
Interpreting
LISP

Programming and Data Structures
—
Second Edition
—
Gary D. Knott

www.allitebooks.com

http://www.allitebooks.org

Interpreting LISP
Programming and Data Structures

Second Edition

Gary D. Knott

www.allitebooks.com

http://www.allitebooks.org

Interpreting LISP: Programming and Data Structures

Gary D. Knott
Civilized Software Inc., Silver Spring, Maryland, USA

ISBN-13 (pbk): 978-1-4842-2706-0 ISBN-13 (electronic): 978-1-4842-2707-7
DOI 10.1007/978-1-4842-2707-7

Library of Congress Control Number: 2017944089

Copyright © 2017 by Gary D. Knott

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Daniel Holden
Coordinating Editor: Mark Powers
Copy Editor: Mary Bearden

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book
is available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484227060. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227060
www.apress.com/9781484227060
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ��� vii

About the Technical Reviewer �� ix

Acknowledgments �� xi

Introduction �� xiii

 ■Chapter 1: LISP ��� 1

 ■Chapter 2: The Atom Table and the Number Table �������������������������� 3

 ■Chapter 3: Evaluation ��� 9

 ■Chapter 4: Some Functions and Special Forms ���������������������������� 11

 ■Chapter 5: S-Expressions ��� 17

 ■Chapter 6: Typed-Pointers �� 19

 ■Chapter 7: Pictorial Notation �� 23

 ■Chapter 8: More Functions ��� 27

 ■Chapter 9: Arguments and Results Are Typed-Pointers ��������������� 31

 ■Chapter 10: List Notation �� 35

 ■Chapter 11: More Special Forms �� 39

 ■Chapter 12: Defining Functions: λ-Expressions ��������������������������� 43

 ■Chapter 13: More Functions ��� 47

 ■Chapter 14: Defining Special Forms ��� 53

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

iv

 ■Chapter 15: The Label Special Form ��� 57

 ■Chapter 16: The Quote Macro ��� 59

 ■Chapter 17: More Functions ��� 61

 ■Chapter 18: More About Typed-Pointers ��������������������������������������� 63

 ■Chapter 19: Binding Actual Values to Formal Arguments ������������ 67

 ■Chapter 20: Minimal LISP ��� 75

 ■Chapter 21: More Functions ��� 77

 ■Chapter 22: Input and Output ��� 83

 ■Chapter 23: Property Lists �� 85

 ■Chapter 24: What Is LISP Good for? �� 91

 ■Chapter 25: Symbolic Differentiation ��� 93

 ■Chapter 26: Game Playing �� 101

 ■Chapter 27: The LISP Interpreter Program ����������������������������������� 109

 ■Chapter 28: Garbage Collection �� 135

 ■ Chapter 29: The lispinit File, the linuxenv.h File, and the
Makefile File ��� 139

 ■Bibliography ��� 145

Index �� 147

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� vii

About the Technical Reviewer �� ix

Acknowledgments �� xi

Introduction �� xiii

 ■Chapter 1: LISP ��� 1

 ■Chapter 2: The Atom Table and the Number Table �������������������������� 3

 ■Chapter 3: Evaluation ��� 9

 ■Chapter 4: Some Functions and Special Forms ���������������������������� 11

 ■Chapter 5: S-Expressions ��� 17

 ■Chapter 6: Typed-Pointers �� 19

 ■Chapter 7: Pictorial Notation �� 23

 ■Chapter 8: More Functions ��� 27

 ■Chapter 9: Arguments and Results Are Typed-Pointers ��������������� 31

 ■Chapter 10: List Notation �� 35

 ■Chapter 11: More Special Forms �� 39

 ■Chapter 12: Defining Functions: λ-Expressions ��������������������������� 43

 ■Chapter 13: More Functions ��� 47

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vi

 ■Chapter 14: Defining Special Forms ��� 53

 ■Chapter 15: The Label Special Form ��� 57

 ■Chapter 16: The Quote Macro ��� 59

 ■Chapter 17: More Functions ��� 61

 ■Chapter 18: More About Typed-Pointers ��������������������������������������� 63

 ■Chapter 19: Binding Actual Values to Formal Arguments ������������ 67

 ■Chapter 20: Minimal LISP ��� 75

 ■Chapter 21: More Functions ��� 77

 ■Chapter 22: Input and Output ��� 83

 ■Chapter 23: Property Lists �� 85

 ■Chapter 24: What Is LISP Good for? �� 91

 ■Chapter 25: Symbolic Differentiation ��� 93

 ■Chapter 26: Game Playing �� 101

 ■Chapter 27: The LISP Interpreter Program ������������������������������������ 109

LISP in C �� 110

 ■Chapter 28: Garbage Collection �� 135

 ■ Chapter 29: The lispinit File, the linuxenv.h File,
and the Makefile File �� 139

 ■Bibliography ��� 145

Index �� 147

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Gary D. Knott, PhD, is founder/CEO of Civilized Software Inc., the makers of the
Mathematical and Statistical Modelling software MLAB.

www.allitebooks.com

http://www.allitebooks.org

ix

About the Technical
Reviewer

Daniel Holden is a well-known C programmer with
an interest in creative programming projects and the
author of the C programming book Build Your Own
Lisp. By day he works as a researcher developing
tools using machine learning for automatic character
animation and by night he enjoys writing short stories,
creating digital art, and developing games.

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments

I am thankful for the help of readers in shaping and debugging this material, and
additionally, for the team at Apress, Steve Anglin, Mark Powers, and Matthew Moodie,
and also the team at SPi Global, including Baby Gopalakrishnan, Raagai Priya
Chandrasekaran, among others.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

I wrote this little book to help teach LISP to students in a course on data structures.
Consequently, it contains a careful description of the data structures manipulated by
LISP functions. LISP centrally depends on a linked-list data structure, which is one of
the landmark features popularized, if not introduced, with the advent of LISP. This data
structure and others, notably hash tables, are also used in constructing a LISP interpreter.

This book is intended to achieve several purposes. First, it is intended to be
a gentle, but precise, introduction to the LISP language; second, it is intended to
present a nontrivial LISP interpreter written in C that presents several “lessons” about
programming in general and interpreter writing in particular; third, it is intended to
introduce a bit of the “flavor” of programming in LISP, which is quite different in some
ways from programming in a procedural language like C, where programs are built
statement by statement. And all of this is to be done in a short space without copious, and
possibly tedious, elaboration. This book is not intended to prepare the reader for using a
particular LISP system, rather the focus is on the cultural contribution that LISP has made
to the discipline of programming.

The study of LISP, coupled with the study of a LISP interpreter intended for
exhibition, is of special interest to students in the areas of programming languages
and computer architecture as well as data structures. Indeed, this book will be useful
to students in all areas of computer science, as well as for autodidacts, professional
programmers, and computer enthusiasts in a wide variety of fields. Although some
“programming maturity” is assumed, the preserving reader can progress by developing
such a foundation by means of parallel study and practice.

With parallel study, this book is intended to be accessible for a wide range of
interested readers from high school students through professional programmers. I would
very much like to see students use this book to help them understand LISP and how a
LISP interpreter is crafted, and thus understand the concepts involved in building an
interpreter for any language. The best way to proceed is to compile and run the C LISP
interpreter, and then experiment by modifying it in various ways. I hope this book can
help all who use it to develop an aesthetic appreciation of this elegant programming
language.

And finally, since the LISP Interpreter C program provided in this book is a nontrivial
program requiring careful study to understand it, this book, along with a book on
C, should also be of use in learning or relearning the marvelous “Swiss army knife”
programming of language C.

1© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_1

CHAPTER 1

LISP

LISP is an interesting programming language, and the ideas involved in building a LISP
interpreter are equally interesting [McC79]. This book contains an introduction to LISP
and it also contains the data structure details and the explicit code for a working LISP
interpreter.

LISP is a programming language with unique features. It is conceptually interactive.
Input commands are given one by one and the associated result values are printed out.
LISP is an applicative language, meaning that it consists mainly of functional application
commands. Besides functional application, there are forms of assignment commands
and conditional commands written in functional form. In general, iteration is replaced by
recursion.

The data values on which a LISP function may operate includes real numbers. Thus,
an expression like 1.5 + 2 is a LISP statement, which means: type out the result of applying
+ to the arguments 1.5 and 2. In LISP, function application statements are always written in
prefix form, for example, +(1.5, 2). Moreover, rather than writing f (x, y) to indicate the result
of the function f applied to the arguments x and y, we write (f x y) in LISP, so (+ 1.5 2)
is the LISP form for 1.5 + 2. Finally, functions in LISP are usually specified by identifier
names rather than special symbols. Thus the correct way to compute 1.5 + 2 in LISP is
to enter the expression (PLUS 1.5 2), which will, indeed, cause 3.5 to be printed out. An
expression such as (PLUS 1.5 2) is called a function call expression. LISP functions can
also operate on lists of objects; indeed the acronym LISP is derived from the phrase LISt
Processing.

LISP is commonly implemented with an interpreter program called the LISP
Interpreter. This program reads LISP expressions that are entered as input and evaluates
them and prints out the results. Some expressions specify that state-changing side-effects
also occur. We shall describe below how a particular LISP interpreter is constructed at the
same time that LISP itself is described.

There are a variety of dialects of LISP, including extended forms, which have
enriched collections of functions and additional datatypes. We shall focus on the
common core of LISP, but some definitions given here are not universal, and in a few
cases they are unique to the version of LISP presented herein (GOVOL). The GOVOL
dialect of LISP presented here is similar to the original LISP 1.5 [MIT62]; it is not as
complex as the current most frequently used varieties of LISP, but it contains all the
essential features of these more complex varieties, so that what you learn in this book will
be immediately applicable for virtually every LISP dialect. (Look up the programming
language Jovial to learn the meaning of GOVOL.)

3© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_2

CHAPTER 2

The Atom Table and the
Number Table

The LISP Interpreter program maintains several general data structures. The first data
structure is a symbol table with an entry for every named data object. These named data
objects are called ordinary atoms, and the symbol table of ordinary atoms is called the
atom table. (The term atom is historical; that is the term John McCarthy, the designer of
LISP [McC60][MIT62], used.) The atom table is conceptually of the following form:

The atom table has n entries, where n is some reasonably large value that is
unspecified for now. Each entry in the atom table has a name field, which holds the
atom name, for example: "PLUS" or "AXY". Each entry also has a value field for holding
the current value of the atom and an associated type field, which is an integer code that
specifies the datatype of the value of the atom. For example, the value of the atom "PLUS"
is a built-in function, which is classified by the integer typecode 10. Each atom table entry
also has a plist field and a bindlist field, which I will discuss later. (A field is just a term
for a sequence of bits wherein a binary value can be stored; usually such bit fields are
not complete computer “words.” Of course a binary value includes everything dealt with
within a computer.)

The second data structure is a simple table called the number table in which floating-
point numbers are stored. Every input number and every computed number is stored
in the number table, at least for the period of time it is required to be there. The number
table is conceptually of the following form:

Chapter 2 ■ the atom table and the number table

4

Since the floating-point numbers include a large complement of integers, there is
no (immediate) reason, except, perhaps, for speed, to have integers provided in LISP as
a separate datatype.

Exercise 2.1: Precisely specify the set of integers that are
expressible in floating-point format on some computer with
which you are familiar.

Exercise 2.2: Is there a good reason that the atom table and
the number table have the same number of entries?

Solution 2.2: No, there is no good reason for this. It can be
easily changed if desired.

The datatype codes are:

These datatypes are exactly the datatypes available in the version of LISP discussed
here. The reason for the seemingly peculiar type codes will be apparent later; they are
chosen so that the individual binary digits have useful meanings.

Do not assume that the LISP interpreter looks up atom table or number table entries
by searching the appropriate table linearly from top to bottom; it is acceptable to imagine
this is the case for now, but you will later see that there are faster ways to do such look ups.

Chapter 2 ■ the atom table and the number table

5

There are two kinds of atoms in LISP. All atoms occur in either the atom table or the
number table; ordinary atoms are entries in the atom table, and number atoms are entries
in the number table.

An ordinary atom is like a variable in FORTRAN. It has a name and a value. The
name is a character string that is kept for printing and input matching purposes. The
value of an ordinary atom is a value of one of the types listed above. A number atom,
which represents a real constant, also has a value; this value is the floating-point bitstring
representing the number. The value of a number atom cannot be changed; a number
atom is thus a constant.

An ordinary atom whose value is undefined is created in the atom table whenever
a previously unknown name occurs in a LISP input statement. An ordinary atom whose
value is undefined has an arbitrary bit pattern in its value field and the typecode 1 in its
type field.

An ordinary-atom-valued ordinary atom in entry i of the atom table holds an index
j of an atom table entry in its value field; the value of the entry i atom is then the entry j
atom. The typecode in the type field of such an ordinary-atom-valued ordinary atom is 8.

A number-valued ordinary atom A in entry i of the atom table holds an index j of a
number table entry in its value field. Entry j in the number table is where the number
atom representing the number value of the ordinary atom A is stored. The type field of
entry i in the atom table holds the typecode 9.

A number atom is created in the number table whenever a number that is not
already present in the number table occurs in the input or is computed. Each distinct
number in the number table occurs in one and only one entry. Similarly, an ordinary
atom is created in the atom table whenever an ordinary atom occurs in the input or
is otherwise generated, which is not already present in the atom table. Each distinct
ordinary atom in the atom table is stored uniquely in one and only one entry.

An atom may be its own value! In particular, this is always the case for a number
atom, which is always made to appear to have itself as its value in the sense that the result
of evaluating the number atom named n is the corresponding floating-point bitstring,
which is represented lexically and printed out as the identical name n or a synonym
thereof. Since number atoms are constants, their names and values are consistently
confused in this fashion. Note that a number atom has many synonymous names, for
example, “1”, “1.0”, and “1.” are all names of the same value.

Numeric constant names are strings of one or more digits with an optional
embedded decimal point and an optional initial minus sign. Ordinary atom names
are strings that do not contain an open parenthesis, a close parenthesis, a blank, an
apostrophe, or a period and do not have an initial part consisting of a numeric constant
name. (A blank character is also called a space character.)

As mentioned earlier, it is convenient to identify numbers with their corresponding
number names.

Exercise 2.3: Which of the strings A, ABcd, ++, A-3, -, B'C, and 3X
are ordinary atom names?

Solution 2.3: All of them are ordinary atom names, except B'C
and 3X.

Chapter 2 ■ the atom table and the number table

6

An ordinary atom can be assigned a value by means of an assignment operator
called SETQ, which is provided in LISP. For example (SETQ A 3) makes the ordinary atom A
a number-valued ordinary atom whose value is 3; any previous value of A is lost. The value
of A after the assignment is the result value of the expression (SETQ A 3) and this value is
duly printed out when the expression (SETQ A 3) is entered as a command. We perhaps
should say that (SETQ A 3) makes A a number-valued ordinary atom whose value is the
number named by 3. However, as mentioned earlier, it is convenient to downplay this
distinction. We are protected from abusing number names, since LISP refuses to honor
input such as (SETQ 3 4).

A function can be defined formally as a set of ordered pairs O; this is the usual
means by which set theory is made to serve as a basis for mathematics in general. The
set of elements D that constitute the first-component values is called the domain of the
function, and the set of elements R that constitute the second-component values is called
the range of the function. The domain is the set of possible input values and the range
is the set of possible output values. These domain and range elements can be whatever
is desired, including k-tuple objects; however, if (a, b) is a pair of the function O with
domain D and range R, so that a Î D and b Î R, then no pair of the form (a, c), with c ≠ b,
is a member of the set of ordered pairs O representing the function. For example, the
binary addition function is { ((x, y), z) | z = x + y }. The value of a function-valued atom is
conceptually such a set of ordered pairs. Thus the ordinary atom PLUS is conceptually
initialized to have the value { ((x, y), z) | z = x + y }.

Exercise 2.4: If O is a set of ordered pairs representing a
function whose domain is D and whose range is R, does it
follow that O = D × R?

Solution 2.4: Definitely not (except when the number of
elements in R is 1).

Exercise 2.5: Does ((1, 2), 3) belong to the binary addition
function? How about ((2, 1), 3) and ((2, 2), 3)? Is the binary
addition function an infinite set?

Solution 2.5: Yes, yes, and no. Yes, the binary addition
function is an infinite set.

Exercise 2.6: The set S whose elements are the ordered pairs
of numbers appearing as the first components of the ordered
pairs of the binary addition function is a set of ordered pairs.
Is S a function?

All LISP computations are done by defining and applying various functions. There
are two forms of functions in LISP: ordinary functions and special forms. A special form
in LISP is just a function, except that the LISP evaluation rule is different for special forms and

Chapter 2 ■ the atom table and the number table

7

functions. Arguments of functions are evaluated before the function is applied, while arguments
of special forms are not further evaluated before the special form is applied. Thus the value
of a special-form-valued atom is conceptually a set of ordered pairs just as is the value of
a function-valued atom. We also need one descriptor bit to tell if such a set corresponds to
a function or a special form. The typecode value incorporates this bit of information. It is
important for LISP to “understand” both ordinary functions and special forms. For a hint as to
why this is, note that SETQ is a special form.

Every input statement to LISP is an atom or an applicative expression (function call
expression) that is to be evaluated, possibly with side-effects, and the resulting value is to
be printed out.

There are a number of particular ordinary atoms initially present in the atom table.
One such atom is NIL. NIL is an atom-valued atom whose value is itself NIL. Another atom
initially present is T, which is an atom-valued atom whose value is itself T. One purpose
of NIL is to stand for the Boolean value “false,” and T, of course, is intended to stand for
the Boolean value “true.” (You might think F would be a better symbol for “false,” but John
McCarthy was a minimalist.)

Exercise 2.7: Look up George Boole and read about Boolean
algebra.

The names of all the built-in functions and special forms, such as PLUS, are the
names of ordinary atoms that were initially established in the atom table with appropriate
initialized values. The values of these ordinary atoms are conceptually ordered pairs, but
in truth, the value field of an atom whose value is a built-in function or built-in special
form is either ignored or is an integer code used to determine which function or special
form is at hand.

Thus if "NIL" is entered into LISP, "NIL" is the output. Similarly if "T" is typed in,
"T" is the output. If "PLUS" is typed in, an infinite set of ordered pairs should be printed
out, but this is represented by printing out the name "PLUS" and the type of the value of
"PLUS" in braces instead, such as: {builtin function:PLUS}

Exercise 2.8: Would it be better to say that if "PLUS" is typed
in, a finite set of ordered pairs is printed out? Explain why or
why not. Hint: for any particular computer, the set of floating-
point numbers is finite.

As discussed earlier, numbers are entered in the number table as number atoms.
The presented name is the symbol string of the number, and the value is the associated
floating-point value. Only the value is stored in the number table, however. A suitable name
is reconstructed whenever this name needs to be printed out. Thus, typing “3” into LISP
results in “3” printing out, and a number atom with the value 3 is now in the number table.

If a previously unknown ordinary atom x is entered into LISP by typing its
name, then “x is undefined” is printed out, and the atom x, with the typecode 1, and

Chapter 2 ■ the atom table and the number table

8

an undefined value then exists in the atom table. If x is again entered as input, “x is
undefined” is printed out again.

Exercise 2.9: What is the result of entering "(SETQ A 3)" and
then "A"?

Solution 2.9: “3” and then “3” again. Also the number atom
“3” is now entered in the number table in some row j, and the
ordinary atom A is entered in the atom table in some row k of
the form ["A", 9, j, −, −]. Note the value of A is a data object of
type 9. The atom "A" itself is an ordinary atom, which would
be described by the typecode 8 if it were to appear as the value
of some other atom.

9© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_3

CHAPTER 3

Evaluation

Let’s denote the value of an atom or function call expression, x, by v[x] from now on.
The evaluation operator, v, defined here, is essentially embodied in the LISP Interpreter
program.

When x is an ordinary atom, v[x] is the data object specified in the value field of the
atom table entry for x. The type of this data object is given by the typecode in the type
field of the atom x. When x is a number atom, v[x] = x.

Exercise 3.1: What is PLUS?

Solution 3.1: PLUS is an ordinary atom.

Exercise 3.2: What is v[PLUS]?

Solution 3.2: v[PLUS] is, conceptually, a set of ordered pairs.
v[PLUS] is not an atom.

Exercise 3.3: What does the atom table entry for "PLUS"
look like?

Solution 3.3: It is a row of the atom table of the form ["PLUS",
10, α, −, −], where α is a private internal representation of the
set of ordered pairs which is the value v[PLUS] described by
the typecode 10.

Exercise 3.4: Why is v[NIL] = NIL?

Solution 3.4: Because the NIL entry in the atom table, say
entry j, is initialized as: ["NIL", 8, j, −, −].

Exercise 3.5: What is v[3]?

Chapter 3 ■ evaluation

10

Exercise 3.6: What is v[ABC], where ABC has never been
assigned a value by SETQ?

Solution 3.6: v[ABC] is undefined.

A function call expression (f x y) is evaluated in LISP by evaluating f, x, and y in order
from left to right, that is, by computing v[f], v[x], and v[y], and then producing the result
of v[f] applied to the arguments (v[x], v[y]). The value v[f] must be a function. Note x
and/or y may also be function call expressions (as may f), so this rule applies recursively.

A special-form call expression, such as (s x y), is evaluated in LISP by evaluating s,
which must result in a special form, and then produce the result value of v[s] applied to
the arguments (x, y). The only difference between a function application and a special
form application is that the arguments of a function are evaluated before the function is
applied, whereas a special form’s arguments are not preevaluated.

The analogous definitions for the value of general k-argument function call
expressions and special form call expressions, of course, hold.

Exercise 3.7: Write a careful definition of v[(f x
1
 x

2
 . . . x

k
)]

where v[f] is a function and k ≥ 0; be sure to specify the order of
evaluation. Do the same when v[f] is a special form.

11© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_4

CHAPTER 4

Some Functions and
Special Forms

We can now state a few built-in LISP functions and special forms. We do not describe the
results obtained when “illegal” input of various kinds is evaluated. Such behavior varies
according to the implementation of the LISP interpreter. Following is a list of special
forms and functions in LISP:

•	 SETQ: special form with a side-effect

v[(SETQ x y)] = v[x], after v[x] is made equal to v[y] as an initial
side-effect. x must be an ordinary atom, necessarily with a
nonnumeric name. The type of the value of x is changed to be
the type of v[y], with a special modification in the case where
v[y] is an unnamed function or unnamed special form, which
will be discussed later. Any previous value of the atom x is lost.

Note that it is almost always equally correct to say that v[(SETQ
x y)] = v[y], with the side-effect of assigning v[y] to be the
value of the atom x.

•	 QUOTE: special form

v[(QUOTE x)] = x.

•	 PLUS: function

v[(PLUS n m)] = v[n] + v[m]. v[n] and v[m] must be numbers.

•	 DIFFERENCE: function

v[(DIFFERENCE n m)] = v[n] − v[m]. v[n] and v[m] must be
numbers.

Chapter 4 ■ Some FunCtionS and SpeCial FormS

12

•	 MINUS: function

v[(MINUS n)] = −v[n]. v[n] must be a number.

•	 TIMES: function

v[(TIMES n m)] = v[n] · v[m]. v[n] and v[m] must be numbers.

•	 QUOTIENT: function

v[(QUOTIENT n m)] = v[n]/v[m]. v[n] and v[m] must be
numbers with v[m] ≠ 0.

•	 POWER: function

v[(POWER n m)] = v[n] ↑ v[m] where a ↑ b denotes
‘a to the power b’, ab; v[n] and v[m] must be numbers such that
if v[n] < 0 then v[m] is an integer.

•	 FLOOR: function

v[(FLOOR n)] = ⌊v[n]⌋, the greatest integer less than or equal to
v[n]. v[n] must be a number.

•	 EVAL: function

v[(EVAL x)] = v[v[x]].

Exercise 4.1: Since v[(EVAL x)] = v[v[x]], why doesn’t
(EVAL x) = v[x]?

Solution 4.1: Because the inverse of the evaluation operator v
does not exist.

Exercise 4.2: Suppose the atom A has never been assigned a
value via SETQ. What is v[(QUOTE A)]?
What is v[A]?

Solution 4.2: v[(QUOTE A)] = A, but v[A] is undefined.
Note v[v[(QUOTE A)]] = v[A], so v[(EVAL (QUOTE A))] = v[A]
whether A has a defined value or not; EVAL acts as the
left-inverse of QUOTE, or equivalently, QUOTE acts as
the right-inverse of EVAL.

Chapter 4 ■ Some FunCtionS and SpeCial FormS

13

Exercise 4.3: What is v[(PLUS (QUOTE 3) 2)]?

Solution 4.3: 5, since v[x] = x when x is a number.

Exercise 4.4: What does (SETQ T NIL) do?

Solution 4.4: NIL is the output, and the value of T is now
changed to be NIL.

Most versions of LISP have ways of specifying that the value of an atom is constant
and cannot be changed. We will not introduce this complication here, but obviously, it is
perilous or worse to assign new values to important ordinary atoms like NIL.

Exercise 4.5: What is v[(SETQ (SETQ A T) (SETQ B NIL))]?

Solution 4.5: An error arises, since the first argument to the
outer SETQ is not an ordinary atom. Remember, v[SETQ] is a
special form.

Exercise 4.6: What does (SETQ P PLUS) do?

Solution 4.6: Now v[P] = v[PLUS], so now v[(P 2 3)] = 5. Also
"{builtin function: P}" is printed out.

Exercise 4.7: What does (SETQ PLUS −1.) do?

Solution 4.7: The function value of PLUS is discarded, and
now v[PLUS] = −1. Also −1 is printed out.

Note that SETQ is a special form, yet its second argument is evaluated. It is more
correct to say that SETQ is passed its arguments, and then it performs the required
computation, which entails computing the value of the supplied second argument.
Thus special forms may selectively evaluate some or all of their arguments, but such
evaluation, if any, is done after the arguments are passed to the special form.

Note that not all LISP functions are defined for all possible LISP data objects
occurring as input. A function that does accept any input is called a total function. The
function TIMES, for example, only accepts numbers as input. The function EVAL may
appear to be a total function, but consider v[(EVAL PLUS)]. This is v[v[PLUS]], where
v[PLUS] is a set of ordered pairs. But the v-operator value of a set of ordered pairs is not,
thus far, defined. v[(EVAL (QUOTE PLUS))] is defined, however, and we can make LISP
a little less persnickety by defining v[x] = x when x is a function or special form. We will
adopt this extension henceforth. Then v[(EVAL PLUS)] = v[(EVAL (QUOTE PLUS))].

Chapter 4 ■ Some FunCtionS and SpeCial FormS

14

Exercise 4.8: Even with the just introduced convention, EVAL
is not a total function. Give an example of illegal input to EVAL.

Solution 4.8: The input A, where A is an atom whose value is
undefined, is illegal input to EVAL. Later, when dotted-pairs are
introduced, we will see that input like (3 . 5) is illegal also.

Exercise 4.9: What happens if "v[NIL]" is typed in to the LISP
Interpreter?

Solution 4.9: An atom whose name is "v[NIL]" is specified
and its value (which is probably undefined) is printed out.
The v-operator is not a LISP function. It is the LISP Interpreter
and hence is more properly called a meta-operator.

A predicate is a function whose result values are always the Boolean values true
or false. In the case of LISP, the result value of a predicate is always either T or NIL.
We identify functions as predicates merely for descriptive convenience. This explains
the choice of the names NUMBERP and ZEROP defined below. Not every LISP predicate
follows this naming convention, however; for example EQ, defined below, is a predicate.
Following is a list of LISP predicates:

•	 EQ: predicate

v[(EQ x y)] = if v[x] = v[y] then T else NIL where v[x] and v[y]
are atoms. Although, strictly, v[x] and v[y] must be atoms,
nonatoms may well work in certain circumstances.

•	 NUMBERP: predicate

v[(NUMBERP x)] = if v[x] is a number then T else NIL.

•	 ZEROP: predicate

v[(ZEROP x)] = if v[x] = 0 then T else NIL.

Exercise 4.10: What is v[(EQ 2 (SETQ B 3))]?

Solution 4.10: NIL, and now v[B] = 3 due to the assignment
side-effect.

Exercise 4.11: What is v[(EQ .33333 (QUOTIENT 1 3))]?

Solution 4.11: Probably NIL, since 1/3 ≠ .33333; but possibly
T if the precision of floating-point numbers is less than
6 decimal digits. All the usual vagaries of floating-point
arithmetic are present in LISP.

Chapter 4 ■ Some FunCtionS and SpeCial FormS

15

Exercise 4.12: What is v[(EQ (NUMBERP 0) (ZEROP 0))]?

Solution 4.12: T.

Exercise 4.13: Is EQ a total function?

Exercise 4.14: What is v[(ZEROP (PLUS 2 (MINUS 2)))]?

Solution 4.14: It is T. Because v[(PLUS 2 (MINUS 2))] = v[2] +
v[(MINUS 2)] = 2 + (−v[2]) = 2 + (−2) = 0.

Exercise 4.15: What is v[(EQ 0 NIL)]?

Solution 4.15: NIL.

Exercise 4.16: Why are capital letters used for ordinary atom
names in this book?

Solution 4.16: Only for the sake of uniformity and tradition.
Lowercase letters are perfectly acceptable within ordinary
atom names, along with many special characters.

17© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_5

CHAPTER 5

S-Expressions

LISP has built-in functions that deal with certain composite data objects constructed out
of atoms. These data objects are called nonatomic S-expressions. They are binary trees
whose terminal nodes are atoms. Some of these trees can be interpreted as lists, and these
are a very popular form in LISP. Indeed, as mentioned earlier, LISP derives its name from
the phrase “list processing.” Atoms and nonatomic S-expressions, taken together, form
the class of data objects whose members are called S-expressions. The term S-expression is
short for the phrase symbolic expression. Nonatomic S-expressions play the role of arrays
in other programming languages.

The class of S-expressions is defined syntactically as follows. Every atom is an
S-expression, and, if a and b are S-expressions, then the dotted-pair (a. b) is an
S-expression. Mathematically speaking, a dotted-pair is merely an ordered pair. Note
dotted-pairs must be enclosed in parentheses. The terms nonatomic S-expression and
dotted-pair are synonymous.

Thus, for example, all the following expressions are S-expressions, and the last five
are nonatomic S-expressions. (Note some of these S-expressions are, by themselves, legal
LISP input and some are not.)

T
NIL
3
(1 . T)
((0 . .1) . NIL)
(((1 . 2) . (3 . 4)) . 5)
(PLUS . A)
(PLUS . (1 . (2 . NIL)))

Dots are not operators; dots and parentheses are merely used to give a concrete form
to the abstract idea of dotted-pairs in exactly the same way that digit symbols are used to
provide a concrete form for the abstract idea of integers. Dots and parentheses are used
within dot notation in LISP parlance.

Exercise 5.1: Is (A . (B . C) . D) an S-expression?

Solution 5.1: No. Every dot must be used to form a dotted-pair,
and every dotted-pair must be enclosed in parentheses.

Chapter 5 ■ S-expreSSionS

18

Exercise 5.2: How can dots be used as decimal points in
numbers and also as the connectors in dotted-pairs without
confusion?

Solution 5.2: Dots used as decimal points must appear
immediately adjacent to one or two digit characters; a dot
used as a dotted-pair connector must have one or more
blanks intervening between it and a digit.

Exercise 5.3: How many S-expressions are there?

Solution 5.3: In any LISP program only a finite number of
S-expressions arise, but conceptually, the set of S-expressions
has an infinite number of members. In fact, the set of ordinary
atoms, by itself, has an infinite number of members.

The special form QUOTE is used to specify constant S-expressions. A number,
like 1.5, is a constant by virtue of the convention that it is self-referentially defined, so
that v[1.5] = 1.5. However, the dotted-pair (T . NIL) or the atom A denote their values in
most contexts, so if we wish to prevent such possibly foolish evaluations, we must write
(QUOTE (T . NIL)) or (QUOTE A).

Exercise 5.4: What is v[(QUOTE 3)]?

Exercise 5.5: Suppose (SETQ A 3) is typed into the LISP
Interpreter. Explain how the LISP Interpreter computes v[A]
in the course of executing (SETQ A 3), that is, in the course of
computing v[(SETQ A 3)]. Compare this with the evaluation
of A that is required when A is entered as input. Construct a
fragment of a program in a conventional language like C to aid
in this explanation.

19© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_6

CHAPTER 6

Typed-Pointers

Internally, that is, inside the computer, an ordinary atom in LISP is represented by an
integer index into the atom table, that is, by a pointer. We use the terms index and pointer
interchangeably as seems fit; the term address is sometimes used as well. By knowing
a pointer to an ordinary atom, we can access both the name and the value of the atom.
A number atom is represented by an integer index into the number table where the
corresponding floating-point value is stored.

Similarly a nonatomic S-expression is also represented internally by a pointer. Some
means are needed in order to distinguish what kind of object a pointer points to. Thus we
shall carry an integer typecode with a pointer and refer to the pair together as a typed-pointer.

A typecode and pointer, which together form a typed-pointer, will be packed into
one 32-bit computer word. Thus a typed-pointer consists of two adjacent bit fields that
form a 32-bit integer. The first 4 leftmost bits hold the type of the pointed-to data object,
and the remaining 28 rightmost bits hold the pointer or index to the pointed-to data
object. We assume a traditional binary integer representation where the high (leftmost)
bit determines the sign of the combined number stored in a 32-bit computer word, with
0 indicating a nonnegative integer and 1 indicating a negative integer. A typed-pointer
that forms a nonpositive 32-bit integer will be a pointer to an ordinary atom in the atom
table, to a number atom in the number table, or will be, as we will discuss later, a pointer
to a function or special form. A typed-pointer that forms a positive integer will be a
pointer to a dotted-pair.

Exercise 6.1: Can we choose a different size, say 48 bits,
for typed-pointers in order to allow bigger collections of
S-expressions to be constructed?

Solution 6.1: No, we can’t, but the programmers building a
LISP Interpreter can.

In fact, the type-field and the value-field in each atom table entry are packed in a
single 32-bit word that can be easily accessed as a typed-pointer.

We will use the integers in {1, 2, . . . , m} as pointers (indices) to nonatomic
S-expressions. In fact, we establish an array of structures: P[1: m](integer car, cdr), called
the list area, and each nonatomic S-expression pointer j is interpreted as an index into P.

Chapter 6 ■ typed-pointers

20

An element of P is called a list node. The integers car and cdr that make up the element Pj
are called fields of Pj. The declaration notation above is intended to indicate that each list
node Pj consists of a pair of integer fields: Pj.car and Pj.cdr.

Note that the atom table and the number table each have n entries with their indices
ranging from 0 to n − 1, and the list area has m entries with indices ranging from 1 to m.
The values n and m have values determined by the programmers of the LISP Interpreter.

The typecodes used in typed-pointers are:

0000: dotted-pair (nonatomic S-expression)

0001: undefined

1000: variable (ordinary atom)

1001: number (number atom)

1010: builtin function

1011: builtin special form

1100: user-defined function

1101: user-defined special form

1110: unnamed function

1111: unnamed special form

Thus, because the sign-bit of the 32-bit computer word is the leftmost bit of the
typecode field, a typed-pointer t with t > 0 points to a dotted-pair, and a typed-pointer t with
t < 0 points to other than a dotted-pair. (A typed-pointer with the typecode 0001 is a positive
value, but it occurs only in the atom table and will never arise in the context where we expect
a typed-pointer referring to a dotted-pair.)

Exercise 6.2: What do the individual bits of the typecode
values indicate?

Solution 6.2: Numbering the bits as 1, 2, 3, etc., from left to
right, we see that bit 1 is 0 for a dotted-pair (or an undefined
value), and bit 1 is 1 otherwise. Within the class of function
and special form typecodes, bit 2 is 0 for a builtin function
or special form, and bit 2 is 1 otherwise; and bit 4 is 1 for a
special form and bit 4 is 0 for a function. This bit-encoding
is harmless, but it isn’t really very important or very useful;
arbitrary numbers would be nearly as convenient.

If j is a 28-bit untyped-pointer, that is, a simple address or an index, then the
following functions may be used to form a typed-pointer, where : : denotes bit-string
concatenation. These functions are not LISP functions that are predefined in LISP; they

Chapter 6 ■ typed-pointers

21

are convenient meta-functions, which allow us to describe the internal form and meaning
of the LISP Interpreter program. Some examples are:

se(j) = 0000 : : j

oa(j) = 1000 : : j

nu(j) = 1001 : : j

bf (j) = 1010 : : j

bs(j) = 1011 : : j

uf (j) = 1100 : : j

us(j) = 1101 : : j

tf (j) = 1110 : : j

ts(j) = 1111 : : j

Now we can explain how any particular nonatomic S-expression is represented.
If j points to a nonatomic S-expression of the form (B . C), then Pj.car points to the
S-expression B and Pj.cdr points to the S-expression C. Note that B or C or both may be
atomic S-expressions; this just means the corresponding typed-pointer may not be
positive.

Exercise 6.3: Is the 32-bit value 0 a legal typed-pointer? If so,
what does it point to? What about the 32-bit value 1?

www.allitebooks.com

http://www.allitebooks.org

23© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_7

CHAPTER 7

Pictorial Notation

Let us suppose the atom table and the number table are loaded as follows:

Then X is represented by the typed-pointer oa(3) and NIL is represented by the typed-
pointer oa(0), both of which are negative integers. Remember that the type field in an
atom table entry describes the type of the value of that ordinary atom. The S-expression
(T . NIL) is represented by a positive integer j such that Pj.car = oa(1) and Pj.cdr = oa(0);
that is (T . NIL) corresponds to j where Pj = (oa(1), oa(0)). Note se(j) = j.

We shall write the name of an atom in the car or cdr field of a pictorially given list
node to indicate that a nonpositive typed-pointer to that atom is there. Thus (T . NIL)
corresponds to j where . This is intended to be a pictorial

representation of the two integer fields that form the list area structure element Pj.
Number atom names are used similarly. Thus (2 . 3) is represented by an integer j such
that . This means that Pj.car is a negative integer x whose low 28 bits

indexes the number atom 2 in the number table and Pj.cdr is a negative integer y whose
low 28 bits indexes the number atom 3 in the number table, so that Pj = (x, y). The high
four bits of x and y in this case are both 1001.

Chapter 7 ■ piCtorial NotatioN

24

The S-expression ((PLUS . X) . (X . NIL)) is represented by a pointer j, where Pj =
(a, b) and and . This, of course, means that for the

example atom table above, Pa.car = oa(2), Pa.cdr = oa(3), Pb.car = oa(3), and Pb.cdr = oa(0).
Rather than introduce the intermediate pointers a and b by name, we usually will show
the same structure pictorially as:

As another example, the S-expression (NIL . (((X . T) . NIL) . (T . T))) is
represented by a pointer k, where:

The following exercises assume the same example atom table used just above.

Exercise 7.1: What pointer represents v[(QUOTE PLUS)]?

Solution 7.1: oa(2).

Exercise 7.2: What pointer represents .5?

Solution 7.2: nu(0).

Exercise 7.3: What pointer represents v[(PLUS X X)]?

Solution 7.3: We can’t say exactly, but the result is the number 1,
which is a number atom not shown above, so it must be a
nonpositive integer of the form nu(j) for some integer j > 1.

Chapter 7 ■ piCtorial NotatioN

25

Exercise 7.4: What is the S-expression represented by se(3),
where P3 = (se(1), oa(0)) and P1 = (oa(1), se(2)) and P2 = (oa(6),
oa(6))?

Solution 7.4: ((T . (QUOTE . QUOTE)) . NIL).

Exercise 7.5: Is there any confusion between oa(3) and se(3)?

Solution 7.5: No.

Exercise 7.6: What is the pictorial representation of
(((X . NIL) . NIL) . NIL)?

Exercise 7.7: What is the pictorial representation of
(X . (Y . (Z . NIL) . NIL) . NIL)?

Solution 7.7: None. This is not a legal S-expression.

Exercise 7.8: What is the S-expression represented by the
typed-pointer oa(5)?

Solution 7.8: Z.

Exercise 7.9: What is the S-expression represented by the
positive integer j where:

Exercise 7.10: Explain why nonatomic S-expressions can
be described as binary trees whose terminal nodes are LISP
atoms. How can the nonterminal nodes be characterized? Are
there any structural constraints on the form of the binary trees
that correspond to nonatomic S-expressions?

Chapter 7 ■ piCtorial NotatioN

26

Exercise 7.11: What kinds of typed-pointers may occur in the
car or cdr fields of an S-expression?

Solution 7.11: Dotted-pair (0000), ordinary atom (1000), and
number atom (1001) typed-pointers comprise the only kinds
of typed-pointers that appear in S-expressions.

27© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_8

CHAPTER 8

More Functions

Here we present some basic functions in LISP that operate on nonatomic, as well as
atomic, S-expressions.

•	 ATOM: predicate

v[(ATOM x)] = if v[x] is an ordinary atom or a number then T
else NIL.

•	 CONS: function

v[(CONS x y)] = (v[x] . v[y]). x and y are arbitrary
S-expressions. CONS is the dotted-pair construction operator.

•	 CAR: function

v[(CAR x)] = a where v[x] = (a . b) for some S-expressions a
and b. If v[x] is not a nonatomic S-expression, then (CAR x) is
undefined, and any result is erroneous.

•	 CDR: function

v[(CDR x)] = b where v[x] = (a . b) for some S-expressions a
and b. If v[x] is not a nonatomic S-expression, then (CDR x) is
undefined, and any result is erroneous.

The basic relation among CONS, CAR, and CDR is:

v[(CONS (CAR x) (CDR x))] = v[x]

Chapter 8 ■ More FunCtions

28

where v[x] is a nonatomic S-expression. The CONS function constructs a dotted-pair, the CAR
function returns the first member of a dotted-pair, and the CDR function returns the second
member of a dotted-pair.

Exercise 8.1: Is the relation among CONS, CAR, and CDR
characterized by the statements: v[(CAR (CONS x y))] = v[x] and
v[(CDR (CONS x y))] = v[y]?

Names such as FIRST and TAIL would be more descriptive than CAR and CDR. The
names CAR and CDR stand for the phrases “contents of the address register” and “contents
of the decrement register,” respectively. They arose because the first implementation of
LISP programmed in 1958 was done for an IBM 704 computer in which each list node was
held in one 36-bit computer word. The single word instructions of the 704 had a format
consisting of a (divided) op-code field, a decrement field, and an address field, and in list
nodes, these latter two fields were used for the second and first pointers, respectively, of a
dotted-pair. The word register was used instead of field because these address fields could
be efficiently loaded into registers on the 704.

Exercise 8.2: Show how the names FIRST and TAIL
can be used in place of the names CAR and CDR.
Hint: use SETQ.

Exercise 8.3: Shouldn’t the car and cdr fields in the list area
elements P

i
 be called the ar and dr fields instead?

Exercise 8.4: What is v[(CONS NIL T)]?

Solution 8.4: (NIL . T).

Exercise 8.5: What does the name CONS stand for?

Solution 8.5: It stands for the word “construction.”

Exercise 8.6: What is v[(CONS (CDR (CONS NIL T))
(CAR (CONS NIL T)))]?

Solution 8.6: (T . NIL).

Exercise 8.7: What is v[(CAR PLUS)]?

Solution 8.7: Undefined. (By undefined, we mean
undetermined; we haven’t said what the evaluation operator
v does with such input. Strictly, you might imagine that the
evaluation of an illegal input expression results in “illegal
input” being printed out.)

Chapter 8 ■ More FunCtions

29

Exercise 8.8: What is v[(CONS PLUS 3)]?

Solution 8.8: Undefined, because v[PLUS] is not an
S-expression! (Go back and check the definition of an
S-expression.)

Exercise 8.9: What is v[(CONS (QUOTE QUOTE)
(QUOTE PLUS))]?

Solution 8.9: (QUOTE . PLUS).

Exercise 8.10: What is v[(ATOM NIL)]? What is v[(ATOM (QUOTE
NIL))]? What is v[(ATOM (QUOTE (QUOTE . NIL)))]?

Solution 8.10: (1) T, (2) T, and (3) NIL.

Exercise 8.11: What is v[(ATOM 12.5)]?

Solution 8.11: T.

Exercise 8.12: What is v[(ATOM PLUS)]?

Solution 8.12: NIL. Because v[PLUS] is a function, that is, a set
of ordered pairs, it is not an atom.

Exercise 8.13: We said that nonatomic S-expressions were
binary trees. Consider the LISP code: (SETQ A (CONS T
(QUOTE B))) (SETQ B (CONS (CONS A A) (CONS (QUOTE B) A)).
Diagram the resulting nonatomic S-expression value of B. Note
the sharing of the S-expression v[A]!

31© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_9

CHAPTER 9

Arguments and Results Are
Typed-Pointers

Internally in the LISP Interpreter program, callable LISP functions and special forms take
typed-pointers to S-expressions as input and return a typed-pointer to an S-expression
as output. The only (apparent) exceptions are those functions and special forms that
accept or return functions or special forms, that is, conceptually sets of ordered pairs.
In fact, typed-pointers will be used in these cases as well. When a result is computed, a
typed-pointer to that result S-expression or function is returned. When the final result is
computed, the typed-pointer to the final result is used to reach the pointed-to data object,
which is then inspected in order to print out its complete lexical representation as the
final deliverable.

We can now describe the workings of some of the functions and special forms
defined before.

For (QUOTE x), v[QUOTE] receives as input a typed-pointer to an S-expression x, and
the same typed-pointer is returned as the result.

For (PLUS x y), v[PLUS] receives two typed-pointers as input, one to v[x] and one to
v[y] (remember, by the rules of LISP, v[PLUS] is a function, so x and y get evaluated before
v[PLUS] is called). If the two typed-pointers received by v[PLUS] do not both point to
number atoms, PLUS is being used erroneously. Otherwise, the sum value is formed and
a number atom with the corresponding floating-point value is formed. A typed-pointer to
this number atom in the number table is the result.

For (EQ x y), v[EQ] receives two typed-pointers as input: one to v[x] and one to v[y].
If these two typed-pointers are identical, a typed-pointer to the atom T is returned,
otherwise a typed-pointer to the atom NIL is returned. Thus EQ will correctly report
whether or not two atoms are equal, since atoms are stored uniquely, but it may fail to
detect that two dotted-pairs are equal (i.e., consist of the same atoms within the same tree
shape). This failure will occur when two such equal dotted-pairs occur in different list
nodes in memory. On the other hand, if we wish to test for identical, shared, dotted-pairs,
EQ will serve this purpose. For example, (EQ (CONS 1 2) (CONS 1 2)) may return NIL
because the two dotted-pairs (1 . 2) and (1 . 2) may live in different list-area nodes,
which are then represented by distinct typed-pointers.

Chapter 9 ■ arguments and results are typed-pointers

32

For (CAR x), v[CAR] receives a typed-pointer j to v[x] as input. If v[x] is not a dotted-
pair, CAR is being used erroneously. Otherwise the typed-pointer Pj.car is returned.

For (CDR x), v[CDR] receives a typed-pointer k to v[x] as input. If v[x] is not a dotted-
pair, CDR is being used erroneously. Otherwise the typed-pointer Pk.cdr is returned.

For (CONS x y), v[CONS] receives two typed-pointers as input: one typed-pointer j that
points to v[x] and one typed-pointer k that points to v[y]. An unoccupied list node Ph is
obtained and Ph.car is set to j and Ph.cdr is set to k. Strictly, the types of the typed-pointers
j and k must each be either 0 (dotted-pair), 8 (ordinary atom), or 9 (number atom). Then
the typed-pointer se(h) is returned. CONS is one of the few LISP functions that consumes
memory. CONS requires that a new list node be allocated at each invocation.

For (SETQ x y), v[SETQ] receives two typed-pointers as input: one typed-pointer j
that points to x and another typed-pointer k that points to y (remember SETQ is a special
form). If j is positive or the value x pointed to by j is a number atom or a function or a
special form, there is an error since x must be an ordinary atom. (Remember, the type-
code field of a typed-pointer contains the sign-bit of the 32-bit computer word it is packed
into.) If j is not positive and the value x pointed to by j is an ordinary atom, then v[y] is
computed by applying EVAL to the S-expression y whose typed-pointer is k. This results in
a typed-pointer i that points to v[y]. Then the row determined by j in the atom table where
the ordinary atom x resides has its value field set to the index corresponding to i and its
typecode set to the type of v[y], which is given in the typed-pointer i, except when v[y]
is an unnamed function or unnamed special form, in which case the occurrence of the
typecode 14 or 15 for v[y] results in the newly assigned value of x having, respectively, the
typecode 12 or 13 instead.

Exercise 9.1: Specify an S-expression y such that
v[(SETQ A y)] = v[(SETQ A (QUOTE y))].

Solution 9.1: y = NIL will suffice.

Exercise 9.2: What occurs when (SETQ X PLUS) is executed?

Solution 9.2: First, recall that we interpret v[PLUS] as a set
of ordered pairs. Let’s denote this set by {PLUS}. Then SETQ
redefines the v meta-operator so that v[X] is now {PLUS}.
Of course, within the LISP Interpreter program, {PLUS} is
represented as a typed-pointer whose typecode is 10, and
whose pointer part is some conventional value useful in
identifying {PLUS}. After the SETQ application has been done,
the row in the atom table where the ordinary atom X occurs
has its type-field and value-field set to the typecode part and
pointer part of this typed-pointer that represents {PLUS}.

Chapter 9 ■ arguments and results are typed-pointers

33

Exercise 9.3: What is the set of ordered pairs denoted by
{PLUS}?

Solution 9.3: {((a, b), a + b) | a Î R, b Î R} where R denotes the
set of real numbers.

Exercise 9.4: What is v[(CONS (SETQ B T) (EVAL (SETQ A
(QUOTE B))))]?

Solution 9.4: (T . T), assuming the arguments of CONS are
evaluated from left to right.

35© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_10

CHAPTER 10

List Notation

Some forms of nonatomic S-expressions arise so frequently there is a special notation for
them. A dotted-pair of the form (S

1
 . (S

2
 . (· · · . (S

k
 . NIL)· · ·))) where S

1
, S

2
, . . . , S

k

are all S-expressions is called a list and is written as (S
1
 S

2
 ... S

k
), which is the sequence of

S-expressions S
1
, S

2
, . . . , S

k
 written with intervening blanks and enclosed in parentheses.

There is no confusion with dot notation since there are no dots between the S
i
 elements

in the list. There may, of course, be dots within some or all of the elements S
1
, . . . , S

k
, but

then they are necessarily enclosed in parentheses and the dots occur at lower levels. Any
element S

i
 that qualifies may itself be written in either list notation or dotted-pair notation.

But, remember, not every nonatomic S-expression is representable as a list.
The list (S

1
) of the single element S

1
 is written in dotted-pair notation as

(S
1
 . NIL). By analogy, the atom NIL is used to denote the list of no elements. The symbol

pattern "()" is also used to denote the empty list; it is to be understood as a synonym
for NIL.

Exercise 10.1: Write the list (A B) in dot notation.

Solution 10.1: (A . (B . NIL)).

Exercise 10.2: How do we distinguish dots within ellipses
from “true” dots used in dotted-pairs when writing text about
S-expressions?

Exercise 10.3: Write the S-expression (1 . (2 . (3 . NIL)))
in list notation.

Solution 10.3: (1 2 3).

Exercise 10.4: Is every list a dotted-pair?

Solution 10.4: All lists are dotted-pairs except the empty list,
NIL. The empty list is represented by an atom.

Chapter 10 ■ List NotatioN

36

Exercise 10.5: Is every dotted-pair a list?

Solution 10.5: No. Only nonatomic S-expressions with a
right-embedded NIL as shown above are lists. For example,
(X . X) is not a list and neither is (NIL . 3).

 Pictorially, a nonempty list (S
1
 . . . S

k
) is of the form:

Exercise 10.6: What is the pictorial form and dot notation
form of the 3 element list (NIL (T . T) X)?

Solution 10.6:

The dot-notation form is: (NIL . ((T . T) . (X . NIL))).

Exercise 10.7: How many final close parentheses occur
together at the end of a k element list written in dot notation?

Solution 10.7: Exactly k final close parentheses occur.

Chapter 10 ■ List NotatioN

37

Exercise 10.8: Is NIL a list of 0 elements?

Solution 10.8: NIL represents the empty list, but NIL is an
ordinary atom. The class of lists consists of one atom, NIL, and
an infinite number of certain nonatomic S-expressions.

Exercise 10.9: If s is a list and x is an S-expression, what is
z = v[(CONS x s)]?

Solution 10.9: z is a list. Its first element is x and its remainder is
the list s. Thus CONS can be used to construct a new list formed
by adding an additional element at the head of a given list. In
this example, the list s shares all its list nodes with the list z,
which has an additional initial node. Such sharing of list nodes
is common in S-expressions and is an elegant feature of LISP.

A list whose elements consist of atoms or lists, where these lists are recursively
constrained in the same manner, is called a pure list. A pure list can be written entirely in
list notation without dots appearing at any level.

Note that the notation used for specifying function application statements as LISP
interpreter input is just list notation for certain S-expressions involving certain atoms!
Thus almost every legal LISP input statement is an S-expression that is either an atom or
a list, which itself has elements that are either atoms or lists. The only exception is that
arguments to QUOTE can be arbitrary S-expressions. This is often summarized by saying
that, in LISP, programs are data. Some data are programs too, but not every S-expression
is legal LISP input. For any particular LISP interpreter, of course, there will be specific
behaviors programmed in it that determine what happens for various illegal inputs.

Exercise 10.10: What is v[(EVAL (CONS (QUOTE CONS) (CONS 2
(CONS 3 NIL))))]?

Solution 10.10: (2 . 3).

Exercise 10.11: What is v[(EVAL (QUOTE (CONS (QUOTE CAR)
(QUOTE (A . B)))))]?

Solution 10.11: The result is the same as

v[(EVAL . ((QUOTE
 . ((CONS . ((QUOTE . (CAR . NIL))
 . ((QUOTE . ((A . B) . NIL)) . NIL)))
 . NIL)) . NIL))]
 = (CAR . (A . B)).

Exercise 10.12: What is v[(T . NIL)]?

Solution 10.12: Undefined. v[T] is not a function or special
form as is required for v to be defined on this form of input.

Chapter 10 ■ List NotatioN

38

Remember that a function does not have to be designed to accept any member of
the set of S-expressions as input. We have functions that only work on atoms or only
on dotted-pairs, and a programmer can circumscribe the legal input in almost any
manner desired. A function that is designed to work on a proper subset of S-expressions
is called a partial function (in contrast to a total function). What happens when a
partial function is called with one or more illegal input arguments is implementation
dependent. Ideally, a partial function would be programmed to check its arguments
and reject any illegal input with an accompanying error message. However, even when
this is possible, it may sometimes be perceived to be too inefficient, and thus many
built-in LISP functions and special forms may give nonsense results, loop, or crash
when given illegal arguments. We summarize this by saying such functions and special
forms are undefined on illegal input.

Now we may define the built-in function LIST. Unlike the previous functions and
special forms we have seen, LIST may be invoked with differing numbers of arguments.

•	 LIST: function with a varying number of arguments

v[(LIST x
1
 x

2
 . . . x

k
)] = v[(CONS x

1
 (CONS x

2
 (CONS . . . (CONS x

k
 NIL)). . .))].

Exercise 10.13: What is v[(LIST NIL)]? What is v[(LIST)]?

Solution 10.13: v[(LIST NIL)] = (NIL) = (NIL . NIL).
v[(LIST)] could consistently be defined to be NIL, but as we
have defined the function LIST above, v[(LIST)] is undefined;
v[LIST] on the other hand is a built-in function. (Again,
just because some input is undefined doesn’t mean it is
necessarily so for any particular LISP interpreter; to say some
input is undefined means the LISP interpreter for this dialect
has carte blanche as to its behavior.)

39© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_11

CHAPTER 11

More Special Forms

•	 AND: special form with a varying number of arguments

	 v[(AND x
1
 x

2
 … x

k
)] = if v[x

1
] ≠ NIL and v[x

2
] ≠ NIL and …

v[x
k
] ≠ NIL then T else NIL.

	 The special form AND is evaluated using lazy evaluation; this
means that the arguments are evaluated and tested against NIL
from left to right and the first NIL-valued argument is the last
argument evaluated.

•	 OR: special form with a varying number of arguments

	 v[(OR x
1
 x

2
 … x

k
)] = if v[x

1
] ≠ NIL or v[x

2
] ≠ NIL or … or

v[x
k
] ≠ NIL then T else NIL.

	 The special form OR is evaluated using lazy evaluation; the
arguments are evaluated and tested against NIL from left to right
and the first non-NIL-valued argument is the last argument
evaluated.

	 Exercise 11.1: What should v[(AND)] and v[(OR)] be defined
to be?

	 Solution 11.1: One consistent choice is to define v[(AND)] = T and
v[(OR)] = NIL. This is somewhat analogous to the definition that an
empty sum is 0 and an empty product is 1.

•	 COND: special form with a varying number of arguments

	 v[(COND (p
1
 q

1
) (p

2
 q

2
) … (p

k
 q

k
))] = if v[p

1
] ≠ NIL then v[q

1
], else if

v[p
2
] ≠ NIL then v[q

2
], …, else if v[p

k
] ≠ NIL then v[q

k
], else NIL.

	 COND stands for conditional. It is the primary branching operator
in LISP. Each argument to COND must be a two-element list whose
elements are potentially evaluatable. The special form COND is

Chapter 11 ■ More SpeCial ForMS

40

evaluated using lazy evaluation; the length-two list arguments
are examined from left to right and the first component of each is
evaluated until the resulting value is not NIL, then the value of the
associated second component is returned. Only as many p

i
’s as

needed are evaluated, and at most one q
1
 is evaluated. The special

form COND is necessary both theoretically and practically. With
COND, we can, in principle, dispense with AND and OR. Note:

v[(AND a b)] = v[(COND ((EQ NIL a) NIL) ((EQ NIL b) NIL) (T T))], and

v[(OR a b)] = v[(COND ((EQ b NIL) (COND ((EQ a NIL) NIL) (T T))) (T T))].

In [McC78], McCarthy writes: “I invented conditional expressions in connection
with a set of chess legal move routines I wrote in FORTRAN for the IBM 704 at M.I.T.
during 1957–58. This program did not use list processing. The IF statement provided in
FORTRAN 1 and FORTRAN 2 was very awkward to use, and it was natural to invent a
function XIF(M,N1,N2) whose value was N1 or N2 according to whether the expression
M was zero or not. The function shortened many programs and made them easier to
understand, but it had to be used sparingly, because all three arguments had to be
evaluated before XIF was entered, since XIF was called as an ordinary FORTRAN function
though written in machine language. This led to the invention of the true conditional
expression which evaluates only one of N1 and N2 according to whether M is true or false
and to a desire for a programming language that would allow its use.”

Exercise 11.2: What is v[(OR (COND ((EQ NIL T) NIL)
(T NIL)) NIL)]?

Solution 11.2: NIL.

Exercise 11.3: Do AND and OR require that arguments that
evaluate to NIL or T be supplied?

Solution 11.3: No.

Exercise 11.4: What is v[(AND (COND ((SETQ A NIL) T)
(T T) ((SETQ A T) T)) A (SETQ A 0))]?

Solution 11.4: NIL, and v[A] = NIL afterward as a result of the
assignment side-effect.

Chapter 11 ■ More SpeCial ForMS

41

Exercise 11.5: Suppose A is an ordinary atom that has been
assigned a number value with an application of SETQ. Write a
LISP functional application command that causes the ceiling
of the value of A to be printed out.

Solution 11.5: (COND ((EQ (FLOOR A) A) A) (T (PLUS 1
(FLOOR A)))).

Exercise 11.6: Suppose v[S] = 1. What is v[((COND
((EQ NIL S) OR) (T AND)) S (NOT S))]?

Exercise 11.7: What would be the effect if T were to be
redefined so as to have the value 3 rather than itself?

Solution 11.7: The effect would be minor. But leaving T
undefined would not be so benign. And redefining NIL to be 3
would seriously damage LISP.

You may have noticed that we have lapsed into the usual sloppiness found in
discussions of programming languages (for good reason). We say “the special form COND
is necessary …” when we should say “the special form v[COND], whose name is COND, is
necessary …”. It is convenient to agree to tolerate such ambiguity.

43© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_12

CHAPTER 12

Defining Functions:
λ-Expressions

We can use the LISP interpreter to compute the value of combinations of built-in
functions and special forms applied to arguments, but to use LISP as a programming
language rather than as a curious kind of calculator, we must have a way to define
functions of our own choosing and use them, rather than just use unnamed compositions
of preexisting functions.

The special form LAMBDA is used in LISP to create a user-defined function. LAMBDA
takes two arguments, which are both S-expressions. The first argument is a list of
ordinary atoms denoting the formal arguments of the function being defined, and the
second argument is an S-expression expressing the definition of the function being
defined. This second argument is required to be legal LISP input, so it is either an atom
or a functional application expression. This second argument is called the body of the
function being defined.

A list expressing an application of the special form LAMBDA is called a LISP λ-expression.
For example, the λ-expression (LAMBDA (X Y) (CONS Y X)) denotes a function. That
means, conceptually, its value is a set of ordered pairs. It is the function that, given two
S-expressions, a and b, as input, returns the dotted-pair (b . a) as output. Note this function
has no name. In order to use this function in LISP, we can enter ((LAMBDA (X Y) (CONS
Y X)) 2 3) into the LISP interpreter, and (3 . 2) will be printed out. In the λ-expression
(LAMBDA (X Y) (CONS Y X)), the S-expression (CONS Y X) is the body and (X Y) is the list
of formal arguments.

Continuing this example, the evaluation of ((LAMBDA (X Y) (CONS Y X)) 2 3)
proceeds by binding the value of the first actual argument 2 to the first formal argument
X, binding the value of the second actual argument 3 to the second formal argument
Y, and then evaluating the body (CONS Y X) by computing v[(CONS Y X)] with the
understanding that each occurrence of X in the body is evaluated to yield its associated
bound value 2 and each occurrence of Y in the body is evaluated to yield its associated
bound value 3. This means that v[X] = 2 and v[Y] = 3 in the body expression (CONS Y X),
regardless of the global values of X and Y in the atom table.

Let a be a list of k ≥ 0 ordinary atoms and let b be an evaluatable S-expression. In
general, the value of the λ-expression (LAMBDA a b) is defined so that v[(LAMBDA a b)]
equals the function that is computed on a list of k actual arguments r by computing e[b, a, r],
where e[b, a, r] = v[b] in the context such that v[ai] = ri for 1 ≤ i ≤ k. The symbol e stands

Chapter 12 ■ DeFINING FUNCtIONS: λ-eXpreSSIONS

44

for environmental evaluation. It is a form of the v-operator that depends upon a context
specified by a binding of actual argument values to formal arguments.

It is awkward to write a λ-expression to specify a function for each use, so we adopt
a device to give names to functions. The value of a λ-expression can be assigned a name
using SETQ. Thus, for example, evaluating (SETQ G (LAMBDA (X Y) (CONS Y X))) results
in the ordinary atom G having the value v[(LAMBDA (X Y) (CONS Y X))]. The result that
is printed out is conventionally understood to be the set of ordered pairs conceptually
assigned to G, which is v[(LAMBDA (X Y) (CONS Y X))], and this is denoted by "{user
function: G}". Now we can write (G 2 3) to obtain (3 . 2).

If you look at various LISP dialects, you will find that a special form variously called
DEFINE or DEFUN (meaning define-function) is commonly used to assign a function to
be the value of an ordinary atom, but there is no reason SETQ can’t serve this purpose,
so we eschew DEFUN in this book. The use of DEFUN is often coupled with a mechanism
for allowing an ordinary atom to have an S-expression value and a function value
simultaneously. This option is not possible as we have defined the atom table and doesn’t
seem very felicitous in any event.

Note that the definition of SETQ is that the result is the value of its first argument
after assignment. This means that the first argument already has a user-defined named
function as its value, which appears as the result when SETQ is used to assign a function to
an ordinary atom.

The most interesting case of defining and naming a function arises when recursion is
utilized. For example:

(SETQ FACT (LAMBDA (X)
 (COND ((EQ X 0) 1)
 (T (TIMES X (FACT (DIFFERENCE X 1)))))))

which defines the factorial function fact (n) = 1 2 ·3 … ·(n − 1) n. This definition is an
impredicative definition; that means the name FACT, which is being assigned a value, is
itself used in defining that value. This is an uncomfortable state of affairs, but completely
understandable pragmatically.

What the special form LAMBDA really does is CONS its two arguments together and
returns an unnamed-function-typed-pointer to the resulting dotted-pair; this is a typed-
pointer whose typecode is 14. The arguments themselves are not examined until the
function is actually applied. If this unnamed function that is represented as a dotted-pair
is assigned as the value of an ordinary atom b, the value of b is then just the pointer to
the dotted-pair, and the type of this value is set to 12 to indicate a user-defined function.
Thus, for example, when FACT as assigned above is used, the recursive reference to FACT
within the body is correctly interpreted because the value of FACT at the time of evaluation
of the body is consistently defined.

Remember that v[(SETQ x y)] has been defined to be v[x] after v[x] is made equal to
v[y]; but when y is a λ-expression, this does not hold. In this case, v[y] is a typed-pointer
to the CONSed dotted-pair representing the value of the λ-expression y. The typecode of
this typed-pointer is 14. However, after the assignment to redefine v[x], v[x] is a typed-
pointer to the same dotted-pair, but the typecode of v[x] is 12 rather than 14. Thus in the
case of assigning the value of a λ-expression y to an ordinary atom x, the typecode of v[x]
after the assignment is not the typecode of v[y]. This awkward exception arises because

Chapter 12 ■ DeFINING FUNCtIONS: λ-eXpreSSIONS

45

functions need not have names. If names were always required, this distinction encoded
in typecode values would be unnecessary.

Exercise 12.1: What is v[((LAMBDA (X) X) y)]?

Solution 12.1: v[y]. So typing ((LAMBDA (X) X) y) produces
the same result as typing y.

Exercise 12.2: What does (SETQ CONS (LAMBDA (X)
(CONS 1 X))) do?

Solution 12.2: The function CONS is redefined to be a
nonterminating recursive function. The CONS in the body
refers to the same atom as the atom being reassigned a value,
and in the future, as at all other times, that atom has just
one value. Most versions of LISP do not permit atoms whose
values are built-in functions or special forms to be redefined
in this manner.

Exercise 12.3: (J. McCarthy) Specify an input non-atomic
S-expression, a, which has itself as its value.

Solution 12.3: a = ((LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X))).
(QUOTE (LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X)))))

Exercise 12.4: Is (LAMBDA NIL 3.1415926) a legal
λ-expression?

Solution 12.4: Yes. A function with no arguments is a
constant. If it is not a constant, it is not a function, rather it is a
pseudofunction, such as a random-number generator.

The name LAMBDA and the term λ-expression are borrowed from the
so-called λ-calculus of Alonzo Church [Kle52]. This is a mathematical invention used to
explore the syntactic and semantic nature and power of substitution. It is, in some sense,
a theory of macro languages.

www.allitebooks.com

http://www.allitebooks.org

47© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_13

CHAPTER 13

More Functions

There are many built-in functions in LISP that are not logically required to be built in.
They are there for convenience, and in some cases because they are faster that way. The
three functions presented below are built-in functions that have definitions in terms of
other more basic functions and special forms.

•	 APPEND: function

Defined by:

(SETQ APPEND
 (LAMBDA (X Y)
 (COND ((EQ X NIL) Y)
 ((ATOM X) (CONS X Y))
 (T (CONS (CAR X) (APPEND (CDR X) Y))))))

This version of APPEND is slightly more general than the commonly found definition,
which omits the ((ATOM X) (CONS X Y)) pair. Given two lists (a1 a2 … ah) and (b1 b2 … bk) as
input, the list (a1 a2 … ah b1 b2 … bk) is produced as the output. The input is not damaged in
any way. In a sense, this function embodies the essence of LISP. When you understand in
detail at the machine level what happens during the application of this function to arguments,
then you will understand the essence of LISP.

For example, with v[A] = (1 A 2), v[(APPEND A (LIST 7))] = (1 A 2 7), and v[(APPEND
A 7)] = (1 . (A . (2 . 7))); APPEND joins two lists; its action on atoms is more
arbitrary.

Note APPEND adds to the end of a list and CONS adds to the front of a list. These
functions are asymmetric, however; CONS can add only one element at a time to the front
of a list, while APPEND can add an entire list of elements to a list at its end. Also CONS is
efficient, while APPEND is inefficient; this is because a linked list with a pointer to the first
element is an insufficient data structure for allowing direct access to the end of the list.
(We could use other data structures such as doubly linked [bidirectionally linked] binary
trees or hash tables instead of singly linked lists [Knu68, Knu73], and indeed this has been
done in some implementations of LISP.)

Chapter 13 ■ More FunCtions

48

Exercise 13.1: What is v[(APPEND (QUOTE (A . NIL)) T)]?
What is v[(APPEND (QUOTE (A B)) NIL)]? What is v[(APPEND
T T)]?

Exercise 13.2: Suppose the ordinary atom X has the value
(NIL . (T . NIL)) and that the ordinary atom Y has the value
(X . (Y . NIL)), where these S-expressions are stored in the
list area as follows:

Assume new list area nodes are allocated and used in the
order 5, 6, … , etc. Tabulate the changes that occur in the
list area when (APPEND X Y) is executed, and present the
resulting contents of the list area. (Actually, the typed-pointer
value denoted by −1 is oa(1) = 1000 :: 1.) What exactly is the
typed-pointer denoted by −3?

Exercise 13.3: Write a version of APPEND that joins the two
input lists when both arguments are lists, and adds the second
argument as the last list member of the first argument when
the first argument is a list and the second argument is an
atom.

•	 REVERSE: function

Defined by:

(SETQ REVERSE
 (LAMBDA (X)
 (COND ((ATOM X) X)
 (T (APPEND (REVERSE (CDR X)) (CONS (CAR X) NIL))))))

Exercise 13.4: Suppose the functions A and B are defined by:

(SETQ A (LAMBDA (X Y)
 (COND ((EQ X NIL) Y)
 (T (B (REVERSE X) Y)))))

Chapter 13 ■ More FunCtions

49

and

(SETQ B (LAMBDA (X Y)
 (COND ((EQ X NIL) Y)
 (T (B (CDR X) (CONS (CAR X) Y))))))

What does A do?

Solution 13.4: The function A is another version of APPEND. It
behaves the same way APPEND does on list arguments.

•	 EQUAL: predicate

Defined by:

(SETQ EQUAL (LAMBDA (X Y)
 (COND ((OR (ATOM X) (ATOM Y)) (EQ X Y))
 ((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
 (T NIL))))

Unlike the EQ predicate, EQUAL is guaranteed to return T for
equal S-expressions and NIL for unequal S-expressions.

Exercise 13.5: Is the last (T NIL) pair appearing in the
definition of EQUAL necessary?

Solution 13.5: No, as we have defined COND herein it is not
necessary, but it is harmless, and it is required in some
dialects of LISP where a COND does not have a NIL final value
by default.

Exercise 13.6: Does the EQUAL predicate consume list area
nodes during its application?

Solution 13.6: No. The CONS function is not applied directly or
indirectly.

Exercise 13.7: Define a LISP function LENGTH, which takes a
list as input and returns the number of elements in the list as
output.

Exercise 13.8: Define a LISP predicate LISTP, which returns T
if its assignment is a list and returns NIL otherwise.

Solution 13.8: Define LISTP by:

(SETQ LISTP (LAMBDA (S) (COND ((ATOM S) (EQ S NIL))
(T (LISTP (CDR S))))))

Chapter 13 ■ More FunCtions

50

Exercise 13.9: Define a LISP predicate MEMBER, which returns
T if the input S-expression, a, is an element of the input list, s,
and which returns NIL otherwise.

Solution 13.9: Define MEMBER by:

(SETQ MEMBER (LAMBDA (A S)
 (COND ((EQ S NIL) NIL)
 ((EQUAL A (CAR S)) T)
 (T (MEMBER A (CDR S))))))

Exercise 13.10: Define a LISP function PLACE, which is like
MEMBER in that an input list s is searched for an S-expression
a, but the remainder of the list s after the point at which a is
found is returned as the result, or the atom NULL is returned as
the result if a is not an element of s. Why is NULL specified as
the atom that is returned to indicate a failure?

Exercise 13.11: Define a LISP predicate DEEPMEM, which
returns T if the input S-expression a occurs as an element of
the input list s, or as an element of any sublist of s at any level,
and returns NIL otherwise. You may assume that s is a pure
list, all of whose elements are atoms or pure lists.

Solution 13.11: Define DEEPMEM by:

(SETQ DEEPMEM (LAMBDA (A S)
 (COND ((ATOM S) NIL)
 ((OR (EQUAL A (CAR S)) (DEEPMEM A (CAR S))) T)
 (T (DEEPMEM A (CDR S))))))

Exercise 13.12: Define a LISP function TRUNC, which takes a
non-empty list s as input and returns a list identical to s, but
with the last element removed.

Exercise 13.13: Define a LISP function DEPTH, which takes
an S-expression a as input and returns 0 if a is an atom
and returns the number of levels in the binary tree picture
of a otherwise. Thus the depth of the S-expression a is the
maximum number of parentheses pairs which enclose an
atom in a.

Chapter 13 ■ More FunCtions

51

Exercise 13.14: What happens when ((SETQ G (LAMBDA (X)
(CONS X (G X)))) 3) is typed in to the LISP interpreter?

Solution 13.14: First, the value of the ordinary atom G will
become the specified function, and then the LISP interpreter
will run out of stack space because of the infinite recursion
specified in G applied to 3. Note that the list area will not
be exhausted, since no CONS application is ever actually
consummated.

Exercise 13.15: Define a flat list to be a list whose elements
are atoms. Write a LISP function FLATP to test whether an
S-expression is flat. Write another LISP function FLAT that
returns a flat list containing all the atoms found within the
input S-expression x.

Exercise 13.16: Define a LISP predicate PURE, which takes
an S-expression x as input and returns T if x is a pure list and
returns NIL otherwise.

Exercise 13.17: Can there be two list area entries Pi and Pj
with i ≠ j such that Pi = Pj? That is, does list-node sharing
preclude duplicate list-nodes existing?

Solution 13.17: Yes, duplicate list-nodes can exist. But it is
interesting to contemplate ways in which duplicate list-nodes
can be avoided.

53© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_14

CHAPTER 14

Defining Special Forms

User-defined special forms are created by applying the special form SPECIAL, which is
completely analogous to the special form LAMBDA, except that an unnamed-special-form-
typed-pointer to the dotted-pair of the input arguments is returned, so that the result
will, upon later use, be interpreted as a special form rather than a function. An unnamed-
special-form-typed-pointer has the typecode 15.

Thus the body and formal argument list of a special form created by SPECIAL are
represented by CONSing the input arguments together to form a dotted-pair and an
unnamed-special-form-typed-pointer whose pointer part indexes this dotted-pair is
returned. Just as with λ-expressions, the typecode of the value of an ordinary atom that is
assigned an unnamed-special-form is forced to be 13 rather than 15. The value 13 is the
typecode denoting a named special form. The newly reset value field contains a pointer to
the dotted-pair of the argument list and body of the special form.

Let a be a list of k ≥ 0 ordinary atoms and let b be an evaluatable S-expression. In
general, the value of the special form-expression (SPECIAL a b) is defined as v[(SPECIAL
a b)], which equals the function that is computed on a list of k actual arguments r by
computing e[b, a, r], where e[b, a, r] = v[b] in the context such that v[a

i
] = r

i
 for 1 ≤ i ≤ k.

Unlike a λ-expression, the actual arguments r are taken as they are given and are not
computed by evaluating the given actual arguments.

It is important to note that the definition of the value (i.e., the meaning) of a LISP
special form or function in terms of a context is not the same as the meaning that
is induced using the often-used substitution rule in Algol, where we would say that
v[(SPECIAL a b)] is that function which is computed on a list of k actual arguments r
by computing the value of b with r

i
 substituted for each occurrence of a

i
 in b for 1 ≤ i ≤

k. Binding temporarily supersedes the meanings of symbols in the atom table, as seen
by every ordinary atom evaluation that is done while the binding is in force, whereas
substitution does not cover up such meanings everywhere.

For example, (SETQ EVALQUOTE (SPECIAL (X) (EVAL X))) defines the special form
EVALQUOTE, which is used in the following exercise.

Chapter 14 ■ Defining SpeCial formS

54

Exercise 14.1: Suppose the atom A has the undefined value.
What output results from the following commands given in
sequence?

(SETQ B (QUOTE A))
(EVALQUOTE B)
(EVAL (QUOTE B))
(EVAL B)

Solution 14.1: The four successive outputs that result are:
(1) A, (2) A, (3) A, and (4) undefined.

Exercise 14.2: Suppose the atom X has the undefined
value. Keep in mind that EVALQUOTE is defined with a
formal argument X. What output results from the following
commands given in sequence?

(EVALQUOTE X)
(SETQ X 3)
(EVAL (QUOTE X))
(EVALQUOTE X)

Solution 14.2: The four successive outputs that result are:
(1) X, (2) 3, (3) 3, and (4) X.

Exercise 14.3: Define the special form SETQQ, which assigns
the value of its unevaluated second argument to its first atom-
valued unevaluated argument so as to become the value of
the first atom.

Solution 14.3: This would be defined as:

(SETQ SETQQ
 (SPECIAL (X Y)
 (EVAL (CONS (QUOTE SETQ)
 (CONS X (CONS (CONS (QUOTE QUOTE)
 (CONS Y NIL))
 NIL))))))

This special form operates so that the name bound to X is used
independently of any context. Thus, for example, (SETQQ P Q)
sets the current value of the atom P equal to the atom Q in any
context, in or out of a function body or special form body.
However, this current value is lost when the context in which P
has been assigned a bound value terminates.

Chapter 14 ■ Defining SpeCial formS

55

Exercise 14.4: Define the function SET, which assigns its
evaluated second argument to become the value of its atom-
valued evaluated first argument.

Solution 14.4: This is defined by:

(SETQ SET (LAMBDA (X Y)
 (EVAL (CONS (QUOTE SETQ)
 (CONS X (CONS (QUOTE Y) NIL))))))

Another solution is:

(SETQ SET (SPECIAL (X Y)
 (EVAL (CONS (QUOTE SETQ)
 (CONS (EVAL X) (CONS Y NIL))))))

Exercise 14.5: SETQ stands for set-quote; explain how the
special form QUOTE is related to SETQ.

Because of the possibly counterintuitive behavior of some functions or special forms
when applied to arguments whose names are also used as formal argument names,
where the substitution rule and the binding rule give differing results, such functions
and special forms should be used sparingly. It is a good idea to have useful functions
and special forms like SET and EVALQUOTE built in to the LISP interpreter so that no such
formal argument name conflicts can arise.

User-defined and unnamed functions and special forms are stored as simple
dotted-pair S-expressions formed from the S-expressions given to define them. It is
sometimes useful to explicitly look at the defining dotted-pair of a user-defined or unnamed
function or special form. This can be done with the function BODY, defined as follows.

•	 BODY: function

v[(BODY x)] equals the dotted-pair, which encodes the
definition of the user-defined or unnamed function or
special form v[x], such that CAR applied to the result is the
formal argument list of x, and CDR applied to the result is the
S-expression defining the body of x.

Exercise 14.6: What output will appear as the result of the
following input?

(SETQ E (LAMBDA (X) (MINUS X)))
(BODY E)

Solution 14.6: {user-defined function: E} and ((X) MINUS X).
(Remember ((X) . (MINUS X)) is ((X) MINUS X) in list-notation.)

Chapter 14 ■ Defining SpeCial formS

56

Exercise 14.7: Define the special form IF such that:
v[(IF a b c)] = if v[a] = NIL then v[c] else v[b].

Solution 14.7:

(SETQ IF (SPECIAL (A B C)
 (COND ((EVAL A) (EVAL B))
 (T (EVAL C)))))

57© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_15

CHAPTER 15

The Label Special Form

Recursive functions or special forms can be named and defined in LISP using SETQ.
This is convenient, and we almost always define functions and special forms this way
in practice. But this leaves a theoretical difficulty about the LAMBDA operator, namely, we
must use SETQ and assign a name in order to define a recursive function. Thus not every
desired function can, in theory, be written in place as a λ-expression. In order to dispose
of this difficulty, the special form LABEL is introduced.

•	 LABEL: special form

v[(LABEL g h a
1
 … a

k
)] = e[(h v[a

1
] … v[a

k
]), g, h], where g is

an ordinary atom and h is a λ-expression and a
1
, … , a

k
 are

S-expressions. The idea is that (LABEL g h a
1
 … a

k
) =

v[(h a
1
 … a

k
)] in the context where the atom g is evaluated as

the λ-expression h at every occurrence of g in the body of the
λ-expression h. Thus g is, in effect, the name or label of h in the
body of h during this evaluation of h on the supplied arguments
a

1
, … , a

k
.

The extension of the definition of LABEL to apply to special forms is left as an exercise,
since LABEL is primarily needed to provide a pleasant theoretical closure and is not often
used in practice and, except for QUOTE, special forms are, in theory, avoidable by using
QUOTE to protect the arguments of corresponding λ-expressions. Indeed, LABEL is not
included in the LISP interpreter given below.

Exercise 15.1: Explain the following:

v[(LABEL FACTL
 (LAMBDA (X) (COND ((EQ X 0) 1)
 (T (TIMES X (FACTL (DIFFERENCE X 1))))))
 3)]?

Exercise 15.2: Carefully state the appropriate definition of
(LABEL g h a

1
 … a

k
) where g is an ordinary atom and h is a

special-form expression.

59© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_16

CHAPTER 16

The Quote Macro

The special form QUOTE is used so frequently that a special notation is provided. The
single quote or apostrophe symbol is used to denote a unary prefix operator, defined so
that 'e = (QUOTE e). Thus for example, the SET function can be defined by the input:

(SETQ SET (LAMBDA (X Y)
 (EVAL (CONS 'SETQ (CONS X (CONS 'Y NIL))))))

The single quote symbol acts as a macro; it is expanded upon input. Thus ' cannot
be manipulated as an atom within LISP functions. Remember ' does not mean QUOTE
standing alone; it must take an argument.

Exercise 16.1: Can the expression "(QUOTE e) be written
as "e?

Solution 16.1: Yes.

Exercise 16.2: Describe the objects x which satisfy
v['x] = v[x].

Solution 16.2: { x | v['x] = v[x] } = { y | v[y] = y }, which is the set
of all number atoms, LISP functions, LISP special forms, and
certain non-atomic S-expressions that evaluate to themselves.

Exercise 16.3: What is the history of the term macro?

61© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_17

CHAPTER 17

More Functions

•	 NOT: predicate

Defined by: (SETQ NOT (LAMBDA (X) (EQ X NIL))).

•	 NULL: predicate

Defined by: (SETQ NULL (LAMBDA (X) (NOT X))).

Note NULL is just a synonym for NOT. We may prefer to use
NULL when testing for NIL and to use NOT when performing the
Boolean operation of logical negation.

Exercise 17.1: Show that v[(NOT (NULL y))] = v[(AND y)].

•	 GREATERP: predicate

v[(GREATERP n m)] = if v[n] > v[m] then T else NIL. v[n] and
v[m] must be numbers.

•	 LESSP: predicate

v[(LESSP n m)] = if v[n] < v[m] then T else NIL. v[n] and v[m]
must be numbers.

Exercise 17.2: Show that when x and y are integers in the
following:

v[(GREATERP x y)] = v[((LAMBDA (X Y) (GCHECK (DIFFERENCE (DIFFERENCE X Y) 1),
(DIFFERENCE Y X))) x y)]

Chapter 17 ■ More FunCtions

62

where GCHECK is defined by

(SETQ GCHECK (LAMBDA (A B)
 (COND ((EQ A 0) T)
 ((EQ B 0) NIL)
 (T (GCHECK (PLUS A -1) (PLUS B -1))))))

Exercise 17.3: Define the function GCD in LISP, where
v[(GCD a b)] is the greatest common positive integer divisor
of the two positive integers a and b. Hint: investigate the
Euclidean algorithm.

63© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_18

CHAPTER 18

More About Typed-Pointers

In order to handle number atoms efficiently as values within the LISP interpreter, we have
used pointers to numbers in sketching the working of the v operator. This use of pointers
is also required to allow functions to be treated as values. The guiding idea is that the LISP
interpreter needs to know, at least potentially, the name or lexical expression associated
with any value being manipulated, and every such value is represented by a typed-pointer
to some complete representation of that value.

In particular, then, a number must be represented in a way that permits the proper
result when printing it, using it as an argument in a computation or as a CONS argument,
and when creating a new number as an intermediate result.

Consider:

v[3.1],
v[A], where v[A] has been made equal to 3 via (SETQ A 3),
v[(PLUS 2 3)],
v[(PLUS 2 A)],
v[(CONS (PLUS 2 A) 1)].

Whenever a number is computationally created, by evaluating (PLUS 2 3), for
example, that number is entered in an available row in the number table, if and only if it is
not already present. For such computationally created numbers, some time can be saved
by not constructing the number-name text-string; in fact, for the sake of uniformity, we
discard the text-string name of input numbers. Such nameless number atoms are called
lazy number atoms. If a lazy number atom must be printed out, only then do we construct
its text-string name. Also, the computationally-created number atoms that are no longer
needed should, from time to time, be removed from the number table.

Similarly, a function or special form must be represented in a way which permits the
proper result when applying it, printing it, or using it as an argument in a computation.

Consider:

v[PLUS],
v[(PLUS 2 3)],
v[(EVAL (APPEND 'PLUS '(2 3)))],
v[(EVAL (APPEND PLUS '(2 3)))].

Chapter 18 ■ More about typed-pointers

64

An appropriate internal representation of a function such as v[PLUS] is as a typed-
pointer to the atom PLUS, where this typed-pointer has the typecode 10, as opposed to 8,
indicating that it refers to a built-in function, which is the value of the pointed-to atom. In
this way, we know both the function and its name.

Thus, a built-in function that is the value of an ordinary atom x stored at
an entry j in the atom table is represented by the typed-pointer bf (j). This atom table
entry appears as [x, 10, t, −, −]. The value field entry t is an integer that indicates the
particular built-in function, which is the value of x. In contrast, the ordinary atom x is
represented by the typed-pointer oa(j).

Also, a built-in special form, which is the value of an ordinary atom x stored at an
entry j in the atom table, is represented by the typed-pointer bs(j). This atom table entry
appears as [x, 11, t, −, −]. The value field entry t is an integer that indicates the particular
built-in special form, which is the value of x.

A user-defined function is constructed by the special form LAMBDA by CONSing
together the argument list and body S-expressions given as input and returning a
typed-pointer to this constructed S-expression in the list area. This typed-pointer has
the typecode 14, indicating an unnamed function. Similarly, the special form SPECIAL
constructs a dotted-pair and returns a typed-pointer to this dotted-pair with the typecode
15, indicating an unnamed special form.

When SETQ assigns an unnamed function or special form to an ordinary atom, the
value of that atom is henceforth represented by a typed-pointer to that atom whose
typecode is 12 for a user-defined function and 13 for a user-defined special form. Suppose
the ordinary atom F occupies row i in the atom table and suppose we evaluate (SETQ F
(LAMBDA (X) 1)). Then the ordinary atom F has i : [F, 12, j, −, −] as its row in the atom table,
where and . The typed-pointer representing v[F]
then has 12 as its typecode and i as its pointer part. This allows us to know the name as
well as the defining S-expression of the function, which is the value of F.

Exercise 18.1: Can the built-in function EQ be used to test
whether two functions are equal?

Solution 18.1: Two typed-pointers can be checked for
equality with EQ, and thus EQ can be used to determine
when exactly the same named identical built-in or user-
defined function or special forms are presented. Identically
defined user-defined functions or special forms that have
different names (or different defining dotted-pairs if they are
unnamed) cannot be successfully tested for equality with EQ.
Of course, the general logical problem of deciding when two
functions specified by formulas are the same is undecidable,
although many special cases can be handled.

Chapter 18 ■ More about typed-pointers

65

Exercise 18.2: How could two unnamed functions with the
same shared defining dotted-pair be presented to EQ for
comparison?

Solution 18.2: The rather pointless function (LAMBDA (X)
(EQ X X)) allows the same defining dotted-pair, or indeed,
the same typed-pointer to any value to be presented to EQ for
comparison.

We may describe the typed-pointers used to represent built-in
or user-defined named functions and special forms as doubly
indirect typed-pointers. Of course the LISP interpreter must
convert such a doubly indirect typed-pointer to the desired
singly indirect index value whenever this is required.

67© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_19

CHAPTER 19

Binding Actual Values to
Formal Arguments

In order to implement the e operator for evaluating λ-expression bodies within the
LISP interpreter, we must devise a mechanistic way to bind actual arguments to formal
arguments and to honor the contexts thus established during the time that a related
λ-expression is being evaluated. There are several ways to do this. The earliest approach,
which was employed in the original LISP interpreter for the IBM 704 and 709, was to
maintain a so-called association list. It is convenient to describe this approach and then
use it as a model to explain how a LISP interpreter works in effect, if not in fact.

The association list is a LISP list that is the value of the built-in ordinary atom ALIST.
The elements of the association list are dotted-pairs (ni . vi), where ni is an ordinary
atom used as a formal argument, and vi is an S-expression or function, which is an actual
argument bound to ni. Such dotted-pairs are put on the association list as follows when
a function call expression (g a1 … ak) is to be evaluated. The formal argument list of v[g],
(f1, … , fk) is retrieved and the formal argument—actual argument dotted-pairs (fi . v[ai])
(when v[g] is a function), or (fi . ai) (when v[g] is a special form) are formed and CONSed
onto v[ALIST] in order from the first to the last argument. An exception is made within
the LISP interpreter so that functions and special forms like v[PLUS] are allowed to be
elements in association list dotted-pairs. This is required since LISP functions and special
forms may take functions and/or special forms as arguments.

Now the body of v[g] is obtained and the LISP interpreter is recursively invoked to
evaluate it. During this evaluation, whenever an ordinary atom d is encountered. It is
evaluated in the current context by first searching the association list from front to back
for the first dotted-pair of the form (d . w); if such a pair is found, the value of d is taken
to be w. Otherwise, if no such pair is found on v[ALIST], then the value of d is sought in
the atom table entry for d. When the body of v[g] has been evaluated within the context
given by the current association list, the initial k dotted-pairs corresponding to the formal
argument bindings of v[g] are removed from the association list v[ALIST]. This model of
resolving the value bound to an ordinary atom is called dynamic scoping, as opposed to
the lexical or static scoping found in languages like Algol.

In Algol, function definitions may be lexically nested in the defining text. The value of
a variable x in the body of a function p is determined as the value bound to x in the closest
function body in which the function p is nested, including the body of p itself in the case
where x is a locally defined variable or an argument of p, or in the atom table if p is not

Chapter 19 ■ Binding aCtual Values to Formal arguments

68

nested within any other functions. This lexical scoping search to determine the value of a
variable is equivalent to lexically substituting the actual value to be bound to x at the time
of calling a function p, which has an formal argument named x for the name x within the
function body of p, excepting those function bodies nested within p, which have a formal
argument called x.

Suppose we have two functions, f (a, b) and g(b, c), at the same lexical level, where g
is called from within f. With Algol lexical scoping, the value of a within g is the global atom
table value of a, whether or not g is running called from f. With LISP dynamic scoping, the
value of a within g is the global atom table value if g is running from a top-level call to g, and
the value of a is the actual argument value passed to f for binding to a if g is running called
from f. (Algol has its own complexities, in particular, Algol has some gnarly implications of
its lexical static scoping binding rule. This is only a problem when procedures are declared
nested within procedures and mixes the names of formal arguments and nonlocal variables;
C avoids these problems by forbidding the declaration of lexically-nested procedures.)

Notice that if the same ordinary atom x is used several times in differing
λ-expressions as a formal argument, and if the corresponding functions are called one
within another, then the same atom x will occur several times in dotted-pairs on the
association list during a certain time period. Whenever x must be evaluated, the latest
existing binding will be used. This is exactly the right thing to do, but apparent mistakes
can occur when this fact is forgotten.

For example, if we type in:

(SETQ G 3) followed by
(SETQ F (LAMBDA (X) (CONS X G))) and
(SETQ B (LAMBDA (G X) (CONS G (F (PLUS X 1)))))

then v[(B 2 0)] = (2 . (1 . 2)), but v[(F 1)] = (1 . 3). The ordinary atom G occurring in the
body of the function v[F] is said to be a free variable of the function v[F]. In general, any
ordinary atom occurring in a function or special form body that is not listed as a formal
argument of that function or special form is a free variable of that function or special form.

When the body of a function or special form is evaluated in a context provided by
the bound pairs of the association list, the values of the free variables encountered are
determined by the current association list if possible. Thus you cannot write a function like
v[F] and expect its free variables to have the values of the atom table entries of those names,
unless you are careful to not use those names elsewhere as formal arguments, or at least
arrange to never have any of them bound on the association list when the function is called.

This situation is not so bad. We only have to use sufficient discipline to avoid picking
formal argument names and global atom table names from among the same candidates
whenever confusion might result.

A countervailing benefit of the simple LISP argument binding rule is that we can use
the fact that the latest binding on the association list is the current value of an ordinary
atom to skip passing arguments to functions explicitly when we know that the desired
binding will already be in force. For example, consider:

(SETQ MAXF (LAMBDA (L F)
 (COND ((NULL (CDR L)) (CAR L))
 (T (MH (CAR L) (MAXF (CDR L) F))))))

Chapter 19 ■ Binding aCtual Values to Formal arguments

69

and

(SETQ MH (LAMBDA (A B)
 (COND ((GREATERP (F A) (F B)) A)
 (T B)))).

Here F is a free variable in MH, which will be properly interpreted as the function
bound to F when MAXF is invoked, since MH is only intended to be used from within MAXF.
This device is called skip-binding.

There are situations, however, in which the evaluation of an apparently free variable
done by following the simple association list model for context evaluation is clearly
counterintuitive. Consider the example:

(SETQ F (LAMBDA (A)
 (G (PLUS A 1)
 (LAMBDA (X) (CONS X A))))).

Here we have a function body consisting of a call to some function G, which is passed
a function created by LAMBDA as one of its actual arguments, namely v[(LAMBDA (X) (CONS
X A))]. The ordinary atom A is a free variable of this argument function, but A is a formal
argument, not a free variable, of the containing function F being defined.

Now suppose we define G with (SETQ G (LAMBDA (A H) (H A))). Then v[(F 1)] = (2 . 2).
But, if we define G with (SETQ G (LAMBDA (O H) (H O))), then v[(F 1)] = (2 . 1). Thus, in
order to avoid such surprises, we have to not only avoid conflicts with our choice of
global names and formal argument names, but we also must be aware of conflicts if we
use the same names for formal arguments in different functions whenever functional
arguments are used. This difficulty is called the functional argument problem or
“funarg” problem.

Exercise 19.1: Show that the functional argument difficulty
can occur in the form of a free-variable conflict, without the
use of a λ-expression or special-expression appearing as an
actual argument.

Solution 19.1: Consider:

(SETQ Z (LAMBDA (X) (CONS X A)))
(SETQ F (LAMBDA (A) (G (PLUS A 1) Z)))
(SETQ G (LAMBDA (A H) (H A))).

Then v[(F 1)] = (2 . 2).

The functional argument problem is really just a matter of potentially
misunderstanding binding times. A variable may be a global variable some times and
a formal argument at other times during the evaluation of various S-expressions that
are being evaluated in order to evaluate a root S-expression. The notion of free variable
is syntactic; a variable is free with respect to a function or special form according to its

Chapter 19 ■ Binding aCtual Values to Formal arguments

70

appearance in the associated body; it is not a temporal notion. However, such function
body S-expressions are evaluated in a temporal sequence, and particular variables may
be assigned values (i.e., be bound) differently at different times. Every ordinary atom must
have something bound to it whenever it is evaluated (or else we have an evaluation error),
but at some times this value is found in the association list, and at other times it is found
in the atom table. In any event, the value of an ordinary atom at a given point in time is
that value to which it has been most recently bound. Thus the value of an ordinary atom
may change with time. The time at which each temporal act of the binding of values to
ordinary atom variables occurs is as late as possible in LISP.

Returning to the example above: consider v[(F 1)], based on F defined by:

(SETQ F (LAMBDA (A)
 (G (PLUS A 1)
 (LAMBDA (X) (CONS X A))))),

and G defined by (SETQ G (LAMBDA (A H) (H A))). We see that the value of A in (PLUS
A 1) is 1 when (PLUS A 1) is evaluated, and this binding is found in the association list.
But the value of A in (CONS X A) is 2 when it is evaluated and this later binding of 2 to A
supersedes the earlier binding of A in the association list.

Late-as-possible binding is effected if binding occurs when functions are called; thus
we will refer to this kind of binding as call-time binding, since the context that is used
when a formal argument of a function or special form is evaluated is created when the
function or special form is entered.

A direct solution to the functional argument problem that also prevents any
global-local name conflicts is to program the built-in LAMBDA and SPECIAL forms to scan
through the argument list and body of each function and special form being defined and
substitute a unique new name for each formal argument name at each occurrence. These
unique names could be formed from an increasing counter and a nonprinting character
joined with the user-specified name. Of course, the original user-specified name
should be kept for printing-out purposes. The effect of this would be to change the LISP
temporal binding rule so that each ordinary atom is bound as early as possible, while still
maintaining a call-time binding regime. This earliest binding time cannot be at the time
of definition, but it can be just before a function or special form is applied to arguments at
the top level of the LISP interpreter.

Exercise 19.2: How does this device of using unique formal
argument names compare with using the Algol substitution
rule for function calls instead of the LISP association list
binding rule?

In practice the functional argument problem is not serious. Discipline and due care
in choosing names is all that is needed to avoid trouble. Of course in a language like C,
there is no chance of trouble to begin with.

Exercise 19.3: Explain how the function M defined here works:
(SETQ M (LAMBDA (M X) (M X))). Describe the contexts in
which this function fails to work.

Chapter 19 ■ Binding aCtual Values to Formal arguments

71

Some versions of LISP use a rule for evaluating selected atoms that relegates the
association list to a lower priority. Such a high-priority atom is evaluated by looking at
its global atom table value first, and then, only if this is undefined, is the association list
searched. This exception is annoyingly nonuniform, so we use strictly temporal binding
here. Note, however, that this approach of relegating association list bindings to be of
lower priority than global atom table bindings for selected atoms ensures that atoms like
NIL and PLUS can be forced to always have their familiar values (except if explicit SETQ
operations are done, and even this can be restricted). A similar variation is commonly
found where an atom’s global atom table value is used whenever that value is a function
or special form and the atom is being used as such. Another kind of binding rule, instead
of call-time binding, is often used in LISP, where the free variables in a function body
are bound, with respect to that function body only, at the time the function is computed.
This requires that a tree of association lists or other equivalent structures be maintained.
Indeed the elaborate binding rules that have been introduced into current LISP dialects
to “cure” perceived anomalies constitute one of the major areas of extension of LISP.

Exercise 19.4: Explain how the following function B, defined
below, works on number arguments.

(SETQ B (LAMBDA (NIL)
 (COND ((GREATERP NIL 0) T)
 (T 'NIL)))).

Solution 19.4: It works just fine.

Searching for a formal argument atom in a linear association list can be time-
consuming. Another strategy for binding values to formal argument atoms, which is called
shallow binding, is a preferable way to handle argument binding. With shallow binding,
whenever a value is to be bound to an ordinary atom, we arrange to save the present value
of the ordinary atom at the top of a corresponding private push-down list associated
with that atom. After having introduced such private push-down lists, argument binding
may then be done by first pushing the current value of each ordinary atom to be bound,
together with its typecode, on its corresponding push-down list, and then reassigning the
values of each such atom in order to effect the bindings. When a user-defined function or
special form has been evaluated, the unbinding that restores the previous context is done
by popping the push-down list of each formal argument ordinary atom. Shallow call-time
binding is used in the LISP interpreter program, given below.

The operation of binding a value, represented by a typed-pointer p, as the current
value of an ordinary atom is similar to the effect of the SETQ function, but not identical.
In particular, if p is a type 14 or 15 typed-pointer, it is not transmuted into a type 12 or
13 type-pointer. Moreover, a doubly indirect type 12 or 13 typed-pointer is transmuted
by one level of dereferencing into the index of the list area node where the associated
(argument list, body) dotted-pair resides, and this index, together with the associated
typecode 12 or 13, becomes the current value of the ordinary atom being bound. These
binding transmutation rules are appropriate because binding a function value to a formal
argument atom is the act of associating a set of ordered pairs with the formal argument atom.

Chapter 19 ■ Binding aCtual Values to Formal arguments

72

The name, if any, of a function is not preserved by binding, however. Thus, the act of
binding a named function to a formal argument atom causes that function to temporarily
have a new name. For example, typing in ((LAMBDA (X) X) PLUS) results in {builtin
function: X} being printing out.

Exercise 19.5: How does a recursive function, like FACT,
continue to work when it is bound to another symbol, say G,
and then invoked as (G 3)?

Note that the following identities are a consequence of the simple association-list
binding rule discussed above:

v[((SPECIAL (X) (EVAL X)) Y)] = v[Y], and

v[((LAMBDA (X) X) Y)] = v[Y], but

v[((SPECIAL (X) (EVAL X)) X)] = X, and

v[((LAMBDA (X) X) X)] = v[X].

The identity v[((SPECIAL (X) (EVAL X)) X)] = X demonstrates the distinction
between the LISP context-dependent association-list binding rule and the Algol
substitution rule in assigning a meaning to a special form. There is no association list with
the substitution rule. Substitution of X for X would produce EVAL applied to X, the value of
which would then be v[X] as found in the ordinary atom table. The LISP context-dependent
binding rule leads us to compute EVAL applied to X, after X is bound to X, so that the resulting
value is again X. It is not the case that one of these rules is “better” than the other; however,
our expectations may be violated when we replace one rule with the other.

Exercise 19.6: What is v[((LAMBDA (X) (CONS (SETQ X 2)
X)) 3)]?

Solution 19.6: (2 . 2). When SETQ is used to assign a value to
an ordinary atom that is a currently active formal argument,
the actual argument value it was bound to is lost. This is, in
essence, a dynamic rebinding operation. In the form of LISP
corresponding to the LISP interpreter given in this book, it
is not possible to change the global atom table value of an
atom that is active as a formal argument without introducing
a new built-in function for this purpose. We can, however, as
just seen, change the value of a current bound atom; that new
binding will disappear when the function that established the
binding is exited.

Exercise 19.7: Define a LISP special form FREEVAR, which
takes a λ-expression L as input and returns a list of all the
atoms in L that are free variables within L.

Chapter 19 ■ Binding aCtual Values to Formal arguments

73

Exercise 19.8: Explain the difficulty hidden in the following
LISP input.

(SETQ F1 (LAMBDA (G L) (F2 (CAR L) (CDR L))))
(SETQ F2 (LAMBDA (H L) (CONS (G H) L)))
(SETQ H (LAMBDA (A B) (COND ((NULL A) B)

(T (H (CDR A) (PLUS B 1))))))
(F1 H (QUOTE ((1))))

Most LISP dialects provide an additional class of functions called macros. We
could introduce macro-functions by defining a built-in special form called MACRO, which
behaves like LAMBDA and SPECIAL, and builds an argument, body dotted-pair in the same
manner. Macro functions obey the following evaluation rule. If m is a macro function that
has k arguments, then:

v[(m a1 a2 ... ak)] = v[((EVAL (LIST 'SPECIAL (CAR (BODY m))
 (LIST 'EVAL (CDR (BODY m))))) a1 a2 ... ak)].

Exercise 19.9: Define a LISP function called MAC, which takes
as input a user-defined LISP function f and an argument list
w and returns the value of f on the arguments w computed as
though f were a macro.

75© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_20

CHAPTER 20

Minimal LISP

Let the set of basic S-expressions be the set of ordinary atoms (with nonnumeric names)
and non-atomic S-expressions formed from these. The following nine functions and
special forms constitute a set of functions and special forms that are universal in the
sense that, with these, any computable function of basic S-expression arguments can be
expressed:

QUOTE, ATOM, EQ, CONS, CAR, CDR, COND, LAMBDA, LABEL.

Remember that LABEL is really a notational device to allow the statement of recursive
λ-expressions, so we might (weakly) say that there are just eight functional components of
minimal LISP.

Why would we consider what constitutes a minimal collection of LISP operators? We
would never want to use such a silly restricted programming language. The answer is that
LISP is not just an unusual, but practical, programming language; it is heavily influenced
by the ethos of the mathematical theory of computation, where we ask what functions
can be computed and how many steps are needed to compute a function in terms of its
input. Generally we restrict ourselves to integer domain and range sets. In order to define
what a step is, we find it useful to consider simple models of computation such as Turing
machines. Minimal LISP is another such computational model.

The computable functions of basic S-expression arguments correspond to the
computable functions of nonnegative integers since we can prescribe an effective
enumerating mapping that assigns a nonnegative integer to every basic S-expression. It is
somewhat easier to show just that the computable functions of nonnegative integers are
subsumed by the computable functions of basic S-expression arguments. To do this, we
associate the integer k with the atom NIL if k is 0, and with the list (T … T) consisting of k
T’s if k > 0. Thus nonnegative integers, and by further extension, rational numbers, are, in
effect, included in the domains of various minimal LISP functions.

Exercise 20.1: Write the minimal LISP function that
corresponds to addition using the number-to-list
correspondence stated above. Then do the same for
subtraction of a lesser number list from a greater number list.

Chapter 20 ■ MiniMal liSp

76

Exercise 20.2: Discuss the pros and cons of extending the
definitions of CAR and CDR so that v[(CAR NIL)] = v[(CDR NIL)] = NIL.

Exercise 20.3: Do EVAL, ATOM, EQ, CONS, CAR, CDR, COND, SPECIAL,
and LABEL constitute a universal LISP minimal system?

77© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_21

CHAPTER 21

More Functions

This chapter discusses more functions and special forms.

•	 SUM: function with a varying number of arguments

v[(SUM n1 n2 … nk)] = v[(PLUS n1 (PLUS n2 (… (PLUS nk 0)) …))].

•	 PRODUCT: function with a varying number of arguments

v[(PRODUCT n1 n2 … nk)] = v[(TIMES n1 (TIMES n2 (…(TIMES nk 1)) …))].

•	 DO: function with a varying number of arguments

v[(DO x1 x2 … xk)] = v[xk].

Since DO is a function, its arguments are all evaluated from left
to right, and the last argument value is then returned. This
function is useful when its arguments have side-effects that
occur during their evaluation. Basically, DO provides a means
to execute a sequence of statements (function applications) as
in a traditional programming language.

•	 INTO: function

Defined by:

(SETQ INTO (LAMBDA (G L)
 (COND ((NULL L) L)
 (T (CONS (G (CAR L))
 (INTO G (CDR L))))))).

Given the list L = (L1 L2 … Lk), the INTO function computes the
application of the function or special form G to each element
of L to obtain ((G L1) (G L2) … (G Lk)).

Chapter 21 ■ More FunCtions

78

•	 ONTO: function

Defined by:

(SETQ ONTO (LAMBDA (G L)
 (COND ((NULL L) L)
 (T (CONS (G L)
 (ONTO G (CDR L))))))).

Given the list L = (L1 L2 … Lk), the ONTO function computes the
application of the function or special form G to the list L and,
recursively, to every tail of L to obtain ((G L) (G (CDR L)) …
(G (CDR (CDR … (CDR L)))).

•	 APPLY: special form

Defined by:

(SETQ APPLY (SPECIAL (G X) (EVAL (CONS G X)))).

Exercise 21.1: Note v[(APPLY CAR ('(1 . 2)))] = 1 and
v[(APPLY CONS ('A 'B))] = (A . B). What is v[(APPLY CAR
(1 . 2))]? What is v[(APPLY CAR ((1 . 2)))]? What is v[(APPLY
CAR '(1 . 2))]? What is v[(DO (SETQ A '(1 . 2)) (APPLY
CAR (A)))]? Did you find a bug in the LISP interpreter?

Exercise 21.2: v[(APPLY G (x1 ...xn))] is intended to be
the same as v[(G x1 ... xn)]. But we may sometimes forget
to enclose the arguments x1, ..., xn in parentheses. What is
wrong with defining APPLY with (SETQ APPLY (SPECIAL (G
X) (EVAL (CONS G (LIST X)))))? Can you think of a better
solution?

Exercise 21.3: Can you think of a reason why the name
G should be replaced by an unlikely name like $G in the
definition of APPLY? Hint: consider the situation where the
value of the ordinary atom G is a user-defined function and G
is used in a call to APPLY. Why isn’t this a problem in INTO and
ONTO? Shouldn’t X be replaced by an unlikely name also?

Exercise 21.4: The version of INTO given above only works for
functions of one argument. Give a modified version that works
for functions of k arguments with a list of k-tuples provided as
the other input. Hint: use APPLY.

Chapter 21 ■ More FunCtions

79

Exercise 21.5: What is v[MINUS]? What is v[(LIST MINUS 2)]?
What is v[(DO (SETQ H (LAMBDA (H) ((CAR H) (CAR (CDR H))
))) (H (LIST MINUS 2)))]?

Exercise 21.6: Define a LISP function COPYL that takes a single
list L as input and returns a copy of L that shares no nodes
with the input list L.

Exercise 21.7: Define a LISP function NAINX that takes an
atom a and a list x as input and returns the number of times
the atom a occurs at any level in the list x.

Exercise 21.8: Define a LISP function NAINS that takes an
atom a and a non-atomic S-expression x as input and returns
the number of times the atom a occurs in x at any level.

Exercise 21.9: Define a LISP function NEINS1 that takes an
S-expression e and a list s as input and returns the number of
times e occurs as an element of the list s.

Exercise 21.10: Define a LISP function NEINSX that takes an
S-expression e and a list s as input and returns the number of
times e occurs as an element of the list s or as an element of
any list occurring in the list s at any level, including s itself.

Exercise 21.11: Define the LISP function UNION that takes two
lists x and y as input and returns the list z whose elements are
the elements of the set union of x and y (i.e., the result is to
contain only unique elements).

Exercise 21.12: Define the LISP function SORT that takes a list
of numbers as input and returns the corresponding sorted list
of numbers as the result.

Solution 21.12:

(SETQ SORT
(LAMBDA (X)
 (COND ((NULL X) X)
 (T (LABEL MERGE
 (LAMBDA (V L)
 (COND ((OR (NULL L) (LESSP V (CAR L)))
 (CONS V L))
 (T (CONS (CAR L)
  (MERGE V (CDR L))))))
 (CAR X) (SORT (CDR X)))))))

Chapter 21 ■ More FunCtions

80

Note LABEL is used here, so you will have to define MERGE as a
separate function if you want to try this in the LISP interpreter
as given below.

Exercise 21.13: Define the LISP function SIGMA that takes a
number-valued function g of an integer argument as input,
together with two integers a and b as additional input, and
which returns the value

a i b

g i
£ £
å ()

Solution 21.13:

(SETQ SIGMA (LAMBDA (G A B)
 (COND ((LESSP B A) 0)
 (T (PLUS (G A) (SIGMA G (PLUS A 1) B))))))

SIGMA computes
A i B

G i
£ £
å () where G is a real-valued function of

a single argument.

Exercise 21.14: Define the LISP function FACTORS that takes
an integer n as input and returns a list consisting of the prime
factors of n.

Let’s consider constructing a WHILE statement in LISP. A WHILE statement should
repetitively evaluate some S-expression q until some other S-expression p evaluates to
NIL. For example, assuming we define WHILE as a special form with two arguments P and
Q, we should be able to execute:

(SETQ I 0)
(SETQ S 2)
(WHILE (LESSP I S) (DO (SETQ I (PLUS I 1)) (PRINT (LIST I))))

and observe (1) (2) printed out.
Note that for WHILE to terminate nontrivially, it will be necessary for the evaluation of

the actual arguments corresponding to P and/or Q to involve some side-effect that leads to
the value of the actual argument corresponding to P becoming NIL at some point. Such a
side-effect can be obtained by using SETQ, PUTPROP, REMPROP, RPLACA, or RPLACD.

Here is one way to define WHILE.

•	 WHILE: special form

Defined by:

(SETQ WHILE (SPECIAL (P Q)
 (COND ((EVAL P)
 (DO (EVAL Q) (EVAL (LIST 'WHILE P Q)))))))

Chapter 21 ■ More FunCtions

81

	 v[(WHILE p q)] = NIL, if (WHILE p q) terminates. If v[p] is initially
NIL, NIL is returned. Otherwise the argument q is evaluated
repeatedly until v[p] becomes NIL. Generally a side-effect
that induces a change in the value of p is required for WHILE to
terminate.

Exercise 21.15: What is wrong with defining WHILE via:

(SETQ WHILE (SPECIAL (P Q)
 (COND ((EVAL P)
 (DO (EVAL Q) (WHILE (EVAL P) (EVAL Q)))))))?

Exercise 21.16: We may define WHILE via:

(SETQ WHILE (SPECIAL (P Q)
 (COND ((EVAL P)
 (DO (EVAL Q) (EVAL (CDR (BODY WHILE))))))))

Explain why this works. Hint: review skip-binding.

83© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_22

CHAPTER 22

Input and Output

In order to be able to specify a LISP function that behaves like an interactive program, we
need a mechanism for printing messages to a user and for reading user-supplied input.
The functions READ and PRINT satisfy these requirements.

•	 READ: pseudo-function

v[(READ)] equals the S-expression, which is typed in response
to the prompt exclamation mark symbol ! typed to the user.

•	 PRINT: function with a varying number of arguments and
innocuous side-effects

v[(PRINT x
1
 x

2
 … x

k
)] = NIL, with v[x

1
], v[x

2
], … , v[x

k
] each

printed out at the terminal as a side-effect. If k is 0, a single
blank is printed out.

•	 PRINTCR: function with a varying number of arguments and
innocuous side-effects

v[(PRINTCR x
1
 x

2
 … x

k
)] = NIL, with v[x

1
], v[x

2
], … , v[x

k
] each

followed by a carriage-return and printed out at the terminal
as a side-effect. If k is 0, a single carriage-return is printed
out. (A carriage-return is an old-fashioned way of saying
newline. On Linux or OS-X, a newline is an ASCII linefeed(10);
on Windows, a newline is actually the two ASCII characters
carriage-return(13) followed by a linefeed(10)).

85© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_23

CHAPTER 23

Property Lists

Ordinary atoms have values, and it is often convenient to imagine that an ordinary atom
has several values. This can be accomplished by making a list of these values and using
this list as the value whose elements are the desired several values. Frequently, however,
these multiple values are used to encode properties. This is so common that LISP provides
special features to accommodate properties.

Abstractly, a property is a function. LISP only provides for properties that apply
to ordinary atoms and whose values are S-expressions, and it establishes and uses a
special set of lists to tabulate input-output pairs of such properties. Suppose A is an
ordinary atom and g is an abstract property function. Then the value of g on A is called
the g-property value of A. Rather than computing a particular property value of an atom
when it is needed, LISP provides a means to record such property values along with
the corresponding ordinary atom, so that a property value may be retrieved rather than
computed.

Each ordinary atom A has an associated list provided called the property list of A. The
typed-pointer to this list is stored in the plist field of the ordinary atom A. This list may
be thought of as an alternate value of A. Generally the property list of an ordinary atom A
is either NIL, or it is a list of dotted-pairs. Each such dotted-pair, (p . w), in the property
list for A is interpreted as meaning that the value of property p on A is w. Thus properties
and property values are represented by S-expressions. In fact, usually properties are
represented by ordinary atoms.

The following functions are provided in order to aid in handling property lists.

•	 PUTPROP: function with a side-effect

v[(PUTPROP a p w)] = v[a], and the property, property-value
dotted-pair (v[p] . v[w]) is inserted in the property list for
the atom v[a]. If another duplicate property, property-value
dotted-pair for the property v[p] and the property-value v[w],
is present, it is removed. v[a] must be an ordinary atom, and
v[p] and v[w] are arbitrary S-expressions.

Chapter 23 ■ property Lists

86

•	 GETPROP: function

v[(GETPROP a p)] equals the current property value, which
is dotted with the property v[p] on the property list for the
ordinary atom v[a]. If a dotted-pair for the property v[p] does
not exist on the property list of v[a], then NIL is returned.

•	 REMPROP: function with a side-effect

v[(REMPROP a p w)] = v[a], and the property, property-value
dotted-pair (v[p] . v[w]) for the property v[p] is removed from
the property list of the ordinary atom v[a] if such a dotted-pair
exists on the property list for v[a].

Exercise 23.1: Define a special form called SPUTPROP analogous
to PUTPROP, which does not have its arguments evaluated.

Solution 23.1: (SETQ SPUTPROP (SPECIAL (A P W) (PUTPROP
A P W))).

The functions PUTPROP, GETPROP, and REMPROP can all be defined in terms of the basic
built-in functions GETPLIST and PUTPLIST, where v[(GETPLIST a)] equals the property
list for the ordinary atom v[a], and where v[(PUTPLIST a s)] = v[a], with the side-effect
that the property list of the ordinary atom v[a] is replaced with the list v[s]. Now PUTPROP,
GETPROP, and REMPROP are definable as follows:

(SETQ GETPROP (LAMBDA (A P)
 (ASSOC (GETPLIST A) P)))

(SETQ ASSOC (LAMBDA (L P)
 (COND ((NULL L) NIL)
 (T (COND ((EQUAL P (CAR (CAR L))) (CDR (CAR L)))
 (T (ASSOC (CDR L) P)))))))

(SETQ REMPROP (LAMBDA (A P W)
 (PUTPLIST A (NPROP NIL (GETPLIST A) (CONS P W)))))

(SETQ NPROP (LAMBDA (H L P)
 (COND ((NULL L) (REVERSE H))
 ((EQUAL P (CAR L)) (APPEND (REVERSE H) (CDR L)))
 (T (NPROP (CONS (CAR L) H) (CDR L) P)))))

(SETQ PUTPROP (LAMBDA (A P W)
 (PUTPLIST A (CONS (CONS P W)
 (GETPLIST (REMPROP A P W))))))

Chapter 23 ■ property Lists

87

Exercise 23.2: Why don’t we define PUTPROP as:

(LAMBDA (A P W)
 (COND ((EQ (GETPROP A P) W) A)
 (T (PUTPLIST (CONS (CONS P W)
 (GETPLIST A))))))?

Exercise 23.3: Can the same property-value pair occur on the
same property list several times?

Solution 23.3: No, not if only PUTPROP is used to build
property lists. And, in fact, REMPROP assumes duplicates are
not present.

Exercise 23.4: Why is REVERSE used in NPROP? Is it necessary?

Exercise 23.5: Give definitions of PUTPROP, GETPROP, and
REMPROP, so that properties can be relations rather than just
functions. Thus multiple (p . w) dotted-pairs occurring on
the same property list with the same p-value and differing w-
values are to be handled properly.

Solution 23.5: Only GETPROP needs redefinition, so that it
returns a list of property values. It may be a beneficial practice
to keep all properties functional, however. This is no real
hardship, since, for example, (COLORS . RED), (COLORS .
BLUE), and (COLORS . GREEN) can be recast as (COLORS .
(RED BLUE GREEN)).

Exercise 23.6: One useful device that is commonly used is
to specify class subset relations with T-valued properties. For
example, we might execute:

(PUTPROP 'MEN 'MORTAL T),
(PUTPROP 'MAN 'MEN T), and
(PUTPROP 'SOCRATES 'MAN T).

But note that v[(GETPROP 'SOCRATES 'MORTAL)] equals
NIL. (Also note that v[(GETPROP 'MEN 'MORTAL)] = T and
v[(GETPROP MEN MORTAL)] are undefined.

Chapter 23 ■ property Lists

88

Write a LISP function LINKGETPROP, which will trace all property
lists of atom properties with the associated value T reachable
from the property list of an input atom A in order to find the
specified property value pair (P,T) and return T when this pair
is found. The value NIL is to be returned when no chain leads
to the sought-for property P with a T value. Thus, for example,
with the properties for MEN, MAN, and SOCRATES given above,
(LINKGETPROP 'SOCRATES 'MORTAL) returns T; essentially
(LINKGETPROP 'A 'P) asks if there is a chain of property
“assertions” that implies A has the property P indirectly.

Solution 23.6:

(SETQ LINKGETPROP (LAMBDA (A P)
 (COND ((EQ (GETPROP A P) T) T)
 (T (SEARCH (GETPLIST A) P)))))

(SETQ SEARCH (LAMBDA (L P)
 (COND ((NULL L) L)
 ((AND (EQ (CDR (CAR L)) T)
 (ATOM (CAR (CAR L)))

 (EQ (LINKGETPROP (CAR (CAR L)) P) T)) T)
 (T (SEARCH (CDR L) P)))))

Exercise 23.7: Write a LISP function CKPROP such that (CKPROP
a p w) returns T if (v[p] . v[w]) is on the property list for the
atom v[a] and NIL otherwise. Now write a generalized form
of CKPROP called TCPROP, which is defined such that (TCPROP a
p w) returns T if there exists a sequence of atoms m

0
, m

1
, … ,

m
k
, with k ≥ 1, such that v[a] = m

0
, v[w] = m

k
, and (v[p] . m

i+1
)

is on the property list of m
i
 for i = 0, 1, … , k − 1. TC stands for

transitive closure.

The property-list functions defined above, especially REMPROP, and hence PUTPROP,
are slow, and moreover they can create lots of garbage unreachable list-nodes. It would
be more efficient if we could just change property lists as required, rather than rebuild
them with CONSing each time a REMPROP is done.

There are two low-level functions with side-effects defined in LISP that provide the
ability to change existing list-nodes that have been created with CONS. These functions are
RPLACA and RPLACD.

•	 RPLACA: function with a side-effect

v[(RPLACA x y)] = v[x], after the car field of the list node
representing the dotted-pair v[x] is changed to the typed-
pointer v[y].

Chapter 23 ■ property Lists

89

•	 RPLACD: function with a side-effect

v[(RPLACD x y)] = v[x], after the cdr field of the list node
representing the dotted-pair v[x] is changed to the typed-
pointer v[y].

	 Now REMPROP can be programmed as follows:

(SETQ REMPROP (LAMBDA (A P W)
 (PUTPLIST A (NAX (GETPLIST A) (CONS P W)))))

(SETQ NAX (LAMBDA (L P)
 (COND ((NULL L) NIL)
 ((EQUAL (CAR L) P) (CDR L))
 (T (DO (NX L P) L)))))

(SETQ NX (LAMBDA (L P)
 (COND ((NULL (CDR L)) NIL)
 ((EQUAL P (CAR (CDR L))) (RPLACD L (CDR L)))
 (T (NX (CDR L) P)))))

Exercise 23.8: Could NX be defined with an empty formal
argument list () rather than (L P), and be called as (NX) in
NAX?

Note this version of REMPROP can only be safely used when we can guarantee that the
backbone nodes of property lists are not shared within other list structures.

Exercise 23.9: Program a version of APPEND, called NCONC,
which uses RPLACD to append one list onto another by physical
relinking.

91© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_24

CHAPTER 24

What Is LISP Good for?

The quick answer to the question “What is LISP good for?” is (1) ideas and (2)
experimental programs.

The algorithmic ideas that LISP inspires are often powerful and elegant. Even if LISP
is not the target programming language, thinking about how to tackle a programming
job using LISP can pay worthwhile dividends in ideas for data structures, for the use of
recursion, and for functional programming approaches. The use of Algol-like languages or
FORTRAN tends to limit programmers’ imagination, and both applications programmers
and systems programmers can benefit by remembering the principles of LISP.

LISP is useful for building and trying out programs to solve predominantly
nonnumeric problems such as natural language parsing or dialog processing, symbolic
formula manipulation, retrieval in a LISP-encoded database, theorem proving, backtrack
searching (e.g., game playing), and pattern recognition programs.

Most versions of LISP have been extended with arrays, strings, a FORTRAN-like
statement-based programming facility via the so-called PROG special form, and many other
features. Indeed, the enthusiasm for extending LISP is perennially high. Many extensions
take the form of control structures and data structures for managing abstract search. As
LISP is extended, however, it seems to lose its sparse pure elegance and uniform view of
data. The added features are sometimes baroquely complex, and the programmers’ mental
burden is correspondingly increased. Moreover, at some point it is legitimate to ask why not
extend FORTRAN or C to contain LISP features, rather than conversely? And indeed this has
also been done.

Often features are added to LISP to increase its speed. The standard accessing strategy
in LISP is, in essence, linear searching through non-atomic S-expressions, and many
attempts have been made to circumvent this. LISP with extensions, then, is likely to be a
curious amalgam of considerable complexity, sometimes with the possibility of constructing
faster programs as a compensating factor. (Although, if a program is perceived to be fast
enough by its users, then it is fast enough, no matter what language it is written in.)

Not only does LISP perform slowly in comparison to conventional loop-based programs,
but it is also designed as a self-contained programming system. Thus, like APL, it may be
difficult to employ and/or control computer system resources, access files, and handle
interrupts in a general and convenient manner. In short, without suitable extensions,
LISP is not a systems programming tool, and insofar as a program must deal with such
environmental issues, LISP is generally inadequate to the challenge. Since most programs
with a long half-life have systems programming aspects, LISP is generally not the tool of

Chapter 24 ■ What Is LIsp Good for?

92

choice for building a robust, efficient system for long-term use. Note, however, system
programming extensions can be added to LISP by introducing suitable “hooks” to the
operating system; the well-known emacs text editor is written in an extended version of LISP.

Minor details also mitigate against LISP. Format control for terminal input and
output is often lacking, for example, and this can be frustrating in many applications.
Moreover, although LISP list notation is adequate for short functions (indeed, it
encourages them), it is cumbersome compared to Algol notation, and the lack of
traditional mathematical notation is a severe handicap in many cases. Notational
extensions have been proposed, but again, simplicity is sacrificed.

On the other hand, LISP is an excellent tool for experimentation. A pattern-matching
idea may be programmed and tested in a preliminary way more easily and quickly in
LISP than in Pascal, for example. The lack of a variety of constrained datatypes and the
absence of declarations and multiple statement forms often give an advantage to LISP as
long as we banish efficiency considerations from our minds. Moreover, there are certain
applications, notably formula manipulation tasks, where S-expressions and recursion are
so well suited for the job that LISP matches the utility of any other language.

Unfortunately, many versions of LISP do not gracefully cohabit with programs
written in other programming languages, so a system can’t generally be easily
constructed that employs LISP just for selected subtasks. However, a special embeddable
LISP interpreter could be relatively easily constructed as a C or FORTRAN callable
subroutine package, which would allow the use of LISP for specialized purposes within a
larger non-LISP system. (Indeed, you could modify the LISP interpreter program to read
its input from a memory array rather than a file or the keyboard, and thereby achieve
such a LISP subroutine.)

We shall consider several classical applications of LISP in the chapters that follow.

93© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_25

CHAPTER 25

Symbolic Differentiation

The rules for differentiation are explicitly recursive, so it is easy to use LISP to compute
the symbolic derivative of a real-valued function of real-number arguments. The biggest
difficulty is the problem of input and output notation. If we agree to accept the LISP prefix
notation for algebraic expressions, so that we enter 1 + sin(x + y)/x as (PLUS 1 (QUOTIENT
(APPLY SIN ((PLUS x y))) x)) for example, then the task of differentiation is truly simple.
But if we instead demand that the input and output be in traditional infix form, the job
becomes more complicated.

We shall present a collection of LISP functions and special forms that provide the
ability to define, differentiate, and print out elementary real-valued functions of real
arguments. These LISP functions and special forms include FSET, DIFF, and FPRINT.

We will use the special form FSET to define a real-valued function of real arguments by
typing (FSET G (X Y...) (f)), where G is an ordinary atom, (X Y...) is a list of ordinary
atoms denoting the formal arguments of the function G being defined, and f is an infix form,
which is the body that defines G. For example, (FSET G1 (X Y) (X + Y * EXP(X))) defines
the function G1(X , Y) = X + Y * EXP(X) in proper LISP prefix form as established by
using SETQ with the appropriate λ-expression. The idea of FSET is to construct and execute
the LISP S-expression, which defines the function expressed in the input to FSET; for
example, (FSET G1 (X Y) (X + Y * EXP(X))) constructs (SETQ G1 (LAMBDA (X Y) (PLUS
X (TIMES Y (APPLY EXP (X)))))), which is then executed (i.e., evaluated).

Note that an infix form here is a kind of pun; it denotes the intended algebraic
expression and it also is a particular LISP S-expression. The only caveat is that blanks must
delimit operators in infix forms to ensure that they will be interpreted as atoms within the
S-expression. We use the FORTRAN notation ∗ for multiplication and ∗∗ for exponentiation.

Such a function can be differentiated with respect to a variable, which may be either
a free variable or a formal argument. The derivative is itself a function that has the same
formal arguments. The derivative of such an FSET-defined function G with respect to X is
denoted G#X. The LISP function DIFF will be defined to compute the derivative of such a
real-valued function, G, with respect to a specified symbol X, and store the resulting function
as the value of the created atom G#X. This is done for a function G by typing (DIFF G X).

In order to construct atoms with names like G#X, which depend upon the names
of other atoms, we will use the built-in LISP function MKATOM, which makes atoms
whose names are composed from the names of other atoms. MKATOM is defined such
that v[(MKATOM x y)] equals the ordinary atom whose name is the string formed by
concatenating the names of the ordinary atoms v[x] and v[y].

Chapter 25 ■ SymboliC Differentiation

94

Functions defined by FSET or by DIFF may be printed out for examination by using
the LISP function FPRINT, as defined below.

A function H defined by FSET or DIFF may be evaluated at the point (x1, x2, ...),
where x1, x2, ... are numbers, by using APPLY. Thus, typing (APPLY H (x1 x2 ...)) causes the
number H(x1, x2, ...) to be printed out. Of course, all the subsidiary functions called in H
must be defined as well.

The differentiation rules used by DIFF are as follows. The symbol D denotes
differentiation with respect to a specific understood ordinary atom variable name x,
called the symbol of D, as shown in the following:

D(A + B) = D(A) + D(B)
D(A − B) = D(A) − D(B)
D(−A) = −D(A)
D(A ∗ B) = A ∗ D(B) + B ∗ D(A)
D(A/B) = D(A)/B + A ∗ D(B ∗ ∗(−1))
D(A ∗ ∗B) = B ∗ A ∗ ∗(B − 1) ∗ D(A) + LOG(A) ∗ A ∗ ∗B ∗ D(B) (∗∗ denotes exponentiation)
D(LOG(A)) = D(A)/A

If F(X Y ...) has been defined via FSET, then we use the chain rule:

D(F(A B ...)) = F#X(A B ...) ∗ D(A) + F#Y(A B ...) ∗ D(B) +

If A is an ordinary atom variable then D(A) = 1 if A is the symbol of D, and D(A) = 0
otherwise.

If A is a number, then D(A) = 0.
The infix forms used to define functions with FSET are translated into corresponding

S-expressions, which will be called E-expressions in order to distinguish them in
discourse. E-expressions are made up of evaluatable prefix S-expressions involving
numbers and ordinary atoms and other E-expressions.

The basic LISP functional forms used in E-expressions are:

(MINUS a)

(PLUS a b)

(DIFFERENCE a b)

(TIMES a b)

(QUOTIENT a b), (POWER a b), where a and b are E-expressions

(APPLY h (x1 x2 ...)), where x1, x2, ... are E-expressions, and h is
an FSET-defined or DIFF-defined function.

Chapter 25 ■ SymboliC Differentiation

95

The definitions of FSET, DIFF, and FPRINT follow.

•	 FSET: special form

v[(FSET G (X Y ...) (e))] = v[G] where G is an ordinary atom
whose name does not begin with $, and (X Y ...) is a list of
atoms that are the formal arguments to the function G being
defined. e is an infix functional form that is used to define G(X,
Y, ...). As mentioned above, (FSET G (X Y ...) (e)) defines
G to be a function of the arguments X Y ... whose body is
given by the infix expression (e). The list (e) will be parsed and
converted into a proper λ-expression used to define the value
of the atom G.

FSET is defined by:

(SETQ FSET (SPECIAL ($G $L $Q)
 (SET $G (EVAL (LIST 'LAMBDA $L (ELIST $Q))))))

The function SET has been defined above. Here we redefine SET by:

(SETQ SET (LAMBDA ($X $Y)
 (EVAL (CONS 'SETQ (CONS $X (CONS '$Y NIL))))))

Exercise 25.1: Why are such strange formal argument names
used to define FSET and SET? Hint: think about using SETQ
to assign values to ordinary atoms, which are active formal
arguments. In particular, suppose the $-signs were dropped, and
we executed (FSET Y (X) X)?

Exercise 25.2: Can you think of a way to allow the user to
write (FSET Y (X) = e)? Note the third argument here is =.

ELIST constructs the E-expression corresponding to its argument by using the Bauer-
Samelson-Ershov postfix Polish translation algorithm [SB60, Ers59]. ELIST is also used to
process the argument of a unary minus operation.

Exercise 25.3: Use a library or, if you must, a web search to
find out about Jan Łukasiewicz and about Polish notation.

(SETQ ELIST (LAMBDA (L)
 (COND ((ATOM L) L)
 ((EQ (CDR L) NIL) (ELIST (CAR L)))
 (T (EP NIL NIL (DLIST L))))))

Chapter 25 ■ SymboliC Differentiation

96

(SETQ DLIST (LAMBDA (L)
 (COND ((ATOM L) L)
 ((NULL (CDR L)) (DLIST (CAR L)))
 (T L))))

(EP OP P L) is the result of completing the Polish translation of L using the stacks
OP and P.

(SETQ EP (LAMBDA (OP P L)
 (COND ((NULL L) (COND ((NULL OP) (DLIST P))
 (T (BUILD OP P L))))
 (T (POLISH OP P (CAR L) (CDR L))))))

(SETQ CADR (LAMBDA (L) (CAR (CDR L))))

(BUILD OP P L) puts the phrase ((CAR OP) P2 P1) on the P stack in place of P1 and P2,
and goes back to EP to continue the translation.

(SETQ BUILD (LAMBDA (OP P L)
 (EP (CDR OP) (CONS (LIST (NAME (CAR OP))
 (CADR P)
 (CAR P))
 (CDR (CDR P))) L)))

In (POLISH OP P B L), B is the current input symbol, and L is the remaining infix
input. Either B is to be pushed on OP or else B is used to make a phrase reduction, and a
corresponding entry is placed on the P stack.

(SETQ POLISH (LAMBDA (OP P B L)
 (COND ((EQ B '-)
 (H (LIST 'MINUS (ELIST (CAR L))) (CDR L)))
 ((NOT (ATOM B)) (H (ELIST B) L))
 ((NOT (MEMBER B '(+ : * / **)))
 (COND ((OR (NULL L) (ATOM (CAR L))) (H B L))
 (T (H (LIST 'APPLY B (INTO ELIST (CAR L)))
 (CDR L)))))
 ((OR (NULL OP) (CKLESS (CAR OP) B))
 (POLISH (CONS B OP) P (CAR L) (CDR L)))
 (T (BUILD OP P (CONS B L))))))

(H V L) pushes V onto the P stack and goes back to EP. It also changes a binary minus
sign at the front of L to the unambiguous internal code : .

(SETQ H (LAMBDA (V L)
 (EP OP (CONS (COND ((AND (NOT (ATOM V))
 (NULL (CDR V))) (CAR V))
 (T V))
 P)

Chapter 25 ■ SymboliC Differentiation

97

 (COND ((AND (NOT (NULL L))
 (EQ '- (CAR L))) (CONS ': (CDR L)))
 (T L)))))

(SETQ CKLESS (LAMBDA (A B)
 (COND ((EQ '** A) NIL)
 ((OR (EQ '* A) (EQ '/ A))
 (COND ((EQ '** B) T)
 (T NIL)))
 ((OR (EQ '+ B) (EQ ': B)) NIL)
 (T T))))

(SETQ NAME (LAMBDA (A)
 (ASSO A '((** . POWER) (* . TIMES) (/ . QUOTIENT)
 (: . DIFFERENCE) (+ . PLUS)))))

(SETQ ASSO (LAMBDA (A L)
 (COND ((NULL L) L)
 ((EQ A (CAR (CAR L))) (CDR (CAR L)))
 (T (ASSO A (CDR L))))))

•	 FPRINT: special form

	 v[(FPRINT G)] = NIL, and the E-expression value of the function-
valued atom G is printed out in infix form.

	 FPRINT is defined by:

(SETQ FPRINT (SPECIAL ($G)
 (DO (PRINT $G (CAR (BODY (EVAL $G)))
 '= (HP (CDR (BODY (EVAL $G)))))
 (PRINTCR))))

(SETQ HP (LAMBDA (G)
 (COND ((ATOM G) G)
 ((NULL (CDR G)) (HP (CAR G)))
 ((EQ (CAR G) 'MINUS) (LIST '- (HP (CADR G))))
 ((EQ (CAR G) 'APPLY) (LIST (CADR G)
 (INTO HP (CADR

(CDR G)))))
 (T (LIST (HP (CADR G)) (OPSYMBOL (CAR G))
 (HP (CADR (CDR G))))))))

(SETQ OPSYMBOL (LAMBDA (X)
 (ASSO X '((POWER . **) (TIMES . *) (QUOTIENT . /)
 (DIFFERENCE . -) (PLUS . +)))))

•	 DIFF: special form

	 v[(DIFF G X)] = v[G#X], after the function G#X is defined as a side-
effect, where G is a known function and X is an ordinary atom.

Chapter 25 ■ SymboliC Differentiation

98

	 DIFF is defined by:

(SETQ DIFF (SPECIAL ($G X)
 (SET (MKATOM $G (MKATOM '# X))
 (EVAL (LIST 'LAMBDA (CAR (BODY (EVAL $G)))
 (DI (CDR (BODY (EVAL $G))) X))))))

(DI G X) is the E-expression form derivative of the E-expression G with respect to the
atom X.

(SETQ DI (LAMBDA (E X)
 (COND ((ATOM E) (COND ((EQ E X) 1) (T 0)))
 ((NULL (CDR E)) (DI (CAR E) X))
 (T (DF (CAR E) (CDR E) X)))))

(SETQ DF (LAMBDA (OP L X)
 (COND ((EQ OP 'MINUS) (LIST OP (DI (CAR L) X)))
 ((EQ OP 'PLUS) (LIST OP (DI (CAR L) X)
 (DI (CADR L) X)))
 ((EQ OP 'DIFFERENCE) (LIST OP (DI (CAR L) X)
 (DI (CADR L) X)))
 ((EQ OP 'TIMES) (LIST 'PLUS
 (LIST OP (DI (CAR L) X) (CADR L))
 (LIST OP (CAR L)
 (DI (CADR L) X))))
 ((EQ OP 'QUOTIENT) (LIST 'PLUS
 (LIST OP (DI (CAR L) X)
 (CADR L))
 (LIST 'TIMES (CAR L)
 (DI (LIST 'POWER
 (CADR L) -1)
 X))))
 ((EQ OP 'POWER) (LIST 'PLUS
 (LIST 'TIMES (CADR L)
 (LIST 'TIMES
 (DI (CAR L) X)
 (LIST 'POWER (CAR L)
 (LIST 'DIFFERENCE
 (CADR L)

1))))
 (LIST 'TIMES
 (LIST 'APPLY 'LOG
 (LIST (CAR L)))
 (LIST 'TIMES
 (DI (CADR L) X)
 (LIST 'POWER
 (CAR L)
 (CADR L))))))
 ((EQ OP 'APPLY)
 (COND ((EQ (CAR L) 'LOG)
 (LIST 'QUOTIENT (DI (CADR L) X) (CADR L)))

Chapter 25 ■ SymboliC Differentiation

99

 (T (CHAIN (CAR L) (CAR (BODY (EVAL (CAR L))))
 (CADR L) (CADR L) X)))))))

(SETQ CHAIN (LAMBDA (F A B R X)
 (COND ((NULL (CDR A)) (TERM F A B R X))
 (T (LIST 'PLUS (TERM F A B R X)
 (CHAIN F (CDR A) B (CDR B) X))))))

(SETQ TERM (LAMBDA (F A B R X)
 (LIST 'TIMES (DI (CAR R) X)
 (LIST 'APPLY (MKATOM F (MKATOM '# (CAR A))) B))))

Exercise 25.4: Would it be okay to define TERM as

(LAMBDA (A R) (LIST 'TIMES (DI (CAR R) X)
 (LIST 'APPLY (MKATOM F (MKATOM '# (CAR A))) B))),

and appropriately modify the associated calls?

Exercise 25.5: Is it necessary to use APPLY to compute
functions at particular points? Is it necessary to use APPLY
embedded in the bodies of functions created by FSET and DIFF
at all?

Solution 25.5: The functions built by FSET and DIFF are full-
fledged LISP functions. The use of APPLY could be dispensed
with, except that we then need to provide the function LOG,
which is used in DIFF. Also, this would avoid the need to
watch for the formal argument names used in the special form
APPLY in order to avoid the special form functional binding
problem. Using APPLY is convenient, however, since we then
do not have to distinguish user function names from operator
names such as PLUS and TIMES.

Exercise 25.6: The function DF allows products with 1 and
sums and differences with 0 to be created. Write a modified
version of DF that uses some auxiliary functions to simplify
the E-expressions being formed so as to avoid such needless
operations.

Exercise 25.7: Introduce the elementary functions EXP, SIN,
and COS and implement the explicit differentiation rules that
apply to them.

101© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_26

CHAPTER 26

Game Playing

In this chapter we will discuss writing a LISP program to play a zero-sum, perfect-
information game. A perfect-information game is a game such as chess where the entire
state of the game (i.e., the current position and its history) is known to all players. Poker is
not a perfect-information game. A zero-sum game is just a game where if the game were
played for money, then the sum of the winnings and losses is necessarily zero. Poker is a
zero-sum game.

A fair game is a game where, for perfect players, the expected return to each player
in points or money is 0. No one knows whether or not chess is a fair game. We need not
assume that we are playing a fair game.

We shall also assume that:

 1. The game we wish to program is played by two players making
alternate moves.

 2. Each position p is either terminal, in which case it represents
a win, loss, or tie for each player as defined by the rules of the
game; or, non-terminal, in which case it has a finite, non-zero
number of successor positions, among which the player who
is to move from position p must select.

 3. Every game must eventually reach a terminal position.

These hypotheses are satisfied by many games, although in chess, the rules are
such that the position must be considered to include not only the current locations of
the pieces and the specification of which player is to move, but also the past history of
the game. This is required in the rules for castling, capturing en passant, and draw by
repetition.

By tradition, one player is called box, and a position from which box is to move is
denoted by a box symbol: □. Such a position is called a □ position. The other player is
called circle, and a position from which circle is to move is denoted by a circle symbol: ○.
Such a position is called a ○ position.

Terminal positions will be assigned values so that the value of a □ or ○ terminal
position is 1 if the player box has won in that position and −1 if the player circle has won in
that position. If tie terminal positions exist, we assign them the value 0. This means that
box plays to maximize the value of the final terminal position, and circle plays to minimize

Chapter 26 ■ Game playinG

102

the terminal position to be achieved; box is called the maximizing player, and circle is
called the minimizing player. Thus if we are playing chess and the maximizing player box
is white, then a terminal position where white is checkmated is a □ position and has the
value −1, while a terminal position where black is checkmated is a ○ position and has the value
1. If Nim is being played, where the player who takes the last stone and leaves an empty
position consisting of an empty arrangement loses, then the empty position with box to
move is a □ terminal position, since there are no moves possible, and its value is 1, since
circle lost by allowing this position to be reached. The empty position with circle to move is
a ○ terminal position with the value −1.

Because of the assumption that the game is a zero-sum game, we see that we are
assigning values to terminal positions entirely from box’s point of view. Thus if the value
of a terminal position is 1, then its value to box is 1, and hence by the zero-sum property,
its value to circle is −1. If, on the other hand, the value of a terminal position is −1, its value
to box is −1 and hence its value to circle is 1. This form of assigning values to positions so
that positions with positive values are good for box and bad for circle, while positions with
negative values are good for circle and bad for box, is known as asymmetric valuation.

We would like to assign the values −1, 0, or 1 to all positions that may arise, not just
terminal positions; and moreover we would like to assign them consistently in such a way
that the value of a position is the value of that position to box, so that we continue to use
asymmetric valuation. We would achieve this objective as follows.

Let b represent a □ position or a ○ position of the game, and let n(b) be the number
of immediate successor positions, which may be achieved by moving from b. Let a

1
, ... ,

a
n(b)

 be the n(b) successor positions in some particular order. If b is a terminal position,
n(b) = 0. Finally, when b is a terminal position, let u(b) be the value of b.

Now let’s define the value of a position b, not necessarily terminal, as w(b), where
w(b) is defined recursively as:

w b

u b n b

w a b
i n b

i

i

() =
() () =

()
≤ ≤ ()

≤ ≤

:

,

max

min

if

if is a position,

0

1

1

nn b
iw a

()
()

 otherwise.

Hypotheses (1), (2), and (3) listed above ensure that w is well defined.
Note the asymmetry in the definition of w. Note also that the use of w to compute the

value of a position b requires that all possible successor positions be valuated first and
so on recursively. Thus we must generate the full game tree with root b whose leaf nodes
are terminal positions that are valued by means of u. Then for each node whose sons all
have values, we can back up the minimum or the maximum of these values as may be
appropriate to the father node. By iteratively backing up, we may eventually compute the
value of b. This process is known as minimaxing.

Von Neumann and Morgenstern [NM44] introduced the notion of minimaxing
in a game tree in their treatise on game theory. Their purpose was to show that even
for multistage games with alternative choices at each stage, any line of play could be
considered to be the result of fixed strategies, that is, predetermined plans that could be
adopted at the outset of a game by each player and followed mechanically thereafter.
Such plans are multistage contingency plans.

Chapter 26 ■ Game playinG

103

Thus every possible sequence of moves as represented by a path in the game tree is
the joint result of the two strategies defined by that path.

Von Neumann and Morgenstern’s argument was a short inductive statement. They
observed that games of 0 moves whose initial position is terminal have an obvious strategy,
the null strategy. They then pointed out that the first step of the strategy for a game of n moves
is just to make that move that yields the highest value for the resulting game of n − 1 moves (as
established by the use of the known optimal strategy that exists by the induction hypothesis).

They also proved that the value of a position always exists, and that minimaxing is
the explicit method of computing it.

The basic principle of dynamic programming as formulated by Richard Bellman
[Bel57] is another statement of the idea underlying minimaxing. (Here “programming”
means planning or decision-making, not really programming.) Given a multistage
decision process to be undertaken where one wishes to know a sequence of decisions
that optimizes some desired quantity such as profit, the principle of dynamic
programming is: select that decision that results in the state such that the subsequent
use of an optimal policy from that state yields the fully optimal result. Thus to implement
dynamic programming, we back up scores in the tree of decisions to find that sequence
of decisions that optimizes the initial state. Often there are mathematical short-cut
approaches to solving dynamic programming problems as opposed to brute force back
up, but the objective is always to discover the optimizing path in the tree of decisions.

It is a remarkable fact that in a terminating two player perfect-information game
where ties are not allowed, there must be a forced win for either the first or second
player. That is: there exists a strategy for one player that guarantees that player will win,
regardless of the opponent’s actions. The proof of this fact is based on the valuation
function scheme given above. The value w(b) is 1 if and only if box has a forced win and
−1 if and only if circle has a forced win, where b is the initial □ or ○ position.

We are interested not only in computing the maximum value to box of a position b,
but also in discovering the particular move from position b, which eventually results in a
terminal position from which that value is inherited.

The LISP function PICK takes a game position as an argument and computes the
value of that position to box and the corresponding best successor position for the player
to move as the two elements of the output dotted-pair. If there is no successor position to
be recommended, then NIL is returned as the second element.

To use LISP, we must encode game positions as S-expressions. Such a game position
S-expression includes, among other things, whether the position is a □ or a ○ position.

(PICK B) returns a dotted-pair (x . m) where m is an optimal successor position for
box of position B, and x is its score to box, where x and m are computed by minimaxing.

(SETQ PICK (LAMBDA (B)
 (COND ((DEEPENOUGH B) (CONS (U B) NIL))
 (T (OPT (GENMOVES B)
 (COND ((BOXPOS B) GREATERP)
 (T LESSP)))))))

(DEEPENOUGH B) returns T if v[B] is a terminal position and NIL otherwise.
(BOXPOS B) returns T if v[B] is a □ position and NIL if v[B] is a ○ position.
(U B) returns the value −1, 0, or 1, which indicates the value to box of the terminal

position v[B].

Chapter 26 ■ Game playinG

104

(GENMOVES B) returns a list of all the successor positions of v[B].
(W B) returns the minimaxed value to box of the position v[B].

(SETQ W (LAMBDA (M) (CAR (PICK M))))

(OPT L P) returns a dotted-pair (x . m) where x is a greatest score value among the
scores of the positions in the list v[L] if P = GREATERP, and x is a least score value among the
scores of the positions in the list v[L] if P = LESSP. In either case, m is a position that is an
element of the list v[L] whose score is x.

(SETQ OPT (LAMBDA (L P)
 (COND ((EQ (CDR L) NIL) (CONS (W (CAR L)) (CAR L)))
 (T (MB (CAR L) (W (CAR L)) (OPT (CDR L) P))))))

(SETQ MB (LAMBDA (A S Q)
 (COND ((P S (CAR Q)) (CONS S A))
 (T Q))))

Exercise 26.1: Why isn’t P an argument of MB? Hint: recall the
discussion of skip-binding.

Now we have spelled out the machinery needed to program a great many games;
namely, the functions PICK, W, OPT, and MB. The function PICK is the game-independent
minimaxing program. The remaining required functions DEEPENOUGH, GENMOVES, U, and BOXPOS
depend upon the game to be programmed and must be especially written for each game.

A major problem in using LISP to minimax a game tree is the requirement that an
S-expression representation of game positions be devised and used. Such representations
are generally large and complex and require complex functions to generate and valuate
them. Often machine language or C permits a more compact and simple data structure
to be used. (Consider, for example, defining a representation of a chess board, or even a
checker board, “state”.)

Another more fundamental problem is that simple minimaxing is too slow for all
but small game trees. This forces us to abandon searching most game trees completely.
Instead we shall search to a certain depth, and then estimate the values of the positions
at which we stop. These estimates will then be backed up according to the minimaxing
process. The estimated values will not be only −1, 0, and 1, but may be any real number in
[−1, 1] that serves as a score value of a position for box.

In order to evaluate a position when we cannot search ahead to terminal positions,
we can introduce a valuation function s that can compute an estimate of the score of any
position, including non-terminal positions. By convention, this score lies in [−1, 1] and is
always interpreted as being from the point of view of box. The function s is often called a
static valuation function to emphasize its use in valuating a position without minimaxing.

The quality of the static valuation function can be critical, since valuation errors can
occasionally be magnified rather than damped by minimaxing. Generally, a valuation
function is defined as a real-valued function based on a collection of measurements or
feature values that describe the position in question. Often a weighted linear combination
of feature values is used. A more elaborate function that may take into account various

Chapter 26 ■ Game playinG

105

dependencies between features can also be devised. Features can be concrete, such as
“the relative piece advantage,” or abstract, such as “center control.” Abstract features must
finally be defined in terms of concrete features. The selection of features is often difficult.
The problem of having a program automatically discover (with intent) good features that
“span” the description of a position is completely unsolved, although much interest in
this and other related issues exists. (We say “with intent,” because statistical methods like
neural nets may provide a result that works, but is inexplicable in terms of discovered
features.) Machine learning, as pioneered by Arthur Samuel, has generally meant
adaptively modifying coefficients in the evaluation function so as to change its value to
better describe positions that are known to be good or bad by other means. A program
that truly learns a game, however, must learn features as well as coefficients.

We shall now consider an improved form of the minimax procedure known as the
αβ algorithm. A complete exposition of the αβ algorithm is given by D.E. Knuth and R.W.
Moore [KnuMo75].

The αβ algorithm is based on the observation that if we have the situation

where α is the value of position 1.1 and β is the value of position 1.2.1 with β < α, and where
position 1 is a □ position, then the score of position 1.2 will be at most β, which cannot
compete with the value α to become the value of position 1, and hence we need not
compute the scores of the nodes 1.2.2 through 1.2.n. A similar observation holds when β >
α and node 1 is a ○ position. If these cut-off conditions are systematically tested for and
taken advantage of in an appropriate modification of PICK, we have the αβ algorithm.

Exercise 26.2: Explain why the value of position 1.2 will be at
most β.

LISP functions for the αβ algorithm are given below. Note that skip-binding is
extensively used. (Note: v denotes the LISP evaluation function as usual.)

(ABPICK B) returns a dotted-pair (x . m) where m is an optimal successor position for
box of position B, and x is its score to box, where x and m are computed with the αβ algorithm.

(SETQ ABPICK (LAMBDA (B)
 (HPICK B (COND ((BOXPOS B) -1.1) (T 1.1)
 (COND ((BOXPOS B) 1.1)
 (T -1.1))
 0))))

(BOXPOS B) returns T if v[B] is a □ position and NIL if v[B] is a ○ position.

www.allitebooks.com

http://www.allitebooks.org

Chapter 26 ■ Game playinG

106

(HPICK B α β N) returns an optimal score-move dotted-pair (x . m) where m is an
optimal successor position for box of position v[B]. Position v[B] is at depth v[N] in the
game tree being minimaxed. The arguments α and β are the □ and ○ αβ cutoff values
used to reduce the amount of work required.

(SETQ HPICK (LAMBDA (B ALPHA BETA N)
 (COND ((DEEPENOUGH B N) (CONS (SCORE B) NIL))
 (T (HOPT (GENMOVES B)
 (COND ((BOXPOS B) GREATERP) (T LESSP))
 BETA ALPHA (PLUS N 1))))))

(DEEPENOUGH B N) returns T if v[B] is a terminal position or is deemed to be deep
enough in the game tree. Otherwise NIL is returned. v[N] is the depth of the position v[B]
in the game tree.

(GENMOVES B) returns a list of all the successor positions of v[B].
(SCORE B) returns the estimated value to box of the position v[B]. It is the static

valuation function.
(HOPT G P α β N) returns an optimal score-move dotted-pair (x . m) where m is an

optimal successor position in the list v[G] of a superior position, which is a □ position if
v[P] = GREATERP and a ○ position if v[P] = LESSP. The list of successor positions v[G] is at
depth v[N] in the game tree being heuristically minimaxed. The arguments α and β are the
□ and ○αβ cutoff values used to reduce the amount of work required.

(SETQ HOPT (LAMBDA (G P ALPHA BETA N)
 (OJ (CDR G) (HPICK (CAR G) ALPHA BETA N))))

(SETQ OJ (LAMBDA (G W)
 (COND ((OR (P (CAR W) ALPHA) (NULL G)) W)
 (T (OPTC (HOPT G P ALPHA (CAR W) N))))))

(OPTC Z) returns a score-move dotted-pair (x . m), which is either the score-move
pair v[W] or v[Z], or is such that x is a score value of one of the positions in the list v[D]
and m is the corresponding successor position, which results in attaining that score. The
score value x is a greatest score value if v[P] = GREATERP and x is a least score value of the
positions in the list v[D] if v[P] = LESSP. In either case, m is a position that is an element of
the list v[L] whose score is x.

(SETQ OPTC (LAMBDA (Z) (COND ((P (CAR W) (CAR Z)) W) (T Z))))

The αβ algorithm may be elaborated in several ways to cope more effectively with
complex games. However, as this is done, it becomes more difficult to express effectively
in LISP.

The αβ algorithm normally declares a position to be “good” if it is possible to follow
a line of play from that position which results in a good position in the future. Because of
uncertainty about the quality of the static valuation function, it may be safer to consider
a position to be good if one can reach a number of good positions in the future. This may

Chapter 26 ■ Game playinG

107

be approximated by giving a position a bonus if many of its successors are deemed to be
bad for the opposing player. This device is discussed by Slagle and Dixon in [SlDi70]. Slagle
[Sl63] gave the rather complicated logic needed to adapt the αβ algorithm to handle this
notion. In order to avoid such complexity, one can compute the bonus for a position based
on the static scores of the successor positions as estimated by the static valuation function.
This is relatively easy to incorporate into the usual αβ algorithm.

It is also interesting to note that a move that leads to a position that has a poor score
according to the static valuation function but has a dramatically improved score as a backed-
up score from later resulting moves is a machine-discovered “trap” move. There may be some
advantage to occasionally following such moves, depending, of course, on the reliability of the
static valuation function. Active moves such as sacrifices are often trap moves.

Note that, generally, ABPICK will use less computation when we require that the list
of successor positions produced by the GENMOVES function be ordered in sequence from
best to worst positions with respect to the player to move. In this case, the very first move
will have the score that is to be eventually backed up. This yields the maximum number of
cutoffs in the course of considering such an ordered list of successor positions. Of course
in practice we can only roughly approximate a perfect ordering and, as Knuth and Moore
point out, a full ordering isn’t really very useful anyway.

The GENMOVES function may also selectively omit some of the worst successor
positions in order to avoid their consideration by the αβ algorithm. Such forward pruning
is not hazardless, but it is a virtual necessity in games such as chess in order to keep the
growth of the game tree manageable. If detectable, similar positions to those already
generated should be omitted. Similar positions may arise due to symmetry or other
special circumstances.

It is possible to use the αβ algorithm to search just a few levels in order to improve
the scores used for ordering. This preliminary exploration is a special case of a more
general idea called dynamic ordering, where we continually reorder successor position
lists as the values of the positions are refined based on more information. In this case
an entire game tree must be maintained whose subtrees can be rearranged as required.
Even in the fixed-ordering case, it might be convenient to maintain an entire tree so as to
reutilize the positions generated in the minimax searching. In fact, in a real game-playing
situation, it is possible to use the subtree selected out of the current game tree by the
opponent’s move as the beginning game tree for the program’s response. These elaborate
full-tree schemes, particularly dynamic ordering, are of questionable use. Much depends
upon the quality of the static valuation function being used.

Another difficult problem that requires a global consideration of the game tree is
that of avoiding equivalent sequences of successive positions whose inclusion merely
wastes time. Such equivalent sequences are often due to permutations of independent
moves that produce the same final position. The αβ algorithm will cut off some equivalent
sequences, but not those that must be followed to establish initial backed up values.

An observation of interest is that the HPICK and GENMOVES functions could be
reprogrammed in an appropriate language other than LISP to operate as coroutines,
rather than the latter being a subroutine of the former. (A coroutine is effectively a
“thread,” that is, a procedure running conceptually in parallel with the main program
with places within each coroutine where explicit coordinating communication [i.e.,
exchanging control between the two corountines] occurs.) In order to do this, we would
define genmoves (b) to yield successively, in a common location, the various moves that
produce the successors of b. Now when the next son of position b is needed in the course

Chapter 26 ■ Game playinG

108

of minimaxing the game tree, the genmoves coroutine is restarted to compute the next
move from where it left off within the current incarnation, or else a first move from b if no
previous moves have been computed. The genmoves coroutine will signal when no more
moves remain to be considered. Note that when a cut off occurs, we save the time and
space of generating all the remaining moves that do not need to be examined. Of course,
if genmoves secretly generates a complete list of moves, then this saving is illusory.

The question of when the αβ algorithm has probed deeply enough in the game tree
often depends upon the state of the game at the node we are at when the question is
asked. In particular, if that position can be seen to be difficult to valuate statically, then it
may pay to go deeper to resolve the difficulty. This is often the case when the position is
one in a sequence of exchanges such as jump situations in checkers or piece exchanges
in chess. Samuel calls such active positions pitch positions. The deepenough test may
be that the level at which a position being considered is greater than a certain minimum
and that the position in question is not a pitch position. The deepenough test may
also depend upon the estimated quality of the positions on the path we are following.
Moreover, time and space constraints should preferably be used in place of a simple
depth criterion.

The problem of determining the savings gained by using the αβ algorithm in place of
simple minimaxing reduces to counting the number of nodes in a game tree of d + 1 levels
that are visited during a typical αβ search. For simplicity, we shall assume that every node
has a constant branching factor f. Moreover we shall assume perfect ordering of successor
positions by their scores, so that the maximum number of αβ cut offs occur. Under these
assumptions, the number of positions processed is:

(f + 3)(1 − f)⌈d/2⌉/(1 − f) − (d + 1) + 2(1 − d mod 2)f ⌈d/2⌉.

Compared with the (1 − f)d+1/(1 − f) nodes visited with minimaxing, we can see that
using the αβ algorithm is roughly equivalent to reducing the branching factor of the game
tree from f to f 1/2.

Detailed arguments that lead to the formula above are given by J.R. Slagle and J.K.
Dixon [SlDi69]. A more realistic analysis is presented in [KnuMo75].

109© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_27

CHAPTER 27

The LISP Interpreter Program

The LISP interpreter presented below consists of three major subroutines: sread, seval,
and swrite. The sread procedure reads input text, decomposes it into atom names and
punctuation characters, enters all the new ordinary atoms and new number atoms that
are encountered into the atom table and the number table, respectively, and constructs
an S-expression representing the input. A typed-pointer to this S-expression is returned.
If the input S-expression is not an atom, a corresponding list structure will be created in
the list area. New ordinary atoms are entered in the atom table with the value: undefined.

The typed-pointer produced as output by sread is then passed as input to the seval
subroutine. The procedure seval is the procedure that implements the LISP function
EVAL. seval interpretively evaluates the S-expression pointed to by its input, calling itself
recursively to evaluate subexpressions. The final result is an S-expression that is constructed
in the list area if necessary, and a typed-pointer to this result S-expression is returned as
output. If the input S-expression is illegal, seval prints an error message and goes to the
point where sread is called to obtain more input. If the original input is evaluatable, the
typed-pointer output from seval is provided as input to the swrite procedure. The swrite
procedure assembles the names and punctuation characters needed to form a text string
representing the given S-expression and prints this string at the terminal.

The entire LISP interpreter is thus of the following form.

 1. Initialization steps
 2. i ← sread()
 3. j ← seval(i)
 4. swrite(j)
 5. goto step 2.

We will present the explicit data structures and procedures that comprise much of a
working LISP interpreter. It is common to present an interpreter function for LISP written in
LISP as was done in the original LISP 1.5 manual [MIT62]. However, except for its pedagogical
value, this is a sterile undertaking. In this book, the C programming language will be used.

It is important to note at this point that reading this program is the hardest thing
in this little book that you might undertake. It is assumed that you are fluent in C, or
will study independently to become so. And even then, there are, as in most substantial
programs, places where the motivation of various statements may be obscure.
Nevertheless, if you do read at least parts of this program, you will be rewarded by the

Chapter 27 ■ the LISp Interpreter program

110

minor, but cumulatively important, programming devices you encounter. (You may find
that reading this program in small doses, revisiting procedures several times, just as you
would if you were coding it, is a good approach.)

LISP in C
The following C program should run on any system where a C program can be compiled,
although some minor fiddling may be needed to get it compiled in a specific environment.
In particular, it runs on MS-DOS or within a DOS-window (command-line window) in
MS-Windows, and on Unix/Linux from the command-line (i.e., in a terminal window).

The ASCII text files lisp.c, linuxenv.h, Makefile, and lispinit that you need to construct
your own copy of this LISP Interpreter are downloadable from www.apress.com/lisp or
from www.civilized.com.

In the C program below we use “publication notation”; specifically, we write ≤ for
"<=" ≥ for ">=", ≠ for "!=", ≪ for "<<"; and in some comments, we write ¬ to denote the
assignment operation, and we write = for "==" which is written “EQ” in our C-code via a
macro-definition.

/* Filename: ~/lisp/lisp.c Revision Date: Sept. 3, 1999 */
/* == */
/* −−
 LISP INTERPRETER

 This progam is a GOVOL LISP interpreter. This interpreter consists of three major
functions: SREAD, SEVAL, and SWRITE. SREAD scans the input string for input
S-expressions (atoms and dotted pairs) and returns a corresponding typed-pointer. The
SEVAL function takes as input a typed-pointer p to an input S-expression and evaluates
it and returns a typed-pointer to its result. SWRITE takes as input the typed-pointer
returned from SEVAL and prints out the result.

 LISP input lines beginning with a "/" are comment lines. Indirect input text is taken from
a file Z to replace the directive of the form "@Z" in the input stream. SEVAL tracing can
be turned on by using the directive "!trace", and turned off with the directive "!notrace".

 −− */
/* == */

/*Defining 8-, 16-, 32-, and 64-bit integers is tricky in C. Usually the definitions int8 = char,
int16 = short int, and int32 = long int work for a compiler for C configured for a 32-bit CPU.
For newer compilers that compile C configured for a 64-bit CPU, it is generally okay to use
the defined types int16_t and int32_t given to us by typedefs in the header file types.h or in
stdint.h, which is what we do here. */
#define int16 int16_t
#define int32 in32_t

/* We declare a forward function for any function used before it is defined. */
#define forward

#include "linuxenv.h"

http://www.apress.com/lisp
http://www.civilized.com/

Chapter 27 ■ the LISp Interpreter program

111

/* The header file linuxenv.h declares strlen(), strcpy(), strcmp(), calloc(), fflush(), fopen(),
fclose(), fprintf(), sprintf(), fgetc(), labs(), floor(), and pow(). Also the type FILE is defined,
and the longjump register-save structure template: jmp buf is defined. The linuxenv.h include-
file includes the C header files that define these functions and data-object templates for a
Linux environment. In general, a similar environment header file will need to be constructed
by hand for each specific "platform" where this program is to be compiled and run. */

#define NULL 0L
#define EOF (-1)
#define EOS (0)

#define EQ ==
#define OR ||
#define AND &&
#define NOT !

#define n 1000 /* size of atom table and number table */
#define m 6000 /* size of list-area */
/* The values for n and m should be made much larger for a more-useful LISP interpreter.

Also note n and m are not variables, they are constants substituting the symbols n and m.
It is, of course, easy to change this, if you wish. */

jmp buf env; /* struct to hold environment for longjump */
char *sout; /* general output buffer pointer */

/* The atom table */
st ruct Atomtable {char name[16]; int32 L; int32 bl; int32 plist;} Atab[n];

/* The number table is used for storing floating point numbers. The field nlink is used for
linking number table nodes on the number table free space list. */

union Numbertable {double num; int16 nlink;} Ntab[n];

/* the number hash index table */
int16 nx[n];

/* the number table free space list head pointer */
int16 nf=-1;

/* the number table mark array is used in garbage collection to mark number-table entries
that are not to be returned to the free space list */

char nmark[n]; /* an array of 1-bit entries would suffice */

/* The list area */
struct Listarea {int32 car; int32 cdr;} *P;

/* the list area free space list head pointer */
int16 fp=-1;

Chapter 27 ■ the LISp Interpreter program

112

/* the put-back variable */
int32 pb=0;

/* The input string and related pointers */
char *g,*pg,*pge;

/* the input stream stack structure and head pointer */
st ruct Insave {struct Insave *link; char *pg, *pge; char g[202]; FILE *filep;};
struct Insave *topInsave;

/* the input prompt character */
char prompt;

/* seval depth count and trace switch */
int16 ct=0, tracesw=0;

/* Global ordinary atom typed-pointers */
int32 nilptr,tptr,currentin,eaL,quoteptr,sk,traceptr;

/* number of free list-nodes */
int32 numf;

/* define global macros */

#define A(j) P[j].car
#define B(j) P[j].cdr
#define AL(j) Atab[j].L
#define Abl(j) Atab[j].bl

#define type(f) (((f)≫28) & 0xf)
#define ptrv(f) (0x0fffffff & (f))
#define sexp(t) ((t) EQ 0 OR (t) EQ 8 OR (t) EQ 9)
#define fctform(t) ((t)>9)
#define builtin(t) ((t) EQ 10 OR (t) EQ 11)
#define userdefd(t) ((t) EQ 12 OR (t) EQ 13)
#define dottedpair(t) ((t) EQ 0)
#define fct(t) ((t) EQ 10 OR (t) EQ 12 OR (t) EQ 14)
#define unnamedfsf(t) ((t)>13)
#define namedfsf(t) ((t)>9 AND (t)<14)
#define tp(t,j) ((t) | (j))
#define ud(j) (0x10000000 | (j))
#define se(j) (0x00000000 | (j))
#define oa(j) (0x80000000 | (j))
#define nu(j) (0x90000000 | (j))
#define bf(j) (0xa0000000 | (j))
#define bs(j) (0xb0000000 | (j))
#define uf(j) (0xc0000000 | (j))
#define us(j) (0xd0000000 | (j))
#define tf(j) (0xe0000000 | (j))
#define ts(j) (0xf0000000 | (j))

Chapter 27 ■ the LISp Interpreter program

113

/* variables used in file operations */
FILE *filep;
FILE *logfilep;

/* forward references (Look-up the SAIL Programming language to see the genesis of
‘forward’). */
forward int32 seval(int32 i);
forward void initlisp(void);
forward int32 sread(void);
forward void swrite(int32 i);
forward int32 newloc(int32 x, int32 y);
forward int32 numatom (double r);
forward int32 ordatom (char *s);
forward void gc(void);
forward void gcmark(int32 p);
forward char getgchar(void);
forward char lookgchar(void);
forward void fillg(void);
forward int32 e(void);
forward void error(char *s);
forward int16 fgetline(char *s, int16 lim, FILE *stream);
forward void ourprint(char *s);

/* == */
void main(void)
/* −−
 This is the main read/eval/print loop.
 −− */
{initlisp();
 setjmp(env); /* calling error() returns to here by longjmp() */
 /* This is the main loop of the LISP interpreter. */
 for (;;) { ourprint("\n"); prompt='*'; swrite(seval(sread()));}
}

/* == */
void error(char *msg)
/* −−
 Type out the message in the string array msg and do a longjmp() to top level afterward to

where setjmp was called.
 −− */
{int32 i,t;

 /* discard all input S-expression and argument list stacks */
 Atab[currentin].L=nilptr; Atab[eaL].L=nilptr; Atab[sk].L=nilptr;
 /* reset all atoms to their top-level values */
 for (i=0; i<n; i++) if ((t=Atab[i].bl)≠nilptr)
 {while (t≠nilptr) t=B(t); Atab[i].L=A(t); Atab[i].bl=nilptr;}
 ct=0; ourprint("::"); ourprint(msg); ourprint("\n");
 longjmp(env,-1);
}

Chapter 27 ■ the LISp Interpreter program

114

/* == */
void ourprint(char *s)
/* char *s; message to be printed out and logged */
/* −−
 Print the string s in the log file and on the terminal.
 −− */
{printf("%s",s); fprintf(logfilep,"%s",s); fflush(logfilep);}

/* == */
void initlisp(void)
/* −−
 This procedure installs all built-in functions and special forms into the atom table. It also

initializes the number table and the list area.
 −− */
{int32 i;

static char *BI[] =
 {"CAR","CDR","CONS","LAMBDA","SPECIAL","SETQ","ATOM","NUMBERP","QUOTE",
 "LIST","DO","COND","PLUS","TIMES","DIFFERENCE","QUOTIENT","POWER",
 "FLOOR","MINUS","LESSP","GREATERP","EVAL","EQ","AND","OR","SUM","PRODUCT",
 "PUTPLIST","GETPLIST","READ","PRINT","PRINTCR","MKATOM","BODY","RPLACA",
 "RPLACD","TSETQ", "NULL", "SET"
 };

static char BItype[] =
 {10,10,10,11,11,11,10,10,11,10,
 10,11,10,10,10,10,10,10,10,10,
 10,10,10,11,11,10,10,10,10,10,
 10,10,10,10,10,10,11,10,11
 };

 /* number of built-ins in BI[~] and BItype[~] above */
#define NBI 39

 /* allocate a global character array for messages */
 sout=(char *)calloc(80,sizeof(char));

 /* allocate the input string */
 g=(char *)calloc(202,sizeof(char));

 /* allocate the list area */
 P=(struct Listarea *)calloc(m,sizeof(struct Listarea));

/* initialize atom table names and the number table */
 for (i=0; i<n; i++)
 {Atab[i].name[0]='\0'; nmark[i]=0; nx[i]=-1; Ntab[i].nlink=nf; nf=i;}

Chapter 27 ■ the LISp Interpreter program

115

 /* install typed-case numbers for builtin functions and and special forms into the
atom table */

 for (i=0; i<NBI; i++)
 {Atab[ptrv(ordatom(BI[i]))].L=tp((((int32)BItype[i])≪28),(i+1));}

 nilptr=ordatom("NIL"); Atab[ptrv(nilptr)].L=nilptr;
 tptr=ordatom("T"); Atab[ptrv(tptr)].L=tptr;
 quoteptr=ordatom("QUOTE");

/* Creating and using the list-valued atoms CURRENTIN, eaL, and sreadlist in the atom
table is a means to ensure that we protect the list-nodes in these lists during garbage
collection. This is one of a few “tricks” employed in this program. We make these atom
names lowercased to keep them private. */

 currentin=ptrv(ordatom("currentin")); Atab[currentin].L=nilptr;
 eaL=ptrv(ordatom("eaL")); Atab[eaL].L=nilptr;
 sk=ptrv(ordatom("sreadlist")); Atab[sk].L=nilptr;

#define cilp Atab[currentin].L
#define eaLp Atab[eaL].L
#define skp Atab[sk].L

 /** initialize the bindlist (bl) and plist fields */
 for (i=0; i<n; i++) Atab[i].bl=Atab[i].plist=nilptr;

 /* set up the list area free space list */
 for (i=1; i<m; i++) {B(i)=fp; fp=i;} numf=m-1;

 /* open the logfile */
 logfilep=fopen("lisp.log","w");
 ourprint("ENTERING THE GOVOL LISP INTERPRETER\n");

 /* establish the input buffer g and the input stream stack topInsave and prepare to read-in
predefined functions and special forms from the text file lispinit; these should include
APPEND, REVERSE, EQUAL, APPLY, MEMBER, INTO, ONTO, NOT, ASSOC, NPROP,
PUTPROP, GETPROP, and REMPROP. */

 topInsave=NULL;
 strcpy(g,"@lispinit ");
 pg=g; pge=g+strlen(g); /* initialize start & end pointers to the string g */
 filep=stdin;
}

Chapter 27 ■ the LISp Interpreter program

116

Exercise 27.1: Read ahead to learn how the loading of the
input buffer string g with the text @lispinit causes the LISP
functions in the file lispinit to be defined and write a definitive
comment about this initialization process for inclusion in the
code above.

/* == */
int32 sread(void)
/* −−
 This procedure scans an input string g using a lexical token scanning routine, e(), where

e() returns

 1 if the token is '('
 2 if the token is "' (single-quote)
 3 if the token is '.'
 4 if the token is ')'

 or a typed-pointer d to an atom or number stored in row ptrv(d) in the atom or number
tables. Due to the typecode (8 or 9) of d, d is a negative 32-bit integer. The token found by
e() is stripped from the front of g.

 sread constructs an S-expression corresponding to the scanned input string and returns a
typed-pointer to it as its result.

 There is occasion to "put back" open parentheses and single quote symbols onto g within
sread. This is done by loading the global putback variable, pb, which is interrogated and
reset as appropriate within E.

 −− */

{int32 j,k,t,c;

 if ((c=e())≤0) return(c);
 if (c EQ 1) if ((k=e()) EQ 4) return(nilptr); else pb=k;
 /* skp is defined as Atab[sk].L.*/
 skp=newloc(nilptr,skp); /* push a new node on the skp list. */
 A(skp)=j=k=newloc(nilptr,nilptr);

 /* we will return k, but we will fill node j first. */
 if (c EQ 1)
 {scan: A(j)=sread(); /* read the first element. */
 next: if ((c=e())≤2) {t=newloc(nilptr,nilptr); B(j)=t; j=t;
 if (c≤0) {A(j)=c; goto next;}
 pb=c; goto scan;
 }
 if (c≠4) {B(j)=sread(); if (e()≠4) error("syntax error");}
 skp=B(skp); /* pop the skp list. */ return(k);
 }

Chapter 27 ■ the LISp Interpreter program

117

 if (c EQ 2)
 {A(j)=quoteptr; B(j)=t=newloc(nilptr,nilptr); A(t)=sread();
 skp=B(skp); /* pop the skp list. */ return(k);
 }
 error("bad syntax");
}

Exercise 27.2: The sread procedure does not handle the NIL
macro (). Propose a modification that does handle ().

Solution 27.2: Just before “k ¬ newloc(nilptr, nilptr)” insert
“if c = 1 then if (k ¬ E()) = 4 then return(nilptr) else pb ¬ k”. Another
solution, which is adopted here, is to have the E-procedure
recognize () and return nilptr when () is seen.

/* == */
int32 e(void)
/* −−
 E is a lexical token scanning routine which scans the chars in the input stream to extract

the next token and returns

 1 if the token is '('
 2 if the token is "'
 3 if the token is '.'
 4 if the token is ')'

 or a negative typed-pointer to an entry in the atom table or the the number table.
 −− */
{double v,f,k,sign;
 int32 i,t,c;
 char nc[15], *np;
 struct Insave *tb;

#define OPENP '('
#define CLOSEP ')'
#define BLANK ' '
#define SINGLEQ "
#define DOT '.'
#define PLUS '+'
#define MINUS '-'
#define CHVAL(c) (c-'0')
#define DIGIT(c) ('0'≤(c) AND (c)≤'9')
#define TOUPPER(c) ((c) + 'A'-'a')
#define ISLOWER(c) ((c)≥'a' AND (c)≤'z')

 if (pb≠0) {t=pb; pb=0; return(t);}

start:while ((c=getgchar()) EQ BLANK); /* remove blanks */

Chapter 27 ■ the LISp Interpreter program

118

 if (c EQ OPENP)
 {while (lookgchar() EQ BLANK) getgchar(); /* remove blanks */
 if (lookgchar() EQ CLOSEP) {getgchar(); return(nilptr);} else return(1);
 }
 if (c EQ EOS)
 {if (topInsave EQ NULL) {fclose(logfilep); exit(0);}
 /* restore the previous input stream */
 fclose(filep);
 strcpy(g,topInsave→g); pg=topInsave→pg; pge=topInsave→pge;
 filep=topInsave→filep; topInsave=topInsave→link;
 if (prompt EQ '@') prompt='>';
 goto start;
 }
 if (c EQ SINGLEQ) return(2);
 if (c EQ CLOSEP) return(4);
 if (c EQ DOT)
 {if (DIGIT(lookgchar())) {sign=1.0; v=0.0; goto fraction;} return(3);}
 if (NOT (DIGIT(c) OR ((c EQ PLUS OR c EQ MINUS) AND
 (DIGIT(lookgchar()) OR lookgchar() EQ DOT))))
 {np=nc; *np++=c; /* put c in nc[0] */
 for (c=lookgchar();
 c≠BLANK AND c≠DOT AND c≠OPENP AND c≠CLOSEP;
 c=lookgchar())
 (np++)=getgchar(); / add a character */
 np=EOS; / nc is now a string */
 if (*nc EQ '@')
 {/* switch input streams */
 /* save the current input stream */
 tb=(struct Insave *)calloc(1,sizeof(struct Insave));
 tb→link=topInsave; topInsave=tb;
 strcpy(tb→g,g); tb→pg=pg; tb→pge=pge; tb→filep=filep;

 /* set up the new input stream */
 *g=EOS; pg=pge=g; prompt='@';
 filep=fopen(nc+1,"r"); /* skip over the @ */
 goto start;
 }
 /* convert the string nc to upper case */
 for (np=nc; *np≠EOS; np++)
 if (ISLOWER((int16)*np)) *np=(char)TOUPPER((int16)*np);
 return(ordatom(nc));
 }
if (c EQ MINUS) {v=0.0; sign=-1.0;} else {v=CHVAL(c); sign=1.0;}
while (DIGIT(lookgchar())) v=10.0*v+CHVAL(getgchar());
if (lookgchar() EQ DOT)
 {getgchar();
 if (DIGIT(lookgchar()))
 {fraction:
 k=1.0; f=0.0;
 do {k=10.*k;f=10.*f+CHVAL(getgchar());} while (DIGIT(lookgchar()));

Chapter 27 ■ the LISp Interpreter program

119

 v=v+f/k;
 }
 }
 return(numatom(sign*v));
}

Exercise 27.3: The procedure e does not handle LISP
input precisely as defined in this book. Describe the sins of
omission and commission occurring in e.

/* == */
char getgchar(void)
/* −−
 Get a character from g.
 −− */
{fillg(); return(*pg++);}

/* == */
char lookgchar(void)
/* −−
 Look at the next character in g, but do not advance.
 −− */
{fillg(); return(*pg);}

/* == */
void fillg(void)
/* −−
 Read a line into g[]. A line starting with a "/" is a comment line to be discarded.
 −− */
{while (pg≥pge)
 {sprompt: if (filep EQ stdin) {sprintf(sout,"%c",prompt); ourprint(sout);}
 if (fgetline(g,200,filep)<0) return;
 if (filep EQ stdin) {fprintf(logfilep,"%s\n",g); fflush(logfilep);}
 if (*g EQ '/') goto sprompt;
 pg=g; pge=g+strlen(g); *pge++=' '; *pge='\0'; prompt='>';
 }
}

/* == */
int16 fgetline(char *s, int16 lim, FILE *stream)
/* −−
 fgetline() gets a line (CRLF or just LF delimited) from stream and puts it into the string

array (i.e., the buffer) s (up to lim chars). The function returns the length of this string.
If there are no characters but just EOF, it returns -1 (EOF) as the length. There is no
deblanking except to drop any CRs, and if present, the LF (\n). TABs are mapped to
blanks.

Chapter 27 ■ the LISp Interpreter program

120

 Note when the file being read is stdin, an EOF will never be encountered, instead fgetc
will wait until a complete line is typed, and then return the next character of that line
until all the characters of that line have been consumed, whereupon fgetc blocks again,
waiting for the next line.

 −− */
{int16 c,i;
#define TAB 9
 for (i=0; i<lim AND (c=fgetc(stream))≠EOF AND c≠'\n'; ++i)
 {if (c EQ TAB) c=BLANK; s[i]=c;}
 s[i]='\0';
 if (c EQ EOF AND i EQ 0) return(-1); else return(i);
}

Exercise 27.4: The C function fgetc returns -1 (EOF) when it
is called at the end of file. If fgetc is called again, it returns -1
again! We depend on this behavior here when an “indirect”
file (such as the initialization file lispinit) is being read.
Explain why this is.

Exercise 27.5: Note the function fillg loads the string g with
a new input line. An additional blank character is added at
the end of each line, except in certain circumstances having
to do with reaching the end of file of an indirect file. Explain
what the circumstances are where an additional final blank is
not provided, and explain why generally, such a final blank is
provided. Hint: think what might happen if such a blank were
not interposed.

Exercise 27.6: This program assumes a stream of plain ASCII
text is being provided as input, both from the keyboard and
from any indirect file, however, this is not enforced. Should it
be? And how can such enforcement be programmed?

/* −−−
 Now the routines numatom and ordatom are presented. The procedure gc which is called

within numatom is the garbage-collector routine; garbage collection is an elegant concept
that was popularized, if not introduced, by the first LISP interpreter. Understanding the
somewhat subtle garbage-collection routines given below is central to understanding this
LISP Interpreter program.

 There are a number of subtle devices throughout the code given here, however, most of these
are small, limited in scope, and fairly transparent with a little scrutiny. An exception is the
use of a hash table storage and retrieval algorithm for maintaining the atom table and the
number table. The basic idea is described next.

Chapter 27 ■ the LISp Interpreter program

121

 Suppose we are given a set of named items a
1
, a

2
, . . ., a

m
, that is, ordinary atoms, to be

stored, and subsequently retrieved whenever desired. Each item has a unique name,
which we may take to be a string of characters, and also a value, for example, some
integer value. Thus each item is a name,value pair.

 Let's establish an n-element table T [0 : n − 1] with n ≥ m. Each table entry is a structure
with two components: name and value, and we write T

i
.name to specify the name field

in T
i
 and T

i
.value to specify the value field in T

i
. Further, we assume there is a code, for

example, the null character 0, which does not appear as an item name and which can be
used to indicate an empty T -element, for example, if T,.name = 0 then T

i
 is unoccupied.

We begin with T
i
.name initialized to 0 for 0 ≤ i ≤ n.

 Now to store an item a, we compute an "address" j ∈ {0, 1, . . . , n − 1} where j depends on
the string a.name. This address computation is called hashing, and the value j is called the
hash value of the string a.name. (We expect the hash values of the items a

1
, a

2
, . . ., a

m
 to be

well spread in the range of addresses 0, 1, 2, . . ., n − 1; this is what makes hashing efficient. If
the T-table entry T

j
 is unoccupied, then we store a in T

j
, that is, we store a.name in Tj.name

and we store a.value in T
j
.value. If the T-table entry T

j
 is occupied, we have a collision; in this

case, we add one to j modulo n, that is, we set j to (j + 1) mod n, and go back to check if this
adjacent T-table entry T

j
 is unoccupied, and if so, we store a in T

j
. If we search the entire table

in this manner then T is full and the item a cannot be stored. Otherwise we will store the
item a in the first unoccupied entry encountered. This storage procedure is given below.

 store(a) :

 1. j ← h(a.name). { Compute the hash function h on a.name. }
 2. f ← j. { Remember the starting hash address in f . }
 3. If (T

j
 is unoccupied) then (T

j
 ← a; return(1)).

 4. j ← (j + 1) mod n.
 5. If (j = f) then return(0). { '0' means T is full. }
 6. Goto step 3.

 To retrieve the item with the name α, we just follow the same sequence of probes in T
until either we find a T-entry i with T

i
.name = α, or we find an unoccupied T-entry. In

the former case, we have found the sought-for item; in the latter case, the sought-for item
is not present. (We also have to account for the possiblilty that the entire table is full,
although for efficiency we don’t want to load the table more than about 90 percent full.)
The retrieval procedure is:

 retrieve(α):

 1. i ← h(a.name).
 2. f ← i. { Remember the starting hash address in f . }
 3. If (T

i
 is unoccupied) then return(−1)). { ‘-1’ means “not found”. }

 4. If (T
i
.name = α) then return(i)). { i is the index such that T

i
.name = α. }

 5. i ← (i + 1) mod n.
 6. If (j = f) then return(−1) else goto step 3.

Chapter 27 ■ the LISp Interpreter program

122

 This scheme of probing in a random location to start finding a place to store an item
or to start searching for an item, and just continuing the search at the next adjacent
position if necessary is called open-addressing collision resolution.

 Both the number table and the atom table are maintained as hash tables with open-
addressing collision resolution. The number table is composed of the nx array, the Ntab
array of (double num, int16 nlink) structures (where the double num field holds a
64-bit floating-point number), and the nmark array; it uses an indirect storage method
in order to allow for unneeded number entries to be garbage collected.

 −−− */

/* == */
int32 numatom(double r)
/* −−
 The number r is looked up in the number table and stored there as a lazy number atom if

it is not already present. The typed-pointer to this number atom is returned.
 −− */
{int32 j;
#define hashnum(r) ((*(1+(int32 *)(&r)) & 0x7fffffff) % n)
j=hashnum(r);
while (nx[j]≠-1)
 if (Ntab[nx[j]].num EQ r) {j=nx[j]; goto ret;} else if (++j EQ n) j=0;

 /* Here nx[j] = -1; get an Ntab node to store a new number in. */
 if (nf<0) {gc(); if (nf<0) error("The number table is full");}
 nx[j]=nf; j=nf; nf=Ntab[nf].nlink; Ntab[j].num=r;
ret: return(nu(j));
}

Exercise 27.7: The number table is really represented here by
the array nx. The entries in nx are either empty or are indices
to Ntab elements, which are initially threaded on a free-space
list. The 64-bit floating-point numbers are stored in the num
field of the N tab entries. The reason for this is because we
want to garbage collect the unneeded numbers in the number
table from time to time and reuse the associated space. Can
you find a way to reduce the space used for the number table
while preserving both storage and retrieval efficiency and the
ability for it to be garbage collected? Hint: can the num field
and the nlink field in the Ntab entries be overlaid?

/* == */
int32 ordatom (char *s)
/* −−
 The ordinary atom whose name is given as the argument string s is looked up in the

atom table and stored there as an atom with the value undefined if it is not already
present. The typed-pointer to this ordinary atom is then returned.

 −− */

Chapter 27 ■ the LISp Interpreter program

123

{int32 j,c;
#define hashname(s) (labs((s[0]≪16)+(s[(j=strlen(s))-1]≪8)+j) % n)

 j=hashname(s); c=j;
 while (Atab[j].name[0]≠EOS)
 {if (strcmp(Atab[j].name,s) EQ 0) goto ret;
 else if (++j EQ n) {j=0; if (j EQ c) error("atom table is full");}
 }

 strcpy(Atab[j].name,s); Atab[j].L=ud(j);
ret: return(oa(j));
}

Exercise 27.8: Introduce a means so that gc will be called
when the number table is about 90 percent full, rather than
allowing the last 10 percent to be used before gc is called. Is
there any point to doing this?

Exercise 27.9: If we were to abandon garbage collecting the
number table, could we use a simple direct open-addressing
hash table as we do with the atom table? Is there a 64-bit
pattern that is not a possible floating-point number that we
could use to indicate an empty location?

/* == */
void swrite(int32 j)
/* −−
 The S-expression pointed to by the typed-pointer j is printed out.
 −− */
{int32 i;
 int16 listsw;

 i=ptrv(j);
 switch (type(j))
 {case 0: /* check for a list */
 j=i;
 while (type(B(j)) EQ 0) j=B(j);
 listsw=(B(j) EQ nilptr);
 ourprint("(");
 while (listsw)
 { swrite(A(i)); if ((i=B(i)) EQ nilptr) goto close; else ourprint(" ");}
 swrite(A(i)); ourprint(" . "); swrite(B(i));
 close: ourprint(")");
 break;

 case 8: ourprint(Atab[i].name); break;
 case 9: sprintf(sout,"%-g",Ntab[i].num); ourprint(sout); break;
 case 10: sprintf(sout,"{builtin function: %s}",Atab[i].name);

Chapter 27 ■ the LISp Interpreter program

124

 ourprint(sout); break;
 case 11: sprintf(sout,"{builtin special form: %s}",Atab[i].name);
 ourprint(sout); break;
 case 12: sprintf(sout,"{user defined function: %s}",Atab[i].name);
 ourprint(sout); break;
 case 13: sprintf(sout,"{user defined special form: %s}",Atab[i].name);
 ourprint(sout); break;
 case 14: ourprint("{unnamed function}"); break;
 case 15: ourprint("{unnamed special form}"); break;
 }
}

/* == */
void traceprint(int32 v, int16 osw)
/* int32 v; the object to be printed
* int16 osw; 1 for seval() output, 0 for seval() input
*/
/* −−
 This function prints out the input and the result for each successive invocation of seval()

when tracing is requested.
 −− */
{if (tracesw>0)
 {if (osw EQ 1) sprintf(sout,"%d result:",ct--);
 else sprintf(sout,"%d seval:",++ct);
 ourprint(sout); swrite(v); ourprint("\n");
 }
}

/* == */
int32 seval(int32 p)
/* −−
 Evaluate the S-expression pointed to by the typed-pointer p; construct the result value as

necessary; return a typed-pointer to the result.
 −− */

{int32 ty,t,v,f,fa,na;
 int32 *endeaL;
 static int32 j;
 static double s;

Exercise 27.10: The local static variables j and s are essentially
global variables that can only be accessed within seval; new
instances of j and s are not established for each invocation
of seval, unlike the recursive variables ty, ty, t, v, f , fa, na,
and endeaL. Can any of the recursive variables in seval be
reclassified as static variables?

#define U1 A(p)
#define U2 A(B(p))

Chapter 27 ■ the LISp Interpreter program

125

#define E1 A(p)
#define E2 A(B(p))
#define Return(v) {traceprint(v,1); return(v);}

 traceprint(p,0);

Exercise 27.11: Explain the purpose of the function traceprint
and the associated global variables tracesw and ct.

if(type(p)6=0)
 {
 /* p does not point to a non-atomic S-expression.

 If p is a type-8 typed-pointer to an ordinary atom whose value is a built-in or user-defined
function or special form, then a typed-pointer to that atom-table entry with typecode 10,
11, 12, or 13, depending upon the value of the atom, is returned. Note that this permits us
to know the names of functions and special forms.

 If p is a type-8 typed-pointer to an ordinary atom whose value is not a built-in or user-
defined function or special form, and thus has the typecode 8, 9, 14, or 15, then a typed-
pointer corresponding to the value of this atom is returned.

 If p is a non-type-8 typed-pointer to a number atom or to a function or special form
(named or unnamed), then the same pointer p is returned. */

 if ((t=type(p))≠8) Return(p); j=ptrv(p);

/* The association list is implemented with shallow binding in the atom table,
so the current values of all atoms are found in the atom table. */

 if (Atab[j].name[0] EQ '!')
 { tracesw=(strcmp(Atab[j].name,"!TRACE") EQ 0)?1:0; longjmp(env,-1);}

 if ((t=type(Atab[j].L)) EQ 1)
 {sprintf(sout,"%s is undefined\n",Atab[j].name); error(sout);}

 if (namedfsf(t)) Return(tp(t*28,j));
 Return(Atab[j].L);
 } /* end of if (type(p)≠0) */

Exercise 27.12: What are the pros and cons of replacing
the statement return(L

j
) in the compound statement just

above with the statement: if L
j
 = p and bindlist

j
 ≠ nilptr then

return(A[bindlist
j
]) else return(L

j
)? Hint: think about evaluating

(F G) where F and G are defined by (SETQ F (SPECIAL (G)
((EVAL G) 1))) and (SETQ G (LAMBDA (F) (PLUS F F))).

Chapter 27 ■ the LISp Interpreter program

126

/* Save the list p consisting of the current function and the supplied arguments as the top
value of the currentin list of lists to protect it from garbage collection. The currentin list is
a list of lists. */

cilp=newloc(p,cilp);

/* compute the function or special form to be applied */
tracesw-- ; f=seval(A(p)); tracesw++; ty=type(f);
if (NOT fctform(ty)) error(" invalid function or special form");
f=ptrv(f); if (NOT unnamedfsf(ty)) f=ptrv(Atab[f].L);

/* now let go of the supplied input function */
A(cilp)=p=B(p);

/* If f is a function (not a special form), build a new list of its evaluated arguments and add
it to the eaL list of lists. Then let go of the list of supplied arguments, replacing it with the
new list of evaluated arguments. */

if (fct(ty))
 {/* compute the actual arguments */
 eaLp=newloc(nilptr,eaLp);
 /* evaluate the actual arguments and build a list by tail-cons-ing! */
 endeaL=&A(eaLp);
 while (p≠nilptr)
 {*endeaL=newloc(seval(A(p)),nilptr); endeaL=&B(*endeaL); p=B(p);}
 /* Set p to be the first node in the evaluated arguments list. */
 p=A(eaLp);

Exercise 27.13: Expand &B(*endeaL) and explain the
assignment statement endeaL = &B(*endeaL).

 /* Throw away the current supplied arguments list by popping the curentin list. */
 cilp=B(cilp);
 }

/* At this point p points to the first node of the actual argument list. If p EQ nilptr, we have a
function or special form with no arguments. */

if (NOT builtin(ty))
 {/* f is a non-builtin function or non-builtin special form. do shallow binding of

 the arguments and evaluate the body of f by calling seval */
 fa=A(f); /* fa points to the first node of the formal argument list */
 na=0; /* na counts the number of arguments */

 /* run through the arguments and place them as the top values of the formal argument
atoms in the atom table. Push the old value of each formal argument on its binding list. */

 if (type(fa) EQ 8 AND fa ≠ nilptr)
 {t=ptrv(fa); Atab[t].bl=newloc(Atab[t].L,Atab[t].bl);
 Atab[t].L=p; goto apply;}

Chapter 27 ■ the LISp Interpreter program

127

 else
 while (p≠nilptr AND dottedpair(type(fa)))
 {t=ptrv(A(fa)); fa=B(fa);
 Atab[t].bl=newloc(Atab[t].L,Atab[t].bl);
 v=A(p); if (namedfsf(type(v))) v=Atab[ptrv(v)].L;
 Atab[t].L=v; ++na; p=B(p);
 }

if (p≠nilptr) error("too many actual arguments");

Exercise 27.14: Why did we need to build the eaL list, rather
than just directly place each seval result as the new value of
the corresponding formal argument?

Solution 27.14: To make sure that the successive formal
argument bindings don’t effect the evaluation of succeeding
actual arguments which happen, directly or indirectly, to involve
free variables whose names are also used within the current list
of formal arguments, the rebinding of all formal arguments is
delayed until all the actual arguments have been evaluated.

 /*The following code would forbid some useful trickery.
 if (fa≠nilptr) error("too many formal argumentss"); */

 /* now apply the non-builtin special form or function */
apply: v=seval(B(f));

 /* now unbind the actual arguments */
 fa=A(f);
 if (type(fa) EQ 8 AND fa ≠ nilptr)
 {t=ptrv(fa); Atab[t].L=A(Atab[t].bl); Atab[t].bl=B(Atab[t].bl);}
 else
 while (na-->0)
 {t=ptrv(A(fa)); fa=B(fa);
 Atab[t].L=A(Atab[t].bl); Atab[t].bl=B(Atab[t].bl);
 }
 } /* end non-builtins */
else
 { /* At this point we have a built-in function or special form. f is the pointer value of the

atom in the atom table for the called function or special form and p is the pointer to
the argument list.*/

 v=nilptr;
 switch (f) /* begin builtins */
 {case 1: /* CAR */
 if (NOT dottedpair(type(E1))) error("illegal CAR argument");
 v=A(E1); break;
 case 2: /* CDR */
 if (NOT dottedpair(type(E1))) error("illegal CDR argument");
 v=B(E1); break;
 case 3: /* CONS */

Chapter 27 ■ the LISp Interpreter program

128

 if (sexp(type(E1)) AND sexp(type(E2))) v=newloc(E1,E2);
 else error("Illegal CONS arguments");
 break;

 /* for LAMBDA and SPECIAL, we could check that U1 is either an ordinary atom
or a list of ordinary atoms. */

 case 4:/* LAMBDA */ v=tf(newloc(U1,U2)); break;

 case 5:/* SPECIAL */ v=ts(newloc(U1,U2)); break;
 case 6:/* SETQ */
 f=U1; if (type(f)≠8) error("illegal assignment");
 assign: v=ptrv(f); endeaL=&AL(v);
 doit: t=seval(U2);
 switch (type(t))
 {case 0: /* dotted pair */
 case 8: /* ordinary atom */
 case 9: /* number atom */
 *endeaL=t; break;
 case 10: /* builtin function */
 case 11: /* builtin special form */
 case 12: /* user-defined function */
 case 13: /* user-defined special form */
 *endeaL=Atab[ptrv(t)].L; break;
 case 14: /* unnamed function */
 *endeaL=uf(ptrv(t)); break;
 case 15: /* unamed special form */
 *endeaL=us(ptrv(t)); break;
 } /* end of type(t) switch cases */

 tracesw--; v=seval(f); tracesw++; break;

Exercise 27.15: Explain why a case above for type(t)=1 is not
necessary.

 case 7: /* ATOM */
 if ((type(E1)) EQ 8 OR (type(E1)) EQ 9) v=tptr; break;

 case 8: /* NUMBERP */
 if (type(E1) EQ 9) v=tptr; break;

 case 9: /* QUOTE */ v=U1; break;
 case 10: /* LIST */ v=p; break;
 case 11: /* DO */ while (p≠nilptr) {v=A(p); p=B(p);} break;

 case 12: /* COND */
 while (p≠nilptr)

Chapter 27 ■ the LISp Interpreter program

129

 {t=A(p);
 if (seval(A(t))≠nilptr) {v=seval(A(B(t))); break;} else p=B(p);
 }
 break;

 case 13: /* PLUS */
 v=numatom(Ntab[ptrv(E1)].num+Ntab[ptrv(E2)].num); break;

 case 14: /* TIMES */
 v=numatom(Ntab[ptrv(E1)].num*Ntab[ptrv(E2)].num); break;

 case 15: /* DIFFERENCE */
 v=numatom(Ntab[ptrv(E1)].num-Ntab[ptrv(E2)].num); break;

 case 16: /* QUOTIENT */
 v=numatom(Ntab[ptrv(E1)].num/Ntab[ptrv(E2)].num); break;

 case 17: /* POWER */
 v=numatom(pow(Ntab[ptrv(E1)].num,Ntab[ptrv(E2)].num)); break;

 case 18: /* FLOOR */ v=numatom(floor(Ntab[ptrv(E1)].num)); break;
 case 19: /* MINUS */ v=numatom(-Ntab[ptrv(E1)].num); break;
 case 20: /* LESSP */
 if(Ntab[ptrv(E1)].num<Ntab[ptrv(E2)].num) v=tptr; break;

 case 21: /* GREATERP */
 if (Ntab[ptrv(E1)].num>Ntab[ptrv(E2)].num) v=tptr; break;

 case 22: /* EVAL */ v=seval(E1); break;
 case 23: /* EQ */ v=(E1 EQ E2)?tptr:nilptr; break;

 case 24: /* AND */
 while (p≠nilptr AND seval(A(p))≠nilptr) p=B(p);
 if (p EQ nilptr) v=tptr; /* else v remains nilptr */
 break;

 case 25: /* OR */
 while (p≠nilptr AND seval(A(p)) EQ nilptr) p=B(p);
 if (p≠nilptr) v=tptr; /* else v remains nilptr */
 break;

 case 26: /* SUM */
 for (s=0.0; p≠nilptr; s=s+Ntab[ptrv(A(p))].num, p=B(p));
 v=numatom(s); break;

 case 27: /* PRODUCT */
 for (s=1.0; p≠nilptr; s=s*Ntab[ptrv(A(p))].num, p=B(p));
 v=numatom(s); break;

Chapter 27 ■ the LISp Interpreter program

130

 case 28: /* PUTPLIST */ v=E1; Atab[ptrv(v)].plist=E2; break;
 case 29: /* GETPLIST */ v=Atab[ptrv(E1)].plist; break;
 case 30: /* READ */ ourprint("\n>"); prompt=EOS; v=sread(); break;

 case 31: /* PRINT */
 if (p EQ nilptr) ourprint(" ");
 else while (p≠nilptr) {swrite(A(p)); ourprint(" "); p=B(p);}
 break;

 case 32: /* PRINTCR */
 if (p EQ nilptr) ourprint("\n");
 else while (p≠nilptr) {swrite(A(p)); ourprint("\n"); p=B(p);}
 break;

 case 33: /* MKATOM */
 strcpy(sout,Atab[ptrv(E1)].name); strcat(sout,Atab[ptrv(E2)].name);
 v=ordatom(sout); break;

 case 34: /* BODY */
 if (unnamedfsf(type(E1))) v=ptrv(E1);
 else if (userdefd(type(E1))) v=ptrv(Atab[ptrv(E1)].L);
 else error("illegal BODY argument");
 break;

 case 35: /* RPLACA */
 v=E1;
 if (NOT dottedpair(type(v))) error("illegal RPLACA argument");
 A(v)=E2; break;

 case 36: /* RPLACD */
 v=E1;
 if (NOT dottedpair(type(v))) error("illegal RPLACD argument");
 B(v)=E2; break;

 case 37: /* TSETQ */
 if (Abl(f=ptrv(U1)) EQ nilptr) goto assign;
 v=Abl(f); while (B(v)≠nilptr) v=B(v);
 endeaL=&A(v); goto doit;

 case 38: /* NULL */
 if (E1 EQ nilptr) v=tptr; break;

 case 39: /* SET */
 f=seval(U1); goto assign;

 default: error("dryrot: bad builtin case number");
 } /* end of switch cases */

Chapter 27 ■ the LISp Interpreter program

131

 } /* end builtins */
 /* pop the eaL list or pop the currentin list, whichever is active */
 if (fct(ty)) eaLp=B(eaLp); else cilp=B(cilp);

 Return(v);
}

Exercise 27.16: What does the built-in special form TSETQ
given in the code above do?

Exercise 27.17: Would it be a good idea if the “cond”
case were rewritten as follows?

case 12: /* cond */ while p ≠ nilptr do if

(v ← seval(A[t ← A
p
])) ≠ nilptr then {if B

t
 ≠ nilptr

then v ← seval(A[B
t
]); break} else p ← B

p
};

Exercise 27.18: Modify the “cond” case to make the final “else”
option not require a T predicate; (COND (P

1
 R

1
)· · ·

(P
k
 R

k
) R

k+1
) is to be interpreted as (COND (P

1
 R

1
)· · ·(P

k
 R

k
)

(T R
k+1

)).

Exercise 27.19: If there are unexpectedly a few actual
arguments provided for a built-in function or special form,
this program may fail catastrophically. Suggest an approach
to detect this type of error and prevent any failure. What
happens if too many arguments are given?

Exercise 27.20: Modify the built-in function READ to take an
optional file name argument, and to read its input from this
file when specified.

Exercise 27.21: Functions and special forms are not included
in the class of atoms, and thus cannot appear in dotted-
pairs (although their ordinary-atom names can). There is
an exception to this statement. What is it? Could the class of
atoms be enlarged to include functions? Should it be?

Exercise 27.22: To add a new builtin function or special form
to the LISP interpreter given above, we must first insert the
name of the new function or special form at the end of the *BI
array in the initlisp subroutine, and add its typecode (10 for a
function and 11 for a special form) at the end of the “parallel”
array BItype in the initlisp subroutine. The position i of an entry

Chapter 27 ■ the LISp Interpreter program

132

in the *BI and BItype arrays determines the case number to
be used for the new function or special form to be i + 1. (Read
the code in lispinit to see why that is.) Thus adding the new
function or special form at the end of the *BI array means we
need only add the next sequential case into the central switch
statement in the seval subroutine as the case where the code for
the new function or special form is placed.

Define a new built-in function named TYPECODE which returns
the number typecode of its argument. Explain how this can be
used to write LISP functions that check their arguments and
issue error reports when necessary.

Exercise 27.23: The built-in special form LABEL is not
handled. Provide code to implement LABEL. Hint: just place
the typed-pointer of the λ-expression in the value field of the
label variable to prepare for setting up to jump to APPLY.

Exercise 27.24: Often lists are used as one-dimensional
arrays. In order to access the i-th element, a function called
ACCESS may be defined. For example, with:

(SETQ ACCESS (LAMBDA (L I)
 (COND ((EQ I 1) (CAR L))

(T (ACCESS (CDR L) (PLUS I -1)))))).

this function is often painfully slow. Add iterative code to
make ACCESS a built-in function.

Exercise 27.25: Most versions of LISP provide the potentially-
infinite class of functions CAAR, CADR, CDAR, CDDR, CAAAR, …
, where the interior A and D letters in the name of such a
function specify that a corresponding sequence of CAR and CDR
applications is to be done to the argument S-expression. Modify
the program given here to provide for this class of functions.

Exercise 27.26: It is easy to write (MINUS N 1) when we mean
(DIFFERENCE N 1). Suppose v[N] = 4. What output do we get
when (MINUS N 1) is entered? Hint: set tracing on with the
directive !trace and then enter (SETQ N 4) and (MINUS N 1).

Exercise 27.27: Many of the sections of code for built-in
functions and special forms given above do not adequately
check their arguments. In each such case, propose suitable

Chapter 27 ■ the LISp Interpreter program

133

error-checking code so that the LISP interpreter cannot
directly or indirectly crash due to such incorrect input. Try
to maintain whatever readability is currently present, since
readability is a virtue equally as important as efficiency.

Exercise 27.28: Why isn’t it a good idea to make REVERSE
explicitly built in with the following code?

{int32 i, j, t; i ← E1; j ← B
i
; B

i
 ← nilptr;

 while j ≠ nilptr do {t ← B
j
 ; B

j
 ← i; i ← j; j ← t}; v ← i}.

Exercise 27.29: There is code given in the program above that
implements a built-in special form called TSETQ. Explain what
TSETQ does.

Exercise 27.30: Define a new built-in function called PEVAL
which takes an ordinary atom A as input and returns the
previous pushed-down value of A at the head of the bindlist of A.
What should you return if there is no such pushed-down value?

Exercise 27.31: Define an extension to LISP to handle the
class of strings of characters as a datatype. In particular, let
strings of characters be a class of legal LISP values, just as
numbers, functions, and S-expressions are. What about a
typecode for strings? Explain how strings might be stored.
(Hint: use self-referential ordinary atoms.) How are constant
strings written? Define the functions that provide for string
manipulation. Include (CAT a b), (STRLEN a), and (SUBSTR a i
j). Would STR, where v[(STR x)] = the string of v[x], be useful?
What about introducing an inverse to STR? Define (READSTR)
in a useful way. How will PRINT and PRINTCR handle strings?
Can READ be redefined to optionally apply to a string? Are
there other potentially useful new functions and extensions
of old functions that are of interest? Strike a synthetic balance
between utility and complexity.

/* == */
int32 newloc(int32 x, int32 y)
/* −−
 Allocates and loads the fields of a new location in the list area. The car field is set to X

and the cdr field is set to Y. The index of the new location is returned.
 −−− */
{int32 j;
 if (fp<0) {gcmark(x); gcmark(y); gc(); if (fp<0) error("out of space");}
 j=fp; fp=B(j); A(j)=x; B(j)=y; numf--; return(j);
}

Chapter 27 ■ the LISp Interpreter program

134

Exercise 27.32: How does one “exit” from the LISP Interpreter
given above?

Exercise 27.33: Reprogram the LISP interpreter given here
to solve the problem that strings are not automatically
allocated or automatically garbage collected in C by building a
collection of string-handling toolkit procedures. Hint: arrange
for all strings to live in a special garbage-collected area
established especially for strings.

Exercise 27.34: Write the code for a new LISP function DEL
which removes its atom argument x from the atom table.
What will happen if the atom argument x is referred to in an
S-expression?

Exercise 27.35: In the LISP interpreter above, indirect input is
read from the file F when the directive @F is input. (Is this latter
“input” a noun or a verb?) Although any output due to such
indirect input is output to the screen and to the log file lisp.log,
the contents of F itself are not printed on the screen nor are
they entered in lisp.log. Modify the LISP Interpreter program
to test for the value of an ordinary atom ECHOSW, and if ECHOSW
does not exist or v[ECHOSW] ∉ {1, 2, 3}, leave the output as it is
currently done, while if v[ECHOSW] = 1 or v[ECHOSW] = 3, print
the contents of each indirect file on the screen as it is read,
and if v[ECHOSW] = 2 or v[ECHOSW] = 3, write the contents of each
indirect file in the log file as it is read.

Exercise 27.36: Note that an input line beginning with ‘/’ is
a comment. (Try entering “/acomment”. Also try entering
“/notacomment”.) The LISP Interpreter program above
prompts for an input by printing the symbol *, and if the
entered line is not a sequence of one or more complete
S-expressions, then continuation input is prompted by
printing ¿. In the special case where the input line given in
response to * is empty, that is, the enter key is immediately
hit, a > is printed to prompt for more input. Is this a rational
design decision? Modify the LISP Interpreter program to
prompt for further input in this special case with a *.

135© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_28

CHAPTER 28

Garbage Collection

As input S-expressions are provided to the LISP interpreter to evaluate, various list structures
in the list area are constructed, both from the input and during the process of evaluation.
Many of these list structures have no use after they have been initially used. Such useless data
objects are called garbage data objects. In the case of list area nodes, a node is garbage if it
cannot be reached. This means that it is not a node in any list structure that is the value of an
ordinary atom, including user-defined function and special form values, nor is it reachable
from any pushed-down values held in a bindlist list, nor does it occur within any property lists.

We need to find such useless list nodes and put them on the list-area free-space list
so they may be reused; otherwise we will run out of list area memory on all but modest
computations. This process is called garbage collection. A procedure for performing
garbage collection called gc is described below.

Useless garbage entries also accumulate in the number table as input numbers,
and computed numbers are created and become useless. The gc procedure also collects
the garbage entries in the number table and makes them available for reuse. The gc
procedure is only invoked when the list area is exhausted or when the number table
cannot hold more numbers. In particular the gc procedure is called from within the
newloc procedure given above whenever it is discovered that no list nodes are available.

Exercise 28.1: Enumerate all the places in the LISP interpreter
where the gc procedure is called.

Exercise 28.2: One of the central routines that must permit
garbage collection to occur at several points within itself is the
sread procedure. Study the sread procedure and explain in
detail how and why it works.

Below we give the garbage-collection function {\tt gc} and the ancillary routine
{\tt gcmark} which implement the garbage-collection “service” used in the LISP
Interpreter program.

Chapter 28 ■ GarbaGe ColleCtion

136

/* == */
void gc(void)
/* −−
 Garbage collector for the number table and the listarea.
 −−− */
{int32 i,t;
#define marked(p) ((A(p) & 0x08000000)6=0)
#define unmark(p) (A(p) &= 0xf7ffffff)

/* Mark everything reachable from the atom table. */
 for (i=0; i<n; i++)
 {gcmark(Atab[i].L); gcmark(Atab[i].bl); gcmark(Atab[i].plist);}

/* gcmark has set nmark[i] =1 for every number Ntab[i].num reachable from the atom table
or from a list-node. Now we garbage-collect the number table by re-storing every reachable
number, and claiming the rest for reuse. */
for (i=0; i<n; i++) nx[i]=-1;

for (nf=-1,i=0; i<n; i++)
 if (nmark[i] EQ 0) {Ntab[i].nlink=nf; nf=i;}
 else /* restore num[i] */
 {t=hashnum(Ntab[i].num);
 while (nx[t]6=-1) if ((++t) EQ n) t=0;
 nx[t]=i; nmark[i]=0;
 }

 /* build the new list-node free-space list and return. */
 fp=-1; numf=0;
 for (i=1; i<m; i++) if (NOT marked(i)) {B(i)=fp; fp=i; numf++} else unmark(i);
}

/* == */
void gcmark(int32 p)
/* −−

Mark the object, possibly a sub-tree, specified by p. At the same time, for every number
pointer referencing Ntab[i] encountered, set nmark[i] =1 to mark Ntab[i].num as a
"reachable" number to be preserved.

 −− */
{static int32 s,t;
#define marknode(p) (A(p) |= 0x08000000)
#define marknum(t,p) if ((t) EQ 9) nmark[ptrv(p)]=1
#define listp(t) ((t) EQ 0 OR (t)>11)

Chapter 28 ■ GarbaGe ColleCtion

137

start:
 t=type(p);
 if (listp(t))
 {p=ptrv(p); if (marked(p)) return; t=A(p); marknode(p);
 if (NOT listp(type(t))) {marknum(type(t),t); p=B(p); goto start;}
 s=B(p); if (NOT listp(type(s))) {marknum(type(s),s); p=t; goto start;}
 gcmark(t); /* recursive call to mark the subtree A(p). */
 p=B(p); goto start; /* equivalent to gcmark(B(p)) */
 }
 else marknum(t,p);
}

Exercise 28.3: Why don’t we have a scheme for “marking”
the entries in the atom table found while traversing
S-expressions?

Here is an indirect file that defines the function mg that can be
used to generate a bunch of “disconnected” list nodes that will
eventually force garbage collection to occur. We can use this
function to superficially test garbage collection.

/ file:gctest to define mg for testing garbage collection.

 (SETQ DONE 'DONE)

 (SETQ MG (LAMBDA (N) (COND ((GREATERP 0 (SETQ N (DIFFERENCE N 1))) DONE)
 ((EQ 1 (CONS (CONS N T) (CONS NIL T))) 7)
 (T (MG N)))))

/ type (mg 700) or a similar command to force garbage-collection.

Exercise 28.4: Create the above file in your lisp directory
with the name gctest. Then run the LISP Interpreter program
and enter the directive @gctest. Then enter (mg 500). Then
enter (mg 700). Then enter (mg 990). Then enter (mg 1000).
Explain what you see.

Exercise 28.5: Can you devise a way to discard unneeded
ordinary atoms and thus reclaim space in the atom table for
reuse? Hint: first try to handle those unreferenced ordinary
atoms whose values are undefined.

Chapter 28 ■ GarbaGe ColleCtion

138

Exercise 28.6: Can you cause gc to loop forever by building a
circular list using RPLACA and/or RPLACD?

Exercise 28.7: Are there any bugs in the LISP interpreter
program given here?

Solution 28.7: Indubitably! For example, try entering an
illegal or non-existent indirect input file name: for example, @
ABC where the file ABC does not exist. And try entering just @.
(You should, of course, fix all these bugs in your own copy of
the LISP interpreter !-).)

/* end of file lisp.c */

139© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7_29

CHAPTER 29

The lispinit File, the
linuxenv.h File, and the
Makefile File

Below is the lispinit file used by the LISP Interpreter program. This text file contains
the definitions of various LISP functions that are part of GOVOL LISP, but which are
provided by just “reading” them from this file and establishing them by executing the
SETQ expressions given herein rather than hard-coding them into the LISP Interpreter.

/filename: ~/lisp/lispinit revision date: October 15, 1988

(SETQ APPEND (LAMBDA (X Y) (COND ((EQ X NIL) Y)
 ((ATOM X) (CONS X Y))
 (T (CONS (CAR X) (APPEND (CDR X) Y))))))

(SETQ REVERSE (LAMBDA (X) (COND ((ATOM X) X)
 (T (APPEND (REVERSE (CDR X)) (CONS (CAR X) NIL))))))

(SETQ EQUAL (LAMBDA (X Y) (COND ((OR (ATOM X) (ATOM Y)) (EQ X Y))
 ((EQUAL (CAR X) (CAR Y)) (EQUAL (CDR X) (CDR Y)))
 (T NIL))))

(SETQ NOT NULL)

(SETQ ZEROP (LAMBDA (X) (COND ((EQ X 0) T))))

(SETQ MEMBER (LAMBDA (A S) (COND ((EQ S NIL) NIL) ((EQUAL A (CAR S)) T)
(T (MEMBER A (CDR S))))))

(SETQ INTO (LAMBDA (G L) (COND ((NULL L) L) (T (CONS (G (CAR L))
(INTO G (CDR L)))))))

(SETQ ONTO (LAMBDA (G L) (COND ((NULL L) L) (T (CONS (G L)
(ONTO G (CDR L)))))))

140

CHAPTER 29 ■ THE LISPINIT FILE, THE LINUXENV.H FILE, AND THE MAKEFILE FILE

(SETQ APPLY (SPECIAL ($G $X) (EVAL (CONS $G $X))))

(SETQ SORT (LAMBDA (X)
 (COND ((NULL X) X) (T (MERGE (CAR X) (SORT (CDR X)))))))

(SETQ MERGE (LAMBDA (V L) (COND ((OR (NULL L) (LESSP V (CAR L))) (CONS V L))
 (T (CONS (CAR L) (MERGE V (CDR L)))))))

(SETQ GETPROP (LAMBDA (A P) (ASSOC (GETPLIST A) P)))

(SETQ ASSOC (LAMBDA (L P) (COND ((NULL L) NIL)
 (T (COND ((EQUAL P (CAR (CAR L))) (CDR (CAR L)))
 (T (ASSOC (CDR L) P)))))))

(SETQ PUTPROP (LAMBDA (A P W) (PUTPLIST A
 (CONS (CONS P W) (GETPLIST (REMPROP A P W))))))

(SETQ REMPROP (LAMBDA (A P W) (PUTPLIST A (NAX (GETPLIST A) (CONS P W)))))

(SETQ NAX (LAMBDA (L P) (COND
 ((NULL L) NIL) ((EQUAL (CAR L) P) (CDR L))
 (T (DO (NX L P) L)))))

(SETQ NX (LAMBDA (L P) (COND ((NULL (CDR L)) NIL)
 ((EQUAL P (CAR (CDR L))) (RPLACD L (CDR L))))))

In order to write essentially any useful C program, we must have knowledge of the
various functions and typedef’ed datatypes, and so forth defined in various system header
files that we “include” within the program files to make use of.

The “include-file” infrastructure of C is one of the most intricate and difficult parts of
the C language. There are many built-in functions in C such as ioctl or pow that we may
want to use. First, it is often difficult to learn about these functions, some of which will be
particular to the operating system and CPU chip being used. Although Internet searches
(and the man command on Linux/Unix systems) are helpful, there is no substitute for a
good manual, which can be hard to come by.

Second, the header-file “structure” for a multiplatform compiler like the GNU
Compiler Collection (GCC) is extremely complex. There is a system-specific sequence
of directories known to the compiler that is searched in order for the requested header-
files. Determining this sequence is difficult, although a web search will generally yield
a few useful tips among a mass of partly erroneous posts. Since individual header-files
contain “includes,” referring to “downstream” header-files, and header-files with the
same name occur in different directories in the search sequence, it can be hard to find
a header-file relevant to some function or symbol we want to know about, and it is even
harder to read a header-file to learn about the functions and/or other objects defined
therein. This problem is compounded by the obscuring of “datatypes” within header-
files, by the naming choices intended to minimize the “collision” with names chosen by
programmers, and by numerous “ifdef” constructions introduced to deal with various
operating systems and CPUs.

141

CHAPTER 29 ■ THE LISPINIT FILE, THE LINUXENV.H FILE, AND THE MAKEFILE FILE

In the lisp.c file, the command "#include linuxenv.h" specifies that the file
linuxenv.h be sought, first in the directory where the file lisp.c containing the referencing
include-command resides (where it should, in fact, be found), and then in the system-
specific sequence of directories. In the include-file linuxenv.h we have the include
statements that load the needed definitions of the various built-in C functions and other
objects that are used in lisp.c; it is quite likely that you will need to fiddle with this file to
get lisp.c to compile on your system.

Here is the linuxenv.h file used in the LISP Interpreter program above for a Linux
environment using the GCC compiler.

/* file: ~/lisp/linuxenv.h */
/* This is the environment header file for the GNU C compiler on intel 386

linux.
 This file is to contain any machine and compiler specific definitions. */

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <math.h>
#include <fcntl.h>
#include <memory.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <string.h>
#include <strings.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sgtty.h>
#include <stdarg.h>
#include <values.h>

/* end of linuxenv.h */

Exercise 29.1: The C language passes procedure arguments
by value, that is, a copy of each actual argument is passed
(stored in a location on the stack used for arguments, local
variables, and return addresses). Also, arguments can be
assigned values within a procedure; in the case of a copy
argument, this merely changes the copy. Use this device and
add code to the gc procedure that looks ahead from a node
p, and avoids recursively calling gc when at most one of the
nodes A

p
 or B

p
 needs to be marked. What benefits can be

expected from using this code?

142

CHAPTER 29 ■ THE LISPINIT FILE, THE LINUXENV.H FILE, AND THE MAKEFILE FILE

Exercise 29.2: Program the entire LISP interpreter to run on
an available LISP system. Some trickery will be needed to
make your interpreter conform to the GOVOL dialect of the
LISP language given in this book.

Exercise 29.3: Reprogram the LISP interpreter given here to
solve the problem that the list-area, the atom table, and the
number table have fixed sizes. Devise methods for allocating
and using more space for these data structures when they
become full rather than failing as the program above does now.

Of course, for modern paging systems, we might be able to
specify that these areas be very large, but only use part of the
space for such a data area initially, secure in the knowledge
that pages that are never accessed, never exist until they are
accessed. This still leaves the problem of rehashing for the
atom table.

One can imagine that a suitable cooperative paging system
might make it possible to request that certain data areas
be started on a new page in the logical address space and
occupy a block of contiguous pages at the end of the allocated
memory, and that such a data area is accessed only through
a pointer, and that we can ask for such access to be extended
in size by some integral number of pages, and that all the
address variables for these extensible areas be appropriately
reset. In this exercise, however, you should not assume any
help, and only use the basic C malloc routines.

Below is a Makefile for compiling and linking the LISP Interpreter program on
a Linux system. The input is the source code file lisp.c together with the header file
linuxenv.h. The output is the executable program file lisp. The command to compile
lisp.c is: [make -f Makefile lisp].

file: Makefile date: 1/3/2017
#
This file is a control file for the make program. It contains the
specifications for building the lisp executable program, lisp, from
the C source file lisp.c using the GNU C-compiler on linux. To build
the lisp executable file , lisp, type 'make lisp' after the operating
system prompt in the appropriate directory where lisp.c and linuxenv.h
reside.

CFLAGS is a macro for certain flags that can be passed to the compiler.
The flag -g tells the compiler to include debugging information
in the resulting executable; the flag -O means use the lowest
level of compiler optimizations. CFLAGS is not currently used in this
makefile.
CFLAGS=-g -O

143

CHAPTER 29 ■ THE LISPINIT FILE, THE LINUXENV.H FILE, AND THE MAKEFILE FILE

CC is a macro for the C-compiler used in compile and link commands.
CC=gcc

The following line begins with the name of the target (i.e. the file
to be constructed), lisp.o, and then lists the file(s) on which it
depends--the C source file lisp.c. The next line is the command for
compiling the C source file in order to construct the file lisp.o; the
flag -c means only compile--do not link--the named C file, and the
flag -o lisp.o means name the output file lisp.o.
lisp.o: lisp.c
$(CC) -c -o lisp.o lisp.c

The following line begins with the name of the target, lisp, which
is an executable file, and then lists the file on which it
depends--the object file lisp.o. The next line is the command for
linking the object file, lisp.o with all requested library files,
and producing the output file, lisp. -lm means link-in the math
library module, libm.o and -lc means link-in the main C library
module, libc.o. There are other libraries that are included by default!
Note -lm and -lc must occur after lisp.o, and for some versions of
GCC, you must leave-out -lm and/or -lm.
lisp: lisp.o
$(CC) $(CFLAGS) -o lisp lisp.o -lm -lc
 chmod 777 lisp
end of Makefile

To run the LISP interpreter, we cd into the directory where the lisp executable file is
kept, and type lisp. Note the file lispinit must also be present in this directory.

Exercise 29.4: The LISP Interpreter program given above
is compiled and linked to yield an executable program;
this program is the file lisp, and when ./lisp is typed as a
command, the LISP interpreter is run. If you would like to
write a LISP program, that is, a collection of LISP functions that
can be run on demand, you could placed these functions in
a text file, say MP, and then run the LISP Interpreter program,
lisp, and enter the directive @MP to define these functions. Then
you would “run” any of these functions as desired.

How might you construct a LISP compiler program that
would take a text-file containing a collection of LISP-function
definitions, including a particular LISP-function named MAIN
with no arguments, as input, and produce a LISP “executable”
file with a name you specify, say LISPP, that can then be run
with the effect that the functions in the input file are defined
and the initial function MAIN is called?

145© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7

Bibliography

[Abr89] Bruce Abramson. Control strategies for two-player games. ACM Computing
Surveys, 21(2):137–161, June 1989.

[ACR87] John R. Anderson, Albert T. Corbett, and Brian J. Reiser. Essential Lisp. Addison
Wesley, Reading, MA, 1987.

[All78] John Allen. Anatomy of LISP. McGraw-Hill, NY, 1978.

[BB66] E. C. Berkeley and Daniel G. Bobrow, editors. The Programming Language LISP: Its
Operation and Applications. MIT Press, Cambridge, MA, 1966.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[Ers59] Andrey Ershov. Programming Programme for the BESM Computer, translated from
the Russian original. Pergamon Press, London, 1959.

[Fod79] John Foderaro. The Franz LISP Manual. University Press of Calififornia, Berkeley,
CA, 1979.

[Fri74] Daniel P. Friedman. The Little LISPer. SRA Inc., Chicago, IL, 1974.

[Fri86] Daniel P. Friedman. The Little LISPer. SRA Inc., Chicago, IL, second edition, 1986.

[Hof85] Douglas R. Hofstadter. Metamagical Themas. Basic Books, NY, 1985.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. D. Van Nostrand Co. Inc.,
Princeton, NJ, 1952.

[Knu68] Donald Ervin Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, Reading, MA, 1968.

[Knu73] Donald Ervin Knuth. The Art of Computer Programming, Volume 3: Searching
and Sorting. Addison-Wesley, Reading, MA, 1973.

[KnuMo75] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial
Intellegence, 6:293–326, 1975.

[Kur81] Toshiaki Kurokawa. A new fast and safe marking algorithm. Software Practice and
Experience, 11:671–682, 1981.

[Mag79] Byte Magazine, August 1979. Issue devoted to LISP.

[McC60] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. CACM, 3(4):184–195, April 1960.

[McC61] John McCarthy. A basis for a mathematical theory of computation. Proceedings
of the WJCC, 19:225-238, 1961.

 ■ BIBLIOGRAPHY

146

[McC78] John McCarthy. History of LISP. ACM SIGPLAN Notices, 13(8), August 1978.

[McC79] John McCarthy. History of LISP. Stanford A.I. Lab. (draft), 1979.

[Mee79] J.R. Meehan. The New UCI LISP Manual. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1979.

[MIT62] LISP 1.5 Programmer’s Manual, MIT Press, Cambridge, MA, 1962.

[Moo74] David Moon. MACLISP Reference Manual, Version 0. Laboratory for Computer
Science, MIT Press, Cambridge, MA, April 1974.

[MSW83] David Moon, Richard Stallman, and Daniel Weinreb. LISP Machine Manual. MIT
Artificial Intellegence Laboratory, Cambridge, MA, fifth edition edition, 1983.

[NM44] John Von Neumann and Oskar Morgenstern. The Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ, 1980, 1944.

[PT87] Andrew R. Pleszkun and Matthew J. Thazhuthaveetil. The architecture of lisp
machines. IEEE Computer, March 1987.

[SA83] G. Sussman and H. Abelson. The Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, 1983.

[Sam79] Hanan Samet. Deep and shallow binding: the assignment operation. Computer
Languages, 4:187–198, 1979.

[SB60] Klaus Samelson and Friedrich L. Bauer. Sequential formula translation.
Communications of the ACM, 3(2):76–83, 1960.

[Sik76] Laurent Siklossy. Let’s Talk LISP. Prentice-Hall, Englewood Cliffs, NJ, 1976.

{Sl63] J.R. Slagle. Game trees, M&N minimaxing, and the M&N alpha-beta procedure. A.I.
Group Report No. 3, Lawrence Radiation Laboratory, Livermore, CA.

[SlDi69] J.R. Slagle and J.K. Dixon. Experiments with some programs that search game
trees. JACM, 16(2):189–207, April 1969.

[SlDi70] J.R. Slagle and J.K. Dixon. Experiments with the M&N tree-searching program.
CACM, 13(3):147–155, March 1970.

[Sta89] Richard W. Stark. LISP, Lore. and Logic. Springer-Verlag, NY, 1989.

[Ste84] Guy L. Steele Jr. Common Lisp. Digital Press, DEC, Billerica, MA, 1984.

[Tha86] Matthew J. Thazhuthaveetil. A Structured Memory Access Architecture for LISP.
PhD thesis, University of Wisconson, August 1986. Ph.D. thesis, CS report 658.

[Tou84] David S. Touretzky. LISP-A Gentle Introduction to Symbolic Computation. Harper
& Row, NY, 1984.

[Wan84] Mitchell Wand. What is LISP? American Mathematical Monthly, 91(1):32–42,
January 1984.

[Wei67] Clark Weissman. LISP 1.5 Primer. Dickenson, Belmont, CA, 1967.

[WH89] Patrick Henry Winston and Berthold K.P. Horn. LISP. Addison-Wesley, Reading,
MA, first edition 1981, second edition 1984, third edition 1989.

[Whi79] Jon L. White. Macsyma symbolic manipulation program. In Proceedings of the 1979
MAC-SYMA Users’ Conference, Cambridge, MA, 1979. MIT Laboratory for Computer Science.

[Wil84] Robert Wilenski. LISPcraft. W.W. Norton & Co., NY, 1984.

147© Gary D. Knott 2017
G. D. Knott, Interpreting LISP, DOI 10.1007/978-1-4842-2707-7

��������� A
Algorithmic ideas, 91
APPEND function, 47–48
APPLY function, 78
Asymmetric valuation, 102
ATOM predicate, 27
Atom table

function (see Functions)
number atoms, 5
ordinary atoms, 3, 5
pictorial notation, 23–26

��������� B
Bind actual and formal arguments

Algol lexical scoping, 68
association list, 67
binding times, 69
call-time binding, 70
dotted-pairs, 67
dynamic scoping, 67
λ-expression, 67
EVAL, 72
free variable, 68
functional argument

problem, 69, 70
function/special form, 68
macros, 73
shallow binding, 71
skip-binding, 69
variation, 71
versions, 71

Blank character. See Space character
BODY function, 55
BOXPOS function, 104

��������� C
CAR function, 27–28
CDR function, 27–28
CONS function, 27–28
C program

LISP in, 110–134
ASCII text, 120–122
eaL list, 127–128
end of file, 120
number table, 122–123
sread procedure, 117–118
statement replacement, 125–126
static variables, 124–125

��������� D
DEEPENOUGH function, 104
DIFFERENCE function, 11
DIFF function, 97–99
DO function, 77
Dot-notation, 36
Dotted-pair notation, 35

��������� E
ELIST function, 95–97
End of file (EOF), 120–122
EQ predicate, 14
EQUAL predicate, 49
EVAL function, 12
Evaluation operator, 9–10
Experimental programs, 91
λ-expression, 43

binding data, 43
DEFINE/DEFUN, 44

Index

■ INDEX

148

FACT, 44
impredicative definition, 44
SETQ, 44

��������� F
FACTORS function, 80
Fair game, 101
FLOOR function, 12
Forms

AND, 39
COND, 39
OR, 39

FORTRAN, 91
FPRINT function, 97
FSET function, 95
Functions, 6

built-in, 7
dotted-pair, 28
domain values, 6
expression, 7
forms

lists, 11–12
NIL, 13
predicate, 14–15
total function, 13

function-valued atom, 7
NIL, 7
range, 6
special forms, 6
undefined value, 8

��������� G
Garbage collection

bindlist list, 135
disconnected list nodes, 137
gc and newloc procedure, 135
number table, 135–136

GENMOVES function, 107
GETPROP function, 86
GREATERP function, 61

��������� H
Hashing, 121
Hash value, 121
HPICK functions, 107

��������� I, J, K
INTO function, 77

��������� L
LABEL special form, 57
LAMBDA. See λ-expression
LESSP function, 61
linuxenv.h file, 141
LISP

data values, 1
functions, 1
GOVOL, 1
interpreter program, 1

C, 110–124, 126–134
form, 109
subroutines, 109

unique features, 1
lispinit file, 139
List notation

built-in function, 38
dot-notation, 36
dotted-pair

notation, 35
partial function, 38
pure list, 37
S-expressions, 35, 37
total function, 38

��������� M
MACRO function, 73
Makefile file, 142–143
Minimal LISP, 75–76
MINUS function, 12

��������� N
Nonatomic

S-expressions, 17, 21, 36
NOT function, 61
NULL function, 61
NUMBERP predicate, 14
Number table

data types, 4
floating-point numbers, 3, 7
function (see Functions)
pictorial notation, 23

λ-expression (cont.)

■ INDEX

149

��������� O
ONTO function, 78
Ordinary atoms, 5–7

��������� P
Perfect-information game, 101, 103
Pictorial notation

atom table, 23–26
number table, 23
S-expression, 24
typed-pointer, 23

PLUS function, 7, 11
POWER function, 12
Predicates, 14–15
PRINT function, 83
PRINTCR function, 83
PRODUCT function, 77
Properties, 85

GETPROP, 86–88
g-property value, 85
property list, 85
PUTPROP, 85–88
REMPROP, 86–88
RPLACA and RPLACD, 88
TCPROP, 88

Pure list, 37
PUTPROP function, 85

��������� Q
Quote/apostrophe symbol, 59
QUOTE form, 11, 18
QUOTIENT function, 12

��������� R
READ pseudo-function, 83
Recursive functions, 57
REMPROP function, 86
REVERSE function, 48
RPLACA function, 88
RPLACD function, 89

��������� S
SETQ form, 6, 11
S-expressions, 109

arguments, 75
definition, 17

dot notation, 17
dotted-pair, 17
list notation, 35, 37
not operators, 17
pictorial notation, 24
QUOTE, 18
typed-pointers, 31

Space character, 5
Special form

EVALQUOTE, 54
QUOTE, 59
SET, 55
SETQ, 57
SETQQ, 54
SPECIAL, 53
substitution, 53
unnamed functions, 55

Sread procedure, 109, 117–118
Statistical methods, 105
SUM function, 77
Swrite procedure, 109
Symbolic differentiation

DIFF, 93, 95, 97–99
differentiation rules, 94
E-expressions, 94
ELIST function, 95–97
forms, 93
FPRINT, 95, 97
FSET, 95
infix form, 93
MKATOM function, 93
real-valued function, 93

��������� T, U, V
Terminal positions

αβ algorithm, 105, 107–108
box, 101
circle symbol, 101
coroutines, 107
dotted-pair, 104
dynamic ordering, 107
game tree, 102
GENMOVES function, 107
hypotheses, 102
maximizing player, 102
minimaxing, 102
PICK function, 103
pitch positions, 108
planning/decision-making, 103
representations, 104

■ INDEX

150

skip-binding function, 105–106
static valuation function, 104
Von Neumann and

Morgenstern, 102–103
TIMES function, 12
Total function, 13
Typed-pointers, 64

built-in function, 64
dotted-pairs, 20, 31
floating-point value, 19
function, 32
integer index, 19
nonatomic S-expression, 21

S-expressions, 31
typecode, 19
type-field and value-field, 19
unnamed special form, 64
untyped-pointer, 20

��������� W, X, Y
WHILE statement, 80–81

��������� Z
ZEROP predicate, 14
Zero-sum game, 101–102

Terminal positions (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: LISP
	Chapter 2: The Atom Table and the Number Table
	Chapter 3: Evaluation
	Chapter 4: Some Functions and Special Forms
	Chapter 5: S-Expressions
	Chapter 6: Typed-Pointers
	Chapter 7: Pictorial Notation
	Chapter 8: More Functions
	Chapter 9: Arguments and Results Are Typed-Pointers
	Chapter 10: List Notation
	Chapter 11: More Special Forms
	Chapter 12: Defining Functions: λ-Expressions
	Chapter 13: More Functions
	Chapter 14: Defining Special Forms
	Chapter 15: The Label Special Form
	Chapter 16: The Quote Macro
	Chapter 17: More Functions
	Chapter 18: More About Typed-Pointers
	Chapter 19: Binding Actual Values to Formal Arguments
	Chapter 20: Minimal LISP
	Chapter 21: More Functions
	Chapter 22: Input and Output
	Chapter 23: Property Lists
	Chapter 24: What Is LISP Good for?
	Chapter 25: Symbolic Differentiation
	Chapter 26: Game Playing
	Chapter 27: The LISP Interpreter Program
	LISP in C

	Chapter 28: Garbage Collection
	Chapter 29: The lispinit File, the linuxenv.h File, and the Makefile File
	Bibliography
	Index

