
www.allitebooks.com

http://www.allitebooks.org

Instant Cucumber
BDD How-to

A short and quick guide to mastering behavior-driven
software development with Cucumber

Wayne Ye

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant Cucumber BDD How-to

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1180413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-348-0

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Wayne Ye

Reviewers
Ming Jin

Cui Liqiang

Acquisition Editor
James Jones

Commissioning Editor
Ameya Sawant

Technical Editor
Veronica Fernandes

Project Coordinator
Joel Goveya

Proofreader
Maria Gould

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Cover image
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Wayne Ye is a software developer, tech lead, and also a geek. He has immersed himself
in software development for nearly 8 years, with an emphasis on C#/ASP.NET, Ruby on
Rails, HTML5, JavaScript/jQuery, and nodejs. He is an expert in GOF Design Patterns, SOLID
principles, MVC/MVVM, SOA, REST, and AOP. He strongly believes in and is a master of Agile,
Scrum, and TDD/BDD, and hacks with Vim daily. He is a CodeProject MVP (2012) and a
certified PMP. In his spare time, he writes tech/life blogs at WayneYe.com frequently, and
spends some wonderful time with his dear wife and lovely son in Shanghai.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ming Jin is a lead consultant at ThoughtWorks and chief editor at InfoQ. He has over 10
years of experience in the IT industry. He has worked on software for many companies from
manufacturing ERP to online e-commerce. Besides that, he has also helped several large
telecom and banking organizations adopt an agile and continuous delivery approach.

Meanwhile, he has translated several books into Chinese, including Understanding Patterns
of Project Behavior, ThoughtWorks Anthology, and The Productive Programmer. He has also
given many presentations about software and agile in the community and at conferences.

Cui Liqiang is a software engineer at ThoughtWorks. He has been working at ThoughtWorks
since 2010.

For the past 3 years, he has mainly been focusing on enterprise application development
using Java/RoR. He is also quite experienced in frontend technologies such as JS, CSS,
Flex, and so on.

From 2013, he started to work on some embedded projects with C++.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Instant Cucumber BDD How-to 5

Understanding behavior-driven development (Intermediate) 5
Setting up an environment for Cucumber BDD on Rails (Intermediate) 7
Writing your first Hello World feature (Simple) 11
Learning foundation knowledge and skills (Intermediate) 16
Building a real web application with Cucumber (Intermediate) 23
Mastering pro tips for writing expressive Gherkin (Intermediate) 38
Mastering pro tips for writing good steps (Advanced) 45
Using third-party libraries with Cucumber (Intermediate) 49

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface
Instant Cucumber BDD How-to covers an overview of Cucumber as an exciting tool to
write automated acceptance tests to support software development in behavior-driven
development (BDD). It elaborates the basics of TDD/BDD and explains the essence of
Cucumber, describes how to write Cucumber features to drive development in a real project,
and also depicts many pro tips for writing good Cucumber features and steps. Finally, it
introduces some famous third-party libraries used inline with Cucumber.

What this book covers
Understanding behavior-driven development (Intermediate) introduces the concept of TDD
and BDD, and explains the benefits of using BDD in software development.

Setting up an environment for Cucumber BDD on Rails (Intermediate) describes how to set up
a Cucumber BDD environment based on Rails, and explains what Cucumber is and the typical
process of using Cucumber in BDD.

Writing your first Hello World feature (Simple) provides an example for driving a simple "Hello
World" feature using Cucumber.

Learning foundation knowledge and skills (Intermediate) explains the basic Cucumber
knowledge for writing features and step definitions.

Building a real web application with Cucumber (Intermediate) shows how to use Cucumber to
behaviorally drive a real Rails application.

Mastering pro tips for writing expressive Gherkin (Intermediate) introduces many useful and
handy tips for writing Gherkin.

Mastering pro tips for writing good steps (Advanced) introduces many useful and handy tips
for writing DRY and maintainable step definitions.

Using third-party libraries with Cucumber (Intermediate) introduces several great Ruby gems
to support BDD using Cucumber better.

www.allitebooks.com

http://www.allitebooks.org

Preface

2

What you need for this book
You will need the following software to follow the recipes in this book:

 f Ruby Version Manager (rvm)

 f Ruby version 1.9.3

 f Rails version 3.2

 f The latest version of Cucumber

 f A handy text editor (Vim or Sublime Text)

Who this book is for
This book is for the agile software development team that wants to adopt a behavior-driven
process using Cucumber. It assumes that the team is passionate about reducing communication
gaps between developers and product managers, ensuring that the development is always on
the right track and always focuses on the minimum marketable value.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "By running
this, Cucumber will initialize a folder called features into your Rails project."

A block of code is set as follows:

Feature: Write blog
As a blog owner
I can write new blog post
 Scenario: Write blog
 Given I am on the blog homepage
 When I click "New Post" link
 And I fill "My first blog" as Title
 And I fill "Test content" as content
 And I click "Post" button
 Then I should see the blog I just posted

Preface

3

Any command-line input or output is written as follows:

$ \curl -L https://get.rvm.io | bash -s stable --ruby f

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "And then after clicking on the
Go button, we will see the search result."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Instant Cucumber BDD
How-to

Cucumber is a very fun and cool tool for writing automated acceptance tests to support
software development in the behavior-driven development (BDD) style. This Instant book
will cover the basis of TDD/BDD and explain the essence of Cucumber, describe how to write
Cucumber features to drive development in a real project, and also describe many pro tips for
writing good Cucumber features and steps. We will finally introduce some famous third-party
libraries used in line with Cucumber.

Understanding behavior-driven development
(Intermediate)

Test-driven development (TDD) is a software development process originated from Extreme
Programming (XP) invented by Kent Beck, which relies on the repetition of a number of short
and continuous development cycles.

Instant Cucumber BDD How-to

6

TDD can lead to more modularized, flexible, and extensible code; the early and frequent
nature of the testing helps to catch defects early in the development cycle, preventing them
from becoming endemic and expensive problems. In addition to this, its principle completely
practices "keep it simple, stupid" (KISS) and "You ain't gonna need it" (YAGNI). The workflow for
TDD is as follows:

(Re)Write a test

Test
fails

All tests
succeed

Clean up code

Test(s) failWrite production
code

Test
succeeds

Check if the
test fails

Run all tests

Repeat

BDD is based on TDD; it inherits all the benefits and many of the principles/practices from
TDD, but moves one step forward—BDD combines TDD with ideas from domain-driven design
(DDD) and object-oriented analysis and design which provide software development teams
and business people with shared tools and a shared process to collaborate on software
development. The inventor of BDD, Dan North, defined it as follows:

"BDD is a second-generation, outside-in, pull-based, multiple-stakeholder,
multiple-scale, high-automation, agile methodology. It describes a cycle of
interactions with well-defined outputs, resulting in the delivery of working,
tested software that matters."

BDD focuses on implementing the minimum marketable feature (MMF) that will yield the
most value. The business team and the development team can cooperate on a common
language; this significantly reduces misunderstanding and eliminates waste, unnecessary
code, and functionality.

Instant Cucumber BDD How-to

7

Getting ready
In the BDD style, when a developer starts writing a test case, unlike writing a test method in
TDD, he/she writes a "feature" belonging to a "story" which describes the feature's expected
behavior. The feature is a business-readable, domain-specific language. Then the developer
runs and watches it fail; after that he/she implements the "feature" and makes the test pass
just like the same process in TDD. So at its core, BDD is a specialized version of TDD that
focuses on the behavioral specification of software units.

How to do it…
The typical process can be described in the following steps:

1. Add a feature test.

2. Run all tests and see if the new one fails.

3. Write some code.

4. Run the automated tests and see them succeed.

5. Refactorize the code.

6. Repeat steps 1 to 5.

There's more…
There are many great resources online for learning BDD:

 f Official page of behavior-driven development: http://behavior-driven.org/

 f The behavior-driven development entry on Wikipedia: http://en.wikipedia.
org/wiki/Behavior-driven_development

 f 10 Reasons Why BDD Changes Everything: http://www.agile-doctor.
com/2012/03/06/10-reasons-why-bdd-changes-everything/

 f Behavior Driven Development Content on InfoQ: http://www.infoq.com/BDD

 f Introducing BDD: http://dannorth.net/introducing-bdd/

Setting up an environment for Cucumber
BDD on Rails (Intermediate)

Cucumber is a tool for BDD-style development widely used in the Ruby on Rails platform.
It introduced a domain-specific language (DSL) named Gherkin to allow the execution of
feature documentation written in business-facing text, and implement acceptance test code
in other languages (for example Ruby).

http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
http://www.agile-doctor.com/2012/03/06/10-reasons-why-bdd-changes-everything/
http://www.agile-doctor.com/2012/03/06/10-reasons-why-bdd-changes-everything/
http://www.infoq.com/BDD
http://dannorth.net/introducing-bdd/

Instant Cucumber BDD How-to

8

Cucumber sets up a great bridge between business people and development teams.
Its natural and human readable language ultimately eliminates misunderstanding, and
the regular expression "translation" layer provides the ability for developers to do anything
magical and powerful!

Getting ready
This book will focus on how to use Cucumber in daily BDD development on the Ruby on Rails
platform. Please install the following software to get started:

 f Ruby Version Manager

 f Version 1.9.3 of Ruby

 f Version 3.2 of Rails

 f The latest version of Cucumber

 f A handy text editor; Vim or Sublime Text

How to do it...
To install RVM, bundler, and Rails we need to complete the following steps:

1. Install RVM (read the latest installation guide from http://rvm.io).
$ \curl -L https://get.rvm.io | bash -s stable --ruby

2. Install the latest version of Ruby as follows:
$ rvm install ruby-1.9.3

3. Install bundler as follows:
$ gem install bundler

4. Install the latest version of Rails as follows:
$ gem install rails

Cucumber is a Ruby gem. To install it we can run the following command in the terminal:

1. Cucumber contains two parts: features and step definitions. They are explained in
the following section:
$ gem install cucumber

2. If you are using bundler in your project, you need to add the following lines into
your Gemfile:
gem 'cucumber'

http://rvm.io/

Instant Cucumber BDD How-to

9

How it works...
We will have to go through the following files to see how this recipe works:

 f Feature files (their extension is .feature): Each feature is captured as a "story",
which defines the scope of the feature along with its acceptance criteria. A feature
contains a feature title and a description of one or more scenarios. One scenario
contains describing steps.

 f Feature: A unique feature title within the project scope with a description. Its format is
as follows:
Feature: <feature title>
<feature description>

 f Scenario: This elaborates how the feature ought to behave. Its format is as follows:
Scenario: <Scenario short description>
Given <some initial context>

When <an event occurs>

Then <ensure some outcomes>

 f Step definition files: A step definition is essentially a block of code associated
with one or more steps by a regular expression (or, in simple cases, an exact
equivalent string).
Given "I log into system through login page" do
 visit login_page
 fill_in "User name", :with => "wayne"
 fill_in "Password", :with => "123456"
 click_button "Login"
end

When running a Cucumber feature, each step in the feature file is like a method invocation
targeting the related step definition. Each step definition is like a Ruby method which takes
one or more arguments (the arguments are interpreted and captured by the Cucumber engine
and passed to the step method; this is essentially done by regular expression). The engine
reads the feature steps and tries to find the step definition one by one. If all the steps match
and are executed without any exceptions thrown, then the result will be passed; otherwise, if
one or more exceptions are thrown during the run, the exception can be one of the following:

 f Cucumber::Undefined: Step was an undefined exception

 f Cucumber::Pending: Step was defined but is pending implementation

 f Ruby runtime exception: Any kind of exception thrown during step execution

Instant Cucumber BDD How-to

10

Similar with other unit-testing frameworks, Cucumber runs will either pass or fail depending
on whether or not exception(s) are thrown, whereas the difference is that according to
different types of exceptions, running a Cucumber could result in the following four kinds:

 f Passed

 f Pending

 f Undefined

 f Failed

The following figure demonstrates the flow chart of running a Cucumber feature:

Run a
sceario

Read
one step

Step defined?

Execute the
step definition

Exception(s)
thrown?

Has next
step?

Pass
scenario

Pending
scenario

Failed
scenario

Pending
exception?

Undefined
scenario

No Yes No

Yes

No

Read next
step

Yes

Yes

Instant Cucumber BDD How-to

11

There's more...
Cucumber is not only for Rails, and the Cucumber feature can be written in many other
languages other than English.

Cucumber in other languages/platforms
Cucumber is now available on many platforms. The following is a list of a number of
popular ones:

 f JVM: Cucumber-JVM

 f .NET: SpecFlow

 f Python: RubyPython, Lettuce

 f PHP: Behat

 f Erlang: Cucumberl

Cucumber in your mother language
We can actually write Gherkin in languages other than English too, which is very
important because domain experts might not speak English. Cucumber now
supports 37 different languages.

There are many great resources online for learning Cucumber:

 f The Cucumber home page: http://cukes.info/

 f The Cucumber project on Github: https://github.com/cucumber/cucumber

 f The Cucumber entry on Wikipedia: http://en.wikipedia.org/wiki/
Cucumber_(software)

 f The Cucumber backgrounder: https://github.com/cucumber/cucumber/
wiki/Cucumber-Backgrounder

Writing your first Hello World feature
(Simple)

During the first two recipes we learnt the concept of BDD and the basics of Cucumber; now we
know that we can benefit from BDD using Cucumber, so it is time to write the first Hello World
Cucumber feature.

Getting ready
In the first recipe we've already successfully installed Ruby, RubyGems, bundle, and Rails. To
write our first Cucumber feature, we need a Rails application with Cucumber installed.

http://cukes.info/
https://github.com/cucumber/cucumber
http://en.wikipedia.org/wiki/Cucumber_(software)
http://en.wikipedia.org/wiki/Cucumber_(software)
https://github.com/cucumber/cucumber/wiki/Cucumber-Backgrounder
https://github.com/cucumber/cucumber/wiki/Cucumber-Backgrounder

Instant Cucumber BDD How-to

12

How to do it...
Now we create a Rails project and install Cucumber in the project. Follow the given steps:

1. Create a new Rails app, cucumber_bdd_how_to, by running the following Rails
command in the terminal:
$ rails new cucumber_bdd_how_to

2. Add gem 'cucumber-rails' into the project's Gemfile; it should be similar to the
following code snippet:
source 'https://rubygems.org'

gem 'rails', '3.2.9'

Bundle edge Rails instead:
gem 'rails', :git => 'git://github.com/rails/rails.git'

gem 'sqlite3'

Gems used only for assets and not required
in production environments by default.
group :assets do
 gem 'sass-rails', '~> 3.2.3'
 gem 'coffee-rails', '~> 3.2.1'

 # See https://github.com/sstephenson/execjs#readme for
 # more supported runtimes
 # gem 'therubyracer', :platforms => :ruby

 gem 'uglifier', '>= 1.0.3'
end

gem 'jquery-rails'

group :test do
 gem 'cucumber-rails'
end

To use ActiveModelhas_secure_password
gem 'bcrypt-ruby', '~> 3.0.0'

To use Jbuilder templates for JSON

Instant Cucumber BDD How-to

13

gem 'jbuilder'

Use unicorn as the app server
gem 'unicorn'

Deploy with Capistrano
gem 'capistrano'

To use debugger
gem 'debugger'

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

3. Run the bundle install in the terminal:
$ bundler install

4. After the installation is completed, cd into your RoR project directory and run:
$ rails generate cucumber:install

5. By running this, Cucumber will initialize a folder called features in your
Rails project:

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support

Instant Cucumber BDD How-to

14

6. Now we create a file under the features folder called hello_world.feature,
and write down our first Cucumber test:
Feature: Learn Cucumber
 As a Software Developer
 I want to learn Cucumber
 So that I can developer in BDD style!

 Scenario: Write Hello World Cucumber
 Given I have a Rails project
 When I write a Hello World Cucumber test
 Then I should be able to run it and see "Hello World"
 printed on screen

7. And we go to the terminal and run the following Cucumber command:
$ bundle exec cucumber features/hello_world.feature

8. Now we should see that it fails since we haven't implemented the steps yet. The
message should be similar to the following screenshot:

9. Create a hello_world_steps.rb under the step_definitions directory.

10. Copy the code shown on the console and paste it to hello_world_steps.rb.

Instant Cucumber BDD How-to

15

11. Modify the step code as follows:
Given /^I have a Rails project$/ do
 puts "Yes, I am at my RoR project."
end

When /^I write a Hello World Cucumber test$/ do
 puts "Yeah! I just wrote my test"
end

Then /^I should be able to run it and see "(.*?)" printed
on screen$/ do |arg|
 puts arg
end

12. Now we run it again and we see it successfully passed:

How it works...
In this simple example, we wrote our first Cucumber feature named "Hello World", it has one
scenario, "Write Hello World Cucumber", with three steps. We also implemented three step
definitions and successfully made it pass.

In the Cucumber feature, one step is usually started with a preposition or an adverb
(Given, When, Then, And, and But), each step is parsed and corresponding to a step
definition, in our previous example the last step accepts one argument to be passed in,
which means you can put any word in the step, and we passed the string Hello World,
so that it is printed on the screen.

Instant Cucumber BDD How-to

16

Learning foundation knowledge and skills
(Intermediate)

From the Setting up an environment for Cucumber BDD on Rails (Intermediate) recipe we
know Cucumber contains two parts: Gherkin and Step definitions, and from the Writing your
first Hello World Feature (Simple) recipe we got our first Cucumber feature to run successfully.
We are now ready to walk into Cucumber world!

Getting ready
In this recipe, we will learn the foundation knowledge and skills for achieving our goal, which
is developing features in the BDD style using Cucumber. Let's take a deep look into the
Cucumber Gherkin and Step separately.

Gherkin
Gherkin is the language that Cucumber understands; it is a DSL. Gherkin has two major
missions: it should have a maintainable documentation that is stakeholder-readable/
understandable and it should be programmatically testable.

A feature written in Gherkin is as follows:

Feature: Credit card payment
 As a online shopper
 I want to pay through my Credit card
 So that I can buy stuff online instead of visiting the super market

 Scenario: transaction completed successfully
 Given ...
 When ...
 Then ...
 Scenario: Credit card is invalid
 Given ...
 When ...
 Then ...
 Scenario: Third party payment system refused the transaction
 Given ...
 When ...
 Then ...

Instant Cucumber BDD How-to

17

A scenario consist of steps beginning with Given, When, Then, or And/But:

 f Given: This puts the system in a known state before the user (or external system)
starts interacting with the system (in the When steps). Examples are as follows:
Given I logged in as a system administrator
Given the user has been authorized to do operation
Given I have two items in my shop cart

 f When: A When step represents the key action the user performs. The action usually
has an observable effect somewhere else. Examples are as follows:
When I press "Submit" on the Contact us area
When I am on the "Shopping Cart" page
When the progress bar is running
When I wait for the Ajax request to finish

 f Then: The Then step observes and validates the outcome(s), it is an assertion
sentence just like the assert statement in common unit testing frameworks. The
Then sentence should be related to the business value/benefit in your feature
description. Examples are as follows:
Then the login popup form should be shown
Then user should be redirected to item list page
Then I should receive $800

 f And, But: This is used when we have multiple Given/When/Then steps. Examples
are as follows:
Given I have a dummy repository on github
And this project is written in Ruby on Rails
Then I should be able to clone this project
And I should be able to add more developers to folk this project
But I cannot make this project private

Essentially Gherkin treats Given/When/Then/And/But the
same, so in theory we can write all the steps with the same prefix.
However, we definitely should never do that in the real world.

Cucumber step
Once we write a feature with steps in Gherkin, we need to implement each step. Step
definition files are, by convention, under the features/step_definitions directory,
just like the hello_world_steps.rb file we created in the Writing your first Hello World
feature (Simple) recipe.

Instant Cucumber BDD How-to

18

Cucumber is widely used in automation testing web applications. In most cases, Cucumber
is simulating the behavior of the end user who will be using the developed application, thus
verifying whether it passes the acceptance tests. So under the step definition, we will usually
do the following things:

 f Environment preparation: Examples include simulating user login, and preparing test
data in the database

 f URL navigation: Examples include opening initial pages and redirecting the user to a
predefined URL after a specific action

 f DOM manipulation: Examples include filling text in a form, selecting items from
drop-down lists, clicking on a link, or pressing a button

 f Waiting: Examples include waiting for a specific operation to be finished, waiting for
animations to be completed, and simply waiting for a few seconds

 f Assertion: Examples include verifying whether a page contains expected content and
checking whether the user was redirected to the right page

To achieve the preceding things, we need to use a famous Ruby gem: Capybara. It exposes
a DSL to simulate and uniform a real user's interaction with a web application. The DSL is
designed to be natural. The following code snippets are some examples of the Capybara
DSL syntax:

 f To find a DOM element:
find_field('blog_title').should be_visible
find_field('blog_content').value.should eq(@content)
find_link('back').click
find("section#main").text.should eq("Foo section")
find("div.main-pillar").find("section#main").text.should eq("Foo
section")
all("a").each { |a| puts a[:href] }
all("input[type='text']").each
{ |textbox| p textbox[:value] }

 f To fill text in a textbox:
fill_in 'Login', :with => 'user@example.com'

 f To select an item in the drop-down list:
select("California", :from => 'Choose State')

 f To choose the Male ratio button:
choose 'Male'

 f To check the Food checkbox:
check 'Food'

Instant Cucumber BDD How-to

19

 f To click on the Edit Profile link:
click_link 'Edit Profile'

 f To click on the Submit button:
Click_button 'Submit'

 f To attach a file:
attach_file('Image', '/path/to/image.png')

 f To make assertions:
page.has_selector?('div.main-pillar section#main').should
be_true
page.has_selector?(:xpath, '//div/article').should
be_true
page.has_xpath?('//div/article').should be_true
page.has_css?('div.main-pillar section#main').should
be_true
page.has_content?('Foo section').should be_true

Other than utilizing Capybara, we also need a number of other Ruby gems, which are widely
used in the real BDD project:

 f rspec-rails: This is a BDD test framework for Rails. In our Cucumber step
implementation, we rely on it to write human-readable test assertions.

 f Launchy: The Launchy application inside the Rails application is required when we
debug our Cucumber steps.

 f database-cleaner: This introduced a set of strategies to ensure a clean state when
running Cucumber tests.

How to do it...
1. Add Capybara into our Gemfile, as well as Launchy, which is required when we debug

our Cucumber step.
group :test do
 gem 'rspec-rails' # library of Rails assertions
 gem 'cucumber-rails', :require => false
 gem 'launchy'
 gem 'database_cleaner'
end

2. Then we need to run bundle install in the terminal to install the added gems.

3. Finally, make sure you have the latest version of Firefox installed, since Capybara's
default web driver is Selenium with Firefox driver.

Instant Cucumber BDD How-to

20

4. Ok, it's time to run a good sample case to demonstrate the magic of Capybara.
Assume we would like to buy baseball gloves on Amazon. We write out a feature in
amazon_search.feature:
Feature: Shopping in Amazon
As an internet user
I want to search stuff on Amazon
So that I can choose and buy items I like

@javascript
 Scenario: Search for baseball gloves
 Given I am on Amazon homepage
 When I enter "baseball glove" in the search box
 And I click "Go" button
 Then I should see a list of results related with Baseball
Gloves

5. We run the feature in the terminal and watch it fail, and then create the step file
amazon_search_steps.rb with the following code:
Given /^I am on Amazon homepage$/ do
 visit "http://www.amazon.com"
end

When /^I enter "(.*?)" in the search box$/ do |keywords|
 fill_in "Search", :with => keywords
end

When /^I click "Go" button$/ do
 click_button "Go"
end

Then /^I should see a list of results related with Baseball
Gloves/ do
 page.should have_content("#centerBelow")
end

Instant Cucumber BDD How-to

21

How it works...
We run the feature again and we see how it works. We specified a @javascript
tag for the scenario. It is a Capybara built-in tag, which runs a feature marked as
@javascript, and Capybara switches the web driver from the default (RackTest)
to Capybara.javascript_driver. A Firefox browser will open and automatically
perform the actions we defined in the step file.

To make this clearer, by default, Capybara uses the rack_test driver to
drive browsers, which is fast but doesn't support JavaScript. Selenium is
the default driver for JavaScript-required scenarios. You can change the
value of the Capybara.javascript_driver setting to use another
JavaScript-capable driver.
The previous Amazon search example requires JavaScript, so we specify
a @javascript tag prior to Scenario.

The following screenshots demonstrate how our Cucumber feature runs, opens up Amazon's
home page, and inputs the keyword baseball glove:

www.allitebooks.com

http://www.allitebooks.org

Instant Cucumber BDD How-to

22

And then after clicking on the Go button, we will see the search result as follows:

The preceding screenshots were not captured manually; Capybara
provides a convenient API called save_screenshot, which can be
invoked inside any Cucumber step, and then we can use Launchy to open
it ASAP or open the screenshot later manually.

When /^I enter "(.*?)" in the search box$/ do
|keywords|
page.save_screenshot('input_keyword.png')
 Launchy.open 'input_keyword.png'
end

Under the hood, Capybara invokes a web driver to communicate with a real browser. It
supports the following web drivers:

 f RackTest: This is the default driver which is fast but cannot execute JavaScript

 f Selenium: This is fully functional and ready to use, just a little bit slower

Instant Cucumber BDD How-to

23

 f Capybara-webkit: It uses QtWebKit to start a rendering engine and is the fastest. It is
used for true headless testing and has full JavaScript support

 f Poltergeist: It runs Capybara tests on a headless WebKit browser, unlike
Capybara-webkit, and uses PhantomJS as its rendering engine

We can switch Capybara's web driver by executing the
following code:

Capybara.javascript_driver= :webkit #or
:rack_test,:selenium, etc.

Capybara encapsulates these web driver libraries and exposes a uniformed façade for the
higher level, so developers benefit from it by learning uniformed syntax while dealing with
various kinds of situations/purposes by switching between different web drivers.

In this Amazon search example, we learnt how to drive an automated web test case using
Cucumber and Capybara. In the next recipe we will develop a real project based on this
technology combination!

Building a real web application with
Cucumber (Intermediate)

In this recipe we are going to build a real web application with a BDD style and process. You
will learn how to work with behavior-driven software development using Cucumber.

Getting ready
Assume we are in a web development team and are cooperating with a product manager.
Our goal is to develop a simple web blog system, and we have already had a meeting and
summarized several user stories as follows:

 f Story #1: As a blog owner, I can write new blog posts.

As a blog owner,
I can write new blog posts

Instant Cucumber BDD How-to

24

 f Story #2: As a blog visitor, I can see a list of posted blogs.

As a blog visitor,
I can see a list of posted blogs

 f Story #3: As a blog owner, I can edit my blog posts.

As a blog owner,
I can edit my blog posts

 f Story #4: As a blog visitor, I can input comments onto the blog.

As a blog visitor,
I can input comments
onto the blog

 f Story #5: As a blog owner, I can delete comments.

As a blog owner,
I can delete comments

Instant Cucumber BDD How-to

25

How to do it...
1. Out first step is to let Rails generate a new application called blog:

$ rails new blog --skip-test-unit

And we need the following Ruby gems in Gemfile:
group :test do
gem 'rspec-rails'
gem 'cucumber-rails'
gem 'capybara'
gem 'launchy'
gem 'database_cleaner'
end

2. After bundle install, we install Cucumber into the blog project:
$ rails generate cucumber:install

Story #1: As a blog owner, I can write new blog posts
1. We wait until Rails has finished generating Cucumber files. Then we can start writing

the first Cucumber scenario for this story. We add a feature file under the features
directory named write_post.feature:
Feature: Write blog
As a blog owner
I can write new blog post
 Scenario: Write blog
 Given I am on the blog homepage
 When I click "New Post" link
 And I fill "My first blog" as Title
 And I fill "Test content" as content
 And I click "Post" button
 Then I should see the blog I just posted

Instant Cucumber BDD How-to

26

2. Let's run the write_post.feature and watch it fail:
cucumber features/write_post.feature:

Yes it fails, which is good and as expected; now we have work to do, that is to
implement this feature (also a real story)!

3. So we go to our favorite terminal and have Rails help us generate a Post scaffold:
$ rails generate scaffold Post title
content:textpost_time:datetime

4. We perform a database migration for both development and test environments:
$ rakedb:migrate

$ RAILS_ENV=test rake db:migrate

5. We now start implementing the Cucumber step for write_post. A little noticeable
point is using @title to record the entered title for future expected use. The code is
shown as follows:
Given /^I am on the blog homepage$/ do
 visit("/posts")

Instant Cucumber BDD How-to

27

end

When /^I click "New Post" link$/ do
 click_on "New Post"
end

When /^I fill "(.*?)" as Title$/ do |title|
 @title = title
 fill_in "Title", :with => title
end

When /^I fill "(.*?)" as content$/ do |content|
 fill_in "Content", :with => content
end

When /^I click "(.*?)" button$/ do |btn|
 click_button btn
end

Then /^I should see the blog I just posted$/ do
 page.should have_content(@title)
end

6. Ok, now we rerun the test and it should pass:

Instant Cucumber BDD How-to

28

7. And if we open the browser to do a manual test on http://localhost:3000/
posts, we can see it works as expected. The following is a screenshot of the blog
home page:

8. The screenshot of the write blog page is as follows:

http://localhost:3000
http://localhost:3000

Instant Cucumber BDD How-to

29

Story #2: As a blog visitor, I can see a list of posted blogs
1. We create a new feature named show_blog_list.feature, and we assume there

already exists four blog posts:
Feature: Show blog list
As a blog visitor
I can see list of posted blogs

 Scenario: Show blog list
 Given there are already 4 posts
And I am on the blog homepage
 Then I can see list of 4 posted blogs

2. The Given step is exactly the same with the "write blog" feature. We definitely
shouldn't repeat ourselves. The "posts preparation" step seems very common,
so we can create a common_steps.rb under the step_definitions directory.
After that we move the step Given I am on the blog homepage from write_
blog_steps to common_steps and create a shared step for preparing blog posts:
Given /^I am on the blog homepage$/ do
 visit("/posts")
end

And /^there are already (\d) posts$/ do |count|
 count.to_i.times do |n|
 Post.create!({ :title => "Title #{n}", :content =>
 "Content #{n}", :post_time => Time.now })
 end
end

3. Ok, now we run show_blog_list.feature and watch that it fails. We will see that
the two Given steps have already been implemented within common_steps:

Instant Cucumber BDD How-to

30

4. Following the guide we create show_blog_list_steps.rb. In the step we expect
there to be a list of blogs wrapped within an HTML table with an ID of posts-list,
and since we prepared four blog posts we expect there to be five rows in the table, so
we firstly write our testing code as follows:
Then /^I can see list of (\d) posted blogs$/ do |count|
 page.should have_selector
 ("table#posts-list>tr:eq(#{count})")
end

5. Now it is time to write real code which is driven by the preceding described behavior
code. We modify app/views/posts/index.html.erb as follows:
<h1>Listing posts</h1>

 <table id="posts-list">
 <tr>
 <th>Title</th>
 <th>Content</th>
 <th>Post time</th>
 <th></th>
 <th></th>
 <th></th>
 </tr>

 <% @posts.each do |post| %>
 <tr>
 <td><%= post.title %></td>
 <td><%= post.content %></td>
 <td><%= post.post_time %></td>
 <td><%= link_to 'Show', post %></td>
 <td><%= link_to 'Edit', edit_post_path(post)
 %></td>
 <td><%= link_to 'Destroy', post, method: :delete,
 data: { confirm: 'Are you sure?' } %></td>
 </tr>
 <% end %>
 </table>

 <%= link_to 'New Post', new_post_path %>

6. Now we rerun show_blog_list.feature. It passed, yeah!

Instant Cucumber BDD How-to

31

Story #3: As a blog owner, I can edit my blog posts
1. We add a new feature named edit_blog.feature:

Feature: Edit blog
As a blog owner
I can edit my blog posts

 Scenario: Edit blog
 Given there is a post with title "Dummy post" and
content "Dummy content"
 And I am on the blog homepage
 When I edit this post
 And I update title to "Updated title" and content to
"Updated content"
 Then I can see it has been updated

2. As usual, we first run it and watch it fail, and then create edit_blog_steps.rb
with test code as follows:
Given /^there is a post with title "(.*?)" and content "(.*?)"$/
do |title, content|
 @post = Post.create!({ :title => title, :content =>
 content, :post_time => Time.now })
end

When /^I edit this post$/ do
 visit(edit_post_url @post)
end

When /^I update title to "(.*?)" and content to "(.*?)"$/
do |title, content|
 @updated_title = title
 @updated_content = content
 @post.update_attributes!({ :title => @updated_title,
:content => @updated_content })
end

Then /^I can see it has been updated$/ do
 step %{I am on the blog homepage}
 find("table#posts-list>tr:eq(2) >td:eq(1)").should
 have_content(@updated_title)
 find("table#posts-list>tr:eq(2) >td:eq(2)").should
 have_content(@updated_content)
end

Instant Cucumber BDD How-to

32

3. When we go back to the terminal and rerun the edit_blog.feature, it should now
pass. The following screenshot shows edit_blog.feature has run successfully:

Hooray! We've finished three stories so far. They are all around posts creating, editing, and
viewing. There are two more stories related with comments. Let's starting developing them
with the behavior-driven development style!

Story #4: As a blog visitor, I can input comments onto the blog
1. We first create an input_comment.feature for this story:

Feature: Input comment
As a blog visitor
I can input comment onto blog

 Scenario: Input comment
 Given there is a post titled with "Dummy post" and
 content with "Dummy content"
 And I am on the post page
 When I add a comment with the following information
 | Name | Email | Content |
 | Wayne | admin@wayneye.com | Test comment |
 Then I can see the comment has been added onto the
 post

Instant Cucumber BDD How-to

33

2. We run the feature and watch it fail:

3. We create input_comment_steps.rb and write the test code as follows:
Given /^I am on the post page$/ do
 visit(post_path @post)
end

When /^I add a comment with the following information$/
do |table|
 # table is a Cucumber::Ast::Table
 table.hashes.each do |comment_data|
 @commenter = comment_data[:name]
 @email = comment_data[:email]

Instant Cucumber BDD How-to

34

 @content = comment_data[:content]
 @post.comments.create!({ :name => @commenter, :email
 => @email, :content => @content })
 end
end

Then /^I can see the comment has been added onto the
post$/ do
 comments_list = find("div#comments-list")
 comments_list.should have_content(@commenter)
 comments_list.should have_content(@email)
 comments_list.should have_content(@content)
end

4. To make our test pass, we let Rails help us to generate a Comment scaffold:
$ rails generate scaffold Comment post:references name
email content

5. Database migration is as follows:
$ rakedb:migrate && RAILS_ENV=test bundle exec rake
db:migrate

6. After the migration is done, we update several places in the Rails-generated code.
First is routes.rb. We specify comments as nested resources under blogs:
resources :blogs do
 resources :comments
end

7. We've specified that Comment belongs to Post; we need to update Post to contain
many comments as well, in post.rb:
has_many :comments

In CommentsController, we update the create action to load the post object
that the created comment belongs to:
def create
 @comment = Comment.new(params[:comment])
 @comment.post = Post.find_by_id(params[:post_id])

 respond_to do |format|
 if @comment.save

Instant Cucumber BDD How-to

35

 format.html { redirect_to @comment.post,
 notice: 'Comment was successfully created.' }
 else
 format.html { render action: "new" }
 format.json { render json: @comment.errors,
 status: :unprocessable_entity }
 end
 end
end

8. And finally we update the view template app/views/posts/show.html.erb for
showing a post:
<h2>↓Comments↓</h2>
<div id="comments-list">
 <% @post.comments.each_with_index do |c,idx| %>
 <p>#<%= idx + 1 %>: <%= c.name %>:
 <%= c.content %></p>
 <% end %>

 <hr />

 <%= form_for([@post, @post.comments.build]) do |f| %>
 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :content %>

 <%= f.text_area :content %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
 <% end %>
</div>

Instant Cucumber BDD How-to

36

9. At this time, we should be able to pass the input comment feature. The following
screenshot shows that input_comment.feature has run successfully:

Story #5: As a blog owner, I can delete comments
1. As usual we create a delete_comment.feature:

Feature: Delete comment
As a blog owner
I can delete comment

 Scenario: Delete comment
 Given there is a post titled with "Dummy post" and
 content with "Dummy content"
 And there is a comment on this post
 When I am on the post page
 And I click "Delete Comment"
 Then the comment should be deleted

2. Run it and watch it fail, and then implement the steps inside delete_comment_
steps.rb as follows:
Given /^there is a comment on this post$/ do
 @post.comments.create!({ :name => "Wayne",
 :email => "admin@wayneye.com", :content => "Test
 deleting comment" })
end

When /^I click "Delete Comment"$/ do

Instant Cucumber BDD How-to

37

 click_on "Delete Comment"
end

Then /^the comment should be deleted$/ do
 find("#comments-list").should have_no_content("Wayne")
end

3. To make the test pass, we need to update show.html.erb to add the Delete
Comment link to each comment:
<% @post.comments.each_with_index do |c,idx| %>
 <p>
 #<%= idx + 1 %>: <%= c.name %>:
 <%= c.content %>
 <%= link_to "Delete Comment", post_comment_path
 (@post, c), :method => :delete, :confirm => "Are you
 sure you want to delete this comment?" %>
 </p>
<% end %>

4. Now we rerun delete_comment.feature. It passed successfully:

How it works...
In this recipe we developed a very simple blog application with BDD using Cucumber. We split
the requirement into five user stories, and then transformed them into Cucumber features.
Next we implemented each story one by one, strictly following the BDD process.

Instant Cucumber BDD How-to

38

Most of the code was generated by Rails, so we actually wrote very few lines of product code,
because our goal is to learn how to use Cucumber to drive a real user story development,
so that we are getting used to BDD with one story by another, and one iteration by another,
eventually delivering the software.

The essence of BDD using Cucumber is that it describes a feature and its expected behavior.
So that drives the development under the definiteness (ideally no misunderstanding); on the
other hand, each Cucumber feature is just like an acceptance test case, which can be easily
integrated with continuous integration.

Mastering pro tips for writing expressive
Gherkin (Intermediate)

In the Building a real web application with Cucumber (Intermediate) recipe, we completed five
simple user stories driven by Cucumber, and we learnt how to drive a Rails web application
development using Cucumber in a BDD style.

Gherkin provides various kinds of expressive syntax. In this recipe, we are going to learn
various kinds of skills and tips with Cucumber Gherkin DSL, and how to write readable,
organized, and reusable Gherkin to help us solve real-world problems.

Getting ready
We will reuse the Rails application, cucumber_bdd_how_to, which we created in the Writing
your first Hello World feature (Simple) recipe, so please cd into that directory to get prepared.

How to do it...
In the following sections, a number of useful Gherkin tips are introduced and
covered exhaustively.

Define a background for scenarios
1. When we write Cucumber tests, we usually encounter this situation: a number of

scenarios rely on the same step(s). For example, as a registered developer on GitHub,
I can manage my profile, my repositories, or my SSH keys, then our feature can be
written as follows:
Feature: Github account management
In order to manage my profile, repositories and my SSH
Keys
As a registered developer
I Should be able to log into system and manage my account
 Scenario: Change my avatar

Instant Cucumber BDD How-to

39

 Given I logged into Github with account "Wayne Ye"
 When I click my avatar to go to the "Your Profile"
 page
 Then I can change my avatar with "Wayne.png"

 Scenario: View my repositories
 Given I logged into Github with account "Wayne Ye"
 When I click my avatar to go to the "Your Profile"
 page
 And I click on "Repositories" hyperlink
 Then I should be able to see all my repositories

 Scenario: Add a SSH Key
 Given I logged into Github with account "Wayne Ye"
 When I click my avatar to go to the "Your Profile"
 page
 And I click on "SSH Keys" hyperlink
 Then I add a new SSH key

2. You will notice that all the scenarios require you to log into GitHub, and in more
complex cases the share steps can be more. This could be quite tedious, so in this
situation we can use Background:
Feature: Github account management
In order to manage my profile, repositories and my SSH
Keys
As a registered developer
I Should be able to log into system and manage my account

 Background:
 Given I logged into Github with account "Wayne Ye"
 When I click my avatar goto the "Your Profile" page

 Scenario: Change my avatar
 Then I can change my avatar with "Wayne.png"

 Scenario: View my repositories
 And I click on "Repositories" hyperlink
 Then I should be able to see all my repositories

 Scenario: Add a SSH Key
 And I click on "SSH Keys" hyperlink
 Then I add a new SSH key

Whenever possible, use Gherkin Background to centralize the scenario shared steps, be
DRY (don't repeat yourself), and get better maintainability!

Instant Cucumber BDD How-to

40

Outline-related attributes in a table
1. Sometimes we need to describe the data in steps. When the data is in pieces, our

step could be verbose, for example, a user registration feature:
Feature: User registration
In order to shop in ABC online shop
As a user
I should be able to register an account through
registration page

 Scenario: register with valid information
 When I am on the registration page of ABC online shop
 And I fill the "Full Name" form with "Wayne Ye"
 And I fill the "Address" form with "123 Main Street"
 And I fill the "Email" form with "admin@wayenye.com"
 And I fill the "Password" form with "asdf"
 Then I should be redirected to registration success page

2. Luckily, Gherkin provides a data table to deal with these kinds of scenarios. The data
table gives you a way to extend a Gherkin step beyond a single line to include a larger
piece of data. The preceding example can be easily and gracefully described as follows:
Feature: User registration
In order to shop in ABC online shop
As a user
I should be able to register an account through registration page

 Scenario: register with valid information
 When I am on the registration page of ABC online shop
 And I fill the form with the following value
 | Full Name| Address | Email | Password
|

 | Wayne Ye | No 12 Pt Street| admin@wayenye.com |asdf|
 Then I should be redirected to registration success
 page

3. Much greater readability and maintainability! The preceding data table contains
column headers to specify each field, and sometimes it can also be used without
headers, for example, when it represents a list of data.
Scenario: instance messenger online
 When I log into ABC social website
 And I open up the IM tab
 Then I should see my online friends
 | Mark |
 | Sean |
 | Shelly |
 | Wendy |

mailto:admin@wayenye.com

Instant Cucumber BDD How-to

41

Using a scenario outline
1. Consider a number of scenarios. They require similar steps as a part of them; the

difference is different input values. Typically, a registration validation scenario is a
good example:
Background:
 When I am on the registration page

Scenario: user registration
 When I fill "email" field with ""
 And I press "Register" button
 Then I should see error message "Email cannot be blank"
 When I fill "email" field with "wayne"
 And I press "Register" button
 Then I should see error message "Please input valid
 Email address"
 And I fill "password" field with ""
 And I press "Register" button
 Then I should see error message "Password cannot be
 blank"
 And I fill "password" field with "asdf"
 And I press "Register" button
 Then I should see error message "Password is too short"

2. Ouch! A registration in the real world is definitely more complex than this one!
The preceding scenario looks so ugly; the right way is to adopt Gherkin's
Scenario Outline:
Scenario Outline: user registration
 When I fill "<field_name>" field with "<value>"
 And I press "Register" button
 Then I should see error message "<error_message>"

Examples:
 |field_name| value | error_message |
 | Email | | Email cannot be blank |
 | Email | wayne | Please input valid Email
 address |
 | Email |admin@wayne.com| Email has already been
 taken |
 | Password | | Password cannot be blank |
 | Password | asdf | Password is too short |

www.allitebooks.com

http://www.allitebooks.org

Instant Cucumber BDD How-to

42

By utilizing Scenario Outline, the feature looks clean and easy, and it refrains from writing
duplicate steps. Additionally, we can quickly find out missed cases because of its tidy text. For
example, in the previous case, we can easily point out that we lack the maximum length check
for both the e-mail and password.

Doc strings
1. Sometimes we have a string with a new line in the step; in this scenario we can

use Gherkin Dot Strings to represent the long string. Typically a step with account
activation e-mail content is as follows:
Scenario: User registration
 When the user clicks "Register"
 Then an Email should be sent out with content:
"""
Dear customer,
Thank you for registering at ABC website!
Please click the following link to activate your account!
http://foo-web.com/user/wayne/activation
"""

2. In the implementation step, the string content will be passed in as
Cucumber::Ast::Docstring:
Then /^an Email should be sent out with content:$/ do |string|
 p string.class # Cucumber::Ast::DocString
 p string
 # "Dear customer,\nThank you for registering at ABC
 website!\nPlease click the following link to activate
 your account!\nhttp://foo-web.com/user/wayne/activation"
end

There's more…
There are two extra tips for organizing Cucumber features and writing better features.

Using tags
Gherkin allows you to add meaningful tags, for example:

 f Mark important, minimum marketable features as @important or @MMV

 f Mark features that require logging into the system as @require_login

 f Mark work in progress features as @todo or @wip

Tag(s) can be applied to features or scenarios; scenarios, scenario outlines, or examples will
inherit any tags that exist on the containing feature.

Instant Cucumber BDD How-to

43

Tag(s) are pretty useful and provide many benefits. For example, they can help in organizing
and filtering features:

 f We can specify Cucumber to run all features marked as @mandatory:
$ cucumber --tags @mandatory

 f We can specify Cucumber to run all features except @todo ones:
$ cucumber --tags ~@todo

 f We can specify Cucumber to run all @finished and @integration features:
$ cucumber --tags @finished --tags @integration

 f We can specify Cucumber to run features with a maximum number limit. The
preceding command demonstrates both the ORing tags and the tag limits:
$ cucumber --tags @dev:4,@qa:6

Cucumber will fail if there are more than four @dev features or more than six @qa features,
even if all the features passed. This tip will be pretty useful in the Kanban development
methodology (a scheduling system invented by Toyota for the Lean and Just-in-Time
productions) because we want to limit the number of Working in Progress features.

Apply tag logic by using hooks. We can add a block of Ruby code before/around/after a
specific tag. This is massively useful, for example, because we can implement login logic
before all features/scenarios marked with a @require_login tag:

Before('@require_login') do
 # Put login logic here
end
After('@require_login') do
 # Perform logout logic
end

When we run the @require_login tag, the login logic hook will be executed automatically.
Here it just demonstrates the tagged hooks. There are also scenario hooks, step hooks, and
global hooks.

Imperative steps versus declarative steps
Do you remember in the beginning of the previous recipe, we wrote a Gherkin feature for the
first story:

Feature: Write blog
As a blog owner
I can write new blog post
 Scenario: Write blog
 Given I am on the blog homepage

Instant Cucumber BDD How-to

44

 When I click "New Post" link
 And I fill "My first blog" as Title
 And I fill "Test content" as content
 And I click "Post" button
 Then I should see the blog I just posted

Every step in this feature is granular; it describes each action used. Steps like these are called
imperative steps (or communicative); as a comparison, another pattern of writing Gherkin
is declarative (or informative), which suggests describing the user story over recording the
user's actions.

For example, writing the previous feature in the declarative style will be as follows:

Feature: Write blog
As a blog owner
I can write new blog post

 Scenario: Write blog
 Given I am on the blog homepage
 When I write a new blog post
 Then I should see the blog I just posted

A declarative step usually hides more details and provides better readability for business
people. Many people prefer declarative steps over imperative steps since imperative steps
could be brittle because they are usually tightly coupled with UI or a serial of business logic,
whereas both of them could be changed as per the requirement.

In the older version of Cucumber, there used to be a web_steps.
rb generated under the step_definitions directory every time
Cucumber got installed. However, to avoid people writing imperative
steps, Aslak Hellesøy (the co-author of Cucumber) removed it. His original
statement is as follows:
"The reason behind this is that the steps defined in web_steps.rb leads
people to write scenarios of a very imperative nature that are hard to
read and hard to maintain. Cucumber scenarios should not be a series of
steps that describe what a user clicks. Instead, they should express what
a user does."

However, an imperative step is not always bad. Using imperative steps in some cases is more
appropriate and natural than declarative steps. It is usually simple to read and understand, so
the suggestion here is trying to write declarative steps but using imperative steps whenever
the need arises.

Instant Cucumber BDD How-to

45

Mastering pro tips for writing good steps
(Advanced)

In this recipe, will cover various kinds of tips for writing good, maintainable, and DRY
Cucumber steps.

Getting ready
We will reuse the Rails application cucumber_bdd_how_to that we've created in the Writing
your first Hello World feature (Simple) recipe, so please cd into that directory to get prepared.

How to do it...
In the following sections, a number of useful step tips will be introduced and
covered exhaustively.

Flexible pluralization
1. Let's imagine that we need to write a step that contains a singular or plural noun

depending on its count:
When the user has 1 gift
...
When the user has 5 gifts
...

2. Instead of implementing two similar step definitions, we can adopt a tip in Cucumber
called Flexible Pluralization; the step to match the preceding steps is as follows:
When /^the user has (\d+) gifts?$/ do |num|
 p num.to_i
end

3. Notice the ? (question mark) appended to gifts; it means match zero or more
of the proceeding character, and so the step definition will match both gift
and gifts.

Non-capturing groups
1. Sometimes the plural of a noun is irregular, such as person/people, knife/knives.

We cannot match them through flexible pluralization, and for these scenarios we
need to adopt non-capturing groups, because Cucumber's step statements are
eventually treated as regular expressions:
When there is 1 person in the meeting room
When there are 8 people in the meeting room

Instant Cucumber BDD How-to

46

2. We can define our step as follows:
When /^there (?:is|are) (\d+) (?:person|people) in the
meeting room$/ do |num|
 p num.to_i
end

3. By adding a ?: before a normal group, the step will try to match one occurrence of
the given word and will not pass the matched value into arguments. Non-capturing
groups ensure Gherkin's good readability when dealing with singulars and plurals,
and in a DRY manner since one generic step matches various kinds of styles.

Step argument transforms (transform wisdom)
1. Manually converting a parameter to an integer all the time would be really annoying!

We are able to define a step argument transform rule within a step definition file that
can be used by other steps:
Transform /^(-?\d+)$/ do |num|
 num.to_i
end

2. The argument transform also supports tables! For example, we have a feature with
table input as follows:
Given this Qatar billionaire has 39 billion
And his wealth consists of the following major parts
 | Domain | Worth |
 | Oil | 21 |
 | Real Estate | 8 |
 | Financial | 6 |
 | Cargo | 4 |

3. We can then define a transform step to convert the table input into any data we want:
Transform /^table:domain,worth/ do |table|
 table.map_headers! { |header| header.downcase.to_sym }
 table.map_column!(:domain)
 { |domain| Domain.parse(domain) }
 table.map_column!(:worth) { |worth| "$#{worth}" }
 table
end

If you want to make the argument transform rule global, create a Ruby
file under /step_definitions/support/transform_rules.rb,
and put the argument transform step inside it.

Instant Cucumber BDD How-to

47

Defining the methods and extending "World"
1. We can define a number of common use methods under the features/support

directory, for example creating a current_user method and putting it under
features/support/current_user.rb:
def current_user
 # Code to mock a current user object
end

2. We can also utilize Cucumber's World interface to mix in customized modules, for
example, we can define an add_headers method:
module CapybaraHeadersHelper
 def add_headers(headers)
 headers.each do |name, value|
 page.driver.browser.header(name, value)
 end
 end
end
World(CapybaraHeadersHelper)

3. This means that in our step definition we can invoke the add_headers method from
the CapybaraHeadersHelper module to add a customized HTTP header when
requesting web pages during a test.

Compound steps
Methods can be reused, and so can steps! This is a widely used tip for writing good and DRY
Cucumber steps, known as compound steps.

1. Considering a website provider's ability to log in with third-party accounts such as
Facebook, Google, or OpenID, the feature can be described as follows:
Feature: Login with 3rd party account
As a website user
I can login with 3rd party account
So that I don't have to register a new account

 Scenario: Login with Facebook account
 Given user landed at login page
 And he choose login with Facebook
 Then he should see the Facebook authorization window

 Scenario: Login with Google account
 Given user landed at login page
 And he choose login with Google

Instant Cucumber BDD How-to

48

 Then he should see the Google authorization window

 Scenario: Login with OpenID account
 Given user landed at login page
 And he choose login with OpenID
 Then he should see the OpenID login window

2. The step user choose login with ** can be implemented using the DRY
principle as follows:
Given /^he choose login with (.*)$/ do |account_provider|
 step %{user clicks on the #{account_provider} logo}
 step %{login with #{account_provider}}
end

Given /^user clicks on the (.*) logo$/ do
|account_provider|
 # DOM operation to trigger clicking on the related logo
end
Given /^login with (.*)$/ do |account_provider|
 # Implement OAuth login per given 3rd party account
end

Unanchored steps
1. In each step's definition, most of the time, the step starts with ^ and ends with $. It

looks as follows:
Given /^user landed at login page$/ do
end

2. Both ^ and $ are called "anchors". The preceding step uses ^ and $ to match the
string user landed at login page exactly; then we could probably employ
"unanchored steps" as follows:
Then /^wait (\d+) seconds?/ do |seconds|
 sleep(seconds.to_i)
end

3. Note at the end of the match we use a question mark, ?, to match the flexible
pluralization instead of $, which means all steps containing "wait for x second(s)"
will be matched by the preceding step definition, for example:
When I wait 5 seconds after the certificate has been
downloaded
When I wait 4 seconds until the loading animation
finished

Instant Cucumber BDD How-to

49

There's more…
Other than the preceding technical tips, the last one, and also the most important tip, is to
keep your steps organized!

Be organized
All the preceding tips are targeted at writing maintainable and DRY Cucumber steps. The last
tip is to keep Cucumber steps organized, which is kind of a "soft" skill, even though it might
be the most important! Categorizing features and step definition files, using tags or hooks,
using Rake tasks to encapsulate common running features, and so on; these "rules" are
unobtrusive but really important to keep the Cucumber tests maintainable and make daily
BDD development life easier.

Using third-party libraries with Cucumber
(Intermediate)

This recipe will introduce a number of awesome third-party libraries used in line with
Cucumber; each of them dominates a specific field, and all of them are widely used.

Getting ready
We will be re-using the example project that we created in the Building a real web application
with Cucumber (Intermediate) recipe, and do some refactoring based on it, so that it is clear
to see the differences.

How to do it…
1. Before we get started, please cd to the blog directory and open the Gemfile.

2. Make sure the following Ruby gems exist and are installed:
gem 'cucumber'
group :development do
 gem 'guard-spork'
 gem 'guard-cucumber'
end

group :test do
 gem 'rspec-rails'
 gem 'cucumber-rails', require => false
 gem 'capybara'
 gem 'launchy'
 gem 'database_cleaner'

Instant Cucumber BDD How-to

50

 gem 'factory_girl_rails', "~> 4.0"
 gem 'webmock'
 gem 'pickle'
 gem 'spork-rails'
end

How it works…
In the following sections, a number of useful Ruby gems will be introduced and
covered in detail.

Factory_Girl
Factory_Girl is a fabulous tool that helps you create and build Ruby objects/data for tests. It
provides a simple and straightforward syntax to create objects, and it also supports a number
of build mechanisms (saved instances, unsaved instances, attribute hashes, and stubbed
objects), and it can gracefully build associate objects.

Remember in the Building a real web application with Cucumber (Intermediate) recipe we
wrote a step to prepare a Post object? Using Factory_Girl, we can do it in a better way:

1. Create a factories.rb under the spec directory with the following content:
FactoryGirl.define do
 factory :post do
 title 'Test title'
 content 'Test content'
 post_time Time.now
 end
end

2. And in the step definition we can write:
Given /^there is a post titled with "(.*?)" and content
with "(.*?)"$/ do |title, content|
 FactoryGirl.create(:post, title: title,
 content: content)
end

Factory_Girl is good at building associated objects. In the Building a real web
application with Cucumber (Intermediate) recipe, we wrote two steps to prepare
one blog post containing comment(s). If we were using Factory_Girl, it would
be easier.

Instant Cucumber BDD How-to

51

3. We can update our factories.rb as follows:
FactoryGirl.define do
 factory :post do
 title 'Test title'
 content 'Test content'
 post_time Time.now

 factory :post_with_comments do
 ignore do
 comments_count 5
 end

 after(:create) do |post, evaluator|
 FactoryGirl.create_list(:comment,
 evaluator.comments_count, post: post)
 end
 end
 end

 factory :comment do
 name "Wayne"
 email "admin@wayneye.com"
 content "Test comment content"
 end
end

4. We can revise our Gherkin as follows:
Given there is a post with 1 comment

5. We can revise our step definition as follows:
Given /^there is a post with (\d) comment$/ do |comments_count|
 @post = FactoryGirl .create(:post_with_comments,
 comments_count: comments_count.to_i)
end

The functionalities of Factory_Girl are far more than we demonstrated previously. You can
take a look at a brief Getting Started tutorial for Factory_Girl on the GitHub page (https://
github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md).
Whenever we need prepare data for testing, Factory_Girl is our friend!

Alternatives to Factory_Girl are Machinist, Fabrication, and so on.

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md

Instant Cucumber BDD How-to

52

Pickle
Pickle collaborates with the object created/built from Factory_Girl (or Machinist, Fabrication,
or ActiveRecord objects) and generates many useful steps to help us write Cucumber easily
and efficiently as follows:

1. Firstly we bootstrap Pickle to our project:
$ rails generate pickle --path

2. This will generate step definition files and paths.rb. The following screenshot shows
the generation of pickle steps:

3. Remember in the Building a real web application with Cucumber (Intermediate)
recipe when we prepared a post object, we wrote a Gherkin step and implemented
it ourselves:
Given there is a post titled with "Dummy post" and
content with "Dummy content"

4. Now if we use Pickle, the step definition is already there! We can write our Gherkin
step in the following style:
Given a post exists with title: "Dummy post",
content: "Dummy content"

5. And we visit a URL inside the step definition, which is hard to maintain as the
project gets larger. A recommended way to do this is to centralize all URLs/paths
in features/support/paths.rb, with Pickle's support, so we can rewrite the
Gherkin step as follows:
When I am on the post's page

6. We update edit_blog_steps.rb and paths.rb respectively:
edit_blog_steps.rb:
When /^I am on the post's page$/ do
 visit(path_to "the edit page for post")
end
paths.rb:
when /^the edit page for #{capture_model}$/
 polymorphic_path(model!($1), :action => "edit")

Instant Cucumber BDD How-to

53

As you can see, by using Pickle we can improve our productivity to a new level, and its
predefined steps can satisfy the significant scenarios we need when writing Cucumber tests.
This saves a huge amount of time for us!

WebMock
When we write functional tests, it is common we don't really want a real network transaction,
we do want to isolate the network requests so that we can focus more on testing the business
logic of the module we are testing; in the meantime, some web APIs have invocation limits;
we don't want to burn the limits out by our tests.

WebMock is the tool to help! It stubs at a low HTTP client lib level, and it supports many
popular Ruby HTTP libraries such as Net::HTTP, Patron, and Typhoeus.

For using WebMock with Cucumber, we need require in the features/support/env.rb:

require 'webmock/cucumber'

 f For example, we expect our code to navigate a website, www.abc.com, and we
expect it to return the content we want. We can stub the request as follows:
stub_request(:get, "www.abc.com").to_return
(:body => "My expected content")

 f For another example, we expect our code to submit an HTTP POST request with the
expected body to a third-party website. As long as the POST request is submitted with
the correct content, the rest of the stuff belongs to a third party. Thus we can stub
this request:
stub_request(:post, "www.abc.com").with(:body => "My
expected content", :header => "Content-Type:
application/json")

Another example is that we expect our code to communicate with the GitHubOAuth API and
acquire the user's authorization. We need to behave differently according to the user's choice.
Using WebMock, we can simulate the OAuth process as follows:

1. Assume we've written the OAuth feature as follows:
Feature: OAuth with Github
In order to provide easy registration and login
As a web application
I want submit OAuth request to Github and acquire user's
authorization

 Scenario: User accept to authorize
 Given the user landing on homepage
 When the user clicks "Github" icon within
 "Registration" area
 Then the user should see GithubOAuth page

http://www.abc.com

Instant Cucumber BDD How-to

54

 When the user enter user email and password correctly
 And the user clicks "Authorize App"
 Then the user should be on registration success page
 And I can get user's name on Github
 And I can get the user's repositories on Github

2. We can simulate the OAuth process by writing a code similar to the following
code snippet:
stub_request(:POST,
"https://github.com/login/oauth/access_token").with
("client_id={client_id}&client_secret={secret}
&code={code}").to_return("access_token={token}
&token_type=bearer")stub_request
(:GET, "https://api.github.com/users/wayneye").with
(:headers => 'Authorization: token
{fake_token}').and_return('"name": "Wayne Ye",
"public_repos": 9, "company": "ThoughtWorks"')

3. What the preceding code does is simulate GitHub to return a valid access_token,
so that we can use this fake token to invoke GitHub's API, and the data from the API
is also mocked!

Using WebMock, we can stub any real network connection to ensure our code
behaves as expected without relying on an active connection. If we do want to test
a real network transaction, we can temporarily enable a real network connection by
WebMock.allow_net_connect!

Alternatives to WebMock are Fake Web, Stale Fish, and so on.

Spork and Guard
Spork is a very cool and handy gem, which has two major advantages:

 f It hosts a Distributed Ruby (DRb) server and pre-loads the Rails environment into the
server instance. After that, all further running tests can communicate with the DRb
server. Thus there is no need to reload the Rails environment every time! Much faster
than the common way!

 f It forks (using Kernel.fork) a copy of the server each time we run our tests, thus
ensuring a clean state between each other.

 f We can run spork cucumber –bootstrap in the terminal to enable Spork for
our project.

The first step in running spork cucumber –bootstrap in the terminal is as follows:

$ spork cucumber --bootstrap

Instant Cucumber BDD How-to

55

Spork will update the features/support/env.rb file with guidance for us to modify.
Usually one thing we need to do is move the existing code inside env.rb to the Spork.
prefork block. After that we can run spork in the terminal to start the DRb server. The
following screenshot shows the starting of Spork:

With Spork running, we can now run our Cucumber features by passing a --drb option:

$ bundle exec cucumber --drb features/*.features

Cucumber will try to communicate with the local DRb server. It can be imagined as running
against a copy of the pre-loaded server and won't load the Rails environment any more, so it
would run much faster!

Guard is another very cool gem. It monitors the file you are editing, and as soon as you save
the file, the related events will be triggered based on the configuration in Guardfile, and then
Cucumber tests will respond and run! For example, if it sees that Gemfile has been changed,
it will trigger the bundle install command immediately; if you modify a Cucumber feature,
it will automatically run (rerun) this feature. Using Guard in line with Spork will give you an
awesome BDD experience!

We can run the following command in a terminal to initialize the guard file with Spork and
Cucumber supported:

$ guard init spork&& guard init cucumber

Guardfile basically defines two event handlers to handle the change event of the files passed
to the watch method as follows:

1. When we open up the Guardfile, we should see the content similar to the one
that follows. One important point is that we need to ensure we pass --drb for
running Cucumber.
A sample Guardfile
More info at https://github.com/guard/guard#readme

guard 'spork', :cucumber_env => { 'RAILS_ENV' => 'test' }, :rspec_
env => { 'RAILS_ENV' => 'test' }, :rspec => false,:cucumber =>
true, :test_unit => false do

Instant Cucumber BDD How-to

56

 watch('config/application.rb')
 watch('config/environment.rb')
 watch('config/environments/test.rb')
 watch(%r{^config/initializers/.+\.rb$})
 watch('Gemfile')
 watch('Gemfile.lock')
 watch('spec/spec_helper.rb') { :rspec }
 watch('test/test_helper.rb') { :test_unit }
 watch(%r{features/support/}) { :cucumber }
end

guard 'cucumber', :cli => '-c --drb' do
 watch(%r{^features/.+\.feature$})
 watch(%r{^features/support/.+$}) { 'features' }
 watch(%r{^features/step_definitions/(.+)_steps\.rb$}) { |m|
Dir[File.join("**/#{m[1]}.feature")][0] || 'features' }
end

2. Now we can start Guard in the terminal as follows:

Instant Cucumber BDD How-to

57

3. Any further changes on the files that are monitored by Guard will trigger a related
response by Guard. The following screenshot is of Guard monitoring:

Thank you for buying
Instant Cucumber BDD How-to

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ruby on Rails Web Mashup
Projects
ISBN: 978-1-84719-393-3 Paperback: 272 pages

A step-by-step tutorial to building web mashups

1. Learn about web mashup applications and
mashup plug-ins

2. Create practical real-life web mashup projects
step by step

3. Access and mash up many different APIs with
Ruby and Ruby on Rails

Building Dynamic Web 2.0
Websites with Ruby on Rails
ISBN: 978-1-84719-341-4 Paperback: 232 pages

Create database-driven dynamic websites with this
open-source web application framework

1. Create a complete Web 2.0 application with Ruby
on Rails

2. Learn rapid web development

3. Enhance your user interface with AJAX

Please check www.PacktPub.com for information on our titles

Ruby on Rails Enterprise
Application Development:
Plan, Program, Extend
ISBN: 978-1-84719-085-7 Paperback: 528 pages

Building a complete Ruby on Rails business application
from start to finish

1. Create a non-trivial, business-focused Rails
application

2. Solve the real-world problems of developing
and deploying Rails applications in a business
environment

3. Apply the principles behind Rails development to
practical real-world situations

Cloning Internet Applications
with Ruby
ISBN: 978-1-84951-106-3 Paperback: 336 pages

Make your own TinyURL, Twitter, Flickr, or Facebook
using Ruby

1. Build your own custom social networking, URL
shortening, and photo sharing websites using
Ruby

2. Deploy and launch your custom high-end web
applications

3. Learn what makes popular social networking sites
such as Twitter and Facebook tick

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Cucumber BDD How-to
	Understanding behavior-driven development (Intermediate)
	Setting up an environment for Cucumber BDD on Rails (Intermediate)
	Writing your first Hello World feature (Simple)
	Learning foundation knowledge and skills (Intermediate)
	Building a real web application with Cucumber (Intermediate)
	Mastering pro tips for writing expressive Gherkin (Intermediate)
	Mastering pro tips for writing good steps (Advanced)
	Using third-party libraries with Cucumber (Intermediate)

