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Introduction 

I wrote this little book to help teach LISP to students in a course on data structures. 
Consequently, it contains a careful description of the data structures manipulated by 
LISP functions. LISP centrally depends on a linked-list data structure, which is one of 
the landmark features popularized, if not introduced, with the advent of LISP. This data 
structure and others, notably hash tables, are also used in constructing a LISP interpreter.

This book is intended to achieve several purposes. First, it is intended to be 
a gentle, but precise, introduction to the LISP language; second, it is intended to 
present a nontrivial LISP interpreter written in C that presents several “lessons” about 
programming in general and interpreter writing in particular; third, it is intended to 
introduce a bit of the “flavor” of programming in LISP, which is quite different in some 
ways from programming in a procedural language like C, where programs are built 
statement by statement. And all of this is to be done in a short space without copious, and 
possibly tedious, elaboration. This book is not intended to prepare the reader for using a 
particular LISP system, rather the focus is on the cultural contribution that LISP has made 
to the discipline of programming.

The study of LISP, coupled with the study of a LISP interpreter intended for 
exhibition, is of special interest to students in the areas of programming languages 
and computer architecture as well as data structures. Indeed, this book will be useful 
to students in all areas of computer science, as well as for autodidacts, professional 
programmers, and computer enthusiasts in a wide variety of fields. Although some 
“programming maturity” is assumed, the preserving reader can progress by developing 
such a foundation by means of parallel study and practice.

With parallel study, this book is intended to be accessible for a wide range of 
interested readers from high school students through professional programmers. I would 
very much like to see students use this book to help them understand LISP and how a 
LISP interpreter is crafted, and thus understand the concepts involved in building an 
interpreter for any language. The best way to proceed is to compile and run the C LISP 
interpreter, and then experiment by modifying it in various ways. I hope this book can 
help all who use it to develop an aesthetic appreciation of this elegant programming 
language. 

And finally, since the LISP Interpreter C program provided in this book is a nontrivial 
program requiring careful study to understand it, this book, along with a book on 
C, should also be of use in learning or relearning the marvelous “Swiss army knife” 
programming of language C.
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CHAPTER 1

LISP

LISP is an interesting programming language, and the ideas involved in building a LISP 
interpreter are equally interesting [McC79]. This book contains an introduction to LISP 
and it also contains the data structure details and the explicit code for a working LISP 
interpreter.

LISP is a programming language with unique features. It is conceptually interactive. 
Input commands are given one by one and the associated result values are printed out. 
LISP is an applicative language, meaning that it consists mainly of functional application 
commands. Besides functional application, there are forms of assignment commands 
and conditional commands written in functional form. In general, iteration is replaced by 
recursion.

The data values on which a LISP function may operate includes real numbers. Thus, 
an expression like 1.5 + 2 is a LISP statement, which means: type out the result of applying 
+ to the arguments 1.5 and 2. In LISP, function application statements are always written in 
prefix form, for example, +(1.5, 2). Moreover, rather than writing f (x, y) to indicate the result 
of the function f applied to the arguments x and y, we write (f x y) in LISP, so (+ 1.5 2)  
is the LISP form for 1.5 + 2. Finally, functions in LISP are usually specified by identifier 
names rather than special symbols. Thus the correct way to compute 1.5 + 2 in LISP is 
to enter the expression (PLUS 1.5 2), which will, indeed, cause 3.5 to be printed out. An 
expression such as (PLUS 1.5 2) is called a function call expression. LISP functions can 
also operate on lists of objects; indeed the acronym LISP is derived from the phrase LISt 
Processing.

LISP is commonly implemented with an interpreter program called the LISP 
Interpreter. This program reads LISP expressions that are entered as input and evaluates 
them and prints out the results. Some expressions specify that state-changing side-effects 
also occur. We shall describe below how a particular LISP interpreter is constructed at the 
same time that LISP itself is described.

There are a variety of dialects of LISP, including extended forms, which have 
enriched collections of functions and additional datatypes. We shall focus on the 
common core of LISP, but some definitions given here are not universal, and in a few 
cases they are unique to the version of LISP presented herein (GOVOL). The GOVOL 
dialect of LISP presented here is similar to the original LISP 1.5 [MIT62]; it is not as 
complex as the current most frequently used varieties of LISP, but it contains all the 
essential features of these more complex varieties, so that what you learn in this book will 
be immediately applicable for virtually every LISP dialect. (Look up the programming 
language Jovial to learn the meaning of GOVOL.) 
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CHAPTER 2

The Atom Table and the 
Number Table

The LISP Interpreter program maintains several general data structures. The first data 
structure is a symbol table with an entry for every named data object. These named data 
objects are called ordinary atoms, and the symbol table of ordinary atoms is called the 
atom table. (The term atom is historical; that is the term John McCarthy, the designer of 
LISP [McC60][MIT62], used.) The atom table is conceptually of the following form:

The atom table has n entries, where n is some reasonably large value that is 
unspecified for now. Each entry in the atom table has a name field, which holds the 
atom name, for example: "PLUS" or "AXY". Each entry also has a value field for holding 
the current value of the atom and an associated type field, which is an integer code that 
specifies the datatype of the value of the atom. For example, the value of the atom "PLUS" 
is a built-in function, which is classified by the integer typecode 10. Each atom table entry 
also has a plist field and a bindlist field, which I will discuss later. (A field is just a term 
for a sequence of bits wherein a binary value can be stored; usually such bit fields are 
not complete computer “words.” Of course a binary value includes everything dealt with 
within a computer.)

The second data structure is a simple table called the number table in which floating-
point numbers are stored. Every input number and every computed number is stored 
in the number table, at least for the period of time it is required to be there. The number 
table is conceptually of the following form:
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Since the floating-point numbers include a large complement of integers, there is  
no (immediate) reason, except, perhaps, for speed, to have integers provided in LISP as  
a separate datatype.

Exercise 2.1: Precisely specify the set of integers that are 
expressible in floating-point format on some computer with 
which you are familiar.

Exercise 2.2: Is there a good reason that the atom table and 
the number table have the same number of entries?

Solution 2.2: No, there is no good reason for this. It can be 
easily changed if desired. 

The datatype codes are:

These datatypes are exactly the datatypes available in the version of LISP discussed 
here. The reason for the seemingly peculiar type codes will be apparent later; they are 
chosen so that the individual binary digits have useful meanings.

Do not assume that the LISP interpreter looks up atom table or number table entries 
by searching the appropriate table linearly from top to bottom; it is acceptable to imagine 
this is the case for now, but you will later see that there are faster ways to do such look ups.
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There are two kinds of atoms in LISP. All atoms occur in either the atom table or the 
number table; ordinary atoms are entries in the atom table, and number atoms are entries 
in the number table.

An ordinary atom is like a variable in FORTRAN. It has a name and a value. The 
name is a character string that is kept for printing and input matching purposes. The 
value of an ordinary atom is a value of one of the types listed above. A number atom, 
which represents a real constant, also has a value; this value is the floating-point bitstring 
representing the number. The value of a number atom cannot be changed; a number 
atom is thus a constant.

An ordinary atom whose value is undefined is created in the atom table whenever 
a previously unknown name occurs in a LISP input statement. An ordinary atom whose 
value is undefined has an arbitrary bit pattern in its value field and the typecode 1 in its 
type field.

An ordinary-atom-valued ordinary atom in entry i of the atom table holds an index 
j of an atom table entry in its value field; the value of the entry i atom is then the entry j 
atom. The typecode in the type field of such an ordinary-atom-valued ordinary atom is 8.

A number-valued ordinary atom A in entry i of the atom table holds an index j of a 
number table entry in its value field. Entry j in the number table is where the number 
atom representing the number value of the ordinary atom A is stored. The type field of 
entry i in the atom table holds the typecode 9.

A number atom is created in the number table whenever a number that is not 
already present in the number table occurs in the input or is computed. Each distinct 
number in the number table occurs in one and only one entry. Similarly, an ordinary 
atom is created in the atom table whenever an ordinary atom occurs in the input or 
is otherwise generated, which is not already present in the atom table. Each distinct 
ordinary atom in the atom table is stored uniquely in one and only one entry.

An atom may be its own value! In particular, this is always the case for a number 
atom, which is always made to appear to have itself as its value in the sense that the result 
of evaluating the number atom named n is the corresponding floating-point bitstring, 
which is represented lexically and printed out as the identical name n or a synonym 
thereof. Since number atoms are constants, their names and values are consistently 
confused in this fashion. Note that a number atom has many synonymous names, for 
example, “1”, “1.0”, and “1.” are all names of the same value.

Numeric constant names are strings of one or more digits with an optional 
embedded decimal point and an optional initial minus sign. Ordinary atom names 
are strings that do not contain an open parenthesis, a close parenthesis, a blank, an 
apostrophe, or a period and do not have an initial part consisting of a numeric constant 
name. (A blank character is also called a space character.)

As mentioned earlier, it is convenient to identify numbers with their corresponding 
number names.

Exercise 2.3: Which of the strings A, ABcd, ++, A-3, -, B'C, and 3X 
are ordinary atom names?

Solution 2.3: All of them are ordinary atom names, except B'C 
and 3X.
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An ordinary atom can be assigned a value by means of an assignment operator 
called SETQ, which is provided in LISP. For example (SETQ A 3) makes the ordinary atom A 
a number-valued ordinary atom whose value is 3; any previous value of A is lost. The value 
of A after the assignment is the result value of the expression (SETQ A 3) and this value is 
duly printed out when the expression (SETQ A 3) is entered as a command. We perhaps 
should say that (SETQ A 3) makes A a number-valued ordinary atom whose value is the 
number named by 3. However, as mentioned earlier, it is convenient to downplay this 
distinction. We are protected from abusing number names, since LISP refuses to honor 
input such as (SETQ 3 4).

A function can be defined formally as a set of ordered pairs O; this is the usual 
means by which set theory is made to serve as a basis for mathematics in general. The 
set of elements D that constitute the first-component values is called the domain of the 
function, and the set of elements R that constitute the second-component values is called 
the range of the function. The domain is the set of possible input values and the range 
is the set of possible output values. These domain and range elements can be whatever 
is desired, including k-tuple objects; however, if (a, b) is a pair of the function O with 
domain D and range R, so that a Î D and b Î R, then no pair of the form (a, c), with c ≠ b, 
is a member of the set of ordered pairs O representing the function. For example, the 
binary addition function is { ((x, y), z) | z = x + y }. The value of a function-valued atom is 
conceptually such a set of ordered pairs. Thus the ordinary atom PLUS is conceptually 
initialized to have the value { ((x, y), z) | z = x + y }.

Exercise 2.4: If O is a set of ordered pairs representing a 
function whose domain is D and whose range is R, does it 
follow that O = D × R?

Solution 2.4: Definitely not (except when the number of 
elements in R is 1).

Exercise 2.5: Does ((1, 2), 3) belong to the binary addition 
function? How about ((2, 1), 3) and ((2, 2), 3)? Is the binary 
addition function an infinite set?

Solution 2.5: Yes, yes, and no. Yes, the binary addition 
function is an infinite set.

Exercise 2.6: The set S whose elements are the ordered pairs 
of numbers appearing as the first components of the ordered 
pairs of the binary addition function is a set of ordered pairs. 
Is S a function?

All LISP computations are done by defining and applying various functions. There 
are two forms of functions in LISP: ordinary functions and special forms. A special form 
in LISP is just a function, except that the LISP evaluation rule is different for special forms and 
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functions. Arguments of functions are evaluated before the function is applied, while arguments 
of special forms are not further evaluated before the special form is applied. Thus the value 
of a special-form-valued atom is conceptually a set of ordered pairs just as is the value of 
a function-valued atom. We also need one descriptor bit to tell if such a set corresponds to 
a function or a special form. The typecode value incorporates this bit of information. It is 
important for LISP to “understand” both ordinary functions and special forms. For a hint as to 
why this is, note that SETQ is a special form.

Every input statement to LISP is an atom or an applicative expression (function call 
expression) that is to be evaluated, possibly with side-effects, and the resulting value is to 
be printed out.

There are a number of particular ordinary atoms initially present in the atom table. 
One such atom is NIL. NIL is an atom-valued atom whose value is itself NIL. Another atom 
initially present is T, which is an atom-valued atom whose value is itself T. One purpose 
of NIL is to stand for the Boolean value “false,” and T, of course, is intended to stand for 
the Boolean value “true.” (You might think F would be a better symbol for “false,” but John 
McCarthy was a minimalist.)

Exercise 2.7: Look up George Boole and read about Boolean 
algebra.

The names of all the built-in functions and special forms, such as PLUS, are the 
names of ordinary atoms that were initially established in the atom table with appropriate 
initialized values. The values of these ordinary atoms are conceptually ordered pairs, but 
in truth, the value field of an atom whose value is a built-in function or built-in special 
form is either ignored or is an integer code used to determine which function or special 
form is at hand.

Thus if "NIL" is entered into LISP, "NIL" is the output. Similarly if "T" is typed in, 
"T" is the output. If "PLUS" is typed in, an infinite set of ordered pairs should be printed 
out, but this is represented by printing out the name "PLUS" and the type of the value of 
"PLUS" in braces instead, such as: {builtin function:PLUS} 

Exercise 2.8: Would it be better to say that if "PLUS" is typed 
in, a finite set of ordered pairs is printed out? Explain why or 
why not. Hint: for any particular computer, the set of floating-
point numbers is finite.

As discussed earlier, numbers are entered in the number table as number atoms. 
The presented name is the symbol string of the number, and the value is the associated 
floating-point value. Only the value is stored in the number table, however. A suitable name 
is reconstructed whenever this name needs to be printed out. Thus, typing “3” into LISP 
results in “3” printing out, and a number atom with the value 3 is now in the number table.

If a previously unknown ordinary atom x is entered into LISP by typing its 
name, then “x is undefined” is printed out, and the atom x, with the typecode 1, and 
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an undefined value then exists in the atom table. If x is again entered as input, “x is 
undefined” is printed out again.

Exercise 2.9: What is the result of entering "(SETQ A 3)" and 
then "A"?

Solution 2.9: “3” and then “3” again. Also the number atom 
“3” is now entered in the number table in some row j, and the 
ordinary atom A is entered in the atom table in some row k of 
the form ["A", 9, j, −, −]. Note the value of A is a data object of 
type 9. The atom "A" itself is an ordinary atom, which would 
be described by the typecode 8 if it were to appear as the value 
of some other atom.
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CHAPTER 3

Evaluation

Let’s denote the value of an atom or function call expression, x, by v[x] from now on. 
The evaluation operator, v, defined here, is essentially embodied in the LISP Interpreter 
program.

When x is an ordinary atom, v[x] is the data object specified in the value field of the 
atom table entry for x. The type of this data object is given by the typecode in the type 
field of the atom x. When x is a number atom, v[x] = x.

Exercise 3.1: What is PLUS?

Solution 3.1: PLUS is an ordinary atom.

Exercise 3.2: What is v[PLUS]?

Solution 3.2: v[PLUS] is, conceptually, a set of ordered pairs. 
v[PLUS] is not an atom.

Exercise 3.3: What does the atom table entry for "PLUS"  
look like?

Solution 3.3: It is a row of the atom table of the form ["PLUS", 
10, α, −, −], where α is a private internal representation of the 
set of ordered pairs which is the value v[PLUS] described by 
the typecode 10.

Exercise 3.4: Why is v[NIL] = NIL?

Solution 3.4: Because the NIL entry in the atom table, say 
entry j, is initialized as: ["NIL", 8, j, −, −].

Exercise 3.5: What is v[3]?
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Exercise 3.6: What is v[ABC], where ABC has never been 
assigned a value by SETQ?

Solution 3.6: v[ABC] is undefined.

A function call expression ( f x y) is evaluated in LISP by evaluating  f, x, and y in order 
from left to right, that is, by computing v[ f ], v[x], and v[ y], and then producing the result 
of v[ f ] applied to the arguments (v[x], v[ y]). The value v[ f ] must be a function. Note x 
and/or y may also be function call expressions (as may f ), so this rule applies recursively.

A special-form call expression, such as (s x y), is evaluated in LISP by evaluating s, 
which must result in a special form, and then produce the result value of v[s] applied to 
the arguments (x, y). The only difference between a function application and a special 
form application is that the arguments of a function are evaluated before the function is 
applied, whereas a special form’s arguments are not preevaluated.

The analogous definitions for the value of general k-argument function call 
expressions and special form call expressions, of course, hold.

Exercise 3.7: Write a careful definition of v[( f x
1
 x

2
 . . . x

k
 )]  

where v[ f ] is a function and k ≥ 0; be sure to specify the order of 
evaluation. Do the same when v[ f ] is a special form.
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CHAPTER 4

Some Functions and  
Special Forms

We can now state a few built-in LISP functions and special forms. We do not describe the 
results obtained when “illegal” input of various kinds is evaluated. Such behavior varies 
according to the implementation of the LISP interpreter. Following is a list of special 
forms and functions in LISP:

•	 SETQ: special form with a side-effect

v[(SETQ x y)] = v[x], after v[x] is made equal to v[y] as an initial 
side-effect. x must be an ordinary atom, necessarily with a 
nonnumeric name. The type of the value of x is changed to be 
the type of v[y], with a special modification in the case where 
v[y] is an unnamed function or unnamed special form, which 
will be discussed later. Any previous value of the atom x is lost. 

Note that it is almost always equally correct to say that v[(SETQ 
x y)] = v[y], with the side-effect of assigning v[y] to be the 
value of the atom x.

•	 QUOTE: special form

v[(QUOTE x)] = x.

•	 PLUS: function

v[(PLUS n m)] = v[n] + v[m]. v[n] and v[m] must be numbers.

•	 DIFFERENCE: function

v[(DIFFERENCE n m)] = v[n] − v[m]. v[n] and v[m] must be 
numbers.
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•	 MINUS: function

v[(MINUS n)] = −v[n]. v[n] must be a number.

•	 TIMES: function

v[(TIMES n m)] = v[n] · v[m]. v[n] and v[m] must be numbers.

•	 QUOTIENT: function

v[(QUOTIENT n m)] = v[n]/v[m]. v[n] and v[m] must be 
numbers with v[m] ≠ 0.

•	 POWER: function

v[(POWER n m)] = v[n] ↑ v[m] where a ↑ b denotes  
‘a to the power b’, ab; v[n] and v[m] must be numbers such that 
if v[n] < 0 then v[m] is an integer.

•	 FLOOR: function

v[(FLOOR n)] = ⌊v[n]⌋, the greatest integer less than or equal to 
v[n]. v[n] must be a number.

•	 EVAL: function

v[(EVAL x)] = v[v[x]].

Exercise 4.1: Since v[(EVAL x)] = v[v[x]], why doesn’t  
(EVAL x) = v[x]?

Solution 4.1: Because the inverse of the evaluation operator v 
does not exist.

Exercise 4.2: Suppose the atom A has never been assigned a 
value via SETQ. What is v[(QUOTE A)]?  
What is v[A]?

Solution 4.2: v[(QUOTE A)] = A, but v[A] is undefined.  
Note v[v[(QUOTE A)]] = v[A], so v[(EVAL (QUOTE A))] = v[A]  
whether A has a defined value or not; EVAL acts as the  
left-inverse of QUOTE, or equivalently, QUOTE acts as  
the right-inverse of EVAL.
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Exercise 4.3: What is v[(PLUS (QUOTE 3) 2)]?

Solution 4.3: 5, since v[x] = x when x is a number.

Exercise 4.4: What does (SETQ T NIL) do?

Solution 4.4: NIL is the output, and the value of T is now 
changed to be NIL.

Most versions of LISP have ways of specifying that the value of an atom is constant 
and cannot be changed. We will not introduce this complication here, but obviously, it is 
perilous or worse to assign new values to important ordinary atoms like NIL.

Exercise 4.5: What is v[(SETQ (SETQ A T) (SETQ B NIL))]?

Solution 4.5: An error arises, since the first argument to the 
outer SETQ is not an ordinary atom. Remember, v[SETQ] is a 
special form.

Exercise 4.6: What does (SETQ P PLUS) do?

Solution 4.6: Now v[P] = v[PLUS], so now v[(P 2 3)] = 5. Also 
"{builtin function: P}" is printed out.

Exercise 4.7: What does (SETQ PLUS −1.) do?

Solution 4.7: The function value of PLUS is discarded, and 
now v[PLUS] = −1. Also −1 is printed out.

Note that SETQ is a special form, yet its second argument is evaluated. It is more 
correct to say that SETQ is passed its arguments, and then it performs the required 
computation, which entails computing the value of the supplied second argument. 
Thus special forms may selectively evaluate some or all of their arguments, but such 
evaluation, if any, is done after the arguments are passed to the special form.

Note that not all LISP functions are defined for all possible LISP data objects 
occurring as input. A function that does accept any input is called a total function. The 
function TIMES, for example, only accepts numbers as input. The function EVAL may 
appear to be a total function, but consider v[(EVAL PLUS)]. This is v[v[PLUS]], where 
v[PLUS] is a set of ordered pairs. But the v-operator value of a set of ordered pairs is not, 
thus far, defined. v[(EVAL (QUOTE PLUS))] is defined, however, and we can make LISP 
a little less persnickety by defining v[x] = x when x is a function or special form. We will 
adopt this extension henceforth. Then v[(EVAL PLUS)] = v[(EVAL (QUOTE PLUS))].
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Exercise 4.8: Even with the just introduced convention, EVAL 
is not a total function. Give an example of illegal input to EVAL.

Solution 4.8: The input A, where A is an atom whose value is 
undefined, is illegal input to EVAL. Later, when dotted-pairs are 
introduced, we will see that input like (3 . 5) is illegal also.

Exercise 4.9: What happens if "v[NIL]" is typed in to the LISP 
Interpreter?

Solution 4.9: An atom whose name is "v[NIL]" is specified 
and its value (which is probably undefined) is printed out. 
The v-operator is not a LISP function. It is the LISP Interpreter 
and hence is more properly called a meta-operator.

A predicate is a function whose result values are always the Boolean values true 
or false. In the case of LISP, the result value of a predicate is always either T or NIL. 
We identify functions as predicates merely for descriptive convenience. This explains 
the choice of the names NUMBERP and ZEROP defined below. Not every LISP predicate 
follows this naming convention, however; for example EQ, defined below, is a predicate. 
Following is a list of LISP predicates:

•	 EQ: predicate

v[(EQ x y)] = if v[x] = v[y] then T else NIL where v[x] and v[y] 
are atoms. Although, strictly, v[x] and v[y] must be atoms, 
nonatoms may well work in certain circumstances.

•	 NUMBERP: predicate

v[(NUMBERP x)] = if v[x] is a number then T else NIL.

•	 ZEROP: predicate

v[(ZEROP x)] = if v[x] = 0 then T else NIL.

Exercise 4.10: What is v[(EQ 2 (SETQ B 3))]?

Solution 4.10: NIL, and now v[B] = 3 due to the assignment 
side-effect.

Exercise 4.11: What is v[(EQ .33333 (QUOTIENT 1 3))]?

Solution 4.11: Probably NIL, since 1/3 ≠ .33333; but possibly 
T if the precision of floating-point numbers is less than 
6 decimal digits. All the usual vagaries of floating-point 
arithmetic are present in LISP.
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Exercise 4.12: What is v[(EQ (NUMBERP 0) (ZEROP 0))]?

Solution 4.12: T.

Exercise 4.13: Is EQ a total function?

Exercise 4.14: What is v[(ZEROP (PLUS 2 (MINUS 2)))]?

Solution 4.14:  It is T. Because v[(PLUS 2 (MINUS 2))] = v[2] + 
v[(MINUS 2)] = 2 + (−v[2]) = 2 + (−2) = 0.

Exercise 4.15: What is v[(EQ 0 NIL)]?

Solution 4.15: NIL.

Exercise 4.16: Why are capital letters used for ordinary atom 
names in this book?

Solution 4.16: Only for the sake of uniformity and tradition. 
Lowercase letters are perfectly acceptable within ordinary 
atom names, along with many special characters.
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CHAPTER 5

S-Expressions

LISP has built-in functions that deal with certain composite data objects constructed out 
of atoms. These data objects are called nonatomic S-expressions. They are binary trees 
whose terminal nodes are atoms. Some of these trees can be interpreted as lists, and these 
are a very popular form in LISP. Indeed, as mentioned earlier, LISP derives its name from 
the phrase “list processing.” Atoms and nonatomic S-expressions, taken together, form 
the class of data objects whose members are called S-expressions. The term S-expression is 
short for the phrase symbolic expression. Nonatomic S-expressions play the role of arrays 
in other programming languages.

The class of S-expressions is defined syntactically as follows. Every atom is an 
S-expression, and, if a and b are S-expressions, then the dotted-pair (a. b) is an 
S-expression. Mathematically speaking, a dotted-pair is merely an ordered pair. Note 
dotted-pairs must be enclosed in parentheses. The terms nonatomic S-expression and 
dotted-pair are synonymous.

Thus, for example, all the following expressions are S-expressions, and the last five 
are nonatomic S-expressions. (Note some of these S-expressions are, by themselves, legal 
LISP input and some are not.)

T
NIL
3
(1 . T)
((0 . .1) . NIL)
(((1 . 2) . (3 . 4)) . 5)
(PLUS . A)
(PLUS . (1 . (2 . NIL)))

Dots are not operators; dots and parentheses are merely used to give a concrete form 
to the abstract idea of dotted-pairs in exactly the same way that digit symbols are used to 
provide a concrete form for the abstract idea of integers. Dots and parentheses are used 
within dot notation in LISP parlance.

Exercise 5.1: Is (A . (B . C) . D) an S-expression?

Solution 5.1: No. Every dot must be used to form a dotted-pair, 
and every dotted-pair must be enclosed in parentheses.
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Exercise 5.2: How can dots be used as decimal points in 
numbers and also as the connectors in dotted-pairs without 
confusion?

Solution 5.2: Dots used as decimal points must appear 
immediately adjacent to one or two digit characters; a dot 
used as a dotted-pair connector must have one or more 
blanks intervening between it and a digit.

Exercise 5.3: How many S-expressions are there?

Solution 5.3: In any LISP program only a finite number of 
S-expressions arise, but conceptually, the set of S-expressions 
has an infinite number of members. In fact, the set of ordinary 
atoms, by itself, has an infinite number of members.

The special form QUOTE is used to specify constant S-expressions. A number,  
like 1.5, is a constant by virtue of the convention that it is self-referentially defined, so 
that v[1.5] = 1.5. However, the dotted-pair (T . NIL) or the atom A denote their values in 
most contexts, so if we wish to prevent such possibly foolish evaluations, we must write 
(QUOTE (T . NIL)) or (QUOTE A).

Exercise 5.4: What is v[(QUOTE 3)]?

Exercise 5.5: Suppose (SETQ A 3) is typed into the LISP 
Interpreter. Explain how the LISP Interpreter computes v[A] 
in the course of executing (SETQ A 3), that is, in the course of 
computing v[(SETQ A 3)]. Compare this with the evaluation 
of A that is required when A is entered as input. Construct a 
fragment of a program in a conventional language like C to aid 
in this explanation.
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CHAPTER 6

Typed-Pointers

Internally, that is, inside the computer, an ordinary atom in LISP is represented by an 
integer index into the atom table, that is, by a pointer. We use the terms index and pointer 
interchangeably as seems fit; the term address is sometimes used as well. By knowing 
a pointer to an ordinary atom, we can access both the name and the value of the atom. 
A number atom is represented by an integer index into the number table where the 
corresponding floating-point value is stored.

Similarly a nonatomic S-expression is also represented internally by a pointer. Some 
means are needed in order to distinguish what kind of object a pointer points to. Thus we 
shall carry an integer typecode with a pointer and refer to the pair together as a typed-pointer.

A typecode and pointer, which together form a typed-pointer, will be packed into 
one 32-bit computer word. Thus a typed-pointer consists of two adjacent bit fields that 
form a 32-bit integer. The first 4 leftmost bits hold the type of the pointed-to data object, 
and the remaining 28 rightmost bits hold the pointer or index to the pointed-to data 
object. We assume a traditional binary integer representation where the high (leftmost) 
bit determines the sign of the combined number stored in a 32-bit computer word, with 
0 indicating a nonnegative integer and 1 indicating a negative integer. A typed-pointer 
that forms a nonpositive 32-bit integer will be a pointer to an ordinary atom in the atom 
table, to a number atom in the number table, or will be, as we will discuss later, a pointer 
to a function or special form. A typed-pointer that forms a positive integer will be a 
pointer to a dotted-pair.

Exercise 6.1: Can we choose a different size, say 48 bits, 
for typed-pointers in order to allow bigger collections of 
S-expressions to be constructed?

Solution 6.1: No, we can’t, but the programmers building a 
LISP Interpreter can.

In fact, the type-field and the value-field in each atom table entry are packed in a 
single 32-bit word that can be easily accessed as a typed-pointer.

We will use the integers in {1, 2, . . . , m} as pointers (indices) to nonatomic 
S-expressions. In fact, we establish an array of structures: P[1: m](integer car, cdr), called 
the list area, and each nonatomic S-expression pointer j is interpreted as an index into P. 



Chapter 6 ■ typed-pointers

20

An element of P is called a list node. The integers car and cdr that make up the element Pj 
are called fields of Pj. The declaration notation above is intended to indicate that each list 
node Pj consists of a pair of integer fields: Pj.car and Pj.cdr.

Note that the atom table and the number table each have n entries with their indices 
ranging from 0 to n − 1, and the list area has m entries with indices ranging from 1 to m. 
The values n and m have values determined by the programmers of the LISP Interpreter.

The typecodes used in typed-pointers are:

0000: dotted-pair (nonatomic S-expression)

0001: undefined

1000: variable (ordinary atom)

1001: number (number atom)

1010: builtin function

1011: builtin special form

1100: user-defined function

1101: user-defined special form

1110: unnamed function

1111: unnamed special form

Thus, because the sign-bit of the 32-bit computer word is the leftmost bit of the 
typecode field, a typed-pointer t with t > 0 points to a dotted-pair, and a typed-pointer t with 
t < 0 points to other than a dotted-pair. (A typed-pointer with the typecode 0001 is a positive 
value, but it occurs only in the atom table and will never arise in the context where we expect 
a typed-pointer referring to a dotted-pair.)

Exercise 6.2: What do the individual bits of the typecode 
values indicate?

Solution 6.2: Numbering the bits as 1, 2, 3, etc., from left to 
right, we see that bit 1 is 0 for a dotted-pair (or an undefined 
value), and bit 1 is 1 otherwise. Within the class of function 
and special form typecodes, bit 2 is 0 for a builtin function 
or special form, and bit 2 is 1 otherwise; and bit 4 is 1 for a 
special form and bit 4 is 0 for a function. This bit-encoding 
is harmless, but it isn’t really very important or very useful; 
arbitrary numbers would be nearly as convenient.

If j is a 28-bit untyped-pointer, that is, a simple address or an index, then the  
following functions may be used to form a typed-pointer, where : : denotes bit-string 
concatenation. These functions are not LISP functions that are predefined in LISP; they 
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are convenient meta-functions, which allow us to describe the internal form and meaning 
of the LISP Interpreter program. Some examples are:

se( j) = 0000 : : j

oa( j) = 1000 : : j

nu( j) = 1001 : : j

bf ( j) = 1010 : : j

bs( j) = 1011 : : j

uf ( j) = 1100 : : j

us( j ) = 1101 : : j

tf ( j ) = 1110 : : j

ts( j ) = 1111 : : j

Now we can explain how any particular nonatomic S-expression is represented. 
If j points to a nonatomic S-expression of the form (B . C), then Pj.car points to the 
S-expression B and Pj.cdr points to the S-expression C. Note that B or C or both may be 
atomic S-expressions; this just means the corresponding typed-pointer may not be 
positive.

Exercise 6.3: Is the 32-bit value 0 a legal typed-pointer? If so, 
what does it point to? What about the 32-bit value 1?
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CHAPTER 7

Pictorial Notation

Let us suppose the atom table and the number table are loaded as follows:

Then X is represented by the typed-pointer oa(3) and NIL is represented by the typed-
pointer oa(0), both of which are negative integers. Remember that the type field in an 
atom table entry describes the type of the value of that ordinary atom. The S-expression 
(T . NIL) is represented by a positive integer j such that Pj.car = oa(1) and Pj.cdr = oa(0); 
that is (T . NIL) corresponds to j where Pj = (oa(1), oa(0)). Note se( j) = j.

We shall write the name of an atom in the car or cdr field of a pictorially given list 
node to indicate that a nonpositive typed-pointer to that atom is there. Thus (T . NIL) 
corresponds to j where . This is intended to be a pictorial 

representation of the two integer fields that form the list area structure element Pj. 
Number atom names are used similarly. Thus (2 . 3) is represented by an integer j such 
that . This means that Pj.car is a negative integer x whose low 28 bits 

indexes the number atom 2 in the number table and Pj.cdr is a negative integer y whose 
low 28 bits indexes the number atom 3 in the number table, so that Pj = (x, y). The high 
four bits of x and y in this case are both 1001.
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The S-expression ((PLUS . X) . (X . NIL)) is represented by a pointer j, where Pj = 
(a, b) and  and . This, of course, means that for the 

example atom table above, Pa.car = oa(2), Pa.cdr = oa(3), Pb.car = oa(3), and Pb.cdr = oa(0). 
Rather than introduce the intermediate pointers a and b by name, we usually will show 
the same structure pictorially as:

As another example, the S-expression (NIL . (((X . T) . NIL) . (T . T))) is 
represented by a pointer k, where:

The following exercises assume the same example atom table used just above.

Exercise 7.1: What pointer represents v[(QUOTE PLUS)]?

Solution 7.1: oa(2).

Exercise 7.2: What pointer represents .5?

Solution 7.2: nu(0).

Exercise 7.3: What pointer represents v[(PLUS X X)]?

Solution 7.3: We can’t say exactly, but the result is the number 1,  
which is a number atom not shown above, so it must be a 
nonpositive integer of the form nu( j) for some integer j > 1.
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Exercise 7.4: What is the S-expression represented by se(3), 
where P3 = (se(1), oa(0)) and P1 = (oa(1), se(2)) and P2 = (oa(6), 
oa(6))?

Solution 7.4: ((T . (QUOTE . QUOTE)) . NIL).

Exercise 7.5: Is there any confusion between oa(3) and se(3)?

Solution 7.5: No.

Exercise 7.6: What is the pictorial representation of  
(((X . NIL) . NIL) . NIL)?

Exercise 7.7: What is the pictorial representation of  
(X . (Y . (Z . NIL) . NIL) . NIL)?

Solution 7.7: None. This is not a legal S-expression.

Exercise 7.8: What is the S-expression represented by the 
typed-pointer oa(5)?

Solution 7.8: Z.

Exercise 7.9: What is the S-expression represented by the 
positive integer j where:

Exercise 7.10: Explain why nonatomic S-expressions can 
be described as binary trees whose terminal nodes are LISP 
atoms. How can the nonterminal nodes be characterized? Are 
there any structural constraints on the form of the binary trees 
that correspond to nonatomic S-expressions?
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Exercise 7.11: What kinds of typed-pointers may occur in the 
car or cdr fields of an S-expression?

Solution 7.11: Dotted-pair (0000), ordinary atom (1000), and 
number atom (1001) typed-pointers comprise the only kinds 
of typed-pointers that appear in S-expressions.
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CHAPTER 8

More Functions

Here we present some basic functions in LISP that operate on nonatomic, as well as 
atomic, S-expressions.

•	 ATOM: predicate

v[(ATOM x)] = if v[x] is an ordinary atom or a number then T 
else NIL.

•	 CONS: function

v[(CONS x y)] = (v[x] . v[y]). x and y are arbitrary 
S-expressions. CONS is the dotted-pair construction operator.

•	 CAR: function

v[(CAR x)] = a where v[x] = (a . b) for some S-expressions a 
and b. If v[x] is not a nonatomic S-expression, then (CAR x) is 
undefined, and any result is erroneous.

•	 CDR: function

v[(CDR x)] = b where v[x] = (a . b) for some S-expressions a 
and b. If v[x] is not a nonatomic S-expression, then (CDR x) is 
undefined, and any result is erroneous.

The basic relation among CONS, CAR, and CDR is:

v[(CONS (CAR x) (CDR x))] = v[x]
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where v[x] is a nonatomic S-expression. The CONS function constructs a dotted-pair, the CAR 
function returns the first member of a dotted-pair, and the CDR function returns the second 
member of a dotted-pair.

Exercise 8.1: Is the relation among CONS, CAR, and CDR 
characterized by the statements: v[(CAR (CONS x y))] = v[x] and 
v[(CDR (CONS x y))] = v[y]?

Names such as FIRST and TAIL would be more descriptive than CAR and CDR. The 
names CAR and CDR stand for the phrases “contents of the address register” and “contents 
of the decrement register,” respectively. They arose because the first implementation of 
LISP programmed in 1958 was done for an IBM 704 computer in which each list node was 
held in one 36-bit computer word. The single word instructions of the 704 had a format 
consisting of a (divided) op-code field, a decrement field, and an address field, and in list 
nodes, these latter two fields were used for the second and first pointers, respectively, of a 
dotted-pair. The word register was used instead of field because these address fields could 
be efficiently loaded into registers on the 704.

Exercise 8.2: Show how the names FIRST and TAIL  
can be used in place of the names CAR and CDR.  
Hint: use SETQ.

Exercise 8.3: Shouldn’t the car and cdr fields in the list area 
elements P

i
 be called the ar and dr fields instead?

Exercise 8.4: What is v[(CONS NIL T)]?

Solution 8.4: (NIL . T).

Exercise 8.5: What does the name CONS stand for?

Solution 8.5: It stands for the word “construction.”

Exercise 8.6: What is v[(CONS (CDR (CONS NIL T))  
(CAR (CONS NIL T)))]?

Solution 8.6: (T . NIL).

Exercise 8.7: What is v[(CAR PLUS)]?

Solution 8.7: Undefined. (By undefined, we mean 
undetermined; we haven’t said what the evaluation operator 
v does with such input. Strictly, you might imagine that the 
evaluation of an illegal input expression results in “illegal 
input” being printed out.)
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Exercise 8.8: What is v[(CONS PLUS 3)]?

Solution 8.8: Undefined, because v[PLUS] is not an 
S-expression! (Go back and check the definition of an 
S-expression.)

Exercise 8.9: What is v[(CONS (QUOTE QUOTE)  
(QUOTE PLUS))]?

Solution 8.9: (QUOTE . PLUS).

Exercise 8.10: What is v[(ATOM NIL)]? What is v[(ATOM (QUOTE 
NIL))]? What is v[(ATOM (QUOTE (QUOTE . NIL)))]?

Solution 8.10: (1) T, (2) T, and (3) NIL.

Exercise 8.11: What is v[(ATOM 12.5)]?

Solution 8.11: T.

Exercise 8.12: What is v[(ATOM PLUS)]?

Solution 8.12: NIL. Because v[PLUS] is a function, that is, a set 
of ordered pairs, it is not an atom.

Exercise 8.13: We said that nonatomic S-expressions were 
binary trees. Consider the LISP code: (SETQ A (CONS T  
(QUOTE B))) (SETQ B (CONS (CONS A A) (CONS (QUOTE B) A)).  
Diagram the resulting nonatomic S-expression value of B. Note 
the sharing of the S-expression v[A]!
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CHAPTER 9

Arguments and Results Are 
Typed-Pointers

Internally in the LISP Interpreter program, callable LISP functions and special forms take 
typed-pointers to S-expressions as input and return a typed-pointer to an S-expression 
as output. The only (apparent) exceptions are those functions and special forms that 
accept or return functions or special forms, that is, conceptually sets of ordered pairs. 
In fact, typed-pointers will be used in these cases as well. When a result is computed, a 
typed-pointer to that result S-expression or function is returned. When the final result is 
computed, the typed-pointer to the final result is used to reach the pointed-to data object, 
which is then inspected in order to print out its complete lexical representation as the 
final deliverable.

We can now describe the workings of some of the functions and special forms 
defined before.

For (QUOTE x), v[QUOTE] receives as input a typed-pointer to an S-expression x, and 
the same typed-pointer is returned as the result.

For (PLUS x y), v[PLUS] receives two typed-pointers as input, one to v[x] and one to 
v[y] (remember, by the rules of LISP, v[PLUS] is a function, so x and y get evaluated before 
v[PLUS] is called). If the two typed-pointers received by v[PLUS] do not both point to 
number atoms, PLUS is being used erroneously. Otherwise, the sum value is formed and 
a number atom with the corresponding floating-point value is formed. A typed-pointer to 
this number atom in the number table is the result.

For (EQ x y), v[EQ] receives two typed-pointers as input: one to v[x] and one to v[y]. 
If these two typed-pointers are identical, a typed-pointer to the atom T is returned, 
otherwise a typed-pointer to the atom NIL is returned. Thus EQ will correctly report 
whether or not two atoms are equal, since atoms are stored uniquely, but it may fail to 
detect that two dotted-pairs are equal (i.e., consist of the same atoms within the same tree 
shape). This failure will occur when two such equal dotted-pairs occur in different list 
nodes in memory. On the other hand, if we wish to test for identical, shared, dotted-pairs, 
EQ will serve this purpose. For example, (EQ (CONS 1 2) (CONS 1 2)) may return NIL 
because the two dotted-pairs (1 . 2) and (1 . 2) may live in different list-area nodes, 
which are then represented by distinct typed-pointers.
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For (CAR x), v[CAR] receives a typed-pointer j to v[x] as input. If v[x] is not a dotted-
pair, CAR is being used erroneously. Otherwise the typed-pointer Pj.car is returned.

For (CDR x), v[CDR] receives a typed-pointer k to v[x] as input. If v[x] is not a dotted-
pair, CDR is being used erroneously. Otherwise the typed-pointer Pk.cdr is returned.

For (CONS x y), v[CONS] receives two typed-pointers as input: one typed-pointer j that 
points to v[x] and one typed-pointer k that points to v[y]. An unoccupied list node Ph is 
obtained and Ph.car is set to j and Ph.cdr is set to k. Strictly, the types of the typed-pointers 
j and k must each be either 0 (dotted-pair), 8 (ordinary atom), or 9 (number atom). Then 
the typed-pointer se(h) is returned. CONS is one of the few LISP functions that consumes 
memory. CONS requires that a new list node be allocated at each invocation.

For (SETQ x y), v[SETQ] receives two typed-pointers as input: one typed-pointer j 
that points to x and another typed-pointer k that points to y (remember SETQ is a special 
form). If j is positive or the value x pointed to by j is a number atom or a function or a 
special form, there is an error since x must be an ordinary atom. (Remember, the type-
code field of a typed-pointer contains the sign-bit of the 32-bit computer word it is packed 
into.) If j is not positive and the value x pointed to by j is an ordinary atom, then v[y] is 
computed by applying EVAL to the S-expression y whose typed-pointer is k. This results in 
a typed-pointer i that points to v[y]. Then the row determined by j in the atom table where 
the ordinary atom x resides has its value field set to the index corresponding to i and its 
typecode set to the type of v[y], which is given in the typed-pointer i, except when v[y] 
is an unnamed function or unnamed special form, in which case the occurrence of the 
typecode 14 or 15 for v[y] results in the newly assigned value of x having, respectively, the 
typecode 12 or 13 instead.

Exercise 9.1: Specify an S-expression y such that  
v[(SETQ A y)] = v[(SETQ A (QUOTE y))].

Solution 9.1: y = NIL will suffice.

Exercise 9.2: What occurs when (SETQ X PLUS) is executed?

Solution 9.2: First, recall that we interpret v[PLUS] as a set 
of ordered pairs. Let’s denote this set by {PLUS}. Then SETQ 
redefines the v meta-operator so that v[X] is now {PLUS}. 
Of course, within the LISP Interpreter program, {PLUS} is 
represented as a typed-pointer whose typecode is 10, and 
whose pointer part is some conventional value useful in 
identifying {PLUS}. After the SETQ application has been done, 
the row in the atom table where the ordinary atom X occurs 
has its type-field and value-field set to the typecode part and 
pointer part of this typed-pointer that represents {PLUS}.
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Exercise 9.3: What is the set of ordered pairs denoted by 
{PLUS}?

Solution 9.3: {((a, b), a + b) | a Î R, b Î R} where R denotes the 
set of real numbers.

Exercise 9.4: What is v[(CONS (SETQ B T) (EVAL (SETQ A 
(QUOTE B))))]?

Solution 9.4: (T . T), assuming the arguments of CONS are 
evaluated from left to right.
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CHAPTER 10

List Notation

Some forms of nonatomic S-expressions arise so frequently there is a special notation for 
them. A dotted-pair of the form (S

1
 . (S

2
 . (· · · . (S

k
 . NIL)· · ·))) where S

1
, S

2
, . . . , S

k
 

are all S-expressions is called a list and is written as (S
1
 S

2
 ... S

k
), which is the sequence of 

S-expressions S
1
, S

2
, . . . , S

k
 written with intervening blanks and enclosed in parentheses. 

There is no confusion with dot notation since there are no dots between the S
i
 elements 

in the list. There may, of course, be dots within some or all of the elements S
1
, . . . , S

k
, but 

then they are necessarily enclosed in parentheses and the dots occur at lower levels. Any 
element S

i
 that qualifies may itself be written in either list notation or dotted-pair notation. 

But, remember, not every nonatomic S-expression is representable as a list.
The list (S

1
) of the single element S

1
 is written in dotted-pair notation as  

(S
1
 . NIL). By analogy, the atom NIL is used to denote the list of no elements. The symbol 

pattern "()" is also used to denote the empty list; it is to be understood as a synonym  
for NIL.

Exercise 10.1: Write the list (A B) in dot notation.

Solution 10.1: (A . (B . NIL)).

Exercise 10.2: How do we distinguish dots within ellipses 
from “true” dots used in dotted-pairs when writing text about 
S-expressions?

Exercise 10.3: Write the S-expression (1 . (2 . (3 . NIL))) 
in list notation.

Solution 10.3: (1 2 3).

Exercise 10.4: Is every list a dotted-pair?

Solution 10.4: All lists are dotted-pairs except the empty list, 
NIL. The empty list is represented by an atom.
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Exercise 10.5: Is every dotted-pair a list?

Solution 10.5: No. Only nonatomic S-expressions with a  
right-embedded NIL as shown above are lists. For example,  
(X . X) is not a list and neither is (NIL . 3).

 Pictorially, a nonempty list (S
1
 . . . S

k
) is of the form:

Exercise 10.6: What is the pictorial form and dot notation 
form of the 3 element list (NIL (T . T) X)?

Solution 10.6:

The dot-notation form is: (NIL . ((T . T) . (X . NIL))).

Exercise 10.7: How many final close parentheses occur 
together at the end of a k element list written in dot notation?

Solution 10.7: Exactly k final close parentheses occur.



Chapter 10 ■ List NotatioN

37

Exercise 10.8: Is NIL a list of 0 elements?

Solution 10.8: NIL represents the empty list, but NIL is an 
ordinary atom. The class of lists consists of one atom, NIL, and 
an infinite number of certain nonatomic S-expressions.

Exercise 10.9: If s is a list and x is an S-expression, what is  
z = v[(CONS x s)]?

Solution 10.9: z is a list. Its first element is x and its remainder is 
the list s. Thus CONS can be used to construct a new list formed 
by adding an additional element at the head of a given list. In 
this example, the list s shares all its list nodes with the list z, 
which has an additional initial node. Such sharing of list nodes 
is common in S-expressions and is an elegant feature of LISP.

A list whose elements consist of atoms or lists, where these lists are recursively 
constrained in the same manner, is called a pure list. A pure list can be written entirely in 
list notation without dots appearing at any level.

Note that the notation used for specifying function application statements as LISP 
interpreter input is just list notation for certain S-expressions involving certain atoms! 
Thus almost every legal LISP input statement is an S-expression that is either an atom or 
a list, which itself has elements that are either atoms or lists. The only exception is that 
arguments to QUOTE can be arbitrary S-expressions. This is often summarized by saying 
that, in LISP, programs are data. Some data are programs too, but not every S-expression 
is legal LISP input. For any particular LISP interpreter, of course, there will be specific 
behaviors programmed in it that determine what happens for various illegal inputs.

Exercise 10.10: What is v[(EVAL (CONS (QUOTE CONS) (CONS 2 
(CONS 3 NIL))))]?

Solution 10.10: (2 . 3).

Exercise 10.11: What is v[(EVAL (QUOTE (CONS (QUOTE CAR) 
(QUOTE (A . B)))))]?

Solution 10.11: The result is the same as

v[(EVAL . ((QUOTE
            . ((CONS . ((QUOTE . (CAR . NIL))
                        . ((QUOTE . ((A . B) . NIL)) . NIL)))
               . NIL)) . NIL))]
  = (CAR . (A . B)).

Exercise 10.12: What is v[(T . NIL)]?

Solution 10.12: Undefined. v[T] is not a function or special 
form as is required for v to be defined on this form of input.
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Remember that a function does not have to be designed to accept any member of 
the set of S-expressions as input. We have functions that only work on atoms or only 
on dotted-pairs, and a programmer can circumscribe the legal input in almost any 
manner desired. A function that is designed to work on a proper subset of S-expressions 
is called a partial function (in contrast to a total function). What happens when a 
partial function is called with one or more illegal input arguments is implementation 
dependent. Ideally, a partial function would be programmed to check its arguments 
and reject any illegal input with an accompanying error message. However, even when 
this is possible, it may sometimes be perceived to be too inefficient, and thus many 
built-in LISP functions and special forms may give nonsense results, loop, or crash 
when given illegal arguments. We summarize this by saying such functions and special 
forms are undefined on illegal input.

Now we may define the built-in function LIST. Unlike the previous functions and 
special forms we have seen, LIST may be invoked with differing numbers of arguments.

•	 LIST: function with a varying number of arguments

v[(LIST x
1
 x

2
 . . . x

k
 )] = v[(CONS x

1
 (CONS x

2
 (CONS . . . (CONS x

k
 NIL)). . . ))].

Exercise 10.13: What is v[(LIST NIL)]? What is v[(LIST)]?

Solution 10.13: v[(LIST NIL)] = (NIL) = (NIL . NIL). 
v[(LIST)] could consistently be defined to be NIL, but as we 
have defined the function LIST above, v[(LIST)] is undefined; 
v[LIST] on the other hand is a built-in function. (Again, 
just because some input is undefined doesn’t mean it is 
necessarily so for any particular LISP interpreter; to say some 
input is undefined means the LISP interpreter for this dialect 
has carte blanche as to its behavior.)
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CHAPTER 11

More Special Forms

•	 AND: special form with a varying number of arguments

	 v[(AND x
1
 x

2
 … x

k
 )] = if v[x

1
] ≠ NIL and v[x

2
] ≠ NIL and …  

v[x
k
 ] ≠ NIL then T else NIL.

	 The special form AND is evaluated using lazy evaluation; this 
means that the arguments are evaluated and tested against NIL 
from left to right and the first NIL-valued argument is the last 
argument evaluated.

•	 OR: special form with a varying number of arguments

	 v[(OR x
1
 x

2
 … x

k
 )] = if v[x

1
] ≠ NIL or v[x

2
] ≠ NIL or … or  

v[x
k
 ] ≠ NIL then T else NIL.

	 The special form OR is evaluated using lazy evaluation; the 
arguments are evaluated and tested against NIL from left to right 
and the first non-NIL-valued argument is the last argument 
evaluated.

	 Exercise 11.1: What should v[(AND)] and v[(OR)] be defined  
to be?

	 Solution 11.1: One consistent choice is to define v[(AND)] = T and 
v[(OR)] = NIL. This is somewhat analogous to the definition that an 
empty sum is 0 and an empty product is 1.

•	 COND: special form with a varying number of arguments

	 v[(COND (p
1
 q

1
) (p

2
 q

2
) … (p

k
 q

k
 ))] = if v[p

1
] ≠ NIL then v[q

1
], else if 

v[p
2
] ≠ NIL then v[q

2
], …, else if v[p

k
 ] ≠ NIL then v[q

k
 ], else NIL.

	 COND stands for conditional. It is the primary branching operator 
in LISP. Each argument to COND must be a two-element list whose 
elements are potentially evaluatable. The special form COND is 
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evaluated using lazy evaluation; the length-two list arguments 
are examined from left to right and the first component of each is 
evaluated until the resulting value is not NIL, then the value of the 
associated second component is returned. Only as many p

i
’s as 

needed are evaluated, and at most one q
1
 is evaluated. The special 

form COND is necessary both theoretically and practically. With 
COND, we can, in principle, dispense with AND and OR. Note:

v[(AND a b)] = v[ (COND ((EQ NIL a) NIL) ((EQ NIL b) NIL) (T T))], and

v[(OR a b)] = v[ (COND ((EQ b NIL) (COND ((EQ a NIL) NIL) (T T))) (T T))].

In [McC78], McCarthy writes: “I invented conditional expressions in connection 
with a set of chess legal move routines I wrote in FORTRAN for the IBM 704 at M.I.T. 
during 1957–58. This program did not use list processing. The IF statement provided in 
FORTRAN 1 and FORTRAN 2 was very awkward to use, and it was natural to invent a 
function XIF(M,N1,N2) whose value was N1 or N2 according to whether the expression 
M was zero or not. The function shortened many programs and made them easier to 
understand, but it had to be used sparingly, because all three arguments had to be 
evaluated before XIF was entered, since XIF was called as an ordinary FORTRAN function 
though written in machine language. This led to the invention of the true conditional 
expression which evaluates only one of N1 and N2 according to whether M is true or false 
and to a desire for a programming language that would allow its use.”

Exercise 11.2: What is v[(OR (COND ((EQ NIL T) NIL)  
(T NIL)) NIL)]?

Solution 11.2: NIL.

Exercise 11.3: Do AND and OR require that arguments that 
evaluate to NIL or T be supplied?

Solution 11.3: No.

Exercise 11.4: What is v[(AND (COND ((SETQ A NIL) T)  
(T T) ((SETQ A T) T)) A (SETQ A 0))]?

Solution 11.4: NIL, and v[A] = NIL afterward as a result of the 
assignment side-effect.
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Exercise 11.5: Suppose A is an ordinary atom that has been 
assigned a number value with an application of SETQ. Write a 
LISP functional application command that causes the ceiling 
of the value of A to be printed out.

Solution 11.5: (COND ((EQ (FLOOR A) A) A) (T (PLUS 1 
(FLOOR A)))).

Exercise 11.6: Suppose v[S] = 1. What is v[((COND  
((EQ NIL S) OR) (T AND)) S (NOT S))]?

Exercise 11.7: What would be the effect if T were to be 
redefined so as to have the value 3 rather than itself?

Solution 11.7: The effect would be minor. But leaving T 
undefined would not be so benign. And redefining NIL to be 3 
would seriously damage LISP.

You may have noticed that we have lapsed into the usual sloppiness found in 
discussions of programming languages (for good reason). We say “the special form COND 
is necessary …” when we should say “the special form v[COND], whose name is COND, is 
necessary …”. It is convenient to agree to tolerate such ambiguity.
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CHAPTER 12

Defining Functions:  
λ-Expressions

We can use the LISP interpreter to compute the value of combinations of built-in 
functions and special forms applied to arguments, but to use LISP as a programming 
language rather than as a curious kind of calculator, we must have a way to define 
functions of our own choosing and use them, rather than just use unnamed compositions 
of preexisting functions.

The special form LAMBDA is used in LISP to create a user-defined function. LAMBDA 
takes two arguments, which are both S-expressions. The first argument is a list of 
ordinary atoms denoting the formal arguments of the function being defined, and the 
second argument is an S-expression expressing the definition of the function being 
defined. This second argument is required to be legal LISP input, so it is either an atom 
or a functional application expression. This second argument is called the body of the 
function being defined.

A list expressing an application of the special form LAMBDA is called a LISP λ-expression. 
For example, the λ-expression (LAMBDA (X Y) (CONS Y X)) denotes a function. That 
means, conceptually, its value is a set of ordered pairs. It is the function that, given two 
S-expressions, a and b, as input, returns the dotted-pair (b . a) as output. Note this function 
has no name. In order to use this function in LISP, we can enter ((LAMBDA (X Y) (CONS 
Y X)) 2 3) into the LISP interpreter, and (3 . 2) will be printed out. In the λ-expression 
(LAMBDA (X Y) (CONS Y X)), the S-expression (CONS Y X) is the body and (X Y) is the list 
of formal arguments.

Continuing this example, the evaluation of ((LAMBDA (X Y) (CONS Y X)) 2 3)  
proceeds by binding the value of the first actual argument 2 to the first formal argument 
X, binding the value of the second actual argument 3 to the second formal argument 
Y, and then evaluating the body (CONS Y X) by computing v[(CONS Y X)] with the 
understanding that each occurrence of X in the body is evaluated to yield its associated 
bound value 2 and each occurrence of Y in the body is evaluated to yield its associated 
bound value 3. This means that v[X] = 2 and v[Y] = 3 in the body expression (CONS Y X), 
regardless of the global values of X and Y in the atom table.

Let a be a list of k ≥ 0 ordinary atoms and let b be an evaluatable S-expression. In 
general, the value of the λ-expression (LAMBDA a b) is defined so that v[(LAMBDA a b)] 
equals the function that is computed on a list of k actual arguments r by computing e[b, a, r],  
where e[b, a, r] = v[b] in the context such that v[ai] = ri for 1 ≤ i ≤ k. The symbol e stands 
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for environmental evaluation. It is a form of the v-operator that depends upon a context 
specified by a binding of actual argument values to formal arguments.

It is awkward to write a λ-expression to specify a function for each use, so we adopt 
a device to give names to functions. The value of a λ-expression can be assigned a name 
using SETQ. Thus, for example, evaluating (SETQ G (LAMBDA (X Y) (CONS Y X))) results 
in the ordinary atom G having the value v[(LAMBDA (X Y) (CONS Y X))]. The result that 
is printed out is conventionally understood to be the set of ordered pairs conceptually 
assigned to G, which is v[(LAMBDA (X Y) (CONS Y X))], and this is denoted by "{user 
function: G}". Now we can write (G 2 3) to obtain (3 . 2).

If you look at various LISP dialects, you will find that a special form variously called 
DEFINE or DEFUN (meaning define-function) is commonly used to assign a function to 
be the value of an ordinary atom, but there is no reason SETQ can’t serve this purpose, 
so we eschew DEFUN in this book. The use of DEFUN is often coupled with a mechanism 
for allowing an ordinary atom to have an S-expression value and a function value 
simultaneously. This option is not possible as we have defined the atom table and doesn’t 
seem very felicitous in any event.

Note that the definition of SETQ  is that the result is the value of its first argument 
after assignment. This means that the first argument already has a user-defined named 
function as its value, which appears as the result when SETQ is used to assign a function to 
an ordinary atom.

The most interesting case of defining and naming a function arises when recursion is 
utilized. For example:

(SETQ FACT (LAMBDA (X)
                   (COND ((EQ X 0) 1)
                         (T (TIMES X (FACT (DIFFERENCE X 1)))))))

which defines the factorial function fact (n) = 1 2 ·3 … ·(n − 1) n. This definition is an 
impredicative definition; that means the name FACT, which is being assigned a value, is 
itself used in defining that value. This is an uncomfortable state of affairs, but completely 
understandable pragmatically.

What the special form LAMBDA really does is CONS its two arguments together and 
returns an unnamed-function-typed-pointer to the resulting dotted-pair; this is a typed-
pointer whose typecode is 14. The arguments themselves are not examined until the 
function is actually applied. If this unnamed function that is represented as a dotted-pair 
is assigned as the value of an ordinary atom b, the value of b is then just the pointer to 
the dotted-pair, and the type of this value is set to 12 to indicate a user-defined function. 
Thus, for example, when FACT as assigned above is used, the recursive reference to FACT 
within the body is correctly interpreted because the value of FACT at the time of evaluation 
of the body is consistently defined.

Remember that v[(SETQ x y)] has been defined to be v[x] after v[x] is made equal to 
v[y]; but when y is a λ-expression, this does not hold. In this case, v[y] is a typed-pointer 
to the CONSed dotted-pair representing the value of the λ-expression y. The typecode of 
this typed-pointer is 14. However, after the assignment to redefine v[x], v[x] is a typed-
pointer to the same dotted-pair, but the typecode of v[x] is 12 rather than 14. Thus in the 
case of assigning the value of a λ-expression y to an ordinary atom x, the typecode of v[x] 
after the assignment is not the typecode of v[y]. This awkward exception arises because 
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functions need not have names. If names were always required, this distinction encoded 
in typecode values would be unnecessary.

Exercise 12.1: What is v[((LAMBDA (X) X) y)]?

Solution 12.1: v[y]. So typing ((LAMBDA (X) X) y) produces 
the same result as typing y.

Exercise 12.2: What does (SETQ CONS (LAMBDA (X)  
(CONS 1 X))) do?

Solution 12.2: The function CONS is redefined to be a 
nonterminating recursive function. The CONS in the body 
refers to the same atom as the atom being reassigned a value, 
and in the future, as at all other times, that atom has just 
one value. Most versions of LISP do not permit atoms whose 
values are built-in functions or special forms to be redefined 
in this manner.

Exercise 12.3: (J. McCarthy) Specify an input non-atomic 
S-expression, a, which has itself as its value.

Solution 12.3: a = ( (LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X))). 
(QUOTE (LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X)))))

Exercise 12.4: Is (LAMBDA NIL 3.1415926) a legal 
λ-expression?

Solution 12.4: Yes. A function with no arguments is a 
constant. If it is not a constant, it is not a function, rather it is a 
pseudofunction, such as a random-number generator.

The name LAMBDA and the term λ-expression are borrowed from the  
so-called λ-calculus of Alonzo Church [Kle52]. This is a mathematical invention used to 
explore the syntactic and semantic nature and power of substitution. It is, in some sense, 
a theory of macro languages.

www.allitebooks.com

http://www.allitebooks.org
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CHAPTER 13

More Functions

There are many built-in functions in LISP that are not logically required to be built in. 
They are there for convenience, and in some cases because they are faster that way. The 
three functions presented below are built-in functions that have definitions in terms of 
other more basic functions and special forms.

•	 APPEND: function

Defined by:

(SETQ APPEND
      (LAMBDA (X Y)
              (COND ((EQ X NIL) Y)
                    ((ATOM X) (CONS X Y))
                     (T (CONS (CAR X) (APPEND (CDR X) Y))))))

This version of APPEND is slightly more general than the commonly found definition, 
which omits the ((ATOM X) (CONS X Y)) pair. Given two lists (a1 a2 … ah) and (b1 b2 … bk) as 
input, the list (a1 a2 … ah b1 b2 … bk) is produced as the output. The input is not damaged in 
any way. In a sense, this function embodies the essence of LISP. When you understand in 
detail at the machine level what happens during the application of this function to arguments, 
then you will understand the essence of LISP.

For example, with v[A] = (1 A 2), v[(APPEND A (LIST 7))] = (1 A 2 7), and v[(APPEND 
A 7)] = (1 . (A . (2 . 7))); APPEND joins two lists; its action on atoms is more 
arbitrary.

Note APPEND adds to the end of a list and CONS adds to the front of a list. These 
functions are asymmetric, however; CONS can add only one element at a time to the front 
of a list, while APPEND can add an entire list of elements to a list at its end. Also CONS is 
efficient, while APPEND is inefficient; this is because a linked list with a pointer to the first 
element is an insufficient data structure for allowing direct access to the end of the list. 
(We could use other data structures such as doubly linked [bidirectionally linked] binary 
trees or hash tables instead of singly linked lists [Knu68, Knu73], and indeed this has been 
done in some implementations of LISP.)
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Exercise 13.1: What is v[(APPEND (QUOTE (A . NIL)) T)]? 
What is v[(APPEND (QUOTE (A B)) NIL)]? What is v[(APPEND 
T T)]?

Exercise 13.2: Suppose the ordinary atom X has the value 
(NIL . (T . NIL)) and that the ordinary atom Y has the value 
(X . (Y . NIL)), where these S-expressions are stored in the 
list area as follows:

Assume new list area nodes are allocated and used in the 
order 5, 6, … , etc. Tabulate the changes that occur in the 
list area when (APPEND X Y) is executed, and present the 
resulting contents of the list area. (Actually, the typed-pointer 
value denoted by −1 is oa(1) = 1000 :: 1.) What exactly is the 
typed-pointer denoted by −3?

Exercise 13.3: Write a version of APPEND that joins the two 
input lists when both arguments are lists, and adds the second 
argument as the last list member of the first argument when 
the first argument is a list and the second argument is an 
atom.

•	 REVERSE: function

Defined by:

(SETQ REVERSE
      (LAMBDA (X)
              (COND ((ATOM X) X)
                     (T (APPEND (REVERSE (CDR X)) (CONS (CAR X) NIL))))))

Exercise 13.4: Suppose the functions A and B are defined by:

(SETQ A (LAMBDA (X Y)
                (COND ((EQ X NIL) Y)
                      (T (B (REVERSE X) Y)))))
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and

(SETQ B (LAMBDA (X Y)
                 (COND ((EQ X NIL) Y)
                       (T (B (CDR X) (CONS (CAR X) Y))))))

What does A do?

Solution 13.4: The function A is another version of APPEND. It 
behaves the same way APPEND does on list arguments.

•	 EQUAL: predicate

Defined by:

(SETQ EQUAL (LAMBDA (X Y)
                   (COND ((OR (ATOM X) (ATOM Y)) (EQ X Y))
                        ((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
                        (T NIL))))

Unlike the EQ predicate, EQUAL is guaranteed to return T for 
equal S-expressions and NIL for unequal S-expressions.

Exercise 13.5: Is the last (T NIL) pair appearing in the 
definition of EQUAL necessary?

Solution 13.5: No, as we have defined COND herein it is not 
necessary, but it is harmless, and it is required in some 
dialects of LISP where a COND does not have a NIL final value 
by default.

Exercise 13.6: Does the EQUAL predicate consume list area 
nodes during its application?

Solution 13.6: No. The CONS function is not applied directly or 
indirectly.

Exercise 13.7: Define a LISP function LENGTH, which takes a 
list as input and returns the number of elements in the list as 
output.

Exercise 13.8: Define a LISP predicate LISTP, which returns T 
if its assignment is a list and returns NIL otherwise.

Solution 13.8: Define LISTP by:

(SETQ LISTP (LAMBDA (S) (COND  ((ATOM S) (EQ S NIL))  
(T (LISTP (CDR S))))))
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Exercise 13.9: Define a LISP predicate MEMBER, which returns 
T if the input S-expression, a, is an element of the input list, s, 
and which returns NIL otherwise.

Solution 13.9: Define MEMBER by:

(SETQ MEMBER (LAMBDA (A S)
                      (COND ((EQ S NIL) NIL)
                           ((EQUAL A (CAR S)) T)
                            (T (MEMBER A (CDR S))))))

Exercise 13.10: Define a LISP function PLACE, which is like 
MEMBER in that an input list s is searched for an S-expression 
a, but the remainder of the list s after the point at which a is 
found is returned as the result, or the atom NULL is returned as 
the result if a is not an element of s. Why is NULL specified as 
the atom that is returned to indicate a failure?

Exercise 13.11: Define a LISP predicate DEEPMEM, which 
returns T if the input S-expression a occurs as an element of 
the input list s, or as an element of any sublist of s at any level, 
and returns NIL otherwise. You may assume that s is a pure 
list, all of whose elements are atoms or pure lists.

Solution 13.11: Define DEEPMEM by:

(SETQ DEEPMEM (LAMBDA (A S)
                       (COND ((ATOM S) NIL)
                              ((OR (EQUAL A (CAR S)) (DEEPMEM A (CAR S))) T)
                              (T (DEEPMEM A (CDR S))))))

Exercise 13.12: Define a LISP function TRUNC, which takes a 
non-empty list s as input and returns a list identical to s, but 
with the last element removed.

Exercise 13.13: Define a LISP function DEPTH, which takes 
an S-expression a as input and returns 0 if a is an atom 
and returns the number of levels in the binary tree picture 
of a otherwise. Thus the depth of the S-expression a is the 
maximum number of parentheses pairs which enclose an 
atom in a.
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Exercise 13.14: What happens when ((SETQ G (LAMBDA (X) 
(CONS X (G X)))) 3) is typed in to the LISP interpreter?

Solution 13.14: First, the value of the ordinary atom G will 
become the specified function, and then the LISP interpreter 
will run out of stack space because of the infinite recursion 
specified in G applied to 3. Note that the list area will not 
be exhausted, since no CONS application is ever actually 
consummated.

Exercise 13.15: Define a flat list to be a list whose elements 
are atoms. Write a LISP function FLATP to test whether an 
S-expression is flat. Write another LISP function FLAT that 
returns a flat list containing all the atoms found within the 
input S-expression x.

Exercise 13.16: Define a LISP predicate PURE, which takes 
an S-expression x as input and returns T if x is a pure list and 
returns NIL otherwise.

Exercise 13.17: Can there be two list area entries Pi and Pj 
with i ≠ j such that Pi = Pj? That is, does list-node sharing 
preclude duplicate list-nodes existing?

Solution 13.17: Yes, duplicate list-nodes can exist. But it is 
interesting to contemplate ways in which duplicate list-nodes 
can be avoided.
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CHAPTER 14

Defining Special Forms

User-defined special forms are created by applying the special form SPECIAL, which is 
completely analogous to the special form LAMBDA, except that an unnamed-special-form-
typed-pointer to the dotted-pair of the input arguments is returned, so that the result 
will, upon later use, be interpreted as a special form rather than a function. An unnamed-
special-form-typed-pointer has the typecode 15.

Thus the body and formal argument list of a special form created by SPECIAL are 
represented by CONSing the input arguments together to form a dotted-pair and an 
unnamed-special-form-typed-pointer whose pointer part indexes this dotted-pair is 
returned. Just as with λ-expressions, the typecode of the value of an ordinary atom that is 
assigned an unnamed-special-form is forced to be 13 rather than 15. The value 13 is the 
typecode denoting a named special form. The newly reset value field contains a pointer to 
the dotted-pair of the argument list and body of the special form.

Let a be a list of k ≥ 0 ordinary atoms and let b be an evaluatable S-expression. In 
general, the value of the special form-expression (SPECIAL a b) is defined as v[(SPECIAL 
a b)], which equals the function that is computed on a list of k actual arguments r by 
computing e[b, a, r], where e[b, a, r] = v[b] in the context such that v[a

i
] = r

i
 for 1 ≤ i ≤ k. 

Unlike a λ-expression, the actual arguments r are taken as they are given and are not 
computed by evaluating the given actual arguments.

It is important to note that the definition of the value (i.e., the meaning) of a LISP 
special form or function in terms of a context is not the same as the meaning that 
is induced using the often-used substitution rule in Algol, where we would say that 
v[(SPECIAL a b)] is that function which is computed on a list of k actual arguments r 
by computing the value of b with r

i
 substituted for each occurrence of a

i
 in b for 1 ≤ i ≤ 

k. Binding temporarily supersedes the meanings of symbols in the atom table, as seen 
by every ordinary atom evaluation that is done while the binding is in force, whereas 
substitution does not cover up such meanings everywhere.

For example, (SETQ EVALQUOTE (SPECIAL (X) (EVAL X))) defines the special form 
EVALQUOTE, which is used in the following exercise.
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Exercise 14.1: Suppose the atom A has the undefined value. 
What output results from the following commands given in 
sequence?

(SETQ B (QUOTE A))
(EVALQUOTE B)
(EVAL (QUOTE B))
(EVAL B)

Solution 14.1: The four successive outputs that result are:  
(1) A, (2) A, (3) A, and (4) undefined.

Exercise 14.2: Suppose the atom X has the undefined 
value. Keep in mind that EVALQUOTE is defined with a 
formal argument X. What output results from the following 
commands given in sequence?

(EVALQUOTE X)
(SETQ X 3)
(EVAL (QUOTE X))
(EVALQUOTE X)

Solution 14.2: The four successive outputs that result are:  
(1) X, (2) 3, (3) 3, and (4) X.

Exercise 14.3: Define the special form SETQQ, which assigns 
the value of its unevaluated second argument to its first atom-
valued unevaluated argument so as to become the value of 
the first atom.

Solution 14.3: This would be defined as:

(SETQ SETQQ
      (SPECIAL (X Y)
               (EVAL (CONS (QUOTE SETQ)
                           (CONS X (CONS (CONS (QUOTE QUOTE)
                                               (CONS Y NIL))
                                         NIL))))))

This special form operates so that the name bound to X is used 
independently of any context. Thus, for example, (SETQQ P Q)  
sets the current value of the atom P equal to the atom Q in any 
context, in or out of a function body or special form body. 
However, this current value is lost when the context in which P 
has been assigned a bound value terminates.
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Exercise 14.4: Define the function SET, which assigns its 
evaluated second argument to become the value of its atom-
valued evaluated first argument.

Solution 14.4: This is defined by:

(SETQ SET (LAMBDA (X Y)
                  (EVAL (CONS (QUOTE SETQ)
                              (CONS X (CONS (QUOTE Y) NIL))))))

Another solution is:

(SETQ SET (SPECIAL (X Y)
                   (EVAL (CONS (QUOTE SETQ)
                               (CONS (EVAL X) (CONS Y NIL))))))

Exercise 14.5: SETQ stands for set-quote; explain how the 
special form QUOTE is related to SETQ.

Because of the possibly counterintuitive behavior of some functions or special forms 
when applied to arguments whose names are also used as formal argument names, 
where the substitution rule and the binding rule give differing results, such functions 
and special forms should be used sparingly. It is a good idea to have useful functions 
and special forms like SET and EVALQUOTE built in to the LISP interpreter so that no such 
formal argument name conflicts can arise.

User-defined and unnamed functions and special forms are stored as simple  
dotted-pair S-expressions formed from the S-expressions given to define them. It is 
sometimes useful to explicitly look at the defining dotted-pair of a user-defined or unnamed 
function or special form. This can be done with the function BODY, defined as follows.

•	 BODY: function

v[(BODY x)] equals the dotted-pair, which encodes the 
definition of the user-defined or unnamed function or 
special form v[x], such that CAR applied to the result is the 
formal argument list of x, and CDR applied to the result is the 
S-expression defining the body of x.

Exercise 14.6: What output will appear as the result of the 
following input?

(SETQ E (LAMBDA (X) (MINUS X)))
(BODY E)

Solution 14.6: {user-defined function: E} and ((X) MINUS X).  
(Remember ((X) . (MINUS X)) is ((X) MINUS X) in list-notation.)
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Exercise 14.7: Define the special form IF such that:  
v[(IF a b c)] = if v[a] = NIL then v[c] else v[b].

Solution 14.7:

(SETQ IF (SPECIAL (A B C)
                  (COND ((EVAL A) (EVAL B))
                        (T (EVAL C)))))
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CHAPTER 15

The Label Special Form

Recursive functions or special forms can be named and defined in LISP using SETQ. 
This is convenient, and we almost always define functions and special forms this way 
in practice. But this leaves a theoretical difficulty about the LAMBDA operator, namely, we 
must use SETQ and assign a name in order to define a recursive function. Thus not every 
desired function can, in theory, be written in place as a λ-expression. In order to dispose 
of this difficulty, the special form LABEL is introduced.

•	 LABEL: special form

v[(LABEL g h a
1
 … a

k
)] = e[(h v[a

1
] … v[a

k
]), g, h], where g is 

an ordinary atom and h is a λ-expression and a
1
, … , a

k
 are 

S-expressions. The idea is that (LABEL g h a
1
 … a

k
) =  

v[(h a
1
 … a

k
)] in the context where the atom g is evaluated as 

the λ-expression h at every occurrence of g in the body of the 
λ-expression h. Thus g is, in effect, the name or label of h in the 
body of h during this evaluation of h on the supplied arguments 
a

1
, … , a

k
.

The extension of the definition of LABEL to apply to special forms is left as an exercise, 
since LABEL is primarily needed to provide a pleasant theoretical closure and is not often 
used in practice and, except for QUOTE, special forms are, in theory, avoidable by using 
QUOTE to protect the arguments of corresponding λ-expressions. Indeed, LABEL is not 
included in the LISP interpreter given below.

Exercise 15.1: Explain the following:

v[(LABEL FACTL
         (LAMBDA (X) (COND ((EQ X 0) 1)
                            (T (TIMES X (FACTL (DIFFERENCE X 1))))))
         3)]?

Exercise 15.2: Carefully state the appropriate definition of 
(LABEL g h a

1
 … a

k
 ) where g is an ordinary atom and h is a 

special-form expression.



59© Gary D. Knott 2017 
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_16

CHAPTER 16

The Quote Macro

The special form QUOTE is used so frequently that a special notation is provided. The 
single quote or apostrophe symbol is used to denote a unary prefix operator, defined so 
that 'e = (QUOTE e). Thus for example, the SET function can be defined by the input:

(SETQ SET (LAMBDA (X Y)
                  (EVAL (CONS 'SETQ (CONS X (CONS 'Y NIL))))))

The single quote symbol acts as a macro; it is expanded upon input. Thus ' cannot 
be manipulated as an atom within LISP functions. Remember ' does not mean QUOTE 
standing alone; it must take an argument.

Exercise 16.1: Can the expression "(QUOTE e) be written  
as "e?

Solution 16.1: Yes.

Exercise 16.2: Describe the objects x which satisfy  
v['x] = v[x].

Solution 16.2: { x | v['x] = v[x] } = { y | v[y] = y }, which is the set 
of all number atoms, LISP functions, LISP special forms, and 
certain non-atomic S-expressions that evaluate to themselves.

Exercise 16.3: What is the history of the term macro?
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CHAPTER 17

More Functions

•	 NOT: predicate

Defined by: (SETQ NOT (LAMBDA (X) (EQ X NIL))).

•	 NULL: predicate

Defined by: (SETQ NULL (LAMBDA (X) (NOT X))).

Note NULL is just a synonym for NOT. We may prefer to use 
NULL when testing for NIL and to use NOT when performing the 
Boolean operation of logical negation.

Exercise 17.1: Show that v[(NOT (NULL y))] = v[(AND y)].

•	 GREATERP: predicate

v[(GREATERP n m)] = if v[n] > v[m] then T else NIL. v[n] and 
v[m] must be numbers.

•	 LESSP: predicate

v[(LESSP n m)] = if v[n] < v[m] then T else NIL. v[n] and v[m] 
must be numbers.

Exercise 17.2: Show that when x and y are integers in the 
following:

v[(GREATERP x y)] = v[((LAMBDA (X Y) (GCHECK  (DIFFERENCE (DIFFERENCE X Y) 1), 
(DIFFERENCE Y X))) x y)]
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where GCHECK is defined by

(SETQ GCHECK (LAMBDA (A B)
                     (COND ((EQ A 0) T)
                           ((EQ B 0) NIL)
                            (T (GCHECK (PLUS A -1) (PLUS B -1))))))

Exercise 17.3: Define the function GCD in LISP, where  
v[(GCD a b)] is the greatest common positive integer divisor 
of the two positive integers a and b. Hint: investigate the 
Euclidean algorithm.
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CHAPTER 18

More About Typed-Pointers

In order to handle number atoms efficiently as values within the LISP interpreter, we have 
used pointers to numbers in sketching the working of the v operator. This use of pointers 
is also required to allow functions to be treated as values. The guiding idea is that the LISP 
interpreter needs to know, at least potentially, the name or lexical expression associated 
with any value being manipulated, and every such value is represented by a typed-pointer 
to some complete representation of that value.

In particular, then, a number must be represented in a way that permits the proper 
result when printing it, using it as an argument in a computation or as a CONS argument, 
and when creating a new number as an intermediate result.

Consider:

v[3.1],
v[A], where v[A] has been made equal to 3 via (SETQ A 3),
v[(PLUS 2 3)],
v[(PLUS 2 A)],
v[(CONS (PLUS 2 A) 1)].

Whenever a number is computationally created, by evaluating (PLUS 2 3), for 
example, that number is entered in an available row in the number table, if and only if it is 
not already present. For such computationally created numbers, some time can be saved 
by not constructing the number-name text-string; in fact, for the sake of uniformity, we 
discard the text-string name of input numbers. Such nameless number atoms are called 
lazy number atoms. If a lazy number atom must be printed out, only then do we construct 
its text-string name. Also, the computationally-created number atoms that are no longer 
needed should, from time to time, be removed from the number table.

Similarly, a function or special form must be represented in a way which permits the 
proper result when applying it, printing it, or using it as an argument in a computation.

Consider:

v[PLUS],
v[(PLUS 2 3)],
v[(EVAL (APPEND 'PLUS '(2 3)))],
v[(EVAL (APPEND PLUS '(2 3)))].
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An appropriate internal representation of a function such as v[PLUS] is as a typed-
pointer to the atom PLUS, where this typed-pointer has the typecode 10, as opposed to 8, 
indicating that it refers to a built-in function, which is the value of the pointed-to atom. In 
this way, we know both the function and its name.

Thus, a built-in function that is the value of an ordinary atom x stored at  
an entry j in the atom table is represented by the typed-pointer bf ( j ). This atom table 
entry appears as [x, 10, t, −, −]. The value field entry t is an integer that indicates the 
particular built-in function, which is the value of x. In contrast, the ordinary atom x is 
represented by the typed-pointer oa( j).

Also, a built-in special form, which is the value of an ordinary atom x stored at an 
entry j in the atom table, is represented by the typed-pointer bs( j). This atom table entry 
appears as [x, 11, t, −, −]. The value field entry t is an integer that indicates the particular 
built-in special form, which is the value of x.

A user-defined function is constructed by the special form LAMBDA by CONSing 
together the argument list and body S-expressions given as input and returning a 
typed-pointer to this constructed S-expression in the list area. This typed-pointer has 
the typecode 14, indicating an unnamed function. Similarly, the special form SPECIAL 
constructs a dotted-pair and returns a typed-pointer to this dotted-pair with the typecode 
15, indicating an unnamed special form.

When SETQ assigns an unnamed function or special form to an ordinary atom, the 
value of that atom is henceforth represented by a typed-pointer to that atom whose 
typecode is 12 for a user-defined function and 13 for a user-defined special form. Suppose 
the ordinary atom F occupies row i in the atom table and suppose we evaluate (SETQ F 
(LAMBDA (X) 1)). Then the ordinary atom F has i : [F, 12, j, −, −] as its row in the atom table, 
where  and . The typed-pointer representing v[F] 
then has 12 as its typecode and i as its pointer part. This allows us to know the name as 
well as the defining S-expression of the function, which is the value of F.

Exercise 18.1: Can the built-in function EQ be used to test 
whether two functions are equal?

Solution 18.1: Two typed-pointers can be checked for 
equality with EQ, and thus EQ can be used to determine 
when exactly the same named identical built-in or user-
defined function or special forms are presented. Identically 
defined user-defined functions or special forms that have 
different names (or different defining dotted-pairs if they are 
unnamed) cannot be successfully tested for equality with EQ. 
Of course, the general logical problem of deciding when two 
functions specified by formulas are the same is undecidable, 
although many special cases can be handled.
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Exercise 18.2: How could two unnamed functions with the 
same shared defining dotted-pair be presented to EQ for 
comparison?

Solution 18.2: The rather pointless function (LAMBDA (X)  
(EQ X X)) allows the same defining dotted-pair, or indeed, 
the same typed-pointer to any value to be presented to EQ for 
comparison.

We may describe the typed-pointers used to represent built-in 
or user-defined named functions and special forms as doubly 
indirect typed-pointers. Of course the LISP interpreter must 
convert such a doubly indirect typed-pointer to the desired 
singly indirect index value whenever this is required.
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CHAPTER 19

Binding Actual Values to 
Formal Arguments

In order to implement the e operator for evaluating λ-expression bodies within the 
LISP interpreter, we must devise a mechanistic way to bind actual arguments to formal 
arguments and to honor the contexts thus established during the time that a related 
λ-expression is being evaluated. There are several ways to do this. The earliest approach, 
which was employed in the original LISP interpreter for the IBM 704 and 709, was to 
maintain a so-called association list. It is convenient to describe this approach and then 
use it as a model to explain how a LISP interpreter works in effect, if not in fact.

The association list is a LISP list that is the value of the built-in ordinary atom ALIST. 
The elements of the association list are dotted-pairs (ni . vi), where ni is an ordinary 
atom used as a formal argument, and vi is an S-expression or function, which is an actual 
argument bound to ni. Such dotted-pairs are put on the association list as follows when 
a function call expression (g a1 … ak) is to be evaluated. The formal argument list of v[g], 
(  f1, … , fk) is retrieved and the formal argument—actual argument dotted-pairs ( fi . v[ai]) 
(when v[g] is a function), or ( fi . ai) (when v[g] is a special form) are formed and CONSed 
onto v[ALIST] in order from the first to the last argument. An exception is made within 
the LISP interpreter so that functions and special forms like v[PLUS] are allowed to be 
elements in association list dotted-pairs. This is required since LISP functions and special 
forms may take functions and/or special forms as arguments.

Now the body of v[g] is obtained and the LISP interpreter is recursively invoked to 
evaluate it. During this evaluation, whenever an ordinary atom d is encountered. It is 
evaluated in the current context by first searching the association list from front to back 
for the first dotted-pair of the form (d . w); if such a pair is found, the value of d is taken 
to be w. Otherwise, if no such pair is found on v[ALIST], then the value of d is sought in 
the atom table entry for d. When the body of v[g] has been evaluated within the context 
given by the current association list, the initial k dotted-pairs corresponding to the formal 
argument bindings of v[g] are removed from the association list v[ALIST]. This model of 
resolving the value bound to an ordinary atom is called dynamic scoping, as opposed to 
the lexical or static scoping found in languages like Algol.

In Algol, function definitions may be lexically nested in the defining text. The value of 
a variable x in the body of a function p is determined as the value bound to x in the closest 
function body in which the function p is nested, including the body of p itself in the case 
where x is a locally defined variable or an argument of p, or in the atom table if p is not 
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nested within any other functions. This lexical scoping search to determine the value of a 
variable is equivalent to lexically substituting the actual value to be bound to x at the time 
of calling a function p, which has an formal argument named x for the name x within the 
function body of p, excepting those function bodies nested within p, which have a formal 
argument called x.

Suppose we have two functions, f (a, b) and g(b, c), at the same lexical level, where g 
is called from within f. With Algol lexical scoping, the value of a within g is the global atom 
table value of a, whether or not g is running called from f. With LISP dynamic scoping, the 
value of a within g is the global atom table value if g is running from a top-level call to g, and 
the value of a is the actual argument value passed to f for binding to a if g is running called 
from f. (Algol has its own complexities, in particular, Algol has some gnarly implications of 
its lexical static scoping binding rule. This is only a problem when procedures are declared 
nested within procedures and mixes the names of formal arguments and nonlocal variables; 
C avoids these problems by forbidding the declaration of lexically-nested procedures.)

Notice that if the same ordinary atom x is used several times in differing 
λ-expressions as a formal argument, and if the corresponding functions are called one 
within another, then the same atom x will occur several times in dotted-pairs on the 
association list during a certain time period. Whenever x must be evaluated, the latest 
existing binding will be used. This is exactly the right thing to do, but apparent mistakes 
can occur when this fact is forgotten.

For example, if we type in:

(SETQ G 3)                        followed by
(SETQ F (LAMBDA (X) (CONS X G)))  and
(SETQ B (LAMBDA (G X) (CONS G (F (PLUS X 1)))))

then v[(B 2 0)] = (2 . (1 . 2)), but v[(F 1)] = (1 . 3). The ordinary atom G occurring in the 
body of the function v[F] is said to be a free variable of the function v[F]. In general, any 
ordinary atom occurring in a function or special form body that is not listed as a formal 
argument of that function or special form is a free variable of that function or special form.

When the body of a function or special form is evaluated in a context provided by 
the bound pairs of the association list, the values of the free variables encountered are 
determined by the current association list if possible. Thus you cannot write a function like 
v[F] and expect its free variables to have the values of the atom table entries of those names, 
unless you are careful to not use those names elsewhere as formal arguments, or at least 
arrange to never have any of them bound on the association list when the function is called.

This situation is not so bad. We only have to use sufficient discipline to avoid picking 
formal argument names and global atom table names from among the same candidates 
whenever confusion might result.

A countervailing benefit of the simple LISP argument binding rule is that we can use 
the fact that the latest binding on the association list is the current value of an ordinary 
atom to skip passing arguments to functions explicitly when we know that the desired 
binding will already be in force. For example, consider:

(SETQ MAXF (LAMBDA (L F)
                   (COND ((NULL (CDR L)) (CAR L))
                   (T (MH (CAR L) (MAXF (CDR L) F))))))
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and

(SETQ MH (LAMBDA (A B)
                 (COND ((GREATERP (F A) (F B)) A)
                       (T B)))).

Here F is a free variable in MH, which will be properly interpreted as the function 
bound to F when MAXF is invoked, since MH is only intended to be used from within MAXF. 
This device is called skip-binding.

There are situations, however, in which the evaluation of an apparently free variable 
done by following the simple association list model for context evaluation is clearly 
counterintuitive. Consider the example:

(SETQ F (LAMBDA (A)
                (G (PLUS A 1)
                   (LAMBDA (X) (CONS X A))))).

Here we have a function body consisting of a call to some function G, which is passed 
a function created by LAMBDA as one of its actual arguments, namely v[(LAMBDA (X) (CONS 
X A))]. The ordinary atom A is a free variable of this argument function, but A is a formal 
argument, not a free variable, of the containing function F being defined.

Now suppose we define G with (SETQ G (LAMBDA (A H) (H A))). Then v[(F 1)] = (2 . 2).  
But, if we define G with (SETQ G (LAMBDA (O H) (H O))), then v[(F 1)] = (2 . 1). Thus, in 
order to avoid such surprises, we have to not only avoid conflicts with our choice of 
global names and formal argument names, but we also must be aware of conflicts if we 
use the same names for formal arguments in different functions whenever functional 
arguments are used. This difficulty is called the functional argument problem or 
“funarg” problem.

Exercise 19.1: Show that the functional argument difficulty 
can occur in the form of a free-variable conflict, without the 
use of a λ-expression or special-expression appearing as an 
actual argument.

Solution 19.1: Consider:

(SETQ Z (LAMBDA (X) (CONS X A)))
(SETQ F (LAMBDA (A) (G (PLUS A 1) Z)))
(SETQ G (LAMBDA (A H) (H A))).

Then v[(F 1)] = (2 . 2).

The functional argument problem is really just a matter of potentially 
misunderstanding binding times. A variable may be a global variable some times and 
a formal argument at other times during the evaluation of various S-expressions that 
are being evaluated in order to evaluate a root S-expression. The notion of free variable 
is syntactic; a variable is free with respect to a function or special form according to its 
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appearance in the associated body; it is not a temporal notion. However, such function 
body S-expressions are evaluated in a temporal sequence, and particular variables may 
be assigned values (i.e., be bound) differently at different times. Every ordinary atom must 
have something bound to it whenever it is evaluated (or else we have an evaluation error), 
but at some times this value is found in the association list, and at other times it is found 
in the atom table. In any event, the value of an ordinary atom at a given point in time is 
that value to which it has been most recently bound. Thus the value of an ordinary atom 
may change with time. The time at which each temporal act of the binding of values to 
ordinary atom variables occurs is as late as possible in LISP.

Returning to the example above: consider v[(F 1)], based on F defined by:

(SETQ F (LAMBDA (A)
                (G (PLUS A 1)
                   (LAMBDA (X) (CONS X A))))),

and G defined by (SETQ G (LAMBDA (A H) (H A))). We see that the value of A in (PLUS 
A 1) is 1 when (PLUS A 1) is evaluated, and this binding is found in the association list. 
But the value of A in (CONS X A) is 2 when it is evaluated and this later binding of 2 to A 
supersedes the earlier binding of A in the association list.

Late-as-possible binding is effected if binding occurs when functions are called; thus 
we will refer to this kind of binding as call-time binding, since the context that is used 
when a formal argument of a function or special form is evaluated is created when the 
function or special form is entered.

A direct solution to the functional argument problem that also prevents any 
global-local name conflicts is to program the built-in LAMBDA and SPECIAL forms to scan 
through the argument list and body of each function and special form being defined and 
substitute a unique new name for each formal argument name at each occurrence. These 
unique names could be formed from an increasing counter and a nonprinting character 
joined with the user-specified name. Of course, the original user-specified name 
should be kept for printing-out purposes. The effect of this would be to change the LISP 
temporal binding rule so that each ordinary atom is bound as early as possible, while still 
maintaining a call-time binding regime. This earliest binding time cannot be at the time 
of definition, but it can be just before a function or special form is applied to arguments at 
the top level of the LISP interpreter.

Exercise 19.2: How does this device of using unique formal 
argument names compare with using the Algol substitution 
rule for function calls instead of the LISP association list 
binding rule?

In practice the functional argument problem is not serious. Discipline and due care 
in choosing names is all that is needed to avoid trouble. Of course in a language like C, 
there is no chance of trouble to begin with.

Exercise 19.3: Explain how the function M defined here works: 
(SETQ M (LAMBDA (M X) (M X))). Describe the contexts in 
which this function fails to work.
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Some versions of LISP use a rule for evaluating selected atoms that relegates the 
association list to a lower priority. Such a high-priority atom is evaluated by looking at 
its global atom table value first, and then, only if this is undefined, is the association list 
searched. This exception is annoyingly nonuniform, so we use strictly temporal binding 
here. Note, however, that this approach of relegating association list bindings to be of 
lower priority than global atom table bindings for selected atoms ensures that atoms like 
NIL and PLUS can be forced to always have their familiar values (except if explicit SETQ 
operations are done, and even this can be restricted). A similar variation is commonly 
found where an atom’s global atom table value is used whenever that value is a function 
or special form and the atom is being used as such. Another kind of binding rule, instead 
of call-time binding, is often used in LISP, where the free variables in a function body 
are bound, with respect to that function body only, at the time the function is computed. 
This requires that a tree of association lists or other equivalent structures be maintained. 
Indeed the elaborate binding rules that have been introduced into current LISP dialects 
to “cure” perceived anomalies constitute one of the major areas of extension of LISP.

Exercise 19.4: Explain how the following function B, defined 
below, works on number arguments.

(SETQ B (LAMBDA (NIL)
                (COND ((GREATERP NIL 0) T)
                (T 'NIL)))).

Solution 19.4: It works just fine.

Searching for a formal argument atom in a linear association list can be time-
consuming. Another strategy for binding values to formal argument atoms, which is called 
shallow binding, is a preferable way to handle argument binding. With shallow binding, 
whenever a value is to be bound to an ordinary atom, we arrange to save the present value 
of the ordinary atom at the top of a corresponding private push-down list associated 
with that atom. After having introduced such private push-down lists, argument binding 
may then be done by first pushing the current value of each ordinary atom to be bound, 
together with its typecode, on its corresponding push-down list, and then reassigning the 
values of each such atom in order to effect the bindings. When a user-defined function or 
special form has been evaluated, the unbinding that restores the previous context is done 
by popping the push-down list of each formal argument ordinary atom. Shallow call-time 
binding is used in the LISP interpreter program, given below.

The operation of binding a value, represented by a typed-pointer p, as the current 
value of an ordinary atom is similar to the effect of the SETQ function, but not identical.  
In particular, if p is a type 14 or 15 typed-pointer, it is not transmuted into a type 12 or  
13 type-pointer. Moreover, a doubly indirect type 12 or 13 typed-pointer is transmuted 
by one level of dereferencing into the index of the list area node where the associated 
(argument list, body) dotted-pair resides, and this index, together with the associated 
typecode 12 or 13, becomes the current value of the ordinary atom being bound. These 
binding transmutation rules are appropriate because binding a function value to a formal 
argument atom is the act of associating a set of ordered pairs with the formal argument atom.  
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The name, if any, of a function is not preserved by binding, however. Thus, the act of 
binding a named function to a formal argument atom causes that function to temporarily 
have a new name. For example, typing in ((LAMBDA (X) X) PLUS) results in {builtin 
function: X} being printing out.

Exercise 19.5: How does a recursive function, like FACT, 
continue to work when it is bound to another symbol, say G, 
and then invoked as (G 3)?

Note that the following identities are a consequence of the simple association-list 
binding rule discussed above:

v[((SPECIAL (X) (EVAL X)) Y)] = v[Y], and

v[((LAMBDA (X) X) Y)] = v[Y], but

v[((SPECIAL (X) (EVAL X)) X)] = X, and

v[((LAMBDA (X) X) X)] = v[X].

The identity v[((SPECIAL (X) (EVAL X)) X)] = X demonstrates the distinction 
between the LISP context-dependent association-list binding rule and the Algol 
substitution rule in assigning a meaning to a special form. There is no association list with 
the substitution rule. Substitution of X for X would produce EVAL applied to X, the value of 
which would then be v[X] as found in the ordinary atom table. The LISP context-dependent 
binding rule leads us to compute EVAL applied to X, after X is bound to X, so that the resulting 
value is again X. It is not the case that one of these rules is “better” than the other; however, 
our expectations may be violated when we replace one rule with the other.

Exercise 19.6: What is v[((LAMBDA (X) (CONS (SETQ X 2)  
X)) 3)]?

Solution 19.6: (2 . 2). When SETQ is used to assign a value to 
an ordinary atom that is a currently active formal argument, 
the actual argument value it was bound to is lost. This is, in 
essence, a dynamic rebinding operation. In the form of LISP 
corresponding to the LISP interpreter given in this book, it 
is not possible to change the global atom table value of an 
atom that is active as a formal argument without introducing 
a new built-in function for this purpose. We can, however, as 
just seen, change the value of a current bound atom; that new 
binding will disappear when the function that established the 
binding is exited.

Exercise 19.7: Define a LISP special form FREEVAR, which 
takes a λ-expression L as input and returns a list of all the 
atoms in L that are free variables within L.
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Exercise 19.8: Explain the difficulty hidden in the following 
LISP input.

(SETQ F1 (LAMBDA (G L) (F2 (CAR L) (CDR L))))
(SETQ F2 (LAMBDA (H L) (CONS (G H) L)))
(SETQ H ( LAMBDA (A B) (COND  ((NULL A) B)  

(T (H (CDR A) (PLUS B 1))))))
(F1 H (QUOTE ((1))))

Most LISP dialects provide an additional class of functions called macros. We 
could introduce macro-functions by defining a built-in special form called MACRO, which 
behaves like LAMBDA and SPECIAL, and builds an argument, body dotted-pair in the same 
manner. Macro functions obey the following evaluation rule. If m is a macro function that 
has k arguments, then:

v[(m a1 a2 ... ak)] = v[((EVAL (LIST 'SPECIAL (CAR (BODY m))
                          ( LIST 'EVAL (CDR (BODY m))))) a1 a2 ... ak)].

Exercise 19.9: Define a LISP function called MAC, which takes 
as input a user-defined LISP function f and an argument list 
w and returns the value of f on the arguments w computed as 
though f were a macro.
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CHAPTER 20

Minimal LISP

Let the set of basic S-expressions be the set of ordinary atoms (with nonnumeric names) 
and non-atomic S-expressions formed from these. The following nine functions and 
special forms constitute a set of functions and special forms that are universal in the 
sense that, with these, any computable function of basic S-expression arguments can be 
expressed:

QUOTE, ATOM, EQ, CONS, CAR, CDR, COND, LAMBDA, LABEL.

Remember that LABEL is really a notational device to allow the statement of recursive 
λ-expressions, so we might (weakly) say that there are just eight functional components of 
minimal LISP.

Why would we consider what constitutes a minimal collection of LISP operators? We 
would never want to use such a silly restricted programming language. The answer is that 
LISP is not just an unusual, but practical, programming language; it is heavily influenced 
by the ethos of the mathematical theory of computation, where we ask what functions 
can be computed and how many steps are needed to compute a function in terms of its 
input. Generally we restrict ourselves to integer domain and range sets. In order to define 
what a step is, we find it useful to consider simple models of computation such as Turing 
machines. Minimal LISP is another such computational model.

The computable functions of basic S-expression arguments correspond to the 
computable functions of nonnegative integers since we can prescribe an effective 
enumerating mapping that assigns a nonnegative integer to every basic S-expression. It is 
somewhat easier to show just that the computable functions of nonnegative integers are 
subsumed by the computable functions of basic S-expression arguments. To do this, we 
associate the integer k with the atom NIL if k is 0, and with the list (T … T) consisting of k 
T’s if k > 0. Thus nonnegative integers, and by further extension, rational numbers, are, in 
effect, included in the domains of various minimal LISP functions.

Exercise 20.1: Write the minimal LISP function that 
corresponds to addition using the number-to-list 
correspondence stated above. Then do the same for 
subtraction of a lesser number list from a greater number list.
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Exercise 20.2: Discuss the pros and cons of extending the 
definitions of CAR and CDR so that v[(CAR NIL)] = v[(CDR NIL)] = NIL.

Exercise 20.3: Do EVAL, ATOM, EQ, CONS, CAR, CDR, COND, SPECIAL, 
and LABEL constitute a universal LISP minimal system?
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CHAPTER 21

More Functions

This chapter discusses more functions and special forms.

•	 SUM: function with a varying number of arguments

v[(SUM n1 n2 … nk)] =  v[(PLUS n1 (PLUS n2 ( … (PLUS nk 0)) … ))].

•	 PRODUCT: function with a varying number of arguments

v[(PRODUCT n1 n2 … nk)] =  v[(TIMES n1 (TIMES n2 (…(TIMES nk 1)) … ))].

•	 DO: function with a varying number of arguments

v[(DO x1 x2 … xk)] = v[xk].

Since DO is a function, its arguments are all evaluated from left 
to right, and the last argument value is then returned. This 
function is useful when its arguments have side-effects that 
occur during their evaluation. Basically, DO provides a means 
to execute a sequence of statements (function applications) as 
in a traditional programming language.

•	 INTO: function

Defined by:

(SETQ INTO (LAMBDA (G L)
                   (COND ((NULL L) L)
                         (T (CONS (G (CAR L))
                                  (INTO G (CDR L))))))).

Given the list L = (L1 L2 … Lk), the INTO function computes the 
application of the function or special form G to each element 
of L to obtain ((G L1) (G L2) … (G Lk)).
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•	 ONTO: function

Defined by:

(SETQ ONTO (LAMBDA (G L)
                   (COND ((NULL L) L)
                         (T (CONS (G L)
                                  (ONTO G (CDR L))))))).

Given the list L = (L1 L2 … Lk), the ONTO function computes the 
application of the function or special form G to the list L and, 
recursively, to every tail of L to obtain ((G L) (G ( CDR L)) …  
(G (CDR (CDR … (CDR L)))).

•	 APPLY: special form

Defined by:

(SETQ APPLY (SPECIAL (G X) (EVAL (CONS G X)))).

Exercise 21.1: Note v[(APPLY CAR ('(1 . 2)))] = 1 and 
v[(APPLY CONS ('A 'B))] = (A . B). What is v[(APPLY CAR  
(1 . 2))]? What is v[(APPLY CAR ((1 . 2)))]? What is v[(APPLY 
CAR '(1 . 2))]? What is v[(DO (SETQ A '(1 . 2)) (APPLY 
CAR (A)))]? Did you find a bug in the LISP interpreter?

Exercise 21.2: v[(APPLY G (x1 ...xn))] is intended to be 
the same as v[(G x1 ... xn)]. But we may sometimes forget 
to enclose the arguments x1, ..., xn in parentheses. What is 
wrong with defining APPLY with (SETQ APPLY (SPECIAL (G 
X) (EVAL (CONS G (LIST X)))))? Can you think of a better 
solution?

Exercise 21.3: Can you think of a reason why the name 
G should be replaced by an unlikely name like $G in the 
definition of APPLY? Hint: consider the situation where the 
value of the ordinary atom G is a user-defined function and G 
is used in a call to APPLY. Why isn’t this a problem in INTO and 
ONTO? Shouldn’t X be replaced by an unlikely name also?

Exercise 21.4: The version of INTO given above only works for 
functions of one argument. Give a modified version that works 
for functions of k arguments with a list of k-tuples provided as 
the other input. Hint: use APPLY.
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Exercise 21.5: What is v[MINUS]? What is v[(LIST MINUS 2)]? 
What is v[(DO (SETQ H (LAMBDA (H) ((CAR H) (CAR (CDR H)) 
))) (H (LIST MINUS 2)) )]?

Exercise 21.6: Define a LISP function COPYL that takes a single 
list L as input and returns a copy of L that shares no nodes 
with the input list L.

Exercise 21.7: Define a LISP function NAINX that takes an 
atom a and a list x as input and returns the number of times 
the atom a occurs at any level in the list x.

Exercise 21.8: Define a LISP function NAINS that takes an 
atom a and a non-atomic S-expression x as input and returns 
the number of times the atom a occurs in x at any level.

Exercise 21.9: Define a LISP function NEINS1 that takes an 
S-expression e and a list s as input and returns the number of 
times e occurs as an element of the list s.

Exercise 21.10: Define a LISP function NEINSX that takes an 
S-expression e and a list s as input and returns the number of 
times e occurs as an element of the list s or as an element of 
any list occurring in the list s at any level, including s itself.

Exercise 21.11: Define the LISP function UNION that takes two 
lists x and y as input and returns the list z whose elements are 
the elements of the set union of x and y (i.e., the result is to 
contain only unique elements).

Exercise 21.12: Define the LISP function SORT that takes a list 
of numbers as input and returns the corresponding sorted list 
of numbers as the result.

Solution 21.12:

(SETQ SORT
(LAMBDA (X)
        (COND ((NULL X) X)
              (T (LABEL MERGE
                        (LAMBDA (V L)
                                (COND ((OR (NULL L) (LESSP V (CAR L)))
                                       (CONS V L))
                                       (T (CONS (CAR L)
                                               (MERGE V (CDR L))))))
                 (CAR X) (SORT (CDR X)))))) )
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Note LABEL is used here, so you will have to define MERGE as a 
separate function if you want to try this in the LISP interpreter 
as given below.

Exercise 21.13: Define the LISP function SIGMA that takes a 
number-valued function g of an integer argument as input, 
together with two integers a and b as additional input, and 
which returns the value 

a i b

g i
£ £
å ( )

Solution 21.13:

(SETQ SIGMA (LAMBDA (G A B)
                    (COND ((LESSP B A) 0)
                           (T (PLUS (G A) (SIGMA G (PLUS A 1) B))))))

SIGMA computes 
A i B

G i
£ £
å ( )  where G is a real-valued function of 

a single argument.

Exercise 21.14: Define the LISP function FACTORS that takes 
an integer n as input and returns a list consisting of the prime 
factors of n.

Let’s consider constructing a WHILE statement in LISP. A WHILE statement should 
repetitively evaluate some S-expression q until some other S-expression p evaluates to 
NIL. For example, assuming we define WHILE as a special form with two arguments P and 
Q, we should be able to execute:

(SETQ I 0)
(SETQ S 2)
(WHILE (LESSP I S) (DO (SETQ I (PLUS I 1)) (PRINT (LIST I))))

and observe (1) (2) printed out.
Note that for WHILE to terminate nontrivially, it will be necessary for the evaluation of 

the actual arguments corresponding to P and/or Q to involve some side-effect that leads to 
the value of the actual argument corresponding to P becoming NIL at some point. Such a 
side-effect can be obtained by using SETQ, PUTPROP, REMPROP, RPLACA, or RPLACD.

Here is one way to define WHILE.

•	 WHILE: special form

Defined by:

(SETQ WHILE (SPECIAL (P Q)
               (COND ((EVAL P)
                       (DO (EVAL Q) (EVAL (LIST 'WHILE P Q) ))))))
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	 v[(WHILE p q)] = NIL, if (WHILE p q) terminates. If v[p] is initially 
NIL, NIL is returned. Otherwise the argument q is evaluated 
repeatedly until v[p] becomes NIL. Generally a side-effect 
that induces a change in the value of p is required for WHILE to 
terminate.

Exercise 21.15: What is wrong with defining WHILE via:

(SETQ WHILE (SPECIAL (P Q)
               (COND ((EVAL P)
                       (DO (EVAL Q) (WHILE (EVAL P) (EVAL Q)) )))))?

Exercise 21.16: We may define WHILE via:

(SETQ WHILE (SPECIAL (P Q)
               (COND ((EVAL P)
                       (DO (EVAL Q) (EVAL (CDR (BODY WHILE)))) ))))

Explain why this works. Hint: review skip-binding.
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CHAPTER 22

Input and Output

In order to be able to specify a LISP function that behaves like an interactive program, we 
need a mechanism for printing messages to a user and for reading user-supplied input. 
The functions READ and PRINT satisfy these requirements.

•	 READ: pseudo-function

v[(READ)] equals the S-expression, which is typed in response 
to the prompt exclamation mark symbol ! typed to the user.

•	 PRINT: function with a varying number of arguments and 
innocuous side-effects

v[(PRINT x
1
 x

2
 … x

k
)] = NIL, with v[x

1
], v[x

2
], … , v[x

k
 ] each 

printed out at the terminal as a side-effect. If k is 0, a single 
blank is printed out.

•	 PRINTCR: function with a varying number of arguments and 
innocuous side-effects

v[(PRINTCR x
1
 x

2
 … x

k
)] = NIL, with v[x

1
], v[x

2
], … , v[x

k
 ] each 

followed by a carriage-return and printed out at the terminal 
as a side-effect. If k is 0, a single carriage-return is printed 
out. (A carriage-return is an old-fashioned way of saying 
newline. On Linux or OS-X, a newline is an ASCII linefeed(10); 
on Windows, a newline is actually the two ASCII characters 
carriage-return(13) followed by a linefeed(10)).
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CHAPTER 23

Property Lists

Ordinary atoms have values, and it is often convenient to imagine that an ordinary atom 
has several values. This can be accomplished by making a list of these values and using 
this list as the value whose elements are the desired several values. Frequently, however, 
these multiple values are used to encode properties. This is so common that LISP provides 
special features to accommodate properties.

Abstractly, a property is a function. LISP only provides for properties that apply 
to ordinary atoms and whose values are S-expressions, and it establishes and uses a 
special set of lists to tabulate input-output pairs of such properties. Suppose A is an 
ordinary atom and g is an abstract property function. Then the value of g on A is called 
the g-property value of A. Rather than computing a particular property value of an atom 
when it is needed, LISP provides a means to record such property values along with 
the corresponding ordinary atom, so that a property value may be retrieved rather than 
computed.

Each ordinary atom A has an associated list provided called the property list of A. The 
typed-pointer to this list is stored in the plist field of the ordinary atom A. This list may 
be thought of as an alternate value of A. Generally the property list of an ordinary atom A 
is either NIL, or it is a list of dotted-pairs. Each such dotted-pair, (p . w), in the property 
list for A is interpreted as meaning that the value of property p on A is w. Thus properties 
and property values are represented by S-expressions. In fact, usually properties are 
represented by ordinary atoms.

The following functions are provided in order to aid in handling property lists.

•	 PUTPROP: function with a side-effect

v[(PUTPROP a p w)] = v[a], and the property, property-value 
dotted-pair (v[p] . v[w]) is inserted in the property list for 
the atom v[a]. If another duplicate property, property-value 
dotted-pair for the property v[p] and the property-value v[w], 
is present, it is removed. v[a] must be an ordinary atom, and 
v[p] and v[w] are arbitrary S-expressions.
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•	 GETPROP: function

v[(GETPROP a p)] equals the current property value, which 
is dotted with the property v[p] on the property list for the 
ordinary atom v[a]. If a dotted-pair for the property v[p] does 
not exist on the property list of v[a], then NIL is returned.

•	 REMPROP: function with a side-effect

v[(REMPROP a p w)] = v[a], and the property, property-value 
dotted-pair (v[p] . v[w]) for the property v[p] is removed from 
the property list of the ordinary atom v[a] if such a dotted-pair 
exists on the property list for v[a].

Exercise 23.1: Define a special form called SPUTPROP analogous 
to PUTPROP, which does not have its arguments evaluated.

Solution 23.1: (SETQ SPUTPROP (SPECIAL (A P W) (PUTPROP 
A P W))).

The functions PUTPROP, GETPROP, and REMPROP can all be defined in terms of the basic 
built-in functions GETPLIST and PUTPLIST, where v[(GETPLIST a)] equals the property 
list for the ordinary atom v[a], and where v[(PUTPLIST a s)] = v[a], with the side-effect 
that the property list of the ordinary atom v[a] is replaced with the list v[s]. Now PUTPROP, 
GETPROP, and REMPROP are definable as follows:

(SETQ GETPROP (LAMBDA (A P)
                      (ASSOC (GETPLIST A) P)))

(SETQ ASSOC (LAMBDA (L P)
                    (COND ((NULL L) NIL)
                           (T (COND ((EQUAL P (CAR (CAR L))) (CDR (CAR L)))
                                  (T (ASSOC (CDR L) P)))))))

(SETQ REMPROP (LAMBDA (A P W)
                      (PUTPLIST A (NPROP NIL (GETPLIST A) (CONS P W)))))

(SETQ NPROP (LAMBDA (H L P)
                    (COND ((NULL L) (REVERSE H))
                          ((EQUAL P (CAR L)) (APPEND (REVERSE H) (CDR L)))
                          (T (NPROP (CONS (CAR L) H) (CDR L) P)))))

(SETQ PUTPROP (LAMBDA (A P W)
                      (PUTPLIST A (CONS (CONS P W)
                                        (GETPLIST (REMPROP A P W))))))
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Exercise 23.2: Why don’t we define PUTPROP as:

(LAMBDA (A P W)
        (COND ((EQ (GETPROP A P) W) A)
              (T (PUTPLIST (CONS (CONS P W)
                                 (GETPLIST A))))))?

Exercise 23.3: Can the same property-value pair occur on the 
same property list several times?

Solution 23.3: No, not if only PUTPROP is used to build 
property lists. And, in fact, REMPROP assumes duplicates are 
not present.

Exercise 23.4: Why is REVERSE used in NPROP? Is it necessary?

Exercise 23.5: Give definitions of PUTPROP, GETPROP, and 
REMPROP, so that properties can be relations rather than just 
functions. Thus multiple (p . w) dotted-pairs occurring on 
the same property list with the same p-value and differing w-
values are to be handled properly.

Solution 23.5: Only GETPROP needs redefinition, so that it 
returns a list of property values. It may be a beneficial practice 
to keep all properties functional, however. This is no real 
hardship, since, for example, (COLORS . RED), (COLORS . 
BLUE), and (COLORS . GREEN) can be recast as (COLORS . 
(RED BLUE GREEN)).

Exercise 23.6: One useful device that is commonly used is 
to specify class subset relations with T-valued properties. For 
example, we might execute:

(PUTPROP 'MEN 'MORTAL T),
(PUTPROP 'MAN 'MEN T), and
(PUTPROP 'SOCRATES 'MAN T).

But note that v[(GETPROP 'SOCRATES 'MORTAL)] equals 
NIL. (Also note that v[(GETPROP 'MEN 'MORTAL)] = T and 
v[(GETPROP MEN MORTAL)] are undefined.
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Write a LISP function LINKGETPROP, which will trace all property 
lists of atom properties with the associated value T reachable 
from the property list of an input atom A in order to find the 
specified property value pair (P,T) and return T when this pair 
is found. The value NIL is to be returned when no chain leads 
to the sought-for property P with a T value. Thus, for example, 
with the properties for MEN, MAN, and SOCRATES given above, 
(LINKGETPROP 'SOCRATES 'MORTAL) returns T; essentially 
(LINKGETPROP 'A 'P) asks if there is a chain of property 
“assertions” that implies A has the property P indirectly.

Solution 23.6:

(SETQ LINKGETPROP (LAMBDA (A P)
                          (COND ((EQ (GETPROP A P) T) T)
                                (T (SEARCH (GETPLIST A) P)))))

(SETQ SEARCH (LAMBDA (L P)
                     (COND ((NULL L) L)
                           ((AND (EQ (CDR (CAR L)) T)
                                 (ATOM (CAR (CAR L)))

                                            (EQ (LINKGETPROP (CAR (CAR L)) P) T)) T)
                                       (T (SEARCH (CDR L) P)))))

Exercise 23.7: Write a LISP function CKPROP such that (CKPROP 
a p w) returns T if (v[p] . v[w]) is on the property list for the 
atom v[a] and NIL otherwise. Now write a generalized form 
of CKPROP called TCPROP, which is defined such that (TCPROP a 
p w) returns T if there exists a sequence of atoms m

0
, m

1
, … , 

m
k
, with k ≥ 1, such that v[a] = m

0
, v[w] = m

k
, and (v[p] . m

i+1
) 

is on the property list of m
i
 for i = 0, 1, … , k − 1. TC stands for 

transitive closure.

The property-list functions defined above, especially REMPROP, and hence PUTPROP, 
are slow, and moreover they can create lots of garbage unreachable list-nodes. It would 
be more efficient if we could just change property lists as required, rather than rebuild 
them with CONSing each time a REMPROP is done.

There are two low-level functions with side-effects defined in LISP that provide the 
ability to change existing list-nodes that have been created with CONS. These functions are 
RPLACA and RPLACD.

•	 RPLACA: function with a side-effect

v[(RPLACA x y)] = v[x], after the car field of the list node 
representing the dotted-pair v[x] is changed to the typed-
pointer v[y].
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•	 RPLACD: function with a side-effect

v[(RPLACD x y)] = v[x], after the cdr field of the list node 
representing the dotted-pair v[x] is changed to the typed-
pointer v[y].

	 Now REMPROP can be programmed as follows:

(SETQ REMPROP (LAMBDA (A P W)
                      (PUTPLIST A (NAX (GETPLIST A) (CONS P W)))))

(SETQ NAX (LAMBDA (L P)
                  (COND ((NULL L) NIL)
                        ((EQUAL (CAR L) P) (CDR L))
                        (T (DO (NX L P) L)))))

(SETQ NX (LAMBDA (L P)
                 (COND ((NULL (CDR L)) NIL)
                       ((EQUAL P (CAR (CDR L))) (RPLACD L (CDR L)))
                       (T (NX (CDR L) P)))))

Exercise 23.8: Could NX be defined with an empty formal 
argument list () rather than (L P), and be called as (NX) in 
NAX?

Note this version of REMPROP can only be safely used when we can guarantee that the 
backbone nodes of property lists are not shared within other list structures.

Exercise 23.9: Program a version of APPEND, called NCONC, 
which uses RPLACD to append one list onto another by physical 
relinking.
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CHAPTER 24

What Is LISP Good for?

The quick answer to the question “What is LISP good for?” is (1) ideas and (2) 
experimental programs.

The algorithmic ideas that LISP inspires are often powerful and elegant. Even if LISP 
is not the target programming language, thinking about how to tackle a programming 
job using LISP can pay worthwhile dividends in ideas for data structures, for the use of 
recursion, and for functional programming approaches. The use of Algol-like languages or 
FORTRAN tends to limit programmers’ imagination, and both applications programmers 
and systems programmers can benefit by remembering the principles of LISP.

LISP is useful for building and trying out programs to solve predominantly 
nonnumeric problems such as natural language parsing or dialog processing, symbolic 
formula manipulation, retrieval in a LISP-encoded database, theorem proving, backtrack 
searching (e.g., game playing), and pattern recognition programs.

Most versions of LISP have been extended with arrays, strings, a FORTRAN-like  
statement-based programming facility via the so-called PROG special form, and many other 
features. Indeed, the enthusiasm for extending LISP is perennially high. Many extensions 
take the form of control structures and data structures for managing abstract search. As 
LISP is extended, however, it seems to lose its sparse pure elegance and uniform view of 
data. The added features are sometimes baroquely complex, and the programmers’ mental 
burden is correspondingly increased. Moreover, at some point it is legitimate to ask why not 
extend FORTRAN or C to contain LISP features, rather than conversely? And indeed this has 
also been done.

Often features are added to LISP to increase its speed. The standard accessing strategy 
in LISP is, in essence, linear searching through non-atomic S-expressions, and many 
attempts have been made to circumvent this. LISP with extensions, then, is likely to be a 
curious amalgam of considerable complexity, sometimes with the possibility of constructing 
faster programs as a compensating factor. (Although, if a program is perceived to be fast 
enough by its users, then it is fast enough, no matter what language it is written in.)

Not only does LISP perform slowly in comparison to conventional loop-based programs, 
but it is also designed as a self-contained programming system. Thus, like APL, it may be 
difficult to employ and/or control computer system resources, access files, and handle 
interrupts in a general and convenient manner. In short, without suitable extensions, 
LISP is not a systems programming tool, and insofar as a program must deal with such 
environmental issues, LISP is generally inadequate to the challenge. Since most programs 
with a long half-life have systems programming aspects, LISP is generally not the tool of 
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choice for building a robust, efficient system for long-term use. Note, however, system 
programming extensions can be added to LISP by introducing suitable “hooks” to the 
operating system; the well-known emacs text editor is written in an extended version of LISP.

Minor details also mitigate against LISP. Format control for terminal input and 
output is often lacking, for example, and this can be frustrating in many applications. 
Moreover, although LISP list notation is adequate for short functions (indeed, it 
encourages them), it is cumbersome compared to Algol notation, and the lack of 
traditional mathematical notation is a severe handicap in many cases. Notational 
extensions have been proposed, but again, simplicity is sacrificed.

On the other hand, LISP is an excellent tool for experimentation. A pattern-matching 
idea may be programmed and tested in a preliminary way more easily and quickly in 
LISP than in Pascal, for example. The lack of a variety of constrained datatypes and the 
absence of declarations and multiple statement forms often give an advantage to LISP as 
long as we banish efficiency considerations from our minds. Moreover, there are certain 
applications, notably formula manipulation tasks, where S-expressions and recursion are 
so well suited for the job that LISP matches the utility of any other language.

Unfortunately, many versions of LISP do not gracefully cohabit with programs 
written in other programming languages, so a system can’t generally be easily 
constructed that employs LISP just for selected subtasks. However, a special embeddable 
LISP interpreter could be relatively easily constructed as a C or FORTRAN callable 
subroutine package, which would allow the use of LISP for specialized purposes within a 
larger non-LISP system. (Indeed, you could modify the LISP interpreter program to read 
its input from a memory array rather than a file or the keyboard, and thereby achieve 
such a LISP subroutine.)

We shall consider several classical applications of LISP in the chapters that follow.
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CHAPTER 25

Symbolic Differentiation

The rules for differentiation are explicitly recursive, so it is easy to use LISP to compute 
the symbolic derivative of a real-valued function of real-number arguments. The biggest 
difficulty is the problem of input and output notation. If we agree to accept the LISP prefix 
notation for algebraic expressions, so that we enter 1 + sin(x + y)/x as (PLUS 1 (QUOTIENT 
(APPLY SIN ((PLUS x y))) x)) for example, then the task of differentiation is truly simple. 
But if we instead demand that the input and output be in traditional infix form, the job 
becomes more complicated.

We shall present a collection of LISP functions and special forms that provide the 
ability to define, differentiate, and print out elementary real-valued functions of real 
arguments. These LISP functions and special forms include FSET, DIFF, and FPRINT.

We will use the special form FSET to define a real-valued function of real arguments by 
typing (FSET G (X Y...) ( f )), where G is an ordinary atom, (X Y...) is a list of ordinary 
atoms denoting the formal arguments of the function G being defined, and f is an infix form, 
which is the body that defines G. For example, (FSET G1 (X Y) (X + Y * EXP(X))) defines 
the function G1(X , Y) = X + Y * EXP(X) in proper LISP prefix form as established by 
using SETQ with the appropriate λ-expression. The idea of FSET is to construct and execute 
the LISP S-expression, which defines the function expressed in the input to FSET; for 
example, (FSET G1 (X Y) (X + Y * EXP(X))) constructs (SETQ G1 (LAMBDA (X Y) (PLUS 
X (TIMES Y (APPLY EXP (X)))) )), which is then executed (i.e., evaluated).

Note that an infix form here is a kind of pun; it denotes the intended algebraic 
expression and it also is a particular LISP S-expression. The only caveat is that blanks must 
delimit operators in infix forms to ensure that they will be interpreted as atoms within the 
S-expression. We use the FORTRAN notation ∗ for multiplication and ∗∗ for exponentiation.

Such a function can be differentiated with respect to a variable, which may be either 
a free variable or a formal argument. The derivative is itself a function that has the same 
formal arguments. The derivative of such an FSET-defined function G with respect to X is 
denoted G#X. The LISP function DIFF will be defined to compute the derivative of such a 
real-valued function, G, with respect to a specified symbol X, and store the resulting function 
as the value of the created atom G#X. This is done for a function G by typing (DIFF G X).

In order to construct atoms with names like G#X, which depend upon the names 
of other atoms, we will use the built-in LISP function MKATOM, which makes atoms 
whose names are composed from the names of other atoms. MKATOM is defined such 
that v[(MKATOM x y)] equals the ordinary atom whose name is the string formed by 
concatenating the names of the ordinary atoms v[x] and v[y].
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Functions defined by FSET or by DIFF may be printed out for examination by using 
the LISP function FPRINT, as defined below.

A function H defined by FSET or DIFF may be evaluated at the point (x1, x2, ... ),  
where x1, x2, ... are numbers, by using APPLY. Thus, typing (APPLY H (x1 x2 ... )) causes the 
number H(x1, x2, ... ) to be printed out. Of course, all the subsidiary functions called in H 
must be defined as well.

The differentiation rules used by DIFF are as follows. The symbol D denotes 
differentiation with respect to a specific understood ordinary atom variable name x, 
called the symbol of D, as shown in the following:

D(A + B)  = D(A) + D(B)
D(A − B)  = D(A) − D(B)
D(−A)     = −D(A)
D(A ∗ B)  = A ∗ D(B) + B ∗ D(A)
D(A/B)    = D(A)/B + A ∗ D(B ∗ ∗(−1))
D(A ∗ ∗B) =  B ∗ A ∗ ∗(B − 1) ∗ D(A) + LOG(A) ∗ A ∗ ∗B ∗ D(B) (∗∗ denotes exponentiation)
D(LOG(A)) = D(A)/A

If F(X Y ... ) has been defined via FSET, then we use the chain rule:

D(F(A B ... )) = F#X(A B ... ) ∗ D(A) + F#Y(A B ... ) ∗ D(B) + ....

If A is an ordinary atom variable then D(A) = 1 if A is the symbol of D, and D(A) = 0 
otherwise. 

If A is a number, then D(A) = 0.
The infix forms used to define functions with FSET are translated into corresponding 

S-expressions, which will be called E-expressions in order to distinguish them in 
discourse. E-expressions are made up of evaluatable prefix S-expressions involving 
numbers and ordinary atoms and other E-expressions.

The basic LISP functional forms used in E-expressions are:

(MINUS a)

(PLUS a b)

(DIFFERENCE a b)

(TIMES a b)

(QUOTIENT a b), (POWER a b), where a and b are E-expressions

(APPLY h (x1 x2 ... )),  where x1, x2, ... are E-expressions, and h is 
an FSET-defined or DIFF-defined function.
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The definitions of FSET, DIFF, and FPRINT follow.

•	 FSET: special form

v[(FSET G (X Y ... ) (e))] = v[G] where G is an ordinary atom 
whose name does not begin with $, and (X Y ...) is a list of 
atoms that are the formal arguments to the function G being 
defined. e is an infix functional form that is used to define G(X, 
Y, ... ). As mentioned above, (FSET G (X Y ...) (e)) defines 
G to be a function of the arguments X Y ... whose body is 
given by the infix expression (e). The list (e) will be parsed and 
converted into a proper λ-expression used to define the value 
of the atom G.

FSET is defined by:

(SETQ FSET (SPECIAL ($G $L $Q)
                     (SET $G (EVAL (LIST 'LAMBDA $L (ELIST $Q))))))

The function SET has been defined above. Here we redefine SET by:

(SETQ SET (LAMBDA ($X $Y)
                   (EVAL (CONS 'SETQ (CONS $X (CONS '$Y NIL))))))

Exercise 25.1: Why are such strange formal argument names 
used to define FSET and SET? Hint: think about using SETQ 
to assign values to ordinary atoms, which are active formal 
arguments. In particular, suppose the $-signs were dropped, and 
we executed (FSET Y (X) X)?

Exercise 25.2: Can you think of a way to allow the user to 
write (FSET Y (X) = e)? Note the third argument here is =.

ELIST constructs the E-expression corresponding to its argument by using the Bauer-
Samelson-Ershov postfix Polish translation algorithm [SB60, Ers59]. ELIST is also used to 
process the argument of a unary minus operation.

Exercise 25.3: Use a library or, if you must, a web search to 
find out about Jan Łukasiewicz and about Polish notation.

(SETQ ELIST (LAMBDA (L)
                    (COND ((ATOM L) L)
                          ((EQ (CDR L) NIL) (ELIST (CAR L)))
                          (T (EP NIL NIL (DLIST L))))))
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(SETQ DLIST (LAMBDA (L)
                    (COND ((ATOM L) L)
                          ((NULL (CDR L)) (DLIST (CAR L)))
                          (T L))))

(EP OP P L) is the result of completing the Polish translation of L using the stacks  
OP and P.

(SETQ EP (LAMBDA (OP P L)
                 (COND ((NULL L) (COND ((NULL OP) (DLIST P))
                                       (T (BUILD OP P L))))
                       (T (POLISH OP P (CAR L) (CDR L))))))

(SETQ CADR (LAMBDA (L) (CAR (CDR L))))

(BUILD OP P L) puts the phrase ((CAR OP) P2 P1) on the P stack in place of P1 and P2, 
and goes back to EP to continue the translation.

(SETQ BUILD (LAMBDA (OP P L)
                    (EP (CDR OP) (CONS (LIST (NAME (CAR OP))
                                             (CADR P)
                                             (CAR P))
                                       (CDR (CDR P))) L)))

In (POLISH OP P B L), B is the current input symbol, and L is the remaining infix 
input. Either B is to be pushed on OP or else B is used to make a phrase reduction, and a 
corresponding entry is placed on the P stack.

(SETQ POLISH (LAMBDA (OP P B L)
                     (COND ((EQ B '-)
                            (H (LIST 'MINUS (ELIST (CAR L))) (CDR L)))
                           ((NOT (ATOM B)) (H (ELIST B) L))
                           ((NOT (MEMBER B '(+ : * / **)))
                            (COND ((OR (NULL L) (ATOM (CAR L))) (H B L))
                                  (T (H (LIST 'APPLY B (INTO ELIST (CAR L)))
                                       (CDR L)))))
                           ((OR (NULL OP) (CKLESS (CAR OP) B))
                            (POLISH (CONS B OP) P (CAR L) (CDR L)))
                           (T (BUILD OP P (CONS B L))))))

(H V L) pushes V onto the P stack and goes back to EP. It also changes a binary minus 
sign at the front of L to the unambiguous internal code : .

(SETQ H (LAMBDA (V L)
                (EP OP (CONS (COND ((AND (NOT (ATOM V))
                                         (NULL (CDR V))) (CAR V))
                                   (T V))
                             P)



Chapter 25 ■ SymboliC Differentiation

97

                    (COND ((AND (NOT (NULL L))
                                (EQ '- (CAR L))) (CONS ': (CDR L)))
                          (T L)))))

(SETQ CKLESS (LAMBDA (A B)
                     (COND ((EQ '** A) NIL)
                           ((OR (EQ '* A) (EQ '/ A))
                            (COND ((EQ '** B) T)
                                  (T NIL)))
                           ((OR (EQ '+ B) (EQ ': B)) NIL)
                           (T T))))

(SETQ NAME (LAMBDA (A)
                   (ASSO A '((** . POWER) (* . TIMES) (/ . QUOTIENT)
                             (: . DIFFERENCE) (+ . PLUS)))))

(SETQ ASSO (LAMBDA (A L)
                   (COND ((NULL L) L)
                         ((EQ A (CAR (CAR L))) (CDR (CAR L)))
                         (T (ASSO A (CDR L))))))

•	 FPRINT: special form

	 v[(FPRINT G)] = NIL, and the E-expression value of the function-
valued atom G is printed out in infix form.

	 FPRINT is defined by:

(SETQ FPRINT (SPECIAL ($G)
                      (DO (PRINT $G (CAR (BODY (EVAL $G)))
                                 '= (HP (CDR (BODY (EVAL $G)))))
                          (PRINTCR))))

(SETQ HP (LAMBDA (G)
                 (COND ((ATOM G) G)
                       ((NULL (CDR G)) (HP (CAR G)))
                        ((EQ (CAR G) 'MINUS) (LIST '- (HP (CADR G))))
                       ((EQ (CAR G) 'APPLY) (LIST (CADR G)
                                                   (INTO HP (CADR  

(CDR G)))))
                       (T (LIST (HP (CADR G)) (OPSYMBOL (CAR G))
                                (HP (CADR (CDR G))))))))

(SETQ OPSYMBOL (LAMBDA (X)
                        (ASSO X '((POWER . **) (TIMES . *) (QUOTIENT . /)
                                (DIFFERENCE . -) (PLUS . +)))))

•	 DIFF: special form

	 v[(DIFF G X)] = v[G#X], after the function G#X is defined as a side-
effect, where G is a known function and X is an ordinary atom.
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	 DIFF is defined by:

(SETQ DIFF (SPECIAL ($G X)
                    (SET (MKATOM $G (MKATOM '# X))
                          (EVAL (LIST 'LAMBDA (CAR (BODY (EVAL $G)))
                                      (DI (CDR (BODY (EVAL $G))) X))))))

(DI G X) is the E-expression form derivative of the E-expression G with respect to the 
atom X.

(SETQ DI (LAMBDA (E X)
                 (COND ((ATOM E) (COND ((EQ E X) 1) (T 0)))
                       ((NULL (CDR E)) (DI (CAR E) X))
                       (T (DF (CAR E) (CDR E) X)))))

(SETQ DF (LAMBDA (OP L X)
                 (COND ((EQ OP 'MINUS) (LIST OP (DI (CAR L) X)))
                       ((EQ OP 'PLUS) (LIST OP (DI (CAR L) X)
                                            (DI (CADR L) X)))
                       ((EQ OP 'DIFFERENCE) (LIST OP (DI (CAR L) X)
                                                  (DI (CADR L) X)))
                       ((EQ OP 'TIMES) (LIST 'PLUS
                                               (LIST OP (DI (CAR L) X) (CADR L))
                                              (LIST OP (CAR L)
                                                    (DI (CADR L) X))))
                       ((EQ OP 'QUOTIENT) (LIST 'PLUS
                                                (LIST OP (DI (CAR L) X)
                                                      (CADR L))
                                                (LIST 'TIMES (CAR L)
                                                      (DI (LIST 'POWER
                                                                (CADR L) -1)
                                                         X))))
                       ((EQ OP 'POWER) (LIST 'PLUS
                                             (LIST 'TIMES (CADR L)
                                                   (LIST 'TIMES
                                                         (DI (CAR L) X)
                                                         (LIST 'POWER (CAR L)
                                                                (LIST 'DIFFERENCE
                                                                     (CADR L) 

1))))
                                             (LIST 'TIMES
                                                   (LIST 'APPLY 'LOG
                                                         (LIST (CAR L)))
                                                   (LIST 'TIMES
                                                         (DI (CADR L) X)
                                                         (LIST 'POWER
                                                               (CAR L)
                                                               ( CADR L))))))
                       ((EQ OP 'APPLY)
                        (COND ((EQ (CAR L) 'LOG)
                               (LIST 'QUOTIENT (DI (CADR L) X) (CADR L)))
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                              (T (CHAIN (CAR L) (CAR (BODY (EVAL (CAR L))))
                                        (CADR L) (CADR L) X)))))))

(SETQ CHAIN (LAMBDA (F A B R X)
                    (COND ((NULL (CDR A)) (TERM F A B R X))
                          (T (LIST 'PLUS (TERM F A B R X)
                                   (CHAIN F (CDR A) B (CDR B) X))))))

(SETQ TERM (LAMBDA (F A B R X)
                   (LIST 'TIMES (DI (CAR R) X)
                         (LIST 'APPLY (MKATOM F (MKATOM '# (CAR A))) B))))

Exercise 25.4: Would it be okay to define TERM as

(LAMBDA (A R) (LIST 'TIMES (DI (CAR R) X)
                     (LIST 'APPLY (MKATOM F (MKATOM '# (CAR A))) B))),

and appropriately modify the associated calls?

Exercise 25.5: Is it necessary to use APPLY to compute 
functions at particular points? Is it necessary to use APPLY 
embedded in the bodies of functions created by FSET and DIFF 
at all?

Solution 25.5: The functions built by FSET and DIFF are full-
fledged LISP functions. The use of APPLY could be dispensed 
with, except that we then need to provide the function LOG, 
which is used in DIFF. Also, this would avoid the need to 
watch for the formal argument names used in the special form 
APPLY in order to avoid the special form functional binding 
problem. Using APPLY is convenient, however, since we then 
do not have to distinguish user function names from operator 
names such as PLUS and TIMES.

Exercise 25.6: The function DF allows products with 1 and 
sums and differences with 0 to be created. Write a modified 
version of DF that uses some auxiliary functions to simplify 
the E-expressions being formed so as to avoid such needless 
operations.

Exercise 25.7: Introduce the elementary functions EXP, SIN, 
and COS and implement the explicit differentiation rules that 
apply to them.
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CHAPTER 26

Game Playing

In this chapter we will discuss writing a LISP program to play a zero-sum, perfect-
information game. A perfect-information game is a game such as chess where the entire 
state of the game (i.e., the current position and its history) is known to all players. Poker is 
not a perfect-information game. A zero-sum game is just a game where if the game were 
played for money, then the sum of the winnings and losses is necessarily zero. Poker is a 
zero-sum game.

A fair game is a game where, for perfect players, the expected return to each player 
in points or money is 0. No one knows whether or not chess is a fair game. We need not 
assume that we are playing a fair game.

We shall also assume that:

 1. The game we wish to program is played by two players making 
alternate moves.

 2. Each position p is either terminal, in which case it represents 
a win, loss, or tie for each player as defined by the rules of the 
game; or, non-terminal, in which case it has a finite, non-zero 
number of successor positions, among which the player who 
is to move from position p must select.

 3. Every game must eventually reach a terminal position.

These hypotheses are satisfied by many games, although in chess, the rules are 
such that the position must be considered to include not only the current locations of 
the pieces and the specification of which player is to move, but also the past history of 
the game. This is required in the rules for castling, capturing en passant, and draw by 
repetition.

By tradition, one player is called box, and a position from which box is to move is 
denoted by a box symbol: □. Such a position is called a □ position. The other player is 
called circle, and a position from which circle is to move is denoted by a circle symbol: ○. 
Such a position is called a ○ position.

Terminal positions will be assigned values so that the value of a □ or ○ terminal 
position is 1 if the player box has won in that position and −1 if the player circle has won in 
that position. If tie terminal positions exist, we assign them the value 0. This means that 
box plays to maximize the value of the final terminal position, and circle plays to minimize 
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the terminal position to be achieved; box is called the maximizing player, and circle is 
called the minimizing player. Thus if we are playing chess and the maximizing player box 
is white, then a terminal position where white is checkmated is a □ position and has the 
value −1, while a terminal position where black is checkmated is a ○ position and has the value 
1. If Nim is being played, where the player who takes the last stone and leaves an empty 
position consisting of an empty arrangement loses, then the empty position with box to 
move is a □ terminal position, since there are no moves possible, and its value is 1, since 
circle lost by allowing this position to be reached. The empty position with circle to move is 
a ○ terminal position with the value −1.

Because of the assumption that the game is a zero-sum game, we see that we are 
assigning values to terminal positions entirely from box’s point of view. Thus if the value 
of a terminal position is 1, then its value to box is 1, and hence by the zero-sum property, 
its value to circle is −1. If, on the other hand, the value of a terminal position is −1, its value 
to box is −1 and hence its value to circle is 1. This form of assigning values to positions so 
that positions with positive values are good for box and bad for circle, while positions with 
negative values are good for circle and bad for box, is known as asymmetric valuation.

We would like to assign the values −1, 0, or 1 to all positions that may arise, not just 
terminal positions; and moreover we would like to assign them consistently in such a way 
that the value of a position is the value of that position to box, so that we continue to use 
asymmetric valuation. We would achieve this objective as follows.

Let b represent a □ position or a ○ position of the game, and let n(b) be the number 
of immediate successor positions, which may be achieved by moving from b. Let a
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 be the n(b) successor positions in some particular order. If b is a terminal position, 
n(b) = 0. Finally, when b is a terminal position, let u(b) be the value of b.

Now let’s define the value of a position b, not necessarily terminal, as w(b), where 
w(b) is defined recursively as:
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Hypotheses (1), (2), and (3) listed above ensure that w is well defined.
Note the asymmetry in the definition of w. Note also that the use of w to compute the 

value of a position b requires that all possible successor positions be valuated first and 
so on recursively. Thus we must generate the full game tree with root b whose leaf nodes 
are terminal positions that are valued by means of u. Then for each node whose sons all 
have values, we can back up the minimum or the maximum of these values as may be 
appropriate to the father node. By iteratively backing up, we may eventually compute the 
value of b. This process is known as minimaxing.

Von Neumann and Morgenstern [NM44] introduced the notion of minimaxing 
in a game tree in their treatise on game theory. Their purpose was to show that even 
for multistage games with alternative choices at each stage, any line of play could be 
considered to be the result of fixed strategies, that is, predetermined plans that could be 
adopted at the outset of a game by each player and followed mechanically thereafter. 
Such plans are multistage contingency plans.
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Thus every possible sequence of moves as represented by a path in the game tree is 
the joint result of the two strategies defined by that path.

Von Neumann and Morgenstern’s argument was a short inductive statement. They 
observed that games of 0 moves whose initial position is terminal have an obvious strategy, 
the null strategy. They then pointed out that the first step of the strategy for a game of n moves 
is just to make that move that yields the highest value for the resulting game of n − 1 moves (as 
established by the use of the known optimal strategy that exists by the induction hypothesis).

They also proved that the value of a position always exists, and that minimaxing is 
the explicit method of computing it.

The basic principle of dynamic programming as formulated by Richard Bellman 
[Bel57] is another statement of the idea underlying minimaxing. (Here “programming” 
means planning or decision-making, not really programming.) Given a multistage 
decision process to be undertaken where one wishes to know a sequence of decisions 
that optimizes some desired quantity such as profit, the principle of dynamic 
programming is: select that decision that results in the state such that the subsequent 
use of an optimal policy from that state yields the fully optimal result. Thus to implement 
dynamic programming, we back up scores in the tree of decisions to find that sequence 
of decisions that optimizes the initial state. Often there are mathematical short-cut 
approaches to solving dynamic programming problems as opposed to brute force back 
up, but the objective is always to discover the optimizing path in the tree of decisions.

It is a remarkable fact that in a terminating two player perfect-information game 
where ties are not allowed, there must be a forced win for either the first or second 
player. That is: there exists a strategy for one player that guarantees that player will win, 
regardless of the opponent’s actions. The proof of this fact is based on the valuation 
function scheme given above. The value w(b) is 1 if and only if box has a forced win and 
−1 if and only if circle has a forced win, where b is the initial □ or ○ position.

We are interested not only in computing the maximum value to box of a position b, 
but also in discovering the particular move from position b, which eventually results in a 
terminal position from which that value is inherited.

The LISP function PICK takes a game position as an argument and computes the 
value of that position to box and the corresponding best successor position for the player 
to move as the two elements of the output dotted-pair. If there is no successor position to 
be recommended, then NIL is returned as the second element.

To use LISP, we must encode game positions as S-expressions. Such a game position 
S-expression includes, among other things, whether the position is a □ or a ○ position.

(PICK B) returns a dotted-pair (x . m) where m is an optimal successor position for 
box of position B, and x is its score to box, where x and m are computed by minimaxing.

(SETQ PICK (LAMBDA (B)
                   (COND ((DEEPENOUGH B) (CONS (U B) NIL))
                   (T (OPT (GENMOVES B)
                           (COND ((BOXPOS B) GREATERP)
                                 (T LESSP)))))))

(DEEPENOUGH B) returns T if v[B] is a terminal position and NIL otherwise.
(BOXPOS B) returns T if v[B] is a □ position and NIL if v[B] is a ○ position.
(U B) returns the value −1, 0, or 1, which indicates the value to box of the terminal 

position v[B].
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(GENMOVES B) returns a list of all the successor positions of v[B].
(W B) returns the minimaxed value to box of the position v[B].

(SETQ W (LAMBDA (M) (CAR (PICK M))))

(OPT L P) returns a dotted-pair (x . m) where x is a greatest score value among the 
scores of the positions in the list v[L] if P = GREATERP, and x is a least score value among the 
scores of the positions in the list v[L] if P = LESSP. In either case, m is a position that is an 
element of the list v[L] whose score is x.

(SETQ OPT (LAMBDA (L P)
                  (COND ((EQ (CDR L) NIL) (CONS (W (CAR L)) (CAR L)))
                        (T (MB (CAR L) (W (CAR L)) (OPT (CDR L) P))))))

(SETQ MB (LAMBDA (A S Q)
                 (COND ((P S (CAR Q)) (CONS S A))
                       (T Q))))

Exercise 26.1: Why isn’t P an argument of MB? Hint: recall the 
discussion of skip-binding.

Now we have spelled out the machinery needed to program a great many games; 
namely, the functions PICK, W, OPT, and MB. The function PICK is the game-independent 
minimaxing program. The remaining required functions DEEPENOUGH, GENMOVES, U, and BOXPOS 
depend upon the game to be programmed and must be especially written for each game.

A major problem in using LISP to minimax a game tree is the requirement that an 
S-expression representation of game positions be devised and used. Such representations 
are generally large and complex and require complex functions to generate and valuate 
them. Often machine language or C permits a more compact and simple data structure 
to be used. (Consider, for example, defining a representation of a chess board, or even a 
checker board, “state”.)

Another more fundamental problem is that simple minimaxing is too slow for all 
but small game trees. This forces us to abandon searching most game trees completely. 
Instead we shall search to a certain depth, and then estimate the values of the positions 
at which we stop. These estimates will then be backed up according to the minimaxing 
process. The estimated values will not be only −1, 0, and 1, but may be any real number in 
[−1, 1] that serves as a score value of a position for box.

In order to evaluate a position when we cannot search ahead to terminal positions, 
we can introduce a valuation function s that can compute an estimate of the score of any 
position, including non-terminal positions. By convention, this score lies in [−1, 1] and is 
always interpreted as being from the point of view of box. The function s is often called a 
static valuation function to emphasize its use in valuating a position without minimaxing.

The quality of the static valuation function can be critical, since valuation errors can 
occasionally be magnified rather than damped by minimaxing. Generally, a valuation 
function is defined as a real-valued function based on a collection of measurements or 
feature values that describe the position in question. Often a weighted linear combination 
of feature values is used. A more elaborate function that may take into account various 



Chapter 26 ■ Game playinG

105

dependencies between features can also be devised. Features can be concrete, such as 
“the relative piece advantage,” or abstract, such as “center control.” Abstract features must 
finally be defined in terms of concrete features. The selection of features is often difficult. 
The problem of having a program automatically discover (with intent) good features that 
“span” the description of a position is completely unsolved, although much interest in 
this and other related issues exists. (We say “with intent,” because statistical methods like 
neural nets may provide a result that works, but is inexplicable in terms of discovered 
features.) Machine learning, as pioneered by Arthur Samuel, has generally meant 
adaptively modifying coefficients in the evaluation function so as to change its value to 
better describe positions that are known to be good or bad by other means. A program 
that truly learns a game, however, must learn features as well as coefficients.

We shall now consider an improved form of the minimax procedure known as the 
αβ algorithm. A complete exposition of the αβ algorithm is given by D.E. Knuth and R.W. 
Moore [KnuMo75].

The αβ algorithm is based on the observation that if we have the situation

where α is the value of position 1.1 and β is the value of position 1.2.1 with β < α, and where 
position 1 is a □ position, then the score of position 1.2 will be at most β, which cannot 
compete with the value α to become the value of position 1, and hence we need not 
compute the scores of the nodes 1.2.2 through 1.2.n. A similar observation holds when β > 
α and node 1 is a ○ position. If these cut-off conditions are systematically tested for and 
taken advantage of in an appropriate modification of PICK, we have the αβ algorithm.

Exercise 26.2: Explain why the value of position 1.2 will be at 
most β.

LISP functions for the αβ algorithm are given below. Note that skip-binding is 
extensively used. (Note: v denotes the LISP evaluation function as usual.)

(ABPICK B) returns a dotted-pair (x . m) where m is an optimal successor position for 
box of position B, and x is its score to box, where x and m are computed with the αβ algorithm.

(SETQ ABPICK (LAMBDA (B)
                     (HPICK B (COND ((BOXPOS B) -1.1) (T 1.1)
                                    (COND ((BOXPOS B) 1.1)
                                          (T -1.1))
                                    0))) )

(BOXPOS B) returns T if v[B] is a □ position and NIL if v[B] is a ○ position.

www.allitebooks.com

http://www.allitebooks.org
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(HPICK B α β N) returns an optimal score-move dotted-pair (x . m) where m is an 
optimal successor position for box of position v[B]. Position v[B] is at depth v[N] in the 
game tree being minimaxed. The arguments α and β are the □ and ○ αβ cutoff values 
used to reduce the amount of work required.

(SETQ HPICK (LAMBDA (B ALPHA BETA N)
                    (COND ((DEEPENOUGH B N) (CONS (SCORE B) NIL))
                          (T (HOPT (GENMOVES B)
                                   (COND ((BOXPOS B) GREATERP) (T LESSP))
                                   BETA ALPHA (PLUS N 1))))))

(DEEPENOUGH B N) returns T if v[B] is a terminal position or is deemed to be deep 
enough in the game tree. Otherwise NIL is returned. v[N] is the depth of the position v[B] 
in the game tree.

(GENMOVES B) returns a list of all the successor positions of v[B].
(SCORE B) returns the estimated value to box of the position v[B]. It is the static 

valuation function.
(HOPT G P α β N) returns an optimal score-move dotted-pair (x . m) where m is an 

optimal successor position in the list v[G] of a superior position, which is a □ position if 
v[P] = GREATERP and a ○ position if v[P] = LESSP. The list of successor positions v[G] is at 
depth v[N] in the game tree being heuristically minimaxed. The arguments α and β are the 
□ and ○αβ cutoff values used to reduce the amount of work required.

(SETQ HOPT (LAMBDA (G P ALPHA BETA N)
                   (OJ (CDR G) (HPICK (CAR G) ALPHA BETA N))))

(SETQ OJ (LAMBDA (G W)
                 (COND ((OR (P (CAR W) ALPHA) (NULL G)) W)
                       (T (OPTC (HOPT G P ALPHA (CAR W) N))))) )

(OPTC Z) returns a score-move dotted-pair (x . m), which is either the score-move 
pair v[W] or v[Z], or is such that x is a score value of one of the positions in the list v[D] 
and m is the corresponding successor position, which results in attaining that score. The 
score value x is a greatest score value if v[P] = GREATERP and x is a least score value of the 
positions in the list v[D] if v[P] = LESSP. In either case, m is a position that is an element of 
the list v[L] whose score is x.

(SETQ OPTC (LAMBDA (Z) (COND ((P (CAR W) (CAR Z)) W) (T Z))))

The αβ algorithm may be elaborated in several ways to cope more effectively with 
complex games. However, as this is done, it becomes more difficult to express effectively 
in LISP.

The αβ algorithm normally declares a position to be “good” if it is possible to follow 
a line of play from that position which results in a good position in the future. Because of 
uncertainty about the quality of the static valuation function, it may be safer to consider 
a position to be good if one can reach a number of good positions in the future. This may 
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be approximated by giving a position a bonus if many of its successors are deemed to be 
bad for the opposing player. This device is discussed by Slagle and Dixon in [SlDi70]. Slagle 
[Sl63] gave the rather complicated logic needed to adapt the αβ algorithm to handle this 
notion. In order to avoid such complexity, one can compute the bonus for a position based 
on the static scores of the successor positions as estimated by the static valuation function. 
This is relatively easy to incorporate into the usual αβ algorithm.

It is also interesting to note that a move that leads to a position that has a poor score 
according to the static valuation function but has a dramatically improved score as a backed-
up score from later resulting moves is a machine-discovered “trap” move. There may be some 
advantage to occasionally following such moves, depending, of course, on the reliability of the 
static valuation function. Active moves such as sacrifices are often trap moves.

Note that, generally, ABPICK will use less computation when we require that the list 
of successor positions produced by the GENMOVES function be ordered in sequence from 
best to worst positions with respect to the player to move. In this case, the very first move 
will have the score that is to be eventually backed up. This yields the maximum number of 
cutoffs in the course of considering such an ordered list of successor positions. Of course 
in practice we can only roughly approximate a perfect ordering and, as Knuth and Moore 
point out, a full ordering isn’t really very useful anyway.

The GENMOVES function may also selectively omit some of the worst successor 
positions in order to avoid their consideration by the αβ algorithm. Such forward pruning 
is not hazardless, but it is a virtual necessity in games such as chess in order to keep the 
growth of the game tree manageable. If detectable, similar positions to those already 
generated should be omitted. Similar positions may arise due to symmetry or other 
special circumstances.

It is possible to use the αβ algorithm to search just a few levels in order to improve 
the scores used for ordering. This preliminary exploration is a special case of a more 
general idea called dynamic ordering, where we continually reorder successor position 
lists as the values of the positions are refined based on more information. In this case 
an entire game tree must be maintained whose subtrees can be rearranged as required. 
Even in the fixed-ordering case, it might be convenient to maintain an entire tree so as to 
reutilize the positions generated in the minimax searching. In fact, in a real game-playing 
situation, it is possible to use the subtree selected out of the current game tree by the 
opponent’s move as the beginning game tree for the program’s response. These elaborate 
full-tree schemes, particularly dynamic ordering, are of questionable use. Much depends 
upon the quality of the static valuation function being used.

Another difficult problem that requires a global consideration of the game tree is 
that of avoiding equivalent sequences of successive positions whose inclusion merely 
wastes time. Such equivalent sequences are often due to permutations of independent 
moves that produce the same final position. The αβ algorithm will cut off some equivalent 
sequences, but not those that must be followed to establish initial backed up values.

An observation of interest is that the HPICK and GENMOVES functions could be 
reprogrammed in an appropriate language other than LISP to operate as coroutines, 
rather than the latter being a subroutine of the former. (A coroutine is effectively a 
“thread,” that is, a procedure running conceptually in parallel with the main program 
with places within each coroutine where explicit coordinating communication [i.e., 
exchanging control between the two corountines] occurs.) In order to do this, we would 
define genmoves (b) to yield successively, in a common location, the various moves that 
produce the successors of b. Now when the next son of position b is needed in the course 



Chapter 26 ■ Game playinG

108

of minimaxing the game tree, the genmoves coroutine is restarted to compute the next 
move from where it left off within the current incarnation, or else a first move from b if no 
previous moves have been computed. The genmoves coroutine will signal when no more 
moves remain to be considered. Note that when a cut off occurs, we save the time and 
space of generating all the remaining moves that do not need to be examined. Of course, 
if genmoves secretly generates a complete list of moves, then this saving is illusory.

The question of when the αβ algorithm has probed deeply enough in the game tree 
often depends upon the state of the game at the node we are at when the question is 
asked. In particular, if that position can be seen to be difficult to valuate statically, then it 
may pay to go deeper to resolve the difficulty. This is often the case when the position is 
one in a sequence of exchanges such as jump situations in checkers or piece exchanges 
in chess. Samuel calls such active positions pitch positions. The deepenough test may 
be that the level at which a position being considered is greater than a certain minimum 
and that the position in question is not a pitch position. The deepenough test may 
also depend upon the estimated quality of the positions on the path we are following. 
Moreover, time and space constraints should preferably be used in place of a simple 
depth criterion.

The problem of determining the savings gained by using the αβ algorithm in place of 
simple minimaxing reduces to counting the number of nodes in a game tree of d + 1 levels 
that are visited during a typical αβ search. For simplicity, we shall assume that every node 
has a constant branching factor f. Moreover we shall assume perfect ordering of successor 
positions by their scores, so that the maximum number of αβ cut offs occur. Under these 
assumptions, the number of positions processed is:

( f + 3)(1 − f )⌈d/2⌉/(1 − f ) − (d + 1) + 2(1 − d mod 2)f ⌈d/2⌉.

Compared with the (1 − f )d+1/(1 − f ) nodes visited with minimaxing, we can see that 
using the αβ algorithm is roughly equivalent to reducing the branching factor of the game 
tree from f to f 1/2.

Detailed arguments that lead to the formula above are given by J.R. Slagle and J.K. 
Dixon [SlDi69]. A more realistic analysis is presented in [KnuMo75].
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CHAPTER 27

The LISP Interpreter Program

The LISP interpreter presented below consists of three major subroutines: sread, seval, 
and swrite. The sread procedure reads input text, decomposes it into atom names and 
punctuation characters, enters all the new ordinary atoms and new number atoms that 
are encountered into the atom table and the number table, respectively, and constructs 
an S-expression representing the input. A typed-pointer to this S-expression is returned. 
If the input S-expression is not an atom, a corresponding list structure will be created in 
the list area. New ordinary atoms are entered in the atom table with the value: undefined.

The typed-pointer produced as output by sread is then passed as input to the seval 
subroutine. The procedure seval is the procedure that implements the LISP function 
EVAL. seval interpretively evaluates the S-expression pointed to by its input, calling itself 
recursively to evaluate subexpressions. The final result is an S-expression that is constructed 
in the list area if necessary, and a typed-pointer to this result S-expression is returned as 
output. If the input S-expression is illegal, seval prints an error message and goes to the 
point where sread is called to obtain more input. If the original input is evaluatable, the 
typed-pointer output from seval is provided as input to the swrite procedure. The swrite 
procedure assembles the names and punctuation characters needed to form a text string 
representing the given S-expression and prints this string at the terminal.

The entire LISP interpreter is thus of the following form.

 1. Initialization steps
 2. i ← sread( )
 3. j ← seval(i)
 4. swrite( j)
 5. goto step 2.

We will present the explicit data structures and procedures that comprise much of a 
working LISP interpreter. It is common to present an interpreter function for LISP written in 
LISP as was done in the original LISP 1.5 manual [MIT62]. However, except for its pedagogical 
value, this is a sterile undertaking. In this book, the C programming language will be used.

It is important to note at this point that reading this program is the hardest thing 
in this little book that you might undertake. It is assumed that you are fluent in C, or 
will study independently to become so. And even then, there are, as in most substantial 
programs, places where the motivation of various statements may be obscure. 
Nevertheless, if you do read at least parts of this program, you will be rewarded by the 
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minor, but cumulatively important, programming devices you encounter. (You may find 
that reading this program in small doses, revisiting procedures several times, just as you 
would if you were coding it, is a good approach.)

LISP in C
The following C program should run on any system where a C program can be compiled, 
although some minor fiddling may be needed to get it compiled in a specific environment. 
In particular, it runs on MS-DOS or within a DOS-window (command-line window) in 
MS-Windows, and on Unix/Linux from the command-line (i.e., in a terminal window).

The ASCII text files lisp.c, linuxenv.h, Makefile, and lispinit that you need to construct 
your own copy of this LISP Interpreter are downloadable from www.apress.com/lisp or 
from www.civilized.com.

In the C program below we use “publication notation”; specifically, we write ≤ for 
"<=" ≥ for ">=", ≠ for "!=", ≪ for "<<"; and in some comments, we write ¬ to denote the 
assignment operation, and we write = for "==" which is written “EQ” in our C-code via a 
macro-definition.

/* Filename: ~/lisp/lisp.c    Revision Date: Sept. 3, 1999 */
/* ================================================================== */
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     LISP INTERPRETER

      This progam is a GOVOL LISP interpreter. This interpreter consists of three major 
functions: SREAD, SEVAL, and SWRITE. SREAD scans the input string for input 
S-expressions (atoms and dotted pairs) and returns a corresponding typed-pointer. The 
SEVAL function takes as input a typed-pointer p to an input S-expression and evaluates 
it and returns a typed-pointer to its result. SWRITE takes as input the typed-pointer 
returned from SEVAL and prints out the result.

      LISP input lines beginning with a "/" are comment lines. Indirect input text is taken from 
a file Z to replace the directive of the form "@Z" in the input stream. SEVAL tracing can 
be turned on by using the directive "!trace", and turned off with the directive "!notrace".

      −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
/*  ================================================================== */

/*Defining 8-, 16-, 32-, and 64-bit integers is tricky in C. Usually the definitions int8 = char, 
int16 = short int, and int32 = long int work for a compiler for C configured for a 32-bit CPU. 
For newer compilers that compile C configured for a 64-bit CPU, it is generally okay to use 
the defined types int16_t and int32_t given to us by typedefs in the header file types.h or in 
stdint.h, which is what we do here. */
#define int16 int16_t
#define int32 in32_t

/* We declare a forward function for any function used before it is defined. */
#define forward

#include "linuxenv.h"

http://www.apress.com/lisp
http://www.civilized.com/
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/* The header file linuxenv.h declares strlen(), strcpy(), strcmp(), calloc(), fflush(), fopen(), 
fclose(), fprintf(), sprintf(), fgetc(), labs(), floor(), and pow(). Also the type FILE is defined, 
and the longjump register-save structure template: jmp buf is defined. The linuxenv.h include-
file includes the C header files that define these functions and data-object templates for a 
Linux environment. In general, a similar environment header file will need to be constructed 
by hand for each specific "platform" where this program is to be compiled and run. */

#define NULL 0L
#define EOF (-1)
#define EOS (0)

#define EQ ==
#define OR ||
#define AND &&
#define NOT !

#define n 1000     /* size of atom table and number table */
#define m 6000     /* size of list-area */
/*  The values for n and m should be made much larger for a more-useful LISP interpreter. 

Also note n and m are not variables, they are constants substituting the symbols n and m. 
It is, of course, easy to change this, if you wish. */

jmp buf env;       /* struct to hold environment for longjump */
char *sout;        /* general output buffer pointer */

/* The atom table */
st ruct Atomtable {char name[16]; int32 L; int32 bl; int32 plist;} Atab[n];

/*  The number table is used for storing floating point numbers. The field nlink is used for 
linking number table nodes on the number table free space list. */

union Numbertable {double num; int16 nlink;} Ntab[n];

/* the number hash index table */
int16 nx[n];

/* the number table free space list head pointer */
int16 nf=-1;

/*  the number table mark array is used in garbage collection to mark number-table entries 
that are not to be returned to the free space list */

char nmark[n]; /* an array of 1-bit entries would suffice */

/* The list area */
struct Listarea {int32 car; int32 cdr;} *P;

/* the list area free space list head pointer */
int16 fp=-1;
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/* the put-back variable */
int32 pb=0;

/* The input string and related pointers */
char *g,*pg,*pge;

/* the input stream stack structure and head pointer */
st ruct Insave {struct Insave *link; char *pg, *pge; char g[202]; FILE *filep;};
struct Insave *topInsave;

/* the input prompt character */
char prompt;

/* seval depth count and trace switch */
int16 ct=0, tracesw=0;

/* Global ordinary atom typed-pointers */
int32 nilptr,tptr,currentin,eaL,quoteptr,sk,traceptr;

/* number of free list-nodes */
int32 numf;

/* define global macros */

#define A(j)            P[j].car
#define B(j)            P[j].cdr
#define AL(j)           Atab[j].L
#define Abl(j)          Atab[j].bl

#define type(f)         (((f)≫28) & 0xf)
#define ptrv(f)         (0x0fffffff & (f))
#define sexp(t)         ((t) EQ 0 OR (t) EQ 8 OR (t) EQ 9)
#define fctform(t)      ((t)>9)
#define builtin(t)      ((t) EQ 10 OR (t) EQ 11)
#define userdefd(t)     ((t) EQ 12 OR (t) EQ 13)
#define dottedpair(t)   ((t) EQ 0)
#define fct(t)          ((t) EQ 10 OR (t) EQ 12 OR (t) EQ 14)
#define unnamedfsf(t)   ((t)>13)
#define namedfsf(t)     ((t)>9 AND (t)<14)
#define tp(t,j)         ((t) | (j))
#define ud(j)           (0x10000000 | (j))
#define se(j)           (0x00000000 | (j))
#define oa(j)           (0x80000000 | (j))
#define nu(j)           (0x90000000 | (j))
#define bf(j)           (0xa0000000 | (j))
#define bs(j)           (0xb0000000 | (j))
#define uf(j)           (0xc0000000 | (j))
#define us(j)           (0xd0000000 | (j))
#define tf(j)           (0xe0000000 | (j))
#define ts(j)           (0xf0000000 | (j))
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/* variables used in file operations */
FILE *filep;
FILE *logfilep;

/* forward references (Look-up the SAIL Programming language to see the genesis of 
‘forward’). */
forward int32 seval(int32 i);
forward void initlisp(void);
forward int32 sread(void);
forward void swrite(int32 i);
forward int32 newloc(int32 x, int32 y);
forward int32 numatom (double r);
forward int32 ordatom (char *s);
forward void gc(void);
forward void gcmark(int32 p);
forward char getgchar(void);
forward char lookgchar(void);
forward void fillg(void);
forward int32 e(void);
forward void error(char *s);
forward int16 fgetline(char *s, int16 lim, FILE *stream);
forward void ourprint(char *s);

/* ================================================================== */
void main(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     This is the main read/eval/print loop.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{initlisp();
 setjmp(env); /* calling error() returns to here by longjmp() */
 /* This is the main loop of the LISP interpreter. */
 for (;;) { ourprint("\n"); prompt='*'; swrite(seval(sread()));}
}

/* ================================================================== */
void error(char *msg)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     Type out the message in the string array msg and do a longjmp() to top level afterward to 

where setjmp was called.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int32 i,t;

 /* discard all input S-expression and argument list stacks */
 Atab[currentin].L=nilptr; Atab[eaL].L=nilptr; Atab[sk].L=nilptr;
 /* reset all atoms to their top-level values */
 for (i=0; i<n; i++) if ((t=Atab[i].bl)≠nilptr)
    {while (t≠nilptr) t=B(t); Atab[i].L=A(t); Atab[i].bl=nilptr;}
 ct=0; ourprint("::"); ourprint(msg); ourprint("\n");
 longjmp(env,-1);
}
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/* ================================================================== */
void ourprint(char *s)
/* char *s; message to be printed out and logged */
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     Print the string s in the log file and on the terminal.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{printf("%s",s); fprintf(logfilep,"%s",s); fflush(logfilep);}

/* ================================================================== */
void initlisp(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     This procedure installs all built-in functions and special forms into the atom table. It also 

initializes the number table and the list area.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int32 i;

static char *BI[] =
   {"CAR","CDR","CONS","LAMBDA","SPECIAL","SETQ","ATOM","NUMBERP","QUOTE",
    "LIST","DO","COND","PLUS","TIMES","DIFFERENCE","QUOTIENT","POWER",
     "FLOOR","MINUS","LESSP","GREATERP","EVAL","EQ","AND","OR","SUM","PRODUCT",
     "PUTPLIST","GETPLIST","READ","PRINT","PRINTCR","MKATOM","BODY","RPLACA",
    "RPLACD","TSETQ", "NULL", "SET"
   };

static char BItype[] =
   {10,10,10,11,11,11,10,10,11,10,
    10,11,10,10,10,10,10,10,10,10,
    10,10,10,11,11,10,10,10,10,10,
    10,10,10,10,10,10,11,10,11
   };

 /* number of built-ins in BI[~] and BItype[~] above */
#define NBI 39

 /* allocate a global character array for messages */
 sout=(char *)calloc(80,sizeof(char));

 /* allocate the input string */
 g=(char *)calloc(202,sizeof(char));

 /* allocate the list area */
 P=(struct Listarea *)calloc(m,sizeof(struct Listarea));

/* initialize atom table names and the number table */
 for (i=0; i<n; i++)
    {Atab[i].name[0]='\0'; nmark[i]=0; nx[i]=-1; Ntab[i].nlink=nf; nf=i;}
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 /*  install typed-case numbers for builtin functions and and special forms into the  
atom table */

 for (i=0; i<NBI; i++)
    {Atab[ptrv(ordatom(BI[i]))].L=tp((((int32)BItype[i])≪28),(i+1));}

 nilptr=ordatom("NIL"); Atab[ptrv(nilptr)].L=nilptr;
 tptr=ordatom("T");     Atab[ptrv(tptr)].L=tptr;
 quoteptr=ordatom("QUOTE");

/*  Creating and using the list-valued atoms CURRENTIN, eaL, and sreadlist in the atom 
table is a means to ensure that we protect the list-nodes in these lists during garbage 
collection. This is one of a few “tricks” employed in this program. We make these atom 
names lowercased to keep them private. */

 currentin=ptrv(ordatom("currentin")); Atab[currentin].L=nilptr;
 eaL=ptrv(ordatom("eaL")); Atab[eaL].L=nilptr;
 sk=ptrv(ordatom("sreadlist")); Atab[sk].L=nilptr;

#define cilp Atab[currentin].L
#define eaLp Atab[eaL].L
#define skp Atab[sk].L

 /** initialize the bindlist (bl) and plist fields */
 for (i=0; i<n; i++) Atab[i].bl=Atab[i].plist=nilptr;

 /* set up the list area free space list */
 for (i=1; i<m; i++) {B(i)=fp; fp=i;} numf=m-1;

 /* open the logfile */
 logfilep=fopen("lisp.log","w");
 ourprint("ENTERING THE GOVOL LISP INTERPRETER\n");

 /*  establish the input buffer g and the input stream stack topInsave and prepare to read-in 
predefined functions and special forms from the text file lispinit; these should include 
APPEND, REVERSE, EQUAL, APPLY, MEMBER, INTO, ONTO, NOT, ASSOC, NPROP, 
PUTPROP, GETPROP, and REMPROP. */

 topInsave=NULL;
 strcpy(g,"@lispinit ");
 pg=g; pge=g+strlen(g); /* initialize start & end pointers to the string g */
 filep=stdin;
}
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Exercise 27.1: Read ahead to learn how the loading of the 
input buffer string g with the text @lispinit causes the LISP 
functions in the file lispinit to be defined and write a definitive 
comment about this initialization process for inclusion in the 
code above.

/* ==================================================================  */
int32 sread(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      This procedure scans an input string g using a lexical token scanning routine, e(), where 

e() returns

     1 if the token is '('
     2 if the token is "' (single-quote)
     3 if the token is '.'
     4 if the token is ')'

      or a typed-pointer d to an atom or number stored in row ptrv(d) in the atom or number 
tables. Due to the typecode (8 or 9) of d, d is a negative 32-bit integer. The token found by 
e() is stripped from the front of g.

      sread constructs an S-expression corresponding to the scanned input string and returns a 
typed-pointer to it as its result.

      There is occasion to "put back" open parentheses and single quote symbols onto g within 
sread. This is done by loading the global putback variable, pb, which is interrogated and 
reset as appropriate within E.

     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

{int32 j,k,t,c;

 if ((c=e())≤0) return(c);
 if (c EQ 1) if ((k=e()) EQ 4) return(nilptr); else pb=k;
 /* skp is defined as Atab[sk].L.*/
 skp=newloc(nilptr,skp); /* push a new node on the skp list. */
 A(skp)=j=k=newloc(nilptr,nilptr);

 /* we will return k, but we will fill node j first. */
 if (c EQ 1)
    {scan:   A(j)=sread();  /* read the first element. */
     next:   if ((c=e())≤2) {t=newloc(nilptr,nilptr); B(j)=t; j=t;
                              if (c≤0) {A(j)=c; goto next;}
                              pb=c; goto scan;
                            }
     if (c≠4) {B(j)=sread(); if (e()≠4) error("syntax error");}
     skp=B(skp); /* pop the skp list. */ return(k);
    }
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 if (c EQ 2)
    {A(j)=quoteptr; B(j)=t=newloc(nilptr,nilptr); A(t)=sread();
     skp=B(skp); /* pop the skp list. */ return(k);
    }
 error("bad syntax");
}

Exercise 27.2: The sread procedure does not handle the NIL 
macro (). Propose a modification that does handle ().

Solution 27.2: Just before “k ¬ newloc(nilptr, nilptr)” insert  
“if c = 1 then if (k ¬ E()) = 4 then return(nilptr) else pb ¬ k”. Another 
solution, which is adopted here, is to have the E-procedure 
recognize () and return nilptr when () is seen.

/* ================================================================== */
int32 e(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      E is a lexical token scanning routine which scans the chars in the input stream to extract 

the next token and returns

     1 if the token is '('
     2 if the token is "'
     3 if the token is '.'
     4 if the token is ')'

      or a negative typed-pointer to an entry in the atom table or the the number table.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{double v,f,k,sign;
 int32 i,t,c;
 char nc[15], *np;
 struct Insave *tb;

#define OPENP '('
#define CLOSEP ')'
#define BLANK ' '
#define SINGLEQ "
#define DOT '.'
#define PLUS '+'
#define MINUS '-'
#define CHVAL(c) (c-'0')
#define DIGIT(c) ('0'≤(c) AND (c)≤'9')
#define TOUPPER(c)  ((c) + 'A'-'a')
#define ISLOWER(c)  ((c)≥'a' AND (c)≤'z')

 if (pb≠0) {t=pb; pb=0; return(t);}

start:while ((c=getgchar()) EQ BLANK);   /* remove blanks */
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 if (c EQ OPENP)
    {while (lookgchar() EQ BLANK) getgchar(); /* remove blanks */
     if  (lookgchar() EQ CLOSEP) {getgchar(); return(nilptr);} else return(1);
    }
 if (c EQ EOS)
    {if (topInsave EQ NULL) {fclose(logfilep); exit(0);}
     /* restore the previous input stream */
     fclose(filep);
     strcpy(g,topInsave→g); pg=topInsave→pg; pge=topInsave→pge;
     filep=topInsave→filep; topInsave=topInsave→link;
     if (prompt EQ '@') prompt='>';
     goto start;
    }
 if (c EQ SINGLEQ) return(2);
 if (c EQ CLOSEP) return(4);
 if (c EQ DOT)
    {if  (DIGIT(lookgchar())) {sign=1.0; v=0.0; goto fraction;} return(3);}
 if (NOT (DIGIT(c) OR ((c EQ PLUS OR c EQ MINUS) AND
      (DIGIT(lookgchar()) OR lookgchar() EQ DOT))))
    {np=nc; *np++=c;      /* put c in nc[0] */
     for (c=lookgchar();
          c≠BLANK AND c≠DOT AND c≠OPENP AND c≠CLOSEP;
          c=lookgchar())
        *(np++)=getgchar(); /* add a character */
     *np=EOS; /* nc is now a string */
     if (*nc EQ '@')
        {/* switch input streams */
         /* save the current input stream */
         tb=(struct Insave *)calloc(1,sizeof(struct Insave));
         tb→link=topInsave; topInsave=tb;
         strcpy(tb→g,g); tb→pg=pg; tb→pge=pge; tb→filep=filep;

        /* set up the new input stream */
         *g=EOS; pg=pge=g; prompt='@';
         filep=fopen(nc+1,"r"); /* skip over the @ */
         goto start;
        }
    /* convert the string nc to upper case */
    for (np=nc; *np≠EOS; np++)
       if (ISLOWER((int16)*np)) *np=(char)TOUPPER((int16)*np);
    return(ordatom(nc));
   }
if (c EQ MINUS) {v=0.0; sign=-1.0;} else {v=CHVAL(c); sign=1.0;}
while (DIGIT(lookgchar())) v=10.0*v+CHVAL(getgchar());
if (lookgchar() EQ DOT)
   {getgchar();
    if (DIGIT(lookgchar()))
       {fraction:
        k=1.0; f=0.0;
        do {k=10.*k;f=10.*f+CHVAL(getgchar());} while (DIGIT(lookgchar()));
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        v=v+f/k;
       }
   }
 return(numatom(sign*v));
}

Exercise 27.3: The procedure e does not handle LISP 
input precisely as defined in this book. Describe the sins of 
omission and commission occurring in e.

/* ==================================================================  */
char getgchar(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     Get a character from g.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{fillg(); return(*pg++);}

/* ================================================================== */
char lookgchar(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     Look at the next character in g, but do not advance.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{fillg(); return(*pg);}

/* ================================================================== */
void fillg(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      Read a line into g[ ]. A line starting with a "/" is a comment line to be discarded.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{while (pg≥pge)
    {sprompt:  if (filep EQ stdin) {sprintf(sout,"%c",prompt); ourprint(sout);}
    if (fgetline(g,200,filep)<0) return;
    if (filep EQ stdin) {fprintf(logfilep,"%s\n",g); fflush(logfilep);}
    if (*g EQ '/') goto sprompt;
    pg=g; pge=g+strlen(g); *pge++=' '; *pge='\0'; prompt='>';
   }
}

/* ================================================================== */
int16 fgetline(char *s, int16 lim, FILE *stream)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      fgetline() gets a line (CRLF or just LF delimited) from stream and puts it into the string 

array (i.e., the buffer) s (up to lim chars). The function returns the length of this string. 
If there are no characters but just EOF, it returns -1 (EOF) as the length. There is no 
deblanking except to drop any CRs, and if present, the LF (\n). TABs are mapped to 
blanks.
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      Note when the file being read is stdin, an EOF will never be encountered, instead fgetc 
will wait until a complete line is typed, and then return the next character of that line 
until all the characters of that line have been consumed, whereupon fgetc blocks again, 
waiting for the next line.

     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int16 c,i;
#define TAB 9
 for (i=0; i<lim AND (c=fgetc(stream))≠EOF AND c≠'\n'; ++i)
    {if (c EQ TAB) c=BLANK; s[i]=c;}
 s[i]='\0';
 if (c EQ EOF AND i EQ 0) return(-1); else return(i);
}

Exercise 27.4: The C function fgetc returns -1 (EOF) when it 
is called at the end of file. If fgetc is called again, it returns -1 
again! We depend on this behavior here when an “indirect” 
file (such as the initialization file lispinit) is being read. 
Explain why this is.

Exercise 27.5: Note the function fillg loads the string g with 
a new input line. An additional blank character is added at 
the end of each line, except in certain circumstances having 
to do with reaching the end of file of an indirect file. Explain 
what the circumstances are where an additional final blank is 
not provided, and explain why generally, such a final blank is 
provided. Hint: think what might happen if such a blank were 
not interposed.

Exercise 27.6: This program assumes a stream of plain ASCII 
text is being provided as input, both from the keyboard and 
from any indirect file, however, this is not enforced. Should it 
be? And how can such enforcement be programmed?

/*  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
       Now the routines numatom and ordatom are presented. The procedure gc which is called 

within numatom is the garbage-collector routine; garbage collection is an elegant concept 
that was popularized, if not introduced, by the first LISP interpreter. Understanding the 
somewhat subtle garbage-collection routines given below is central to understanding this 
LISP Interpreter program.

       There are a number of subtle devices throughout the code given here, however, most of these 
are small, limited in scope, and fairly transparent with a little scrutiny. An exception is the 
use of a hash table storage and retrieval algorithm for maintaining the atom table and the 
number table. The basic idea is described next.
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       Suppose we are given a set of named items a
1
, a

2
, . . ., a

m
, that is, ordinary atoms, to be 

stored, and subsequently retrieved whenever desired. Each item has a unique name, 
which we may take to be a string of characters, and also a value, for example, some 
integer value. Thus each item is a name,value pair.

       Let's establish an n-element table T [0 : n − 1] with n ≥ m. Each table entry is a structure 
with two components: name and value, and we write T

i
.name to specify the name field 

in T
i
 and T

i
.value to specify the value field in T

i
. Further, we assume there is a code, for 

example, the null character 0, which does not appear as an item name and which can be 
used to indicate an empty T -element, for example, if T,.name = 0 then T

i
 is unoccupied. 

We begin with T
i
.name initialized to 0 for 0 ≤ i ≤ n.

       Now to store an item a, we compute an "address" j ∈ {0, 1, . . . , n − 1} where j depends on 
the string a.name. This address computation is called hashing, and the value j is called the 
hash value of the string a.name. (We expect the hash values of the items a

1
, a

2
, . . ., a

m
 to be 

well spread in the range of addresses 0, 1, 2, . . ., n − 1; this is what makes hashing efficient. If 
the T-table entry T

j
 is unoccupied, then we store a in T

j
, that is, we store a.name in Tj.name 

and we store a.value in T
j
.value. If the T-table entry T

j
 is occupied, we have a collision; in this 

case, we add one to j modulo n, that is, we set j to (j + 1) mod n, and go back to check if this 
adjacent T-table entry T

j
 is unoccupied, and if so, we store a in T

j
. If we search the entire table 

in this manner then T is full and the item a cannot be stored. Otherwise we will store the 
item a in the first unoccupied entry encountered. This storage procedure is given below.

      store(a) :

      1. j ← h(a.name). { Compute the hash function h on a.name. }
      2. f ← j. { Remember the starting hash address in f . }
      3. If (T

j
 is unoccupied) then (T

j
 ← a; return(1)).

      4. j ← (j + 1) mod n.
      5. If (j = f ) then return(0). { '0' means T is full. }
      6. Goto step 3.

       To retrieve the item with the name α, we just follow the same sequence of probes in T 
until either we find a T-entry i with T

i
.name = α, or we find an unoccupied T-entry. In 

the former case, we have found the sought-for item; in the latter case, the sought-for item 
is not present. (We also have to account for the possiblilty that the entire table is full, 
although for efficiency we don’t want to load the table more than about 90 percent full.) 
The retrieval procedure is:

      retrieve(α):

      1. i ← h(a.name).
      2. f ← i. { Remember the starting hash address in f . }
      3. If (T

i
 is unoccupied) then return(−1)). { ‘-1’ means “not found”. }

      4.  If (T
i
.name = α) then return(i)). { i is the index such that T

i
.name = α. }

      5. i ← (i + 1) mod n.
      6. If (j = f ) then return(−1) else goto step 3.
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      This scheme of probing in a random location to start finding a place to store an item 
or to start searching for an item, and just continuing the search at the next adjacent 
position if necessary is called open-addressing collision resolution.

       Both the number table and the atom table are maintained as hash tables with open-
addressing collision resolution. The number table is composed of the nx array, the Ntab 
array of (double num, int16 nlink) structures (where the double num field holds a 
64-bit floating-point number), and the nmark array; it uses an indirect storage method 
in order to allow for unneeded number entries to be garbage collected.

      −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  */

/* ==================================================================  */
int32 numatom(double r)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      The number r is looked up in the number table and stored there as a lazy number atom if 

it is not already present. The typed-pointer to this number atom is returned.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int32 j;
#define hashnum(r) ((*(1+(int32 *)(&r)) & 0x7fffffff) % n)
j=hashnum(r);
while (nx[j]≠-1)
   if (Ntab[nx[j]].num EQ r) {j=nx[j]; goto ret;} else if (++j EQ n) j=0;

 /* Here nx[j] = -1; get an Ntab node to store a new number in. */
 if (nf<0) {gc(); if (nf<0) error("The number table is full");}
 nx[j]=nf; j=nf; nf=Ntab[nf].nlink; Ntab[j].num=r;
ret:  return(nu(j));
}

Exercise 27.7: The number table is really represented here by 
the array nx. The entries in nx are either empty or are indices 
to Ntab elements, which are initially threaded on a free-space 
list. The 64-bit floating-point numbers are stored in the num 
field of the N tab entries. The reason for this is because we 
want to garbage collect the unneeded numbers in the number 
table from time to time and reuse the associated space. Can 
you find a way to reduce the space used for the number table 
while preserving both storage and retrieval efficiency and the 
ability for it to be garbage collected? Hint: can the num field 
and the nlink field in the Ntab entries be overlaid?

/* ==================================================================  */
int32 ordatom (char *s)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      The ordinary atom whose name is given as the argument string s is looked up in the 

atom table and stored there as an atom with the value undefined if it is not already 
present. The typed-pointer to this ordinary atom is then returned.

     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
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{int32 j,c;
#define hashname(s) (labs((s[0]≪16)+(s[(j=strlen(s))-1]≪8)+j) % n)

 j=hashname(s); c=j;
 while (Atab[j].name[0]≠EOS)
    {if (strcmp(Atab[j].name,s) EQ 0) goto ret;
     else if (++j EQ n) {j=0; if (j EQ c) error("atom table is full");}
    }

 strcpy(Atab[j].name,s); Atab[j].L=ud(j);
ret:  return(oa(j));
}

Exercise 27.8: Introduce a means so that gc will be called 
when the number table is about 90 percent full, rather than 
allowing the last 10 percent to be used before gc is called. Is 
there any point to doing this?

Exercise 27.9: If we were to abandon garbage collecting the 
number table, could we use a simple direct open-addressing 
hash table as we do with the atom table? Is there a 64-bit 
pattern that is not a possible floating-point number that we 
could use to indicate an empty location?

/* ================================================================== */
void swrite(int32 j)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
     The S-expression pointed to by the typed-pointer j is printed out.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int32 i;
 int16 listsw;

 i=ptrv(j);
 switch (type(j))
    {case 0:  /* check for a list */
        j=i;
        while (type(B(j)) EQ 0) j=B(j);
        listsw=(B(j) EQ nilptr);
        ourprint("(");
        while (listsw)
           { swrite(A(i)); if ((i=B(i)) EQ nilptr) goto close; else ourprint(" ");}
        swrite(A(i)); ourprint(" . "); swrite(B(i));
 close:   ourprint(")");
        break;

     case  8:  ourprint(Atab[i].name); break;
     case  9:   sprintf(sout,"%-g",Ntab[i].num); ourprint(sout); break;
     case 10:   sprintf(sout,"{builtin function: %s}",Atab[i].name);
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               ourprint(sout); break;
     case 11:   sprintf(sout,"{builtin special form: %s}",Atab[i].name);
               ourprint(sout); break;
     case 12:   sprintf(sout,"{user defined function: %s}",Atab[i].name);
               ourprint(sout); break;
     case 13:     sprintf(sout,"{user defined special form: %s}",Atab[i].name);
               ourprint(sout); break;
     case 14:  ourprint("{unnamed function}"); break;
     case 15:  ourprint("{unnamed special form}"); break;
    }
}

/* ================================================================== */
void traceprint(int32 v, int16 osw)
/* int32 v; the object to be printed
* int16 osw; 1 for seval() output, 0 for seval() input
*/
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      This function prints out the input and the result for each successive invocation of seval() 

when tracing is requested.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{if (tracesw>0)
    {if (osw EQ 1) sprintf(sout,"%d result:",ct--);
     else sprintf(sout,"%d seval:",++ct);
     ourprint(sout); swrite(v); ourprint("\n");
    }
}

/* ================================================================== */
int32 seval(int32 p)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      Evaluate the S-expression pointed to by the typed-pointer p; construct the result value as 

necessary; return a typed-pointer to the result.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

{int32 ty,t,v,f,fa,na;
 int32 *endeaL;
 static int32 j;
 static double s;

Exercise 27.10: The local static variables j and s are essentially 
global variables that can only be accessed within seval; new 
instances of j and s are not established for each invocation 
of seval, unlike the recursive variables ty, ty, t, v, f , fa, na, 
and endeaL. Can any of the recursive variables in seval be 
reclassified as static variables?

#define U1 A(p)
#define U2 A(B(p))
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#define E1 A(p)
#define E2 A(B(p))
#define Return(v) {traceprint(v,1); return(v);}

 traceprint(p,0);

Exercise 27.11: Explain the purpose of the function traceprint 
and the associated global variables tracesw and ct.

if(type(p)6=0)
  {
 /* p does not point to a non-atomic S-expression.

         If p is a type-8 typed-pointer to an ordinary atom whose value is a built-in or user-defined 
function or special form, then a typed-pointer to that atom-table entry with typecode 10, 
11, 12, or 13, depending upon the value of the atom, is returned. Note that this permits us 
to know the names of functions and special forms.

        If p is a type-8 typed-pointer to an ordinary atom whose value is not a built-in or user-
defined function or special form, and thus has the typecode 8, 9, 14, or 15, then a typed-
pointer corresponding to the value of this atom is returned.

        If p is a non-type-8 typed-pointer to a number atom or to a function or special form 
(named or unnamed), then the same pointer p is returned. */

   if ((t=type(p))≠8) Return(p); j=ptrv(p);

/* The association list is implemented with shallow binding in the atom table,  
so the current values of all atoms are found in the atom table. */

  if (Atab[j].name[0] EQ '!')
     { tracesw=(strcmp(Atab[j].name,"!TRACE") EQ 0)?1:0; longjmp(env,-1);}

  if ((t=type(Atab[j].L)) EQ 1)
     {sprintf(sout,"%s is undefined\n",Atab[j].name); error(sout);}

  if (namedfsf(t)) Return(tp(t*28,j));
  Return(Atab[j].L);
 } /* end of if (type(p)≠0) */

Exercise 27.12: What are the pros and cons of replacing 
the statement return(L

j 
) in the compound statement just 

above with the statement: if L
j
 = p and bindlist

j
 ≠ nilptr then 

return(A[bindlist
j
 ]) else return(L

j
 )? Hint: think about evaluating 

(F G) where F and G are defined by (SETQ F (SPECIAL (G) 
((EVAL G) 1))) and (SETQ G (LAMBDA (F) (PLUS F F))).
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/*  Save the list p consisting of the current function and the supplied arguments as the top 
value of the currentin list of lists to protect it from garbage collection. The currentin list is 
a list of lists. */

cilp=newloc(p,cilp);

/* compute the function or special form to be applied */  
tracesw-- ; f=seval(A(p)); tracesw++; ty=type(f);
if (NOT fctform(ty)) error(" invalid function or special form");  
f=ptrv(f); if (NOT unnamedfsf(ty)) f=ptrv(Atab[f].L);

/* now let go of the supplied input function  */  
A(cilp)=p=B(p);

/*  If f is a function (not a special form), build a new list of its evaluated arguments and add 
it to the eaL list of lists. Then let go of the list of supplied arguments, replacing it with the 
new list of evaluated arguments. */

if (fct(ty))
   {/* compute the actual arguments */
    eaLp=newloc(nilptr,eaLp);
    /* evaluate the actual arguments and build a list by tail-cons-ing! */
    endeaL=&A(eaLp);
    while (p≠nilptr)
       {*endeaL=newloc(seval(A(p)),nilptr); endeaL=&B(*endeaL); p=B(p);}
    /* Set p to be the first node in the evaluated arguments list. */
    p=A(eaLp);

Exercise 27.13: Expand &B(*endeaL) and explain the 
assignment statement endeaL = &B(*endeaL).

    /* Throw away the current supplied arguments list by popping the curentin list. */
    cilp=B(cilp);
    }

/*  At this point p points to the first node of the actual argument list. If p EQ nilptr, we have a 
function or special form with no arguments. */

if (NOT builtin(ty))
    {/* f is a non-builtin function or non-builtin special form. do shallow binding of  

  the arguments and evaluate the body of f by calling seval */  
  fa=A(f); /* fa points to the first node of the formal argument list */  
  na=0;        /* na counts the number of arguments */

   /*  run through the arguments and place them as the top values of the formal argument 
atoms in the atom table. Push the old value of each formal argument on its binding list. */

   if (type(fa) EQ 8 AND fa ≠ nilptr)
     {t=ptrv(fa); Atab[t].bl=newloc(Atab[t].L,Atab[t].bl);
      Atab[t].L=p; goto apply;}
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   else
      while (p≠nilptr AND dottedpair(type(fa)))
         {t=ptrv(A(fa)); fa=B(fa);
          Atab[t].bl=newloc(Atab[t].L,Atab[t].bl);
          v=A(p); if (namedfsf(type(v))) v=Atab[ptrv(v)].L;
          Atab[t].L=v; ++na; p=B(p);
         }

if (p≠nilptr) error("too many actual arguments");

Exercise 27.14: Why did we need to build the eaL list, rather 
than just directly place each seval result as the new value of 
the corresponding formal argument?

Solution 27.14: To make sure that the successive formal 
argument bindings don’t effect the evaluation of succeeding 
actual arguments which happen, directly or indirectly, to involve 
free variables whose names are also used within the current list 
of formal arguments, the rebinding of all formal arguments is 
delayed until all the actual arguments have been evaluated.

    /*The following code would forbid some useful trickery.
    if (fa≠nilptr) error("too many formal argumentss"); */

    /* now apply the non-builtin special form or function */  
apply: v=seval(B(f));

    /* now unbind the actual arguments */
    fa=A(f);
    if (type(fa) EQ 8 AND fa ≠ nilptr)
       {t=ptrv(fa); Atab[t].L=A(Atab[t].bl); Atab[t].bl=B(Atab[t].bl);}
    else
       while (na-->0)
          {t=ptrv(A(fa)); fa=B(fa);
           Atab[t].L=A(Atab[t].bl); Atab[t].bl=B(Atab[t].bl);
          }
   } /* end non-builtins */
else
   {  /*   At this point we have a built-in function or special form. f is the pointer value of the 

atom in the atom table for the called function or special form and p is the pointer to 
the argument list.*/

   v=nilptr;
   switch (f) /* begin builtins */
   {case 1:   /* CAR */
       if (NOT dottedpair(type(E1))) error("illegal CAR argument");
       v=A(E1); break;
    case 2:    /* CDR */
       if (NOT dottedpair(type(E1))) error("illegal CDR argument");
       v=B(E1); break;
    case 3:    /* CONS */
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       if (sexp(type(E1)) AND sexp(type(E2))) v=newloc(E1,E2);
       else error("Illegal CONS arguments");
       break;

        /* for LAMBDA and SPECIAL, we could check that U1 is either an ordinary atom 
or a list of ordinary atoms. */

    case 4:/* LAMBDA */ v=tf(newloc(U1,U2)); break;

    case 5:/* SPECIAL */ v=ts(newloc(U1,U2)); break;
    case 6:/* SETQ */
       f=U1; if (type(f)≠8) error("illegal assignment");
       assign:  v=ptrv(f); endeaL=&AL(v);
       doit: t=seval(U2);
       switch (type(t))
          {case 0:    /* dotted pair */
           case 8:    /* ordinary atom */
           case 9:    /* number atom */
              *endeaL=t; break;
           case 10:    /* builtin function */
           case 11:    /* builtin special form */
           case 12:    /* user-defined function */
           case 13:    /* user-defined special form */
              *endeaL=Atab[ptrv(t)].L;  break;
           case 14:    /* unnamed function */
              *endeaL=uf(ptrv(t)); break;
           case 15:    /* unamed special form */
              *endeaL=us(ptrv(t)); break;
          } /* end of type(t) switch cases */

      tracesw--; v=seval(f); tracesw++; break;

Exercise 27.15: Explain why a case above for type(t)=1 is not 
necessary.

  case 7:  /* ATOM */
     if ((type(E1)) EQ 8 OR (type(E1)) EQ 9) v=tptr; break;

  case 8:  /* NUMBERP */
     if (type(E1) EQ 9) v=tptr; break;

  case 9:  /* QUOTE */ v=U1; break;
  case 10:  /* LIST */ v=p; break;
  case 11:  /* DO */ while (p≠nilptr) {v=A(p); p=B(p);} break;

  case 12:  /* COND */
     while (p≠nilptr)
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        {t=A(p);
         if (seval(A(t))≠nilptr) {v=seval(A(B(t))); break;} else p=B(p);
        }
     break;

  case 13:  /* PLUS  */
     v=numatom(Ntab[ptrv(E1)].num+Ntab[ptrv(E2)].num); break;

  case 14:  /*  TIMES  */
     v=numatom(Ntab[ptrv(E1)].num*Ntab[ptrv(E2)].num);  break;

  case 15:  /* DIFFERENCE */
     v=numatom(Ntab[ptrv(E1)].num-Ntab[ptrv(E2)].num); break;

  case 16:  /*  QUOTIENT  */
     v=numatom(Ntab[ptrv(E1)].num/Ntab[ptrv(E2)].num); break;

  case 17:  /*  POWER  */
     v=numatom(pow(Ntab[ptrv(E1)].num,Ntab[ptrv(E2)].num)); break;

  case 18:  /* FLOOR */ v=numatom(floor(Ntab[ptrv(E1)].num)); break;
  case 19:  /* MINUS */ v=numatom(-Ntab[ptrv(E1)].num); break;
  case 20:  /* LESSP */
     if(Ntab[ptrv(E1)].num<Ntab[ptrv(E2)].num) v=tptr; break;

  case 21:  /* GREATERP */
     if (Ntab[ptrv(E1)].num>Ntab[ptrv(E2)].num) v=tptr; break;

  case 22:  /* EVAL */ v=seval(E1); break;
  case 23:  /* EQ */ v=(E1 EQ E2)?tptr:nilptr; break;

  case 24:  /* AND */
     while (p≠nilptr AND seval(A(p))≠nilptr) p=B(p);
     if (p EQ nilptr) v=tptr;   /* else v remains nilptr */
     break;

  case 25:  /* OR */
     while (p≠nilptr AND seval(A(p)) EQ nilptr) p=B(p);
     if (p≠nilptr) v=tptr;     /* else v remains nilptr */
     break;

  case 26:  /* SUM */
     for (s=0.0; p≠nilptr; s=s+Ntab[ptrv(A(p))].num, p=B(p));
     v=numatom(s); break;

  case 27:  /* PRODUCT */
     for (s=1.0; p≠nilptr; s=s*Ntab[ptrv(A(p))].num, p=B(p));
     v=numatom(s); break;
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  case 28:  /* PUTPLIST */ v=E1; Atab[ptrv(v)].plist=E2; break;
  case 29:  /* GETPLIST */ v=Atab[ptrv(E1)].plist; break;
  case 30:  /* READ */ ourprint("\n>"); prompt=EOS; v=sread(); break;

  case 31: /* PRINT */
     if (p EQ nilptr) ourprint(" ");
     else while (p≠nilptr) {swrite(A(p)); ourprint(" "); p=B(p);}
     break;

  case 32:  /* PRINTCR */
     if (p EQ nilptr) ourprint("\n");
     else while (p≠nilptr) {swrite(A(p)); ourprint("\n"); p=B(p);}
     break;

  case 33:  /* MKATOM */
     strcpy(sout,Atab[ptrv(E1)].name); strcat(sout,Atab[ptrv(E2)].name);
     v=ordatom(sout); break;

  case 34:  /* BODY */
     if (unnamedfsf(type(E1))) v=ptrv(E1);
     else if (userdefd(type(E1))) v=ptrv(Atab[ptrv(E1)].L);
     else error("illegal BODY argument");
     break;

  case 35:  /* RPLACA */
     v=E1;
     if (NOT dottedpair(type(v))) error("illegal RPLACA argument");
     A(v)=E2; break;

  case 36:  /* RPLACD */  
     v=E1;
     if (NOT dottedpair(type(v))) error("illegal RPLACD argument");
     B(v)=E2; break;

  case 37:  /* TSETQ */
     if (Abl(f=ptrv(U1)) EQ nilptr) goto assign;
     v=Abl(f); while (B(v)≠nilptr) v=B(v);
     endeaL=&A(v); goto doit;

  case 38:  /* NULL */
     if (E1 EQ nilptr) v=tptr; break;

  case 39:  /* SET  */
     f=seval(U1); goto assign;

  default:  error("dryrot: bad builtin case number");
 } /* end of switch cases */
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 } /* end builtins */
 /* pop the eaL list or pop the currentin list, whichever is active */
 if (fct(ty)) eaLp=B(eaLp); else cilp=B(cilp);

 Return(v);
}

Exercise 27.16: What does the built-in special form TSETQ 
given in the code above do?

Exercise 27.17: Would it be a good idea if the “cond”  
case were rewritten as follows? 

case 12: /* cond */ while p ≠ nilptr do if   

(v ← seval(A[t ← A
p
])) ≠ nilptr then {if B

t
 ≠ nilptr  

then v ← seval(A[B
t
]); break} else p ← B

p
};

Exercise 27.18: Modify the “cond” case to make the final “else” 
option not require a T predicate; (COND (P

1
 R

1
)· · · 

(P
k
 R

k
 ) R

k+1
) is to be interpreted as (COND (P

1
 R

1
)· · ·(P

k
 R

k
 ) 

(T R
k+1

)).

Exercise 27.19: If there are unexpectedly a few actual 
arguments provided for a built-in function or special form, 
this program may fail catastrophically. Suggest an approach 
to detect this type of error and prevent any failure. What 
happens if too many arguments are given?

Exercise 27.20: Modify the built-in function READ to take an 
optional file name argument, and to read its input from this 
file when specified.

Exercise 27.21: Functions and special forms are not included 
in the class of atoms, and thus cannot appear in dotted-
pairs (although their ordinary-atom names can). There is 
an exception to this statement. What is it? Could the class of 
atoms be enlarged to include functions? Should it be?

Exercise 27.22: To add a new builtin function or special form 
to the LISP interpreter given above, we must first insert the 
name of the new function or special form at the end of the *BI 
array in the initlisp subroutine, and add its typecode (10 for a 
function and 11 for a special form) at the end of the “parallel” 
array BItype in the initlisp subroutine. The position i of an entry 
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in the *BI and BItype arrays determines the case number to 
be used for the new function or special form to be i + 1. (Read 
the code in lispinit to see why that is.) Thus adding the new 
function or special form at the end of the *BI array means we 
need only add the next sequential case into the central switch 
statement in the seval subroutine as the case where the code for 
the new function or special form is placed. 

Define a new built-in function named TYPECODE which returns 
the number typecode of its argument. Explain how this can be 
used to write LISP functions that check their arguments and 
issue error reports when necessary.

Exercise 27.23: The built-in special form LABEL is not 
handled. Provide code to implement LABEL. Hint: just place 
the typed-pointer of the λ-expression in the value field of the 
label variable to prepare for setting up to jump to APPLY.

Exercise 27.24: Often lists are used as one-dimensional 
arrays. In order to access the i-th element, a function called 
ACCESS may be defined. For example, with:

(SETQ ACCESS (LAMBDA (L I)
                      (COND ((EQ I 1) (CAR L))  

(T (ACCESS (CDR L) (PLUS I -1)))))).

this function is often painfully slow. Add iterative code to 
make ACCESS a built-in function.

Exercise 27.25: Most versions of LISP provide the potentially-
infinite class of functions CAAR, CADR, CDAR, CDDR, CAAAR, … 
, where the interior A and D letters in the name of such a 
function specify that a corresponding sequence of CAR and CDR 
applications is to be done to the argument S-expression. Modify 
the program given here to provide for this class of functions.

Exercise 27.26: It is easy to write (MINUS N 1) when we mean 
(DIFFERENCE N 1). Suppose v[N] = 4. What output do we get 
when (MINUS N 1) is entered? Hint: set tracing on with the 
directive !trace and then enter (SETQ N 4) and (MINUS N 1).

Exercise 27.27: Many of the sections of code for built-in 
functions and special forms given above do not adequately 
check their arguments. In each such case, propose suitable 
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error-checking code so that the LISP interpreter cannot 
directly or indirectly crash due to such incorrect input. Try 
to maintain whatever readability is currently present, since 
readability is a virtue equally as important as efficiency.

Exercise 27.28: Why isn’t it a good idea to make REVERSE 
explicitly built in with the following code?

{int32 i, j, t; i ← E1; j ← B
i
; B

i
 ← nilptr;

   while j ≠ nilptr do {t ← B
j
 ; B

j
 ← i; i ← j; j ← t}; v ← i}.

Exercise 27.29: There is code given in the program above that 
implements a built-in special form called TSETQ. Explain what 
TSETQ does.

Exercise 27.30: Define a new built-in function called PEVAL 
which takes an ordinary atom A as input and returns the 
previous pushed-down value of A at the head of the bindlist of A. 
What should you return if there is no such pushed-down value?

Exercise 27.31: Define an extension to LISP to handle the 
class of strings of characters as a datatype. In particular, let 
strings of characters be a class of legal LISP values, just as 
numbers, functions, and S-expressions are. What about a 
typecode for strings? Explain how strings might be stored. 
(Hint: use self-referential ordinary atoms.) How are constant 
strings written? Define the functions that provide for string 
manipulation. Include (CAT a b), (STRLEN a), and (SUBSTR a i 
j). Would STR, where v[(STR x)] = the string of v[x], be useful? 
What about introducing an inverse to STR? Define (READSTR) 
in a useful way. How will PRINT and PRINTCR handle strings? 
Can READ be redefined to optionally apply to a string? Are 
there other potentially useful new functions and extensions 
of old functions that are of interest? Strike a synthetic balance 
between utility and complexity.

/* ================================================================== */
int32 newloc(int32 x, int32 y)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      Allocates and loads the fields of a new location in the list area. The car field is set to X 

and the cdr field is set to Y. The index of the new location is returned.
     −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−   */
{int32 j;
  if (fp<0) {gcmark(x); gcmark(y); gc(); if (fp<0) error("out of space");}
  j=fp; fp=B(j); A(j)=x; B(j)=y; numf--; return(j);
}
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Exercise 27.32: How does one “exit” from the LISP Interpreter 
given above?

Exercise 27.33: Reprogram the LISP interpreter given here 
to solve the problem that strings are not automatically 
allocated or automatically garbage collected in C by building a 
collection of string-handling toolkit procedures. Hint: arrange 
for all strings to live in a special garbage-collected area 
established especially for strings.

Exercise 27.34: Write the code for a new LISP function DEL 
which removes its atom argument x from the atom table. 
What will happen if the atom argument x is referred to in an 
S-expression?

Exercise 27.35: In the LISP interpreter above, indirect input is 
read from the file F when the directive @F is input. (Is this latter 
“input” a noun or a verb?) Although any output due to such 
indirect input is output to the screen and to the log file lisp.log, 
the contents of F itself are not printed on the screen nor are 
they entered in lisp.log. Modify the LISP Interpreter program 
to test for the value of an ordinary atom ECHOSW, and if ECHOSW 
does not exist or v[ECHOSW] ∉ {1, 2, 3}, leave the output as it is 
currently done, while if v[ECHOSW] = 1 or v[ECHOSW] = 3, print 
the contents of each indirect file on the screen as it is read, 
and if v[ECHOSW] = 2 or v[ECHOSW] = 3, write the contents of each 
indirect file in the log file as it is read.

Exercise 27.36: Note that an input line beginning with ‘/’ is  
a comment. (Try entering “/acomment”. Also try entering  
“/notacomment”.) The LISP Interpreter program above 
prompts for an input by printing the symbol *, and if the 
entered line is not a sequence of one or more complete 
S-expressions, then continuation input is prompted by 
printing ¿. In the special case where the input line given in 
response to * is empty, that is, the enter key is immediately 
hit, a > is printed to prompt for more input. Is this a rational 
design decision? Modify the LISP Interpreter program to 
prompt for further input in this special case with a *.
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CHAPTER 28

Garbage Collection

As input S-expressions are provided to the LISP interpreter to evaluate, various list structures 
in the list area are constructed, both from the input and during the process of evaluation. 
Many of these list structures have no use after they have been initially used. Such useless data 
objects are called garbage data objects. In the case of list area nodes, a node is garbage if it 
cannot be reached. This means that it is not a node in any list structure that is the value of an 
ordinary atom, including user-defined function and special form values, nor is it reachable 
from any pushed-down values held in a bindlist list, nor does it occur within any property lists.

We need to find such useless list nodes and put them on the list-area free-space list 
so they may be reused; otherwise we will run out of list area memory on all but modest 
computations. This process is called garbage collection. A procedure for performing 
garbage collection called gc is described below.

Useless garbage entries also accumulate in the number table as input numbers, 
and computed numbers are created and become useless. The gc procedure also collects 
the garbage entries in the number table and makes them available for reuse. The gc 
procedure is only invoked when the list area is exhausted or when the number table 
cannot hold more numbers. In particular the gc procedure is called from within the 
newloc procedure given above whenever it is discovered that no list nodes are available.

Exercise 28.1: Enumerate all the places in the LISP interpreter 
where the gc procedure is called.

Exercise 28.2: One of the central routines that must permit 
garbage collection to occur at several points within itself is the 
sread procedure. Study the sread procedure and explain in 
detail how and why it works.

Below we give the garbage-collection function {\tt gc} and the ancillary routine  
{\tt gcmark} which implement the garbage-collection “service” used in the LISP 
Interpreter program.
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/* ================================================================== */
void gc(void)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   Garbage collector for the number table and the listarea.
   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{int32 i,t;
#define marked(p)    ((A(p) & 0x08000000)6=0)
#define unmark(p)    (A(p) &= 0xf7ffffff)

/* Mark everything reachable from the atom table. */
 for (i=0; i<n; i++)
    {gcmark(Atab[i].L); gcmark(Atab[i].bl); gcmark(Atab[i].plist);}

/* gcmark has set nmark[i] =1 for every number Ntab[i].num reachable from the atom table 
or from a list-node. Now we garbage-collect the number table by re-storing every reachable 
number, and claiming the rest for reuse. */
for (i=0; i<n; i++) nx[i]=-1;

for (nf=-1,i=0; i<n; i++)
   if (nmark[i] EQ 0) {Ntab[i].nlink=nf; nf=i;}
   else /* restore num[i] */
      {t=hashnum(Ntab[i].num);
       while (nx[t]6=-1) if ((++t) EQ n) t=0;
       nx[t]=i; nmark[i]=0;
      }

 /* build the new list-node free-space list and return. */
 fp=-1; numf=0;
 for (i=1; i<m; i++) if (NOT marked(i)) {B(i)=fp; fp=i; numf++} else unmark(i);
}

/* ================================================================== */
void gcmark(int32 p)
/* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Mark the object, possibly a sub-tree, specified by p. At the same time, for every number 
pointer referencing Ntab[i] encountered, set nmark[i] =1 to mark Ntab[i].num as a 
"reachable" number to be preserved.

  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
{static int32 s,t;
#define marknode(p)  (A(p) |= 0x08000000)
#define marknum(t,p)   if ((t) EQ 9) nmark[ptrv(p)]=1
#define listp(t)       ((t) EQ 0 OR (t)>11)
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start:
 t=type(p);
 if (listp(t))
    {p=ptrv(p); if (marked(p)) return; t=A(p); marknode(p);
     if (NOT listp(type(t))) {marknum(type(t),t); p=B(p); goto start;}
     s=B(p); if (NOT listp(type(s))) {marknum(type(s),s); p=t; goto start;}
     gcmark(t);       /* recursive call to mark the subtree A(p). */
     p=B(p); goto start; /* equivalent to gcmark(B(p)) */
    }
 else marknum(t,p);
}

Exercise 28.3: Why don’t we have a scheme for “marking” 
the entries in the atom table found while traversing 
S-expressions?

Here is an indirect file that defines the function mg that can be 
used to generate a bunch of “disconnected” list nodes that will 
eventually force garbage collection to occur. We can use this 
function to superficially test garbage collection.

/ file:gctest to define mg for testing garbage collection.

  (SETQ DONE 'DONE)

   (SETQ MG (LAMBDA (N) (COND ((GREATERP 0 (SETQ N (DIFFERENCE N 1))) DONE)
                           ((EQ 1 (CONS (CONS N T) (CONS NIL T))) 7)
                           ( T (MG N)) ) ) )

/ type (mg 700) or a similar command to force garbage-collection.

Exercise 28.4: Create the above file in your lisp directory 
with the name gctest. Then run the LISP Interpreter program 
and enter the directive @gctest. Then enter (mg 500). Then 
enter (mg 700). Then enter (mg 990). Then enter (mg 1000). 
Explain what you see.

Exercise 28.5: Can you devise a way to discard unneeded 
ordinary atoms and thus reclaim space in the atom table for 
reuse? Hint: first try to handle those unreferenced ordinary 
atoms whose values are undefined.
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Exercise 28.6: Can you cause gc to loop forever by building a 
circular list using RPLACA and/or RPLACD?

Exercise 28.7: Are there any bugs in the LISP interpreter 
program given here?

Solution 28.7: Indubitably! For example, try entering an 
illegal or non-existent indirect input file name: for example, @
ABC where the file ABC does not exist. And try entering just @. 
(You should, of course, fix all these bugs in your own copy of 
the LISP interpreter !-).)

/* end of file lisp.c */
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CHAPTER 29

The lispinit File, the  
linuxenv.h File, and the 
Makefile File

Below is the lispinit file used by the LISP Interpreter program. This text file contains  
the definitions of various LISP functions that are part of GOVOL LISP, but which are 
provided by just “reading” them from this file and establishing them by executing the 
SETQ expressions given herein rather than hard-coding them into the LISP Interpreter.

/filename: ~/lisp/lispinit             revision date: October 15, 1988

(SETQ APPEND (LAMBDA (X Y) (COND ((EQ X NIL) Y)
   ((ATOM X) (CONS X Y))
   (T (CONS (CAR X) (APPEND (CDR X) Y)) )) ))

(SETQ REVERSE (LAMBDA (X) (COND ((ATOM X) X)
   (T (APPEND (REVERSE (CDR X)) (CONS (CAR X) NIL )))) ))

(SETQ EQUAL (LAMBDA (X Y) (COND ((OR (ATOM X) (ATOM Y)) (EQ X Y))
   ((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
   (T NIL)) ))

(SETQ NOT NULL)

(SETQ ZEROP (LAMBDA (X) (COND ((EQ X 0) T))))

(SETQ MEMBER (LAMBDA (A S) (COND ((EQ S NIL) NIL) ((EQUAL A (CAR S)) T)
(T (MEMBER A (CDR S))) )))

(SETQ INTO (LAMBDA (G L) (COND ((NULL L) L) (T (CONS (G (CAR L))
(INTO G (CDR L)))))))

(SETQ ONTO (LAMBDA (G L) (COND ((NULL L) L) (T (CONS (G L)
(ONTO G (CDR L)))))))
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(SETQ APPLY (SPECIAL ($G $X) (EVAL (CONS $G $X))))

(SETQ SORT (LAMBDA (X)
   (COND ((NULL X) X) (T (MERGE (CAR X) (SORT (CDR X)))))))

(SETQ MERGE (LAMBDA (V L) (COND ((OR (NULL L) (LESSP V (CAR L))) (CONS V L))
   (T (CONS (CAR L) (MERGE V (CDR L)))))))

(SETQ GETPROP (LAMBDA (A P) (ASSOC (GETPLIST A) P)))

(SETQ ASSOC (LAMBDA (L P) (COND ((NULL L) NIL)
   (T (COND ((EQUAL P (CAR (CAR L))) (CDR (CAR L)))
   (T (ASSOC (CDR L) P)))))))

(SETQ PUTPROP (LAMBDA (A P W) (PUTPLIST A
   (CONS (CONS P W) (GETPLIST (REMPROP A P W))))))

(SETQ REMPROP (LAMBDA (A P W) (PUTPLIST A (NAX (GETPLIST A) (CONS P W)))))

(SETQ NAX (LAMBDA (L P) (COND
   ((NULL L) NIL) ((EQUAL (CAR L) P) (CDR L))
   (T (DO (NX L P) L)))))

(SETQ NX (LAMBDA (L P) (COND ((NULL (CDR L)) NIL)
   ((EQUAL P (CAR (CDR L))) (RPLACD L (CDR L))))))

In order to write essentially any useful C program, we must have knowledge of the 
various functions and typedef’ed datatypes, and so forth defined in various system header 
files that we “include” within the program files to make use of.

The “include-file” infrastructure of C is one of the most intricate and difficult parts of 
the C language. There are many built-in functions in C such as ioctl or pow that we may 
want to use. First, it is often difficult to learn about these functions, some of which will be 
particular to the operating system and CPU chip being used. Although Internet searches 
(and the man command on Linux/Unix systems) are helpful, there is no substitute for a 
good manual, which can be hard to come by.

Second, the header-file “structure” for a multiplatform compiler like the GNU 
Compiler Collection (GCC) is extremely complex. There is a system-specific sequence 
of directories known to the compiler that is searched in order for the requested header-
files. Determining this sequence is difficult, although a web search will generally yield 
a few useful tips among a mass of partly erroneous posts. Since individual header-files 
contain “includes,” referring to “downstream” header-files, and header-files with the 
same name occur in different directories in the search sequence, it can be hard to find 
a header-file relevant to some function or symbol we want to know about, and it is even 
harder to read a header-file to learn about the functions and/or other objects defined 
therein. This problem is compounded by the obscuring of “datatypes” within header-
files, by the naming choices intended to minimize the “collision” with names chosen by 
programmers, and by numerous “ifdef” constructions introduced to deal with various 
operating systems and CPUs.
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In the lisp.c file, the command "#include linuxenv.h" specifies that the file 
linuxenv.h be sought, first in the directory where the file lisp.c containing the referencing 
include-command resides (where it should, in fact, be found), and then in the system-
specific sequence of directories. In the include-file linuxenv.h we have the include 
statements that load the needed definitions of the various built-in C functions and other 
objects that are used in lisp.c; it is quite likely that you will need to fiddle with this file to 
get lisp.c to compile on your system.

Here is the linuxenv.h file used in the LISP Interpreter program above for a Linux 
environment using the GCC compiler.

/* file: ~/lisp/linuxenv.h */
/*  This is the environment header file for the GNU C compiler on intel 386 

linux.
    This file is to contain any machine and compiler specific definitions. */

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <math.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sgtty.h>
#include <stdarg.h>
#include <values.h>

/* end of linuxenv.h */

Exercise 29.1: The C language passes procedure arguments 
by value, that is, a copy of each actual argument is passed 
(stored in a location on the stack used for arguments, local 
variables, and return addresses). Also, arguments can be 
assigned values within a procedure; in the case of a copy 
argument, this merely changes the copy. Use this device and 
add code to the gc procedure that looks ahead from a node 
p, and avoids recursively calling gc when at most one of the 
nodes A

p
 or B

p
 needs to be marked. What benefits can be 

expected from using this code?



142

CHAPTER 29 ■ THE LISPINIT FILE, THE LINUXENV.H FILE, AND THE MAKEFILE FILE

Exercise 29.2: Program the entire LISP interpreter to run on 
an available LISP system. Some trickery will be needed to 
make your interpreter conform to the GOVOL dialect of the 
LISP language given in this book.

Exercise 29.3: Reprogram the LISP interpreter given here to 
solve the problem that the list-area, the atom table, and the 
number table have fixed sizes. Devise methods for allocating 
and using more space for these data structures when they 
become full rather than failing as the program above does now.

Of course, for modern paging systems, we might be able to 
specify that these areas be very large, but only use part of the 
space for such a data area initially, secure in the knowledge 
that pages that are never accessed, never exist until they are 
accessed. This still leaves the problem of rehashing for the 
atom table.

One can imagine that a suitable cooperative paging system 
might make it possible to request that certain data areas 
be started on a new page in the logical address space and 
occupy a block of contiguous pages at the end of the allocated 
memory, and that such a data area is accessed only through 
a pointer, and that we can ask for such access to be extended 
in size by some integral number of pages, and that all the 
address variables for these extensible areas be appropriately 
reset. In this exercise, however, you should not assume any 
help, and only use the basic C malloc routines.

Below is a Makefile for compiling and linking the LISP Interpreter program on 
a Linux system. The input is the source code file lisp.c together with the header file 
linuxenv.h. The output is the executable program file lisp. The command to compile 
lisp.c is: [make -f Makefile lisp].

# file: Makefile                              date: 1/3/2017
#
# This file is a control file for the make program. It contains the
# specifications for building the lisp executable program, lisp, from
# the C source file lisp.c using the GNU C-compiler on linux. To build
# the lisp executable file , lisp, type 'make lisp' after the operating
# system prompt in the appropriate directory where lisp.c and linuxenv.h
# reside.

# CFLAGS is a macro for certain flags that can be passed to the compiler.
# The flag -g tells the compiler to include debugging information
# in the resulting executable; the flag -O means use the lowest
# level of compiler optimizations. CFLAGS is not currently used in this
# makefile.
CFLAGS=-g -O
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# CC is a macro for the C-compiler used in compile and link commands.
CC=gcc

# The following line begins with the name of the target (i.e. the file
# to be constructed), lisp.o, and then lists the file(s) on which it
# depends--the C source file lisp.c. The next line is the command for
# compiling the C source file in order to construct the file lisp.o; the
# flag -c means only compile--do not link--the named C file, and the
# flag -o lisp.o means name the output file lisp.o.
lisp.o: lisp.c
$(CC) -c -o lisp.o lisp.c

# The following line begins with the name of the target, lisp, which
# is an executable file, and then lists the file on which it
# depends--the object file lisp.o. The next line is the command for
# linking the object file, lisp.o with all requested library files,
# and producing the output file, lisp. -lm means link-in the math
# library module, libm.o and -lc means link-in the main C library
# module, libc.o. There are other libraries that are included by default!
# Note -lm and -lc must occur after lisp.o, and for some versions of
# GCC, you must leave-out -lm and/or -lm.
lisp: lisp.o
$(CC) $(CFLAGS) -o lisp lisp.o -lm -lc
  chmod 777 lisp
# end of Makefile

To run the LISP interpreter, we cd into the directory where the lisp executable file is 
kept, and type lisp. Note the file lispinit must also be present in this directory.

Exercise 29.4: The LISP Interpreter program given above 
is compiled and linked to yield an executable program; 
this program is the file lisp, and when ./lisp is typed as a 
command, the LISP interpreter is run. If you would like to 
write a LISP program, that is, a collection of LISP functions that 
can be run on demand, you could placed these functions in 
a text file, say MP, and then run the LISP Interpreter program, 
lisp, and enter the directive @MP to define these functions. Then 
you would “run” any of these functions as desired.

How might you construct a LISP compiler program that 
would take a text-file containing a collection of LISP-function 
definitions, including a particular LISP-function named MAIN 
with no arguments, as input, and produce a LISP “executable” 
file with a name you specify, say LISPP, that can then be run 
with the effect that the functions in the input file are defined  
and the initial function MAIN is called?
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Algorithmic ideas, 91
APPEND function, 47–48
APPLY function, 78
Asymmetric valuation, 102
ATOM predicate, 27
Atom table

function (see Functions)
number atoms, 5
ordinary atoms, 3, 5
pictorial notation, 23–26

��������� B
Bind actual and formal arguments

Algol lexical scoping, 68
association list, 67
binding times, 69
call-time binding, 70
dotted-pairs, 67
dynamic scoping, 67
λ-expression, 67
EVAL, 72
free variable, 68
functional argument  

problem, 69, 70
function/special form, 68
macros, 73
shallow binding, 71
skip-binding, 69
variation, 71
versions, 71

Blank character. See Space character
BODY function, 55
BOXPOS function, 104

��������� C
CAR function, 27–28
CDR function, 27–28
CONS function, 27–28
C program

LISP in, 110–134
ASCII text, 120–122
eaL list, 127–128
end of file, 120
number table, 122–123
sread procedure, 117–118
statement replacement, 125–126
static variables, 124–125

��������� D
DEEPENOUGH function, 104
DIFFERENCE function, 11
DIFF function, 97–99
DO function, 77
Dot-notation, 36
Dotted-pair notation, 35

��������� E
ELIST function, 95–97
End of file (EOF), 120–122
EQ predicate, 14
EQUAL predicate, 49
EVAL function, 12
Evaluation operator, 9–10
Experimental programs, 91
λ-expression, 43

binding data, 43
DEFINE/DEFUN, 44
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FACT, 44
impredicative definition, 44
SETQ, 44

��������� F
FACTORS function, 80
Fair game, 101
FLOOR function, 12
Forms

AND, 39
COND, 39
OR, 39

FORTRAN, 91
FPRINT function, 97
FSET function, 95
Functions, 6

built-in, 7
dotted-pair, 28
domain values, 6
expression, 7
forms

lists, 11–12
NIL, 13
predicate, 14–15
total function, 13

function-valued atom, 7
NIL, 7
range, 6
special forms, 6
undefined value, 8
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Garbage collection

bindlist list, 135
disconnected list nodes, 137
gc and newloc procedure, 135
number table, 135–136

GENMOVES function, 107
GETPROP function, 86
GREATERP function, 61
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Hashing, 121
Hash value, 121
HPICK functions, 107

��������� I, J, K
INTO function, 77

��������� L
LABEL special form, 57
LAMBDA. See λ-expression
LESSP function, 61
linuxenv.h file, 141
LISP

data values, 1
functions, 1
GOVOL, 1
interpreter program, 1

C, 110–124, 126–134
form, 109
subroutines, 109

unique features, 1
lispinit file, 139
List notation

built-in function, 38
dot-notation, 36
dotted-pair  

notation, 35
partial function, 38
pure list, 37
S-expressions, 35, 37
total function, 38
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MACRO function, 73
Makefile file, 142–143
Minimal LISP, 75–76
MINUS function, 12
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Nonatomic  

S-expressions, 17, 21, 36
NOT function, 61
NULL function, 61
NUMBERP predicate, 14
Number table

data types, 4
floating-point numbers, 3, 7
function (see Functions)
pictorial notation, 23

λ-expression (cont.)
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ONTO function, 78
Ordinary atoms, 5–7
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Perfect-information game, 101, 103
Pictorial notation

atom table, 23–26
number table, 23
S-expression, 24
typed-pointer, 23

PLUS function, 7, 11
POWER function, 12
Predicates, 14–15
PRINT function, 83
PRINTCR function, 83
PRODUCT function, 77
Properties, 85

GETPROP, 86–88
g-property value, 85
property list, 85
PUTPROP, 85–88
REMPROP, 86–88
RPLACA and RPLACD, 88
TCPROP, 88

Pure list, 37
PUTPROP function, 85
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Quote/apostrophe symbol, 59
QUOTE form, 11, 18
QUOTIENT function, 12
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READ pseudo-function, 83
Recursive functions, 57
REMPROP function, 86
REVERSE function, 48
RPLACA function, 88
RPLACD function, 89
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SETQ form, 6, 11
S-expressions, 109

arguments, 75
definition, 17

dot notation, 17
dotted-pair, 17
list notation, 35, 37
not operators, 17
pictorial notation, 24
QUOTE, 18
typed-pointers, 31

Space character, 5
Special form

EVALQUOTE, 54
QUOTE, 59
SET, 55
SETQ, 57
SETQQ, 54
SPECIAL, 53
substitution, 53
unnamed functions, 55

Sread procedure, 109, 117–118
Statistical methods, 105
SUM function, 77
Swrite procedure, 109
Symbolic differentiation

DIFF, 93, 95, 97–99
differentiation rules, 94
E-expressions, 94
ELIST function, 95–97
forms, 93
FPRINT, 95, 97
FSET, 95
infix form, 93
MKATOM function, 93
real-valued function, 93

��������� T, U, V
Terminal positions

αβ algorithm, 105, 107–108
box, 101
circle symbol, 101
coroutines, 107
dotted-pair, 104
dynamic ordering, 107
game tree, 102
GENMOVES function, 107
hypotheses, 102
maximizing player, 102
minimaxing, 102
PICK function, 103
pitch positions, 108
planning/decision-making, 103
representations, 104
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skip-binding function, 105–106
static valuation function, 104
Von Neumann and  

Morgenstern, 102–103
TIMES function, 12
Total function, 13
Typed-pointers, 64

built-in function, 64
dotted-pairs, 20, 31
floating-point value, 19
function, 32
integer index, 19
nonatomic S-expression, 21

S-expressions, 31
typecode, 19
type-field and value-field, 19
unnamed special form, 64
untyped-pointer, 20

��������� W, X, Y
WHILE statement, 80–81
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ZEROP predicate, 14
Zero-sum game, 101–102

Terminal positions (cont.)
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