationSet.mapValues(_ + 2),
        validationSet)
    validationSet.persist() //persist since we are using this RDD several times
    val errors = testSet.map( rdd => {
        rmse(rdd.join(validationSet).values)
    })

Without persisting, Spark would have to reload and repartition the training dataset
RDD to complete the join. However, with persistence, the training RDD will stay
loaded in memory on the executors with each run of the algorithm. We discuss per‐
formance considerations with different kinds of joins in detail in “Core Spark Joins”
on page 73.

Checkpointing, another form of RDD reuse that writes an RDD to external storage,
will also break the RDD’s lineage. However, checkpointing will keep the partitions
loaded on the executors.

Multiple actions on the same RDD
If you do not reuse an RDD, each action called on an RDD will launch its own Spark
job with the full lineage of RDD transformations. Persisting and checkpointing
breaks the RDD’s lineage, so the same series of transformations preceding the per
sist or checkpoint call will be executed only once. Because persisting or checkpoint‐
ing an RDD lasts for the duration of a Spark application (although it may be evicted
by subsequent cached/persisted data), an RDD persisted during one Spark job will be
available in a subsequent job executed with the same SparkContext. For example,
suppose that we wanted to collect the first 10% of the records in an RDD. We could
use the code in Example 5-22, which calls sortByKey, then count, then take.

Example 5-22. An example of two actions without a persist step

    val sorted = rddA.sortByKey()
    val count = sorted.count()
    val sample: Long = count / 10
    sorted.take(sample.toInt)
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The sortByKey (and presumably the read operation) needed to create the RDD, sor
ted, will occur twice if we do not store the RDD: once in the job called by count and
again in the job called by take. We can’t test this element of the execution program‐
matically, but if you were to run this application and view the web UI you would see
that this code launches two jobs and each one includes a sort stage. However, if we
add a persist or checkpoint call before the actions (as shown in Example 5-23), the
transformation will only be executed once, since Spark builds a lineage graph from
either an RDD’s creation or a persisted/checkpointed RDD.

Example 5-23. Two actions with a persist step

    val sorted = rddA.sortByKey()
    val count = sorted.count()
    val sample: Long = count / 10
    rddA.persist()
    sorted.take(sample.toInt)

Persisted RDDs only survive for the duration of a Spark applica‐
tion. To reuse data between Spark applications, use checkpointing
with the same directory.

If the cost to compute each partition is very high
Even if a program does not use the same RDD multiple times, persisting and check‐
pointing can speed up a routine and reduce the cost of failures by storing intermedi‐
ary results. Persisting or checkpointing can be particularly useful if the cost of
computing one partition is very high because they ensure that the entire expensive
operation will not need to be recomputed in the case of downstream failures.

For example, if your program requires a long series of one-to-one transformations,
those transformations will all be combined into very computationally intensive tasks.
While this is good so long as the tasks succeed and fit in memory, it does mean that if
one of the downstream transformations fails, then the cost to recompute a single par‐
tition may be enormous. If all of the narrow transformations together create more
GC overhead or memory strain than your cluster’s executors can handle, then check‐
pointing or persisting off_heap can be particularly useful. Both persisting off_heap
and checkpointing allow the RDD to be stored outside of the Spark executor mem‐
ory, leaving space to compute. These options are also the only way to prevent recom‐
putation if the entire Spark worker fails. Sometimes breaking up a long lineage graph
for its own sake can help a job succeed since it means each of the tasks will be smaller.

Narrow transformations are generally faster than wide ones. However, some individ‐
ual narrow transformations, such as training a model per partition or working with
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very wide rows, can be expensive. In these cases, reusing an RDD after the expensive
computation so it is not recomputed may improve performance.

Deciding if Recompute Is Inexpensive Enough
Although persisting in memory is a flagship feature of Spark, it is not free. It is space
intensive to store data in memory and will take time to serialize and deserialize. As
we will discuss in “Dividing the Space Within One Executor” on page 281, persisting in
memory and in-memory computations are both done in the Spark executor JVM.
Thus, persisting in memory may take space that could be used for downstream com‐
putations or increase the risk or memory failures. Caching with Java-based memory
structures (any of Spark’s options besides using off_heap storage options) will incur
a much higher garbage collecting cost than will recomputing.

Persisting to disk or checkpointing (writing the RDD to an external filesystem) has the
disadvantages of MapReduce, causing expensive write and read operations. If the
RDD is checkpointed or persisted to disk we must factor in not only the disk space
used on the cluster to write the RDD, but also the computational cost on the Spark
executors of the additional disk I/O. In most cases, checkpointing a large RDD can be
used to reduce failures in high-traffic clusters but rarely leads to performance
improvements, even if the RDD has to be recomputed due to the high cost of check‐
pointing.

Our experience has been that it is easy to underestimate just how
expensive storing and reading an RDD is relative to recomputing.
We have also found that for relatively simple operations the cost of
the read operation needed to load the RDD far outweighs the oth‐
ers, so persisting is most useful when it prevents triggering another
read operation or in the case of many iterative computations.

Furthermore, breaking an RDD’s lineage by forcing evaluation through persisting or
checkpointing prevents transformations with narrow dependencies from being com‐
bined into a single task. Consequently, we lose some of the narrow transformations
cannot be combined and executed in one task. For instance, persisting or checkpoint‐
ing between a simple map and filter step will break pipelining so that the previously
intermediate data can be persisted, causing Spark to do two passes through the data
rather than just one, since the transformation has to be evaluated in order to materi‐
alize the RDD after the map. Breaking lineage between narrow transformations is only
desirable in the most extreme cases.

The preceding guidelines are good heuristics for when reuse will provide significant
benefits. In general, it is worth reusing an RDD rather than recomputing it if the
computation is large relative to your cluster and the rest of your job. The best way to
tell if you need to reuse your RDDs is to run a job. If your job runs very slowly, see if
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persisting the RDDs may help before attempting to rewrite the program since persist‐
ing and checkpointing will help reduce the cost of recomputing data in the case of a
failure or eliminate it altogether. If a job is failing with GC or out-of-memory errors,
checkpointing or persisting off_heap may allow the job to complete, particularly if
the cluster is noisy. On the other hand, if you were already persisting with the options
that use in-memory persistence consider removing the persist call or switching to
checkpointing or off_heap persistence or checkpointing.

If you are testing some code before putting it into production, con‐
sider creating the persistence level with a variable so that you can
pass in a persistence level to try as a command-line argument. The
function presented in Example 5-24 uses this paradigm; it contains
a storageLevel argument (which could be NONE).

Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files
If you decide that you need to reuse your RDD, Spark provides a multitude of options
for how to store the RDD. Thus it is important to understand when to use the various
types of persistence. There are three primary operations that you can use to store
your RDD: cache, persist, and checkpoint. In general, caching (equivalent to persist‐
ing with the in-memory storage) and persisting are most useful to avoid recomputa‐
tion during one Spark job or to break RDDs with long lineages, since they keep an
RDD on the executors during a Spark job. Checkpointing is most useful to prevent
failures and a high cost of recomputation by saving intermediate results. Like persist‐
ing, checkpointing helps avoid computation, thus minimizing the cost of failure, and
avoids recomputation by breaking the lineage graph.

Persist and cache
Persisting an RDD means materializing an RDD (usually by storing it in-memory on
the executors), for reuse during the current job. Spark remembers a persisted RDD’s
lineage so that it can recompute it for the duration of a Spark job if one of the persis‐
ted partitions is lost. After the job ends, the persist function takes a StorageLevel
argument that specifies how the RDD should be stored. Spark provides a number of
different storage levels as constants, but each one is created based on five attributes of
how to store the RDD: useDisk, useMemory, useOfHeap, deserialized, and replica
tion. Calling toString on a storage level will reveal what options it contains. The
Spark documentation about persistence includes a fairly comprehensive list of the
out-of-the-box storage options that are exposed to you.

Still, we think it may useful to provide some more information about each of the five
properties that compose each storage option. This should give you a deeper under‐
standing of which option to choose:
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useDisk

If set, partitions that do not fit in memory will be written to disk.

The storage-level flags containing DISK (such as MEMORY_AND_DISK) enable this.
By default, if partitions do not fit in memory, they will simply be evicted and will
need to be recomputed when the persisted RDD is used (see “LRU Caching” on
page 121). Therefore, persisting to disk can ensure that recomputation of those
additional large partitions is avoided. However, reading from disk can be time-
intensive, so persistence to disk is only important if the cost of recomputation is
particularly high.

It may be beneficial to allow writing to disk if you expect that an
RDD cannot fit in memory. However, if the cost of recomputing
the partitions is not high (they are simple mappings and don’t
reduce the size of the data) it may actually be faster to recompute
some partitions rather than read from disk.

useMemory

If set, the RDD will be stored in-memory or be directly written to disk.

The DISK_ONLY storage levels are the only options that mark this as false. Most of
the speed benefits of caching come from keeping RDDs in memory, so if the
motivation for reuse is fast access for repeated computations, it is probably a
good idea to choose a storage option that stores partitions in memory. However,
there are some cases where disk-only persistence makes sense, e.g., when the
computation is more expensive than reading in local disk or the network filesys‐
tem is especially slow (such as with certain object stores).

useOfHeap

If set, the RDD will be stored outside of the Spark executor in an external system
such as Tachyon.

The storage option off_heap enables this property. If memory is a serious issue,
or a cluster is noisy and partitions are evicted, this option may be compelling.
We will talk more about the benefits of Tachyon in “Alluxio (nee Tachyon)” on
page 120.

deserialized

If set, the RDD will be stored as deserialized Java objects.

As we will discuss in “Kryo” on page 288, this can make storing RDDs more space
efficient, especially when using a faster serializer—but incurs some performance
overhead. Storage options that include the "_SER" suffix such as MEM

ORY_ONLY_SER enable serialization.

Reusing RDDs | 117



If your RDD is too large to persist in-memory, first try to serialize
it with the MEMORY_ONLY_SER option. This will keep the RDD fast to
access, but will decrease the memory needed to store it.

replication

Replication is an integer that controls the number of copies of the persisted data
to be stored in the cluster.

By default this is set to 1; however, serialization options that end in _2 such as
DISK_ONLY_2 replicate each partition across two nodes. Use this option to ensure
faster fault tolerance. However, be aware that persistence with replication incurs
double the space and speed costs of persistence without replication. Replication
is usually only necessary in an instance of a noisy cluster or bad connection
where failures are unusually likely. It might also be useful if you do not have time
to recompute in case of failure, such as when serving a live web application.

The RDD operation cache() is equivalent to the persist operation
with no storage level argument, i.e., persist(). Both cache() and
persist() persist the RDD with the default storage-level MEM
ORY_ONLY, which is equivalent to StorageLevel(false, true,

false, true), which stores RDDs in-memory as deserialized Java
objects, does not write to disk as partitions get evicted, and doesn’t
replicate partitions.

Checkpointing
Checkpointing writes the RDD to an external storage system such as HDFS or S3,
and—in contrast to persisting—forgets the RDD’s lineage. Since checkpointing
requires writing the RDD outside of Spark, checkpointed information survives
beyond the duration of a single Spark application and forces evaluation of an RDD.
Checkpointing takes up more space in external storage and may be slower than per‐
sisting since it requires potentially costly write operations. However, it does not use
any Spark memory and will not incur recomputation if a Spark worker fails.

Figure 5-2 illustrates the difference between in-memory persistence and checkpoint‐
ing and RDD. Persisting stores the RDD’s partitions in-memory or on disk in the
caching layer of each executor. Checkpointing writes each partition to some external
system.
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Figure 5-2. Caching versus checkpointing

It is best to use checkpointing when the cost of failure and recomputation is of more
concern than additional space in external storage. Broadly speaking, we advise per‐
sisting when jobs are slow and checkpointing when they are failing. If a Spark job is
failing due to out-of-memory errors, checkpointing will reduce the cost and likeli‐
hood of failure without using up memory on the executors. If your jobs are failing
due to network errors or preemption on a noisy cluster, checkpointing can reduce the
likelihood of failure by breaking up a long-running job into smaller segments. To call
checkpoint, call setCheckpointDir(directory: String) from the SparkContext
object and pass in a path to a location on HDFS to write the intermediate results. 
Then, in the Spark job, call .checkpoint() from the RDD.

Checkpointing example
Example 5-24 makes use of custom storage level and checkpointing options. The
function is used in the Goldilocks example, which we describe in detail in “Goldi‐
locks Version 4: Reduce to Distinct on Each Partition” on page 165, that makes use of
custom storage level and checkpointing options. In this case we are doing several very
expensive transformations: first a sort and then two very substantial map partitions
routines. When running on a noisy cluster, we found it advantageous to checkpoint
this function after the sort. The value of the directory parameter is the checkpoint
directory. The sorted value is a sorted RDD or key/value pairs.

Example 5-24. Checkpoint example

  def findQuantilesWithCustomStorage(valPairs: RDD[((Double, Int), Long)],
    colIndexList: List[Int],
    targetRanks: List[Long],
    storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK,
    checkPoint : Boolean, directory : String = ""): Map[Int, Iterable[Double]] = {
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    val n = colIndexList.last + 1
    val sorted  = valPairs.sortByKey()
    if (storageLevel != StorageLevel.NONE) {
      sorted.persist(storageLevel)
    }

    if (checkPoint) {
      sorted.sparkContext.setCheckpointDir(directory)
      sorted.checkpoint()
    }

    val partitionColumnsFreq = getColumnsFreqPerPartition(sorted, n)
    val ranksLocations  = getRanksLocationsWithinEachPart(
      targetRanks, partitionColumnsFreq, n)
    val targetRanksValues = findTargetRanksIteratively(sorted, ranksLocations)
    targetRanksValues.groupByKey().collectAsMap()
  }

Spark includes a Local Checkpointing option that truncates the
RDD’s lineage graph but doesn’t persist to stable storage. This is
not suitable for clusters that may experience failures, preemption,
or dynamic scale-downs during the time the RDD may be refer‐
enced.

Alluxio (nee Tachyon)
Tachyon is a distributed, in-memory storage system that is developed separately from
Spark. It sits above a storage system, such as S3 or HDFS, and can be used on its own
or with an external computational framework such as Spark or MapReduce. Like
Spark, Tachyon can be used in a standalone cluster mode, or with Mesos or YARN.
Read more about Tachyon’s architecture and how to integrate it with Spark in the
Tachyon documentation.

Tachyon can be used as an input or output source for Spark applications (data stored
with Tachyon can be used to create RDDs) or for off_heap persistence during a
Spark application. Using Tachyon for persistence has several advantages. First, it
reduces garbage collection overhead, since data is not stored as Java objects. Second,
it allows multiple executors to share the same external memory pool in Tachyon.
Third, since the data is stored in memory outside of Spark, it is not lost if individual
executors crash. It can be particularly useful if you want to reuse an RDD but are run‐
ning out of memory or seeing garbage collection errors. It is also the best way to
reuse a very large RDD between multiple applications.

120 | Chapter 5: Effective Transformations

http://www.alluxio.org
http://www.alluxio.org


Tachyon’s developer and user communities are very strong in
China, so part of its documentation may be stronger in Mandarin
than in English.

LRU Caching
RDDs that are stored in memory and/or on disk in Spark are not automatically un-
persisted when they are no longer going to be used downstream. Intead, RDDs stay in
memory for the duration of a Spark application, until the driver program calls the
function unpersist, or memory/storage pressure causes their eviction. Spark uses
Least Recently Used or LRU caching, to determine which partitions to evict if the
executors begin to run out of memory.

LRU caching dictates that the data structure that was least recently accessed will be
evicted. However, because of lazy evaluation it may be a bit tricky to predict which
partitions will be evicted first. Generally, Spark evicts the oldest partitions; those that
were created or used in the earliest Spark job or in the earliest stage within a given
job. (See “Dividing the Space Within One Executor” on page 281 for a more detailed
explanation of memory management and partitions.) LRU caching behaves differ‐
ently for different persistence options. For memory-only persistence operations con‐
figured with LRU caching, Spark will recompute the evicted partition each time it is
needed. For memory and disk options, LRU caching will write the evicted partition to
disk. If you want to take a persisted RDD out of memory to free up space, use
unpersist.

Shuffle files

Regardless of a persist or checkpoint call, Spark does write some data to disk dur‐
ing a shuffle. These files are called “shuffle files” and they usually contain all of the
records in each input partition sorted by mapper. Usually shuffle files remain in the
local directory on the workers for the duration of an application. Thus if the driver
program reuses an RDD that has already been shuffled, Spark may be able to avoid
recomputing that RDD up to the point of shuffle by using the shuffle files on the
mapper.

Unlike the other caches, we can’t determine if a given RDD still has its shuffle files
present; e.g., there is no equivalent of the isCheckPointed command, which returns
true if that RDD has been checkpointed. In general, though, shuffle files aren’t explic‐
itly cleaned up until an RDD goes out of scope. However the web UI can be helpful in
determining if stages are being skipped this way, as shown in Figure 5-3.
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Figure 5-3. Skipped stage from reading shuffle files

The performance of reusing shuffle files is similar to the performance of an RDD that
is cached at the level of disk only.

Shuffle files can be large, and Spark has no explicit cache manage‐
ment for them. Keeping references to RDDs depending on shuffled
output can lead to out-of-disk errors if the RDDs are not garbage
collected on the driver.

Out-of-disk-space errors can be unexpected, but in clusters with small amounts of
disk space they are surprisingly common. Disk space errors can be caused by long-
running shell environments in which RDDs created at the top scope are never
garbage collected. Spark writes the output of its shuffle operations to files on the disk
of the workers in the Spark local dir. These files are only cleaned up when an RDD is
garbage collected, which if the amount of memory assigned to the driver program is
large, can occur infrequently. One solution is to explicitly trigger garbage collection
(assuming the RDDs have gone out of scope)—if the DAG is getting too long, check‐
pointing can help make the RDDs available for garbage collection.

Noisy Cluster Considerations
Noisy clusters, or those with a high volume of unpredictable traffic, pose a funda‐
mental challenge to Spark’s evaluation. By default, Spark doesn’t save most inter‐
mediate results (besides in a shuffle step). Thus, in the case of preemptions, Spark will
have to recompute the calculation in the job up to the point of failure. In a noisy clus‐
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ter, where long-running jobs are often interrupted, this poses a huge challenge.
Checkpointing can be especially helpful to get jobs to run at all. Checkpointing
breaks an RDD’s lineage, therefore reducing the cost to recompute downstream
transformations. Checkpointing also persists to external storage, so that unexpected
failures do not lead to data loss. If failures are common but not fatal, it may be worth
configuring your job to persist to multiple machines using a storage option like MEM
ORY_AND_DISK_2, which replicates data on two machines. That way, failures on one
node will not require a recompute. This can be especially important with wide trans‐
formations, which are very expensive.

By default, Spark uses a first in, first out (FIFO) paradigm to queue jobs within a sys‐
tem. This means that the first job submitted will run in its entirety, getting priority on
all the available resources. However, if a job doesn’t need the whole cluster, the next
job may start. FIFO scheduling can be useful to ensure that space-intensive jobs are
able to use the resources that they need. However, if you launch a job a few seconds
behind a many-hour process, the FIFO strategy can be frustrating. Spark offers a fair
scheduler, modeled after the Hadoop fair scheduler, to allow high-traffic clusters to
share resources more evenly. The fair scheduler allocates the tasks from different jobs
to the executors in a “round-robin fashion” (i.e., parsing out a few tasks to the execu‐
tors from each job). With the fair scheduler, a short, small job can be launched before
an earlier long-running job is completed.

The fair scheduler also supports putting jobs into pools and allocating different prior‐
ity (weight) to those pools. Jobs within a pool are allocated the same number of
resources, and the pools are allocated resources according to their weight. Using
pools can be a good way to ensure that high-priority jobs or very expensive jobs are
completed. The fair scheduler also ensures that users are allocated resources evenly
regardless of how many jobs they submit. You can read more about using and config‐
uring a fair scheduler in the the Spark job scheduling documentation.

Interaction with Accumulators
The interaction of caching and accumulators can make reasoning about accumula‐
tors more difficult. As we mentioned, if part of an RDD has to be recomputed, Spark
may continue to add values to the accumulator as it recomputes; causing the values in
the recomputed part to be double counted. Furthermore, not all computations will
always compute the entirety of a partition. Surprisingly, caching does not prevent
either double counting or problems that arise from partially evaluated partitions.
Cached partitions may be evicted, so double counting may still arise if the machine
with the cached data fails or if the partition is evicted to make space for a more
recently cached partition. Unfortunately, caching with accumulators may cause a job
that appears to compute the correct value on small data to later compute the incor‐
rect value on large data.

Reusing RDDs | 123

https://spark.apache.org/docs/latest/job-scheduling.html


Conclusion
Now that you have explored how to get the most out of your standard RDD transfor‐
mations, as well as joins, it’s time to explore the concerns associated with the most
important and complicated subset of RDD transformations, key/value pair opera‐
tions. Not all of the techniques you will have learned need to be applied in every
Spark program, and some of the takeaways from this chapter are more about when
certain tools are not a good fit (see “Accumulators” on page 107). Many of the same
techniques and considerations for standard RDD transformations apply when work‐
ing with key/value data: if your transformation doesn’t depend on the key, the techni‐
ques from this chapter may even be more relevant.
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CHAPTER 6

Working with Key/Value Data

Like any good distributed computing tool, Spark relies heavily on the key/value pair
paradigm to define and parallelize operations, particularly wide transformations that
require the data to be redistributed between machines. Anytime we want to perform
grouped operations in parallel or change the ordering of records amongst machines
—be it computing an aggregation statistic or merging customer records—the key/
value functionality of Spark is useful as it allows us to easily parallelize our work.
Spark has its own PairRDDFunctions class containing operations defined on RDDs of
tuples. The PairRDDFunctions class, made available through implicit conversion,
contains most of Spark’s methods for joins, and custom aggregations. The Order
edRDDFunctions class contains the methods for sorting. The OrderedRDDFunctions
are available to RDDs of tuples in which the first element (the key) has an implicit
ordering.

Similar operations are available on Datasets as discussed in “Grou‐
ped Operations on Datasets” on page 65.

Despite their utility, key/value operations can lead to a number of performance
issues. In fact, most expensive operations in Spark fit into the key/value pair para‐
digm because most wide transformations are key/value transformations, and most
require some fine tuning and care to be performant. These performance considera‐
tions will be the focus of this chapter. We hope to provide not just a guide to using
the functions in the PairRDDFunctions and OrderedRDDFunctions classes, but to
build on the architecture lessons of Chapters 2 and 5 to present a thorough guide to
thinking about how Spark evaluates wide transformations and how to redesign the
logic of a program to make tasks that require ordering data most efficient.
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In particular, operations on key/value pairs can cause:

• Out-of-memory errors in the driver
• Out-of-memory errors on the executor nodes
• Shuffle failures
• “Straggler tasks” or partitions, which are especially slow to compute

The first problem, memory errors in the driver, is usually caused by actions. We will
discuss the performance problems associated with actions on key/value pairs in
“Actions on Key/Value Pairs” on page 131. The last three performance issues—out of
memory on the executors, shuffles, and straggler tasks—are all most often caused by
shuffles associated with the wide transformations in the PairRDDFunctions and
OrderedRDDFunctions classes. Throughout this chapter, we will focus on two pri‐
mary techniques to avoid performance problems associated with shuffles, which we
call “shuffle less” and “shuffle better”:

Shuffle less often
We will provide techniques to minimize the number of shuffles needed to com‐
plete a complex computation. One way to minimize the number of shuffles in a
computation that requires several transformations is to make sure to preserve
partitioning across narrow transformations to avoid reshuffling data (see “Pre‐
serving Partitioning Information Across Transformations” on page 144). In some
instances, we can use the same partitioner on a sequence of wide transforma‐
tions. This can be particularly useful to avoid shuffles during joins and to reduce
the number of shuffles required to compute a sequence of wide transformations
(see “Co-Grouping” on page 139 and “Leveraging Co-Located and Co-Partitioned
RDDs” on page 144). We will also discuss leveraging custom partitioners (see “Cus‐
tom Partitioning” on page 143) to distribute the data most effectively for down‐
stream computations as well as how to push computational work into the shuffle
stage to make a complicated computation more efficient (see “Secondary Sort
and repartitionAndSortWithinPartitions” on page 149).

Shuffle better
Sometimes, computation cannot be completed without a shuffle. However, not
all wide transformations and not all shuffles are equally expensive or prone to
failure. By using wide transformations such as reduceByKey and aggregateByKey
that can preform map-side reductions and that do not require loading all the
records for one key into memory, you can prevent memory errors on the execu‐
tors and speed up wide transformations, particularly for aggregation operations
(see “What’s So Dangerous About the groupByKey Function” on page 132 and
“Preventing out-of-memory errors with aggregation operations” on page 138).
Lastly, shuffling data in which records are distributed evenly throughout the
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keys, and which contain a high number of distinct keys, prevents out-of-memory
errors on the executors and “straggler tasks” (see “Straggler Detection and
Unbalanced Data” on page 163).

The Goldilocks Example
Throughout this chapter, we will refer to a project that the authors worked on that
required finding arbitrary rank statistics in high-dimensionality and high-volume
data as an example of a complex key/value transformation.

The client—we will call her Goldilocks—had data representing thousands of different
metrics for hundreds of millions of pandas. Her data looked something like
Table 6-1.

Table 6-1. Goldilocks example data

Panda name Happiness Niceness Softness Sweetness
Mama Panda 15.0 0.25 2467.0 0.0

Papa Panda 2.0 1000 35.4 0.0

Baby Panda 10.0 2.0 50.0 0.0

Baby Panda’s toy Panda 3.0 8.5 0.2 98.0

The attributes for each panda are represented as a doubles.

Goldilocks wanted us to design an application that would let her input an arbitrary
list of integers n1…nk and return the nth best element in each column. For example,
if Goldilocks input 8, 1000, and 20 million, our function would need to return the
8th, 1000th, and 20 millionth best-ranking panda for each attribute column.

To illustrate this example, suppose that Goldilocks wanted to find the 2nd and 4th
element from Table 6-1. We would want our function to return something like
Table 6-2.

Table 6-2. Goldilocks example result

Column name Column index Rank statistics
happiness 1 List(3.0, 15.0)

niceness 2 List(2.0, 1000.0)

softness 3 List(35.4, 2467.0)

sweetness 4 List(0.0, 98.0)

We call this candidate “Goldilocks” because she was very picky and her house (i.e.,
in-house cluster) was crowded with other users (bears). In this case, Goldilocks
would not accept approximate quantile boundaries, but required the output of our
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1 As we hope to demonstrate in this chapter, even in cases where out-of-the-box functionality in Spark SQL
may cover your use case, the creative control offered by Spark Core can often allow us to develop a better
routine for a very specific use case. Indeed the final solution we present in this chapter is able to do some
clever reductions that probably make it faster than even a well-implemented rank statistics implementation in
Spark SQL.

function to be values in the original dataset. Thus, this task is inherently expensive
since it requires sorting all the values in each column in some way.

Because the data is columnar, we could consider Spark SQL to solve this problem.
However, early Spark SQL did not have any support for rank statistics. It may be pos‐
sible to write a UDF/UDAF to solve the problem, but it would be quite cumbersome
because our use case is complicated and cannot be computed on each row. Thus, our
solution has to leverage Spark Core.1

Goldilocks Version 0: Iterative Solution
One intuitive solution to the Goldilocks problem is to loop through each column,
mapping each row to a single value, then use Spark’s sortBy and zipWithIndex func‐
tion on each column, and then filter for the indices that correspond to the desired
rank statistics.

For simplicity, we will assume that the columnar data was read in
from stable storage as a DataFrame, that the rows are all well
formed, and that the string column with each panda’s name was
dropped. Consequently, our function takes a DataFrame of all dou‐
ble columns (representing the panda data) and a list of long types
representing the positions of the elements to find for each column
(e.g., 1st, 100th). The function should return a map from the col‐
umn index to a list of the rank statistics in that column.

Example 6-1 is an implementation of this first solution to the Goldilocks problem in
which we loop through each column and sort each one using Spark’s distributed sort.

Example 6-1. Goldilocks version 0, iterative solution

  def findRankStatistics(
    dataFrame: DataFrame,
    ranks: List[Long]): Map[Int, Iterable[Double]] = {
    require(ranks.forall(_ > 0))
    val numberOfColumns = dataFrame.schema.length
    var i = 0
    var  result = Map[Int, Iterable[Double]]()

    while(i < numberOfColumns){
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      val col = dataFrame.rdd.map(row => row.getDouble(i))
      val sortedCol : RDD[(Double, Long)] = col.sortBy(v => v).zipWithIndex()
      val ranksOnly = sortedCol.filter{
        //rank statistics are indexed from one. e.g. first element is 0
        case (colValue, index) =>  ranks.contains(index + 1)
      }.keys
      val list = ranksOnly.collect()
       result += (i -> list)
       i+=1
    }
    result
  }

This solution works and is relatively robust, but it is very slow since it has to sort the
data once for each column and does so iteratively. In other words, if we have 8,000
columns we have to do 8,000 sorts!

So how can we do better?

Since each sort can be done without knowledge of the other sorts, our intuition
should be that it is possible to parallelize this computation using each column as the
unit of parallelization. We can represent the data as one long list of key/value pairs
where the keys represent the column indices. Then, we can perform our computation
in parallel for each key.

We would map the data in Table 6-1 to the following list of key/value pairs:

(key, value)
(1, 15.0)

(2, 0.25)

(3, 2467.0)

(4, 0.0)

(1, 2.0)

(2, 1000.0)

(3, 35.4)

(4, 0.0)

(1, 10.0)

(2, 2.0)

(3, 50.0)

(4, 0.0)

(1, 3.0)

(2, 8.5)

(3, 0.2)

(4, 98.0)
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If we read in our data as a DataFrame, we can do this mapping with a simple function
like the one shown in Example 6-2.

Example 6-2. Goldilocks version 1, mapping to column index/value pairs

  def mapToKeyValuePairs(dataFrame: DataFrame): RDD[(Int, Double)] = {
    val rowLength = dataFrame.schema.length
    dataFrame.rdd.flatMap(
      row => Range(0, rowLength).map(i => (i, row.getDouble(i)))
    )
  }

Spark’s flatMap operation mimics the behavior of the flatMap
operation that is defined on iterators and collections in Scala. flat
Map is a very versatile narrow transformation, but for those new to
Scala it can be a bit confusing. flatMap lets the user define a map‐
ping from each record to a collection of elements and then com‐
bines the resulting collections together. In this case the mapping is
defined from a Spark SQL Row object to a sequence of elements, in
this case (columnIndex, value) pairs. The resulting RDD will
have more records than the previous RDD, and each will be of
(columnIndex, value) pairs. Increasing the total number of
records is not a requirement for the flatMap operation. In fact,
flatMap can be particularly useful because unlike map it allows us
to return an empty collection for one of the records. Thus, the
operator can be used to both filter and transform the elements in
one pass. In other words, a map and filter on the same RDD or
collection can always be combined into one flatMap step.

After applying this function, we can perform this computation in parallel by column
index (in this case column index is the key for each record). Framed in this way, the
Goldilocks problem is a key/value pair problem. Specifically:

Design a function that takes an input RDD of integer/double pairs and a list of longs,
n1 … nk and returns a map of key to a list of of k doubles that are the n1th, n2th .. nkth
elements for that column index (key).

How to Use PairRDDFunctions and OrderedRDDFunctions
If you have been using Spark for a while, you are probably familiar with the PairRDD
Functions and OrderedRDDFunctions classes. However, we will still provide a brief
introduction about how to use them. If you are new to these functions, “Chapter 4:
Working with Key/Value Pairs” in Learning Spark provides a very good introduction.
The Spark RDD class makes use of Scala implicits, and the PairRDDFunctions will be
available on any RDD of type (K,V). For PairRDDFunctions, K and V can be of any
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type, but for the OrderedRDDFunctions (sortByKey, repartitionAndSortWithinPar
titions, filterByRange) K must have some implicit ordering. Most common types,
like the numeric types or strings, have their ordering already defined in Scala. To use
a custom type, you may have to define the ordering yourself. Spark uses implicit con‐
version to convert an RDD that meets the PairRDD or OrderedRDD requirements from
a generic type to the PairRDD or OrderedRDD type. This implicit conversion requires
that the correct library already be imported. Thus, to use Spark’s pairRDDFunctions,
you need to have imported the SparkContext; i.e., imports must include import
org.apache.spark.SparkContext._.

When writing a function that uses OrderedRDDFunctions of
generic key type, you may need to include code defining an
implicit val of type ordering. In the secondary sort example, which
we will discuss in “Secondary Sort and repartitionAndSortWithin‐
Partitions” on page 149, we define an ordering an an object called
“Panda Keys” as shown in Example 6-3.

Example 6-3. Defining an implicit ordering to work with OrderedRDDFunctions

    implicit def orderByLocationAndName[A <: PandaKey]: Ordering[A] = {
      Ordering.by(pandaKey => (pandaKey.city, pandaKey.zip, pandaKey.name))
    }

    implicit val ordering: Ordering[(K, S)] = Ordering.Tuple2

Actions on Key/Value Pairs
In “Functions on RDDs: Transformations Versus Actions” on page 17, we discussed
how transformations are computed on the Spark executors when an action is called.
We also explained that actions usually move data out of the Spark executors either by
collecting it to the driver or by writing to stable storage. In general, we advised you to
be very cautious about actions that return unbounded data to the driver as they can
cause out-of-memory errors in the driver. Most key/value actions (including countBy
Key, countByValue, lookUp, and collectAsMap) return data to the driver. In most
instances they return unbounded data since the number of keys and the number of
values are unknown. For example, countByKey returns a data point for each key, and
thus it may cause memory errors if there are more distinct keys than fit in memory
on the driver. Conversely, lookUp returns all the values for each key, so it will cause
memory problems if one key has more data than will fit in memory on the driver.
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The lookUp operation is also expensive because it triggers a shuffle
if the RDD doesn’t have a known partitioner.

In addition to number of records, the size of each record is an important factor in
causing memory errors. For example, if each record is a custom object or a collection
type, an action that succeeded in collecting the same number of records in an RDD of
bytes may still fail. In general, we want to try to design key/value problems so that the
keys fit into memory on the driver. The values should be at least well distributed by
key and at best distributed so that each key has no more records than can fit in mem‐
ory on each executor. We will discuss the effects of bad key distribution in “Straggler
Detection and Unbalanced Data” on page 163, and will provide some suggestions for
working around skewed data. As with all Spark programs, we should try to perform
transformations that reduce the size of the data before calling actions that move
results to the driver.

Key/value transformations can also cause memory errors, most often in the execu‐
tors, if they require all the data associated with one key to be kept in memory on one
partition. Avoiding memory errors and optimizing transformations for fewer shuffles
is a bit more complicated than avoiding problems with actions. Thus, key/value
transformations will be the focus of the rest of this chapter.

What’s So Dangerous About the groupByKey Function
Many sources—including the Spark documentation—warn against the scalability of
the groupByKey function, which returns an iterator of each element by key. This sec‐
tion attempts to explain the cases in which groupByKey causes problems at scale. We
also hope to offer and some advice about alternatives to using groupByKey. First, we
want to revisit the Goldilocks case, because our first solution to the Goldilocks prob‐
lem was to use groupByKey.

Goldilocks Version 1: groupByKey Solution
One simple solution to the Goldilocks problem is to use groupByKey to group the ele‐
ment in each column. GroupByKey returns an iterator of elements by each key, so to
sort the elements by key we have to convert the iterator to an array and then sort the
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2 Iterators can only be traversed once. Thus, iterators cannot be used without conversion because sorting
requires multiple passes through the data. They must be converted to another data structure first. For more
about the iterator type, and its advantages and limitations, see “Iterator-to-Iterator Transformations with
mapPartitions” on page 98.

array.2 After converting the iterator to an array, we can sort the array and filter for the
elements that correspond to our rank statistics.

Example 6-4 is an implementation of the groupByKey solution. For consistency, this
function also takes a DataFrame and a list of element positions as long values. It calls
the function that creates key/value pairs that we described in Example 6-2.

Example 6-4. Goldilocks version 1, GroupByKey solution

  def findRankStatistics(
    dataFrame: DataFrame,
    ranks: List[Long]): Map[Int, Iterable[Double]] = {
    require(ranks.forall(_ > 0))
    //Map to column index, value pairs
    val pairRDD: RDD[(Int, Double)] = mapToKeyValuePairs(dataFrame)

    val groupColumns: RDD[(Int, Iterable[Double])] = pairRDD.groupByKey()
    groupColumns.mapValues(
      iter => {
        //convert to an array and sort
        val sortedIter = iter.toArray.sorted

        sortedIter.toIterable.zipWithIndex.flatMap({
        case (colValue, index) =>
            if (ranks.contains(index + 1)) {
              Iterator(colValue)
            } else {
              Iterator.empty
            }
      })
    }).collectAsMap()
  }

  def findRankStatistics(
    pairRDD: RDD[(Int, Double)],
    ranks: List[Long]): Map[Int, Iterable[Double]] = {
    assert(ranks.forall(_ > 0))
    pairRDD.groupByKey().mapValues(iter => {
      val sortedIter  = iter.toArray.sorted
      sortedIter.zipWithIndex.flatMap(
        {
        case (colValue, index) =>
            if (ranks.contains(index + 1)) {
              //this is one of the desired rank statistics
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              Iterator(colValue)
            } else {
              Iterator.empty
            }
        }
      ).toIterable //convert to more generic iterable type to match out spec
    }).collectAsMap()
  }

This solution has several advantages. First, it gives the correct answer. Second, it is
very short and easy to understand. It leverages out-of-the-box Spark and Scala func‐
tions and so it introduces few edge cases and is relatively easy to test. On small data,
particularly if the input data has many columns but few records, it is actually rela‐
tively efficient because it only requires one shuffle in the groupByKey step and
because the sorting step can be computed as a narrow transformation on the
executors.

In this function, we do use collectAsMap, which can have the same
issues as collect that we warned you about earlier. In this
instance, however, the danger of memory errors is minimal
because at the point of collecting, we know the number of keys and
the number of values per each key. The number of keys is exactly
the number of columns, which we have assumed to be no larger
than a few thousand. The number of values is equal to the length of
the rank statistics list we used as input for the function, which was
not originally stored in a distributed way. However, it might be
good practice to add a limit to the size of the input list to prevent
failures in the collect step.

In the environment that we were using and on data with 10,000 rows and a few thou‐
sand columns, this solution was orders of magnitude faster than the one presented in
“The Goldilocks Example” on page 127 in which we looped through the columns
iteratively and sorted each one. However, on data with a few million rows, we found
that the solution failed consistently with memory exceptions even on a many-node
cluster.

Why GroupByKey fails
If you have read Learning Spark or spent much time working with Spark at scale, the
results of the groupByKey approach to solving the Goldilocks problem shouldn’t sur‐
prise you as groupByKey is known to cause memory errors at scale. The reason is that
the “groups” created by groupByKey are always iterators, which can’t be distributed.
This causes an expensive “shuffled read” step in which Spark has to read all of the
shuffled data from disk and into memory.
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Figure 6-1 is a screenshot taken from the Spark web UI that illustrates the high cost
of groupByKey.

Figure 6-1. GroupByKey DAG and shuffled read

Notice that in this computation, the shuffled read is 86 MB even though the input
data is about 200 MB. In other words, Spark has to read almost all of the shuffled data
into memory.

As a consequence of partitioning by the hash value of the keys and pulling the result
into memory to group as iterators, groupByKey often leads to out-of-memory errors
on the executors if there are many duplicate records per key. Each record whose key
has the same hash value must live in memory on a single machine. Thus, if just one of
your keys contains too many records to fit in memory on one executor, the entire
operation will fail.

Figure 6-2 illustrates a groupByKey operation of data about handlebar mustaches. As
you can see, there are more records corresponding to the 94110 zip code, which is the
zip code for the Mission District in San Francisco. Even if the records fit on the exec‐
utors when evenly distributed, all the records associated with the 94110 zip code will
not fit on a single executor after the groupByKey step.
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Figure 6-2. GroupByKey tip over

In general it is better to choose aggregation operations that can do some map-side
reduction to decrease the number of records by key before shuffling (e.g., aggregate
ByKey or reduceByKey). If this is not possible, using a wide transformation that does
not require all the values associated with one key to be kept in-memory as we discuss
in “Secondary Sort and repartitionAndSortWithinPartitions” on page 149 is a good
alternative to groupByKey. If you must use groupByKey, it is best if the next operation
is an iterator-to-iterator transformation as discussed in “Iterator-to-Iterator Trans‐
formations with mapPartitions” on page 98.

Choosing an Aggregation Operation
Shuffling the records to combine those with the same key is a common use case for
key/value Spark operations, and Spark provides a number of such aggregation opera‐
tions. Most of them are built atop the generic combineByKey operation, but they differ
widely in performance. In this section we will detail these operations and some of the
performance considerations associated with them.

Dictionary of Aggregation Operations with Performance
Considerations
Aggregation operations have specific performance considerations, which we summa‐
rize in Table 6-3.
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Table 6-3. A dictionary of Spark’s key/value aggregation operations

Function Purpose Key restriction Runs out of memory
when

Slow when Output
partitioner

groupBy
Key

Group values with the
same key into a single
iterator.

Cannot have
array keys with
the default Hash
Partitioner.
To use array keys,
use a custom
partitioner.

If all of the records
associated with any
single key take up too
much space in-memory
to be read from disk on
one executor.

If there is not a
known partitioner,
this causes a shuffle.
The shuffle gets more
expensive as the
number of distinct
keys increases, the
number of records
per key increases, or
the records are not
evenly distributed
across the keys.

HashParti
tioner by
default, but
supports
custom
partitioning.

combine
ByKey

Combine values with
the same key using a
different result type.

Same as above. The “combine by” routine
uses too much memory
or creates too much
garbage collection
overhead, or the
accumulator for one key
becomes too large (this is
the problem in group
ByKey).

Same as above, but
can be faster than
groupByKey if the
combine operation is
a reduction.

Same as
above.

aggrega
teByKey

Same as combineBy
Key, but uses one
zero value for all
accumulators.

Same as above. Same as above, but if
implemented well less
likely to cause garbage
collection errors (see
“Minimizing Object
Creation” on page 92).

See above, but
generally faster than
combineByKey
since it will perform
the merging map-
side before sending
to a combiner.

Same as
above.

reduce
ByKey

Combine values with
the same key.
Reduction must be to
same type as original
values

See above, but
often less
expensive than
combineBy
Key since
aggregateBy
Key supports
reusing the
accumulator
object to avoid
object creation.

See above, but the type
restriction makes
memory errors unlikely.
So long as the combine is
not to a collection type,
the function is probably
reducing. Garbage
collection is less than
aggregateByKey
since no additional
accumulator object is
created.

Same as aggrega
teByKey.

Same as
above.
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Function Purpose Key restriction Runs out of memory
when

Slow when Output
partitioner

foldBy
Key

Combine values with
the same key using an
associative combine
function and a zero
value, which can be
added to the result an
arbitrary number of
times. Use instead of
reduceByKey
when a natural 0
exists.

See above. See above. See above.
Performance is nearly
identical to reduce
ByKey.

See above.

To avoid memory allocation in aggregateByKey, modify the accu‐
mulator rather than return a new one. See “Minimizing Object
Creation” on page 92.

Preventing out-of-memory errors with aggregation operations

CombineByKey and all of the aggregation operators built on top of it (reduceByKey,
foldLeft, foldRight, aggregateByKey) are no better than groupByKey in terms of
memory errors if they cause the accumulator to become too large for one key. In fact,
if you look up the implementation of groupByKey, you can see that it is actually
implemented using combineByKey where the accumulator is an iterator with all the
data. Thus, the accumulator is the size of all the data for that key. In other words,
these operations are unlikely to cause memory errors as long as the combining steps
make the data smaller. However, if the accumulator gets larger with the addition of
each new record, it will eventually cause memory errors if there are many records
associated with one key.

Imagine doing a back-of-the-envelope memory calculation on your sequence and
combine operators:

Given the sequence operation:

SeqOp(acc, v) => acc'

…and the combine operation:

combOp(acc1, acc2) = acc3.

Calculate whether:

memory(acc') < memory(acc) + memory(v)
and memory(acc3) < memory(acc1) + memory(acc2).
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If so, the function is likely a reduction. If not, as is the case in groupByKey, you may
need to consider a different strategy.

Beyond being less likely to run out of memory than groupByKey, the following four
functions—reduceByKey, treeAggregate, aggregateByKey, and foldByKey—are
implemented to use map-side combinations, meaning that records with the same key
are combined before they are shuffled. This can greatly reduce the shuffled read.
Compare the shuffled read in our original groupByKey (Figure 6-1) to the amount in
reduceByKey in Figure 6-3. Recall that in the groupByKey case, our shuffled read was
close to the size input. However, applying reduceByKey to the same input data
reduces that number to a few hundred kilobytes!

Figure 6-3. ReduceByKey DAG and shuffled read

Multiple RDD Operations
Some transformations can operate on multiple RDD inputs. The most obvious of
these are join type operations, but they are far from the only ones.

Co-Grouping
Much in the same way all of the accumulator operations (reduceByKey, aggregateBy
Key, foldByKey) are implemented using combineByKey, all of the join operations are
implemented using the cogroup function, which uses the CoGroupedRDD type. A
CoGroupedRDD is created from a sequence of key/value RDDs, each with the same key
type. cogroup shuffles each of the RDDs so that the items with the same value from
each of the RDDs will end up on the same partition and into a single RDD by key.
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The PairRDDFunctions class provides several signatures for cogroup. cogroup and its
alias groupWith can take one, two, or three RDDs, with the same key type as argu‐
ments (regardless of value type), return an RDD with each key, and then return a
tuple of Iterable objects where each Iterable is all the values of the RDDs for that
key.

Suppose, for example, that we had two datasets of information about each panda: one
with the scores in a series of games, and one with their favorite foods. We could use
cogroup to associate each panda’s ID with an iterator of their scores and another iter‐
ator of their favorite foods, as in Example 6-5.

Example 6-5. Cogroup example

   val cogroupedRDD: RDD[(Long, (Iterable[Double], Iterable[String]))] =
     scoreRDD.cogroup(foodRDD)

cogroup can be useful as an alternative to join when joining with multiple RDDs.
Rather than doing joins on multiple RDDs with one RDD it is more performant to
co-partition the RDDs since that will prevent Spark from shuffling the RDD being
repeatedly joined.

For example, if we needed to join the panda score data with both address and favorite
foods, it would be better to use cogroup than two join operations, as shown in
Example 6-6.

Example 6-6. Cogroup to avoid multiple joins on the same RDD

   val addressScoreFood = addressRDD.cogroup(scoreRDD, foodRDD)

Despite its advantages, cogroup will cause memory errors for the same reason as
groupByKeys if one key in either RDD or both combined is associated with more data
than will fit on a single partition. In particular, cogroup requires that all the records
in all of the co-grouped RDDs for one key be able to fit on one partition. For more
information on joins, see Chapter 4.

Partitioners and Key/Value Data
As we covered in Chapter 2, a partition in Spark represents a unit of parallel execu‐
tion that corresponds to one task. An RDD without a known partitioner will assign
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3 Often RDDs without known partitioners can be RDDs loaded from storage. In this case the RDD’s data is
most often effectively partitioned in the same way as the underlying storage (e.g., the Splits in Hadoop). How‐
ever, once the data is read into Spark, Spark does not know what the underlying partitioning is and conse‐
quently cannot take advantage of this information. This is one way in which checkpointing is different from
simply saving an RDD to stable storage and then reading it manually. In the checkpointing case, Spark saves
some metadata about the RDD including, if applicable, its partitioner.

data to partitions according only to the data size and partition size.3 The partitioner
object defines a mapping from the records in an RDD to a partition index. By assign‐
ing a partitioner to an RDD, we can guarantee something about the records on each
partition—for example, that it falls within a given range (range partitioner) or
includes only elements whose keys have the same hash code (hash partitioner).

There are three methods that exist exclusively to change the way an RDD is parti‐
tioned. For RDDs of a generic record type, repartition and coalesce can be used to
simply change the number of partitions that the RDD uses, irrespective of the value
of the records in the RDD. As we discussed in “The Special Case of coalesce” on page
89, repartition shuffles the RDD with a hash partitioner and the given number of
partitions. (We will explain in more detail how hash partitioning works in “Hash Par‐
titioning” on page 142.) coalesce, on the other hand, is an optimized version of repar
tition that avoids a full shuffle if the desired number of partitions is less than the
current number of partitions. Recall that when coalesce reduces the number of par‐
titions, it does so by merely combining partitions—and thus coalesce is not a wide
transformation since the partition can be determined at design time. When coalesce
increases the number of partitions it has the same behavior as repartition. For
RDDs of key/value pairs, we can use a function called partitionBy, which takes a
partition object rather than a number of partitions and shuffles the RDD with the
new partitioner. PartitionBy allows for much more control in the way that the
records are partitioned since the partitioner supports defining a function that assigns
a partition to a record based on the value of that key.

In all cases, repartition and coalesce do not assign a known partitioner to the
RDD. In contrast, using partitionBy (and most other key/value functions that cause
a shuffle) results in an RDD with a known partitioner. In some instances, when an
RDD has a known partitioner, Spark can rely on the information about data locality
provided by the partitioner to avoid doing a shuffle even if the transformation has
wide dependencies. The rest of the sections in this chapter will be about ways to lev‐
erage knowledge about partitioning or use custom partitioning to “shuffle less” and
“shuffle better.” Specifically, we aim to use this information to minimize the number
of times a program causes a shuffle, the distance the data has to travel in a shuffle,
and the likelihood that a disproportionate amount of the data will be sent to one par‐
tition, thus causing out-of-memory errors or straggler tasks.
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Using the Spark Partitioner Object
Conceptually, the partitioner defines how records will be distributed and thus which
records will be completed by each task. Practically, a partitioner is actually an inter‐
face with two methods—numPartitions and getPartition. numPartitions defines
the number of partitions in the RDD after partitioning. getPartition defines a map‐
ping from a key to the integer index of the partition where records with that key
should be sent. There are two implementations for the partitioner object provided by
Spark: the HashPartitioner and RangePartitioner. If neither of these suit your
needs, it is possible to define a custom partitioner.

Hash Partitioning
The default partitioner for pair RDD operations (not ordered RDD operations) is a
HashPartitioner. A HashPartitioner determines the index of the child partition
based on the hash value of the key. The hash partitioner requires a partitions
parameter, which determines the number of partitions in the output RDD and the
number of bins used in the hashing function. If unspecified, Spark uses the value of
the spark.default.parallelism value in the SparkConf to determine the number of
partitions. If the default parallelism value is unset, Spark defaults to the largest num‐
ber of partitions that the RDD has had in its lineage. In wide transformations that use
hash partitioning, such as aggregateByKey, the optional number of partitions param‐
eter is used as an argument to the hash partitioner. See “Number and Size of Parti‐
tions” on page 285 for information and advice about setting the spark

.default.parallelism value and choosing the number of partitions.

Range Partitioning
Range partitioning assigns records whose keys are in the same range to a given parti‐
tion. Range partitioning is required for sorting since it ensures that by sorting records
within a given partition, the entire RDD will be sorted. The range partitioner first
determines the range bounds for each partition by sampling: optimizing for an equal
distribution of records across partitions. Then, each record in the RDD will be shuf‐
fled to the partition whose range bounds include the key. Highly unbalanced data
(i.e., lots of values for some keys and not others, and if the distribution of the keys is
not uniform) makes the sampling less accurate—and, as we have discussed, uneven
partitioning may cause downstream tasks to be slower than others, causing “strag‐
gler” tasks. If there are too many duplicate keys for all the records associated with one
key to fit on one executor, then range partitioning, like hash partitioning, may cause
memory errors. Performance problems associated with sorting are usually caused by
these problems with the range partitioning step.
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Creating a RangePartitioner with Spark requires not only a number of partitions,
but also the actual RDD to sample. The RDD must be a tuple and the keys must have
an ordering defined.

Sampling actually requires partially evaluating the RDD, causing a break in the exe‐
cution graph. Thus range partitioning is actually both a transformation and an
action. The cost of sampling means that, in general, range partitioning is more
expensive than hash partitioning. The requirement that keys be ordered means that
range partitioning cannot be done on all RDDs of tuples. Therefore, key/value opera‐
tions (such as aggregations), which require records with each key to be on the same
machine but not ordered in a particular way, use a HashPartitioner as the default.
However, these methods can also be performed with a custom partitioner or range
partitioner.

Custom Partitioning
To define a unique function for partitioning the data other than by the key’s hash-
value or ordering, Spark allows the user to define a custom partitioner. In order to
define a partitioner, you must implement the following methods:

numPartitions

A method that returns an integer number of partitions. Expect that this number
is greater than zero.

getPartition

A method that takes a key (of the same type as the RDD being partitioned) and
returns an integer representing the index of the partition that specifies where
records with that key belong. The integer must be between zero and the number
of partitions (defined in the numPartitions method).

equals

An (optional) method to define equality between partitioners. The equality
method for a HashPartitioner returns true if the number of partitions are equal.
The range partitioner does so only if the range bounds are equal. The equality of
partitioners can be particularly important for joins and cogrouping, because in
some instances if an RDD is already partitioned according to a partitioner, Spark
is smart enough not to shuffle again with the same partitioner. We will discuss
this in more detail in “Leveraging Co-Located and Co-Partitioned RDDs” on
page 144.

hashcode

This method is required only if the equals method has been overridden. The
hashcode of a HashPartitioner is simply its number of partitions. The hashcode
of a RangePartitioner is a hash function derived from the range bounds.
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Preserving Partitioning Information Across Transformations
Some wide transformations change the partitioning of an RDD, as will be shown in
Table 6-4. Spark remembers this information by updating the partitioner property of
the RDD. When doing a series of transformations, it is important to understand how
an RDD is partitioned, because in some instances we can use this information to
avoid doing future shuffles.

Using narrow transformations that preserve partitioning

Some narrow transformations, such as mapValues, preserve the partitioning of an
RDD if it exists. Unless a transformation is known to only change the value part of
the key/value pair in Spark, the resulting RDD will not have a known partitioner
(even if the partitioning has not changed). It’s important to note that common trans‐
formations like map and flatMap can change the key, so even if your function does
not change the key, the resulting RDD will not have a known partitioner. Instead, if
we don’t want to modify the keys, we can call the mapValues function (defined only
on pair RDDs) because it keeps the keys, and therefore the partitioner, exactly the
same. The mapPartitions function will also preserve the partition if the preserves
Partitioning flag is set to true. Assuming we have some RDD data of type RDD[(Dou
ble, Int)], we could write the test in Example 6-7 to illustrate this property.

Example 6-7. Maintaining partitioning information with mapValues

    val sortedData = data.sortByKey()
    val mapValues: RDD[(Double, String)] = sortedData.mapValues(_.toString)
    assert(mapValues.partitioner.isDefined,
      "Using Map Values preserves partitioning")

    val map = sortedData.map( pair => (pair._1, pair._2.toString))
    assert(map.partitioner.isEmpty, "Using map does not preserve partitioning")

Leveraging Co-Located and Co-Partitioned RDDs
Co-located RDDs are RDDs with the same partitioner that reside in the same physical
location in memory. Co-location is important because all of the CoGroupedRDD func‐
tions—a category which includes the cogroup operations and all of the join opera‐
tions—require the RDDs being grouped to have all of their partitions co-located.
RDDs can only be combined without any network transfer if they have the same par‐
titioner and if each of the corresponding partitions in-memory are on the same exec‐
utor. Partitions will be in-memory on the same executor if they were partitioned in
the lineage associated with the same job.

Co-partitioning is related to but distinct from partition co-location. We say that mul‐
tiple RDDs are co-partitioned if they are partitioned by the same known partitioner.

144 | Chapter 6: Working with Key/Value Data



We say that partitions are co-located if they are both loaded into memory on the same
machine. RDDs are only guaranteed to be co-located if they are put into memory by
the same job and the same partitioner: if one action contains the partitioning of both
RDDs in its lineage. RDDs will be co-partitioned if their partitioner objects are equal,
but if the corresponding partitions for each RDD are not in the same physical loca‐
tion. Recall that “same partitioner” means the partitioner objects are equal according
to the equality function defined in the partitioner class.

In Example 6-8, both rddA and rddB will be co-located.

Example 6-8. An example of co-located RDDs

    val rddA = a.partitionBy(partitionerX)
    rddA.cache()
    val rddB = b.partitionBy(partitionerY)
    rddB.cache()
    val rddC = a.cogroup(b)
    rddC.count()

Before Spark evaluates RDDC.count(), neither RDD is actually loaded into memory
due to Spark’s lazily evaluated nature. When Spark launches the associated
RDDC.count() job, both RDDs are pulled into memory since their lineages are
merged by the cogroup operation. In this case the join won’t cause any network traf‐
fic because both RDDs are loaded into memory in the same location.

In contrast, if we were to call an action on rddA and rddB before the action on the co-
grouped RDD, the cogroup may cause some network traffic since the RDDs are not
co-located (Example 6-9).

Example 6-9. RDDs co-partitioned but not co-located

    val rddA = a.partitionBy(partitionerX)
    rddA.cache()
    val rddB = b.partitionBy(partitionerY)
    rddB.cache()
    val rddC = a.cogroup(b)
    rddA.count()
    rddB.count()
    rddC.count()

In this case, rddA and rddB are loaded into memory from different actions. They are
co-partitioned, but there is no guarantee that their partitions will all be co-located.
Thus, although the repartition calls prevent the join operator from triggering shuffles
in both RDDs, there may still be some network traffic to line up the partitions and
load both RDDs into memory. Although the design of your program may require
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calling actions in this order, it is often worth thinking about the lineage of an RDD
before calling an action on it, so as to minimize network traffic.

Dictionary of Mapping and Partitioning Functions PairRDDFunctions
The performance of the different mapping and partitioning functions available on
PairRDDs is shown in Table 6-4.

Table 6-4. Dictionary of mapping and sampling operations for RDDs or key/value pairs

Function Purpose Key
restriction

Runs out of
memory when

Slow when Output partitioner

mapVal
ues

Apply a mapping function
to each value of a pair
RDD without changing the
key.

None Almost never Slow when the
mapping operation
is very complicated
or expands the size
of each record.

In contrast to map, this
preserves the partitioning
of the data for use in future
operations. If the input
RDD has a known
partitioner, the output RDD
will have the same
partitioner. If you can
perform your mapping on
just the values it is almost
always beneficial to do so.

flatMap
Values

Perform the flatMap
function on just the values
of a key/value RDD. See
our discussion of the
flatMap paradigm near
the end of “Goldilocks
Version 0: Iterative
Solution” on page 128.

None Unlikely unless
the function
applied to each
value is very
expensive or
the result
iterator is very
large, causing a
dramatic
expansion of
the number of
records for each
key.

Slow when the
mapping routine is
very complicated,
creates many new
objects, or
dramatically
increases the
number of records
(such as
tokenization).

Preserves partitioner
associated with the input
RDD. However, the
distribution of duplicate
values in the keys may
change. If many duplicated
values are created, this
may slow down
downstream shuffles.

keys Return an RDD of just the
keys (not distinct).

None Almost never Essentially free Preserves the partitioning.

values Return an RDD of just the
values.

None Almost never Essentially free Does not preserve
partitioning. Future wide
transformations will cause
a shuffle even if they have
the same partitioner as the
input RDD.
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Function Purpose Key
restriction

Runs out of
memory when

Slow when Output partitioner

sample
ByKey

Given a map from the
keys to the percent of
each key to sample,
returns a stratified sample
of the input RDD. The
function is implemented
with mapPartitions
and uses a random
number to determine
whether each record will
be kept. Thus, the size of
the resulting sample may
not exactly correspond to
the percentage specified.

None Almost never,
unless the key
map is too large
to be broadcast
to one of the
worker nodes.

Same as mapPar
titions, the
function completes
one pass through
the data and does
not require a
shuffle.

Preserves partitioning of
the input data.

In addition to sampling and mapping operations specific to PairRDDs, Table 6-5
shows the partitioning functions.

Table 6-5. Partitioning functions

Function Purpose Key restriction Runs out of
memory when

Slow when Output
partitioner

parti
tionBy

Takes a partitioner
object and partitions
the RDD accordingly.
The partitioner object
defines target
partition index for
records based on key.

Depends on which
partitioner is used.
See “Using the
Spark Partitioner
Object” on page
142.

When there are
many duplicate
values for each
key, regardless of
partitioner.

Always causes a shuffle.
Range partitioners are
generally slower than
hash partitioners since
they require the data to
be partially evaluated in
order to sample it.

Partitioned
according to
the partition
argument.

The PairRDDFunctions class also includes all of the multiple RDD operations includ‐
ing join and cogroup, which we covered in detail in Chapter 4.

Dictionary of OrderedRDDOperations
In addition to special functions for RDDs of key/value pairs, RDDs with an ordering
on the key have even more functions, summarized in Table 6-6.
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Sorting by Two Keys with SortByKey
Spark’s sortByKey does allow sorting by tuples of keys for tuples with two elements.
Thus, it is relatively easy to sort by two values in Spark by making use of Scala’s
implicit tuple ordering, then sort by a composite key described by (Key1, Key2). For
example, suppose that rather than finding the nth item, Goldilocks just wanted us to
create a directory of (columnIndex, value) pairs sorted first by column index then
by value. Assuming an RDD indexValuePairs of type RDD[(Int, Double)], we
could solve this problem with:

indexValuePairs.map((_, null)).sortByKey()

Then sortByKey will use the implicit ordering on an (Int, Double) tuple, which
simply compares the first value and then compares the second.

SortByKey does not support implicit ordering on product types
other than Tuple2.

Secondary Sort and repartitionAndSortWithinPartitions
Sorting in Spark could be implemented by partitioning an RDD with a RangeParti
tioner and then sorting within each partition using mapPartitions, much as we did
in Example 6-4. However, this approach to sorting is slower than Spark’s actual
implementation of sortByKey. Instead of partitioning and then sorting, Spark lever‐
ages a technique called secondary sort, which pushes some of the work of sorting on
the individual machine into the shuffle stage.

Secondary sort is a performant way of ordering data both amongst
machines and within a single machine. The term comes from the
MapReduce paradigm and describes a technique by which the pro‐
grammer maps with one function, but defines a different order for
the elements to be used in the reduce call. The effect of this in
Spark is that some of the sorting work that must be done locally
can be accomplished during the shuffle stage rather than in the
next stage, after the shuffle has completed.

Spark has a built-in function to perform secondary sort called repartitionAndSort
WithinPartitions. The repartitionAndSortWithinPartitions function is a wide
transformation that takes a partitioner—defined on the argument RDD—and an
implicit ordering, which must be defined on the keys of the RDD. The function parti‐
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tions the data according to the partitioner argument and then sorts the records on
each partition according to the ordering.

We do not need to directly pass an implicit ordering to the reparti
tionAndSortWithinPartitions function. If the function is called
on an RDD whose keys have an ordering, Spark can infer that
ordering and will sort accordingly. To use repartitionAndSortWi
thinPartitions to order on types that either do not have an
implicit ordering or have an ordering other than the one we want,
we need to define the implicit ordering on the keys of the RDD in
our program before calling the repartitionAndSortWithinParti
tions function. See Example 6-12.

If we look up the implementation of sortByKey, we can see that it calls the reparti
tionAndSortWithinPartitions function with a RangePartitioner and uses implicit
ordering defined on the keys. As we discussed in “Range Partitioning” on page 142,
the RangePartitioner will sample the data and assign a range of values for each par‐
tition based on the inferred distribution of the keys (for example, keys with values
between 0 and 10 shall be placed on partition index two). Then repartitionAndSort
WithinPartitions will sort the values on each partition (each range of data) and thus
the entire result will be sorted by key. The secondary sort paradigm and the reparti
tionAndSortWithinPartitions can be used not only to do a performant sort on one
key, but also to define two kinds of ordering on the data: one that governs partition‐
ing and another that governs the ordering of elements on the child partitions. The
rest of this section will focus on the second use case, in which we want to organize the
data first by one ordering and next by another.

Leveraging repartitionAndSortWithinPartitions for a Group by Key
and Sort Values Function
The best way to order data with two orderings is to use the repartitionAndSortWi
thinPartitions function. One common use case for this is to a define a function,
which we might call “group by key and sort values,” that returns an RDD grouped by
key with the values in each group sorted. Unlike sorting by tuple keys, which we dis‐
cussed in “Sorting by Two Keys with SortByKey” on page 149, this approach could be
generalized to any partitioning defined on any key type and any custom ordering. We
use repartitionAndSortWithinPartitions to repartition the RDD by one ordering
on the keys and then define an implicit ordering for the records on a given partition.

With a little searching you can find numerous groupByKeyAndSortValues functions,
although none of them have been merged into Spark. Sandy Ryza’s presentation in
Advanced Analytics with Spark is particularly good, and the following implementa‐
tion closely mirrors his. This groupByKeyAndSortValues function assumes data in
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the form ((k, s), v), where s is the secondary key (perhaps derived from the
value). It partitions the RDD by the first part of the key, then sorts by the second part
of the key. Then, it then combines all the values associated with one key into a sorted
iterator.

The function has four steps:

1. Define a custom partitioner that partitions records according to the first element
of the key.

2. Define an implicit ordering on the values. This is only necessary because the
function is generic. The implicit ordering on tuples is first value, second value.
We just have to tell Spark to use that tuple ordering.

3. Use repartitionAndSortWithinPartitions on the input RDD with the custom
partitioner defined in step 1.

4. Coalesce the items using a mapPartitions routine. We can leverage the fact that
items with the same first key are on the same partition and that the elements
within each partition are sorted first by the first ordering and then by the second
ordering.

Because we are using hash partitioning, this function does not
actually sort values by the first key. Rather, it groups keys with the
same hash value on the same machine. Thus, if we run the function
of the values one through five and use four partitions, the first par‐
tition will contain one and five. To force the keys to appear in true
sorted order, we would need to define a range partitioner. How‐
ever, using the hash value is good enough if our goal is simply to
group like keys.

Example 6-10 is the code for the custom partitioner. As you can see we order only on
the first part of the key. If we define the ordering on both parts of the key, the parti‐
tioner will group by the hash value of the entire tuple key. Consequently the function
may put elements with the same primary key, but different secondary keys on two
different partitions.

Example 6-10. Step 1 of secondary sort: defining a custom partitioner

class PrimaryKeyPartitioner[K, S](partitions: Int) extends Partitioner {
  /**
   * We create a hash partitioner and use it with the first set of keys.
   */
  val delegatePartitioner = new HashPartitioner(partitions)

  override def numPartitions = delegatePartitioner.numPartitions
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  /**
   * Partition according to the hash value of the first key
   */
  override def getPartition(key: Any): Int = {
    val k = key.asInstanceOf[(K, S)]
    delegatePartitioner.getPartition(k._1)
  }
}

Next, we define the implicit ordering, as shown in Example 6-11. Recall from the
specification of the function, that both parts of the key already have an ordering
defined. Spark already has an ordering for tuples of two elements with orderings so
we can simply tell Spark to use the generic Tuple2 ordering.

Example 6-11. Step 2 of secondary sort: define the implicit ordering

    implicit def orderByLocationAndName[A <: PandaKey]: Ordering[A] = {
      Ordering.by(pandaKey => (pandaKey.city, pandaKey.zip, pandaKey.name))
    }

    implicit val ordering: Ordering[(K, S)] = Ordering.Tuple2

Now, incorporating these two subroutines, we can define a function groupByKeyAnd
SortBySecondaryKey, as in Example 6-12. The new function will partition according
to the partitioner defined in step 1, sort by the order defined in step 2, and then use a
groupSorted function to combine the elements with the same first key into a single
iterator.

Example 6-12. A general example of a “group by key and sort by secondary key”
function

  def groupByKeyAndSortBySecondaryKey[K : Ordering : ClassTag,
    S : Ordering : ClassTag,
    V : ClassTag]
    (pairRDD : RDD[((K, S), V)], partitions : Int):
      RDD[(K, List[(S, V)])] = {
    //Create an instance of our custom partitioner
    val colValuePartitioner = new PrimaryKeyPartitioner[Double, Int](partitions)

    //define an implicit ordering, to order by the second key the ordering will
    //be used even though not explicitly called
    implicit val ordering: Ordering[(K, S)] = Ordering.Tuple2

    //use repartitionAndSortWithinPartitions
    val sortedWithinParts =
      pairRDD.repartitionAndSortWithinPartitions(colValuePartitioner)

    sortedWithinParts.mapPartitions( iter => groupSorted[K, S, V](iter) )
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  }

  def groupSorted[K,S,V](
    it: Iterator[((K, S), V)]): Iterator[(K, List[(S, V)])] = {
    val res = List[(K, ArrayBuffer[(S, V)])]()
    it.foldLeft(res)((list, next) => list match {
      case Nil =>
        val ((firstKey, secondKey), value) = next
        List((firstKey, ArrayBuffer((secondKey, value))))

      case head :: rest =>
        val (curKey, valueBuf) = head
        val ((firstKey, secondKey), value) = next
        if (!firstKey.equals(curKey) ) {
          (firstKey, ArrayBuffer((secondKey, value))) :: list
        } else {
          valueBuf.append((secondKey, value))
          list
        }

    }).map { case (key, buf) => (key, buf.toList) }.iterator
  }

When developing a function like this one that relies heavily on par‐
titioning, make sure that your unit tests are for data that spans
more than one partition. Make sure to test on different numbers of
partitions and different data, because there is some randomness in
partitioning (especially range partitioning). See Chapter 8 for more
about running good distributed tests.

How Not to Sort by Two Orderings
It’s important to note that several other seemingly obvious approaches to this prob‐
lem are not guaranteed to give the correct result. For example, even regardless of per‐
formance issues, using groupBykey does not maintain the order of the values within
the groups. Thus the following implementation may not give the correct results:

indexValuePairs.sortByKey().groupByKey()

Spark sorting is also not guaranteed to be stable (preserve the original order of ele‐
ments with the same value). Hence, repeated sorting is not a viable option:

indexValuePairs.sortByKey.map(_.swap()).sortByKey

In this case, the second sortByKey may not preserve the ordering generated in the
first sort.
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Goldilocks Version 2: Secondary Sort
The logic of secondary sort generalizes well beyond simply ordering data. It applies to
any use case that requires the records to be arranged according to two different keys.
The original Goldilocks example is related to secondary sort since it requires us to
shuffle on one key (the column index) and then order the data within each key by
value (by the value in the cells). Thus, rather than using groupByKey to ensure that
the values associated with each key are coalesced and then sorting the elements asso‐
ciated with each key as a separate step, we can use repartitionAndSortWithinParti
tions. Using repartitionAndSortWithinPartitions we can partition on the
column index and sort on the value in each column. We are then guaranteed that all
the values associated with each column will be on one partition and that they will be
in sorted order of the value. We can simply loop through the elements on each parti‐
tion, filter for the desired rank statistics in one pass through the data, and use the
groupSorted function to combine the rank statistics associated with our column.

Defining the custom partitioner

The ordering and partition in repartitionAndSortWithinPartitions must be
defined on the keys of the RDD, and thus we need to use the (column index, value)
pairs as keys. We can map to a dummy value (like 1 or null) so that Spark will inter‐
pret the RDD as key/value pairs where the keys are a tuple of (column index,
value). We will then need to define a custom partitioner that partitions the keys
based on the hash value of the first part of the key (the column index), as shown in
Example 6-13.

Example 6-13. Goldilocks version 2, defining a custom partitioner to partition on
column index

class ColumnIndexPartition(override val numPartitions: Int)
  extends Partitioner {
  require(numPartitions >= 0, s"Number of partitions " +
    s"($numPartitions) cannot be negative.")

  override def getPartition(key: Any): Int = {
    val k = key.asInstanceOf[(Int, Double)]
    Math.abs(k._1) % numPartitions //hashcode of column index
  }
}

Filtering on each partition
On each partition, we want the elements to be ordered first by column index, and
second by value. The former ensures that all the records associated with one key are
on the same partition. The latter ensures that the elements that are adjacent will be
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those with the same column indices and will be sorted so that we can find the rank
statistics.

Ordering by the first value of a tuple and then the second is the existing implicit
ordering on tuples. Thus, we do not have to specify an ordering for our data. After
the repartitionAndSortWithinPartitions call, we know that the data will be parti‐
tioned according to column index and sorted by column index and value. For exam‐
ple, suppose that we were using the DataFrame described in Table 6-1 and that we
were using three partitions. The first partition would contain the following values:

((1, 2.0), 1)

((1, 3.0), 1)

((1, 10.0), 1)

((1, 15.0), 1)

((4, 0.0), 1)

((4, 0.0), 1)

((4, 0.0), 1)

((4, 98.0), 1)

We can use the filter operation to loop through the elements of the iterator even
though the filter requires us to keep track of global data. Recall from our discussion
of iterator-to-iterator transformations in “Iterator-to-Iterator Transformations with
mapPartitions” on page 98 that the map, filter, and flatMap operations defined on
iterators transform the elements in the iterator in order. Thus, because the elements
are sorted and grouped by key, we can keep track of a running total for the column
index. If the element is one of the ones that corresponds to the target ranks statistic,
then we can keep it. We then have to map the iterator to the first half of the tuple to
remove the 1 dummy value. Note that we could combine these map and filter steps
into one flatMap operation. We have chosen to present them separately in
Example 6-14 since we think that the filter operation is easier to interpret.

Example 6-14. Goldilocks version 2, leveraging repartitionAndSortWithinPartitions

  def findRankStatistics(dataFrame: DataFrame,
    targetRanks: List[Long], partitions: Int) = {

    val pairRDD: RDD[((Int, Double), Int)] =
      GoldilocksGroupByKey.mapToKeyValuePairs(dataFrame).map((_, 1))

    val partitioner = new ColumnIndexPartition(partitions)
     //sort by the existing implicit ordering on tuples first key, second key
    val sorted = pairRDD.repartitionAndSortWithinPartitions(partitioner)

    //filter for target ranks
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    val filterForTargetIndex: RDD[(Int, Double)] =
      sorted.mapPartitions(iter => {
        var currentColumnIndex = -1
        var runningTotal = 0
        iter.filter({
          case (((colIndex, value), _)) =>
            if (colIndex != currentColumnIndex) {
              currentColumnIndex = colIndex //reset to the new column index
              runningTotal = 1
            } else {
              runningTotal += 1
            }
          //if the running total corresponds to one of the rank statistics.
          //keep this ((colIndex, value)) pair.
          targetRanks.contains(runningTotal)
      })
    }.map(_._1), preservesPartitioning = true)
    groupSorted(filterForTargetIndex.collect())
  }

Combine the elements associated with one key

After the mapPartitions step, we have to do one last local transformation to group
the elements associated with one column index into a map. The code for the group
Sorted function is presented in Example 6-15.

Example 6-15. Goldilocks version 2, group the elements associated with one key

  private def groupSorted(
    it: Array[(Int, Double)]): Map[Int, Iterable[Double]] = {
    val res = List[(Int, ArrayBuffer[Double])]()
    it.foldLeft(res)((list, next) => list match {
      case Nil =>
        val (firstKey, value) = next
        List((firstKey, ArrayBuffer(value)))
      case head :: rest =>
        val (curKey, valueBuf) = head
        val (firstKey, value) = next
        if (!firstKey.equals(curKey)) {
          (firstKey, ArrayBuffer(value)) :: list
        } else {
          valueBuf.append(value)
          list
        }
    }).map { case (key, buf) => (key, buf.toIterable) }.toMap
  }

Notice that this code is very similar to the grouping function presented in
Example 6-12.
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Performance

This solution is considerably faster than the version 1 groupByKey solution on any
shape of data. By using repartitionAndSortWithinPartitions, we are able to push
the work to sort each column into the shuffle stage. Since the elements are sorted
after the shuffle, we are able to use iterator-to-iterator transformations to filter the
data and avoid forcing all the values associated with one partition into memory.

However, if the columns are relatively long, the repartitionAndSortWithinParti
tions step may still lead to failures since it still requires one executor to be able to
store all of the values associated with all of the columns that have the same hash
value. Indeed, in our case we still saw failures in the shuffle stage using this approach
at scale. In fact, a viable solution to the Goldilocks problem required taking an
entirely different approach.

A Different Approach to Goldilocks
Unfortunately, none of the existing key/value transformations provided a magic bul‐
let for the Goldilocks problem. None of the other aggregation operations that we
might use as alternative to groupByKey help us since the operation that we want to
perform for each key—a sort—won’t reduce the size of the data by key. As we dis‐
cussed in the previous section, even rewriting our groupByKey approach using
sophisticated secondary sort techniques was leading to failures. In the end, the secon‐
dary sort approach still required partitioning by the column index, which was not
granular enough for the size of our data and the resources we had available. Instead, a
performant solution to this problem required entirely rethinking how we parallelized
the computational work.

Before we dive into the solution, let’s review some of the methods we have learned to
make transformations more performant:

• Narrow transformations on key/value data are quick and easy to parallelize rela‐
tive to wide transformations that cause a shuffle.

• Partition locality can be retained across some narrow transformations following
a shuffle. This applies to mapPartitions if we use preservePartitioning=true,
or mapValues.

• Wide transformations are best with many unique keys. This prevents shuffles
from directing a large proportion of the data to reside on one executor.

• SortByKey is a particularly good way to partition data and sort within partitions
since it pushes the ordering of data on local machines into the shuffle stage.

• Using iterator-to-iterator transforms in mapPartitions prevents whole parti‐
tions from being loaded into memory.
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• We can sometimes rely on shuffle files to prevent recomputation of wide trans‐
formations even if we call several actions on the same RDD.

Using these insights, we were able to construct a solution to the Goldilocks problem
using only one sortByKey and three mapPartitions operations. The critical insight is
that the unit of parallelization for this problem does not need to be the columns. We
can essentially solve the problem for each range of values. If the cell values are sorted
and we know how many elements are on each partition from each column (which is
easy to calculate using a performant mapPartitions routine), then we can determine
the location of the nth element.

Our solution can be enumerated in five steps:

1. Map the rows of data to pairs of (cell value, index).
2. Perform a sortByKey operation on all tuples defined in step 1.
3. Using mapPartitions, determine how many elements in each column are on

each partition and collect that information to the driver.
4. Perform a local computation on the result of step 3 to determine the location of

each desired rank statistic. For example, suppose that we are looking for the 13th
element. Suppose also that in step 3 we determined that the first partition had 10
elements from column six. In this case, we can conclude that the 13th element
will be the third largest element in column six on the second partition.

5. Using the result of step 4, use another mapPartitions transformation to filter for
the elements that correspond to the desired rank statistics. Collect this informa‐
tion back to the driver.

Map to (cell value, column index) pairs

Example 6-16 is the code for step 1 of our solution: mapping to the (cell value,
column index) pairs. We use Spark’s flatMap function to transform each row into a
sequence of tuples.

Example 6-16. Goldilocks algorithm version 3, map to (cell value, column index) pairs

  private def getValueColumnPairs(dataFrame : DataFrame): RDD[(Double, Int)] = {
    dataFrame.rdd.flatMap{
      row: Row => row.toSeq.zipWithIndex
                  .map{
                    case (v, index) => (v.toString.toDouble, index)}
    }
  }
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Sort and count values on each partition

Once we have mapped the rows so that they are keyed on cell value, use sortByKey.
After the sort, we will have calculated the number of elements on each partition.
Example 6-17 is a function that takes a sorted RDD of (double, column index)
pairs and the number of columns in the original DataFrame, then returns an array
where each element corresponds to a partition. Each element of the array contains
the partition index and an array of the counts of elements on that partition each col‐
umn. The length of each subarray will correspond to the number of columns in the
original dataset.

Example 6-17. Goldilocks algorithm version 3, count values by column on each
partition

  private def getColumnsFreqPerPartition(sortedValueColumnPairs: RDD[(Double, Int)],
    numOfColumns : Int):
    Array[(Int, Array[Long])] = {

    val zero = Array.fill[Long](numOfColumns)(0)

    def aggregateColumnFrequencies (partitionIndex : Int,
      valueColumnPairs : Iterator[(Double, Int)]) = {
      val columnsFreq : Array[Long] = valueColumnPairs.aggregate(zero)(
        (a : Array[Long], v : (Double, Int)) => {
          val (value, colIndex) = v
          //increment the cell in the zero array corresponding to this column index
          a(colIndex) = a(colIndex) + 1L
          a
        },
        (a : Array[Long], b : Array[Long]) => {
          a.zip(b).map{ case(aVal, bVal) => aVal + bVal}
        })

      Iterator((partitionIndex, columnsFreq))
    }

    sortedValueColumnPairs.mapPartitionsWithIndex(
      aggregateColumnFrequencies).collect()
  }

The subfunction aggregateColumnFrequencies is applied to the records on each par‐
tition. It uses the aggregate operation defined on iterators. The zero value is an array
the length of the original column of zeros. For each pair in the iterator, the sequence
operation of the aggregation operation increments the cell that corresponds to that
column index in the zero array. The combine operation adds the values in two of
these arrays. Thus, the result is an array of the counts for the corresponding column
index. For example, assume that there were three columns and the first two partitions
contained the following key/value pairs:
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Partition 1: (1.5, 0) (1.25, 1) (2.0, 2) (5.25, 0)
Partition 2: (7.5, 1) (9.5, 2)

The output would be:

[(0, [2, 1, 1]), (1, [0, 1, 1])]

We expect this step to be a relatively inexpensive operation. The mapPartitions step
is a narrow transformation since it requires traversing the iterator just once. Thus
this operation will not incur a shuffle and can spill to disk selectively. We use arrays
to aggregate because as we discussed in “Using Smaller Data Structures” on page 95,
they should create the least garbage collection overhead. After this mapPartitions
step, we collect the results into an array.

We are not using the result of this mapPartitions operation in a
distributed way since we are collecting it to the driver. Thus, we
actually do not need to set the preserves partitioning function to
false.

Determine location of rank statistics on each partition

Once we have the results of the getColumnsFreqPerPartition function, we have to
use that information to determine where the rank statistics are on each partition, as
shown in Example 6-18. This computation is done locally with the results of the pre‐
vious function. In order to determine the location of each rank statistic, we loop
through the (sorted) result of the previous function while keeping a running total of
the elements in each column across the partitions. If, for any of the columns a rank
statistic is between the previous and updated value of the running total, we know that
the rank statistics can be found on that partition. If this is the case, we increment the
relevantIndexList with the column index and the rank statistic—the previous run‐
ning total. We can then return an array, where each element is the partition index,
and a list object of pairs. Each pair represents a column index for that rank statistic
and the index of that rank statistics in that column.

For example, if the inputs to the function were:

targetRanks: [5]
partitionColumnsFreq: [(0, [2, 3]), (1, [4, 1]), (2, [5, 2])]
numOfColumns: 2

The output will be:

(0, []), (1, [(0, 3)]), (2, [(1, 1)])]
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Example 6-18. Goldilocks algorithm version 3, determine location of rank statistics on
each partition.

  private def getRanksLocationsWithinEachPart(targetRanks : List[Long],
         partitionColumnsFreq : Array[(Int, Array[Long])],
         numOfColumns : Int) : Array[(Int, List[(Int, Long)])] = {

    val runningTotal = Array.fill[Long](numOfColumns)(0)
    // The partition indices are not necessarily in sorted order, so we need
    // to sort the partitionsColumnsFreq array by the partition index (the
    // first value in the tuple).
    partitionColumnsFreq.sortBy(_._1).map { case (partitionIndex, columnsFreq) =>
      val relevantIndexList = new MutableList[(Int, Long)]()

      columnsFreq.zipWithIndex.foreach{ case (colCount, colIndex)  =>
        val runningTotalCol = runningTotal(colIndex)
        val ranksHere: List[Long] = targetRanks.filter(rank =>
          runningTotalCol < rank && runningTotalCol + colCount >= rank)

        // For each of the rank statistics present add this column index and the
        // index it will be at on this partition (the rank - the running total).
        relevantIndexList ++= ranksHere.map(
          rank => (colIndex, rank - runningTotalCol))

        runningTotal(colIndex) += colCount
      }

      (partitionIndex, relevantIndexList.toList)
    }
  }

Filter for rank statistics
Now, armed with the location (partition index and position within each partition) of
the rank statistics for each column, we have to pass through the sorted data again to
filter for the correct rank statistics. This task is accomplished with the function in
Example 6-19, called findTargetRanksIteratively, which uses the original sorted
tuples of (value, column index pairs) and the results of the previous function. We
use an iterator-to-iterator transformation with a filter and a map step. (Note that
these could be replaced by flatMap). This produces the final result, an RDD of (col
umnIndex, rank statistic) pairs, which we can then collect back to the driver.

Example 6-19. Goldilocks algorithm version 3, filter for the desired rank statistics

  private def findTargetRanksIteratively(
    sortedValueColumnPairs : RDD[(Double, Int)],
    ranksLocations : Array[(Int, List[(Int, Long)])]):
      RDD[(Int, Double)] = {

    sortedValueColumnPairs.mapPartitionsWithIndex(
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      (partitionIndex : Int, valueColumnPairs : Iterator[(Double, Int)]) => {
        val targetsInThisPart: List[(Int, Long)] = ranksLocations(partitionIndex)._2
        if (targetsInThisPart.nonEmpty) {
          val columnsRelativeIndex: Map[Int, List[Long]] =
          targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))
          val columnsInThisPart = targetsInThisPart.map(_._1).distinct

          val runningTotals : mutable.HashMap[Int, Long]=  new mutable.HashMap()
          runningTotals ++= columnsInThisPart.map(
            columnIndex => (columnIndex, 0L)).toMap

  //filter this iterator, so that it contains only those (value, columnIndex)
  //that are the ranks statistics on this partition
  //Keep track of the number of elements we have seen for each columnIndex using the
  //running total hashMap.
        valueColumnPairs.filter{
          case(value, colIndex) =>
            lazy val thisPairIsTheRankStatistic: Boolean = {
              val total = runningTotals(colIndex) + 1L
              runningTotals.update(colIndex, total)
              columnsRelativeIndex(colIndex).contains(total)
            }
             (runningTotals contains colIndex) && thisPairIsTheRankStatistic
        }.map(_.swap)
      }
      else {
        Iterator.empty
      }
    })
  }

Goldilocks Version 3: Sort on Cell Values
Combining all of these functions, we get a full solution to the Goldilocks problem
(Example 6-20).

Example 6-20. Goldilocks version 3, sort on values

  def findRankStatistics(dataFrame: DataFrame, targetRanks: List[Long]):
    Map[Int, Iterable[Double]] = {

    val valueColumnPairs: RDD[(Double, Int)] = getValueColumnPairs(dataFrame)
    val sortedValueColumnPairs = valueColumnPairs.sortByKey()
    sortedValueColumnPairs.persist(StorageLevel.MEMORY_AND_DISK)

    val numOfColumns = dataFrame.schema.length
    val partitionColumnsFreq =
      getColumnsFreqPerPartition(sortedValueColumnPairs, numOfColumns)
    val ranksLocations = getRanksLocationsWithinEachPart(
        targetRanks, partitionColumnsFreq, numOfColumns)
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    val targetRanksValues = findTargetRanksIteratively(
      sortedValueColumnPairs, ranksLocations)
    targetRanksValues.groupByKey().collectAsMap()
  }

From a code readability perspective, this solution is ugly. It requires dozens of lines of
code and four passes through the data. However, we expect that it will avoid memory
errors on the executors and complete faster than the groupByKey or secondary sort
solutions. This is because the data on each column should be mostly distinct doubles,
and thus the shuffle should be fairly efficient. The final two mapPartitions routines
involve reducing the data and can be achieved through iterator-to-iterator transfor‐
mations, so we expect them to scale well. Indeed, on randomly distributed test data
with many records, this solution outperforms the other implementations of the
Goldilocks problem by orders of magnitude.

Straggler Detection and Unbalanced Data
“Stragglers” are those tasks within a stage that take much longer to execute than the
other tasks in that stage. Recall from our discussion in “Spark Job Scheduling” on
page 19 that a new stage begins after each wide transformation. When wide transfor‐
mations are called on the same RDD, stages must usually be executed in sequence, so
straggler tasks may hold up an entire job. Stragglers occur when Spark has not alloca‐
ted resources correctly, and in particular if the data has not been partitioned evenly.
Stragglers are a good indication of unbalanced keys because the distribution of tasks
depends on partitioning, which in turn depends on the keys. The Spark Web UI
allows you to monitor tasks as they are executed in real time.

If during a wide transformation you notice that some partitions take much longer
than others or show more retries, it is likely that the data is not being partitioned
evenly. This usually happens because some keys have many more values than others.
In this case, it will speed up shuffle operations to either use something else as keys, or
add random “noise” to your keys to create more distinct keys. Sometimes, you can
even perform a map-side reduction to combine or filter records with duplicates on
each partition before shuffling all the data.

While sortByKey is less likely to cause memory errors at scale than
groupByKey, it is still quite possible. Think back to Figure 6-2 and
see how we can still tip over with a sortByKey in Figure 6-4.
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One workaround to unbalanced keys can be adding “junk” to the
end of the key, such as a random number. That way, Spark can rec‐
ognize the keys as distinct and spread them across partitions. In
our case, this could mean spreading the zeros across machines,
which should not affect the accuracy.

The following images are meant to illustrate an imbalanced sortByKey (Figure 6-4),
and a balanced sortByKey (Figure 6-5).

Figure 6-4. SortByKey memory errors

Figure 6-5. SortByKey balanced shuffle
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4 Using a distributed reduceByKey could have reduced this to simply the number of columns at the cost of a
shuffle.

Back to Goldilocks (Again)
Goldilocks has told us that her data was evenly distributed and that all the columns
had “lots” of distinct values. However, when she tried to run the algorithm on her
data, it failed. When we observed the algorithm running in the web UI, we noticed
that some partitions were running much slower than the others, and sometimes run‐
ning out of memory. This indicated that we had too many duplicate keys. This was
surprising because in our implementation, the keys were the values of the data (dou‐
bles). However, further analysis revealed that in most of the columns, about twenty-
five percent of the values were zeros. Thus, nearly one in four keys in our sort was a
zero value. This meant that 1/4 of the records in the RDD we were sorting clustered
around zero. Consequently, no matter how many partitions we used, a quarter of the
records were being shuffled to the first few partitions.

Goldilocks Version 4: Reduce to Distinct on Each Partition
Rather than trying to partition those pairs differently, we realized that the last four
steps of the algorithm could be modified to work on input of tuples of ((cell
value, column index), count). Then, in the first step, rather than mapping the
records on each partition to (cell value, column index) pairs, we could map each
partition to distinct pairs, keeping track of the number of times each ((cell value,
column index)) pair appeared on that partition. By mapping to distinct on each
partition, we reduce the number of duplicate keys without incurring a shuffle (as
would a distributed distinct call on the entire RDD).

After creating these ((value, columnIndex), count) tuples, we know that although
we might have some repeated keys, we introduce a theoretical limit on the number of
duplicate keys. Specifically, if the same value is present in a column on each partition,
the maximum number of duplicate keys is (the number of columns * the number of
partitions).4 Not only does this input step balance the data so it can be partitioned
more effectively, it also dramatically reduces the total number of records to be shuf‐
fled. In the Goldilocks case, where 25% of the rows were zero, we now have roughly
75% the number of tuples to sort as the previous iteration of our solution.

Aggregate to ((cell value, column index), count) on each partition

Example 6-21 is the code for this first step. Rather than mapping to (cell_value,
column_index) pairs, we mapped to ((cell value, column index), count) on
each partition. We were transforming the columnar data into pairs by using a mapPar
titions step. Now, rather than doing a flatMap of each row in the original data, we
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update a HashMap whose keys are the (value, index) pairs and whose values are the
number of times that (cell value, column index) pair appears in that partition.
Even if each column on a given partition has all unique values, we expect that this
solution will not cause out-of-memory errors. We are making the HashMap on each
partition, and so the size of the HashMap should still be smaller than the iterator of all
the records. However, if we did have all distinct values, this might not be the case,
because a hash map is a much less memory-efficient data structure than an iterator.

Example 6-21. Goldilocks version 4, aggregate on each partition

  def getAggregatedValueColumnPairs(dataFrame: DataFrame):
      RDD[((Double, Int), Long)] = {

    val aggregatedValueColumnRDD = dataFrame.rdd.mapPartitions(rows => {
      val valueColumnMap = new mutable.HashMap[(Double, Int), Long]()
      rows.foreach(row => {
        row.toSeq.zipWithIndex.foreach{ case (value, columnIndex) =>
          val key = (value.toString.toDouble, columnIndex)
          val count = valueColumnMap.getOrElseUpdate(key, 0)
          valueColumnMap.update(key, count + 1)
        }
      })

      valueColumnMap.toIterator
    })

    aggregatedValueColumnRDD
  }

Sort and find rank statistics
The rest of the function is similar to the original version. We simply adjust for keep‐
ing track of the number of times the pair appears rather than assuming that each pair
in the sorted RDD occurred once. The updated code is shown in Examples 6-22,
6-23, 6-24, and 6-25, with Example 6-26 bringing everything together.

Example 6-22. Goldilocks version 4, count values per column on each partition

  private def getColumnsFreqPerPartition(
    sortedAggregatedValueColumnPairs: RDD[((Double, Int), Long)],
    numOfColumns : Int): Array[(Int, Array[Long])] = {

    val zero = Array.fill[Long](numOfColumns)(0)

    def aggregateColumnFrequencies(
      partitionIndex : Int, pairs : Iterator[((Double, Int), Long)]) = {
      val columnsFreq : Array[Long] = pairs.aggregate(zero)(
        (a : Array[Long], v : ((Double, Int), Long)) => {
          val ((value, colIndex), count) = v
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          a(colIndex) = a(colIndex) + count
          a},
        (a : Array[Long], b : Array[Long]) => {
          a.zip(b).map{ case(aVal, bVal) => aVal + bVal}
        })

      Iterator((partitionIndex, columnsFreq))
    }

    sortedAggregatedValueColumnPairs.mapPartitionsWithIndex(
      aggregateColumnFrequencies).collect()
  }

Example 6-23. Goldilocks version 4, determine locations of rank statistics on each
partition

  private def getRanksLocationsWithinEachPart(targetRanks : List[Long],
         partitionColumnsFreq : Array[(Int, Array[Long])],
         numOfColumns : Int) : Array[(Int, List[(Int, Long)])]  = {

    val runningTotal = Array.fill[Long](numOfColumns)(0)

    partitionColumnsFreq.sortBy(_._1).map { case (partitionIndex, columnsFreq)=>
      val relevantIndexList = new mutable.MutableList[(Int, Long)]()

      columnsFreq.zipWithIndex.foreach{ case (colCount, colIndex)  =>
        val runningTotalCol = runningTotal(colIndex)

        val ranksHere: List[Long] = targetRanks.filter(rank =>
          runningTotalCol < rank && runningTotalCol + colCount >= rank)
        relevantIndexList ++= ranksHere.map(
          rank => (colIndex, rank - runningTotalCol))

        runningTotal(colIndex) += colCount
      }

      (partitionIndex, relevantIndexList.toList)
    }
  }

Example 6-24. Goldilocks version 4, filter for rank statistics

  private def findTargetRanksIteratively(
          sortedAggregatedValueColumnPairs : RDD[((Double, Int), Long)],
          ranksLocations : Array[(Int, List[(Int, Long)])]): RDD[(Int, Double)] = {

    sortedAggregatedValueColumnPairs.mapPartitionsWithIndex((partitionIndex : Int,
      aggregatedValueColumnPairs : Iterator[((Double, Int), Long)]) => {

      val targetsInThisPart: List[(Int, Long)] = ranksLocations(partitionIndex)._2
     if (targetsInThisPart.nonEmpty) {
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       FindTargetsSubRoutine.asIteratorToIteratorTransformation(
         aggregatedValueColumnPairs,
         targetsInThisPart)
     } else {
       Iterator.empty
     }
    })
  }

Example 6-25. Goldilocks version 4, iterator-to-iterator transformation to filter for the
rank statistics

  def asIteratorToIteratorTransformation(
    valueColumnPairsIter : Iterator[((Double, Int), Long)],
    targetsInThisPart: List[(Int, Long)] ): Iterator[(Int, Double)] = {

    val columnsRelativeIndex = targetsInThisPart.groupBy(_._1).mapValues(_.map(_._2))
    val columnsInThisPart = targetsInThisPart.map(_._1).distinct

    val runningTotals : mutable.HashMap[Int, Long]= new mutable.HashMap()
     runningTotals ++= columnsInThisPart.map(columnIndex => (columnIndex, 0L)).toMap

    //filter out the pairs that don't have a column index that is in this part
    val pairsWithRanksInThisPart = valueColumnPairsIter.filter{
      case (((value, colIndex), count)) =>
        columnsInThisPart contains colIndex
     }

    // map the valueColumn pairs to a list of (colIndex, value) pairs that correspond
    // to one of the desired rank statistics on this partition.
    pairsWithRanksInThisPart.flatMap{

      case (((value, colIndex), count)) =>

          val total = runningTotals(colIndex)
          val ranksPresent: List[Long] = columnsRelativeIndex(colIndex)
                                         .filter(index => (index <= count + total)
                                           && (index > total))

          val nextElems: Iterator[(Int, Double)] =
            ranksPresent.map(r => (colIndex, value)).toIterator

          //update the running totals
          runningTotals.update(colIndex, total + count)
          nextElems
    }
  }

Putting all the code together, we have a final solution to the Goldilocks problem
(Example 6-26).
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Example 6-26. Goldilocks with hash map

  def findRankStatistics(dataFrame: DataFrame, targetRanks: List[Long]):
    Map[Int, Iterable[Double]] = {

    val aggregatedValueColumnPairs: RDD[((Double, Int), Long)] =
      getAggregatedValueColumnPairs(dataFrame)
    val sortedAggregatedValueColumnPairs = aggregatedValueColumnPairs.sortByKey()
    sortedAggregatedValueColumnPairs.persist(StorageLevel.MEMORY_AND_DISK)

    val numOfColumns = dataFrame.schema.length
    val partitionColumnsFreq =
      getColumnsFreqPerPartition(sortedAggregatedValueColumnPairs, numOfColumns)
    val ranksLocations  =
      getRanksLocationsWithinEachPart(targetRanks,
        partitionColumnsFreq, numOfColumns)

    val targetRanksValues =
      findTargetRanksIteratively(sortedAggregatedValueColumnPairs, ranksLocations)
    targetRanksValues.groupByKey().collectAsMap()
  }

As expected, this solution led to a 4× to 5× speed up of an empty cluster.

Goldilocks postmortem
Given the task of finding an arbitrary number of rank statistics by group (column),
we have presented five solutions:

• “Goldilocks Version 0: Iterative Solution” on page 128. Our first solution itera‐
tively looped through each group and performed a distributed sort, resulting in
one stage and one expensive distributed sort per group.

• “Goldilocks Version 1: groupByKey Solution” on page 132. The next solution
used groupByKey shuffle records associated with the same group onto the same
partition. Then we were able to sort each group in one stage by using mapParti
tions to sort the values in each group.

• “Goldilocks Version 2: Secondary Sort” on page 154. Using the secondary sort
technique, we improved our groupByKey solution by replacing the groupByKey
and sorting steps with the repartitionAndSortWithinPartitions function to
push the work of sorting each group into the shuffle stage.

• “Goldilocks Version 3: Sort on Cell Values” on page 162. Next, we realized that it
was possible to solve the problem using only one sort on the value of each record,
rather than the group. We developed a solution that keyed the records by value
(rather than by group/column index), sorted all the records, and then performed
a series of narrow transformations to collect the results. We expected the new
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sorting keys (the values in the columns) to contain fewer duplicates than the the
size of each group, which we used as a key in version 2.

• “Goldilocks Version 4: Reduce to Distinct on Each Partition” on page 165.
Finally, upon realizing that we had a high number of duplicate records in each
group, we modified the previous solution to perform a map-side reduction
before sorting the data. This solution had better results with our client’s skewed
data.

We found that performance was dependent mostly on three characteristics of the
input data: 1) the number of original records, 2) the number of groups (columns in
this case) to compute the metrics on, and 3) the percentage of duplicate records by
group. Note that these metrics are all relative to the size and shape of the hardware
you are computing on. A small number of records really means that the records fit
comfortably in the computational memory of all of the executors.

“Goldilocks Version 4: Reduce to Distinct on Each Partition” on page 165 is not the
best solution for all input data. The only one of these five solutions that is always
“bad” is the groupByKey solution (version 1). We would expect that version 1 should
perform worse than the repartitionAndSortWithinPartitions (version 2) solution
in all cases due to the limitations of groupByKey and the advantages of secondary sort
(see “Secondary Sort and repartitionAndSortWithinPartitions” on page 149). The
remaining four versions are all desirable in some cases.

Version 0 uses the value in each group to sort (as do solutions 3 and 4). Thus it is
optimal there is only one group, because it doesn’t require extra passes through the
data.

Version 2 partitions by group. Thus it is optimal if there are many groups, and each
group fits easily in memory on one executor. If the groups are sufficiently small, it
would outperform versions 3 and 4, which sort on value and require three narrow
transformations to determine the correct results, because this solution requires fewer
passes through the data. With enough groups and rank statistics this solution may
also be more likely to succeed than versions 3 and 4, both of which require keeping a
hash map of rank statistics for each group in memory.

Version 3 partitions by values across all groups. Thus it is optimal if each group is
very large, and there are few duplicate values across the columns. Unlike version 2,
only the records with duplicate values need to be on one partition. Assuming that the
number of duplicate values is less than the maximum group size this will lead to bet‐
ter parallelization.

Version 4 uses a narrow transformation to aggregate distinct values by group on the
input partitions, then partitions by distinct values (like solution 3). Solution 4 is bet‐
ter than 3 only when there are many duplicate values in the columns. However, if all
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values are unique, this operation provides no benefit and risks causing memory
errors by creating a hash map of all the values on each partition.

In our use case, we had input data containing several thousand groups with 300 mil‐
lion records each. In each column (group) we saw that about 25% of records were
identical. Versions 0, 1, and 2 did not complete on a 10-node, crowded cluster. Ver‐
sion 3 did complete, but version 4 led to a 4× improvement in production over ver‐
sion 3.

Conclusion
In this chapter, we have seen how to use functions in the PairRDDFunctions and
OrderedRDDFunctions classes in ways that are more likely to succeed at scale. Much
of the chapter has focused on specific techniques for working with wide transforma‐
tions. We focused on some of the causes of memory errors during the shuffle stage
such as avoiding aggregation operations like groupByKey that do not reduce the space
needed to store all the records associated with each key. We have learned about parti‐
tioning: how thinking ahead toward the next key/value transformation and doing
smart partitioning can reduce the number of shuffles we need. We have focused on
some strategies to do fewer shuffles: using smart partitioning, maintaining partition
information with narrow transformations, and leveraging co-location for joins.
When shuffles are required, we have covered some techniques for reducing the cost
of those shuffles. In particular, we have shown that unbalanced data, particularly a
high number of duplicate values per key, is likely to slow down shuffles and cause
memory errors.

We hope that in addition to presenting some tricks for improving the performance of
RDD transformations, this chapter provides some tools for reconceptualizing prob‐
lem solving with Spark. By focusing on the Goldilocks use case, we have tried to show
that writing performant Spark code sometimes requires a new kind of thinking. Sim‐
ply stringing together the set of API calls that most obviously describe what you are
trying to do often leads to a solution such as the one presented in “Goldilocks Ver‐
sion 1: groupByKey Solution” on page 132: an implementation that succeeds on rela‐
tively small, clean inputs and fails in the wild west of real-world data. Instead, we
hope to show that despite the relative simplicity of writing distributed code with
Spark, the best results can be achieved only with a close eye to how those distributed
computations will be performed. We hope to encourage you to think of keys in Spark
not as the index or category for the records, but as the axis of parallelization for the
computational load. We encourage you wherever possible to design Spark routines
with as much knowledge as possible about the size, distribution, and complexity of
the data they are processing. Philosophically, we want to demonstrate how high-
performance code often requires big rather than small changes—and that the most
performant code is not always the cleanest.
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1 There are multiple competing R APIs, but for the purposes of performance they share the same underlying
design.

2 Just because support is first party does not mean it will be fast; in some cases third-party bindings have taken
interesting work to minimize overhead that has not been implemented in the first-party languages.

3 CUDA is a specialized language for parallel GPU programming from NVIDIA.

CHAPTER 7

Going Beyond Scala

Working in Spark doesn’t mean limiting yourself to Scala, or even limiting yourself to
the JVM, or languages that Spark explicitly supports. Spark has first-party APIs for
writing driver programs and worker code in R,1 Python, Scala, and Java with third-
party bindings2 for additional languages including JavaScript, Julia, C#, and F#.
Spark’s language interoperability can be thought of in two tiers: one is the worker
code inside of your transformations (e.g., the lambda’s inside of your maps) and the
second is being able to specify the transformations on RDDs/Datasets (e.g., the
driver program). This chapter will discuss the performance considerations of using
other languages in Spark, and how to effectively work with existing libraries.

Often the language you will choose to specify the code inside of your transformations
will be the same as the language for writing the driver program, but when working
with specialized libraries or tools (such as CUDA3) specifying our entire program in
one language would be a hassle, even if it was possible. Spark supports a range of lan‐
guages for use on the driver, and an even wider range of languages can be used inside
of our transformations on the workers. While the APIs are similar between the lan‐
guages, the performance characteristics between the different languages are quite dif‐
ferent once they need to execute outside of the JVM. We will discuss the design
behind language support and how the performance difference can impact your work.
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Generally the non-JVM language binding calls the Java interface for Spark using an
RPC mechanism, such as Py4J, passing along a serialized representation of the code
to be executed on the worker. Regardless of the language used to specify the driver
program, the Spark workers will execute in the JVM and if necessary call the
language-specific worker program. If the language you’re looking for doesn’t have
Spark driver binding available, remember you can write your transformations to call
another language on the workers.

On the worker side, the Spark worker is always running in the JVM, and if necessary
will start another process for the target and copy the required data and result. This
copying is expensive, but Spark’s dependency DAG and clever pipelining minimize
the number of times the copying needs to occur. The techniques that the different
language APIs use for interfacing their worker code are similar to the same techni‐
ques you can use to call your custom code regardless of the language of your driver.

There are many ways to go outside the JVM, ranging from Java Native Interface
(JNI), Unix pipes, or interfacing with long-running companion servers over sockets.
These are the same techniques used inside of Spark’s internals when interfacing with
other languages. For example, JNI is used for calling some linear algebra libraries and
Unix pipes are used for interfacing with Python code on the workers. The most effi‐
cient solution often depends on whether there are multiple transformations that will
need to be evaluated, environment and language setup cost, and the computational
complexity of the transformations. Regardless of which specific approach you choose
to integrate other languages outside the JVM, these all currently require copying your
data from the JVM to the runtime of your target language. Work on both Tungsten
and Arrow integration means that in the future it will be easier to work with data
from Spark outside of the JVM.

Not all languages require going outside of the JVM, and using these languages with
Spark can avoid the expensive copy of the data from the Spark worker to the target
language. Some languages take a mixed approach, like the Eclair JS project (see “How
Eclair JS Works” on page 190), which executes the worker inside of the JVM but leaves
the driver program outside of the JVM. While there is, of course, some overhead in
having the driver program outside of the JVM, the amount of data that needs to be
passed between the Scala driver and target driver is much smaller compared to the
amount of data processed by even just one of the workers.

Beyond Scala within the JVM
This section will look at how to access the Spark APIs from different languages
within the JVM and some of the performance considerations of going outside of
Scala. Even if you are going outside of the JVM, it is useful to understand this section
since the non-JVM languages often depend on the Java APIs rather than the Scala
APIs.
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Working in other languages doesn’t always mean having to move beyond the JVM,
and staying within the JVM can have many performance benefits—mostly from not
having to copy data. While you don’t necessarily need special bindings or wrappers to
access Spark outside of Scala, calling Scala code can be difficult from other languages.
Spark supports Java 8 lambdas for use within transformations, and users with older
versions of the JDK can implement the corresponding interface from
org.apache.spark.api.java.function. Even when data doesn’t need to be copied,
working in a different language can have small, yet important, performance consider‐
ations.

The difficulty with accessing the Scala APIs is especially true for accessing functions
with class tags or using functionality provided through implicit conversions (such as
all of the Double and Tuple specific functionality on RDDs). For functionality that
depends on implicit conversions, equivalent classes are often provided along with
explicit transformations to these concrete classes. For functions that depend on class
tags, “fake” class tags (e.g., AnyRef) can be supplied (and are automatically supplied
often by wrappers). Using the concrete class instead of the implicit conversion gener‐
ally doesn’t add any overhead, but the fake class tags can limit some of the compiler
optimizations.

The Java API is kept quite close to the Scala API in terms of features, with only the
occasional functionality or Developer API not being available. Support for other JVM
languages, like Clojure with Flambo and sparkling, is done using the Java APIs
instead of calling the Scala APIs directly. Since most of the language bindings, even
non-JVM languages like Python and R, go through the Java APIs, it is useful to
understand the Java APIs.

The Java APIs closely resemble the Scala APIs, while avoiding depending on class
tags or implicit conversions. The lack of implicit conversions means that rather than
automatically converting RDDs containing Tuples or doubles to special classes with
additional functions, explicit function conversions must be used (such as mapToDou
ble and mapToPair). These functions are only defined on Java RDDs; thankfully, for
interoperability, these special types are simply wrappers of Scala RDDs. These special
functions also return different types, such as JavaDoubleRDD and JavaPairRDD, which
have the functionality that is provided by the implicit conversions in Scala.

Let’s revisit the canonical word count example using the Java APIs (Example 7-1).
Since it can sometimes be convoluted to call the Scala API from Java, Spark’s Java
APIs are mostly implemented in Scala while hiding class tags and implicit conver‐
sions. This allows the Java wrappers to be a very thin layer, consisting of only a few
lines on average, with very little reimplementation required.
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Example 7-1. Java Word count example

import scala.Tuple2;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;

import java.util.regex.Pattern;
import java.util.Arrays;

public final class WordCount {
  private static final Pattern pattern = Pattern.compile(" ");

  public static void main(String[] args) throws Exception {
    JavaSparkContext jsc = new JavaSparkContext();
    JavaRDD<String> lines = jsc.textFile(args[0]);
    JavaRDD<String> words = lines.flatMap(e -> Arrays.asList(
                                            pattern.split(e)).iterator());
    JavaPairRDD<String, Integer> wordsIntial = words.mapToPair(
      e -> new Tuple2<String, Integer>(e, 1));
  }
}

Spark supports Java 8 lambdas for most transformations. If you are
working with an earlier version of Java you will need to create
instances from org.apache.spark.api.java.function.package. The
function names are generally similar to the name of the transfor‐
mation (e.g., FlatMapFunction and DoubleFunction).

Sometimes you may want to convert your Java RDDs to Scala RDDs or vice versa.
Most commonly this is for libraries that require or return Scala RDDs, but sometimes
core Spark functionality may not yet be available in the Java API and converting your
RDD to a Scala RDD is an easy way to access the new functionality.

If you have a Java RDD you want to pass to a Scala library expecting a regular Spark
RDD, you can access the underlying Scala RDD with rdd(). Most often this is suffi‐
cient to pass the resulting RDD to whichever Scala library you need to call; some
notable exceptions are Scala libraries that depend on implicit conversions of the con‐
tents of the RDD or class tag information. In this case writing a small wrapper in
Scala can be the simplest way to access the implicit conversions. If a Scala shim is out
of the question, explicitly calling the corresponding function on the JavaConverters
object, construct a fake class tag.
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To construct a fake class tag you can use scala.reflect.ClassTag$.MODULE$.Any
Ref() or get the actual class tag with scala.reflect.ClassTag$.MODULE

$.apply(CLASS) as illustrated in Examples 7-2 and 7-3.

Going from a Scala RDD to a Java RDD often requires class tag information more
than most Spark libraries. This is because, while the different JavaRDDs expose public
constructors that take Scala RDDs as arguments, these are intended to be called from
within Scala and therefore expect class tag information.

If you are in a mixed language project or library, consider con‐
structing the Java RDD in the Scala where the class tag information
is more easily available.

Fake class tags are most commonly used in generic or templated code in which you
don’t know the exact types at compile time. Using fake class tags often work,
although some specialization may be lost in the Scala side; very occasionally the Scala
code depends on correct class tag information. In this case you must use a real class
tag. In most cases, using a real class tag is not substantially more effort and can offer
performance advantages, so use them when possible.

Example 7-2. Java/Scala RDD interoperability with fake class tag

  public static JavaPairRDD wrapPairRDDFakeCt(
    RDD<Tuple2<String, Object>> rdd) {
    // Construct the class tags by casting AnyRef - this would be more commonly done
    // with generic or templated code where we can't explicitly construct the correct
    // class tag as using fake class tags may result in degraded performance.
    ClassTag<Object> fake = ClassTag$.MODULE$.AnyRef();
    return new JavaPairRDD(rdd, fake, fake);
  }

Example 7-3. Java/Scala RDD interoperability

  public static JavaPairRDD wrapPairRDD(
    RDD<Tuple2<String, Object>> rdd) {
    // Construct the class tags
    ClassTag<String> strCt = ClassTag$.MODULE$.apply(String.class);
    ClassTag<Long> longCt = ClassTag$.MODULE$.apply(scala.Long.class);
    return new JavaPairRDD(rdd, strCt, longCt);
  }

Both the Spark SQL and the ML pipeline APIs are mostly unified between Scala and
Java. There are still Java-specific helper functions in which the equivalent Scala func‐
tion is difficult to call. Some examples of this are the various numeric functions, like
plus minus, etc., on Column as the overloaded Scala equivalents (+, -) cannot be
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easily accessed. Rather than having JavaDataFrame and a JavaSQLContext, the meth‐
ods required for Java access are available on the regular DataFrame and SQLContext.
This can be somewhat confusing, as some of the methods that will appear in the Java‐
Doc may not be usable from Java, but in those cases similarly named functions will be
provided to be called from Java.

Java UDFs, and by extension most other non-Scala languages, require specifying the
return type of your function as it can’t be inferred in the same way it is done in Scala
(Example 7-4).

Example 7-4. Sample Java UDF

    sqlContext.udf()
      .register("strlen",
                (String s) -> s.length(), DataTypes.StringType);

While the types required by the Scala and Java APIs are different, for the most part,
the Java collection types can be wrapped without requiring an extra copy. For itera‐
tors, the wrap conversion can be done lazily as the elements are accessed, allowing
Spark to spill the data as needed (as discussed in “Iterator-to-Iterator Transforma‐
tions with mapPartitions” on page 98). This is especially important since for many
simple operations the cost of copying the data can quickly dominate the actual com‐
putation required.

In earlier versions of Spark, the Java API mistakenly required
Iterable rather than Iterator, which limited the ability to create
iterator-to-iterator transformations in Java.

Beyond Scala, and Beyond the JVM
Going beyond the JVM greatly opens up the scope of different languages available for
you to work in. However, in its current architecture, going outside of the JVM in
Spark—especially on the workers—can involve a substantial performance cost of
copying data on worker nodes between the JVM and the target language. For com‐
plex operations the cost of copying the data is relatively low, but for simpler opera‐
tions the cost of copying the data can easily double the computation cost.

The first non-JVM language to be directly supported inside of Spark is Python, and
its API and interface have become a model that other non-JVM languages have based
their implementations on.
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How PySpark Works
PySpark connects to JVM Spark using a mixture of pipes on the workers and Py4J, a
specialized library for Python/Java interoperability, on the driver. This relatively sim‐
ple architecture hides a large number of complexities involved in making PySpark
work, as Figure 7-1 shows. One of the bigger challenges is that even once the data has
been copied from the Python worker to the JVM, it isn’t in a form the JVM can easily
parse. This requires special handling on both the Python worker and Java to ensure
sufficient information for things like partitioning is available in the JVM.

Figure 7-1. PySpark diagram

After the initial reading from persistent storage (like HDFs or S3)
and between any shuffle, the data on the workers needs to be
passed between the JVM and Python.

Is IPython your jam? In Spark 2.0+ the old syntax to get an IPy‐
thon notebook has changed from IPYTHON_OPTS="notebook" to
PYSPARK_DRIVER_PYTHON="ipython" PYSPARK_DRIVER_ PYTHON_

OPTS="notebook".
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PySpark RDDs
Transferring the data to and from the JVM and starting the Python executor has sig‐
nificant overhead. Using the DataFrame/Dataset API avoids many of the perfor‐
mance challenges with the PySpark RDD API by keeping the data inside the JVM for
as long as possible.

Copying the data from the JVM to Python is done using sockets and pickled bytes. A
more general version of this, for talking to programs in other languages, is available
through the PipedRDD interface illustrated in “Using Pipe and Friends” on page 191.

Since piping the data back and forth for each transformation would be expensive,
PySpark pipelines Python transformations inside of the Python interpreter when pos‐
sible, so a filter then a map will be chained together on the iterator of Python objects
using a specialized PipelinedRDD. Even when the data has to be shuffled and PySpark
is unable to chain our transformations inside of a single worker VM, the Python
interpreter is capable of being reused so the interpreter startup overhead doesn’t fur‐
ther slow us down.

This is only part of the puzzle. Normal PipedRDDs work on Strings, which can’t
easily be shuffled since there is no inherent key. The approach taken in PySpark, and
mirrored in many other language bindings, is a special PairwiseRDD in which the key
must be a long and the key only is deserialized with custom Scala code to parse the
Python value. This deserialization is not overly expensive, but does serve to illustrate
that for the most part, Spark Scala treats the results of Python as opaque bytes arrays.

Since there is some overhead associated with serialization and
deserialization, PySpark uses a batch serializer, and this can occa‐
sionally result in unexpected effects (like when repartitioning
PySpark will not split up things in the same batch).

For all its simplicity this approach to integrating works surprisingly well, with the
majority of operations on Scala RDDs available in Python. Some of the more difficult
places are interacting with libraries, such as MLlib, and loading and saving from dif‐
ferent sources.

Interacting with different formats is another restriction, as much of Spark’s load/save
code is based on Hadoop’s Java interfaces. This means that any data loaded is initially
loaded into the JVM and then transferred to Python.

For interacting with MLlib, generally two approaches have been taken: either a speci‐
alized data type is used in PySpark with equivalent Scala decoders, or the algorithm is
reimplemented in Python. These problems are avoided with Spark ML, which uses
the DataFrame/Dataset interface that generally keeps the data stored in the JVM.
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PySpark DataFrames and Datasets

DataFrames and Datasets avoid many of the performance downsides of the Python
RDD API by keeping the data inside the JVM for as long as possible. The same
benchmark we did to illustrate DataFrames’ general improvement over RDDs
(Figure 3-1) shows a greater difference when rerun in Python (Figure 7-2).

Figure 7-2. Spark SQL performance in Python

For many operations on DataFrames and Datasets, the data may never actually need
to leave the JVM, although using Python UDFs, UDAFs, or lambdas naturally
requires transferring some of the data to the JVM. This results in a simplified archi‐
tecture diagram for many operations, which instead of Figure 7-1, looks like
Figure 7-3.
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Figure 7-3. PySpark SQL diagram

PySpark doesn’t use Jython because it has been found that a lot of
Python users need access to libraries, like numpy, scipy, and pan‐
das, which do not work well in Jython.

Some early work is being investigated to see if Jython can be used
to accelerate Python UDFs, which don’t depend on C extensions.
See SPARK-15369 for updates.

Accessing the backing Java objects and mixing Scala code
An important implication of the PySpark architecture is that many of Spark’s Python
classes simply exist as wrappers to translate your Python calls to the JVM.

If you work with Scala/Java developers and you wish to collaborate, preexisting wrap‐
pers won’t exist to call your own code—but you can register Java/Scala UDFs and
then use them from Python. Starting in Spark 2.1 this can be done with the register
JavaFunction utility on the sqlContext.

Sometimes these wrappers don’t do everything you need, and since Python doesn’t
have strong protections around accessing private methods, you can jump directly
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into the JVM. The same techniques can be used to call your own JVM code, and with
a bit of work translate the results into Python objects.

While the Py4J API is accessible, these techniques depend on
implementation details of PySpark, and these implementation
details may change between releases.

Thinking back to “Large Query Plans and Iterative Algorithms” on page 70, we sug‐
gested that it was important to use the JVM version of DataFrames and RDDs to cut
the query plan. This is a workaround for when a query plan becomes too large for the
Spark SQL optimizer to process, by putting an RDD in the middle the SQL optimizer
can’t see back past the point where the data is in an RDD. While you could accom‐
plish the same thing using public Python APIs, you would lose much of the advan‐
tage of DataFrames as the entire data would need to be round-tripped through the
Python workers. Instead, by using some of the internal APIs, you can cut the lineage
from Python while keeping the data in the JVM (as shown in Example 7-5).

Example 7-5. Cut large DataFrame query plan with Python

def cutLineage(df):
    """
    Cut the lineage of a DataFrame - used for iterative algorithms

    .. Note: This uses internal members and may break between versions
    >>> df = rdd.toDF()
    >>> cutDf = cutLineage(df)
    >>> cutDf.count()
    3
    """
    jRDD = df._jdf.toJavaRDD()
    jSchema = df._jdf.schema()
    jRDD.cache()
    sqlCtx = df.sql_ctx
    try:
        javaSqlCtx = sqlCtx._jsqlContext
    except:
        javaSqlCtx = sqlCtx._ssql_ctx
    newJavaDF = javaSqlCtx.createDataFrame(jRDD, jSchema)
    newDF = DataFrame(newJavaDF, sqlCtx)
    return newDF

In general, the convention for most python objects is _j[shortname] to access the
underlying Java version. So, for example, the SparkContext has _jsc to get at the
underling Java SparkContext. This is only available on the driver program, so if any

Beyond Scala, and Beyond the JVM | 183



PySpark objects are sent to the workers you won’t be able to access the underlying
Java component and large parts of the API will not work.

The Python APIs generally wrap Java versions of the API rather
than directly wrapping the Scala versions.

If you want to access a JVM Spark class that does not already have a Python wrapper,
you can directly use the Py4J gateway on the driver. The SparkContext contains a ref‐
erence to the gateway in _gateway. Arbitrary Java objects can be accessed with
sc._gateway.jvm.[fulljvmclassname].

Py4J depends heavily on reflection to determine which methods to
call. This is normally not a problem, but can become confusing
with numeric types. Attempting to call a Scala function expecting a
Long with an Integer will result in an error message about not
being able to find the method, even though in Python the distinc‐
tion normally would not matter.

The same technique works for your own Scala classes provided they are on the class
path. You can add JARs to the class path with spark-submit with --jars or by set‐
ting the spark.driver.extraClassPath configuration property. Example 7-6, which
we used to generate Figure 7-2, is intentionally structured to use the existing Scala
code to generate the performance testing data.

Example 7-6. Calling non-Spark JVM classes with Py4J

    sc = sqlCtx._sc
    # Get the SQL Context, 2.1, 2.0 and pre-2.0 syntax - yay internals :p
    try:
        try:
            javaSqlCtx = sqlCtx._jsqlContext
        except:
            javaSqlCtx = sqlCtx._ssql_ctx
    except:
        javaSqlCtx = sqlCtx._jwrapped
    jsc = sc._jsc
    scalasc = jsc.sc()
    gateway = sc._gateway
    # Call a java method that gives us back an RDD of JVM Rows (Int, Double)
    # While Python RDDs are wrapped Java RDDs (even of Rows) the contents are
    # different, so we can't directly wrap this.
    # This returns a Java RDD of Rows - normally it would better to
    # return a DataFrame directly, but for illustration we will work
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    # with an RDD of Rows.
    java_rdd = (gateway.jvm.com.highperformancespark.examples.
                tools.GenerateScalingData.
                generateMiniScaleRows(scalasc, rows, numCols))
    # Schemas are serialized to JSON and sent back and forth
    # Construct a Python Schema and turn it into a Java Schema
    schema = StructType([
        StructField("zip", IntegerType()),
        StructField("fuzzyness", DoubleType())])
    # 2.1 / pre-2.1
    try:
        jschema = javaSqlCtx.parseDataType(schema.json())
    except:
        jschema = sqlCtx._jsparkSession.parseDataType(schema.json())
    # Convert the Java RDD to Java DataFrame
    java_dataframe = javaSqlCtx.createDataFrame(java_rdd, jschema)
    # Wrap the Java DataFrame into a Python DataFrame
    python_dataframe = DataFrame(java_dataframe, sqlCtx)
    # Convert the Python DataFrame into an RDD
    pairRDD = python_dataframe.rdd.map(lambda row: (row[0], row[1]))
    return (python_dataframe, pairRDD)

Attempting to use the Py4J bridge inside of your transformations
will fail at runtime.

While many of the Python classes are simply wrappers of Java objects, not all Java
objects can directly be wrapped into Python objects and then used in Spark. For
example, objects in PySpark RDDs are represented as pickled strings, which can only
be easily parsed in Python. Thankfully, DataFrames are standardized between the lan‐
guages, so provided you can convert your data into a DataFrame, you can then wrap it
in Python and use it directly as a Python DataFrame or convert the Python DataFrame
to a Python RDD.

Scala UDFs and UDAFs can be used from Python without having
to go through the Py4J API.

PySpark dependency management
Often a large part of the reason one wants to use a language other than Scala is for the
libraries that are available with that language. In addition to language-specific libra‐
ries, you may need to include libraries for Spark itself to use, especially when working
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with different data formats. There are a few different options for using both Spark-
specific and language-specific libraries in PySpark.

Spark Packages is a system that allows us to easily include JVM dependencies with
Spark. A common reason for wanting additional JVM libraries in PySpark is support
for additional data formats.

If you are working in the Scala shell you can use the --packages command-line argu‐
ment to specify the Maven coordinates of a package you want in the shell. If you are
building a Scala package you also add any requirements to your assembly .jar.

For Python, you can create a Java or Scala project with your JVM dependencies and
add the .jar with --jar. If you’re working in the PySpark shell command-line argu‐
ments aren’t allowed, so you can instead specify the spark.jars.packages configu‐
ration variable.

When using Spark Packages the dependencies are automatically fetched from Maven
and distributed to the cluster. If your JVM dependency is not available in Maven, you
can use the same technique we discuss next for adding local Python dependencies.

Adding local dependencies with PySpark can be done at both job submission time
and dynamically using the SparkContext. Local dependencies can be .jar files, for
JVM requirements, or .zip and .egg for Python dependencies, which are automatically
added to the PYTHONPATH.

There is currently work under way to allow Python Spark pro‐
grams to specify required pip packages and have them auto
installed, but the proposal has not yet been accepted. See the pull
request and SPARK-5929 for the status of this proposal.

For individuals working with a CDH cluster, it is now possible to easily add packages
with Anaconda. Cloudera’s post Making Python on Apache Hadoop Easier details
how to install the packages on your cluster. To make the resulting packages accessible
to Apache Spark, all you need to do is set the shell environment variable
PYSPARK_PYTHON to /opt/cloudera/parcels/Anaconda/bin/python either with
export in your shell profile or in your spark-env.sh file.

If none of the above work for your cluster configuration there are a few remaining
options, all of which are somewhat less than ideal. The simplest, but very hacky,
approach is to simply have your transformations explicitly import the package and
on failure, perform a pip installation. Similar approaches can be done with broadcast
variables or a setup map at the start of the program. Failing that you can ask your
cluster administrator to install the package systemwide with parallel-ssh or similar, as
shown in Example 7-7.
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Example 7-7. Parallel ssh install pip packages

parallel-ssh pip install -h ./conf/slaves

Installing PySpark
First-party languages for Spark don’t require any separate installation, but as men‐
tioned for Python packages, Python has its own mechanisms for dealing with package
management.

Installation with pip was added in PySpark version 2.1, and at that point you can
download the PySpark package from the Apache download mirror and run pip
install pyspark-2.1.0.tar.gz, allowing virtualenv support as well. Future ver‐
sions of PySpark will also likely be directly published PyPi allowing for an even sim‐
pler pip install pyspark. Once you have PySpark pip installed you can then start
your favorite Python interpreter and import pyspark like any other package or start
the PySpark shell with pyspark).

Its important to note that pip installing Spark is optional. If you wish you can run
PySpark from a regular Spark setup without pip installation (although then you must
use spark-submit or pyspark from the Spark bin directory).

How SparkR Works
SparkR takes a similar approach to PySpark, but does not currently expose the ability
to perform arbitrary R code in the workers. While a similar PipedRDD wrapper exists
for R as it does for Python, it is kept internal and the only public interface for work‐
ing with R is through DataFrames.

Of the directly supported languages, SparkR is the furthest away
from Scala Spark in terms of feature completeness. This gap will
likely close over time, but be careful when selecting SparkR to
ensure it has the features you need. The API documentation will
give you an idea if what you are looking for is already available.

To give you an idea of what the SparkR interface looks like, the standard word count
example has been rewritten in R in Example 7-8.

Example 7-8. SparkR word count

library(SparkR)

# Setup SparkContext & SQLContext
sc <- sparkR.init(appName="high-performance-spark-wordcount-example")

# Initialize SQLContext
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sqlContext <- sparkRSQL.init(sc)

# Load some simple data

df <- read.text(fileName)

# Split the words
words <- selectExpr(df, "split(value, \" \") as words")

# Compute the count
explodedWords <- select(words, alias(explode(words$words), "words"))
wc <- agg(groupBy(explodedWords, "words"), "words" = "count")

# Attempting to push an array back fails
# resultingSchema <- structType(structField("words", "array<string>"))
# words <- dapply(df, function(line) {
#   y <- list()
#   y[[1]] <- strsplit(line[[1]], " ")
# }, resultingSchema)
# Also attempting even the identity transformation on a DF from read.text fails
# in Spark 2.0-preview (although works fine on other DFs).

# Display the result
showDF(wc)

To execute your own custom R code you can use the dapply method on DataFrames
as illustrated in Example 7-9. SparkR’s custom code execution support has a long way
to go, as illustrated by the difficulty of attempting to perform a word count with dap
ply in Example 7-8.

Example 7-9. SparkR arbitrary code with DataFrames

library(SparkR)

# Setup SparkContext & SQLContext
sc <- sparkR.init(appName="high-performance-spark-wordcount-example")

# Initialize SQLContext
sqlContext <- sparkRSQL.init(sc)

# Count the number of characters - note this fails on the text DF due to a bug.
df <- createDataFrame (sqlContext,
  list(list(1L, 1, "1"),
  list(2L, 2, "22"),
  list(3L, 3, "333")),
  c("a", "b", "c"))
resultingSchema <- structType(structField("length", "integer"))
result <- dapply(df, function(row) {
  y <- list()
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  y <- cbind(y, nchar(row[[3]]))
}, resultingSchema)
showDF(result)

Internally dapply is implemented in a similar way to Python’s UDF support, but
since the RDD API isn’t exposed it leaves more potential for future optimizations and
encourages development with the more optimized DataFrame APIs.

As with PySpark, arbitrary non-JVM code execution is slower than
traditional Scala Spark code.

SparkR isn’t the only interface for running Spark and R together.
Sparklyr is a 3rd party library, from R Studio, which is also quite
popular. From a performance point of view, it shares the same
underlying mechanisms as SparkR in interfacing with the JVM.

Spark.jl (Julia Spark)
Spark.jl is one of the newer projects to provide bindings for Spark and as such does
not yet have a fully functional subset of the API supported. Spark.jl is incredibly easy
to install (see Example 7-10), and it automatically installs a supported version of
Spark along side it. The general design of Spark.jl is similar to that of PySpark, with a
custom implementation of the PipedRDD that is able to parse limited amounts of seri‐
alized data from Julia implemented inside of the JVM. The same general performance
caveats of using PySpark also apply to Spark.jl.

Example 7-10. Julia Spark install

Pkg.clone("https://github.com/dfdx/Spark.jl")
Pkg.build("Spark")
# we also need latest master of JavaCall.jl
Pkg.checkout("JavaCall")

As of this writing, named Julia functions cannot be fully serialized,
so functions used inside of transformations should be anonymous.

Until keyed operations are supported in Spark.jl we can’t even build the simple word
count example. Namely, reduceByKey is missing, which is required for shuffling, and
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while others like flatMap are missing it can be replaced with mapPartitions. For
now Spark.jl is an early stage project that shows promise but is not ready for use.

How Eclair JS Works
Eclair JS takes a different approach than R and Python support, mostly staying inside
the JVM except for the driver program. Eclair JS runs JavaScript in both the JVM and
V8 JavaScript engine, with the functions inside of the transformations being evalu‐
ated by the JVM using Nashorn. The split between driver-side and worker-side evalu‐
ation allows for fast integration on the workers and NodeJS bindings on the driver.
See Figure 7-4 for a diagram of this.

Figure 7-4. Eclair JS diagram

This somewhat unorthodox approach means that certain library functions may not
be available inside of the transformations, but saves us from the double serialization
problem found in PySpark and SparkR UDFs. The node driver communicates using
Apache Toree to send the required functions to the JVM, which then sends them to
the workers.

Installing Eclair JS is easy relative to other languages as the worker side is able to run
without any extra packages. The getting started guide walks you through the setup
process.
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4 This is somewhat of a stretch as far as the relationship to Goldilocks goes, but you know.

While Eclair JS presents some interesting novel ideas, it has been
deprecated.

Spark on the Common Language Runtime (CLR)—C# and Friends
Microsoft’s Mobius project provides C# bindings for working with Apache Spark.
The general design is similar to that of PySpark, with the internals of PythonRDD
instead communicating with the CLR. As with PySpark, RDD transformations
involve copying the data from the JVM, and DataFrame transformations that don’t
use UDFs in C# don’t require copying the data on the workers (or even launching the
CLR). If you are curious about using Mobius you can check out the design docu‐
ments and examples.

Calling Other Languages from Spark
In addition to using other languages to call Spark, we can call other languages from
Spark.

Using Pipe and Friends
If there aren’t existing wrappers for the language you are working with, one of the
simplest options is using Spark’s pipe interface. To use the pipe interface you start by
converting your RDDs into a format in which they can be sent over a Unix pipe.
Often simple formats like JSON or CSV are used for communicating, as lightweight
libraries exist for generating and parsing these records in many languages.

Let’s return to the Goldilocks example from “The Goldilocks Example” on page 127.
Suppose that in addition to optimal panda porridge temperature, you also wanted to
find out which pandas had been commenting on Spark PRs;4 you might cook up a
quick little Perl script, as in Example 7-11. Later on, if you want to use this script in
Spark you can use the pipe command to call your Perl script from the workers. Since
pipe only works with strings, you will need to format your inputs as a string and
parse the result string back into the correct data type, as in Example 7-12.

Example 7-11. Perl script to be called from pipe

#!/usr/bin/perl
use strict;
use warnings;
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use Pithub;
use Data::Dumper;

# Find all of the commentors on an issue
my $user = $ENV{'user'};
my $repo = $ENV{'repo'};
my $p = Pithub->new(user => $user, repo => $repo);
while (my $id = <>) {
    chomp ($id);
    my $issue_comments = $p->issues->comments->list(issue_id => $id);
    print $id;
    while (my $comment = $issue_comments->next) { print " ".$comment->{"user"}->{"login"};
    }
    print "\n";
}

Example 7-12. Using pipe (from Scala Spark) to talk to a Perl program on the workers

  def lookupUserPRS(sc: SparkContext, input: RDD[Int]): RDD[(Int, List[String])] = {
    // Copy our script to the worker nodes with sc.addFile
    // Add file requires absolute paths
    val distScriptName = "ghinfo.pl"
    val userDir = System.getProperty("user.dir")
    val localScript = s"${userDir}/src/main/perl/${distScriptName}"
    val addedFile = sc.addFile(localScript)

    // Pass enviroment variables to our worker
    val enviromentVars = Map("user" -> "apache", "repo" -> "spark")
    val result = input.map(x => x.toString)
      .pipe(SparkFiles.get(distScriptName), enviromentVars)
    // Parse the results
    result.map{record =>
      val elems: Array[String] = record.split(" ")
      (elems(0).toInt, elems.slice(1, elems.size).sorted.distinct.toList)
    }
  }

Spark will not automatically copy your script to the worker
machines, so if you are calling a custom program you can use the
sc.addFile interface as in Example 7-12. Otherwise (e.g., if you
are calling a systemwide program), just skip that part.

PySpark and SparkR both use specialized version of the Piped
RDDs for communication on the workers.
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Make sure that you handle empty partitions, since your program
will be called even for empty partitions (although this functionality
may change in future versions).

JNI
The Java Native Interface (JNI) is another option for interfacing with other lan‐
guages. JNI can work well for calling certain C/C++ libraries, as well as other stati‐
cally compiled languages like FORTRAN. While JNI doesn’t exactly suffer from
double serialization in the same way calling PySpark or using pipe does, you still
need to copy your data out of the JVM and back.

This is why some libraries, such as JBLAS, implement some com‐
ponents inside of the JVM, since once copy cost is added, the per‐
formance benefit of native code can go away.

To illustrate how to use JNI with Spark, consider calling a very simple C function that
sums all of the nonzero inputs. Its function signature is shown in Example 7-13.

Example 7-13. Simple C header

#ifndef _SUM_H
#define _SUM_H

int sum(int input[], int num_elem);

#endif /* _SUM_H */

You can write the JNI specification to call this in either Java (Example 7-14) or Scala
(Example 7-15). Although the tooling for Java can be a bit simpler, there is no signifi‐
cant difference between them.

Example 7-14. Simple Java JNI

class SumJNIJava {
  public static native Integer sum(Integer[] array);
}

Example 7-15. Simple Scala JNI

class SumJNI {
  @native def sum(n: Array[Int]): Int
}
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Manually writing wrappers takes effort. Check out SWIG to auto‐
matically generate parts of your bindings.

Once you have your C function and your JNI class specification, you need to generate
your class files and from them generate the binder heading (see Example 7-16). The
javah command will take the class files and generate headers that is then used to cre‐
ate a C-side wrapper.

Example 7-16. Generate header with the command-line interface

javah -classpath ./target/examples-0.0.1.jar \
com.highperformancespark.examples.ffi.SumJNI

For those of you building with SBT, Jakob Odersky’s sbt-jni package makes it easy
to integrate your native code with your Scala project. sbt-jni is published as an SBT
plug-in like spark-packages-sbt, and is included by adding an entry to project/
plugins.sbt as shown in Example 7-17.

Example 7-17. Add sbt-jni plug-in to project/plugins.sbt

addSbtPlugin("ch.jodersky" %% "sbt-jni" % "1.0.0-RC3")

sbt-jni simplifies generating the header file by adding the javah target to sbt, which
will generate the header files and place them in ./target/native/include/.

Once we have our header file we need to write a wrapper in C. The generated header
file shouldn’t be modified, but rather imported into our shim as shown in
Example 7-18.

Example 7-18. JNI C shim

#include "sum.h"
#include "include/com_highperformancespark_examples_ffi_SumJNI.h"
#include <ctype.h>
#include <jni.h>

/*
 * Class:     com_highperformancespark_examples_ffi_SumJNI
 * Method:    sum
 * Signature: ([I)I
 */
JNIEXPORT jint JNICALL Java_com_highperformancespark_examples_ffi_SumJNI_sum
(JNIEnv *env, jobject obj, jintArray ja) {
  jsize size = (*env)->GetArrayLength(env, ja);
  jint *a = (*env)->GetIntArrayElements(env, ja, 0);
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  return sum(a, size);
}

sbt-jni also simplifies building and packaging native code, adding nativeCompile,
javah, and packageBin to allow you to easily build an assembly JAR with both your
native files and Java artifacts. For sbit-jni to build your native code (in addition to
the JVM code) as well, you need to provide a Makefile. If you are starting with a new
project, nativeInit CMake target will generate a skeleton CMakeLists.txt file you can
use as a basis for your native build.

In our example project, we’ve built the native code along with the
Scala code. Alternatively, especially if you plan to support multiple
architectures, you may wish to create a separate package for your
native code.

If your artifact is built with sbt-jni you can use the nativeLoader decorator from
ch.jodersky.jni.nativeLoader to automatically load your native code as needed.
In the example we’ve been working on, our library is called libhigh-performance-
spark0 so we can have it automatically loaded by adding the decorator to our
SumJNI class, as in Example 7-19.

Example 7-19. Native Loader decorator

@nativeLoader("high-performance-spark0")

If you are working in Java, or just want more control, you can use System.loadLi
brary, which takes a library name and searches java.library.path or System.load
with an absolute path.

Leave off the “lib” prefix, which loadLibrary (and sbt-jni) auto‐
matically append, or you will get confusing runtime linking errors.

The Oracle JNI specification can be a useful reference.
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If your native library likely isn’t packaged in your JAR, you need to
make sure the JVM running the Spark worker is able to call it. If
your library is already installed on the workers you can add -
Djava.library.path=... to your spark.executor.extraJavaOp
tions.

Java Native Access (JNA)
Java Native Access (JNA) is a community-driven alternative to JNI to allow calling of
native code, ideally without all of the boilerplate required by JNI. Although JNA is a
community package this does not mean it is low quality; it is used by a variety of
mature projects and has been used by Spark application developers. We can use JNA
to call our previous example in both Scala (Example 7-20) and Java.

Example 7-20. Scala simple JNA

import com.sun.jna._
object SumJNA {
  Native.register("high-performance-spark0")
  @native def sum(n: Array[Int], size: Int): Int
}

It’s important to note that these JNA examples skip the requirement for writing the
JNI wrapper (as in Example 7-18) and instead directly call the C function for us.
While SWIG can do a good job of generating much of the JNI wrappers, for some
this is a compelling reason to use JNA over JNI.

When using JNA, jna.boot.library.path allows you to add libra‐
ries to the search path before the system library path.

Underneath Everything Is FORTRAN
A surprising number of numeric computing libraries still have FORTRAN imple‐
mentations. Thankfully many of these libraries already have Java or Python wrappers,
which greatly simplify our access. These libraries often can make intelligent decisions
about what operations are worth the overhead of copying our data into FORTRAN
and what operations make more sense to be implemented in the host language. Not
all FORTRAN code already has wrappers, and you may find yourself in a place with
which you want to interface.

The general process is to first create a C/C++ wrapper that exposes the FORTRAN 
code for Java to call, and then link the C/C++ code together with the FORTRAN
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code. Continuing the sum example in FORTRAN (Example 7-21), you would create a
C wrapper like Example 7-22, and then follow the existing steps for calling a C library
in “JNI” on page 193.

Example 7-21. FORTRAN sum function

       INTEGER FUNCTION SUMF(N,A) BIND(C, NAME='sumf')
       INTEGER A(N)
       SUMF=SUM(A)
       END

Example 7-22. C wrapper for FORTRAN sum function

// Fortran routine
extern int sumf(int *, int[]);

// Call the fortran code which expects by reference size
int wrap_sum(int input[], int size) {
  return sumf(&size, input);
}

If you like sbt-jni you can extend the generated CMake file to also
compile your FORTRAN code.

These wrappers can also be automatically generated with programs like fortrwrap, or
skipped entirely with JNA. Calling the FORTRAN function with JNA is very similar
to calling the C function, as shown in Example 7-23.

Example 7-23. FORTRAN SUMF through JNA

import com.sun.jna._
import com.sun.jna.ptr._
object SumFJNA {
  Native.register("high-performance-spark0")
  @native def sumf(n: IntByReference, a: Array[Int]): Int
  def easySum(size: Int, a: Array[Int]): Int = {
    val ns = new IntByReference(size)
    sumf(ns, a)
  }
}

Calling FORTRAN code from the JVM is more difficult than calling C code. If avail‐
able, it’s often better to use existing wrappers as they can make intelligent decisions
about which components to execute in FORTRAN rather than in the JVM.
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Getting to the GPU
GPUs are another great way of working with parallel, numeric computing problems.
They have been shown to be particularly effective at certain types of machine learn‐
ing problems. Some single-node distributed systems exist just to coordinate the work
of multiple GPUs. If your problem is well suited to GPU acceleration, the perfor‐
mance improvement can be huge (SparkGPULR showed a 3× improvement).

The GPUEnabler Spark package exists to simplify interfacing Spark with CUDA. The
package simplifies the setup of JCUDA and automates converting your data into a
columnar format for working on GPUs.

Some people have also used aparapi to automate compilation of
Java code to OpenCL, although no packages exist to simplify the
integration currently.

At present there is no unified way inside of Apache Spark to perform GPU accelera‐
tion, with competing proposals from IBM (spark-gpu), Adobe (spark-gpu), and
others.

For those interested you may wish to follow SPARK-12620 and
friends.

The Future
Tungsten has the ability to store data off-heap with Spark, but the data format is cur‐
rently not stable or sufficiently documented to enable shared access from other lan‐
guages. Two possibilities exist to improve this: either the standardization of
Tungsten, SPARK-9697, or the integration of Arrow in Python and Spark,
SPARK-13534. Hopefully future editions of this book will be able to report the awe‐
someness that these changes have enabled.

Conclusion
Writing high-performance Spark code need not be limited to Scala, let alone the JVM
(although it can certainly make things easier). Spark has a wide variety of language
bindings, both built-in and third party, and can interface with even more languages
using JNI, JNA, pipes, or sockets. For some operations, the cost of copying the data
outside of the JVM and back can be more expensive than just doing the operation in
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the JVM—even with specialized libraries—so it is important to consider the complex‐
ity of your transformations before going outside of the JVM. While not currently
supported, Tungsten’s off-heap support may eventually standardize in such a way as
to better support language interoperability on the workers.
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CHAPTER 8

Testing and Validation

Automated testing in the world of Spark is often overlooked, but with long batch jobs
and complex streaming setup, manually verifying functionality is time-consuming
and error prone. Having effective tests allows us to develop faster and simplify when
refactoring for performance.

Tests that verify performance pose some additional challenges, especially in dis‐
tributed systems. However, by using Spark’s counters we can get the execution time
statistics from all the workers, the number of records processed, and the number of
records shuffled. These counters can serve the same purpose as system timings on a
single machine system.

Testing is an excellent way for catching the kinds of errors that we can conceive of.
Beyond that, the real world is often able to come up with new and exciting ways to
make our software fail, and sometimes it isn’t as obvious as a null pointer exception.
In these cases, it is important that we are able to detect the error state, in order to
avoid making decisions with faulty models.

Unit Testing
Unit testing allows us to focus on testing small components of functionality with
complex dependencies (such as data sources), often mocked out. Unit tests are gener‐
ally faster than integration tests and are frequently used during development. If you
are willing to do some refactoring, you can test a lot of your code without any special
considerations related to Spark. For the rest of your code, libraries can greatly sim‐
plify the process.
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General Spark Unit Testing
Depending on how our Spark job is written, the smallest components of it can be tes‐
ted without any Spark dependencies. For testing the data flow of our Spark job itself,
we will need a SparkContext to create testing RDDs or DStreams with local collec‐
tions. From there we can apply our transformations, comparing the results locally
with our unit testing framework of choice.

Factoring your code for testability
Since many of Spark’s transformations take in functions that operate on individual
elements or iterators of partitions, we can test those functions (Example 8-1) without
having to create an RDD or use a SparkContext, unlike Example 8-2.

Example 8-1. Easy-to-test inner function

  def tokenizeRDD(input: RDD[String]) = {
    input.flatMap(tokenize)
  }

  protected[tokenize] def tokenize(input: String) = {
    input.split(" ")
  }

Example 8-2. Hard-to-test inner function

  def difficultTokenizeRDD(input: RDD[String]) = {
    input.flatMap(_.split(" "))
  }

Thinking back to our Goldilocks example, one of the components that retrieves the
provided indexes inside of partition could be tested in this way (see Example 6-25 in
Chapter 6). When your code is factored this way, you can use the normal unit testing
that you are familiar with. Readability is another good reason to avoid using Scala’s
anonymous function syntax when your functions get too complicated.

Even when you can factor your helper functions to test the internal
logic of your transformations separately, it is still a good practice to
ensure that you test with RDDs or DStreams in order to catch
potential serialization errors.

Regular Spark jobs (testing with RDDs)
In addition to testing the functions that you provide to Spark’s transformations, it’s
important that you test the logic expressed through these transformations as well. A
simple way to test transformations is to create a SparkContext, parallelize the
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input, apply your transformations, and collect the results locally for comparison
with the expected value (Example 8-3).

Example 8-3. Simple Spark unit test

class QuantileOnlyArtisanalTest extends FunSuite with BeforeAndAfterAll {
  @transient private var _sc: SparkContext = _
  def sc: SparkContext = _sc

  val conf = new SparkConf().setMaster("local[4]").setAppName("test")

  override def beforeAll() {
    _sc = new SparkContext(conf)
    super.beforeAll()
  }

  val inputList = List(GoldiLocksRow(0.0, 4.5, 7.7, 5.0),
    GoldiLocksRow(4.0, 5.5, 0.5, 8.0),
    GoldiLocksRow(1.0, 5.5, 6.7, 6.0),
    GoldiLocksRow(3.0, 5.5, 0.5, 7.0),
    GoldiLocksRow(2.0, 5.5, 1.5, 7.0)
  )

  val expectedResult = Map[Int, Set[Double]](
    0 -> Set(1.0, 2.0),
    1 -> Set(5.5, 5.5),
    2 -> Set(0.5, 1.5),
    3 -> Set(6.0, 7.0))

  test("Goldilocks naive Solution"){
    val sqlContext = new SQLContext(sc)
    val input = sqlContext.createDataFrame(inputList)
    val whileLoopSolution = GoldilocksWhileLoop.findRankStatistics(
      input, List(2L, 3L)).mapValues(_.toSet)
    val inputAsKeyValuePairs = GoldilocksGroupByKey.mapToKeyValuePairs(input)
    val groupByKeySolution = GoldilocksGroupByKey.findRankStatistics(
      inputAsKeyValuePairs, List(2L,3L)).mapValues(_.toSet)
    assert(whileLoopSolution == expectedResult)
    assert(groupByKeySolution == expectedResult)
  }

  override def afterAll() {
    // We clear the driver port so that we don't try and bind to the same port on
    // restart.
    sc.stop()
    System.clearProperty("spark.driver.port")
    _sc = null
    super.afterAll()
  }
}

Unit Testing | 203



The one unexpected bit in Example 8-3 is where we clear the port; this is done so that
if we run many Spark tests in sequence, they will not bind to the same port. This will
result in an exception trying to bind to a port that is already in use.

If the data has become too large to directly call collect, you can use toLocalItera
tor, which only brings back a single partition at a time. If you are dealing with a pro‐
cess that creates a very large RDD, the techniques for comparing RDDs (introduced
in “Computing RDD Difference” on page 211 and “Integration Testing” on page 214)
can also be used, but this may also be a sign that your data test size has exceeded that
of unit testing.

toLocalIterator can trigger multiple evaluations so make sure to
cache or persist the RDD it is called on.

Streaming
Testing Spark Streaming requires special work to create test streams, collect the data
locally to verify the results are as expected, and determine test completion. If it fits
your application well, the spark-testing-base library provides a wrapper that allows
you to write your tests by simply specifying the input and the expected output.

Creating input streams can be done quickly with queueStream (Example 8-4). How‐
ever, the resulting streams (since Spark 1.4.1) do not support operations that require
checkpointing (such as windowing or updateStateByKey). For a more complete local
test stream, we can create a custom InputDStream or use fileStream or rawSocket
Stream, and write our input data to either the local filesystem or socket. If you are
using spark-testing-base, TestInputStream works like a checkpointable version of
queueStream (Example 8-5).

Example 8-4. Creating a non-checkpointable input DStream

  def makeSimpleQueueStream(ssc: StreamingContext) = {
    val input = List(List("hi"), List("happy pandas", "sad pandas"))
      .map(sc.parallelize(_))
    val idstream = ssc.queueStream(Queue(input:_*))
  }

Example 8-5. Creating a checkpointable input DStream using spark-testing-base

  /**
   * Create an input stream for the provided input sequence. This is done using
   * TestInputStream as queueStreams are not checkpointable.
   */
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  private[holdenkarau] def createTestInputStream[T: ClassTag](
      sc: SparkContext,
      ssc_ : TestStreamingContext,
      input: Seq[Seq[T]]): TestInputStream[T] = {
    new TestInputStream(sc, ssc_, input, numInputPartitions)
  }

Compared to creating the input data, collecting the results from streaming is quite
simple. The simplest solution is to use something like an ArrayBuffer along with
foreachRDD to collect the results (Example 8-6).

Example 8-6. Collect results

class TestOutputStream[T: ClassTag](parent: DStream[T],
  val output: ArrayBuffer[Seq[T]] = ArrayBuffer[Seq[T]]()) extends Serializable {

  parent.foreachRDD{(rdd: RDD[T], time) =>
    val collected = rdd.collect()
    output += collected
  }

}

Figuring out when your streaming test is over is somewhat more challenging. A sim‐
ple approach is to wait for the number of collected results to match the expected
value along with a timeout as a backup. However, this can lead to flaky tests if you
don’t choose your timeout well (Example 8-7). A custom manual clock can be used to
control Spark Streaming’s processing, but this solution requires extending many
internals that may change between versions.

Example 8-7. Artisanal streaming test (flaky and does not support windowing or
similar operations)

  test("artisinal streaming test") {
    val ssc = new StreamingContext(sc, Seconds(1))
    val input = List(List("hi"), List("happy pandas", "sad pandas"))
      .map(sc.parallelize(_))
    // Note: does not work for windowing or checkpointing
    val idstream = ssc.queueStream(Queue(input:_*))
    val tdstream = idstream.filter(_.contains("pandas"))
    val result = ArrayBuffer[String]()
    tdstream.foreachRDD{(rdd: RDD[String], _) =>
      result ++= rdd.collect()
    }
    val startTime = System.currentTimeMillis()
    val maxWaitTime = 60 * 60 * 30
    ssc.start()
    while (result.size < 2 && System.currentTimeMillis() - startTime < maxWaitTime) {
      ssc.awaitTerminationOrTimeout(50)
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    }
    ssc.stop(stopSparkContext = false)
    assert(List("happy pandas", "sad pandas") === result.toList)
  }

For simplicity, spark-testing-base provides two streaming test base classes: Streaming
SuiteBase for transformations and StreamingActionBase for actions. This allows
you to write tests for transformations by specifying the expected input and output
(Example 8-8). The library then takes care of interfacing with the internals.

Example 8-8. StreamingSuiteBase example test

  test("really simple transformation") {
    val input = List(List("hi"), List("hi holden"), List("bye"))
    val expected = List(List("hi"), List("hi", "holden"), List("bye"))
    testOperation[String, String](input, tokenize _, expected, ordered = false)
  }

  // This is the sample function we are testing
  def tokenize(f: DStream[String]): DStream[String] = {
    f.flatMap(_.split(" "))
  }

Mocking RDDs
Testing with a SparkContext involves overhead: you need to create a local Spark clus‐
ter. This overhead can slow your tests down, especially when using frameworks like
scalacheck that generate hundreds of tests. For tests that are focused on testing the
business logic rather than the specifics of your interactions with Spark (like serializa‐
bility), mock RDDs can offer the ability to run more tests faster.

While testing with mock RDDs can be a great way to quickly test your business logic,
the testing is not as complete since it avoids testing the serialization and other Spark
interactions. Daniel Westheide has made a library called kontextfrei to support a
number of operations on mock RDDs.

kontextfrei is a Scala-only library that enables to you to write the business logic and
test code of your Spark application without depending on RDDs, but using the same
API. To get a fast feedback loop during development, you can then execute those
tests against fast Scala collections locally, and against RDDs on your CI server, to
make sure you don’t have any serializability issues.

Testing DataFrames

The primary additional complexity when testing with DataFrames is figuring out
when our result matches our expected value. At its simplest, if we only have a few
columns we care about, we can just extract the elements and compare them. This can
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quickly get tedious with complex DataFrames, so we can also compare against
expected rows (Example 8-9).

Example 8-9. Check DataFrame for row equality

  test("verify exact equality") {
    // test minHappyPandas
    val inputDF = sqlContext.createDataFrame(pandaInfoList)
    val result = HappyPandas.minHappyPandas(inputDF, 2)
    val resultRows = result.collect()

    val expectedRows = List(Row(sandiego, "red", 2, 3))
    assert(expectedRows === resultRows)
  }

Row equality works most of the time, but with ByteArrays simple
Scala quality is insufficient. In that case, the values must be com‐
pared.

Since DataFrames often have floating-point data in them, pure equality may not be
enough. We can use approxEqualDataFrames from spark-testing-base, which com‐
pares two DataFrames for approximate equality (Example 8-10), or compare individ‐
ual elements as in Example 8-11.

Example 8-10. Compare two DataFrames for approximate equality

  test("verify simple happy pandas Percentage") {
    val expectedList = List(Row(toronto, 0.5),
      Row(sandiego, 2/3.0),
      Row(virginia, 1/10.0))
    val expectedDf = createDF(expectedList, ("place", StringType),
                                              ("percentHappy", DoubleType))

    val inputDF = sqlContext.createDataFrame(pandaInfoList)
    val resultDF = HappyPandas.happyPandasPercentage(inputDF)

    assertDataFrameApproximateEquals(expectedDf, resultDF, 1E-5)
  }

Example 8-11. Approximate equality using Scalatest +– Matcher on a row element

    assert(expectedRows.length === resultRows.length)
    expectedRows.zip(resultRows).foreach{case (r1, r2) =>
      assert(r1(0) === r2(0))
      assert(r1.getDouble(1) === (r2.getDouble(1) +- 0.001))
    }
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Besides the different steps for equality checking, we also need to make the SQLCon
text for our test suite. We can construct the SQLContext in beforeAll, as we did
with the SparkContext in Example 8-3.

Getting Test Data
So far, we’ve focused on using small sample test data you create by hand. This can
work well for basic unit testing, but many bugs in Spark require larger datasets to
uncover. Without enough (varied) data you won’t be able to discover unbalanced
partitioning, incorrect handling of empty partitions, and other issues.

An excellent source of test data is sampling production data, although this is often
not possible due to legal and privacy concerns. Sampled production data is in many
ways the gold standard; you don’t have to worry about generating data that isn’t
representative.

When you need to test on datasets too large to generate or store on a single machine,
Spark’s MLlib provides customizable distributed random RDD generators. With
these generators it’s useful to try and at least get a distribution of your real produc‐
tion data, so that any issues related to skew will be properly discovered during testing.

In addition to explicitly generating large datasets, another technique is property-
based checkers where you specify invariants about your code, and you delegate the
generation of test inputs to the property checker. These property checkers, if well
constructed, can use Spark’s built-in tools for random generation to generate truly
large-scale data for testing.

Generating Large Datasets
Often, when tracking down performance issues, you will require large datasets for
testing. Since problems often arise with key or data skew, it’s important to under‐
stand the distribution of the data you are looking to generate, as discussed in Chap‐
ter 6.

Thinking back to our Goldilocks example, if we had our porridge organized by zip
code (or any market data by zip code), we would end up with some zip codes having
a large amount of information relative to the others.

Spark has some built-in components for generating random RDDs in the RandomRDDs
object in mllib. There are built-in generator functions for exponential, gamma, log‐
Normal, normal, poisson, and uniform distributions as both RDDs of doubles and
RDDs of vectors. If you have data for multiple distributions (as we do in Goldilocks),
you can generate the different components and zip them together as in Example 8-12.
For more complex data types, or for different distributions, we can implement our
own element generator by extending RandomDataGenerator.
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New versions of spark-testing-base use RandomRDDs as their base to
support generating datasets too large for your local machine. Some
other property-checking libraries do not yet support this.

Example 8-12. Generate some performance scale data for our Goldilocks example

  /**
   * Generate a Goldilocks data set all with the same id.
   * We expect the zip code to follow an exponential
   * distribution and the data its self to be normal.
   * Simplified to avoid a 3-way zip.
   *
   * Note: May generate less than number of requested rows due to
   * different distribution between partitions and zip being computed
   * per partition.
   */
  def generateGoldilocks(sc: SparkContext, rows: Long, numCols: Int):
      RDD[RawPanda] = {
    val zipRDD = RandomRDDs.exponentialRDD(sc, mean = 1000,  size = rows)
      .map(_.toInt.toString)
    val valuesRDD = RandomRDDs.normalVectorRDD(
      sc, numRows = rows, numCols = numCols)
    zipRDD.zip(valuesRDD).map{case (z, v) =>
      RawPanda(1, z, "giant", v(0) > 0.5, v.toArray)
    }
  }

The spark-sql-perf project, from Databricks, provides another example of generating
a large, scaled-out dataset for testing. If it’s easier to specify with ScalaCheck you can
also make a dummy test to save the data out and use it later.

Sampling
If it’s available as an option to you, sampling your production data can be a great
source of test data. Spark’s core RDD and Pair RDD functionality both support cus‐
tomizable random samples. When our work depends on joins between multiple
tables, it is important to join from our sampled table to make sure we have all of the
records we need.

The simplest method for sampling, directly on the RDD class, is the function sample,
which takes withReplacement: Boolean, fraction: Double, seed: Long

(optional) (Example 8-13). This allows us to specify the percentage of data we want
and creates a sample without any special considerations.

Example 8-13. Basic RDD sample

    rdd.sample(withReplacement=false, fraction=0.1)
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The size of the result of sample is specified as a fraction of the
input: if you need to upsample, the fraction can be set to >1 if with
Replacement is enabled.

Under the hood, depending on if you sample with replacement or not, sample con‐
structs a PartitionwiseSampledRDD with two different samplers (poisson or ber‐
noulli). If you need more control, you can directly construct a Partition

wiseSampleRDD with your own sampler, provided it implements the RandomSampler
trait from org.apache.spark.util.random.

Sampling has other uses, too, especially in machine learning.
Sometimes it’s useful to have a sample from X (e.g., s is some ele‐
ments of X) and its inverse (i is the set of X that is not in s), and in
that case manually constructing a PartitionwiseSampledRDD will
allow you to use the cloneComplement() function on your sampler
to construct an inverse PartitionwiseSampledRDD.

When working with data of multiple classes, it’s often important to ensure that you
have some representation from each class. sampleByKeyExact and sampleByKey take
in a map of the percentage for each key to keep allowing you to perform stratified
sampling (Example 8-14). Depending on your needs, your sample could be done to
try to represent the key distribution in the input or population set, or to try to create
a balanced sample of an unbalanced population (HAM/SPAM), or to look at some
percentage of users from each locale to validate your handling of different locales.

Example 8-14. Stratified sample

    // 5% of the red pandas, and 50% of the giant pandas
    val stratas = Map("red" -> 0.05, "giant" -> 0.50)
    rdd.sampleByKey(withReplacement=false, fractions = stratas)

Sometimes you will want to go beyond sampling returning a single RDD, and sample
into many different RDDs at a time. The randomSplit function takes an array of
weights and returns an array of RDDs with elements proportional to those weights.

DataFrames also have sample and randomSplit available directly on them. If you
want to perform stratified sampling on DataFrames, you must convert them to an
RDD first.
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Property Checking with ScalaCheck
ScalaCheck is a property-based testing library for Scala similar to Haskell’s Quick‐
Check. Property-based testing allows you to specify invariants about your code (for
example, all of the outputs should have the substring “panda”) and lets the testing
library generate different types of test input for you. Two libraries, sscheck and spark-
testing-base, implement generators for Spark. A property-based check with spark-
testing-base is shown in Example 8-15.

Example 8-15. ScalaCheck property-based test example

  // A trivial property that the map doesn't change the number of elements
  test("map should not change number of elements") {
    val property =
      forAll(RDDGenerator.genRDD[String](sc)(Arbitrary.arbitrary[String])) {
        rdd => rdd.map(_.length).count() == rdd.count()
      }

    check(property)
  }

ScalaCheck will automatically generate a number of common edge conditions, but we
can also specify inputs that we think are likely to cause trouble. This is the technique
used by the generator itself to create RDDs with varying partition sizes, with a bias
toward creating some empty partitions.

Computing RDD Difference
Bringing data back locally works really well if your test data is small enough to collect
back to a local machine. If you are running your tests on a cluster and have a larger
dataset you instead need to compute the difference between the RDDs directly—
without bringing the full data back to the driver.

Most of your unit tests should be able to be done with just parallelize and collect;
however, RDD equality, like general collection equality, has a few different possibili‐
ties. The two cases we will examine are order matters, and the order does not matter.

Let’s start with comparing two RDDs where we expect the order to be the same
(Example 8-16). This would be the case if we had called sortByKey, as we do in
Goldilocks after counting the unique values. If the partitioner is the same we can zip
the two RDDs together and compare the elements directly without doing a shuffle.
Otherwise, we just repartition one of the RDDs to match the other.
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Example 8-16. Comparing RDDs with order

  /**
   * Asserts two RDDs are equal (with the same order).
   * If they are equal assertion succeeds, otherwise assertion fails.
   */
  def assertRDDEqualsWithOrder[T: ClassTag](
    expected: RDD[T], result: RDD[T]): Unit = {
    assertTrue(compareRDDWithOrder(expected, result).isEmpty)
  }

  /**
   * Compare two RDDs with order (e.g. [1,2,3] != [3,2,1])
   * If the partitioners are not the same this requires multiple passes
   * on the input.
   * If they are equal returns None, otherwise returns Some with the first mismatch.
   * If the lengths are not equal, one of the two components may be None.
   */
  def compareRDDWithOrder[T: ClassTag](
    expected: RDD[T], result: RDD[T]): Option[(Option[T], Option[T])] = {
    // If there is a known partitioner just zip
    if (result.partitioner.map(_ == expected.partitioner.get).getOrElse(false)) {
      compareRDDWithOrderSamePartitioner(expected, result)
    } else {
      // Otherwise index every element
      def indexRDD[T](rdd: RDD[T]): RDD[(Long, T)] = {
        rdd.zipWithIndex.map { case (x, y) => (y, x) }
      }
      val indexedExpected = indexRDD(expected)
      val indexedResult = indexRDD(result)
      indexedExpected.cogroup(indexedResult).filter { case (_, (i1, i2)) =>
        i1.isEmpty || i2.isEmpty || i1.head != i2.head
      }.take(1).headOption.
        map { case (_, (i1, i2)) =>
          (i1.headOption, i2.headOption) }.take(1).headOption
    }
  }

  /**
   * Compare two RDDs. If they are equal returns None, otherwise
   * returns Some with the first mismatch. Assumes we have the same partitioner.
   */
  def compareRDDWithOrderSamePartitioner[T: ClassTag](
    expected: RDD[T], result: RDD[T]): Option[(Option[T], Option[T])] = {
    // Handle mismatched lengths by converting into options and padding with Nones
    expected.zipPartitions(result) {
      (thisIter, otherIter) =>
        new Iterator[(Option[T], Option[T])] {
          def hasNext: Boolean = (thisIter.hasNext || otherIter.hasNext)

          def next(): (Option[T], Option[T]) = {
            (thisIter.hasNext, otherIter.hasNext) match {
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              case (false, true) => (Option.empty[T], Some(otherIter.next()))
              case (true, false) => (Some(thisIter.next()), Option.empty[T])
              case (true, true) => (Some(thisIter.next()), Some(otherIter.next()))
              case _ => throw new Exception("next called when elements consumed")
            }
          }
        }
    }.filter { case (v1, v2) => v1 != v2 }.take(1).headOption
  }

If order does not matter, and the equality operator is sufficient, we can cogroup the
two RDDs (along with dummy values), as shown in Example 8-17.

Example 8-17. Comparing RDDs without order

  /**
   * Asserts two RDDs are equal (unordered).
   * If they are equal assertion succeeds, otherwise assertion fails.
   */
  def assertRDDEquals[T: ClassTag](expected: RDD[T], result: RDD[T]): Unit = {
    assertTrue(compareRDD(expected, result).isEmpty)
  }

  /**
   * Compare two RDDs where we do not require the order to be equal.
   * If they are equal returns None, otherwise returns Some with the first mismatch.
   *
   * @return None if the two RDDs are equal, or Some containing
   *              the first mismatch information.
   *              The mismatch information will be Tuple3 of:
   *              (key, number of times this key occur in expected RDD,
   *              number of times this key occur in result RDD)
   */
  def compareRDD[T: ClassTag](expected: RDD[T], result: RDD[T]):
      Option[(T, Int, Int)] = {
    // Key the values and count the number of each unique element
    val expectedKeyed = expected.map(x => (x, 1)).reduceByKey(_ + _)
    val resultKeyed = result.map(x => (x, 1)).reduceByKey(_ + _)
    // Group them together and filter for difference
    expectedKeyed.cogroup(resultKeyed).filter { case (_, (i1, i2)) =>
      i1.isEmpty || i2.isEmpty || i1.head != i2.head
    }
      .take(1).headOption.
      map { case (v, (i1, i2)) =>
        (v, i1.headOption.getOrElse(0), i2.headOption.getOrElse(0)) }
  }

These examples may not match exactly how you need to test equality, but you should
be able to generalize from them. If, for example, you are comparing RDDs of doubles
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you might sort them and then use a similar function like compareWithOrder but
check within tolerance rather than exact equality.

The same general approach works for computing DataFrame differ‐
ence, and is implemented in spark-testing-base through equalData
Frames and approxEqualDataFrames.

Integration Testing
Sometimes simply faking data sources and mocking isn’t enough (or becomes too
complicated) to test your system. Integration testing tends to be slower than unit test‐
ing, and the failures tend to take more time to debug, but it catches a completely dif‐
ferent class of bugs. Integration testing can also be combined with some of our
performance testing methods mentioned later, to give us an idea of not only the per‐
formance of our code but the performance of the entire system.

Choosing Your Integration Testing Environment
At some point we will reach the limit of what we can test with our unit tests. In large-
scale data systems, errors in data ingestion or misunderstandings of formats can be a
common source of errors, so having some tests of the integration of your systems is
important—albeit more challenging.

Local mode
While we’ve looked at using local mode mostly in the context of unit testing (see
“Unit Testing” on page 201), for small enough projects we can use many of the same
techniques. Instead of mocking our data sources and using functions like parallel
ize and queueStream, we can set up smaller versions of our data stores and stream
sources.

Docker-based
Docker containers provide an easy way to package and distribute multiple virtual
lightweight containers, which can vastly simplify automated deployments. This is
especially useful for integration testing with distributed systems, like Spark, which
require both workers and master node, and whatever services your data requires (e.g.,
HDFS, Mongo, etc.). Several sample projects exist for setting up Docker-based Spark
integration environments, including @cfregley’s pipeline project and Databrick’s
spark-perf project.
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Yarn MiniCluster
Hadoop has built-in testing libraries to set up a local YarnCluster, which can be a
lighter-weight alternative to even Docker. If you don’t have the resources to set up a
full test cluster, or want some medium-weight integration tests, using a Yarn Mini‐
Cluster can be a good option.

Yarn MiniClusters represent a middle ground and can be set up purely in the JVM.
On early (pre-1.6) versions of Spark, Yarn MiniCluster–based tests cannot be easily
intermixed with other tests because of persistent global state. An example of how to
use Yarn MiniCluster with Spark is available in spark-testing-base.

All of these options limit you to testing on a single machine, which is insufficient to
test the ability of your system to scale. Thankfully, Spark’s existing standard deploy‐
ment modes can be used just as easily for integration testing.

If you have an existing YARN cluster setup, yarn-client mode
makes it easy to run integration tests. For users without a long-
running cluster, Spark’s EC2 scripts make it simple to dynamically
set up a cluster as needed. Spark’s deployment modes are covered
in more detail in Chapter 7 of Learning Spark, as well as in the
Spark “Cluster Mode Overview” documentation.

Verifying Performance
The primary motivation for using Spark (and reading this book), is the ability to have
highly performant processing of big data. Since this is an important motivation
behind many people’s use of Spark, it’s important to verify that your specific use of
Spark is performing as expected.

Spark Counters for Verifying Performance
Spark tracks a number of counters during our job, many of which can be useful for
debugging performance. You have access to many of the counters in the WebUI, and
can get programmatic access to them by registering a SparkListener to collect the
information. Spark uses callbacks to provide the metrics, and for performance info
we can get most of what we need through onTaskEnd, for which Spark gives us a Spar
kListenerTaskEnd. We can get the bytes read, execution time, records read, and
many other important metrics this way (Example 8-18).

Example 8-18. Simple SparkListener for execution time

class PerfListener extends SparkListener {
  var totalExecutorRunTime = 0L
  var jvmGCTime = 0L
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  var recordsRead = 0L
  var recordsWritten = 0L
  var resultSerializationTime = 0L

  /**
   * Called when a task ends
   */
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd) {
    val info = taskEnd.taskInfo
    val metrics = taskEnd.taskMetrics
    updateMetricsForTask(metrics)
  }

  private def updateMetricsForTask(metrics: TaskMetrics): Unit = {
    totalExecutorRunTime += metrics.executorRunTime
    jvmGCTime += metrics.jvmGCTime
    resultSerializationTime += metrics.resultSerializationTime
    recordsRead += metrics.inputMetrics.recordsRead
    recordsWritten += metrics.outputMetrics.recordsWritten
  }
}

Using this listener we can quickly validate the overall execution time (Example 8-19).

Example 8-19. Sample execution time test

  test("wordcount perf") {
    val listener = new PerfListener()
    sc.addSparkListener(listener)
    doWork(sc)
    println(listener)
    assert(listener.totalExecutorRunTime > 0)
    assert(listener.totalExecutorRunTime < 10000)
  }

Projects for Verifying Performance
There are two common projects used for verifying performance of Spark jobs. The
spark-perf package, from Databricks, is designed for comparing different versions of
Spark but can also be extended to do performance testing of our own code. Spark-
perf is written in Python but is primarily used for performance testing Scala code.
The Testing Spark: Best Practices talk from Spark Summit 2014 suggests using
Gatling along with the Spark Jobserver, which allows you to expose Spark jobs as a
rest service, for performance testing.

Job Validation
Job validation is an important part of ensuring that the results of your Spark job
match your expectations before using the results. Using accumulators you can keep
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track of information important to your job, such as the number of valid and invalid
records, or the number of users for whom you have no recommendations.

You can use some of the same information we examined in “Spark Counters for Veri‐
fying Performance” on page 215 to validate your jobs. The same listener can be used,
and the results can be aggregated over all the stages.

Spark’s accumulators can also be used for validating jobs. A common use case for
accumulators is to track the number of invalid records when processing your data.
You can use these accumulators beyond just debugging and make them part of an
automated validation suite. Since, as explained in “Accumulators” on page 107, Spark
accumulators can frequently (and somewhat unpredictably) double count values
added to accumulators, it’s important for all of your validation rules to be relative
(e.g., invalid records / total records).

The spark-validator project exists to make writing these rules simple, but as of this
writing it is still in its early stages. By writing out values from previous runs you can
also create relative rules; for example, the number of records you read from job to job
should be within some variance of the average from the previous jobs
(Example 8-20).

Example 8-20. Validating a minimum % of valid records with spark-validator

    val validationRules = List[ValidationRule](
      new AbsolutePercentageRule(
        "invalidRecords", "validRecords", Some(0.0), Some(1.0)))
    val vc = new ValidationConf(tempPath, "job_7", true, validationRules)
    val sqlCtx = new SQLContext(sc)
    val validator = Validation(sqlCtx, vc)

    val valid = sc.accumulator(0)
    validator.registerAccumulator(valid, "validRecords")

    val invalid = sc.accumulator(0)
    validator.registerAccumulator(invalid, "invalidRecords")

    runTwoCounterJob(sc, valid, invalid)

Conclusion
In this chapter, we have seen how to create tests for both the functionality and perfor‐
mance of our Spark code. We’ve covered a technique for writing local tests as well as
for comparing RDDs and DataFrames when test data is too large. The tests you make
using these techniques should let you feel confident as you refactor to apply the per‐
formance improvements from the previous chapters.
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CHAPTER 9

Spark MLlib and ML

Spark has two machine learning libraries—Spark MLlib and Spark ML—with very
different APIs, but similar algorithms. These machine learning libraries inherit many
of the performance considerations of the RDD and Dataset APIs they are based on,
but also have their own considerations. MLlib is the first of the two libraries and is
entering a maintenance/bug-fix only mode. Normally we would skip discussing
Spark MLlib and focus on the new API; however, for existing algorithms not all of the
functionality has been ported over to the new Spark ML API. Spark ML is the newer,
scikit-learn inspired, machine learning library and is where new active development
is taking place.

Choosing Between Spark MLlib and Spark ML
At first glance, the most obvious difference between MLlib and ML is the data types
they work on, with MLlib supporting RDDs and ML supporting DataFrames and
Datasets. The data format difference isn’t all that important since they both deal with
RDDs and Datasets of vectors, which are easily represented and converted between
the RDD and Dataset formats.

From a design philosophy point of view, Spark’s MLlib is focused on providing a core
set of algorithms for people to use, while largely leaving the data pipeline, cleaning,
preparation, and feature selection problems up to the user. Spark ML instead focuses
on exposing a scikit-learn inspired pipeline API for everything from data preparation
to model training.

Currently, if you need to do streaming or online training your only option is working
with the MLlib APIs. Select algorithms in Spark MLlib support training on streaming
data, using the Spark Streaming DStream API we cover in “Stream Processing with
Spark” on page 255. Spark ML is still waiting for streaming support (see
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SPARK-16424), but as work is still actively progressing on streaming Datasets, it is
difficult to know when streaming ML will be available.

It is important to keep the future in mind when deciding between MLlib and ML.
New features will continue to be developed for Spark ML, which will not be back-
ported to Spark MLlib as it is in a bug-fix only stage.

Spark ML’s integrated pipeline API makes it easier to implement meta-algorithms,
like parameter search over different components. Both APIs support regression, clas‐
sification, and clustering algorithms. If you’re on the fence for your project, choosing
Spark ML is a reasonable default to pick as it is the primary actively developed
machine learning library for Spark going forward.

Working with MLlib
Many of the same performance considerations in working with Spark Core also
directly apply to working with MLlib. One of the most direct ones is with RDD reuse;
many machine learning algorithms depend on iterative computation or optimization,
so ensuring your inputs are persisted at the right level can make a huge difference.

Supervised algorithms in the Spark MLlib API are trained on RDDs of labeled points,
with unsupervised algorithms using RDDs of vectors. These labeled points and vec‐
tors are unique to the MLlib library, and separate from both Scala’s vector class and
Spark ML’s equivalent classes.

Getting Started with MLlib (Organization and Imports)
You can include MLlib in the same way as other Spark components. Its inclusion can
be simplified using the steps discussed in “Managing Spark Dependencies” on page
31. The Maven coordinates for Spark 2.1’s MLlib are org.apache.spark:spark-
mllib_2.11:2.1.0.

The imports for MLlib are a little scattered compared to the other Spark components
—see the imports used to train a simple classification model in Example 9-1.

Example 9-1. Sample MLlib imports for building a LogisticRegression model

import com.github.fommil.netlib.BLAS.{getInstance => blas}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS,
  LogisticRegressionModel}
// Rename Vector to SparkVector to avoid conflicts with Scala's Vector class
import org.apache.spark.mllib.linalg.{Vector => SparkVector}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.feature._
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The individual algorithms are organized by purpose, so regression algorithms live in
org.apache.spark.mllib.regression, most classification algorithms in org.apache
.spark.mllib.classification, and clustering algorithms in org.apache.spark
.mllib.clustering. Tree algorithms (decision tree, random forest, etc.) are stored
separately in org.apache.spark.mllib.tree. In addition to the traditional machine
learning algorithms, org.apache.spark.mllib.feature provides a limited set of
tools to help with feature preparation.

Some algorithms can be used for both classification and regression,
so the same algorithm may appear in both org.apache. spark.
mllib.regression and org.apache .spark .mllib .classifica

tion, with different APIs.

The LabeledPoint class, which is needed for all of the supervised learning algorithms
in MLlib, is in the org.apache.spark.mllib.regression package. Vector, which is
needed to construct LabeledPoint and used directly by clustering algorithms, is in
org.apache.spark.mllib.linalg.

Throughout the examples in this section, we refer to Spark MLlib’s
Vector class as “SparkVector” so as not to conflict with Scala’s vec‐
tor class.

Spark’s Vector name can easily collide with other packages, includ‐
ing Scala. This can result in confusing error messages.

MLlib Feature Encoding and Data Preparation
Feature selection and scaling require that our data is already in Spark’s internal for‐
mat, so before we cover those, let’s look at how to encode data into the required
format.

Once the data is encoded, or sometimes during the process, many machine learning
data pipelines filter out data to discard invalid or malformed records, which could
cause problems in any resulting model. For this step Spark’s MLlib package expects
you to do your filtering using Spark’s RDD transformations.
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For many problems, applying some of the techniques for quantiles/
outliers we examined with the Goldilocks problem in “The Goldi‐
locks Example” on page 127 can be a good way to identify outliers
and normalize features, although we encourage you to consider
approximate algorithms instead.

Once you have done your initial filtering, Spark MLlib provides useful tools to help
with feature selection and scaling. These feature transformers can be used to perform
feature selection, feature encoding, and scaling.

Don’t feel the need to restrict yourself to the feature scaling and
encoding tools in MLlib; you can (and maybe should) write your
own.

Working with Spark vectors
Spark’s internal vector format is distinct from Scala’s, and there are separate vector
libraries between MLlib and ML. Rather than construct the vectors directly, Spark
provides a factory object org.apache.spark.mllib.linalg.Vector, which can con‐
struct both dense and sparse vectors. If you have an array of features you can directly
create a dense Spark vector using Vector.dense (Example 9-2).

Example 9-2. Create dense Spark vector

  def toSparkVectorDense(input: Array[Double]) = {
    Vectors.dense(input)
  }

If you have a dense vector that you know would be better represented as a sparse vec‐
tor, you can call toSparse on it, or you can directly create a sparse vector by provid‐
ing a sequence of nonzero (index, value) tuples with Vector.sparse.

Be careful that you are constructing the correct vector types.
Import renaming, as done in Example 9-1, can help.

Preparing textual data
Not all features can be directly encoded like this; if you have textual data you need to
get it into a numeric format. For encoding textual data, both Word2Vec and
HashingTF are available. HashingTF is one of the simplest feature operators as it does
not require any training, and can be directly applied to your data. HashingTF works
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on an RDD of Iterable[String], so it is up to you to tokenize your data as you see
fit. For simple English text, you can encode it as shown in Example 9-3.

Example 9-3. Simple HashingTF on RDD of Strings

  def hashingTf(rdd: RDD[String]): RDD[SparkVector] = {
    val ht = new HashingTF()
    val tokenized = rdd.map(_.split(" ").toIterable)
    ht.transform(tokenized)
  }

While some of Spark MLlib’s encoding tools return a SparkVector,
Spark requires one single input vector for all the features (rather
than multiple vectors).

While the preceding approach is quite simple, it returns a SparkVector discarding
everything besides the HashingTF result. Most likely you have a mix of features and
label information you need to preserve, so you won’t want to use this directly. Rather
than directly using the transform function on RDDs during data preparation, you
can use the transform function to encode string records inside of a custom map as in
Example 9-4.

Example 9-4. Simple HashingTF on RDD of strings preserving the original record

  def toVectorPerserving(rdd: RDD[RawPanda]): RDD[(RawPanda, SparkVector)] = {
    val ht = new HashingTF()
    rdd.map{panda =>
      val textField = panda.pt
      val tokenizedTextField = textField.split(" ").toIterable
      (panda, ht.transform(tokenizedTextField))
    }
  }

HashingTF changed default hashing algorithms from Scala’s hash
function to MurmurHash3 in Spark 2.0, so if you’re upgrading an
existing pipeline you may need to retrain.

Some of the feature transformers, like Word2Vec and normalization, require training,
much as a “regular” machine learning model does. The primary difference is that you
likely don’t want to use their output directly. To train a Word2Vec model you need to
tokenize your input, and then simply call fit on an instance of Word2Vec, which will
return a Word2VecModel as in Example 9-5.
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Example 9-5. Train a Word2Vec model

  def word2vecTrain(rdd: RDD[String]): Word2VecModel = {
    // Tokenize our data
    val tokenized = rdd.map(_.split(" ").toIterable)
    // Construct our word2vec model
    val wv = new Word2Vec()
    wv.fit(tokenized)
  }

The resulting Word2VecModel is a little different than most transformers produced by
estimators. Most models generated by estimators transform or predict on the same
input type, often vectors. Instead, for Word2VecModel, the training requires a field of
sentences and the resulting model transforms fields of individual words, as in
Example 9-6.

Example 9-6. Use a Word2Vec model

  def word2vec(sc: SparkContext, rdd: RDD[String]): RDD[SparkVector] = {
    // Tokenize our data
    val tokenized = rdd.map(_.split(" ").toIterable)
    // Construct our word2vec model
    val wv = new Word2Vec()
    val wvm = wv.fit(tokenized)
    val wvmb = sc.broadcast(wvm)
    // WVM can now transform single words
    println(wvm.transform("panda"))
    // Vector size is 100 - we use this to build a transformer on top of WVM that
    // works on sentences.
    val vectorSize = 100
    // The transform function works on a per-word basis, but we have
    // sentences as input.
    tokenized.map{words =>
      // If there is nothing in the sentence output a null vector
      if (words.isEmpty) {
        Vectors.sparse(vectorSize, Array.empty[Int], Array.empty[Double])
      } else {
        // If there are sentences construct a running sum of the
        // vectors for each word
        val sum = Array[Double](vectorSize)
        words.foreach { word =>
          blas.daxpy(
            vectorSize, 1.0, wvmb.value.transform(word).toArray, 1, sum, 1)
        }
        // Then scale it by the number of words
        blas.dscal(sum.length, 1.0 / words.size, sum, 1)
        // And wrap it in a Spark vector
        Vectors.dense(sum)
      }
    }
  }
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Broadcasting your model can produce a big performance improve‐
ment, especially for potentially large or complex models. In
Example 9-6 we broadcast the model so that each executor would
only have one copy.

Preparing data for supervised learning

To use algorithms on labeled data, you start with creating a LabeledPoint with the
label and vector of features. LabeledPoint requires that your labels are doubles,
much in the same way the elements in a vector must also be doubles. As with feature
encoding, if your label is numeric the conversion is easy, but for other types a custom
function or similar techniques (such as StringIndexer) must be used.

Revisiting our Goldilocks example, we have an array of features about the pandas as
well as a boolean feature indicating if the panda is happy. Assuming the data is
already relatively clean we could get it ready for MLlib to use as in Example 9-7.

Rather than encoding the label as the index zero feature, as in some
systems, Spark and LabeledPoint has the label separate.

Example 9-7. RawPanda to LabeledPoint

  def toLabeledPointWithHashing(rdd: RDD[RawPanda]): RDD[LabeledPoint] = {
    val ht = new HashingTF()
    rdd.map{rp =>
      val hashingVec = ht.transform(rp.pt)
      val combined = hashingVec.toArray ++ rp.attributes
      LabeledPoint(booleanToDouble(rp.happy),
        Vectors.dense(combined))
    }
  }

If you have string labels you need to work with, one of the simplest approaches to
encoding string labels is to create a map as in Example 9-8.

Example 9-8. Create label lookup

  def createLabelLookup[T](rdd: RDD[T]): Map[T, Double] = {
    val distinctLabels: Array[T] = rdd.distinct().collect()
    distinctLabels.zipWithIndex
      .map{case (label, x) => (label, x.toDouble)}.toMap
  }
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Feature Scaling and Selection
Feature scaling and selection can lead to vastly improved results for certain algo‐
rithms and optimizers, and MLlib provides a feature transformer to help with this.
You can skip this step if you’re in a rush and just building a toy example, but we
encourage you to always consider the features used in your model carefully. Like
Word2Vec they need to be trained on your input data, and thankfully the resulting
models can be directly used without the same complex logic we added for Word2Vec
(see Example 9-9).

Example 9-9. Scale features

  // Trains a feature scaler and returns the scaler and scaled features
  def trainScaler(rdd: RDD[SparkVector]): (StandardScalerModel, RDD[SparkVector]) = {
    val scaler = new StandardScaler()
    val scalerModel = scaler.fit(rdd)
    (scalerModel, scalerModel.transform(rdd))
  }

If after feature scaling you find that outliers are throwing off your
scaling, then you can go back to the filtering stage.

For feature selection, PCA and ChiSqSelector can be trained on the raw features,
which return both transformers as well as information about which features have
been selected. See Example 9-10.

Example 9-10. Select top ten features using ChiSqSelector

  def selectTopTenFeatures(rdd: RDD[LabeledPoint]):
      (ChiSqSelectorModel, Array[Int], RDD[SparkVector]) = {
    val selector = new ChiSqSelector(10)
    val model = selector.fit(rdd)
    val topFeatures = model.selectedFeatures
    val vecs = rdd.map(_.features)
    (model, topFeatures, model.transform(vecs))
  }

MLlib Model Training
Now that you have your features selected and scaled, it’s time to train your model.
Most MLlib algorithms present a run, which takes in an RDD of LabeledPoints
(supervised algorithms) or Vectors (unsupervised algorithms) and returns a model.
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1 Both running time and accuracy/recall.

 Each algorithm has specific parameters that can vastly change the performance,1 so
take the time to review the API documentation for the algorithm you are working
with. While configuration provides many benefits, most of the algorithms will work
without any specific configuration as shown in Example 9-11.

Example 9-11. Train simple classification model to predict panda happiness

  def trainModel(rdd: RDD[LabeledPoint]): LogisticRegressionModel = {
    val lr = new LogisticRegressionWithLBFGS()
    val lrModel = lr.run(rdd)
    lrModel
  }

The preceding model (Example 9-11) is trained using entirely default parameters,
such as number of clusters. It is likely that when you are using MLlib in production
you will need to set some specific parameters. Unlike models in Spark ML, each
model has its own methods for configuration, so you will need to play close attention
to Spark’s API documentation for the models you are using. We can easily update the
Example 9-11 to include an intercept, as in Example 9-12.

Example 9-12. Train simple classification model to predict panda happiness with an
intercept

  def trainModelWithInterept(rdd: RDD[LabeledPoint]): LogisticRegressionModel = {
    val lr = new LogisticRegressionWithLBFGS()
    lr.setIntercept(true)
    val lrModel = lr.run(rdd)
    lrModel
  }

One shortcoming of MLlib is that since the parameters do not fol‐
low a standard format, meta-algorithms (like parameter search) are
difficult to implement, relative to Spark ML, which has a standar‐
dized format and parameter search tools.

Predicting
Once you have your model, it’s time to use it to predict some results. The simplest
way to use your model is to continue to use it inside of the same Spark cluster where
it was trained, as this avoids needing to export and load the model. However, many
use cases require lower latency than Spark’s batch mechanism can support. For most
online prediction, using a Spark cluster is not feasible, unless a micro-batch approach
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works for you. Spark offers limited support for record-at-a-time prediction, but still
requires a local cluster.

Most of the MLlib models have predict functions that work on RDDs of SparkVec‐
tors, and many also provide an individual predict function for use on one vector at a
time. This is not true for all models; for example, LDAModel has a topicDistribution
method instead of a predict method, so double-check the API documentation for
your specific models. Continuing from Example 9-11, you can use the batch predic‐
tion API to predict which pandas are happy as in Example 9-13. Once again the batch
API isn’t well suited to even all batch use cases, as it does not keep the original record
around—so you may find using the individual record API a better fit even in batch
mode (as with Example 9-4).

Example 9-13. Predict if the pandas are happy

  def trainModel(rdd: RDD[LabeledPoint]): LogisticRegressionModel = {
    val lr = new LogisticRegressionWithLBFGS()
    val lrModel = lr.run(rdd)
    lrModel
  }

Some models will attempt to broadcast their internals when used in batch mode,
which can reduce overhead. As with the feature transformations, if you need to use
the individual predict function inside of a transformation, consider broadcasting the
model as well.

Serving and Persistence
Model persistence and serving are closely related, as many deployments need to use a
different set of machines for serving than for training. If your only use for your
model is for batch prediction on records inside of Spark jobs, you will still likely want
to persist your model so you can use it between different Spark jobs.

MLlib provides export support for two formats, a Spark internal format and PMML
(Predictive Model Markup Language). Inside of MLlib, model saving is implemented
using the Saveable and PMMLExportable traits. Saveable provides a Spark internal
format, which can be read back into Spark easily and is implemented on a variety of
models. Saveable is also often the more space-efficient option. PMMLExportable
results in larger outputs than Saveable, and surprisingly, the models exported with
PMML export cannot be loaded back into Spark. However, PMML exports have the
benefit of being able to read into external systems.
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Saveable (internal format)

The Saveable trait provides a save function that takes a SparkContext and a target
path and writes the model out in a Spark internal format, as illustrated in
Example 9-14. The internal format consists of JSON-formatted metadata (the type of
model, number of features, and number of classes) and semi-opaque Parquet data
representing the model itself. This format is not portable among systems, but is nor‐
mally readable by newer versions of Spark.

Example 9-14. Exporting a model to Spark’s internal format

    // Save to internal - remote path
    model.save(sc, path + "/internal")

To load a model stored in Spark’s internal format, you call the static load method on
a companion object of the model. Using the load method can be confusing, since the
method doesn’t always show up in the generated API docs or in your IDE’s autocom‐
plete. You can load back the internal model that was exported in Example 9-14 with
Example 9-15.

Example 9-15. Load back an exported LogisticRegressionModel in Spark’s internal
format

  def load(sc: SparkContext, path: String): LogisticRegressionModel = {
    LogisticRegressionModel.load(sc, path + "/internal")
  }

If you need to interact with a model outside of Spark that does not
have PMML export but is saveable, you can write your own model-
loading code to parse Spark’s internal format.

PMML

The PMMLExportable trait provides a more standardized output format, although it is
implemented on a smaller subset of models and cannot be loaded back into Spark
directly (Example 9-16).

Example 9-16. Exporting a model to PMML formats

    // Save to PMML - remote path
    model.toPMML(sc, path + "/pmml")
    // Save to PMML local path
    model.toPMML(path + "/pmml")
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While Spark provides PMML export support, since it is primarily intended for interfac‐
ing with external projects, loading PMML exported models is left up to the downstream
consumers.

The JPMML evaluator project can be used to load and evaluate PMML
exported models, but is AGPL licensed.

Custom
You need not limit yourself to the built-in storage formats available in Spark,
although doing so will often require accessing Spark’s internals. Custom exporting
requires accessing internal APIs, and is discussed in the context of Spark ML in
“General Serving Considerations” on page 250.

Some particularly adventurous users who don’t plan to use their
models between versions have also had success using Java serializa‐
tion. This approach is very brittle and will break when upgrading
Spark, but for Spark MLlib models without save/load support,
using Java serialization can be a quick way to build a proof of
concept.

For low latency serving, Spark MLlib may not a be feasible option: in its present
incarnation, loading a natively exported Spark model requires using a SparkContext
as well as all of the regular Spark dependencies. Some contributors to Spark’s ML
libraries are investigating separating out the serving code, but this is in its very early
stages.

If you have an existing serving system that does not support PMML, another
approach is to manually extend the model and write custom export code. This is brit‐
tle, as the internals of the way the model is represented may change between versions,
but if you only need support for a limited number of models and have an existing
serving system in place, it can be a good option.

Model Evaluation
Beyond prediction functionality, many models also contain accuracy information, or
other summary statistics that can be interesting as a data scientist (or developer), so
take a look at all of the fields of the resulting model. For example, the KMeans model
gives you access to the cluster centers, and the LogisticRegressionModel, that we
trained to predict panda happiness in Example 9-12, contains the intercept and fea‐
ture weights.
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In addition to built-in model summaries, org.apache.spark.
mllib.evaluation contains tools for calculating a number of dif‐
ferent metrics given the predictions and the ground truth. The MLU
tils object provides a kfold function to segment your data for
evaluation.

Working with Spark ML
The Spark ML API is built around the concept of a “pipeline” consisting of the differ‐
ent stages. Each stage performs a separate task, and stages exist for tasks ranging from
data cleaning, to feature selection, through applying a machine learning algorithm.
For those familiar with scikit-learn much of the design will seem familiar. These
pipeline stages are grouped into estimators and transformers.

Estimators, such as NaiveBayes, require training before use, whereas transformers,
like the vector encoder, can be used directly. The pipeline API makes it easy to use a
variety of data preparation and cleaning tools in addition to our standard machine
learning algorithms, while also supporting the ability to save the entire pipeline for
later use.

Spark ML Organization and Imports
Spark ML and Spark MLlib both live in the same Spark component currently, and in
Spark 2.0 its Maven coordinates are org.apache.spark:spark-mllib_2.11:2.0.0.
Once you have added this to your build, you can start importing the parts of Spark
ML relevant to your specific ML task.

The tools for constructing a machine learning pipeline live in the root at
org.apache.spark.ml. The different algorithm families (classification, regression,
recommendation, and clustering) each have their own package under the ML pack‐
age (e.g., classification algorithms live under org.apache.spark.ml.classifica
tion). In addition to traditional machine learning algorithms, there is a strong
collection of feature transformers under org.apache.spark.ml.feature and meta-
algorithms under org.apache.spark.ml.tuning.

The standard imports are shown in Example 9-17, although you will likely want to
avoid the wildcards. In addition to these standard imports, if you need to work with
Spark ML’s vector class you will likely benefit from using import renaming as shown
in Example 9-18.

Example 9-17. Standard imports for Spark ML

import org.apache.spark.ml._
import org.apache.spark.ml.feature._
import org.apache.spark.ml.classification._
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As with Spark’s MLlib, Spark ML also has a basic local linear algebra components,
which are under org.apache.spark.ml.linalg, and starting in Spark 2.0 the linear
algebra package is available as a target JAR without dependencies on the rest of
Spark. The goal of this package is to eventually help with local serving.

Throughout the examples in this section we refer to Spark ML’s
Vector class as “SparkVector” so as not to conflict with Scala’s vec‐
tor class.

Example 9-18. Renamed import for SparkVector

import org.apache.spark.ml.linalg.{Vector => SparkVector}

It should be noted that org.apache.spark.mllib.Vector is not
the same as org.apache.spark.ml.Vector.

The fromML function on org.apache.spark.mllib.linalg.Vec
tors can be used to convert from ml to mllib format.

Pipeline Stages
Pipeline stages are the core building block of Spark ML. Both data preparation tasks
and classic model training are available as pipeline stages. Pipeline stages can be
either transformers, which don’t require fitting on the data before use, or estimators,
which require fitting before they can be used.

While you will normally use pipeline stages in the context of a full pipeline, which we
will introduce later, it can be useful to debug them one at a time. When used in a
pipeline, the differences between how transformers and estimators work isn’t visible;
however, when used outside of a pipeline, the API differences become visible. By
working with transformers and estimators outside of a pipeline first, you can get a
better understanding of how they differ and work.

A transformer is the simplest pipeline stage, and an estimator when fit returns a
transformer. For transformer pipeline stages, you can directly call the transform
method, which takes an input DataFrame. The transform method returns a new Data
Frame with the result transformed; normally this will be purely additive (e.g., adds
new columns created from old columns). For estimators, you can fit the estimator to
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a particular input DataFrame using fit. Fit returns a transformer pipeline stage that
you can then call transform on.

Almost all pipeline stages have some basic parameters that need to be set before they
can be used (such as the column of the DataFrame they should apply their transfor‐
mation to), so before we go too far we need to understand how parameters work.

Pipeline stages share a common method for specifying the parameters, which is the
basis for meta algorithms like parameter search. The parameters are grouped
together in a “Parameters” section of the Javadocs for each stage with the getters and
setters grouped under “Parameter getters” and “Parameter setters,” respectively. To
start with you can configure your machine learning algorithms with the parameter
setters, and the getters will come in handy later on. Some parameters have default
values, although these are often chosen for backward compatibility rather than opti‐
mal performance.

Even though the defaults are often chosen for backward compati‐
bility, they do sometimes change between releases—so for better
reproducibility explicitly setting even the default values you wish to
use can be beneficial.

Python users working with Spark ML may find the documentation
on the default values of the different parameters missing; in those
cases, refer to the Scala version of the documentation. However,
differences may exist between languages so explicitly setting equiv‐
alent values to the defaults is still a best practice.

Explain Params
If you are working in the shell, explainParams() will list all of the params of the
stage, the documentation associated with it, and the current value. Use explain
param("paramName") for a single parameter. Example 9-19 is a sample of the Binar
izer pipeline stage without any of the values overridden.

Example 9-19. Explain Params output on a Binarizer pipeline stage

inputCol: input column name (undefined)
outputCol: output column name (default: binarizer_8b03ca79966b__output)
threshold: threshold used to binarize continuous features (default: 0.0)

Most stages will perform additional validation on the values that
have been set (e.g., check for a nonzero scaling factor) at the time
they need to transform the schema of the input DataFrame (e.g.,
transform or fit on a DataFrame).
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2 This doesn’t happen in Python currently, but there is an open PR to resolve this issue.

As you can see, in Example 9-19 the input column is not set and lacks a default value.
Thus, to use the stage, you would first need to set it to a specific value. This can be
done through setParameterName([value]) on the pipeline stage (in this case setIn
putCol("inputCol")). The setters update the pipeline stage they are called on, and
also return the stage to make it easier to chain multiple setter operations. It’s impor‐
tant to note that the setter does not copy the stage; rather it modifies the stage it is
called on and returns that stage.

While fitting/training a transformer/model, the parameter values
are copied from the estimator to the transformer.2

The parameters can often be updated on the model: for example, if you have one col‐
umn you use for training and another in “live” serving you can change the input col‐
umn on the resulting model with the same setter methods used on the estimator. Be
careful when changing parameters on the model, because occasionally parameters
can be changed on the model but will not actually have any impact (e.g., changing
regularization).

Now that you understand the basics of how to configure pipeline stages, you can use
Spark ML’s data preparation tools.

Data Encoding
Despite taking in a Dataset[_], most of Spark’s ML models require that your data is
encoded in a specific format. The features are required to be represented in a column
of the Vector type. If training a supervised algorithm, the labels are required to be of
Double type with the features as a separate Vector.

Some algorithms in Spark assume that the label column is zero
indexed, and may behave suboptimally (in training time or predic‐
tion quality) if the input label column is not zero indexed. The
StringIndexer feature transformer we discuss later on in this sec‐
tion can help solve this problem.

Thankfully, Spark ML has a wide range of pipeline options for data preparation.
These live under the org.apache.spark.ml.feature package, and at the time of the
writing, include 35+ algorithms covering everything from Binarizer and PCA, to
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Word2Vec. Data preparation stages can exist as both estimators (like Word2Vec or
StringIndexer) or transformers (like HashingTF).

The most common feature transformer is the VectorAssembler, which is used to get
your inputs into a format that Spark ML’s machine learning models can work with. If
your data is already available as numeric types, using the VectorAssembler is simply
a matter of specifying the input columns and desired output column for the assem‐
bled feature vector as in Example 9-20.

Example 9-20. Simple vector assembler

    val assembler = new VectorAssembler()
    assembler.setInputCols(Array("size", "zipcode"))

If you have textual inputs, Spark’s ML pipeline has the basic text-encoding functions
like Word2Vec, StopWordsRemover, NGram, IDF, HashingTF, and a simple Tokenizer.
By using Tokenizer together with HashingTF you can convert an input text column
into a numeric feature that can be used by Spark. In Example 9-21 we illustrate how
to do this by hand, but using a pipeline (covered in “Putting It All Together in a Pipe‐
line” on page 238) will make this process much simpler.

Example 9-21. Construct a tokenizer and use its output for HashingTF

    val tokenizer = new Tokenizer()
    tokenizer.setInputCol("name")
    tokenizer.setOutputCol("tokenized_name")
    val tokenizedData = tokenizer.transform(df)
    val hashingTF = new HashingTF()
    hashingTF.setInputCol("tokenized_name")
    hashingTF.setOutputCol("name_tf")
    hashingTF.transform(tokenizedData)

If you find yourself wanting more powerful NLP tools in Spark, you can look at the
spark-packages community website or consider extending Spark’s pipeline with your
own custom code, as covered in “Extending Spark ML Pipelines with Your Own
Algorithms” on page 242.

Once you have your features in a Vector for Spark to train on, it’s time to get your
labels encoded as well. As the name implies, StringIndexer can be used to convert
strings to indexes, and is a common way to handle text-labeled data. The StringIn
dexer can also be used on categorical numeric input types; this is useful for working
with a categorical label column that may not already be zero indexed. StringIndexer
is an estimator, as it aims to provide the most commonly occurring labels with the
lowest string index with zero collisions. To be able to sort the strings by how fre‐
quently they occur, the StringIndexer needs to see the most common strings. When
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you’ve fit a string indexer it returns a StringIndexerModel (as shown in
Example 9-22), which can be used to transform the data.

Example 9-22. Handling string labels with StringIndexer

    // Construct a simple string indexer
    val sb = new StringIndexer()
    sb.setInputCol("name")
    sb.setOutputCol("indexed_name")
    // Construct the model based on the input
    val sbModel = sb.fit(df)

StringIndexerModel also has an important counterpoint transformer called IndexTo
String, which can be used to convert predictions back to the original labels. In
theory, it can function using metadata that is encoded in the DataFrames schema (as
in Example 9-23), but many estimators do not copy the metadata from the label col‐
umn to the prediction column.

Example 9-23. IndexToString requiring metadata

    // Construct the inverse of the model to go from
    // index-to-string after prediction.
    val sbInverseMD = new IndexToString()
    sbInverseMD.setInputCol("prediction")

When the metadata is missing on the output column, to recover the original labels,
you will need to construct the IndexToString object manually as shown in
Example 9-24.

Example 9-24. IndexToString without metadata

    // Construct the inverse of the model to go from index-to-string
    // after prediction.
    val sbInverse = new IndexToString()
    sbInverse.setInputCol("prediction")
    sbInverse.setLabels(sbModel.labels)

If new values are encountered, say because one of the labels was
missing during k-fold training, StringIndexerModel can either
throw an exception or skip the record. You can control this behav‐
ior with the handleInvalid param (which defaults to “error”).

Data Cleaning
Beyond the basics of simply getting your data into a format that Spark is capable of
working with, additional feature engineering can make a huge difference in the per‐
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formance of your models. You can use Binarizer to threshold a specific feature, and
PCA to reduce the dimension of your data. When you are training models that work
better with normalized features, you can use Normalizer (entire feature vector), as
shown in Example 9-25, or MinMaxScaler (individual column) to easily add normal‐
ization of your features to an existing pipeline.

Example 9-25. Constructing a normalizer

    val normalizer = new Normalizer()
    normalizer.setInputCol("features")
    normalizer.setOutputCol("normalized_features")

Now that you’ve done a first pass at prepairing your dataset for training, it’s time to
jump into Spark ML’s algorithms for machine learning.

Spark ML Models
Spark has a wide variety of machine learning algorithms, ranging from classification,
regression, and clustering. Each model has tuning parameters, which are described in
the Scala/Javadoc. All of the supervised algorithms have at least labelCol, features
Col, and predictionCol.

The different machine learning algorithms are organized by usage. Since each family
of machine learning algorithms (classification, regression, recommendation, and
clustering) are grouped by package, you can view your algorithm options by brows‐
ing to the corresponding package. In addition to the models that ship directly with
Spark, you can extend the pipeline stages for your own algorithm—see “Extending
Spark ML Pipelines with Your Own Algorithms” on page 242, or look at the commu‐
nity provided algorithms (see “Using Community Packages and Libraries” on page
269).

Constructing and configuring a machine learning stage is the same as configuring
other estimators, like the StringIndexer. The machine learning estimators often
have more parameters available for configuration than the data preperation estima‐
tors, and often take longer to fit. Most of these parameters have default values, so
constructing a machine learning estimator need not involve much configuration, as
in Example 9-26.

Example 9-26. Construct Naive Bayes stage with minimal configuration

    val nb = new NaiveBayes()
    nb.setLabelCol("happy")
    nb.setFeaturesCol("features")
    nb.setPredictionCol("prediction")
    val nbModel = nb.fit(df)
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When working in the Spark shell or notebook, the same general
techniques that we discussed in “Explain Params” on page 233 con‐
tinue to work on ML stages.

As with the other estimators, you can directly call the fit method, but using the
machine learning stage inside of a pipeline will be much easier than manually chain‐
ing the stages with your own code.

Putting It All Together in a Pipeline
Spark’s ML pipeline interface gives you a way to chain together your data preparation
and model training steps. This is especially useful for saving your pipeline or when
running meta-algorithms (like parameter search) over multiple components of your
pipeline. Even without the benefits of simplified persistence or meta-algorithms,
chaining together transformers and estimators in a unified pipeline can simplify your
model training code compared to manually stringing together fit and transform
calls.

Now that you know how to construct the individual pipeline stages, putting them
together in a pipeline is straightforward. The same parameter mechanism used for
configuring the pipeline stages is used to configure pipelines themselves, and a pipe‐
line is also an estimator (one could make a pipeline of pipelines, but there is very little
benefit to doing so).

To build a pipeline all you need to do is create an instance of org.apache.spark
.ml.Pipeline and call setStages with an array of the stages in your pipeline. You
can compile the stages from the previous examples together into a single pipeline,
saving the effort of manually transforming your DataFrame as shown in
Example 9-27.

Example 9-27. Constructing a simple pipeline

    val tokenizer = new Tokenizer()
    tokenizer.setInputCol("name")
    tokenizer.setOutputCol("tokenized_name")
    val hashingTF = new HashingTF()
    hashingTF.setInputCol("tokenized_name")
    hashingTF.setOutputCol("name_tf")
    val assembler = new VectorAssembler()
    assembler.setInputCols(Array("size", "zipcode", "name_tf",
      "attributes"))
    val nb = new NaiveBayes()
    nb.setLabelCol("happy")
    nb.setFeaturesCol("features")
    nb.setPredictionCol("prediction")
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    val pipeline = new Pipeline()
    pipeline.setStages(Array(tokenizer, hashingTF, assembler, nb))

A great thing about pipelines is that new stages can be easily added, such as adding a
normalizer to Example 9-27 in Example 9-28.

Example 9-28. Pipeline with normalizer

    val normalizer = new Normalizer()
    normalizer.setInputCol("features")
    normalizer.setOutputCol("normalized_features")
    nb.setFeaturesCol("normalized_features")
    pipeline.setStages(Array(tokenizer, hashingTF, assembler, normalizer, nb))
    val normalizedPipelineModel = pipelineModel.transform(df)

Training a Pipeline
Since the pipeline is simply a special type of estimator, one that may contain other
estimators, you can use it in much the same way. Calling fit() with a specified Data
set will fit the pipeline stages in order (skipping transformers) returning a pipeline
consisting of entirely trained transformers ready to be used to predict inputs.

Accessing Individual Stages
You may find yourself wanting to access the individual stages in the pipeline, either
for debugging information or for manually persisting one component. The root Pipe
line class contains a stages param consisting of an array of the pipeline stages. After
training, the resulting PipelineModel has an array called stages, consisting of all of
the pipeline stages after fitting. Accessing the stages in Scala normally requires cast‐
ing it to the explicit type, as shown in Example 9-29.

Example 9-29. Accessing selected stages of a ML pipeline

    val tokenizer2 = pipelineModel.stages(0).asInstanceOf[Tokenizer]
    val nbFit = pipelineModel.stages.last.asInstanceOf[NaiveBayesModel]

Most commonly you will want to access the last stage of your pipeline to get informa‐
tion about the performance of your model. Another common reason is to construct
an inverse to the StringIndexerModel by getting its labels to construct an IndexTo
String stage.

Data Persistence and Spark ML
It may seem counterintuitive, but not explicitly caching your data when working with
Spark’s machine learning algorithms can sometimes be faster than explicitly caching
your input. If your data is not reused outside of the machine learning algorithm,
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many iterative algorithms will handle their own caching, or allow you to configure
the persistence level with the intermediateStorageLevel property. Often one of the
first steps inside of each model transforms the input into a more usable internal for‐
mat, and any internal persistence is applied on this internal format. As such, letting
the model handle its own persistence can cache more efficiently—provided the pipe‐
line stage handles persistence.

Not all pipeline stages intelligently support persistence. If there is
no persistence parameter and the Scaladoc does not mention per‐
sistence, that can be a good sign you should look at the Spark UI
and see if manually persisting the input to your pipeline would be
beneficial.

Regardless of whether you explicitly cache your inputs, or leave it up to the algorithm
to cache the prepared version of your data, all of the same considerations in “Types of
Reuse: Cache, Persist, Checkpoint, Shuffle Files” on page 116 apply for selecting the
storage level.

Automated model selection (parameter search)
Model tuning represents a challenging problem, especially for engineers with less of a
machine learning background. Thankfully, Spark ML’s standardized approach to
model parameters simplifies parameter search, allowing you to specify the parame‐
ters you wish to search over along with a method of evaluating those parameters.

For those new to machine learning or parameter search, remember
that when using automated model selection (or any hand tuning)
to keep a separate train, test, and validation sets. This will help you
get to get a more accurate measurement of model effectiveness.

Spark can then search across the different parameters to automatically select the best
parameters, and the model from it. Using our pipeline example in Example 9-27, you
can construct a parameter grid to search for the best smoothing parameter as in
Example 9-30.

Example 9-30. Specify simple single parameter search

    // ParamGridBuilder constructs an Array of parameter combinations.
    val paramGrid: Array[ParamMap] = new ParamGridBuilder()
      .addGrid(nb.smoothing, Array(0.1, 0.5, 1.0, 2.0))
      .build()
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While the training and evaluation for each given configuration is
done in parallel, the search through the different configurations is
done linearily and no optimization is used to narrow the provided
search space. So, the amount of time required can quickly grow
with the number of options given.

Spark currently provides two tools for splitting the data for model evaluation: cross-
validation and train-validation split. Both these automatically cache the training and
validation sets at in-memory storage level, so if your input training set is too large to
be cached in-memory on your workers, consider sampling it for parameter search.

In addition to choosing how to run the trials, you can also configure the evaluation
metric used to select the best model. For our running example data we have binary
classification input, so Example 9-31 uses a BinaryClassificationEvaluator, and
for other data types RegressionEvaluator and MulticlassClassificationEvalua
tor are available.

Example 9-31. Running a parameter search with cross-validation

    val cv = new CrossValidator()
      .setEstimator(pipeline)
      .setEstimatorParamMaps(paramGrid)
    val cvModel = cv.fit(df)
    val bestModel = cvModel.bestModel

Just as with pipeline stages, you can configure your evaluator. The most common one
to change is the metric being evaluated, which all of the built-in evaluators expose
with a metricName parameter. The BinaryClassificationEvaluator supports area
UnderROC and areaUnderPR. The other evaluators also support a number of different
metrics, which can be explored in their Java/Scala docs.

You can also implement your own evaluator by following the
org.apache.spark.ml.evaluation.Evaluator class.

The parameters you search over need not be limited to those on a single stage either.
If you want to search for parameters in different stages in the same pipeline, all you
need to do is add extra parameters to the ParamGridBuilder. Returning to the exam‐
ple, you can easily search the hashingTF numfeatures, binary encoding, and normal‐
izer p-norm parameter configurations as shown in Example 9-32.
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Example 9-32. All stages parameter search

    val complexParamGrid: Array[ParamMap] = new ParamGridBuilder()
      .addGrid(nb.smoothing, Array(0.1, 0.5, 1.0, 2.0))
      .addGrid(hashingTF.numFeatures, Array(1 << 18, 1 << 20))
      .addGrid(hashingTF.binary, Array(true, false))
      .addGrid(normalizer.p, Array(1.0, 1.5, 2.0))
      .build()

One downside of making these large parameter searches is that the set of models to
be tested quickly grows with each new parameter added to the search space. Work
exists to do smarter automatic parameter searching in scikit-learn and similar sys‐
tems, but this is not yet in Spark.

Early version of RegressionEvaluator occasionally return invalid
results. If you experience NaN evaluation results, check out
SPARK-14489.

These model evaluation tools can be used outside of parameter
search to measure model effectiveness, which can be especially use‐
ful in sanity-checking new models before deploying the results to
production.

Extending Spark ML Pipelines with Your Own Algorithms
While Spark ML pipelines have a wide variety of algorithms, you may want addi‐
tional functionality without having to leave the pipeline model. In Spark MLlib, this
isn’t much of a problem—you can manually implement your algorithm with RDD
transformations in the middle of using built-in functions. You can use the same
approach with Spark ML pipelines, but doing so loses some of the nicely integrated
properties of the pipeline, including the ability to automatically run meta-algorithms,
such as cross-validation parameter search.

To add your own algorithm to a Spark pipeline, you need create either an Estimator
or Transformer, both of which implement the PipelineStage interface. Use the
Transformer interface for algorithms not requiring training. Use the Estimator
interface for algorithms that do require training. Both of these interfaces are in the
org.apache.spark.ml package (and implement the base PipelineStage trait). Note
that training is not limited to complicated machine learning models; even the Min
MaxScaler requires training to determine the range as it must see input data to deter‐
mine the range first. If your algorithms need training, they must be constructed as
Estimators rather than Transformers.
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You cannot directly use PipelineStage because the pipeline fitting
depends on reflection, which assumes all stages are either an Esti
mator or a Transformer.

Custom transformers
Even if you are going to implement an estimator, you should first learn how to create
a transformer since the result of your estimator must be a transformer.

In addition to the obvious transform or fit function, all pipeline stages need to pro‐
vide a transformSchema function and a copy constructor, or implement a class that
provides these for you. copy is used to make a copy of the current stage, with any
newly specified params merged in, and can normally simply call defaultCopy unless
your class has special constructor considerations.

The constructor of the pipeline stage, as well as the copy delegation, is shown in
Example 9-33.

Example 9-33. Basic start of a custom pipeline stage

class HardCodedWordCountStage(override val uid: String) extends Transformer {
  def this() = this(Identifiable.randomUID("hardcodedwordcount"))

  def copy(extra: ParamMap): HardCodedWordCountStage = {
    defaultCopy(extra)
  }

transformSchema must produce what the expected output of your pipeline stage is
based on any parameters set and an input schema. Most pipeline stages simply add
new fields; very few drop previous fields.

If you find the record size is a problem in your pipeline, you can
create your own stage to drop unnecessary fields.

In addition to producing the output schema, the transformSchema function should
validate that the input schema is suitable for the stage (e.g., the input column is of the
expected type). This is also where you should perform validation on your stage’s
parameters. A simple transformSchema for string inputs and a vector output with
hardcoded input and output columns is illustrated in Example 9-34.
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Example 9-34. Simple transformSchema

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex("happy_pandas")
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(
        s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField("happy_panda_counts", IntegerType, false))
  }

Algorithms that do not require training or fitting to input data can be implemented
very simply using the Transformer interface as started in Example 9-33. Since this is
the simplest pipeline stage, you can start with implementing a simple transformer,
which counts the number of words on the input column, as in Example 9-35.

Example 9-35. Number of words on the input column

  def transform(df: Dataset[_]): DataFrame = {
    val wordcount = udf { in: String => in.split(" ").size }
    df.select(col("*"),
      wordcount(df.col("happy_pandas")).as("happy_panda_counts"))
  }

To get the most of the pipeline interface, you will want to make your pipeline stage
configurable using the params interface. The params interface is public, but sadly the
default params that are commonly used inside of Spark’s ML stages are private and
you will have to reimplement. In addition to allowing users to specify values, parame‐
ters can also contain some basic validation logic (e.g., regularization parameter must
be set to a nonnegative value). The two most common parameters are input column
and output column, which you can add to your model relatively simply (see
Example 9-36).

In addition to string params, any other type can be used including lists of strings for
things like stop words, integers for number of iterations or max tree depth, and dou‐
bles for things like smoothing parameters.

Example 9-36. Param transformer example

class ConfigurableWordCount(override val uid: String) extends Transformer {
  final val inputCol= new Param[String](this, "inputCol", "The input column")
  final val outputCol = new Param[String](this, "outputCol", "The output column")

  def setInputCol(value: String): this.type = set(inputCol, value)
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  def setOutputCol(value: String): this.type = set(outputCol, value)

  def this() = this(Identifiable.randomUID("configurablewordcount"))

  def copy(extra: ParamMap): HardCodedWordCountStage = {
    defaultCopy(extra)
  }

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex($(inputCol))
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(
        s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField($(outputCol), IntegerType, false))
  }

  def transform(df: Dataset[_]): DataFrame = {
    val wordcount = udf { in: String => in.split(" ").size }
    df.select(col("*"), wordcount(df.col($(inputCol))).as($(outputCol)))
  }
}

Custom estimators

The primary difference between the Estimator and Transformer interfaces is that
rather than directly expressing your transformation on the input, you will first have a
training step in the form of a train function. A string indexer is one of the simplest
estimators you can implement, and while it’s already available in Spark it is still a
good illustration of how to use the estimator interface (Example 9-37).

Example 9-37. Simple string indexer pipeline stage

trait SimpleIndexerParams extends Params {
  final val inputCol= new Param[String](this, "inputCol", "The input column")
  final val outputCol = new Param[String](this, "outputCol", "The output column")
}

class SimpleIndexer(override val uid: String)
    extends Estimator[SimpleIndexerModel] with SimpleIndexerParams {

  def setInputCol(value: String) = set(inputCol, value)

  def setOutputCol(value: String) = set(outputCol, value)

  def this() = this(Identifiable.randomUID("simpleindexer"))

  override def copy(extra: ParamMap): SimpleIndexer = {
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    defaultCopy(extra)
  }

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex($(inputCol))
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(
        s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField($(outputCol), IntegerType, false))
  }

  override def fit(dataset: Dataset[_]): SimpleIndexerModel = {
    import dataset.sparkSession.implicits._
    val words = dataset.select(dataset($(inputCol)).as[String]).distinct
      .collect()
    new SimpleIndexerModel(uid, words)
  }
}

class SimpleIndexerModel(override val uid: String, words: Array[String])
    extends Model[SimpleIndexerModel] with SimpleIndexerParams {

  override def copy(extra: ParamMap): SimpleIndexerModel = {
    defaultCopy(extra)
  }

  private val labelToIndex: Map[String, Double] = words.zipWithIndex.
    map{case (x, y) => (x, y.toDouble)}.toMap

  override def transformSchema(schema: StructType): StructType = {
    // Check that the input type is a string
    val idx = schema.fieldIndex($(inputCol))
    val field = schema.fields(idx)
    if (field.dataType != StringType) {
      throw new Exception(
        s"Input type ${field.dataType} did not match input type StringType")
    }
    // Add the return field
    schema.add(StructField($(outputCol), IntegerType, false))
  }

  override def transform(dataset: Dataset[_]): DataFrame = {
    val indexer = udf { label: String => labelToIndex(label) }
    dataset.select(col("*"),
      indexer(dataset($(inputCol)).cast(StringType)).as($(outputCol)))
  }
}
//end::SimpleIndexer[]
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If you are implementing an iterative algorithm you may wish to
consider caching the input data automatically if not already cached
or allow the user to specify a persistence level.

For many algorithms, the org.apache.spark.ml.Predictor or org.apache

.spark.ml.classificationClassifier helper classes are easier to work with than
directly using the Estimator interface.

The Predictor interface adds the two most common parameters (input and output
columns, as labels column, features column, and prediction column) and automati‐
cally handles the schema transformation for us.

The Classifier interface is similar to the Predictor interface. The predictor inter‐
face additionally includes a rawPredictionColumn in the output and provides tools to
detect the number of classes (getNumClasses), which are helpful for classification
problems. We can use the classifier interface to implement a simplified Naive Bayes
classifier, as shown in Example 9-38. If you want to work with a legacy MLlib-style
algorithm, it also provides tools to convert the input DataFrame to an RDD of Label
edPoints.

Example 9-38. Simple Naive Bayes classifier

// Simple Bernoulli Naive Bayes classifier - no sanity checks for brevity
// Example only - not for production use.
class SimpleNaiveBayes(val uid: String)
    extends Classifier[Vector, SimpleNaiveBayes, SimpleNaiveBayesModel] {

  def this() = this(Identifiable.randomUID("simple-naive-bayes"))

  override def train(ds: Dataset[_]): SimpleNaiveBayesModel = {
    import ds.sparkSession.implicits._
    ds.cache()
    // Note: you can use getNumClasses & extractLabeledPoints to get an RDD instead
    // Using the RDD approach is common when integrating with legacy machine
    // learning code or iterative algorithms which can create large query plans.
    // Compute the number of documents
    val numDocs = ds.count
    // Get the number of classes.
    // Note this estimator assumes they start at 0 and go to numClasses
    val numClasses = getNumClasses(ds)
    // Get the number of features by peaking at the first row
    val numFeatures: Integer = ds.select(col($(featuresCol))).head
      .get(0).asInstanceOf[Vector].size
    // Determine the number of records for each class
    val groupedByLabel = ds.select(col($(labelCol)).as[Double]).groupByKey(x => x)
    val classCounts = groupedByLabel.agg(count("*").as[Long])
      .sort(col("value")).collect().toMap
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    // Select the labels and features so we can more easily map over them.
    // Note: we do this as a DataFrame using the untyped API because the Vector
    // UDT is no longer public.
    val df = ds.select(col($(labelCol)).cast(DoubleType), col($(featuresCol)))
    // Figure out the non-zero frequency of each feature for each label and
    // output label index pairs using a case class to make it easier to work with.
    val labelCounts: Dataset[LabeledToken] = df.flatMap {
      case Row(label: Double, features: Vector) =>
        features.toArray.zip(Stream from 1)
          .filter{vIdx => vIdx._2 == 1.0}
          .map{case (v, idx) => LabeledToken(label, idx)}
    }
    // Use the typed Dataset aggregation API to count the number of non-zero
    // features for each label-feature index.
    val aggregatedCounts: Array[((Double, Integer), Long)] = labelCounts
      .groupByKey(x => (x.label, x.index))
      .agg(count("*").as[Long]).collect()

    val theta = Array.fill(numClasses)(new Array[Double](numFeatures))

    // Compute the denominator for the general priors
    val piLogDenom = math.log(numDocs + numClasses)
    // Compute the priors for each class
    val pi = classCounts.map{case(_, cc) =>
      math.log(cc.toDouble) - piLogDenom }.toArray

    // For each label/feature update the probabilities
    aggregatedCounts.foreach{case ((label, featureIndex), count) =>
      // log of number of documents for this label + 2.0 (smoothing)
      val thetaLogDenom = math.log(
        classCounts.get(label).map(_.toDouble).getOrElse(0.0) + 2.0)
      theta(label.toInt)(featureIndex) = math.log(count + 1.0) - thetaLogDenom
    }
    // Unpersist now that we are done computing everything
    ds.unpersist()
    // Construct a model
    new SimpleNaiveBayesModel(uid, numClasses, numFeatures, Vectors.dense(pi),
      new DenseMatrix(numClasses, theta(0).length, theta.flatten, true))
  }

  override def copy(extra: ParamMap) = {
    defaultCopy(extra)
  }
}

// Simplified Naive Bayes Model
case class SimpleNaiveBayesModel(
  override val uid: String,
  override val numClasses: Int,
  override val numFeatures: Int,
  val pi: Vector,
  val theta: DenseMatrix) extends
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    ClassificationModel[Vector, SimpleNaiveBayesModel] {

  override def copy(extra: ParamMap) = {
    defaultCopy(extra)
  }

  // We have to do some tricks here because we are using Spark's
  // Vector/DenseMatrix calculations - but for your own model don't feel
  // limited to Spark's native ones.
  val negThetaArray = theta.values.map(v => math.log(1.0 - math.exp(v)))
  val negTheta = new DenseMatrix(numClasses, numFeatures, negThetaArray, true)
  val thetaMinusNegThetaArray = theta.values.zip(negThetaArray)
    .map{case (v, nv) => v - nv}
  val thetaMinusNegTheta = new DenseMatrix(
    numClasses, numFeatures, thetaMinusNegThetaArray, true)
  val onesVec = Vectors.dense(Array.fill(theta.numCols)(1.0))
  val negThetaSum: Array[Double] = negTheta.multiply(onesVec).toArray

  // Here is the prediciton functionality you need to implement - for
  // ClassificationModels transform automatically wraps this.
  // If you might benefit from broadcasting your model or other optimizations you
  // can override transform and place your desired logic there.
  def predictRaw(features: Vector): Vector = {
    // Toy implementation - use BLAS or similar instead
    // the summing of the three vectors but the functionality isn't exposed.
    Vectors.dense(thetaMinusNegTheta.multiply(features).toArray.zip(pi.toArray)
      .map{case (x, y) => x + y}.zip(negThetaSum).map{case (x, y) => x + y}
      )
  }
}

If you are implementing a regression or clustering interface, there is no public base
set of interfaces to use, so you will need to use the generic Estimator interface.

If you simply need to modify an existing algorithm, you can access
the required internals by putting your code in the org.apache
.spark package. By doing this none of the API guarantees between
Spark versions necessarily apply, and you will need to be very care‐
ful updating. This is the technique we explore in “Stream Process‐
ing with Spark” on page 255 to add streaming.

If you want more examples, one of the best places to look is Spark’s ML library itself,
and although most of them use some internal APIs they can be a good reference
point for adding your own functions.

Now that you are ready to start extending Spark’s ML pipelines, you can consider
creating a Spark package to share your new tools with the community as in “Using
Community Packages and Libraries” on page 269.
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Model and Pipeline Persistence and Serving with Spark ML
Built-in model and pipeline persistence options with Spark ML are limited to Spark’s
internal format. Using a persisted pipeline requires a full SparkContext, and has a
high level of overhead as the per-element predict APIs are not yet public. PMML
export functionality has not yet made it from Spark MLlib to Spark ML; however,
other external projects exist to provide this support.

PMML persistence is especially interesting for serving where you do not want to
bring in the entire Spark dependencies, as it is supported by multiple systems. There
is an external project, MLeap, which offers support for exporting many models in
PMML format, and other projects are exploring adding PFA support. We will discuss
how to use external projects like this in “Using Community Packages and Libraries”
on page 269.

The Spark ML developers are considering improving the persis‐
tence options for Spark ML, including adding PMML in
SPARK-11171, but this will have to wait for future versions of
Spark.

General Serving Considerations
Both Spark ML and MLlib have limited persistence options, which can make it diffi‐
cult to use the trained model in an online environment. For users with an existing
serving infrastructure in place, a common approach is to manually write a persistence
layer to their custom format. This can be time-consuming as it must be done for each
type of model. This is the approach taken by MLeap, which offers a custom model
serialization format for many Spark models with an online serving layer. For users
without an existing serving system, using PMML export along with an online serving
layer, like JPMML and the JPMML evaluator, represents a simple, flexible option.

JPMML has an AGPL license and may not be suitable for your
organization due to licensing constraints.

One of the simplest models to persist is linear models, which consist of only a few
coefficients to write out. One of these is shown in Example 9-39.
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Example 9-39. Manual persistence layer for GLM

  def exportLRToCSV(model: LogisticRegressionModel) = {
    (model.coefficients.toArray :+ model.intercept).mkString(",")
  }

Not all models will be as easy to export as GLMs (as in Example 9-39), and you may
find that not all of the information you need to persist the model is directly available.
In those cases you can lie and do “evil” things, by pretending to be in
org.apache.spark as done in some of the streaming examples (Example 10-13 and
Example 10-14).

Extending (subclassing) the models is only required if you’re work‐
ing in the JVM—Py4J uses reflection so you can directly (and
equally unsafely) access the model’s internals for export.

Conclusion
Spark’s built-in machine learning libraries offer support for a number of different
algorithms, but are currently primarily focused on the batch use case. Beyond build‐
ing models directly with Spark, other tools exist to do machine learning on Spark—
some of which have a more mature model serving options. Oryx, Mahout, H2O’s
Sparkling Water, Algorithmia, and others can also be used to train machine learning
models using Spark. The next chapter will explore how to use Spark components and
the Spark component ecosystem.
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CHAPTER 10

Spark Components and Packages

Spark has a large number of components that are designed to work together as an
integrated system, and many of them are distributed as part of Spark. This is different
from the Hadoop ecosystem, which has different projects or systems for each task.
You’ve already seen how to effectively use Spark Core, SQL, and ML components,
and this chapter will introduce you to Spark’s Streaming components, as well as the
external/community components (often referred to as packages). Having a largely
integrated system gives Spark two advantages: it simplifies both deployment/cluster
management and application development by having fewer dependencies and sys‐
tems to keep track of.

Even early versions of Spark provided tools that traditionally would have required the
coordination of multiple systems, as illustrated in Figure 10-1.

Figure 10-1. Spark components diagram
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As Datasets and the Spark SQL engine have become a building block for other com‐
ponents inside of Spark, a minor reorganization illustrated in Figure 10-2 represents
a more up-to-date version, including two of Spark’s newest components, Spark ML
and Structured Streaming. Much of your knowledge from working with core Spark
and Spark SQL can be applied to the other components—although there are some
unique considerations for each one.

Figure 10-2. Spark 2.0+ revised components diagram

Beyond the integrated components, the community packages can add important
functionality to Spark, sometimes even superseding built-in functionality—like with
GraphFrames. Community packages provide a diverse set of functionality, ranging
from additional data formats (mentioned in “Additional formats” on page 59) to the
testing packages discussed in Chapter 8, machine learning, and graph algorithms.
These community packages can sometimes become a part of Spark if their use is wide
enough, as happened with the spark-csv package for loading CSV data in Datasets.
This chapter will wrap up with information about how to create your own commu‐
nity package, so that we all can benefit from your work—not that you should feel
obliged to.

If you haven’t had a chance to read Chapter 3 yet, we encourage
you to jump back and at least skim it, since, as Figure 10-2 illus‐
trates, much of the new Spark development is happening on top of
Spark SQL and DataFrames/Datasets.
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One less directly visible benefit of this integrated approach is that
each component’s development can result in improvements across
all of the other components. For example, Streaming required a
large reduction in task creation overhead. This task overhead
reduction improved Spark SQL’s ability to support small queries,
where the task overhead previously dominated.

Stream Processing with Spark
Spark Streaming has two APIs, one based on RDDs—called DStreams—and a second
(currently in alpha)—called Structured Streaming—based on Spark SQL/DataFrames.
Many of the performance considerations for RDD transformations and DataFrame/
Dataset operations are the same in the streaming context, and many of the opera‐
tions have the same names. Some operations only make sense in the context of
streaming, and certain operations from the batch API aren’t directly supported in the
streaming API. This section will explore some considerations unique to Spark’s
streaming API, building on top of your knowledge from the previous chapters.

For more information about Spark Streaming, check out the
upcoming O’Reilly book Learning Spark Streaming by François
Garillot.

One of the clearest differences between streaming and batch is with the input data
sources, which can make large performance differences.

While developing and testing streaming applications in local mode,
a common problem can result from launching with local or
local[1] as the master. Spark Streaming requires multiple workers
to make progress, so for tests make sure to use a larger number of
workers like local[4].

Sources and Sinks
Regardless of which version of the Spark Streaming API you are using, there are
some special considerations for how Spark Streaming both consumes and writes out
its data. Well-partitioned streaming input can make a big difference, just as having
your RDD and DataFrame inputs well partitioned. Incorrectly partitioned or config‐
ured sources can result in bottlenecks reading data, as well as undesirable data loss.

Both of Spark Streaming’s APIs directly support file sources that will automatically
pick up new subdirectories and raw socket sources for testing. Early Kafka support
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exists for both structured streaming and more robust support in Spark’s DStream
API.

For simple testing, Spark offers in-memory streams, QueueStreams for DStream and
MemoryStream for streaming Datasets. Spark’s QueueStreams don’t support many
operations (like groupByWindow), which limits its use cases. Instead of QueueStream,
for testing, many people use spark-testing-base as in “Streaming” on page 204.

The DStream API offers additional first-party data sources, but these are packaged as
separate JARs to avoid bloat and licensing issues. These sources include Kafka,
Flume, Kinesis, Twitter, ZeroMQ, and MQTT. Integration guides exist for Kafka,
Flume, and Kinesis. Some of these will come to structured streaming in future ver‐
sions, possibly some as community packages.

Some sources have been moved out of Spark and are now provided through the
Apache Bahir project. This project, and other streaming sources on Spark packages,
can be included using the instructions in “Using Community Packages and Libraries”
on page 269.

As of this writing most Structured Streaming sources are not yet available. Additional
sources will likely be made available in a similar manner to the DStream API in future
versions and as Spark packages, which we cover in “Using Community Packages and
Libraries” on page 269.

Receivers

Many of Spark’s DStream sources depend on dedicated receiver processes to read in
data from your streaming sources, with file-based and “receiverless kafka” sources
being notable exceptions. In the receiver-based configuration, a certain number of
workers are configured to read data from the input data streams, which—if not care‐
fully configured—can become a bottleneck. Improper receiver configuration can
severely limit the amount of streaming data that Spark can process. The details of
each specific receiver depend on the data source, so make sure to read the documen‐
tation for your relevant receiver.

Some sources have multiple options for reading in data. For exam‐
ple, Kafka has both a receiver-based configuration and a “direct”
approach where the individual Spark executors directly read data
from Kafka.

Repartitioning

As with regular RDDs and DataFrames, your input sources may not partitioned in a
way that is optimized for processing with Spark. For receiver-based approaches, the
partitioning of your DStream generally reflects your receiver configuration. In the
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direct (receiverless) approaches the initial partitioning is based on the partitioning of
the input stream, much as how RDDs initial partitioning is similar to HDFS.

If your data is not ideally partitioned for processing, explicitly repartitioning as we
can on RDDs is the simplest way to fix it. Repartitioning can be simpler than config‐
uring multiple receivers and unioning them, and doing so is similar to RDDs
(Example 10-1). When repartitioning keyed data, having a known partitioner can
speed up many operations just as discussed in Chapter 6.

Example 10-1. DStream repartition

    dstream.repartition(20)

However, if the bottleneck comes from reading, repartitioning after the initial read
will not be sufficient—either you must increase the number of the partitions in the
input data source (for direct) or number of receivers.

This example may look very familiar. That’s because, like many operations on
DStreams, it is implemented using transform. transform takes the RDD for each
time slice and applies your transformations. If you have an RDD operation or custom
function that works on RDDs you want to use on DStreams, transform’s RDD time
slice view allows you to reuse it. Example 10-2 pretends repartition wasn’t directly
available on the DStream class and creates an alternative function.

Example 10-2. DStream repartition with transform

  def dStreamRepartition[A: ClassTag](dstream: DStream[A]): DStream[A] = {
    dstream.transform{rdd => rdd.repartition(20)}
  }

Even Kafka’s direct DStream receiver can benefit from repartition‐
ing. If the number of Kafka partitions is not sufficient for the
desired data parallelism inside of Spark, repartitioning can still be
useful.

Batch Intervals
Batch intervals represent the traditional trade-off in distributed streaming systems
between throughput and latency. Spark Streaming processes each batch interval com‐
pletely before starting the second batch interval. As such, you should set your batch
interval to be high enough for the previous batch to be processed before the next
batch would be scheduled to start.

The processing time for each batch depends on your specific application, so it is diffi‐
cult to provide general guidelines. Instead, it is common practice to start with a high
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batch interval (like 4 seconds) and work your way down until you start to encounter
micro-batch processing times approaching the batch interval, and then back off the
batch interval to the last safe value.

When changing the batch interval, make sure that your window
operations, discussed in “Considerations for DStreams” on page 259,
are still on a multiple of your batch interval.

The interval is configured differently between the DStream and Structured Streaming
APIs. In the DStream API it is configured on an application/context level, as illustra‐
ted in Example 10-3. The Structured Streaming API is configured on a per-output/
query, as illustrated in Example 10-7.

Example 10-3. Creating a StreamingContext with a 1-second batch interval

    val batchInterval = Seconds(1)
    new StreamingContext(sc, batchInterval)

Data Checkpoint Intervals
One of Spark’s biggest powers comes from the information present in the DAG (for
RDDs) or query plan (for DataFrames/Datasets), and the optimizations Spark can
perform with these. As with iterative algorithms, streaming operations can generate
DAGs or query plans that are too large for the driver program to keep in memory.
For simple operations that do not depend on previous batches, like map, filter, or
join, you are not substantially more likely to run into a problem with streaming than
with batch programming. For operations that depend on building a history, like
streaming aggregations on Datasets and updateStateByKey on DStreams, check‐
pointing is required to prevent the DAG or query plan from growing too large.

In Spark, data and operations are distributed, but the driver pro‐
gram must store the entire DAG or query plan. This may seem
counterintuitive since Spark is a distributed system, but is key to
Spark’s resiliency through recomputation.

To enable checkpointing for streaming, you need to call checkpoint with a path to a
persistent directory for Spark to use for checkpointing. See “Checkpointing” on page
118 for more information.

Metadata checkpointing is used to recover from failures, and is covered in “High
Availability Mode (or Handling Driver Failure or Checkpointing)” on page 268.
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Considerations for DStreams
Spark Streaming’s DStream API is based on the RDD API, and most of its operations
are simple wrappers of RDD methods with transform. These transformations have
largely the same performance considerations, as we discuss in Chapter 5. Not all
functions are simply wrappers of RDD operations; the most obvious function with no
direct parallel to the RDD API is the window operation, which allows you to construct
a sliding window of time of your input DStream, and its related friends (like reduceBy
Window).

As with the Spark Scala RDD API, many functions are added
through implicit conversions in Scala API. As with the Spark Java
RDD API, special functions return different types to support the
specific operations (e.g., JavaPairDStream for keyed/value data).

Window operations allow you to compute your data over the last K batches of data,
which can be very handy for things like moving averages or Kalman filters. At their
core, window operations are defined based on the windowDuration, which is the
width of the window, and the slideDuration, which is how often window is
computed.

One of the most important things you can do to help your window operations is to
allow Spark to compute your windows incrementally by using reduceByKeyAnd
Window with both a reduceFunk and an invReduceFunc. Naturally, this only works if
your reduction has an inverse, which can be easily expressed (like + and -).

Output operations
The built-in options for saving DStreams are somewhat limited; built-in support
exists only for saving each batch as object or text files. Example 10-4 illustrates how
to save to a text file.

Object files are not recommended as they depend on Java serializa‐
tion of objects, and are distinct from sequence files. You may not
be able to load object files between different version of Spark.

Example 10-4. Simple output for text files

    dstream.saveAsTextFiles(target)

You can save to other formats using foreachRDD to save on a per-batch basis using
the traditional RDD APIs. foreachRDD works almost the same as transform, except it
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1 It is possible to use Spark SQL with the DStream API, but it is convoluted.

is an action rather than a transformation. Multiple versions of the foreachRDD API
are available, depending on if you need information about the batch (like time)
besides the contents (e.g., for writing out to different directories) for your action, as
shown in Example 10-5.

Example 10-5. Save as sequence files with foreachRDD

    dstream.foreachRDD{(rdd, window) =>
      rdd.saveAsSequenceFile(target + window)
    }

Considerations for Structured Streaming
Structured Streaming introduces a new model of streaming data for Spark, more
closely built on top of Spark SQL’s table-like abstractions. Structured Streaming
allows you to conceptually think of running SQL queries on an infinite table, which
has records appended to it by the stream.1 Unlike the RDD-based API, Structured
Streaming does not introduce a new type (e.g., DStream) but instead keeps the exist‐
ing Dataset type and adds a boolean isStreaming so that you can tell the difference
between streaming and batch Datasets.

Structured Streaming is new in Spark 2.0 and should not be con‐
sidered production ready at the time of writing (Spark 2.1).

Unlike DStreams, structured streams can be created using the regu‐
lar SparkSession.

Streaming Datasets support a wide variety of operations, but not all operations
implemented on batch Datasets are supported on streaming. The operations that are
not supported do not always make logical sense—for example, in Spark 2.0 toJson()
(which converts a Dataset to a Dataset in JSON format) is not supported as the
implementation converts the Dataset to an RDD. Trickily it’s difficult to know if an
operation is internally implemented using an RDD transformation.
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2 Indeed, between two minor releases of this book, a minor alpha release of Spark added Kafka support to
Structured Streaming.

Structured Streaming is implemented by using a continuous Data
set. However, not all of the operations supported on Datasets are
supported on continuous Datasets and there is no compile-time
checking for streaming support.

Data sources
Structured Streaming currently supports a very limited set of data sources, with more
expected along the way in future versions—both internal to Spark and as packages.
Loading a streaming data source is quite similar to loading regular SQL data: simply
calling readStream instead of read (see Example 10-6).

Example 10-6. Simple complete mode read in

    session.readStream.parquet(inputPath)

Sampling schema inference doesn’t work with streaming data, so if
you want to load something like JSON you will have to specify the
schema manually, as you would with Datasets.

While the current set of data sources for Structured Streaming leave something to be
desired, work is progressing quickly (see SPARK-15406) to add more formats.2 As a
temporary workaround (for development only), the current DStream API can write to
an HDFS store in Parquet format using foreachRDD, and the parquet directory can be
used as an input to Structured Streaming.

Output operations
Structured Streaming uses a different writer class, the DataStreamWriter, than the
regular DataFrame/Dataset, for writing to sinks. While the writer class is different,
the general principles are the same. One important required configuration is the out
putMode, which is unique and can be set to either append (for new rows) or complete
(for all rows). At present any streaming Dataset with aggregate operations requires
complete mode, so there is no way to directly get only the aggregations that have
changed (as shown in Example 10-7).
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Example 10-7. Simple complete mode write out

    val query = counts.writeStream.
      // Specify the output mode as Complete to support aggregations
      outputMode(OutputMode.Complete()).
      // Write out the result as parquet
      format("parquet").
      // Specify the interval at which new data will be picked up
      trigger(ProcessingTime(1.second)).
      queryName("pandas").start()

The DataStreamWriter can write collections out to other formats besides the demon‐
strated Parquet format. The built-in formats include console, foreach, and memory.
console writes the result out to the terminal, and memory writes the result out to a
local table. The foreach format is unique in that it cannot be specified with format,
and instead must be set by calling foreach on the writer object so as to set up the
desired function.

In Spark 2.0 console output mode collects the entire stream back
locally.

Custom sinks
Beyond the standard sinks, you may wish to perform some arbitrary computation on
the result of your stream beyond writing out to one of the default sinks. Since a cus‐
tom sink needs to be supplied by name, it is difficult to construct it with arbitrary
functions—at compile time one needs to know the function for the specified sink
(e.g., it cannot vary based on user input). In Example 10-8 this is done using a func‐
tion and you can specify it using the current public write API as you would for other
sinks as in Example 10-9. This can be used to emulate the behavior of foreachRDD in
a more general way by accessing internals, which we will examine in “Machine learn‐
ing with Structured Streaming” on page 263.

The current sink APIs exposed in Structured Streaming assume
microbatching, but these APIs will likely change as one of the goals
of Structured Streaming is to allow the execution engine to migrate
away from microbatching.
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Example 10-8. Custom sink for Structured Streaming

/**
 * A basic custom sink to illustrate how the custom sink API is currently
 * intended to be used
 */
class BasicSinkProvider extends StreamSinkProvider {
  // Here we don't do any special work because our sink is so simple - but setup
  // work can go here.
  override def createSink(
      sqlContext: SQLContext,
      parameters: Map[String, String],
      partitionColumns: Seq[String],
      outputMode: OutputMode): BasicSink = {
    new BasicSink()
  }
}

class BasicSink extends Sink {
  /*
   * As per SPARK-16020 arbitrary transformations are not supported, but
   * converting to an RDD allows us to do magic.
   */
  override def addBatch(batchId: Long, data: DataFrame) = {
    val batchDistinctCount = data.rdd.distinct.count()
    println(s"Batch ${batchId}'s distinct count is ${batchDistinctCount}")
  }
}

Example 10-9. Writing to a basic custom Structured Streaming sink

    ds.writeStream.format(
      "com.highperformancespark.examples.structuredstreaming." +
        "BasicSinkProvider")
      .queryName("customSinkDemo")
      .start()

In Spark 2.0, no transformations that result in changing the logical
plan (e.g., no SQL/DataFrame/Dataset transformations) may be
performed inside of a sink. A workaround is to convert your Data
Frame into an RDD and perform your desired computation on the
RDD.

Machine learning with Structured Streaming
In the first version of Structured Streaming, the machine learning APIs have not yet
been integrated—however, with some creative work you can get your own machine
learning algorithms working on top of Structured Streaming. Some early proof of

Stream Processing with Spark | 263



concept work to integrate Structured Streaming and machine learning is available in
this spark-structured-streaming-ml GitHub repo, but it is important to note this is
not intended for production; rather, it serves to illustrate some interesting
components.

If you are interested in following along with the progress toward
Spark’s ML pipelines to support Structured Streaming, I encourage
you to follow SPARK-16424.

One of the simplest streaming machine learning algorithms you can implement on
top of Structured Streaming is Naive Bayes, since much of the computation can be
simplified to grouping and aggregating. After writing the algorithm to train the
model the interesting question becomes how to collect the aggregate data in such a
way that you can use it to make predictions. Spark’s Structured Streaming has an in-
memory table output format that you can use to store the aggregate counts, as shown
in Example 10-10.

Example 10-10. Structured Streaming aggregates for Naive Bayes

    // Compute the counts using a Dataset transformation
    val counts = ds.flatMap{
      case LabeledPoint(label, vec) =>
        vec.toArray.zip(Stream from 1).map(value => LabeledToken(label, value))
    }.groupBy($"label", $"value").agg(count($"value").alias("count"))
      .as[LabeledTokenCounts]
    // Create a table name to store the output in
    val randomId = java.util.UUID.randomUUID.toString.filter(_ != '-').toString
    val tblName = "qbsnb" + randomID
    // Write out the aggregate result in complete form to the in memory table
    val query = counts.writeStream.outputMode(OutputMode.Complete())
      .format("memory").queryName(tblName).start()
    val tbl = ds.sparkSession.table(tblName).as[LabeledTokenCounts]
    val model = new QueryBasedStreamingNaiveBayesModel(tbl)

From here this doesn’t quite include all of the data you need to make an instance of
the standard Spark Naive Bayes model. You can continue to add more aggregates (for
the number records, etc.), or we can start looking at a different approach.

The initial approach taken with Naive Bayes is not easily generalizable to other algo‐
rithms that cannot as easily be represented by aggregate operations on a Dataset.
Looking back at how the early DStream-based Spark Streaming API implemented
machine learning can provide some hints. Provided you can come up with an update
mechanism on how to merge new data into your existing model, the DStream fore
achRDD implementation allows you to access the underlying microbatch view of the
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data. Sadly, foreachRDD doesn’t have a direct equivalent in Structured Streaming, but
by using a custom sink you can get similar behavior (as shown in Example 10-11).

Example 10-11. Basic custom sink for training Naive Bayes

object SimpleStreamingNaiveBayes {
  val model = new StreamingNaiveBayes()
}

class StreamingNaiveBayesSinkprovider extends ForeachDatasetSinkProvider {
  override def func(df: DataFrame) {
    val spark = df.sparkSession
    SimpleStreamingNaiveBayes.model.update(df)
  }
}

As with writing DataFrames to customs formats, to use a third-party sink you can
specify the full class name as input to the format function. You can use the custom
sink from Example 10-11 to integrate machine learning into Structured Streaming
while we are waiting for Spark ML to be updated with Structured Streaming, as done
in Example 10-12.

Example 10-12. Write out to the custom sink for training Naive Bayes

  // Train using the model inside SimpleStreamingNaiveBayes object
  // - if called on multiple streams all streams will update the same model :(
  // or would except if not for the hard coded query name preventing multiple
  // of the same running.
  def train(ds: Dataset[_]) = {
    ds.writeStream.format(
      "com.highperformancespark.examples.structuredstreaming." +
        "StreamingNaiveBayesSinkProvider")
      .queryName("trainingnaiveBayes")
      .start()
  }

This basic custom sink needs to be fully known at compile time, since it is construc‐
ted based on the name. If you are willing to accept the difficulties in upgrading, you
can access some Spark internals to construct a sink more closely to the original fore
achRDD behavior, as shown in Example 10-13.

Example 10-13. Evil custom sink for Structured Streaming

/**
 * Creates a custom sink similar to the old foreachRDD. Provided function is
 * called for each time slice with the dataset representing the time slice.
 *
 * Provided func must consume the dataset (e.g. call `foreach` or `collect`).
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3 Although there is a draft PR to make something similar possible with the user-facing API.

 * As per SPARK-16020 arbitrary transformations are not supported, but converting
 * to an RDD will allow for more transformations beyond `foreach` and `collect` while
 * preserving the incremental planning.
 *
 */
abstract class ForeachDatasetSinkProvider extends StreamSinkProvider {
  def func(df: DataFrame): Unit

  def createSink(
      sqlContext: SQLContext,
      parameters: Map[String, String],
      partitionColumns: Seq[String],
      outputMode: OutputMode): ForeachDatasetSink = {
    new ForeachDatasetSink(func)
  }
}

/**
 * Custom sink similar to the old foreachRDD.
 * To use with the stream writer - do not construct directly, instead subclass
 * [[ForeachDatasetSinkProvider]] and provide to Spark's DataStreamWriter format.
 *  This can also be used directly as in StreamingNaiveBayes.scala
 */
case class ForeachDatasetSink(func: DataFrame => Unit)
    extends Sink {

  override def addBatch(batchId: Long, data: DataFrame): Unit = {
    func(data)
  }
}

Since the class name isn’t enough to construct the sink, you need to pass the sink
itself to Spark Structured Streaming. This is the part that is most likely to break in
future versions of Spark.3

Examples 10-14 and 10-15 show how to start the query unsafely.

Example 10-14. Evil streaming query manager—allowing you to start your own queries
(unsafely)

package org.apache.spark.sql.streaming

import scala.collection.mutable

import org.apache.spark.sql._
import org.apache.spark.sql.execution.streaming.Sink
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/**
 * :: Experimental ::
 * A class to manage all the [[StreamingQuery]] active on a [[SparkSession]].
 *
 * @since 2.0.0
 */
case class EvilStreamingQueryManager(streamingQueryManager: StreamingQueryManager) {
  def startQuery(
    userSpecifiedName: Option[String],
    userSpecifiedCheckpointLocation: Option[String],
    df: DataFrame,
    sink: Sink,
    outputMode: OutputMode): StreamingQuery = {
    streamingQueryManager.startQuery(
      userSpecifiedName,
      userSpecifiedCheckpointLocation,
      df,
      sink,
      outputMode)
  }
}

Example 10-15. Using ESQM to directly starting a query with a custom sink

  def evilTrain(df: DataFrame): StreamingQuery = {
    val sink = new ForeachDatasetSink({df: DataFrame => update(df)})
    val sparkSession = df.sparkSession
    val evilStreamingQueryManager = EvilStreamingQueryManager(sparkSession.streams)
    evilStreamingQueryManager.startQuery(
      Some(s"snb-train-$uid"),
      None,
      df,
      sink,
      OutputMode.Append())
  }

If you are interested in more directly supported foreachRDD-like
support in Spark Structured Streaming—or other custom sink sup‐
port—you can follow SPARK-16407.

While this certainly isn’t ready for use in production, you can see that the Structured
Streaming API offers a number of different ways that it can be extended to support
machine learning.

Stream status and debugging
One unique problem for streaming is understanding the status of your data sources
and sinks. Each query is associated with at most one sink, but possible multiple sour‐
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ces. The status function on a StreamingQuery returns an object containing the sta‐
tus information for the query and all of the data sources associated with it. The
toString() function returns a nicely formatted status object intended to be readable.

A common approach with RDDs is printing a small subset of the data, and Console
sinks can be used to achieve the same result on streaming DataFrames. You could add
a ConsoleSink for the input label points shown previously in Example 10-11, result‐
ing in Example 10-16.

Example 10-16. Blocking Console sink

    labeledPoints.writeStream.format("console").start().processAllAvailable()

Due to a restriction in Spark 2.0, using the Console sink collects the
entire batch to the driver so it cannot be used for large Datasets.
Instead limit your data before writing to the Console sink if you
may have large datasets.

High Availability Mode (or Handling Driver Failure or Checkpointing)
Most Spark applications assume that the driver program will never fail, while allow‐
ing for any number of workers/executors to fail and be recovered. For very long-
running jobs, such as streaming, the assumption that the driver program will never
fail may not hold true. Furthermore, simply relaunching your job is not an option
with streaming as doing so may result in data loss. High availability mode works by
checkpointing the driver state, and allows Spark to recover when the driver program
fails. The specific restart mechanism depends on your deployment mode; however,
the code changes required are the same regardless. To allow the restart to be success‐
ful, instead of creating the StreamingContext as shown in Example 10-3, you need to
provide a function to handle recovery (as in Example 10-17).

Example 10-17. Metadata checkpointing/streaming context recovery

    def createStreamingContext(): StreamingContext = {
      val batchInterval = Seconds(1)
      val ssc = new StreamingContext(sc, batchInterval)
      ssc.checkpoint(checkpointDir)
      // Then create whatever stream is required
      // And whatever mappings need to go on those streams
      ssc
    }
    val ssc = StreamingContext.getOrCreate(checkpointDir,
      createStreamingContext _)
    // Do whatever work needs to be done regardless of state
    // Start context and run
    ssc.start()
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Accumulators and broadcast variables are not currently recovered
in high availability mode. Using accumulators and broadcast vari‐
ables will result in a program that seems to work, until the driver
program needs to be recovered from checkpoint. You can use a
singleton as a workaround, but the values won’t be recovered.

GraphX
GraphX is a legacy component in Apache Spark that is no longer being updated.
GraphX suffers from a number of significant performance problems; in some cases,
performing iterative computation without the required checkpointing to allow Spark
to clean up the DAG. As of this writing, the most promising alternative to GraphX is
the community package GraphFrames, which we will discuss how to include in your
application next.

Using Community Packages and Libraries
Beyond the components that ship in Spark, there is a whole host of community pack‐
ages built for Spark. Some of the ones you have seen already in this book include
spark-testing-base, spark-csv, and spark-avro. Some other notable Spark packages
include GraphFrames, which many people view as the successor to GraphX, and
Apache Bahir, which provides a collection of extensions designed to work together
with Apache Spark—mostly as input formats. A listing of Spark packages by area can
be found on spark-packages.org (Figure 10-3).

Figure 10-3. Spark packages website
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Beyond public packages, if your company has internal libraries you wish to include
with your Spark application or use in the Spark shell, they can be added with similar
mechanisms.

Spark packages don’t undergo any particular scrutiny to be
released, so evaluate them yourself prior to use.

The same mechanism used to include packages from spark-
packages.org in the shell and with spark-submit can be used for
any artifacts published to Maven.

As you start working with a new package, you may find yourself wanting to explore it
using the Spark shell. Thankfully the mechanism for including a package with spark-
submit works just as easily with the spark-shell: you can just add --packages
[maven_coordinates] to your shell launch.

In early versions of Spark, some mechanisms would result in the
package only be included on the executor’s class path; in that case
you can manually add them to the driver class path.

To add packages that you need at compile time to Java/Scala projects, you can simply
copy its Maven coordinate and include it with your build. If you’re already including
other libraries, you may find it useful to package all of your dependencies together in
an uber JAR, but if you want to switch your package versions at runtime with spark-
submit simply mark them as provided.

The Spark packages ecosystem is not limited to the JVM. However, it is more com‐
mon for non-JVM languages (like Python and R) to distribute their libraries with the
language-specific tools (like PyPi and CRAN). See Chapter 7 for more information on
how to include custom libraries in other languages.

Spark packages currently ship .pyc files for Python 2.7 and not for
the 3.X line, making it less than ideal for Python users. This will
hopefully change in the future. For now it means GraphFrames
cannot be used from Python 3 easily.
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Creating a Spark Package
Spark Packages allow people outside of the Apache Spark project to release their
improvements or libraries built on top of Spark. Some Spark Packages are also cre‐
ated by Apache Spark contributors, like spark-testing-base or Bahir. Creating a Spark
Package allows your code to be easily used by others with spark-submit or the Spark
shell as well as discover it on the Spark Packages website. All of the benefits from cre‐
ating a Spark Package, except for the listing of version, can also be achieved by pub‐
lishing to Maven central—which is much simpler.

The first step is signing up on the Spark Packages website with the GitHub account
hosting your package. If you want the website to list the latest versions released, you
will need to publish to both Maven central and Spark packages. The sbt-spark-
package is the simplest way to publish and build Spark packages and also helps sim‐
plify dependency management of Spark components, as illustrated in “Managing
Spark Dependencies” on page 31. To add the plug-in to your SBT build, you need to
create a project/plugins.sbt file and make sure it contains the code in Example 10-18.

Example 10-18. Including sbt-spark-package in project/plugins.sbt

resolvers += ["Spark Package Main Repo" at
  "https://dl.bintray.com/spark-packages/maven"]

addSbtPlugin("org.spark-packages" % "sbt-spark-package" % "0.2.5")

Once you have the plug-in added to your build there are a few things you need to
configure to be able to publish a new package. spName needs to be set to the GitHub
project name, sparkVersion needs to be set to the target version of Spark, and spark
Components to a list of the components used. A sample configuration, based on a
simplified build file of spark-testing-base, is shown in Example 10-19.

Example 10-19. Sample sbt-spark-package configuration

sparkVersion := "2.1.0"
sparkComponents ++= Seq("core")
spName := "holdenk/spark-testing-base"

If your package depends on Spark internals, it can be necessary to
cross-build for different versions of Spark. There is no built-in sup‐
port for this from sbt-spark-packages—but some packages have
their own approaches, including spark-testing-base, which can
serve as a base for your own cross-building requirements.
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4 Not holiday time? No problem, it also makes an excellent birthday gift, or un-birthday gift.
5 We find pets tend to enjoy the box it comes in more than the book itself.

Conclusion
After reading this chapter you should have a basic understanding of Spark’s machine
learning and streaming libraries, as well as how to go out and access community
packages when Spark itself isn’t enough. If machine learning or streaming is a key
part of your work, we recommend following this book up with some more focused
resources; see suggestions in “Supporting Books and Materials” on page x.

We hope you have found this book useful and remind you that it
can make an excellent holiday gift4 for everyone in your family, co-
workers, and even pets.5

More seriously, if you’ve noticed things that can be improved about this book (either
mistakes or missing content), we encourage you to get in touch with us using the
information in “First Edition Notes” on page x. Now that you’ve finished reading you
should be ready to take your Apache Spark knowledge to the next level and handle
large-scale data problems with relative ease. Thank you for including us in your jour‐
ney with Apache Spark and we wish you all the best—may your code be relatively bug
free and cluster stable.
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APPENDIX A

Tuning, Debugging, and Other Things
Developers Like to Pretend Don’t Exist

Spark Tuning and Cluster Sizing
Recall from our discussion of Spark internals in Chapter 2 that the SparkSession or
SparkContext contains the Spark configuration, which specifies how an application
will be launched. Most Spark settings can only be adjusted at the application level.
These configurations can have a large impact on a job’s speed and chance of complet‐
ing. Spark’s default settings are designed to make sure that jobs can be submitted on
very small clusters, and are not recommended for production.

Most often these settings will need to be changed to utilize the resources that you
have available and often to allow the job to run at all. Spark provides fairly finite con‐
trol of how our environment is configured, and we can often improve the perfor‐
mance of a job at scale by adjusting these settings. For example, in Chapter 6, we
explained that out-of-memory errors on the executors was a common cause of failure
for Spark jobs. While it is best to focus on the techniques presented in the preceding
chapters to prevent data skew and expensive shuffles, using fewer, larger executors
may also prevent failures.

Configuring a Spark job is as much an art as a science. Choosing a configuration
depends on the size and setup of the data storage solution, the size of the jobs being
run (how much data is processed), and the kind of jobs. For example, jobs that cache
a lot of data and perform many iterative computations have different requirements
than those that contain a few very large shuffles. Tuning an application also depends
on the goals of your team. In some instances, if you are using shared resources, you
might want to configure the job that uses the fewest resources and still succeeds.

Tuning, Debugging, and Other Things Developers Like to Pretend Don’t Exist | 273



1 This is a good option for Spark applications designed to run in a variety of different environments, or a use
case such as ours, in which we have built a web application that submits Spark jobs from within the
application.

Other times, you may want to maximize the resources available to give applications
the best possible performance.

In this section, we do not aim to give a comprehensive introduction to submitting or
configuring a Spark application. Instead, we want to focus on providing some context
and advice about how to leverage the settings that have a significant impact on per‐
formance. In other words, we are assuming that you already have a system in which
you can submit an application, but are looking for ways to adjust that system to allow
your applications to run faster or run on more data.

How to Adjust Spark Settings
The SparkContext object (SparkSession in 2.0) represents your connection to the
Spark application. It contains a SparkConf object that defines how a Spark applica‐
tion should be configured on your system. The SparkConf contains all the configura‐
tions, defaults, and environment information that govern the behavior of the Spark
application. These settings are represented as key/value pairs; e.g., setting the prop‐
erty, spark.executor.instances to 5, would mean submitting a job with five execu‐
tors (Spark JVMs).

You may create a SparkConf with the desired parameters before beginning the Spark
Context. Some of the properties, such as the name of the application, have corre‐
sponding API calls. Otherwise, set the properties of a SparkConf directly with
the .set() method, which takes as its argument arbitrary key/value pairs. To config‐
ure a Spark application differently for each submit, you may simply create an empty
SparkConf object and supply the configurations at runtime. See the Spark documen‐
tation.1

The configurations for a running job can be found in the “environment” tab of the
web UI.

How to Determine the Relevant Information About Your Cluster
The primary resources that the Spark application manages are CPU (number of
cores) and memory. Spark requests cannot ask for more resources than are available
in the environment in which they will run. Thus, it is important to understand the
CPU and memory available in the environment where the job will be run. If you set
up your own cluster, the answers to these questions may be obvious. But often, we are
working in a system that was set up by someone else, so it is important to know how
to determine the resources available to you (or what questions to ask your sys-
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2 For a comprehensive answer to these questions for applications using YARN cluster mode, see this three-part
post.

admin). The answers to these questions depend on the kind of system that you have,
but generally speaking there are four primary pieces of information we have to know
about our hardware:2

• How large can one request be? Most systems have a limit on each request, which
caps the number of resources that can be made available to each executor and the
driver. In YARN cluster mode, this is the maximum size of the YARN container.
Each Spark executor and driver must “fit” within this limit. In terms of memory,
the executors and driver require the amount provided, plus overhead. We cover
calculating overhead in “Calculating Executor and Driver Memory Overhead” on
page 277. In YARN client mode, the driver runs as a process on the client, so the
cluster only needs to accommodate the resources required by the Spark executors
and this does not apply to the driver.

• How large is each node? When determining the number of executors and the
number of cores to allocate per executor, it is important to know how much
memory and CPU resources there are on each node, since one executor can use
resources from only one node. The memory available to each node is likely
greater than or equal to one container. However, this question is still important,
for determining the number of executors. For example, suppose that we have a
three-node cluster with 20 GB nodes. Even if the YARN container limit is 15 GB,
we can’t run four executors, since the fourth executor would need to be spread
across two nodes.

• How many nodes does your cluster have? How many are active? In general it is
best to have at least one executor per node. Understanding how many nodes are
up can also help you determine the total resources available.

• What percent of the resources are available on the system where the job will be
submitted? If you are using a shared cluster environment, is the cluster busy?
Will you be submitted into a queue, and how many resources does that queue
have available? For a recurring job, you may have to query the YARN (or Mesos)
API to determine resource burn before submitting. Often, if a Spark application
requests more resources than exist in the queue into which it is submitted, but
not more than exist on the whole cluster, the request will not fail, but instead will
hang in a pending state. Understanding what resources are available per queue
depends on what kind of scheduler your system is using. In the capacity schedu‐
ler case, each user can use a fixed percent of the resources available. In the fair
scheduler case, the active applications must share resources equally. The behav‐
ior of the capacity and fair scheduler are well explained in the Spark documenta‐
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tion. I have also outlined how to determine that information from the YARN
API in this post for details.

Basic Spark Core Settings: How Many Resources to
Allocate to the Spark Application?
The SparkSession/SparkContext begins JVMs for the executors (and in YARN clus‐
ter mode, the driver). Recall that the executors run each task (in order to compute
each partition) with the cores available to each executor. Furthermore, some propor‐
tion of each executor is used for computation while some is used for caching. The
size of the driver, size of the executors, and the number of cores associated with each
executor, are configurable from the conf and static for the duration of a Spark appli‐
cation. All executors are required to be the same size. Without dynamic allocation
(see “Allocating Cluster Resources and Dynamic Allocation” on page 279), the number
of executors is static as well. With dynamic allocation, Spark may request decommis‐
sioning of executors between stages. Although discussed in detail in Chapter 2, I
think it bears repeating that the size of each executor, the driver, and the number of
cores in each driver remains fixed regardless the size of your query. So, although
dynamic allocation allows Spark to add an additional executor to compute a job,
Spark cannot give an executor more resources when computing a particularly expen‐
sive partition, or as resources on your environment are made available.

First we will go over the meaning of each setting. Then we will weigh in on how to
determine the optimal solution for parsing the resources available between the driv‐
ers and executors given the resources you have available.

Spark setting name Meaning Default value Restrictions Guidelines
spark.driver.memory The size of

the Spark
driver in MB

1024 MB In YARN cluster mode no
larger than the YARN
container including
overhead.

A higher setting may be
required if collecting large RDDs
to the driver or performing
many local computations.

spark.executor.memory 1024 MB The size of the
each Spark
worker.

One executor + overhead
cannot be larger than the
limit for one request (the
size of one YARN
container).

Larger Spark workers may
prevent out-of-memory errors,
particularly if jobs require
unbalanced shuffles, but may be
less efficient.

spark.executor.cores 1 The number of
virtual cores that
will be allocated
to each executor.

The number of cores
available in the YARN
container.

Should be around five. Scale up
as resources allow.
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3 See https://www.cloudera.com/documentation/enterprise/5-6-x/topics/cdh_ig_running_spark_on_yarn.html for
a more detailed description of memory overhead and guidelines for how to configure it.

The total memory required by all of the executors (with overhead) and the driver
(with overhead) cannot be larger than the amount of memory available on the clus‐
ter. In YARN client mode, the driver does not use resources on the cluster.

Calculating Executor and Driver Memory Overhead
In YARN cluster mode and YARN client mode, both the executor memory overhead
and driver memory overhead can be set manually. In both modes the executor mem‐
ory overhead is set with the spark.yarn.executor.memoryOverhead value. In YARN
cluster mode the driver memory is set with spark.yarn.driver.memoryOverhead,
but in YARN client mode that value is called spark.yarn.am.memoryOverhead. In
either case, the following equations govern how memory overhead is handled when
these values are not set:3

memory overhead =
       Max(MEMORY_OVERHEAD_FACTOR x requested memory, MEMORY_OVERHEAD_MINIMUM).

Where MEMORY_OVERHEAD_FACTOR = 0.10 and
MEMORY_OVERHEAD_MINIMUM = 384 mb.

How Large to Make the Spark Driver
In general, most of the computational work of a Spark query is performed by the
executors, so increasing the size of the driver rarely speeds up a computation. How‐
ever, jobs may fail if they collect too much data to the driver or perform large local
computations. Thus, increasing the driver memory and correspondingly the value of
spark.driver.maxResultSize may prevent the out-of-memory errors in the driver.

Regardless of driver memory the size of the results that can be
returned to the driver are limited by the setting spark.driver.max
ResultSize. This value bounds the total size of serialized results
from all partitions being collected to the driver. The setting is used
to force jobs that are likely to cause driver memory errors to fail
earlier and more clearly. The default value for this setting is 1g,
which is relatively small. If your job requires collecting large results
and you are not competing for resources with other users, you may
set the maxResultSize to “0”, and Spark will disregard this limit.

In my experience, a good heuristic for setting the Spark driver memory is simply the
lowest possible value that does not lead to memory errors in the driver, i.e., which
gives the maximum possible resources to the executors.
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In YARN and Mesos cluster mode, the driver can be run with more cores, by setting
the value of spark.driver.cores, and can run a multithreaded process. Otherwise,
the driver requires one core.

A Few Large Executors or Many Small Executors?
We know that the total resources required by the executors and driver cannot be
larger than the resources we have available, and each executor cannot request more
memory or more cores than the resources allocated for one node (or container).
However, this still leaves many, many options for how to allocate resources amongst
the Spark workers. For example, suppose we are submitting a job to a cluster that has
four 20 GB nodes with six cores each; do we create four 20 GB six-core executors, or
eight 10 GB three-core executors? Good question! I spent several months trying to
develop an algorithm to answer this question, and although there are some instances
for which we can make an educated guess about resource allocation, finding the opti‐
mal configuration for one application on one cluster is not an exact science. Instead I
hope to provide a few tips about how to recognize the consequences of either too
large or too small executors in terms of either CPU or memory. Hopefully these tips
will help you make an educated guess about configuring an application and help you
determine how to correct a job if you see signs that it is misconfigured.

Many small executors
There are two potential downsides to using many small executors. The first has to do
with the risk or running out of resources to compute a partition, as we discussed in
Chapter 5. Since each partition cannot be computed on more than one executor, the
size of each partition is bounded by the space they have to be computed. Thus, we
risk running into memory problems, or spilling to disk if we need to shuffle, cache
unbalanced data, or perform very expensive narrow transformations. If the executors
have only one core, then we can run at most one task in each executor, which throws
away the benefits of something like a broadcast variable, which only has to be sent to
each executor (not each partition like other variables defined in the driver).

The second problem is that having too many executors may not be an efficient use of
our resources. Each executor has some overhead, and there is some cost to communi‐
cating between executors even if they are on the same node. Recall from our discus‐
sion of memory overhead that the minimum overhead is just under 400 MB. Thus if
we have many 1 GB executors, nearly 25 percent of the space that each executor will
use on our cluster has to be used for overhead rather than computation. I think that
there is a good argument to be made that if resources are available, executors should
be no smaller than about four gigs, at which point overhead will be based on the
memory overhead factor (a constant 10 percent of the executor).
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4 For any algorithm junkies, finding the best size and number of executors is similar to the Np-Complete knap‐
sack problem. The executors have fixed sizes and cores and have to “fit” onto the various nodes.

5 See this post by Sandy Ryza, and the data presented in this Stack Overflow post.

Many large executors
Very large executors may be wasteful just because placing executors on nodes is a
binning problem.4 To use all the resources and to have the driver smaller than the
size of one node, we might need to have more executors per node than one. For
example, suppose that our cluster only has four very large nodes and our computa‐
tion requires very little driver memory. In this case, having three very large executors
and a driver that is only half the size of the executors may be wasteful, since it leaves
half of the last node unused. Furthermore, very large executors may cause delays in
garbage collection, since a larger heap will delay the time until a GC event is triggered
and consequently GC pauses may be larger. Many cores per executor seems to lead to
poor performance, due to some limitations from HDFS on handling many concur‐
rent threads.5 Sandy Ryza suggests that five cores per executor should be the upper
limit. I have had jobs perform with a few more (6 or 7 cores), but it seems that, at the
very least, assigning executors more than about seven or eight cores does not speed
up performance and burns CPU resources unnecessarily. This limit on the CPU
should correlate to some limitation in terms of executor memory, if you want to burn
CPU and memory relatively evenly on your cluster. In other words, I have had rela‐
tively good results by determining the number of executors based on CPU resources
—dividing the CPU on each node by about five—then setting memory per executor
based on that number of executors.

Allocating Cluster Resources and Dynamic Allocation
Dynamic allocation is a process by which a Spark application can request and de-
commission executors as needed throughout the course of an application. This can
lead to dramatic performance improvements especially on a busy cluster, because it
allows an application to use resources as they become available and frees up those
resources when jobs do not need them.

The following rules govern when Spark adds or removes executors with dynamic
allocation. First, Spark requests additional executors when there are pending tasks.
Second, Spark decommissions executors that have not been used to compute a job in
the amount of time specified by the spark.dynamicAllocation.executorIdleTime
out parameter (by default, sixty seconds). With the default settings, Spark does not
remove executors that contain cached data, because once an executor has been
decommissioned, the cached data has to be recomputed to be used. You may change
this behavior by setting spark.dynamicAllocation.cachedExecutorIdleTimeout to
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something other than the default: infinity. In this case, executors with cached data
will be decommissioned if they have not been used for some amount of time.

You may configure the number of executors that Spark should start with when an
application is launched with spark.dynamicAllocation.initialExecutors, which
by default is zero. If you know that the application will be launching expensive jobs
and that cluster resources are available, I would recommend increasing this. Other‐
wise, leaving the value at the default zero is advantageous because it means that the
application can scale up resources gradually. There are also configuration values for
the minimum and maximum amount of executors used during a job. I suggest setting
the maximum amount to be the resources that are available to the user submitting
the application on your cluster to avoid hogging the entire cluster.

Because dynamic allocation does not allow executors to change in size you still must
determine the size of each executor before starting the job. My recommendation is to
size the executors as you would if you were trying to use all the resources on the clus‐
ter. This will ensure that if computations are expensive and Spark requests the maxi‐
mum number of executors, those resources will be well allocated. One possible
exception is in the case of a very high-traffic cluster. In this case, using small execu‐
tors may allow dynamic allocation to increase the number of resources used more
quickly if space becomes available on the nodes in a piecemeal way.

Restrictions on dynamic allocation
Dynamic allocation can be a bit difficult to configure. In order to get dynamic alloca‐
tion to work, you must:

1. Set the configuration value spark.dynamicAllocation.enabled to true.
2. Configure an external shuffle service on each worker. This varies based on the

cluster manager, so see the Spark documentation for details.
3. Set spark.shuffle.service.enabled to true.
4. Do not provide a value for the spark.executor.instances parameter. Even if

dynamic allocation is configured Spark will override that behavior and use the
specified number of executors if this parameter is included in the conf.

In some instances, if the conf specifies using dynamic allocation
but the shuffle service is misconfigured, the job will hang in a
pending state, because the nodes do not have a mechanism to
request executors. If you know the cluster has resources and see
this behavior, make sure the shuffle service is configured on each
worker and that the YARN conf contains the correct class path to
the shuffle service.
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6 Prior to Spark 1.6.0, the storage and execution memory were strictly separated by the spark.memory.storage
Fraction value.

Dividing the Space Within One Executor
In Figure 2-4, we suggested that executors were JVMs with some space set aside for
caching and some for execution. While this is true, the division of memory usage
within an executor is actually more complicated than the diagram might suggest,
since the regions are not static. First, the JVM size set by the spark.executor.memory
property does not include overhead, so Spark executors require more space on a clus‐
ter than this number would suggest. Within the executor memory, some of the space
has to be reserved for Spark’s internal metadata and user data structures (by default
about 25%.) The remaining space on the executor, called M in the Spark documenta‐
tion, is used for execution and storage. The execution memory is the memory
required to compute a Spark transformation. The total space in the executor for both
caching and execution is governed by a fixed fraction, exposed in the conf as the
spark.memory.fraction. Out-of-memory errors during a transformation or when
cached partitions are spilling to disk, is usually caused by the limitation in this com‐
bined storage and execution space. The default size of M is 0.6, so 60% of an executor
is used for storage and execution. While it is possible to reduce the space used for
internal metadata by increasing the size of M, doing so may be dangerous because this
serves as a safeguard against out-of-memory errors caused by internal processes.

Within this spark.memory.fraction, which we will call M, some space is set aside for
“storage,” and the rest can be used for storage or execution. Storage in this case refers
to Spark’s in-memory storage of partitions, whether serialized or not. Rather than
providing a fixed region for storage, Spark allows applications that do not cache any‐
thing in-memory to use the full memory fraction for execution. Within the execution
space, Spark defines a region of the execution called R for storing cached data. The
size of R is determined by a percentage of M set by the spark.memory.storageFrac
tion. R is the space Spark will not reclaim for execution if there is cached data
present. Spark enables persisting more data than fits in R, but allows the extra parti‐
tions to be evicted if a future task requires it.6 In other words, to cache an RDD
without allowing any partitions to be evicted from memory, all of the cached data
must fit in R, the space determined by:

R = spark.executor.memory x
    spark.memory.fraction x spark.memory.storageFraction.

The following diagrams attempt to illustrate the relationship between M and R. Each
box represents one Spark executor. The red quadrant at the bottom is R. The space
below the overhead is M.
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In Figure A-1, we have assumed that two different RDDs have been cached. And the
partitions shown are those that are cached on this particular executor. The blue parti‐
tion regardless of caching order, is the least recently used partition. Because the parti‐
tions do not take up all of the storage fraction R, a large computation (represented by
the orange burst) may use the space in the storage fraction.

Figure A-1. A single computation may use all of the space available in the memory
fraction

Next, suppose that the same application included a job that cached another partition.
Now all of the cached partitions take up more space than R (see that the green boxes
go above the red line). This is allowed since no computation requires this space. Sup‐
pose also that the blue partition was used in this job, making the pink partition the
least recently used partition. The result is shown in Figure A-2.
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Figure A-2. Cached partitions may exceed the space allocated by spark.memory.stora‐
geFraction if no computation evicts them

Now suppose that we perform a giant computation on this executor, resulting in
Figure A-3. Because the cached data takes up more space than exists in the R region,
the extra partitions will be evicted to make space for the computation. The partitions
that are evicted are those that were least recently used (the pink partitions), because
Spark uses Least Recently Used (LRU) caching. (See “LRU Caching” on page 121 for
more information about LRU caching.)
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Figure A-3. A large computation may evict the cached partitions, if the storageFraction
is full. The least recently used partitions are evicted first.

Adjusting the memory and storage fraction settings largely depends on the kind of
computation that we want to perform. If you are not caching data, then this setting
hardly matters because all of M will be reserved for computation anyway. However, if
an application requires repeated access to an RDD and performance is improved by
caching the RDD in memory, it may be useful to increase the size of the storage frac‐
tion to prevent the RDDs you needed cached from being evicted.

One way to get a feel for the size of the RDD is to write a program
that caches the RDD. Then, launch the job and while it is running,
look at the “Storage” page of the web UI.

In Figure A-4 we see how a cached DataFrame and a cached RDD appear in the web
UI. The “Size In Memory” column displaces the size of the data structure in memory.
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Figure A-4. The storage tab of the web UI

Number and Size of Partitions
As we discussed in Chapter 6, Spark does not have any mechanism to set the optimal
number of partitions to use. By default, when an RDD is created by reading from sta‐
ble storage, the number of partitions corresponds to the splits configured in that
input format (usually the parts in a MapReduce file). We can explicitly change the
number of partitions using coalesce, repartition, or during wide transformations
such as reduceByKey or sort. If the number of partitions is not specified for the wide
transformation, Spark defaults to using the number specified by the conf value of
spark.default.parallelism.

The default values of the spark.default.parallelism parameters
depends on the environment that the application is running in. In
YARN Cluster mode, it is the number of cores * the number of
executors (in other words, the number of tasks that can be run at
one time). This is the minimum value that you should use for the
number of partitions, but not necessarily the optimal value.

So how many partitions should we use in a wide transformation or as the value of
spark.default.parallelism?

Like most of my advice in this appendix, there is not a straight answer to this ques‐
tion. In general, increasing partitions improves performance until a certain point,
when it simply creates too much overhead. At a minimum you should use as many
partitions as total cores, because using fewer leaves some of the CPU resources idle.
Increasing the number of partitions can also help reduce out-of-memory errors, since
it means that Spark will operate on a smaller subset of the data for each executor. One
strategy can be to determine the maximum size of a partition. That is, the largest a
partition can be and still “fit” in the space allocated for one task and then work back‐
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ward to determine the number of partitions to set (parts to divide the RDD into) so
that each one is no larger than this size. Recall from Chapter 2 that each executor can
run one task for each core and that one partition corresponds to one task. As we
explained in “Dividing the Space Within One Executor” on page 281, the space that a
Spark executor has available to compute is between the size of M and M – R depending
on the amount of cached data. For example:

memory_for_compute (M)<
  (spark.executor.memory - over head) * spark.memory.fraction

And if there is cached data:

memory_for_compute (M - R) <
    (spark.executor.memory - overhead) x
    spark.memory.fraction x
    (1 - spark.memory.storage.fraction).

Assuming this space is divided equally between the tasks, then each task should not
take more than:

memory_per_task =
    memory_for_compute / spark.executor.cores

Thus, we should set the number of partitions to:

number_of_partitions =
    size of shuffle stage / memory per task.

If partitions are larger than this size, then Spark may not be able to compute as many
tasks concurrently, wasting CPU resources, since one task can use only one core. It
may also increase the possibility of out-of-memory errors.

We can estimate the size of the stage using some information from the web UI. First,
if you have cached the RDD in-memory and observed its size in the web UI, you can
expect that a computation will require at least that much space, since presumably the
computation requires loading the data first. We can also try to observe the shuffle
stage to determine the memory cost of a shuffle. If we observe that during the shuffle
stage the computation is not spilling to disk, then it is likely that each partition is fit‐
ting comfortably in-memory and we don’t need to increase the number of partitions.
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7 See http://jason4zhu.blogspot.com/2015/06/roaming-through-spark-ui-and-tune-performance-upon-a-specific-
use-case.html.

8 This is Ryza’s much cited blog post on Spark tuning and parallelism. It was written for an older version of
Spark, so you will notice that his description of memory management differs from mine. However, most of
the information, particularly the discussion of sizing partitions is still very relevant.

You can see if, and how much, tasks are spilling to disk with the
web UI. To examine one stage, navigate to the “jobs” tab of the web
UI while a job is running. Then click the stage that is running.
There you will see the details for the stage. In the details for the
stage, Spark lists a metric for the work done on each executor and
for the tasks that are running. In the tasks table you will see the two
last columns are for shuffle spill (memory) and shuffle (spill disk).
If there are zero, then none of these tasks spilled to disk.7

If the job is spilling to disk it may be worth trying to estimate the size of the shuffle
and trying to tune the number of partitions. Of course “the size of the shuffle” is not
information we can determine concretely. Sandy Ryza suggests using the ratio
between the amount of shuffle spill to memory (which appears in the UI as “Shuffle
spill (memory)”) and shuffle spill to disk (in the UI as “shuffle spill (disk)”) and mul‐
tipliying that ration by the size of the data on disk to approximate the size of the shuf‐
fle files.8 We will elaborate on this procedure in the following section.

Shuffle spill (memory) is the amount of space that records took up in-memory before
spilling to to disk. Shuffle spill (disk) is the space that the records took up after they
had been spilled. Thus, the ratio between Shuffle spill (memory) and Shuffle spill
(disk) is a measure of how much more space records take in-memory than on disk. I
will call this the “rate of in memory expansion,” which could be formalized with the
following equation:

rate of in-memory expansion =
     Shuffle spill (memory) /Shuffle spill (disk)

In the web UI, we can see the total size of the shuffled write in the Initial Stages tab.
This represents the size of the shuffle files written to disk.

Thus the size of those files in-memory is:

Size of shuffle in-memory =
     shuffle write * Shuffle spill (memory) /
     Shuffle spill (disk).

Again, for all the complexity of this method, it is really just a heuristic. It assumes
incorrectly that each record will expand when read into memory at the same rate.
There is no replacement for simply increasing the number of partitions until perfor‐
mance stops improving.
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Serialization Options
By default Spark uses Java serialization for RDDs and Tungsten-based serialization
for DataFrames/Datasets. For those who can, using DataFrames or Datasets gives
you access to a much more efficient serialization layer, but if working in RDDs you
can also consider using Kryo serialization.

Kryo
Like the Tungsten serializer, Kryo serialization does not natively support all of the
same types that are Java serializable. The details of how Kryo works with Spark and
how to extend it are already covered in Learning Spark (and you can find public
examples as well). One might think with Tungsten, work on Spark’s Kryo integration
would stop, but in fact improvement to Spark’s Kryo serialization are continuing.
The next version of Spark is adding support for Kryo’s unsafe serializer, which can be
even faster than Tungsten and can be enabled by setting spark.kryo.unsafe to true.

Spark settings conclusion
Adjusting Spark settings can lead to huge performance improvements. However, it is
time consuming and in some case provides limited gains for hours of testing. No
amount of tuning would make the unbalanced shuffle presented in “Goldilocks Ver‐
sion 1: groupByKey Solution” on page 132 complete on a billion rows (believe me, we
tried). Because of the many variables associated with tuning an application—cluster
dimensions, cluster traffic, input data size, type of computation—finding the optimal
Spark configuration is difficult to do without some trial and error. However, a good
understanding of what to look for in the UI, such as whether shuffles are spilling to
disk or include retries, may help improve this process. Most importantly, a good
knowledge of your system and the needs of your computation can help you plan the
best strategy for submitting an application.

Some Additional Debugging Techniques
Debugging is an important part of the software development life cycle, and debug‐
ging with Spark has some unique considerations. The most obvious challenge of
debugging Spark is that as a distributed system it can be difficult to determine which
machine(s) are throwing errors, and getting access to the worker nodes may not be
feasible for debugging. In addition, Spark’s use of lazy evaluation can trip up develop‐
ers used to more classic systems, as any logs or stack trace may at first glance point us
in the wrong direction.

Debugging a system that relies on lazy evaluation requires removing the assumption
that the error is necessarily directly related to the line of code that appears to trigger
the error, or any of the functions it directly calls. If you are in an interactive environ‐
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ment, encountering an error can quickly be tracked down by adding a take(1) or
count call on the parent RDDs or DataFrames to track down the issue more quickly.
However, when debugging production code, the luxury of putting a take(1) or count
may not be available, in part because it can substantially increase the computation
time. Instead in those cases, it can be an important exercise to learn to tell the differ‐
ence between two seemingly similar failures. Let us consider Examples A-1 and A-2
as well as the resulting stack traces in Examples A-3 and A-4, respectively.

Example A-1. Throw from inside an inner RDD

    val data = sc.parallelize(List(1, 2, 3))
    // Will throw an exception when forced to evaluate
    val transform1 = data.map(x => x/0)
    val transform2 = transform1.map(x => x + 1)
    transform2.collect() // Forces evaluation

Example A-2. Throw from inside the topmost RDD

    val data = sc.parallelize(List(1, 2, 3))
    val transform1 = data.map(x => x + 1)
    // Will throw an exception when forced to evaluate
    val transform2 = transform1.map(x => x/0)
    transform2.collect() // Forces evaluation

Example A-3. Inner failure

17/01/23 12:41:36 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.lang.ArithmeticException: / by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply$mcII$sp(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply(throws.scala:9)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.
    apply(RDD.scala:935)
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    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.
    apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/01/23 12:41:36 WARN TaskSetManager: Lost task 0.0
in stage 0.0 (TID 0, localhost, executor driver):
java.lang.ArithmeticException: / by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply$mcII$sp(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1
    .apply(throws.scala:9)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
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17/01/23 12:41:36 ERROR TaskSetManager:
Task 0 in stage 0.0 failed 1 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure:
Task 0 in stage 0.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver):
java.lang.ArithmeticException: / by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$1.
    apply$mcII$sp(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1.apply(throws.scala:9)
    at com.highperformancespark.examples.errors.Throws$$anonfun$1.apply(throws.scala:9)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
  at org.apache.spark.scheduler.
  DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$
  failJobAndIndependentStages(DAGScheduler.scala:1435)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1
  .apply(DAGScheduler.scala:1423)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1
  .apply(DAGScheduler.scala:1422)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
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  at org.apache.spark.scheduler
  .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
  at org.apache.spark.scheduler
  .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler.
  handleTaskSetFailed(DAGScheduler.scala:802)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
  doOnReceive(DAGScheduler.scala:1650)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop
  .onReceive(DAGScheduler.scala:1605)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop
  .onReceive(DAGScheduler.scala:1594)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:935)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
  at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
  at org.apache.spark.rdd.RDD.collect(RDD.scala:934)
  at com.highperformancespark.examples.errors.Throws$.throwInner(throws.scala:11)
  ... 43 elided
Caused by: java.lang.ArithmeticException: / by zero
  at com.highperformancespark.examples.errors.Throws$$anonfun$1
  .apply$mcII$sp(throws.scala:9)
  at com.highperformancespark.examples.errors.Throws$$anonfun$1.apply(throws.scala:9)
  at com.highperformancespark.examples.errors.Throws$$anonfun$1.apply(throws.scala:9)
  at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
  at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
  at scala.collection.Iterator$class.foreach(Iterator.scala:750)
  at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
  at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
  at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
  at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
  at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
  at scala.collection.AbstractIterator.to(Iterator.scala:1202)
  at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
  at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
  at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
  at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:935)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:935)
  at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
  at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
  at org.apache.spark.scheduler.Task.run(Task.scala:99)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
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  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
  ... 1 more

Example A-4. Throw outer exception

17/01/23 12:45:27 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 1)
java.lang.ArithmeticException: / by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply$mcII$sp(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/01/23 12:45:27 WARN TaskSetManager: Lost task 0.0 in stage 1.0
(TID 1, localhost, executor driver):
java.lang.ArithmeticException: /
by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply$mcII$sp(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
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    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

17/01/23 12:45:27 ERROR TaskSetManager: Task 0 in stage 1.0 failed 1 times;
aborting job
org.apache.spark.SparkException: Job aborted due to stage failure:
Task 0 in stage 1.0 failed 1 times, most recent failure:
Lost task 0.0 in stage 1.0 (TID 1, localhost, executor driver):
java.lang.ArithmeticException: / by zero
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply$mcII$sp(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at com.highperformancespark.examples.errors.Throws$$anonfun$4
    .apply(throws.scala:17)
    at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
    at scala.collection.Iterator$class.foreach(Iterator.scala:750)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
    at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
    at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
    at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
    at scala.collection.AbstractIterator.to(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
    at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
    at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
    at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
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    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13
    .apply(RDD.scala:935)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.SparkContext$$anonfun$runJob$5
    .apply(SparkContext.scala:1944)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
  at org.apache.spark.scheduler
  .DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages
  (DAGScheduler.scala:1435)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1
  .apply(DAGScheduler.scala:1423)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1
  .apply(DAGScheduler.scala:1422)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1
  .apply(DAGScheduler.scala:802)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1
  .apply(DAGScheduler.scala:802)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler
  .handleTaskSetFailed(DAGScheduler.scala:802)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop
  .doOnReceive(DAGScheduler.scala:1650)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop
  .onReceive(DAGScheduler.scala:1605)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop
  .onReceive(DAGScheduler.scala:1594)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1918)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1931)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1944)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:935)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
  at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
  at org.apache.spark.rdd.RDD.collect(RDD.scala:934)
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  at com.highperformancespark.examples.errors.Throws$.throwOuter(throws.scala:18)
  ... 43 elided
Caused by: java.lang.ArithmeticException: / by zero
  at com.highperformancespark.examples.errors
  .Throws$$anonfun$4.apply$mcII$sp(throws.scala:17)
  at com.highperformancespark.examples.errors
  .Throws$$anonfun$4.apply(throws.scala:17)
  at com.highperformancespark.examples.errors
  .Throws$$anonfun$4.apply(throws.scala:17)
  at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
  at scala.collection.Iterator$class.foreach(Iterator.scala:750)
  at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
  at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
  at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
  at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
  at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:295)
  at scala.collection.AbstractIterator.to(Iterator.scala:1202)
  at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:287)
  at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1202)
  at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:274)
  at scala.collection.AbstractIterator.toArray(Iterator.scala:1202)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:935)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:935)
  at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
  at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1944)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
  at org.apache.spark.scheduler.Task.run(Task.scala:99)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
  ... 1 more

These two stack traces contain a lot of information, but most of it isn’t useful to
debugging our error. Since the error is coming from inside of our worker we can
mostly ignore the information about the driver stack trace and instead look at the
exceptions reported under 17/01/23 12:41:36 ERROR Executor: Exception in
task 0.0 in stage 0.0 (TID 0).

A common mistake is looking at the driver stack trace when the
error is reported from the executor. In that case it can seem like the
error is on the line of your action, whereas the root cause lies else‐
where (as in both of the preceding examples).

By looking at the error reported from the executor you can see the line number asso‐
ciated with the function that failed. The rest of the exception isn’t normally required
unless you happen to be working with mapPartitions and returning custom itera‐
tors, as the iterator chaining is taken care inside of Spark.
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The exception is reported twice (once as a warning and then as an
error) since Spark retries a partition on failures. If you had many
partitions with errors this could be reported far more than twice.

You can also see these exceptions in the Spark web UI logs if your
application hasn’t exited.

Determining what statement threw the error can be tricky, especially with anony‐
mous inner functions. If you instead updated Examples A-1 and A-2 to use explicit
function names (e.g., Examples A-5 and A-6) you can more easily find out what’s
going on. The resulting stack trace now contains the function name in question (e.g.,
at com.highperformancespark.examples.errors.Throws$.divZero(throws.

scala:26)).

Example A-5. Refactored helper functions

  def add1(x: Int): Int = {
    x + 1
  }

  def divZero(x: Int): Int = {
    x / 0
  }

Example A-6. Refactored throw examples to use helper functions

  def add1(x: Int): Int = {
    x + 1
  }

  def divZero(x: Int): Int = {
    x / 0
  }

You may notice that even though the underlying “cause” of the
error is a division by zero (or java.lang.ArithmeticException),
the top-level exception is wrapped by org.apache.spark.SparkEx
ception. To access the underlying exception you can use getCause.

Not all exceptions will be wrapped in org.apache.spark.SparkException. When
you attempt to compute an RDD backed by a nonexistent Hadoop input, you get a
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much simpler stack trace (as in Example A-7) directly returning the underlying
exception.

Example A-7. Exception when trying to load nonexistent input

org.apache.hadoop.mapred.InvalidInputException:
Input path does not exist: file:/doesnotexist.txt
  at org.apache.hadoop.mapred.FileInputFormat.
  singleThreadedListStatus(FileInputFormat.java:285)
  at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
  at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
  at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:202)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
  at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
  at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:1958)
  at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:935)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
  at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
  at org.apache.spark.rdd.RDD.collect(RDD.scala:934)
  at com.highperformancespark.examples.errors.Throws$
  .nonExistentInput(throws.scala:47)
  ... 43 elided

Debugging driver out-of-memory exceptions can be challenging, and it can be diffi‐
cult to know exactly what operation caused the failure. While you should already be
weary of collect statements, it is important to remember other operations like count
ByKey can potentially return unbounded results to the driver program. In Spark ML
and MLlib, some of the models require bringing back a large amount of data to the
driver program—in that event, the easiest solution may be trying a different model.

It can be difficult to predict how much memory a driver program will use, or track
down the source of high memory usage. Furthermore, the process for assigning
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memory to the driver program depends on how you are submitting the Spark appli‐
cation. When launching an application with spark-submit in “client mode” (or
scripts based on it like spark-shell or pyspark), the driver JVM is started before the
spark-defaults.conf can be parsed and before the SparkContext is created. In this
case, you must set the driver memory in spark-env.sh or with the --driver-memory to
spark-submit.

When launching Spark from Python without spark-submit or any
of the helpers specifying the JVM driver size or any driver-side
JVM configurations on the conf object will not be respected even
though the JVM has technically not started, the JVM driver is
started using the traditional spark-submit under the hood. Instead
you can configure the shell environment variable PYSPARK_SUB
MIT_ARGS (which defaults to pyspark-shell) as needed.

While not considered classic debugging techniques, resolving
stragglers or otherwise imbalanced partitioning is very much
related and discussed in Chapter 5.

Out of Disk Space Errors
Out of disk space errors can be surprising, but are common in clusters with small
amounts of disk space. Sometimes disk space errors are caused by long-running shell
environments where RDDs are created at the top scope and are never garbage collec‐
ted. Spark writes the output of its shuffle operations to files on the disk of the workers
in the Spark local dir. These files are only cleaned up when an RDD is garbage collec‐
ted, which if the amount of memory assigned to the driver program is large can take
quite some time. One solution is to explicitly trigger garbage collection (assuming the
RDDs have gone out of scope); if the DAG is getting too long, checkpointing can help
make the RDDs available for garbage collection.

Logging
Logging is an important part of debugging your application, and in a distributed sys‐
tem depending on println is probably not going to cut it. Spark uses the log4j
through sl4j logging mechanism internally, so log4j can be a good mechanism for
our application to log with as well since we can be relatively assured it is already set
up.
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9 And she has repented for her sins in writing this warning.

Early (pre-2.0) versions of Spark exposed their logging API, which
is built on top of log4j. This is becoming private in 2.0 and
beyond, and doesn’t offer much functionality that isn’t available
directly in log4j, so you should instead directly use the log4j log‐
ger. The author herself is guilty of having accessed the internal
logging APIs.9

You can get access to similar functionality as the internal logging used inside of Spark
through typesafe’s scalalogging package. This package offers a trait called LazyLog
ging, which uses macros to rewrite logger.debug(xyz) to the equivalent, but behind
a guard checking the log level. A simple example of debugging logging is wanting to
be able to see what elements are being filtered out. You can add logging to the previ‐
ous Example 5-16 example, resulting in Example A-9. You must also include a log‐
ging library in your build (we used Example A-8).

Example A-8. Add scalalogging to build

  "com.typesafe.scala-logging" %% "scala-logging" % "3.5.0",

Example A-9. Logged broadcast of a hashset of invalid panda locations to filter out

    val invalid = HashSet() ++ invalidPandas
    val invalidBroadcast = sc.broadcast(invalid)
    def keepPanda(pandaId: Long) = {
      if (invalidBroadcast.value.contains(pandaId)) {
        logger.debug(s"Invalid panda ${pandaId} discovered")
        false
      } else {
        true
      }
    }
    input.filter{panda => keepPanda(panda.id)}

Sometimes it’s handy to have the logs be clearer about what RDD/
partition ID/attempt number is being processed. In that case you
can look to the TaskContext (in both JVM and Python lands) to
get this information.

Configuring logging

Spark uses log4j for its JVM logging, and even inside of Python or R, much of the
logging information is generated from inside the JVM. When running inside of the
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interactive shells, one of the first messages contains instructions for configuring the
log level in an interactive mode:

To adjust logging level use sc.setLogLevel(newLevel).
For SparkR, use setLogLevel(newLevel).

In addition to setting the log level using the SparkContext, Spark has a conf/
log4j.properties.template file that can be adjusted to change log level and log outputs.
Simple copy conf/log4j.properties.template to conf/log4j.properties and update any
required properties, e.g. if you find Spark too verbose you may wish to set the main
logging to ERROR as done in Example A-10.

Example A-10. log4j.properties

log4j.logger.org.apache.spark.repl.Main=ERROR

You can configure log levels for different loggers to different levels
(for example, the default Spark log4j.properties.template configures
Spark logging to WARN and Parquet to ERROR. This is especially use‐
ful when your own application also uses log4j logging.

If log4j.properties doesn’t suit your needs you can ship a custom log4j.xml file and
provide it to the executors (either by including it in your JAR or with --files) and
then add -Dlog4j.configuration=log4j.xm to spark.executor.extraJavaOptions
so the executors pick it up.

Accessing logs
If your application is actively running, the Spark web UI provides an easy way to get
access to the logs of the different workers. Once your application has finished, getting
the logs depends more on the deployment mechanism used.

For YARN deployments with log aggregation, the yarn logs command can be used
to fetch the logs. If you don’t have log aggregation enabled, you can still access the
logs by keeping them on the worker nodes for a fixed period of time with the
yarn.nodemanager.delete.debug-delay-sec configuration property.

In addition to copying the logs back by hand, Spark has an optional
“Spark History Server,” which can provide a Spark UI for finished
jobs.
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Attaching debuggers
While log files, accumulators, and metrics can all help debug your application, some‐
times what you really want is a nice IDE interface to debug with in Spark. The sim‐
plest way to do this can be running Spark in local mode and simply attaching a
debugger to your local JVM. Unfortunately not all problems on real clusters can be
reproduced in local mode—in that case you can set up debugging using JDWP (Java
Debug Wire Protocol) to debug against a remote cluster.

Using spark.executor.extraJavaOptions (for the executor) or --driver-java-
options for the driver, add the JVM parameters -agentlib: jdwp= trans

port=dt_socket,server=y,address=[debugport] to launch.

Once you have JDWP set up on the worker or driver, the rest depends on the specific
IDE you are using. IBM has a guide on how to do remote debugging with eclipse and
IntelliJ is covered in this Stack Overflow answer.

Remote debugging in Python requires modifying your code to start the debugging
library. Multiple options exists for this, including integrated IDE debugging with Jet‐
brains and Eclipse, to more basic remote tracing with rpdb and more listed on the
Python wiki. Regardless of which specific option you use, you can use a broadcast
variable to ensure that all of the worker nodes receive the code to start up the remote
Python debugging interface.

Adding -mtrace to your driver/worker Python path will not work
due to hardcoded assumptions in PySpark about the arguments.

Debugging in notebooks
Depending on your notebook, logging information can be more difficult to keep
track of. When working in Jupyter with an IPython kernel, the error messages
reported only include the Java stack trace and often miss the important information
from the Python interpreter itself. In this case, you will need to look at the console
from which you launched Jupyter.

Launching Spark from within a notebook can have an unexpected impact on how the
configuration is handled. The biggest difference can come from handling options for
the driver configurations. When working in a hosted environment, such as Data‐
bricks cloud, IBM Data Science Experience, or Microsoft’s Azure hosted Spark, it’s
important to do the configuration through the provided mechanism.
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Python debugging
PySpark has some additional considerations; the architecture introduced in
Figure 7-1 means an extra level of complexity is present. The most obvious manifes‐
tation of this comes from looking at the difference between the error messages in
PySpark and error messages for the same in Scala (e.g., Examples A-3 and A-13). In
addition to the extra level of indirection introduced, resource contention between the
different programs involved can be a source of errors as well.

Lazy evaluation in PySpark becomes even a little more complicated than in Scala. To
further confuse the source of the error, evaluation of PySpark RDDs are chained
together to reduce the number of round trips of the data between Python and the
JVM. Let’s update Examples A-1 and A-2 to Python (giving us Examples A-11 and
A-12) and examine the resulting error messages in Examples A-13 and A-14.

Example A-11. Throw from inside an inner RDD (Python)

    data = sc.parallelize(range(10))
    transform1 = data.map(lambda x: x / 0)
    transform2 = transform1.map(lambda x: x + 1)
    transform2.count()

Example A-12. Throw from inside the topmost RDD (Python)

    data = sc.parallelize(range(10))
    transform1 = data.map(lambda x: x + 1)
    transform2 = transform1.map(lambda x: x / 0)
    transform2.count()

Example A-13. Inner failure error message (Python)

[Stage 0:>                                                          (0 + 0) /
4]17/02/28 22:28:58 ERROR Executor:
Exception in task 3.0 in stage 0.0 (TID 3)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
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  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.
    read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1.
    <init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR Executor: Exception in task 2.0 in stage 0.0 (TID 2)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
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    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR Executor: Exception in task 1.0 in stage 0.0 (TID 1)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
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  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 WARN TaskSetManager:
Lost task 0.0 in stage 0.0 (TID 0, localhost, executor driver):
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
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    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

17/02/28 22:28:58 ERROR Executor: Exception in task 0.1 in stage 0.0 (TID 7)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
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    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR TaskSetManager: Task 0 in stage 0.0 failed 2 times;
aborting job
17/02/28 22:28:58 ERROR Executor: Exception in task 2.1 in stage 0.0 (TID 5)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner
    .run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
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    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR Executor: Exception in task 3.1 in stage 0.0 (TID 6)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:28:58 ERROR Executor: Exception in task 1.1 in stage 0.0 (TID 4)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
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  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "high_performance_pyspark/bad_pyspark.py", line 48, in throwInner
    transform2.count()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in count
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1031, in sum
    return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 905, in fold
    vals = self.mapPartitions(func).collect()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 808, in collect
    port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
  File "/home/holden/repos/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py",
  line 1133, in __call__
  File "/home/holden/repos/spark/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/home/holden/repos/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py",
  line 319, in get_return_value
py4j.protocol.Py4JJavaError:
An error occurred while calling z:org.apache.spark.api.python.PythonRDD
.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure:
Task 0 in stage 0.0 failed 2 times, most recent failure:
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Lost task 0.1 in stage 0.0 (TID 7, localhost, executor driver):
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
    at org.apache.spark.scheduler
    .DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$
    failJobAndIndependentStages(DAGScheduler.scala:1487)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1475)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1474)
    at scala.collection.mutable.
    ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler
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    .abortStage(DAGScheduler.scala:1474)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler
    .handleTaskSetFailed(DAGScheduler.scala:803)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1702)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1657)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1646)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2011)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2032)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2051)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2076)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
    at org.apache.spark.rdd.RDDOperationScope$
    .withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$
    .withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
    at org.apache.spark.api.python.PythonRDD$
    .collectAndServe(PythonRDD.scala:458)
    at org.apache.spark.api.python.PythonRDD
    .collectAndServe(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl
    .invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl
    .invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.api.python.PythonException:
Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
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  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 46, in <lambda>
    transform1 = data.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    ... 1 more

Example A-14. Outer failure error message (Python)

17/02/28 22:29:21 ERROR Executor: Exception in task 1.0 in stage 1.0 (TID 9)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
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    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:29:21 WARN TaskSetManager:
Lost task 1.0 in stage 1.0 (TID 9, localhost, executor driver):
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
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    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

17/02/28 22:29:21 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 8)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:29:21 ERROR Executor: Exception in task 3.0 in stage 1.0 (TID 11)
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org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:29:21 ERROR Executor: Exception in task 1.1 in stage 1.0 (TID 12)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
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  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:29:21 ERROR TaskSetManager:
Task 1 in stage 1.0 failed 2 times; aborting job
17/02/28 22:29:21 ERROR Executor: Exception in task 2.0 in stage 1.0 (TID 10)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
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    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
17/02/28 22:29:21 WARN TaskSetManager:
Lost task 0.1 in stage 1.0 (TID 13, localhost, executor driver):
TaskKilled (killed intentionally)
17/02/28 22:29:21 WARN TaskSetManager:
Lost task 3.1 in stage 1.0 (TID 14, localhost, executor driver):
TaskKilled (killed intentionally)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "high_performance_pyspark/bad_pyspark.py", line 33, in throwOuter
    transform2.count()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in count
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1031, in sum
    return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 905, in fold
    vals = self.mapPartitions(func).collect()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 808, in collect
    port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
  File "/home/holden/repos/spark/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py",
  line 1133, in __call__
  File "/home/holden/repos/spark/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/home/holden/repos/spark/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py",
  line 319, in get_return_value
py4j.protocol.Py4JJavaError:
An error occurred while calling z:org.apache.spark.api.python.PythonRDD
.collectAndServe.
: org.apache.spark.SparkException:
Job aborted due to stage failure: Task 1 in stage 1.0 failed 2 times,
most recent failure: Lost task 1.1 in stage 1.0 (TID 12, localhost,
executor driver): org.apache.spark.api.python.PythonException:
Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main
    process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
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    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
    at org.apache.spark.scheduler
    .DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$
    failJobAndIndependentStages(DAGScheduler.scala:1487)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1475)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1474)
    at scala.collection.mutable.ResizableArray$class
    .foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler
    .DAGScheduler.abortStage(DAGScheduler.scala:1474)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
    at org.apache.spark.scheduler
    .DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:803)
    at scala.Option.foreach(Option.scala:257)
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    at org.apache.spark.scheduler
    .DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:803)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1702)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1657)
    at org.apache.spark.scheduler
    .DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1646)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2011)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2032)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2051)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2076)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1
    .apply(RDD.scala:936)
    at org.apache.spark.rdd.RDDOperationScope$
    .withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
    at org.apache.spark.api.python.PythonRDD$
    .collectAndServe(PythonRDD.scala:458)
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl
    .invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl
    .invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.api.python.PythonException:
Traceback (most recent call last):
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 180, in main process()
  File "/home/holden/repos/spark/python/lib/pyspark.zip/pyspark/worker.py",
  line 175, in process
    serializer.dump_stream(func(split_index, iterator), outfile)
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 2406, in pipeline_func
    return func(split, prev_func(split, iterator))
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 345, in func
    return f(iterator)
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10 Technically you can access it on the driver program using Py4J, but the gateway isn’t set up on workers,
which is often where logging is most important.

  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <lambda>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "/home/holden/repos/spark/python/pyspark/rdd.py", line 1040, in <genexpr>
    return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
  File "high_performance_pyspark/bad_pyspark.py", line 32, in <lambda>
    transform2 = transform1.map(lambda x: x / 0)
ZeroDivisionError: integer division or modulo by zero

    at org.apache.spark.api.python.PythonRunner$$anon$1
    .read(PythonRDD.scala:193)
    at org.apache.spark.api.python.PythonRunner$$anon$1
    .<init>(PythonRDD.scala:234)
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:152)
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:63)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:113)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:313)
    at java.util.concurrent.ThreadPoolExecutor
    .runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker
    .run(ThreadPoolExecutor.java:617)
    ... 1 more

Logging is always important, and unlike JVM Spark applications we can’t access the
log4j logger to do our work for us.10 For Python logging the simplest option is print‐
ing to stdout, which will end up in the stderr of the logs of the worker—however,
this makes it difficult to tune logging levels. Instead, use a library like the standard
logging library with stdout/stderr append functions.

For YARN users you can instead have the logging library write to
a file under the LOG_DIRS environment variable, which will then be
picked up as part of log aggregation later.

Debugging RDD skew in PySpark can become more challanging thanks to an often
overlooked feature known as “batch serialization.” This feature isn’t normally given a
lot of discussion as at large enough datasets, the impact of batch serializations tends
to have minimal effects. This can quickly become confusing when following the stan‐
dard debugging practice of sampling your data down to a small manageable set and
trying to reproduce cluster behavior locally.

Tuning, Debugging, and Other Things Developers Like to Pretend Don’t Exist | 321



Using Python with YARN may result in memory overhead errors that appear as out-
of-memory errors. In the first part of this appendix we introduced memory overhead
as some extra space required (see Figure A-1), but when running Python our entire
Python process needs to fit inside of this “overhead” space. These can be difficult to
debug as the error messages are the same for a few different situations.

The first possible cause of memory errors is unbalanced or otherwise large partitions.
If the partitions are too large there may not be enough room for the Python workers
to load the data. The web UI is one of the simpler places to check the partition sizes.
If the partitions are unbalanced, a simple repartitioning can often do the trick,
although the issues of key skew discussed in Chapter 6 can come into play.

The second possibility is simply not having enough overhead allocated for Python.
The name “memory overhead” can be somewhat confusing but the Python worker is
only able to use the “overhead” space left over in the container after the JVM has used
the rest of the space. The default configuration of spark.yarn.executor.memoryOver
head is only 384 MB or 10% of the entire container (whichever is larger), which for
PySpark users is often not a reasonable value. The related configuration variables for
application master (AM) and driver (depending on your deployment mode) are
spark.yarn.am.memoryOverhead and spark.yarn.driver.memoryOverhead.

Debugging conclusion
While debugging in Spark does indeed have some unique challenges, it’s important to
remember some of its many benefits for debugging. One of the strongest is that its
local mode allows us to quickly create a “fake” cluster for testing or debugging
without having to go through a long setup process. The other is that our jobs often
run faster than traditional distributed systems, so we can often quickly experiment
(either in local mode or our test cluster) to narrow down the source of the error.
Echoing the conclusion in Chapter 10, may you need to apply the debugging section
of this book as little as possible and may your adventures in Apache Spark be fun.
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Catalyst query optimizer, 62, 69-70

code generation, 69
large query plans and iterative algorithms,

70
logical and physical plans, 69

CDH clusters, adding packages with Anaconda,
186

checkpoint function, 119
checkpointing

costs of, 112
data checkpoint intervals, 258
of driver state and streaming context recov‐

ery, 268
of RDDs, 113, 118

caching versus, 118
disadvantage of, 115
example, 119
in wide transformations, 89
when cost for computing each partition

is high, 114
use in noisy clusters, 123

ChiSqSelector, 226
class tags

constructing fake class tags for Scala RDD
to Java RDD conversions, 176

functions depending on, 175
classification algorithms

ML library, 231, 237
MLlib, 221

classification model, training in MLlib, 226
Classifier class, 247
Clojure, 175
cloneComplement function, 210
cluster managers, 8
clustering algorithms

ML library, 231, 237
MLlib, 221

clusters
allocating resources for, 279
determining relevant information about,

274
noisy, 122

co-located RDDs, 144
co-partitioned RDDs, 144
coalesce function, 18, 141

narrow transformation, 89
code examples from this book

GitHub repository, 33
ported to Java or Python, 5

code generation, by query optimizer, 69
cogroup function, 75, 139, 144
CoGroupedRDD, 139, 144
collect action, 17
collectAsMap action, 17, 134

returning data to the driver, 131
collections

converting local collections to/from Data‐
Frames, 58

higher GC overhead than arrays, 96
interoperability of local collections with

Datasets, 63
types of members in, 91

colocated joins, 73
column operators (Spark SQL), 38
combineByKey function, 75, 136

performance considerations, 137
Common Language Runtime (CLR), 191
components and packages, 253-272

GraphX, 269
Spark 2.0 components diagram, 254
Spark Streaming, 255-269
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using community packages and libraries,
269-272

configuration settings, 273-288
basic Spark Core settings, resource alloca‐

tion to applications, 276-287
determining relevant information about

clusters, 274
how to adjust, 274
performance and, 288
serialization options, 288

console sink (blocking), 268
copartition joins, 73
copy function, 108

implementation in custom transformers,
243

count function, 17
countByKey function, 131
countByKeyApprox function, 79
countByValue function, 131
counters, verifying performance with, 215
CSV (comma-separated values), 191

specifying as data format for loading/saving
in Spark SQL, 60

starting Spark shell with CSV support, 60
CUDA, 173

interfacing Spark with, 198

D
DAGs (directed acyclic graphs), 11

DAG Scheduler for Spark jobs, 22
data cleaning (ML library), 237
data encoding (ML library), 234-236
data formats (see formats for reading/writing

data)
data loading and saving operations, 116

(see also persistence)
checkpointing, 118-120
in Spark SQL, 51-62

data formats, 52-61
partitions, 61
save modes, 61

models in MLlib, 228
persistence in Spark ML, 239-242
saving DStreams, 259

data property accumulators, 112
Data Source API, 51

implementing Spark SQL data source via, 61
data sources

in Structured Streaming, 261

Spark Streaming, 255
data structures, smaller, using to enhance per‐

formance, 95
DataFrameReader, 51

format function, 52
DataFrames, 27

computing difference between, 214
converting to/from Datasets, 63
converting to/from RDDs, 56
creating from JDBC data sources, 54
creating from local collections, 58
data representation in, 49-51
DataFrame API, 36-49

transformation, multi-DataFrame, 48
transformations, simple, 36-48

Goldilocks data (example), 128
inspecting the schema, 33
joins, 79

broadcast hash joins, 83
self joins, 83

PySpark, 181
cutting large query plans with Python,

183
RDD transformations, 85
RDDs versus, 28
registering/saving as Hive tables to perform

SQL queries against, 49
sample and randomSplit functions, 210
Structured Streaming based on, 255
testing, 206
working with as RDDs, loss of type infor‐

mation, 91
working with C#, 191
working with R language, 187

DataFrameWriter, 51
format function, 52
specifying partition information, 62

Dataset API, 62
(see also Datasets)
up to date documentation on, 62

Datasets, 27, 62-66
compile-time strong typing, 64
converting to RDDs, 57
data representation in, 49
easier functional transformations, 64
grouping operations on, 65
interoperability with RDDs, DataFrames,

and local collections, 62
joins, 83
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multi-Dataset relational transformations, 65
PySpark, 181
RDD transformations, 85
relational transformations, 64
streaming aggregations on, 258
use in Structured Streaming, 260
versus RDDs, 28

DataStreamWriter, 261
debugging

additional techniques for, 288-322
attaching debuggers, 302
logging, 299-301
Python debugging, 303-322
using notebooks, 302

lazy evaluation and, 13
of Spark SQL queries, 70
stream status and, 267

defaultCopy function, 243
dense vectors, creating, 222
dependencies

in Spark execution, 23
narrow versus wide, in transformations, 17,

86-90
PySpark dependency management, 185
Spark SQL, 30

avoiding Hive JARs, 32
managing dependencies with sbt-spark-

package plug-in, 31
dependencies function, 15
describe function, 43
deserialized (storage level), 117
directed acyclic graphs (DAGs), 11

DAG Scheduler for Spark jobs, 22
disk space errors, 122, 299
distinct function, 75, 105
distinct, reducing to on each partition (Goldi‐

locks example), 165
Docker-based Spark integration environments,

214
driver, 19, 21

actions returning unbounded data to, 131
calculating memory overhead for, 277
deciding how large to make it, 277
handling driver failure, 268

dropDuplicates function, 42
DryadLINQ, 7
DStreams, 255

batch intervals, 258
considerations for, 259

output operations, 259
data sources, 255

receivers for, 256
repartitioning, 257
updateStateByKey, checkpointing required

for, 258
writing to HDFS store in Parquet format,

261
dynamic resource allocation, 20, 276

(see also configuration settings)
executors, 279
restrictions on, 280

E
Eclair JS, 174

how it works, 190
enableHiveSupport function, 29
equality tests, 38

for DataFrame rows, 206
for RDDs, 211

equals function, 143
ErrorIfExists (save mode), 61
Estimator interface, 242, 249
estimators, 231, 232

constructing with minimal configuration in
ML library, 237

creating custom estimators, 245
data preparation stages, 235

evaluation, machine learning models
in ML library, 241
in MLlib, 230

Evaluator class, 241
executors, 20

calculating memory overhead for, 277
deciding between a few large and many

small executors, 278
dividing space within, 281
dynamic allocation of, 279
many large executors, 279
number of cores in, 25

explain params (ML pipeline stages), 233
explicit conversions

functions defined on Java RDDs, 175
in Spark SQL, 58

explode function, 41

F
fair scheduler, 21, 123
fake class tags, 175
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Java/Scala RDD interoperability with, 177
fault tolerance

implications of narrow versus wide depen‐
dencies, 89

in Spark, 11
lazy evaluation and, 12

feature selection and scaling
MLlib feature encoding and data prepara‐

tion, 221
preparing data for supervised learning,

225
preparing textual data, 222
working with Spark vectors, 222

performing in MLlib, 226
feature transformers (ML library), 231
features

ML library, 234
preparation tools in MLlib, 221

FIFO scheduler, 21, 123
file sources in Spark Streaming, 255
filter function, 3

DataFrame, accepting SQL expressions, 37
more complex filter, 38

filter pushdown in Spark SQL, 70
filterByRange function, 148
filtering

pre-filtering before RDD join, 76
using flatMap, 130, 154

fit function, 233, 239
calling on estimators, 232
calling on StringIndexer, 235
calling on Word2Vec, 223
implementation in custom transformers,

243
Flambo, 175
flatMap function, 3, 130, 158
flatMapValues function, 146
Flume, 256
fold function, 3
fold operations, object reuse with, 95
foldByKey function

map-side combinations, 139
performance considerations, 138

foreach function, 17
foreachPartition function, 106
foreachRDD function, 259
formats for reading/writing data, 52-61

for pipe interface, 191
Hive tables, 56

JDBC, 53
JSON, 52
local collections, 58
other formats, 59
Parquet files, 54
PySpark interactions with Spark formats,

180
RDDs, 56

FORTRAN, 196
interacting with from Spark, using JNI, 193

fromML function, 232
full outer joins, 76, 80

sample join in Spark SQL, 82
functions

DataFrame, accepting SQL expressions, 37
defined on RDDs, transformations versus

actions, 17
intermediate object creation in, avoiding, 97
RDD function classes, 16
Spark SQL aggregate functions, 44
Spark SQL standard functions, 40

G
garbage collection (GC)

cutting costs of by minimizing object cre‐
ation, 92

shuffle files and, 122
getOrCreate function, 29
getPartition function, 143
GLM (generalized linear model), persisting,

250
Goldilocks example, 127-131

review of all solutions, 169
using PairRDDFunctions and Order‐

edRDDFunctions, 130
Version 0, iterative solution, 128
Version 1, groupByKey solution, 132

why it fails, 134
Version 2, using secondary sort, 154-157
Version 3, 157-163

determining location of rank statistics
on each partition, 160

filtering for rank statistics, 161
map to (cell value, column index) pairs,

158
sorting and counting values on each par‐

tition, 159
sorting on cell values, 162
steps in the solution, 158
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Version 4, 165-169
aggregating to ((cell value, column

index), count) on each partition, 165
reducing to distinct on all partitions, 165
sorting and finding rank statistics, 166

GPUEnabler package, 198
GPUs (graphics processing units), 198
GraphX, 10, 269
groupBy function

changes in different Spark versions, 44
on DataFrames, aggregates and, 43
on Datasets, 65

groupByKey function, 18
dangers of, 132
in narrow versus wide dependencies

between partitions, 88
performance considerations, 137
solution in Goldilocks example, 132

why it fails, 134
groupByKeyAndSortValues function, 150
GroupedDataset object, 65
GroupedRDDFunctions class, 16
grouping operations on Datasets, 65
groupSorted function, 154

H
Hadoop

input formats, using in Spark SQL, 60
MapReduce, Spark versus, 7
Yarn MiniClusters, 215

hash partitioning, 141
groupByKeyAndSortValues function, 151
HashPartitioner object, 142

hashcode function, 143
HashingTF, 222

change in default hashing algorithm, 223
using with Tokenizer in ML library, 235

HDFS (Hadoop Distributed File System), 214
RDDs representing HDFS files, 16
writing to HDFS store in Parquet format,

261
high availability and stream processing, 268
Hive

enableHiveSupport function, 29
existing Hive Metastore, connecting to

Spark, 32
HiveServer2, 71
loading and saving Hive tables in Spark

SQL, 56

Spark SQL dependency, 30
using plain old SQL queries on data, 49

HiveContext, 29, 32
starting JDBC server from existing Hive‐

Context, 71
using in Spark SQL, 30

I
if/else in Spark SQL, 42
Ignore (save mode), 61
immutability of RDDs, 14
implicit conversions

causing problems with record types, 91
functionality dependant on, in languages

other than Scala, 175
of iterators, 99
with bad performance implications, 97

in-memory persistence, 13, 115
IndexToString, 236
inner joins, 80
integration testing, 214-215

choosing testing environment, 214
Docker-based environment, 214
local mode, 214
YARN MiniCluster, 215

intercepts, including in training a simple MLlib
classification model, 227

intermediate object creation, 97
intersection function, 104
IPython, 179
isZero function, 108
Iterable objects, 140
iterative algorithms, large query plans and, 70
iterative computations, reusing RDDs in, 112
iterative solution (Goldilocks example), 128
iterator function, 15
iterator-to-iterator transformations with map‐

Partitions, 98-104, 106, 157
space and time advantages of, 100

iterators
groups created by groupByKey, 134
in Scala, 99

J
Janino, 69
JARs (Java Archives)

adding to class path, 184
avoiding Hive JARs, 32
building with sbt-jni, 195
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for JDBC data sources, 53
Hive JARs for use in Spark SQL, 29

Java, 8
accessing backing Java objects in PySpark,

182
Iterable versus Iterator objects, 101
iterator implementation, java.util.Iterator,

99
object serialization, Tungsten versus, 50
RDDs composed of Java objects, converting

to DataFrames, 57
Scala API versus Java API, 4
simple Java JNI, 193
System.loadLibrary function, 195
writing Spark code in, 175

converting RDDs between Scala and
Java, 176

Java APIs, 175
Spark SQL and ML pipeline APIs, 177
word count program example, 175

Java Native Access (JNA), 196
Java Native Interface (JNI), 174, 193-196
java.util.Properties object, 54
JavaBeans, RDDs composed of, converting to

DataFrames, 56
JavaConverters object, 176
JavaDoubleRDD, 175
javah command, 194
JavaPairRDD, 175
JavaRDD class, 16
JavaScript, Eclair JS, 174, 190
JBLAS library, 193
JDBC

data source for Spark SQL, 53
JDBC/ODBC server in Spark SQL, 70

JdbcDialect, 53
JDWP (Java Debug Wire Protocol), 302
JNI (see Java Native Interface)
jobs

anatomy of Spark jobs, 22-26
DAG (directed acyclic graph), 22
jobs, 23
Spark application tree, 22
stages, 23
tasks, 24

performance testing, 216
scheduling in Spark, 19-22, 123

default scheduler, 21
in Spark application, 20

resource allocation across applications,
20

validation of, 216
join function, 18
joins, 73-84, 89

co-located and co-partitioned RDDs, 144
core Spark, 73-79

choosing a join type, 75
choosing an execution plan, 76
speeding up by assigning a known parti‐

tioner, 77
speeding up by using broadcast hash

join, 78
implementation by cogroup function, 139
Spark SQL, 79-84

broadcast hash joins, 83
DataFrame joins, 79
Dataset joins, 83
self joins in DataFrames, 83

JPMML evaluator project, 230, 250
JSON, 191

equivalent Spark SQL schema, 33
loading and writing in Spark SQL, 52
loading JSON data in Spark SQL, 32
toJson function and streaming Datasets, 260

Julia (Spark.jl), 189
Jupyter notebook, 302
JVMs (Java Virtual Machines), 20

including dependencies using Spark Pack‐
ages, 186

Tungsten and, 50
user-defined functions written in non-JVM

languages, 66
using langauges other than Scala in, 174-178

Jython, PySpark and, 182

K
Kafka, 256

DStream receiver, repartitioning, 257
support by Structured Streaming, 261

key/value data, working with, 125-171
actions on key/value pairs, 131
choosing an aggregation operation, 136-139

preventing out-of-memory errors, 138
dangers of groupByKey function, 132
Goldilocks example, 127-131
Goldilocks example, Version 3, 157-163
groupByKey solution to Goldilocks exam‐

ple, 132
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why it fails, 134
multiple RDD operations (co-grouping),

139
OrderedRDDFunctions class, dictionary of

operations, 147
partitioners, 140-147

leveraging co-located and co-partitioned
RDDs, 144

PairRDDFunctions, mapping and parti‐
tioning functions, 146

performance issues, 125
repartitioning keyed data, 257
secondary sort and repartitionAndSortWi‐

thinPartitions, 149-157
Goldilocks example with secondary sort,

154-157
straggler detection and unbalanced data,

163-171
keys function, 146
Kinesis, 256
KMeans model, 230
kontextfrei library, 206
Kryo serialization, 49, 288

Tungsten versus, 50

L
LabeledPoint class, 221

creating with with the label and vector of
features, 225

labels
encoding in ML library, 235
requirements for LabeledPoint, 225

lambdas
Java 8, Spark support for, 175
Spark SQL expressions instead of, in Data‐

Frame frunctions, 37
lazy evaluation, 11

and debugging, 13
performance and usability advantages, 11
transformations and, 86

left anti joins, 82
left outer joins, 76, 80

sample join in Spark SQL, 81
left semi joins, 82
libraries, 10

adding to search path using JNA, 196
language-specific and Spark-specific, using

in PySpark, 186
limiting results, using sorting in Spark SQL, 48

linear algebra package, 232
linear models, persisting, 250
Local Checkpointing option, 120
local mode, 8

developing and testing streaming applica‐
tions in, 255

using for integration testing, 214
using for unit testing, 202

LocalRelation, 59
log4J, 300
logging, 299-301

accessing logs, 301
configuring, 300
in Python, 321

logical plan (query optimizer), 69
LogisticRegressionModel, 230
lookUp function, 131
LRU caching, 14, 121

M
machine learning, 219-251

choosing between Spark MLlib and Spark
ML, 219

ML and MLlib packages, 9
modifying an existing algorithm, 249
serving considerations in MLlib and ML

library, 250
with Structured Streaming, 263
working with ML library, 231-250

accessing individual pipeline stages, 239
building a pipeline, 238
data cleaning, 237
data encoding, 234-236
data persistence, 239-242
extending ML pipelines with your own

algorithms, 242-251
getting started, organization and

imports, 231
models, 237
pipeline stages, 232
training a pipeline, 239

working with MLlib, 220-231
feature encoding and data preparation,

221-226
feature scaling and selection, 226
getting started, organization and

imports, 220
model evaluation, 230
model training, 226
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predictions, 227
serving and persistence, 228-230

map function, 3, 18
flatMap versus, 130
in narrow versus wide dependencies

between partitions, 88
using on Datasets, 64

map-side combinations, aggregation opera‐
tions, 139

mapGroups function, 66
mapPartitions function, 105, 147, 151

in Goldilocks example, Version 3, 158, 160
iterator-to-iterator transformations with,

98-104
preserving partitionng information, 144

mappedRDD, 89
MapReduce

Spark as alternative to, 7
word count example, 12

mapValues function, 146
preservation of partitioning information

with, 144
Maven build manager, 10, 186

adding Spark SQL and Hive components to
builds, 31

memory errors, 135
(see also out-of-memory errors)
caused by cogroup, 140
caused by key/value transformations, 132

memory management
calculating executor and driver memory

overhead, 277
division of memory usage within executors,

281
Spark options for, 13

MemoryStreams, 256
MEMORY_AND_DISK_2 storage option, 123
MEMORY_ONLY storage level, 118
MEMORY_ONLY_SER storage option, 118
merge function, 108
meta-algorithms, ML library, 231
metadata

checkpointing, 258
checkpointing/streaming context recovery,

268
for Hive tables loaded into Spark SQL, 56
for IndexToString transformer, 236
machine learning models in internal Spark

format, 229

MinMaxScaler (Spark ML), 237
missing data, working with on DataFrames, 42
ML library, 9, 219

(see also machine learning)
MLeap project, support for PMML model

export, 250
MLlib, 9, 219

(see also machine learning)
difficulty of implementing meta-algorithms,

227
PySpark interactions with, 180

MLUtils object, kfold function, 231
Mobius, 191
model training

MLlib, 226
training a pipeline in ML library, 239
Word2Vec model, 223

models (machine learning)
evaluation of, in MLlib, 230
persistence and serving in MLlib, 228

custom formats, 230
exporting models to PMML formats, 229
Saveable trait (internal Spark format),

229
persistence in ML library, 250
Spark ML, 237
tuning models in Spark ML, 240

multi-DataFrame transformations, 48
set-like operations, 48

multiple actions on the same RDD, 113
MutableAggregationBuffer, 68
MySQL, including JDBC JAR in Spark Shell, 53

N
na function, 42
Naive Bayes algorithm

constructing an estimator with minimal
configuration in ML library, 237

implementing a simple classifier, 247
implementing using Structured Streaming,

264
NaN values, isNaN function on DataFrames, 42
narrow dependencies, 15

transformations with, 17
coalesce function, 89
dependency graph, 18
implications for fault tolerance, 89
in Spark job stages, 23
narrow versus wide (example), 87
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performance implications, 88
preservng partitioning information, 144
reusing RDDs, 115
Spark creators’ definition, 86

native loader decorator, 195
NewHadoopRDD class, 16
noisy clusters, 122
Normalizer, using in Spark ML, 237, 239
notebooks, debugging in, 302
null values, isNull function on DataFrames, 42
numeric functions

Java-specific, and access to Scala equiva‐
lents, 177

RDD types and, 91
numPartitions function, 143

O
objects

deserialized Java objects, storing objects in
RDDs as, 13, 117

intermediate object creation in functions,
avoiding, 97

minimizing object creation, 92
reusing existing objects, 92

Python, and Java interoperability, 185
saving DStreams as, 259

off heap persistence, 114
off_heap storage option, 117
operators

in DataFrame API, 38
Spark SQL column operators, 38
Spark SQL Scala operators, 38

OrderedRDDFunctions class, 16, 125
defining implicit ordering for, 131
dictionary of operations, 147
how to use, 130

otherwise function, 42
out-of-memory errors

actions returning unbounded data to the
driver, 131

caused by key/value operations, 125
on executors, from groupByKey, 135
preventing with aggregation operations, 138

output operations
DStream, 259
Structured Streaming, 261

P
packages, 253

(see also components and packages)
community packages for Spark, 254,

269-272
creating a package, 271

including Spark packages in applications, 59
Spark Packages system, 186

PairRDDFunctions class, 16, 125
cogroup function, 140
dictionary of mapping and partitioning

functions, 146
how to use, 130

PairwiseRDD, 180
parallel-ssh, installing packages via, 186
parallelism value (SparkConf), 142
parameters (pipeline stages in ML), 233

explain params, 233
in custom transformers, 244
searching, 240
tuning parameters for models, 237

Parquet files, 54, 261
partitionBy function, 62, 141, 147
partitioner function, 16
partitioners

and key/value data, 140-147
custom partitioning, 143
HashPartitioner, 142
leveraging co-located and co-partitioned

RDDs, 144
PairRDDFunctions, mapping and parti‐

tioning functions, 146
preserving partitioning information

across transformations, 144
RangePartitioner, 142
Spark partitioner object, 142

custom partitioner, defining for Goldilocks
example, 154

partitions, 10
changing number with coalesce operation,

89
discovery and writing functions in Spark

SQL, 61
high cost for computing each partition, 114
in narrow transformations, 86
in RDD joins, 73
narrow versus wide dependencies between,

87
number and size of, 285
repartitioning data sources for stream pro‐

cessing, 256
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speeding up joins by assigning a known par‐
titioner, 77

partitions function, 15
PartitionwiseSampledRDD, 210
PCA (principal component analysis)

feature selection in MLlib, 226
in Spark ML, 237

performance
considerations with aggregation operations,

136
considerations with joins, 73
Goldilocks example, review of solutions,

169
issues with key/value operations, 125
narrow versus wide transformations, 88
PySpark DataFrames and Datasets versus

RDDs, 181
RDDs versus DataFrames, 27
transformations, methods for improving,

157
user-defined functions and, 67
verifying, 215-216

projects for, 216
Spark counters for, 215

Perl Script, calling from pipe interface, 191
persist function, 14, 113

StorageLevel argument, 116
persistence

cost of, 112
data persistence and Spark ML, 239-242
model and pipelines persistence in Spark

ML, 250
persisting in memory, 115
persisting RDDs, 113, 116

when cost for computing each partition
is very high, 114

persisting to disk, 115, 118
persistencePriority function, 14
physical plan (query optimizer), 69
pip installations, 186

installing PySpark, 187
pipe interface, calling other languages from

Spark, 191
PipedRDD interface, 180
pipelines (Spark ML)

accessing individual stages, 239
building a pipeline, 238
extending with your own algorithms,

242-251

creating custom estimators, 245
custom transformers, 243
pipeline and model persistence and serv‐

ing, 250
parameters, setting for pipeline stages, 233
persistence in pipeline stages, 240
Pipeline object, 238
pipeline stages, 232
support for Structured Streaming, 264
training a pipeline, 239
transformers and estimators, 232

PipelineStage interface, 242
PMML (Predictive Model Markup Language)

models, 228
exporting a model to PMML formats in

MLlib, 229
persistence in ML library, 250

PMMLExportable trait, 229
predictions

performing with MLlib, 227
training a simple MLlib classification model

for, 226
Predictor class, 247
preferredLocations function, 16
printSchema function, 33
programming languages, options with Spark,

173-199
beyond Scala and the JVM, 178-191

CLR (Common Language Runtime), C#,
191

Eclair JS, 190
PySpark, 178-187
Spark.jl (Julia Spark), 189
SparkR, 187-189

beyond Scala, within the JVM, 174-178
calling other languages from Spark, 191-198

FORTRAN, 196
getting to the GPU, 198
using JNA, 196
using JNI, 193-196

future developements in, 198
outside the JVM, 174

properties (RDDs), 15
property checking, using ScalaCheck, 211-214

computing RDD difference, 211
psuedorandom number generators, creating,

105
Py4J, 179, 184

and implementations of PySpark, 183
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calling non-Spark JVM classes with, 184
Python, 8

IPython, 179
PySpark, 178-187

accessing backing Java objects and mix‐
ing Scala code, 182

DataFrames and Datasets, 181
debugging, 303-322
dependency management, 185
how it works, 179
installing, 187
RDDs, 180

round-tripping through RDDs to cut query
plans, 70

Scala performance versus, 4
Spark ML parameter documentation, 233
Spark packages, 270
user-defined function performance penalty,

avoiding, 67

Q
queries

cutting large DataFrame query plans with
Python, 183

debugging Spark SQL queries, 70
evil stream query manager example, 266

query optimizer, 69
(see also Catalyst query optimizer)

QueueStreams, 256

R
R language, 8

Spark support for, 173
Sparklyr library, 189
SparkR, 187-189

RandomDataGenerator, 208
RandomRDDs, 208
RandomSampler trait, 210
randomSplit function, 210
range partitioning, 142

performance considerations, 150
RangePartitioner object, creating, 143

rank statistics, 127
(see also Goldilocks example)

RDD class, 16
rdd function, 176
RDDs (resilient distributed datasets), 3, 8,

10-19
changing partitioning of, 141

computing difference between, 211
converting between Scala and Java, 176
converting to data formats for use over pipe

interface, 191
converting to/from Datasets, 63
data storage space, DataFrame versus, 50
DataFrames and Datasets versus, 28
DStreams, 255
functions on, transformations versus

actions, 17
immutability and the RDD interface, 14
in-memory persistence and memory man‐

agement, 13
joins, 73-79

choosing a join type, 75
choosing an execution plan, 76
speeding up by assigning a known parti‐

tioner, 77
speeding up by using broadcast hash

join, 78
lazy evaluation of, 11

debugging and, 13
performance and usability advantages,

11
mock RDDs for use in testing, 206
operations with multiple RDDs and key/

value data, 139
performance, DataFrames versus, 27
PySpark, 180
reading and writing in Spark SQL, 56
returned by transformations, types of, 90
reusing, 112-123

cases for reuse, 112
persisting and caching RDDs, 116
types of reuse, 116

round-tripping through to cut query plans,
70

sampling, 209
testing transformations, 202
transformations, 85

(see also transformations)
types of, 16
wide versus narrow dependencies, 17

readStream function, 261
receivers, 256
recommendation algorithms, ML library, 231,

237
recomputing RDDs, deciding if it is inexpen‐

sive enough, 115
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record type informaton in RDDs, 91
reduce function, 3, 17

object reuse with, 95
reduceByKey function, 18, 77, 79

map-side combinations, 139
performance considerations, 137

reduceByKeyAndWindow function, 259
registerJavaFunction, 182
regression algorithms

ML library, 231, 237
MLlib, 221

relational transformations (Datasets), 64
multi-Dataset, 65

repartition function, 18, 90, 141
repartitionAndSortWithinPartitions function,
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