
Introducing
JavaScript Game
Development

Build a 2D Game from the Ground Up
—
Graeme Stuart

Introducing
JavaScript Game

Development
Build a 2D Game from

the Ground Up

Graeme Stuart

Introducing JavaScript Game Development

ISBN-13 (pbk): 978-1-4842-3251-4 ISBN-13 (electronic): 978-1-4842-3252-1
https://doi.org/10.1007/978-1-4842-3252-1

Library of Congress Control Number: 2017962296

Copyright © 2017 by Graeme Stuart

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Aditya Shankar
Coordinating Editor: Nancy Chen
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484232514. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Graeme Stuart
Market Harborough, Leicestershire, United Kingdom

https://doi.org/10.1007/978-1-4842-3252-1

iii

Table of Contents

Part I: Drawing ��1

Chapter 1: HTML5 and the Canvas Element ��3

HTML Primer ���3

Drawing to the Canvas ��5

Style the Page to Highlight the Canvas ���7

Experiment with fillStyle ���9

Rendering Text ��10

More Shapes and Lines ���13

Summary���16

Chapter 2: Understanding Paths ���17

Organizing Your Files ��17

The Canvas Grid System ���19

Refactor Early, Refactor Often ���23

Working with Paths ���26

Adding Curves to a Path ��33

Summary���37

About the Author ��vii

About the Technical Reviewer ���ix

Introduction ���xi

iv

Chapter 3: Drawing to a Design ��39

Pac-Man ��40

Create a Function ��43

Randomization ��44

Summary���46

Chapter 4: Drawing a Spaceship ��47

Basic Trigonometry ���47

A Basic Ship ��48

Using Object Literals ���52

Transforming the Canvas Context ���54

Adding Some Curves ���60

Summary���69

Chapter 5: Drawing an Asteroid ���71

Drawing Basic Shapes ��71

Storing Shape Data ���76

Summary���80

Part II: Animation��81

Chapter 6: Basic Animation ��83

Start Simple ��83

A More Complicated Example ���86

Summary���92

Chapter 7: Animating Asteroids ��93

A Solid Game Loop ��93

Refactoring into Simple Objects ���99

Using Object Constructors ��101

Table of ConTenTsTable of ConTenTs

v

Extending the Asteroid Prototype ��102

Working with Multiple Asteroids ���105

Summary���107

Chapter 8: Practicing Objects ���109

Why Objects? ��109

Pac-Man Chased by Ghosts ��110

The PacMan object ���112

The Ghost Object ���117

Summary���123

Chapter 9: Inheritance ��125

Set Up a Template ���125

Newton’s Laws of Motion ��127

A General-Purpose Mass Class ���128

A Simple Approach to Inheritance ���133

Asteroids ���134

The Ship ��137

Summary���140

Part III: Building the Game ��141

Chapter 10: Simple Keyboard Interaction ���143

Controlling Pac-Man ���143

Summary���149

Chapter 11: Controlling the Ship ��151

Thruster Control ��151

Steering���156

Shooting ��158

Summary���168

Table of ConTenTsTable of ConTenTs

vi

Chapter 12: Collision Detection ��169

A Quick Refactor ���169

Ship vs� Asteroids ���178

Taking Damage ���182

Asteroid vs� Projectile ���185

Summary���193

Chapter 13: Death or Glory ���195

Game Over ��195

Restarting the Game ���199

Implementing Levels ���201

Summary���203

Conclusions ���204

Index ���207

Table of ConTenTsTable of ConTenTs

vii

About the Author

Graeme Stuart is a self-taught developer

with 15 years of experience building data

analysis tools and web-based applications

using JavaScript, Ruby, and Python. He has a

PhD in energy management, and much of his

programming skill was originally developed

to that end. He taught JavaScript games

programming to first-year undergraduates for

a while, and this book is the result. He now

mostly uses complexity science to encourage

a deep understanding of agile approaches

to software engineering and to justify his

outlandish research ambitions.

ix

About the Technical Reviewer

Aditya Shankar started programming in 1993

when he was first introduced to the world of

computers. With no access to the Internet or

online tutorials at the time, he wrote his first

game in GW-BASIC by painstakingly retyping

code from a book he found at the local library.

After graduating from the Indian Institute

of Technology Madras in 2001, he spent nearly

a decade working as a software consultant,

developing trading and analytics systems

for investment banks and large Fortune 100

companies, before eventually leaving his corporate life behind so he could

focus on doing what he loved.

A self-confessed technology geek, he has spent his time since then

working on his own projects and experimenting with every new language

and technology that he could, including HTML5. During this time, he

became well known for singlehandedly re-creating the famous RTS game

Command and Conquer, as well as Commandos: Behind Enemy Lines,

entirely in HTML5.

Apart from programming, Aditya is passionate about billiards, salsa

dancing, fitness, and personal development. He maintains a personal

website where he writes articles on game programming, personal

development, and billiards, and shares his popular game demos.

When he’s not busy writing or working on his own projects, Aditya

does consulting work with companies to help them launch new software

products and games.

xi

Introduction

This book provides a full set of exercises in which we will build a fully

functional HTML canvas game. Though not a direct clone, the game is

inspired by the 1979 Atari classic, Asteroids. The code is provided for you

and is introduced piece by piece over the various chapters of the book.

If you’d like to try Asteroids, or if you’ve never played it, the the modern

Atari version can be played at https://atari.com/arcade#!/arcade/

asteroids/play. I’ve made a few different gameplay decisions for the

game we create in this book, and I encourage you to attempt to adapt the

game in any direction you like as we go along, if you feel confident in doing

so. It’s all good practice!

Typically, each chapter introduces an area of game design in a generic

way, develops the ideas towards implementing an aspect of the Asteroids

game, and urges you to think about alternative approaches. Towards the

end of the book, the game will be complete, and you should have all the

skills necessary to build a quality game of your own.

During most of the exercises, you’re encouraged to be creative. Go

through the material provided, consider the challenges presented, and

explore the impact of modifying the provided code. There’s no “correct”

way to design a game like this—it involves making many decisions, and the

provided code is only one of thousands of possible ways to do it. So, please,

try it your way if you feel confident enough. That’s a great way to learn

something.

https://atari.com/arcade#!/arcade/asteroids/play
https://atari.com/arcade#!/arcade/asteroids/play

PART I

Drawing

The HTML canvas element, true to its name, provides a blank canvas on

which we can draw our game. Drawing is a fundamental aspect of working

with the HTML canvas element, so in these first few chapters we will

explore how drawing works and learn the fundamentals necessary to draw

our own designs with simple lines and fills. We will also develop some of

the game elements necessary for our Asteroids game clone.

3
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_1

CHAPTER 1

HTML5 and the
Canvas Element
This chapter introduces some of the basics of HTML, CSS, and JavaScript.

These are the core web technologies, and we’ll use them for developing

our game throughout this book. In order to follow along, you’ll need a text

editor to generate text files and a web browser to view the results with.

You won’t be learning everything there is to know about these

technologies. We’ll focus on just enough to draw some stuff on an HTML

canvas element. We’ll work with the HTML canvas element throughout

this book, so pay attention.

 HTML Primer
HTML (HyperText Markup Language) documents describe content on

the web. When you access a web page, you’re typically downloading and

viewing an HTML document. HTML is a way to organize and add semantic

meaning to multimedia content (text, images, videos, and more) and to

link between documents in a “web” of information.

HTML5 is the current version of the HTML standard. The standard

was originally developed in the early 1990s and has evolved a little since

then. The modern standard allows for the extremely rich experience of

the modern World Wide Web. We’ll be working with the HTML canvas

4

element, so let’s create our first HTML document and add a canvas

element to it.

Create a file called exercise1.html and type in the basic HTML template

shown in Listing 1-1.

Listing 1-1. A Basic HTML Template

<!doctype html>

<html>

 <head>

 <title>This is an HTML canvas</title>

 </head>

 <body>

 <h1>This is an HTML canvas</h1>

 <canvas id="asteroids" width="400" height="400"></canvas>

 </body>

</html>

Listing 1-1 begins with a <!doctype html> declaration. The doctype

declaration is always the first thing in an HTML document. It’s an

instruction to the web browser about what version of HTML the page is

written in. In the past, using doctype was complex because there were

many versions of HTML to choose from. With HTML5, the declaration is

reduced to simply specifying that we’re using HTML.

After the doctype, the main <html> element is opened. Note that it’s

closed at the end of the file with an </html> closing tag. Everything in

between the opening and closing html tags is said to be within the html

element. There should be nothing more in an HTML file than a doctype

and an html element with content.

Within the html element there are two nested elements: <head>

and <body>. The <head> element is used to describe details about the

document, such as the <title> to be displayed in a browser tab. It often

also contains links to stylesheets or JavaScript files that specifies how the

Chapter 1 htML5 and the Canvas eLeMent

5

contents are to be rendered and how they behave. The <body> element

contains the content of the document and in this case includes a level one

header <h1> and a <canvas> element.

The <canvas> element provides a JavaScript API (application

programmable interface) for drawing simple shapes and lines. It’s this API

that we will use to render our game.

 Drawing to the Canvas
<script> elements contain JavaScript code that’s executed by the browser.

Add the <script> shown in Listing 1-2 into your document <body> after

the <canvas> element.

Listing 1-2. A Simple Script

<script>

 var canvas = document.getElementById("asteroids");

 var context = canvas.getContext("2d");

 context.strokeStyle = 'dimgrey';

 context.lineWidth = 5;

 context.rect(75, 75, 250, 250);

 context.stroke();

 // this is a comment, it has no effect!!!

</script>

You’ll need to reload the page in order for the script to run. The

script runs line by line once the page is loaded. The first line calls the

getElementById method on the global document object. The document

object is defined automatically and provides a programmable interface into

the entire HTML document. The document is loaded into memory as a

tree-like structure often referred to as the DOM (Document Object Model).

In this case we’re using getElementById to get a reference to the <canvas>

element within the DOM using the id value we specified in the HTML.

Chapter 1 htML5 and the Canvas eLeMent

6

The second line in the script generates a reference to a canvas context.

Canvas contexts provide an API for drawing. In this case, we’re accessing

the "2d" canvas context. It has a variety of methods for drawing lines

and shapes on the canvas and for transforming the canvas. Other canvas

contexts are available but are outside of the scope of this book.

The third and fourth lines of the script set some properties of the

context. Setting context.strokeStyle affects the color of the line, here

we set it to the built in 'dimgrey' color. Setting context.lineWidth affects

the thickness of the line, and here we set it to five pixels wide. When we

set properties of the canvas context, they remain in force until we change

them. All future lines we draw will be five pixels wide and 'dimgrey' until

we tell the canvas context otherwise.

The fifth line specifies a rectangle using the context.rect method. The

(x, y) pixel coordinates of the origin of the rectangle is specified in the first

two arguments (75 and 75). The pixel width and height of the rectangle are

specified in the last two arguments (250 and 250). Most canvas operations

involving lengths are specified in pixels (and angles are in radians). Note

that this line specifies the rectangle but doesn’t draw it. The rectangle

specification is stored in memory as a structure known as a path. We’ll talk

more about paths later.

The final active line tells the context to draw the stored path using the

current values of the context properties (lineWidth and strokeStyle).

Open the file in your browser and you’ll see the rectangle has been drawn

on the canvas, as shown in Figure 1-1.

Chapter 1 htML5 and the Canvas eLeMent

7

The final line of the script is actually a comment. Comments begin

with double forward slashes (//) and are ignored by the browser when

running the code. Comments are useful for annotating your code but also

for quickly removing lines of code while keeping the ability to uncomment

them again later by removing the slashes.

 Style the Page to Highlight the Canvas
Great so far, but we can’t see the edges of the canvas on the page because

the page and canvas are both white. Insert the <style> element from

Listing 1-3 into the <header> element after the <title> element and

reload the page.

Listing 1-3. Styling the Canvas

<style media="screen">

 body {

 text-align: center;

 font-family: sans-serif;

 }

Figure 1-1. A rectangle (actually, a square)

Chapter 1 htML5 and the Canvas eLeMent

8

 canvas {

 background-color: black;

 }

</style>

Styles allow us to control how the content of the document looks when

it’s rendered by the browser. In this case, we’re specifying that we want the

<body> element to be centrally aligned with a sans-serif font (this applies

to all child elements of the body element, as font-family is inherited by

default). We’re also specifying that <canvas> elements should be drawn

with a black background color. After reloading the page, you should see

something similar to Figure 1-2.

This allows us to see exactly where the canvas edges are and

understand that the rectangle is positioned as specified within the canvas.

I won’t cover styles much more in this book, but they’re a very powerful

technology providing exquisite control over how to render HTML content.

Figure 1-2. A 250 × 250 “rectangle” in a 400 × 400 canvas.
The top- left corner is at point (75, 75).

Chapter 1 htML5 and the Canvas eLeMent

9

 Experiment with fillStyle
Setting the context.fillStyle determines the color to use when filling

drawn shapes (including fonts). Try setting the fill style to a light grey (for

example, context.fillStyle = 'lightgrey'). Reloading the page does

nothing. That’s because we haven’t asked the context to fill the path.

To fill the path it’s necessary to call the context.fill method. Go

ahead and add the call at the end of the script, just like the call to context.

stroke. Also, swap the values of fillStyle and strokeStyle to create a

dark square with a light border for more contrast. Your page should look

like Figure 1-3.

Now let’s change the shape of the rectangle so we can create a

motivational poster. Replace the rectangle coordinates with those shown

in Listing 1-4. Notice that we can access the canvas.width and canvas.

height attributes and use them to calculate the size of our rectangle.

Figure 1-3. A dark square with a light border

Chapter 1 htML5 and the Canvas eLeMent

10

Listing 1-4. Changing the Rectangle Color, Shape, and Position

<script>

 var canvas = document.getElementById("asteroids");

 var context = canvas.getContext("2d");

 context.strokeStyle = 'lightgrey';

 context.fillStyle = 'dimgrey';

 context.lineWidth = 5;

 context.rect(75, 50, canvas.width - 150, canvas.height - 100);

 context.stroke();

 context.fill();

</script>

 Rendering Text
The canvas treats text a lot like a collection of shapes. The outline can be

drawn with the context.strokeText method, or text can be filled with

the context.fillText method. Both methods must be passed a text

string and the (x, y) coordinates (in pixels) at which to render the text.

Before rendering text it’s useful to change the font from the default using

context.font.

Add the two lines in Listing 1-5 to your script.

Listing 1-5. Write Some Text

context.font = "34px Arial";

context.fillText("2D Drawing", 110, 100);

It seems like nothing has happened, but actually, the text has been

drawn. The problem is that the fillStyle is still set to the same color as

the filled rectangle. The text color and the background color are the same,

so nothing visibly changes.

Chapter 1 htML5 and the Canvas eLeMent

11

Edit your script to add a second call to context.fillStyle. Set it to a

contrasting (light) color (for example, 'lightgrey'). Make sure your new

line is positioned after the previous call to context.fill and before your

call to context.fillText. Refresh the page and admire the fruits of your

hard work—you should have something similar to Figure 1-4.

Try using context.strokeText instead—it has exactly the same API

(it takes the same arguments in the same order) as context.fillText.

Notice that the text is rendered as an outline but that the line width is

still set to 5 pixels. Add another call to context.lineWidth and choose a

suitable thickness. Note that you can use non-integer values such as 0.5.

Update your code to match Listing 1-6.

Listing 1-6. Some Fancy Text

<script>

 var canvas = document.getElementById("asteroids");

 var context = canvas.getContext("2d");

 context.strokeStyle = 'lightgrey';

 context.fillStyle = 'dimgrey';

 context.lineWidth = 5;

Figure 1-4. Use fillText to render text

Chapter 1 htML5 and the Canvas eLeMent

12

 context.rect(75, 50, canvas.width - 150, canvas.height - 100);

 context.stroke();

 context.fill();

 context.font = "34px Arial";

 context.strokeStyle = '#FF2222';

 context.fillStyle = '#FFAAAA';

 context.lineWidth = 0.75;

 context.textAlign="center";

 let msg = "2D Drawing"

 context.fillText(msg, canvas.width / 2, 100);

 context.strokeText(msg, canvas.width / 2, 100);

</script>

The changes are all in the second half of the script. We set the familiar

context properties to some sensible values (note the use of hexadecimal

color codes). We then set a new property context.textAlign to the value

"center". This tells the context to use the central point in the text as the

“anchor.” So, when we actually render the text, the central point in the

text is positioned at the x-coordinate we provide rather than the default

leftmost point. The final few lines set a message variable and draw the text.

First we fill it and then we draw an outline (experiment with swapping the

order of these method calls). This is just the same as before except this

time we’re calculating the x-coordinate rather than specifying a literal

value (such as 110, as before). In this case, we’re aligning the text centrally

on the horizontal axis so we divide the width by 2. See Figure 1-5.

Chapter 1 htML5 and the Canvas eLeMent

13

 More Shapes and Lines
Drawing to the canvas is pretty simple. The tricky part is deciding what to

draw and designing it. Listing 1-7 includes some code for a simple stick

figure waving. Paste it in at the end of your script.

Listing 1-7. A Stick Figure

context.strokeStyle = '#FFFFFF';

context.lineWidth = 2;

context.beginPath();

context.arc(200, 140, 20, 0, Math.PI * 2);

context.moveTo(200, 160);

context.lineTo(200, 220);

context.moveTo(180, 300);

context.lineTo(185, 260);

context.lineTo(200, 220);

context.lineTo(215, 260);

context.lineTo(220, 300);

context.moveTo(240, 130);

context.lineTo(225, 170);

Figure 1-5. Fancy, centred text

Chapter 1 htML5 and the Canvas eLeMent

14

context.lineTo(200, 170);

context.lineTo(175, 180);

context.lineTo(170, 220);

context.stroke();

The script starts by setting the stroke color to white and the line width

to 2 pixels. Then we see two new methods of the context object. The

context.beginPath method begins a new path or resets the current path.

We need to call this because we already had an active path left over from

when we drew the original rectangle. If we don’t call it (try commenting it

out), then we continue the original path, and a line will be drawn from the

rectangle to our first circle. You’ll learn more about paths in Chapter 2.

The circle is drawn using the context.arc method. This method

can be used to draw any circle or portion of a circle. The method takes

five arguments, as follows: the first pair of arguments includes the (x, y)

coordinates (in pixels) of the center of the circle. The third argument is

the radius of the circle, and the fourth and fifth arguments are the starting

angle and finishing angle of the arc (measured in radians). To draw a full

circle, these angles should be 0 and 2π. We access the value of π via the

Math.PI method. We’ll use the built-in JavaScript Math object extensively

in later chapters.

The remaining method calls are all either context.moveTo or context.

lineTo until we finally call context.stroke to draw the path. The context.

moveTo and context.lineTo methods both take two arguments, and in both

cases these are the (x, y) coordinates specifying a location on the canvas in

pixels. They each do exactly what you would expect. To move the “pen” to

a location without drawing a line, call context.moveTo. To draw a line from

the current location to the given location, call context.lineTo.

Follow the code line by line and see how each line of code is necessary

to draw the stick figure shown in Figure 1-6. Try removing or editing some

of the lines to see what happens. Play around until you can predict the

effect of a change.

Chapter 1 htML5 and the Canvas eLeMent

15

Finally, complete the motivational poster by adding the code in

Listing 1-8 to your script before the recent changes to context.lineWidth

and context.strokeStyle.

Listing 1-8. A Motivational Message

let msg2 = "its quite easy";

context.font = "24px Arial";

context.fillText(msg2, canvas.width / 2, 330);

context.strokeText(msg2, canvas.width / 2, 330);

The final image should appear like Figure 1-7. Note how the position

in the code where you insert the new lines makes a difference. If you place

the new code after the context changes, the text outline will be drawn with

a thicker, white line.

Figure 1-6. Circles and lines

Chapter 1 htML5 and the Canvas eLeMent

16

 Summary
In this chapter we’ve had a very quick run-through of the basic

technologies we’ll be using to create our game. We’ve created our first

HTML document and viewed it in the browser, we’ve styled our document,

and we’ve written code to manipulate our canvas element.

We’ve seen that the HTML <canvas> element has a programmable

interface, and we’ve used HTML <script> elements with JavaScript code

to draw to the canvas. We’ve been introduced to some of the methods

available in the canvas context and used them to render a motivational

poster to the canvas. And we’ve seen that the interface gives us tools for

drawing lines and filling shapes and that we can control the thickness of

lines and the color of lines and shapes.

We learned a little about the coordinate system and how paths are

constructed. In Chapter 2, we’ll expand on this and try to get a deeper

understanding of how to master the art of drawing what we want on the

HTML canvas.

Figure 1-7. The finished poster

Chapter 1 htML5 and the Canvas eLeMent

17
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_2

CHAPTER 2

Understanding Paths
Chapter 1 introduced some of the basic methods for drawing to the canvas.

This chapter presents a follow-up exercise that looks more closely at the

canvas coordinate system and explores how to construct paths. These

concepts are critical to understanding the canvas and designing your own

drawing code.

We’ll also start to add a bit more structure to our code. Complex code

can be difficult to comprehend—adding structure is the main way to keep

the complexity under control. Structuring code into functions allows

the development of simpler code that uses those functions. This chapter

introduces functions and goes through the process of refactoring, a crucial

skill that’s necessary to manage code of any complexity.

 Organizing Your Files
To get started, we are going to organize our HTML document in a more

traditional way. In Chapter 1, we simply included the styling information

in a <style> element. To remove clutter and make the styles reusable,

we’re going to move the styles into a separate file. Create a file called

exercise2.html and start with the basic template shown in Listing 2-1.

18

Listing 2-1. A Basic Template

<!doctype html>

<html>

 <head>

 <title>More drawing to canvas</title>

 <link rel="stylesheet" href="styles.css">

 </head>

 <body>

 <h1>More drawing to canvas</h1>

 <canvas id="asteroids" width="400" height="400"></canvas>

 <script>

 var canvas = document.getElementById("asteroids");

 var context = canvas.getContext("2d");

 // Grid drawing code goes here

 </script>

 </body>

</html>

We’ve added a <link> element that refers to an external stylesheet

called styles.css. Create the styles.css file and add the rules from Listing 2-2.

Both files should be saved in the same folder. It’s usually a good idea to

have a folder exclusively for these two files.

Listing 2-2. A Standard Stylesheet

body {

 text-align: center;

 font-family: sans-serif;

}

 canvas {

 background-color: black;

}

Chapter 2 Understanding paths

19

Load exercise2.html into your browser. We have a blank canvas, so let’s

put something on it.

 The Canvas Grid System
We saw in Chapter 1 that the canvas has a coordinates system. The origin (0, 0)

is in the top-left corner. The canvas is canvas.width pixels wide and canvas.

height pixels high. Let’s make these coordinates visible by drawing a grid.

Start by setting the stroke color and line width. Add the following lines

into your <script> tag after the comment "Grid drawing code goes here":

context.strokeStyle = "#00FF00";

context.lineWidth = 0.25;

Now we use a for loop to increment the x-coordinate from 0 to the

canvas width in 10-pixel steps, drawing the vertical grid lines in each

iteration. Within the loop we move the current path position to the top of

the canvas at our x-coordinate and draw a line all the way to the bottom of

the canvas. Keeping the x-coordinate unchanged between the context.

moveTo and context.lineTo calls ensures we get a vertical line each time:

for(var x = 0; x < canvas.width; x += 10) {

 context.moveTo(x, 0);

 context.lineTo(x, canvas.height);

}

If you refresh the page, nothing is drawn. That’s because we’re still only

building a path and haven’t yet asked for it to be drawn. Repeat the same

pattern with the horizontal grid lines:

for(var y = 0; y < canvas.height; y += 10) {

 context.moveTo(0, y);

 context.lineTo(canvas.width, y);

}

Chapter 2 Understanding paths

20

Again, we’re drawing each horizontal line in turn from the left of the

canvas (x = 0) to the right (x = canvas.width). The y-coordinate starts at

0 and increases by 10 pixels each iteration until it reaches canvas.height.

Nothing is actually drawn to the canvas until we call context.stroke():

context.stroke();

This then draws the path onto the canvas, as shown in Figure 2-1.

We’d like to have a major/minor grid system so we can easily pick

out coordinates. To do this we need every fifth line to be thicker. But as

we currently do it, we have no control over the line width. The context.

stroke method we call at the end of the code applies the current stroke

style and line width to the entire current path. This means all the lines will

have the same width. If we want to give them different widths, we need to

split the drawing into multiple paths, one for each line. To do that, we need

to call both context.beginPath and context.stroke within our loops.

Figure 2-1. A basic grid pattern

Chapter 2 Understanding paths

21

Being careful not to remove any of the initial template code, replace

the grid drawing code (everything after the comment "Grid drawing code

goes here") with the code in Listing 2-3.

Listing 2-3. Altering Line Thickness

context.strokeStyle = "#00FF00";

for(var x = 0; x < canvas.width; x += 10) {

 context.beginPath();

 context.moveTo(x, 0);

 context.lineTo(x, canvas.height);

 context.lineWidth = (x % 50 == 0) ? 0.5 : 0.25;

 context.stroke();

}

for(var y = 0; y < canvas.height; y += 10) {

 context.beginPath();

 context.moveTo(0, y);

 context.lineTo(canvas.width, y);

 context.lineWidth = (y % 50 == 0) ? 0.5 : 0.25;

 context.stroke();

}

Now, within each loop we’re calling context.beginPath to start a new

path and discard any previous path data. We draw the line as before and

then set the line width using a ternary operator. The ternary operator is a

compact one-line if statement of the form result = boolean ? value_

if_true : value_if_false. Here we’re setting the line width, so if the

current x or y coordinate is divisible by 50 (determined using the modulo

operator, x % 50 == 0), we make the line width a bit thicker. Finally,

we call context.stroke within the loop to draw each line in turn. The

resulting grid is shown in Figure 2-2.

Chapter 2 Understanding paths

22

To complete our canvas graph paper, we need some axes. Because we

can’t draw outside of the canvas, we’ll squeeze some labels in at the edges.

First, we need to set a fill color so we can use canvas.fillText. Add the

following line to your script, above the loops:

context.fillStyle = "#009900";

Now, within each loop we’ll draw a label next to the major (thicker)

grid lines. Add this line at the end of the x-coordinate loop:

if(x % 50 == 0) {context.fillText(x, x, 10);}

Similarly, add the equivalent line at the end of the y-coordinate loop:

if(y % 50 == 0) {context.fillText(y, 0, y + 10);}

The result is shown in Figure 2-3.

Figure 2-2. Major/minor grid lines

Chapter 2 Understanding paths

23

Now it should be very clear how the coordinates system works. Each

of the thicker lines has a coordinate value drawn next to it. The origin is

clearly in the top-left corner, and we’re ready to draw on top of our grid.

 Refactor Early, Refactor Often
Now that we have a potentially useful piece of functionality (a grid showing

coordinates) we should immediately think about making it reusable.

Rather than copying the raw code into every script, we can refactor the

code into a function and include it in a code library (a separate JavaScript

file). Once we have the function in a library, we can simply include the

library in our HTML document and call the function.

Any code that can be reduced to simple reusable functions is a

candidate for placing in a library. A good rule of thumb is that loading a

library should have no side effects other than defining functions. Typically

libraries contain related functionality. In this case, let’s create an empty file

called drawing.js and place a link to the file in our html <head> element.

Figure 2-3. Major grid labels

Chapter 2 Understanding paths

24

Your <head> element should now look something like this:

<head>

 <title>More drawing to canvas</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

</head>

Now let’s convert the grid code into a handy function and place it in

our drawing.js library, as shown in Listing 2-4.

Listing 2-4. draw_grid function

function draw_grid(ctx, minor, major, stroke, fill) {

 minor = minor || 10;

 major = major || minor * 5;

 stroke = stroke || "#00FF00";

 fill = fill || "#009900";

 ctx.save();

 ctx.strokeStyle = stroke;

 ctx.fillStyle = fill;

 let width = ctx.canvas.width, height = ctx.canvas.height

 for(var x = 0; x < width; x += minor) {

 ctx.beginPath();

 ctx.moveTo(x, 0);

 ctx.lineTo(x, height);

 ctx.lineWidth = (x % major == 0) ? 0.5 : 0.25;

 ctx.stroke();

 if(x % major == 0) {ctx.fillText(x, x, 10);}

 }

 for(var y = 0; y < height; y += minor) {

 ctx.beginPath();

 ctx.moveTo(0, y);

Chapter 2 Understanding paths

25

 ctx.lineTo(width, y);

 ctx.lineWidth = (y % major == 0) ? 0.5 : 0.25;

 ctx.stroke();

 if(y % major == 0) {ctx.fillText(y, 0, y + 10);}

 }

 ctx.restore();

}

We haven’t made many changes here, but the result is a robust library

function. Our function, called draw_grid, takes five arguments. The first

argument ctx is a canvas context, which allows us to use the function to

draw onto any canvas using a suitable context. In order to find the canvas

height and width, we access the canvas object as a property of the ctx

argument. We’ve stored the width and height as variables for efficiency.

The second and third arguments are the minor and major distances. The

fourth and fifth arguments are the stroke and fill colors.

We’ve also added a call to context.save() at the beginning of the

drawing code and a call to context.restore() at the end. These save and

restore canvas state such as context.lineWidth, context.strokeStyle,

and context.fillStyle. Using them in this way ensures that the canvas is

restored to its original state after the function is done. This is good practice

when writing drawing code. It avoids side effects and allows the calling

code to keep control of the canvas context.

Notice that we’ve tried to make the function as general purpose as

possible. It makes no assumptions about what the client code wants other

than it wants to draw a grid with the provided context. We can use this

function to draw many different grids on many different canvases.

Which aspects of a function should be configurable depends on

the circumstances. Providing flexibility (multiple arguments) must be

balanced with the benefits of a simpler interface (fewer arguments).

Default parameters are a good way to compromise. In this case, we’ve

provided defaults by setting minor to 10 by default, and major to 5 times

the minor value. We’ve also set the colors to default values.

Chapter 2 Understanding paths

26

These defaults are only used if no values are provided, which is

achieved through an or operator (||). The value of minor is set to itself

or the default value, which only applies if the value of minor evaluates to

false (which undefined values do). It’s worth noting that this syntax has

drawbacks. If, for example, the calling code tries to set a default parameter

to 0 or some other value that resolves to false, then it will be ignored and

the default will be used.

Moving this new draw_grid function into our drawing.js library

makes our main script much shorter. We can remove all the grid drawing

code from our HTML document and replace it with a one-liner:

draw_grid(context);

We can now easily make custom grids. Try experimenting with the

arguments:

// try this for comparison

draw_grid(context, 15, 45, 'red', 'yellow');

// or this

draw_grid(context, 5, 30, 'white', 'red');

 Working with Paths
Drawing on canvases requires an understanding of paths. As we saw

earlier, a path can be constructed by calling several drawing methods in

turn. Once a path has been specified, we can either call context.fill to

fill the enclosed areas using the current context.fillStyle or we can

call context.stroke to draw the path as a line using the current context.

strokeStyle and context.lineWidth.

We’ve also seen that paths don’t need to be contiguous; they can be

interrupted by calls to context.moveTo. When transferring from one path

to another, it’s necessary to call context.beginPath in order to discard the

Chapter 2 Understanding paths

27

old path data and start a fresh path. Let’s draw some lines on our new grid

to confirm that we understand the coordinates system. Add the content of

Listing 2-5 after your call to draw_grid.

Listing 2-5. Some Lines

context.beginPath();

context.strokeStyle = "#FFFFFF";

context.fillStyle = "#00FF00";

context.lineWidth = 2;

context.moveTo(50, 50);

context.lineTo(150, 250);

context.lineTo(250, 170);

context.stroke();

context.fillText("(50, 50)", 30, 40);

context.fillText("(150, 250)", 130, 260);

context.fillText("(250, 170)", 255, 175);

The code draws two white lines. When we draw the first line, we

specify that we want to start at (50, 50) and draw a line to (150, 250). We

draw the second line without specifying a start position. The line is drawn

as a continuation of the path. We then draw the point coordinates so we

can see what’s going on clearly. Figure 2-4 shows the result. Note that the

coordinates can be read from the grid labels.

Chapter 2 Understanding paths

28

Now, we know that the path we’ve just defined, which consists of two

straight lines, is still in memory. If we add a call to context.fill we should

be able to fill the shape. But what happens when the shape isn’t completely

enclosed? Add the line to the end of your script to find out:

context.fill();

Figure 2-4. Lines are joined by default

Chapter 2 Understanding paths

29

Figure 2-5 shows what happens.

The path is filled with the shortest possible route from the beginning of

the path to the end. If we add a new context.lineTo to the script, we’ll fill

a different shape. We can even fill shapes where the lines cross over. Add

the following line in the appropriate place (before we stroke the line):

context.lineTo(320, 280);

Figure 2-5. Filling a path adds a straight line if necessary

Chapter 2 Understanding paths

30

Figure 2-6 shows the result.

Without filling, the path is extended with a new point. Figure 2-7

shows that if we add the context.fill command, the shape is filled with a

straight line once again.

Figure 2-6. Adding a line to the path

Figure 2-7. Filling when the lines cross

Chapter 2 Understanding paths

31

We can also close a path programmatically using context.closePath.

This will add a line from the current path position to the most recent

open end. Remove the call to context.fill and add a call to context.

closePath before the last call to context.stroke. Figure 2-8 shows what

happens.

We saw that paths can be interrupted when we first drew the grid lines.

We can effectively “pick up” the “pen” and move it to another position by

calling context.moveTo. By combining this with context.closePath, we

can quickly and easily draw several closed shapes together.

Figure 2-8. Closing the path

Chapter 2 Understanding paths

32

Add the code in Listing 2-6 to the end of your script.

Listing 2-6. Closed Shapes

context.beginPath()

context.moveTo(50, 250);

context.lineTo(50, 350);

context.lineTo(150, 350);

context.closePath();

context.moveTo(230, 360);

context.lineTo(270, 360);

context.lineTo(270, 310);

context.closePath();

context.moveTo(250, 50);

context.lineTo(370, 50);

context.lineTo(370, 100);

context.closePath();

context.strokeStyle = "#FFFF00";

context.fillStyle = "#000000";

context.fill();

context.stroke();

Study that code and see what happens. Figure 2-9 shows the result.

Each time we call context.moveTo, we’re setting the current origin of

the path. This is the position that context.closePath will return to. This

allows us to call context.fill and context.stroke once for drawing

multiple filled, closed shapes. Also note that we set the drawing styles

after we’ve defined the path. They can be set at any time before the calls to

context.fill and context.stroke.

Chapter 2 Understanding paths

33

 Adding Curves to a Path
There are many other ways to add to a path besides context.lineTo.

A simple way to make your drawings curvy rather than straight is to use

the alternative context.quadraticCurveTo method. It’s very similar to

context.lineTo but requires the coordinates of a control point as well as of

the end point. The line will curve towards the control point.

Replace the construction of the last path with the code from Listing 2-7.

Listing 2-7. Adding Curves

context.beginPath()

context.moveTo(50, 250);

context.quadraticCurveTo(25, 300, 50, 350);

context.quadraticCurveTo(100, 375, 150, 350);

context.closePath();

context.moveTo(230, 360);

context.quadraticCurveTo(255, 340, 270, 360);

Figure 2-9. Filled, closed, interrupted paths

Chapter 2 Understanding paths

34

context.quadraticCurveTo(255, 340, 270, 310);

context.closePath();

context.moveTo(250, 50);

context.quadraticCurveTo(310, 60, 370, 50);

context.quadraticCurveTo(400, 75, 370, 100);

context.closePath();

context.strokeStyle = "#FFFF00";

context.fillStyle = "#000000";

context.fill();

context.stroke();

The filled shapes are now made with curves, as shown in Figure 2-10.

For more control, we can draw with Bezier curves. Redraw the white

path with Bezier curves by replacing the first three calls to context.lineTo

after the grid drawing code with context.bezierCurveTo, as in Listing 2-8.

Figure 2-10. Quadratic curves

Chapter 2 Understanding paths

35

Listing 2-8. Bezier Curves

<script>

 var canvas = document.getElementById("asteroids");

 var context = canvas.getContext("2d");

 draw_grid(context)

 context.beginPath();

 context.strokeStyle = "#FFFFFF";

 context.fillStyle = "#00FF00";

 context.lineWidth = 2;

 context.moveTo(50, 50);

 context.bezierCurveTo(0, 0, 80, 250, 150, 250);

 context.bezierCurveTo(250, 250, 250, 250, 250, 170);

 context.bezierCurveTo(250, 50, 400, 350, 320, 280);

 context.closePath();

 // context.fill();

 context.stroke();

 context.fillText("(50, 50)", 30, 40);

 context.fillText("(150, 250)", 130, 260);

 context.fillText("(250, 170)", 255, 175);

 context.beginPath()

 context.moveTo(50, 250);

 context.quadraticCurveTo(25, 300, 50, 350);

 context.quadraticCurveTo(100, 375, 150, 350);

 context.closePath();

 context.moveTo(230, 360);

 context.quadraticCurveTo(255, 340, 270, 360);

 context.quadraticCurveTo(255, 340, 270, 310);

 context.closePath();

 context.moveTo(250, 50);

Chapter 2 Understanding paths

36

 context.quadraticCurveTo(310, 160, 370, 50);

 context.quadraticCurveTo(400, 75, 370, 100);

 context.closePath();

 context.strokeStyle = "#FFFF00";

 context.fillStyle = "#000000";

 context.fill();

 context.stroke();

</script>

Bezier curves take the coordinates of two control points plus the end

point. The resultant path is a curve which passes through each of the

specified end points. Figure 2-11 shows the final result. Bezier curves allow

for smooth twisting and turning with relatively simple paths.

Figure 2-11. Bezier curves

Chapter 2 Understanding paths

37

 Summary
In this chapter, we’ve looked more closely at the way the canvas interface

operates. We saw how the coordinates system works and explored in detail

how paths are created and modified. We looked at various ways to draw

lines between points. These are the basic tools at our disposal when we

want to draw things on the canvas.

I also introduced JavaScript functions and suggested a refactor early,

refactor often approach to structuring code. This chapter has continued

teaching you some basics and demonstrating how it all works. Chapter 3

puts what you’ve learned to work to create a more intentional drawing, and

looks at functions again.

Chapter 2 Understanding paths

39
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_3

CHAPTER 3

Drawing to a Design
In Chapter 2 we scribbled on the canvas and made a bit of a mess. This time

we’ll try to render a familiar design. The skills we will look at in this chapter

are developments of what you’ve learned in previous chapters, though in

this chapter we’ll be demonstrating clearer intent with what we do.

If this chapter has a message, it’s this: practice and become confident at

each step, slowly adding complexity all the while. The things we’ve learned

so far are pretty simple but are fundamental skills nonetheless. Repeating

and adding a little bit more complexity is a useful way to practice and

elaborate on what we have learned.

Let’s start the whole process from scratch but bring forward our library

code from the previous chapter. Try to follow these instructions without

checking forwards to the code example until you need to:

 1. Create a new folder called exercise3 and copy the

drawing.js file from Chapter 2 into the new folder.

 2. Create a new file called exercise3.html and set up a

standard HTML template.

 3. Add a reference to the drawing.js library in the

<head> element.

 4. In the <body> element, add a <canvas> element to

display our scene.

40

 5. Add a <script> element with the necessary

JavaScript code to create a reference to a canvas

context and to draw a blank grid to the canvas by

calling the draw_grid function, which should be

available via the reference to our library code.

 Pac-Man
We should all be familiar with the 1980 Namco classic game Pac-Man.

The eponymous hero is pretty simple to draw—a filled yellow circle with a

wedge cut out. We can draw him by drawing an arc, drawing a line to the

center of the arc, and filling the path so it automatically closes the path.

The only tricky part is choosing the start and end angles.

Imagine an arrow starting in the center of a circle, pointing to the right.

This is the zero angle (zero radians). Increasing the angle moves our arrow

in a clockwise direction. An angle of π radians is half a circle, pointing to

the left. An angle of 2π radians is a full turn and our arrow points to the

right again. This is shown in Figure 3-1.

Chapter 3 Drawing to a Design

41

To make our Pac-Man face right, we need to start the arc some number

of radians past 0 (zero) and finish the arc the same angle before 2π. The

total, open-mouth angle is perhaps a little less than a quarter turn (less than

0.5π radians), so let’s go for starting at 0.2π radians (pointing slightly down to

the right) and ending at 1.8π radians (pointing slightly up to the right).

Update your code as shown in Listing 3-1.

Figure 3-1. There are 2π radians (clockwise) in a circle

Chapter 3 Drawing to a Design

42

Listing 3-1. A Simple Pac-Man

<!doctype html>

<html>

 <head>

 <title>Pacmania</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 </head>

 <body>

 <h1>Pac-man</h1>

 <canvas id="pacmania" width="400" height="400"></canvas>

 <script>

 var context = document.getElementById("pacmania").

getContext("2d");

 draw_grid(context);

 context.beginPath();

 context.arc(200, 200, 150, 0.2 * Math.PI, 1.8 * Math.PI);

 context.lineTo(200, 200);

 context.fillStyle = "yellow";

 context.fill();

 </script>

 </body>

</html>

This code should be familiar except for a few new lines. We’re using the

context.arc method to draw an arc with a radius of 150 pixels, centered

at point (200, 200), beginning at 0.2π radians, all the way around in a

clockwise direction to 1.8π radians. To cut the wedge out, we draw a line to

the center. We then set the fill style to yellow and fill the path—the result is

shown in Figure 3-2. The context.arc method can optionally take a final

Boolean parameter for drawing counterclockwise. This can be convenient

when using arcs in more complicated paths.

Chapter 3 Drawing to a Design

43

 Create a Function
But Pac-Man eats pellets, and to do that he opens and closes his mouth

as he moves along, so we need to be able to draw him with different-sized

wedges cut out.

Refactor your code into a function that draws Pac-Man and move

your draw_pacman function into the drawing.js library. Your function

will need to take four arguments. The first two arguments are the x- and

y-coordinates. The third argument is the radius. The fourth argument is

a value between 0 and 1 representing how “open” the mouth is from fully

closed (0) to fully open (1). Also, so that your Pac-Man can be drawn onto

lighter backgrounds, call context.closePath and context.stroke within

your function to draw a black outline around your Pac-Man.

This is a chance to create your own function.

Figure 3-2. Pac-Man is just a circle with a wedge cut out

Chapter 3 Drawing to a Design

44

 Randomization
Calling the random method of the Math object (that is, calling Math.

random()) generates a randomized number between 0 and 1. Once you

have your function, replace the old Pac-Man drawing code with a single

line to draw a randomized Pac-Man via your function, like so:

draw_pacman(context, 200, 200, 150, Math.random());

Refresh the page a few times to see the randomized mouth angle.

We’re using Math.random to generate a random number between 0 and 1.

When we defined our function, we specified that the mouth angle could

be passed in as an argument in this range. So, as long as the function

draws the Pac-Man correctly, we should be drawing a Pac-Man with a

randomized mouth angle.

In another implementation, we could have the random number be

multiplied by 0.2π to create the angle on either side of zero (0) that would

be used for drawing the mouth. Each time the browser is reloaded, then, a

new random number would be generated, and the drawing function would

be called with a new mouth angle.

Take your time and make sure you understand what you’re doing

before continuing. This stuff is easy once you get the hang of it.

Now we have a function, and we can use it to draw Pac-Mans all over

our canvas. Try a simple loop to draw some random stuff. Here we’re

using a do while loop to draw random Pac-Mans until a random number

is generated that’s greater than 0.9. The do while loop always executes at

least once, so we should always see at least one Pac-Man drawn. When the

random number is greater than 0.9, the loop ends. See Listing 3-2.

Chapter 3 Drawing to a Design

45

Listing 3-2. Randomizing in a Loop

var min_radius = 5;

var max_radius = 50;

do {

 let x = context.canvas.width * Math.random();

 let y = context.canvas.height * Math.random();

 let radius = min_radius + (max_radius - min_radius) * Math.

random();

 draw_pacman(context, x, y, radius, Math.random());

}

while(Math.random() < 0.9);

It is clear that we have randomized the coordinates and the radius as

well as the mouth angle. Notice that for readability we’ve defined a number

of variables (min_radius, max_radius, x, y, and radius). These statements

could have been passed directly into the function as arguments, as we’ve

done for the mouth argument. Splitting the code up into simple statements

improves clarity and allows the code to fit on the screen.

Figure 3-3 shows what you should see. The resultant canvas is Pac- mania.

Notice how the black outline we added to the drawing helps us to distinguish

overlapping Pac-Mans.

Chapter 3 Drawing to a Design

46

 Summary
In this chapter we reviewed paths and functions with a simple but familiar

example. Notice how we ended up with a small piece of code in our script

but that it does some fairly complex drawing thanks to our use of functions

to abstract away the details of the actual individual drawing tasks. I also

introduced randomization and loops—important concepts we’ll make use

of extensively later on.

Try experimenting with what we’ve done. Pick another familiar shape

to draw. Create a function and decide what arguments should be made

available. Randomize the inputs in a loop to create your own complex

scene.

Figure 3-3. Multiple, random Pac-Mans

Chapter 3 Drawing to a Design

47
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_4

CHAPTER 4

Drawing a Spaceship
Okay, let’s get a bit more serious and start work on our game elements.

The spaceship in both the classic and modern Asteroids games is based on

a simple isosceles triangle. In this chapter, we’ll draw the spaceship and

develop the design using quadratic curves to customize our ship.

We want our ship to approximate to a circle with a given radius

because later we will use “circle to circle” collision detection. So, we’re

interested in locating points on the edge of a circle. Using angles and

distances (polar coordinates) is the obvious way to specify the points we

want, but to draw to the canvas, we need to use x and y values (Cartesian

coordinates). We’ll need to get over this.

 Basic Trigonometry
Trigonometry is going to come up a few times in this book, so its a good

idea to be clear about it now. We’ll be using a very simple subset that

allows us to calculate the x- and y-coordinates from angles and distances.

Figure 4-1 shows the basic principle. The longest edge of a right-angled

triangle is the straight line between the centre of a circle and a point on the

circumference. If we change the angle, this affects the x- and y-coordinates

in a predictable way.

48

Basically all you will need to know for now is that the sine and

cosine functions allow the (x, y) coordinates to be calculated from a

distance (a radius) and a direction (an angle). In JavaScript, there are two

corresponding methods of the Math object: Math.sin(θ) and Math.cos(θ).

With these, we can calculate the x- and y-coordinates relative to the center

of the circle for any given angle, θ. To convert an angle and a distance to x-

and y-coordinates, simply multiply these values by the distance you need

(the radius of the circle).

In our diagram, the blue dotted line shows the value of the

y-coordinate, calculated as r × Math.sin(θ). The red dotted line shows

the value of the x-coordinate, calculated as r × Math.cos(θ).

 A Basic Ship
Let’s put this to work. We’ll use a function to draw a ship to the canvas at a

specific position, with a specific radius. Remember, we want our ship to fill

a circle as completely as possible.

Figure 4-1. Sine and cosine of an angle, θ

Chapter 4 Drawing a SpaCeShip

49

To start, create a new folder called exercise4, copy through the

stylesheet (styles.css) and drawing.js library, and add a new file

exercise4.html with the code from Listing 4-1.

Listing 4-1. Template for Drawing a Ship

<!doctype html>

<html>

 <head>

 <title>Drawing a spaceship</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 </head>

 <body>

 <h1>Drawing a spaceship</h1>

 <canvas id="asteroids" width="400" height="400"></canvas>

 <script>

 var context = document.getElementById("asteroids").

getContext("2d");

 draw_grid(context);

 draw_ship(context, 200, 200, 150, {guide: true});

 </script>

 </body>

</html>

The template loads the stylesheet and library and includes a simple

three-line script. The script creates a reference to the context, draws the

grid, and then draws our ship by calling the new draw_ship function with

some arguments. The first argument is the context, the second and third

are the x- and y-coordinates, and the fourth is the radius of the circle that

contains the ship. The final argument is a bit different—it contains an

object, which we’ll get to later.

Chapter 4 Drawing a SpaCeShip

50

Our first version of the draw_ship function is shown in Listing 4-2. Add

this to the drawing.js library.

Listing 4-2. Drawing a Basic Ship

function draw_ship(ctx, x, y, radius, options) {

 options = options || {};

 ctx.save();

 // optionally draw a guide showing the collision radius

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.fillStyle = "rgba(0, 0, 0, 0.25)";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 ctx.stroke();

 ctx.fill();

 }

 // set some default values

 ctx.lineWidth = options.lineWidth || 2;

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 let angle = (options.angle || 0.5 * Math.PI) / 2;

 // draw the ship in three lines

 ctx.beginPath();

 ctx.moveTo(x + radius, y);

 ctx.lineTo(

 x + Math.cos(Math.PI - angle) * radius,

 y + Math.sin(Math.PI - angle) * radius

);

 ctx.lineTo(

 x + Math.cos(Math.PI + angle) * radius,

Chapter 4 Drawing a SpaCeShip

51

 y + Math.sin(Math.PI + angle) * radius

);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 ctx.restore();

}

The result is a basic ship. Load the template in your browser, and you

should see something like Figure 4-2.

The core of the function uses context.moveTo context.lineTo to

draw three lines forming a triangle. It sets a few parameters on the context

and then fills the shape and strokes the outline. But it does a lot of other

stuff too. There are a few new things here that require explanation.

Figure 4-2. A simple triangle ship

Chapter 4 Drawing a SpaCeShip

52

 Using Object Literals
Notice we’ve defined a fifth argument: options. This is an optional argument;

we can see this because it’s set to an empty object ({}) if it’s undefined. The

options argument allows multiple optional aspects of the ship to be set.

These options are referenced using dotted notation, such as options.stroke

or options.fill. If they’re not defined, default values are provided.

Note Objects are extremely useful and will be used extensively
in later sections. here i introduce the object literal {} used as a
simple key: value store. Object literals are specified as curly braces
containing several key: value pairs, separated by commas. Keys can
be anything that converts to a valid JavaScript string. Values can be
anything. empty objects are specified as a pair of curly braces ({}).

Update your exercise4.html file to use the draw_ship function with

different options set, as shown in Listing 4-3.

Listing 4-3. Setting the Ship Options

<script>

 var context = document.getElementById("asteroids").

getContext("2d");

 draw_grid(context);

 draw_ship(context, 200, 200, 125, {guide: true});

 draw_ship(context, 75, 75, 50, {stroke: 'gold', fill:

'purple'});

 draw_ship(context, 325, 325, 50, {angle: 0.8 * Math.PI,

guide: true});

 draw_ship(context, 75, 325, 50, {angle: 0.3 * Math.PI, guide:

true});

Chapter 4 Drawing a SpaCeShip

53

 draw_ship(context, 325, 75, 50, {lineWidth: 8, fill: 'blue'});

</script>

The result is shown in Figure 4-3. Note how we can create a function

that has a simple interface, and by allowing default values, a more detailed

interface is also possible.

The three corners of the ship are positioned on the radius of the circle.

The front of the ship is positioned at (x + radius, y), to the right of the

circle. The rear corners of the ship are determined by the angle of the

ship’s nose.

The angle variable is set by this line:

let angle = (options.angle || 0.5 * Math.PI) / 2;

It defaults to 0.5π /2. There are 2π radians in a full circle, so 0.25π

radians is 45 degrees (an eighth of a circle).

Figure 4-3. Lots of ships

Chapter 4 Drawing a SpaCeShip

54

The rear corners of the ship are drawn by this code:

ctx.lineTo(

 x + Math.cos(Math.PI - angle) * radius,

 y + Math.sin(Math.PI - angle) * radius

);

ctx.lineTo(

 x + Math.cos(Math.PI + angle) * radius,

 y + Math.sin(Math.PI + angle) * radius

);

Multiplying each coordinate by radius ensures we’re always on the

circle (a fixed distance from the middle). So, we’re finding the points on the

circle that correspond to the angle Math.PI - angle and Math.PI + angle.

One corner is positioned on the circle 45 degrees before Math.PI, and

one is 45 degrees after Math.PI. Because Math.PI is half a circle, it points to

the rear of the ship, and the two corners are positioned on either side of that.

Look at Figure 4-3 and think carefully about this until you can see what

is going on. Remember, the guide circle shows where collisions will be

detected. Asteroids will have similar circles around them, and when the

circles touch, a collision will be detected. With our ship, head-on collisions

will be accurate, as will those with the rear corners, but there are large

areas between the ship and the circle that will detect collisions too soon.

This is something we’ll try to improve later.

 Transforming the Canvas Context
Notice we’ve drawn the ship facing right. That’s because the 0 radians angle

points to the right. But how do we rotate the ship? We’re going to need to

rotate the ship around its own center and draw it at all angles in our game.

Calculating all the coordinates would be long-winded and boring.

Chapter 4 Drawing a SpaCeShip

55

A convenient way to make rotation easier is to transform the context

rather than the drawing. Rotating the context always happens around the

current context origin. Try drawing some rotated ships—replace your

exercise4.html script as shown in Listing 4-4.

Listing 4-4. Rotating the Canvas context

var context = document.getElementById("asteroids").

getContext("2d");

context.lineWidth = 0.5;

context.strokeStyle = "white";

let x = context.canvas.width * 0.9;

let y = 0;

let radius = context.canvas.width * 0.1;

draw_grid(context);

for(let r = 0; r <= 0.5 * Math.PI; r += 0.05 * Math.PI) {

 context.save()

 context.rotate(r);

 draw_ship(context, x, y, radius, {guide: true});

 context.beginPath();

 context.moveTo(0, 0);

 context.lineTo(x, 0);

 context.stroke();

 context.restore()

}

Rotating the context is just like it sounds. Imaging holding a pen over

some paper and literally rotating the paper around, drawing our ship,

pointing to the right, and then returning the paper back to its original

position. This allows us to draw our ship pointing in any direction we want.

Importantly, the rotation happens around the canvas origin, which, as we

know from our grid labels, is the top-left corner. Now imagine holding the

top-left corner of your paper still and rotating the paper around it.

Chapter 4 Drawing a SpaCeShip

56

In each iteration we save the context, rotate it, draw the ship and a

line, and then restore the context back to its original state. This means the

rotation is always applied to the un-rotated context because we’re rotating

by a larger angle each time we draw the ship at a different angle. Because

we’re rotating about the origin, the ship is always the same distance away

from the top-left corner. In each iteration we also draw a line from the

origin to the center of the ship. This line is also rotated, but the origin

remains in the top-left corner. Figure 4-4 shows the result.

In our game, we need to rotate the ship about its central point, not

the top-left corner of the canvas. To do that we need to move the context

origin before we rotate it. Crucially, when we rotate the canvas, it rotates

around the origin, so if we move the origin then we can control the

rotation. In our game, we’ll store the ship position and the ship angle. We

will translate and rotate the context before drawing the ship.

Figure 4-4. Rotating about the origin

Chapter 4 Drawing a SpaCeShip

57

This means we’ll always be drawing to the new origin, so we’ll need to

adjust the ship drawing function to remove the coordinates and just draw

at (0, 0) every time. Replace all references to x and y with 0 (zero), as shown

in Listing 4-5.

Listing 4-5. Draw at the Current Origin

function draw_ship(ctx, radius, options) {

 options = options || {};

 ctx.save();

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.fillStyle = "rgba(0, 0, 0, 0.25)";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, 0, 2 * Math.PI);

 ctx.stroke();

 ctx.fill();

 }

 ctx.lineWidth = options.lineWidth || 2;

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 let angle = (options.angle || 0.5 * Math.PI) / 2;

 ctx.beginPath();

 ctx.moveTo(radius, 0);

 ctx.lineTo(

 Math.cos(Math.PI - angle) * radius,

 Math.sin(Math.PI - angle) * radius

);

 ctx.lineTo(

 Math.cos(Math.PI + angle) * radius,

 Math.sin(Math.PI + angle) * radius

);

Chapter 4 Drawing a SpaCeShip

58

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 ctx.restore();

}

We can now draw the ship in any position we like by translating the

canvas (using calls to context.translate) and rotating the canvas (with

context.rotate) before drawing the ship at point (0, 0). When transforming

the canvas like this, we must be careful to save and restore the canvas

state—otherwise we can lose track. In Listing 4-6 we rotate and translate the

canvas without restoring it, and the rotations and translations accumulate

to produce a nice but unintentional spiral, as shown in Figure 4-5.

Listing 4-6. Combining Rotate and Translate

let t = context.canvas.width / 20;

let r = Math.PI / 500;

context.translate(0, t);

for(let i = 0; i <= 50; i ++) {

 context.rotate(i * r);

 draw_ship(context, t, {guide: true, lineWidth: 1});

 context.translate(t, 0);

}

Chapter 4 Drawing a SpaCeShip

59

A better approach is to maintain variables (that is, x, y, and angle) that

determine the position and angle of the ship. In this way, we can save the

untransformed context, apply the transformations, draw the ship, and

finally restore the context. This allows us to draw the ship in any location

and pointing in any direction we choose.

Listing 4-7 loops over x and y positions in a nested loop and draws a

small ship in each position. Each ship is drawn with a slightly bigger angle.

Notice that the code within the save and restore calls is very generic.

It’s the code that controls our variables that is doing the work. Figure 4-6

shows the ships all lined up obediently.

Listing 4-7. Controlling Variables

let x, y, angle = 0;

let w = context.canvas.width, h = context.canvas.height

for(y = h/20; y < h; y += h/10) {

 for(x = w/20; x < w; x += w/10) {

 context.save();

Figure 4-5. Losing track of the canvas state

Chapter 4 Drawing a SpaCeShip

60

 context.translate(x, y);

 context.rotate(angle);

 draw_ship(context, w/30, {guide: true, lineWidth: 1});

 context.restore();

 angle = (angle + 0.0075 * Math.PI);

 }

}

 Adding Some Curves
The ship is looking nice, but it’s a bit boxy. The next step is to take control

of the curves. Luckily, that’s really simple. The first thing to do is identify

a straight line that we want to turn into a curve. The rear of the ship is the

obvious first choice. Now, for a quadratic curve we need a single control

point that will “pull” the straight line into a curve. In this case, it will be a

point towards the back of the ship on the central line of the ship, where the

Figure 4-6. Controlled ship drawing using canvas
transformations

Chapter 4 Drawing a SpaCeShip

61

y-coordinate is 0. With this decided, we can convert one context.lineTo

call to a context.quadraticCurveTo call. Update your draw_ship function,

as shown in Listing 4-8.

Listing 4-8. Using Quadratic Curves

function draw_ship(ctx, radius, options) {

 options = options || {};

 let angle = (options.angle || 0.5 * Math.PI) / 2;

 // this is new

 let curve = options.curve || 0.5;

 ctx.save();

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.fillStyle = "rgba(0, 0, 0, 0.25)";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, 0, 2 * Math.PI);

 ctx.stroke();

 ctx.fill();

 }

 ctx.lineWidth = options.lineWidth || 2;

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 ctx.beginPath();

 ctx.moveTo(radius, 0);

 ctx.lineTo(

 Math.cos(Math.PI - angle) * radius,

 Math.sin(Math.PI - angle) * radius

);

 // here we have added a control point based on the curve

variable

Chapter 4 Drawing a SpaCeShip

62

 ctx.quadraticCurveTo(radius * curve - radius, 0,

 Math.cos(Math.PI + angle) * radius,

 Math.sin(Math.PI + angle) * radius

);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 // a new guide line and circle show the control point

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.moveTo(-radius, 0);

 ctx.lineTo(0, 0);

 ctx.stroke();

 ctx.beginPath();

 ctx.arc(radius * curve - radius, 0, radius/50, 0, 2 * Math.

PI);

 ctx.stroke();

 }

 ctx.restore();

}

We’ve added a new optional variable called curve. The default value

is 0.5. When we draw the line between the rear corners of the ship, we

now use a quadratic curve rather than a straight line. The control point for

the curve is on the central axis of the ship. If the value of curve is 0, then

the control point in on the radius of the circle. If the value of curve is set

to 1, then the control point is the center of the circle.

Chapter 4 Drawing a SpaCeShip

63

Now, to test the function we’ll randomize the new argument and draw

a large ship in the center of the canvas. Each time the page is refreshed (for

example, by pressing Ctrl+R), a new value will be selected, and the canvas

will update:

context.translate(200, 200);

draw_ship(context, 150, {curve: Math.random(), guide: true});

We also add a new section of guide code to draw the control point on

top of the ship. We draw a filled dot at the position of the control point to

help show how the curve is constructed. We also draw a line to show the

potential extent of the control point (between 0 and 1). Notice that the

curve doesn’t necessarily pass through the dot but is drawn towards it. You

should see something like Figure 4-7.

Try setting the value of curve manually. Values below 0 and above 1 are

valid up to a point. Make sure you understand what’s happening here.

Figure 4-7. Adding a curve

Chapter 4 Drawing a SpaCeShip

64

As noted before, the ship should be drawn as close to the circle edge as

possible so that collisions are more accurate. Though we’re relaxed about

the shape, we want its position and size to match the circle as closely as

possible.

The final embellishment we’ll add to the spaceship design is to draw

the sides as quadratic curves. This can be done in many ways, here we’ll

place a control point on either side of the ship at opposite points to the rear

corners. We’ll specify the position in the circle as an argument. This is the

position (from 0 to 1, center to radius) at which the control point will be

placed. Larger numbers will pull the sides out so they fill more of the space

inside the circle, smaller numbers will pull the sides inwards.

Listing 4-9 shows the final code.

Listing 4-9. Curvy Ships

function draw_ship(ctx, radius, options) {

 options = options || {};

 let angle = (options.angle || 0.5 * Math.PI) / 2;

 // Now we have two curve arguments

 let curve1 = options.curve1 || 0.25;

 let curve2 = options.curve2 || 0.75;

 ctx.save();

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.fillStyle = "rgba(0, 0, 0, 0.25)";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, 0, 2 * Math.PI);

 ctx.stroke();

 ctx.fill();

 }

Chapter 4 Drawing a SpaCeShip

65

 ctx.lineWidth = options.lineWidth || 2;

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 ctx.beginPath();

 ctx.moveTo(radius, 0);

 // here we have the three curves

 ctx.quadraticCurveTo(

 Math.cos(angle) * radius * curve2,

 Math.sin(angle) * radius * curve2,

 Math.cos(Math.PI - angle) * radius,

 Math.sin(Math.PI - angle) * radius

);

 ctx.quadraticCurveTo(-radius * curve1, 0,

 Math.cos(Math.PI + angle) * radius,

 Math.sin(Math.PI + angle) * radius

);

 ctx.quadraticCurveTo(

 Math.cos(-angle) * radius * curve2,

 Math.sin(-angle) * radius * curve2,

 radius, 0

);

 ctx.fill();

 ctx.stroke();

 // the guide drawing code is getting complicated

 if(options.guide) {

 ctx.strokeStyle = "white";

 ctx.fillStyle = "white";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.moveTo(

 Math.cos(-angle) * radius,

 Math.sin(-angle) * radius

Chapter 4 Drawing a SpaCeShip

66

);

 ctx.lineTo(0, 0);

 ctx.lineTo(

 Math.cos(angle) * radius,

 Math.sin(angle) * radius

);

 ctx.moveTo(-radius, 0);

 ctx.lineTo(0, 0);

 ctx.stroke();

 ctx.beginPath();

 ctx.arc(

 Math.cos(angle) * radius * curve2,

 Math.sin(angle) * radius * curve2,

 radius/40, 0, 2 * Math.PI

);

 ctx.fill();

 ctx.beginPath();

 ctx.arc(

 Math.cos(-angle) * radius * curve2,

 Math.sin(-angle) * radius * curve2,

 radius/40, 0, 2 * Math.PI

);

 ctx.fill();

 ctx.beginPath();

 ctx.arc(radius * curve1 - radius, 0, radius/50, 0, 2 *

Math.PI);

 ctx.fill();

 }

 ctx.restore();

}

Chapter 4 Drawing a SpaCeShip

67

The changes are actually quite small—we’re only adding some control

points calculated using simple trigonometry as described earlier. The

majority of the additional code is actually for drawing the control points!

Focus on the changes in the main code. We’ve changed the options.

curve value into options.curve1 and options.curve2. The two remaining

calls to context.lineTo have been converted to calls to context.

quadraticCurveTo and have specified the control points.

Again, calling it is straightforward:

context.translate(200, 200);

draw_ship(context, 150, {

 curve1: Math.random(),

 curve2: Math.random(),

 guide: true

});

Try this and you should get something like Figure 4-8. Refresh the page

(Ctrl+R) and you should see random variants drawn each time.

Figure 4-8. A fully curved spaceship

Chapter 4 Drawing a SpaCeShip

68

Try the code in Listing 4-10 to check out some of the alternative ships

we can draw with our new method. You should end up with something like

Figure 4-9.

Listing 4-10. Drawing Multiple Variations

var context = document.getElementById("asteroids").

getContext("2d");

draw_grid(context);

let c1 = 0, c2 = 0;

for(c1=0.1; c1<1; c1+=0.2) {

 for(c2=0.1; c2<1; c2+=0.2) {

 context.save();

 context.translate(context.canvas.width * c1, context.

canvas.height * c2)

 context.rotate(-Math.PI/2);

 draw_ship(context, context.canvas.width / 12, {curve1: c1,

curve2: c2, guide : true});

 context.restore();

 }

}

Chapter 4 Drawing a SpaCeShip

69

Now we have a complete, fully configurable ship drawing function we

can use in our game by simply importing our drawing.js library. Adding

structure by defining your own functions makes complex code far easier to

comprehend.

 Summary
This chapter has developed the ideas from Chapter 3 significantly. We’ve

drawn a more complicated shape and developed the design from a simple

triangle into a curvy delight.

We’ve learned about translating and rotating the canvas. These will

be important concepts later on, so you need to be sure you understand

them pretty well. They allow us to work with our drawing function in an

extremely flexible way.

Figure 4-9. A series of alternative spaceships

Chapter 4 Drawing a SpaCeShip

70

A crucial observation is that as our drawing function becomes more

and more complicated, the code with which we call our drawing function

hardly changes at all. This is how we manage complexity in general,

by abstracting ideas such as draw a ship into functions and calling the

function whenever we need to “draw a ship.”

Try developing your own draw_ship function. Keep the guide circle

code and try to draw as close to the edges as you can. Does it matter if you

go over the edges a bit?

Chapter 4 Drawing a SpaCeShip

71
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_5

CHAPTER 5

Drawing an Asteroid
Asteroids, like ships, can be approximated to a circle for the purposes of

collision detection. However, they should be irregular shapes, and each

one should be unique. To achieve this we’ll make extensive use of the

Math.random method to define the shape of our asteroids.

 Drawing Basic Shapes
As a first stab, we’ll divide our circle into segments and draw a straight line

from each segment to the next. We can do that by rotating the canvas in

steps and drawing a line at each step before closing the path. We’ll want

some randomness in the distance of the point from the origin.

We can manage the rotation in a loop. We can rotate the same amount

at every step: this is 2π radians divided by the number of segments. We

can then pick a random point near the circumference, directly to the right

of the origin. The origin of the rotation will be the center of the asteroid,

so although we keep our pen to the right of the circle, our drawing rotates

under the pen. In this way, we draw our asteroid, one segment at a time

and we should be able to close the path at the end.

72

Add the function from Listing 5-1 into drawing.js.

Listing 5-1. Drawing Basic Shapes

function draw_asteroid(ctx, radius, segments, options) {

 options = options || {};

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 ctx.save();

 ctx.beginPath();

 for(let i = 0; i < segments; i++) {

 ctx.rotate(2 * Math.PI / segments);

 ctx.lineTo(radius, 0);

 }

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 if(options.guide) {

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, 0, 2 * Math.PI);

 ctx.stroke();

 }

 ctx.restore();

}

The function takes four arguments: the context with which to draw,

the radius of the asteroid, the number of segments, and an optional set of

options. It begins a path and proceeds to rotate the canvas one segment at

a time, adding a line to the path for each segment. The path is then closed

off, which completes the drawing. If a guide is requested, it’s drawn as a

simple circle.

Chapter 5 Drawing an asteroiD

73

Note that the position of the start of the path isn’t established after the

context.beginPath method call. Under these circumstances, the first line

to be added to the path isn’t drawn but is treated as a move. So, by the time

the last segment is drawn, there’s one line missing and the path needs to

be closed.

Create a new file exercise5.html and set it up as before but with a new

title and heading. Draw a grid as in the previous exercises and add the

code from Listing 5-2.

Listing 5-2. Some Regular Shapes

let context = document.getElementById("asteroids").

getContext("2d");

draw_grid(context);

let segments = 1

for(let x=0.25; x<1; x+= 0.5) {

 for(let y=0.25; y<1; y+= 0.5) {

 segments += 2;

 context.save();

 context.translate(context.canvas.width * x,

context.canvas.height * y);

 draw_asteroid(context, 60, segments, {guide: true});

 context.restore();

 }

}

This draws four asteroids to the canvas, as in Figure 5-1. Notice that the

corners of the asteroids are located on the guide circles.

Chapter 5 Drawing an asteroiD

74

To add randomization is fairly simple. We simply change the

x-coordinate of the context.lineTo command, adding a bit of random

noise to the radius in each segment. How we do this determines how

close we can keep to the guide circles. A simple approach would be to

multiply the radius by a random number—that would add huge variation

in the segment positions between 0 (the center of the asteroid) and the

full radius. Listing 5-3 shows three approaches to adding randomness that

were attempted when writing these examples.

Listing 5-3. Adding Randomness

//A simplistic approach - we don't want totally random

ctx.lineTo(radius * Math.random(), 0);

//This is much better, only a bit random

ctx.lineTo(radius * 0.8 + radius * 0.4 * Math.random(), 0);

//This is neat, configurable and keeps the radius about right

ctx.lineTo(radius + radius * options.noise * (Math.random()

- 0.5), 0);

Figure 5-1. Regular asteroids with no randomization

Chapter 5 Drawing an asteroiD

75

There are requirements that those examples expose. In the first

example, a random asteroid could include points at the origin; that’s

not what we want. To avoid this, we specify a portion of the radius that

will always remain intact (for example, 80%) and only randomize the

remainder. In the second example, a random asteroid will always have

points within the collision circle and never outside it. We want the

randomization to “straddle” the specified radius rather than always

eating into it, making the asteroid smaller. To do that, we generate a

number between –0.5 and +0.5 and randomize the drawing using this.

Also, the second example isn’t configurable, so we introduce the use of a

configuration parameter that can be specified in the options argument.

The final example shows this approach achieved by specifying a noise

parameter between 0 (no randomization) and 1 (lots of randomization). This

value is multiplied by a random number between –0.5 and 0.5 to limit the

effect of the randomization. For example, a noise value of 0.2 can lead to any

radius between 90% and 110% of the original radius. Specifying a noise factor

of 0.1 would allow the radius to vary between 95% and 105% of the given value.

Update your function to take a noise argument. Then draw 25

asteroids using the code in Listing 5-4.

Listing 5-4. Drawing Some Different Asteroids

var segments = 15, noise = 0.4;

for(let x=0.1; x<1; x+= 0.2) {

 for(let y=0.1; y<1; y+= 0.2) {

 context.save();

 context.translate(context.canvas.width * x, context.canvas.

height * y);

 draw_asteroid(context, context.canvas.width / 12, segments,

{noise: noise, guide: true});

 context.restore();

 }

}

Chapter 5 Drawing an asteroiD

76

Here we loop over the x- and y-coordinates as before and draw

an asteroid at each location. The result is shown in Figure 5-2. Try

experimenting with the number of segments and the noise level by

changing the initial values of the provided variables. You can also change

the values in each loop by incrementing or randomizing them. What do

you notice about asteroids with large numbers of segments?

These asteroids look pretty good! Notice in Figure 5-2 that we’ve

also added two new guide circles to show the inner and outer extent of

the configured noise. This is left as an exercise. Implement this in your

function using a thinner line width than the main guide circle.

 Storing Shape Data
In our game we’ll need to have individual asteroids persist until

they’re shot or the game ends. As it stands, our function can’t do this. It

randomizes the asteroid shape every time it’s called. The shape data

Figure 5-2. 25 asteroids (segments = 15, noise = 0.2)

Chapter 5 Drawing an asteroiD

77

(an array of random numbers) needs to be stored and used when drawing

the individual asteroids. Each asteroid needs its own shape data.

A first step towards doing this would be to generate the random shape

data outside the function and pass it in as a function argument. Let’s try it.

Listing 5-5. Taking Shape Data

function draw_asteroid(ctx, radius, shape, options) {

 options = options || {};

 ctx.strokeStyle = options.stroke || "white";

 ctx.fillStyle = options.fill || "black";

 ctx.save();

 ctx.beginPath();

 for(let i = 0; i < shape.length; i++) {

 ctx.rotate(2 * Math.PI / shape.length);

 ctx.lineTo(radius + radius * options.noise * shape[i], 0);

 }

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 if(options.guide) {

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, 0, 2 * Math.PI);

 ctx.stroke();

 ctx.beginPath();

 ctx.lineWidth = 0.2;

 ctx.arc(0, 0, radius + radius * options.noise, 0, 2 *

Math.PI);

 ctx.stroke();

 ctx.beginPath();

Chapter 5 Drawing an asteroiD

78

 ctx.arc(0, 0, radius - radius * options.noise, 0, 2 *

Math.PI);

 ctx.stroke();

 }

 ctx.restore();

}

We’ve actually made very few changes. The main difference is that

we now take a shape argument rather than a segments argument. The

shape can be any array of numbers, but the numbers are assumed to vary

between –0.5 and +0.5. Where we previously referenced the segments

variable, we now use shape.length. Where we generated random

numbers, we now use the value of the appropriate element in the shape

array (shape[i]). We’ve also added the extra guide circles indicating the

value of noise.

To use the new function, we must generate our shape data and then we

can simply pass it into the function to replace the segments argument. Try

the code in Listing 5-6.

Listing 5-6. Using the Same Shape with Different Noise

var segments = 15, noise = 0;

var shape = [];

for(var i = 0; i < segments; i++) {

 shape.push(2 * (Math.random() - 0.5));

}

for(let y=0.1; y<1; y+= 0.2) {

 for(let x=0.1; x<1; x+= 0.2) {

 context.save();

 context.translate(context.canvas.width * x,

context.canvas.height * y);

 draw_asteroid(context, context.canvas.width / 16, shape,

{noise: noise, guide: true});

Chapter 5 Drawing an asteroiD

79

 context.restore();

 noise += 0.025;

 }

}

In this case, we generate the shape data and then draw a set of 25

asteroids with the same shape but with increasing value for the noise

argument (see Figure 5-3). noise starts at 0 and increases in 0.125 steps to

0.6. Try experimenting with the code.

We now have a function that can draw our asteroids according to

a configurable noise level. The client code that uses the function is

responsible for generating the asteroid shape, setting the size, and selecting

an appropriate noise level. Functions are great for handling the nitty-gritty

detail and pushing the important decisions up to higher-level code.

Figure 5-3. Using the same shape with increasing noise

Chapter 5 Drawing an asteroiD

80

 Summary
In this chapter we’ve repeated the process of designing an item we’ll need in

our game. We’ve also introduced something else. If we’re going to draw an

asteroid spinning across our scene, we’ll need to store data about its shape.

The use of data that’s tied to the individual item is an important concept.

It’s also important to understand that writing code is a creative,

problem-solving process. The code examples in this book serve as

examples to demonstrate the concepts. The code didn’t appear fully

formed, but each example was sculpted and perfected over many weeks.

Listing 5-3 shows how a piece of code has developed over time—in short,

by starting as simple as possible and adapting the design if it doesn’t work

for what you’re doing.

When you write code of your own, it’s wise to expect it to be a difficult

but rewarding experience. Mastery comes with practice. For now, a good

way to practice is to elaborate on the examples provided. Try drawing an

asteroid using a different approach. Add a new parameter that can be passed

as an optional argument. Display your asteroids in an interesting way.

Chapter 5 Drawing an asteroiD

PART II

Animation

Animation is fairly easy to do with the HTML canvas. All we need to do

is clear the canvas and draw the scene repeatedly, updating the scene at

every step. If we repeat this process and draw the scene at around 60 times

per second, then we are animating.

We need to clearly define how each element of the scene updates at

each step, making sure we keep the code that updates the scene separate

from the code that draws the scene. The following chapters demonstrate

how to control an animation with a simple game loop, and we will learn

the fundamentals of a solid object-oriented approach to designing our

game elements. Finally, we will develop some of the game elements

necessary for our Asteroids game clone using a simple approach to

inheritance.

83
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_6

CHAPTER 6

Basic Animation
In previous chapters we’ve looked at the nuts and bolts of drawing to the

canvas. Now that we have a bit of experience, we can turn our attention to

animating a scene. Animation is quite easy—simply draw a changing scene

multiple times per second. In this chapter we’ll learn to do this in a very

simplistic way in order to understand the basics.

When drawing ships and asteroids, we need data about their location,

size, shape, and so on. This data will be used to translate and rotate the

context so everything appears in the right place. To animate a scene, we

update the data each frame and redraw the scene over and over as the data

changes.

 Start Simple
Let’s start off with a very simple scene: a single moving circle. The circle

has a position on the canvas (x- and y-coordinates), which we will move.

Create a new folder in the usual way: copy over the drawing.js library and

stylesheet. Create a new file exercise6.html with the code in Listing 6-1.

Listing 6-1. A Moving Circle

<!doctype html>

<html>

 <head>

 <title>Animation</title>

84

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 </head>

 <body>

 <h1>Animation</h1>

 <canvas id="asteroids" width="300" height="300"></canvas>

 <script>

 var context = document.getElementById("asteroids").

getContext("2d");

 context.strokeStyle = "white";

 context.lineWidth = 1.5;

 var x = 0, y = context.canvas.height / 2;

 function frame() {

 context.clearRect(0, 0, context.canvas.width, context.

canvas.height);

 draw(context);

 update();

 }

 function update() {

 x += 1;

 }

 function draw(ctx) {

 draw_grid(ctx);

 ctx.beginPath();

 ctx.arc(x, y, 40, 0, 2 * Math.PI);

 ctx.fill();

 ctx.stroke();

 }

Chapter 6 BasiC animation

85

 setInterval(frame, 1000.0/60.0); // 60 fps

 </script>

 </body>

</html>

The code is mostly familiar, but there are a few new things to notice.

First, we’re storing the x- and y-coordinates as global variables. We’ve also

restructured our code into a series of functions: frame, update, and draw.

The frame function does three distinct things. It clears the canvas using the

context.clearRect method. Then it calls the draw function, which draws

a circle at position x, y, and it calls the update function, which moves

the x-coordinate one pixel to the right. The final new thing is the call to

setInterval, which schedules the frame function to be called 60 times per

second.

The result is that each time the frame function is called, it clears the

canvas, draws a grid, draws a circle at the current position, and moves the

position to the right. The call to setInterval passes in the function to be

called (frame) and the time interval in milliseconds between calls (1000.0

/ 60.0). So, the frame function is called every sixtieth of a second, and the

circle moves to the right at 60 pixels per second. Once the circle moves

beyond the end of the canvas, it’s no longer visible, but the value of x

continues to increment.

Try experimenting with the update function to change the behavior of

our circle. Here are a few simple ideas:

• Increment the x coordinate by a different value

(for example, 5)

• Increment the y coordinate as well

• Decrement the coordinates

• Set the y coordinate to a random number (between 0

and the canvas height)

Chapter 6 BasiC animation

86

 A More Complicated Example
Let’s focus on the update function and give our circle some more

complicated behavior. For example, we can add a gravity effect to make the

circle accelerate downwards.

Add a line after the x and y definitions to define the variables we’ll need:

var yspeed = 0, gravity = 0.1;

Update your update function like so:

function update() {

 x += 1;

 y += yspeed;

 yspeed += gravity;

}

Here we’re moving the y coordinate according to the yspeed and

incrementing yspeed by the value of gravity. The circle accelerates off the

bottom of the canvas pretty quickly.

Let’s make the circle bounce when it hits the bottom of the screen.

Bouncing is simply switching the direction of travel, like this:

function update() {

 x += 1;

 y += yspeed;

 yspeed += gravity;

 if(y >= context.canvas.height) { // if you hit the bottom

 yspeed *= -1; // move up instead of down

 }

}

If you want to lose a bit of energy on every bounce, then multiply by

less than –1 (for example, –0.8).

Chapter 6 BasiC animation

87

Note Be careful about this.

Consider what would happen if the yspeed were +10 (pixels per
frame) and the y coordinate were just 1 pixel short of the canvas
height.

1. the y coordinate increases to 9 pixels beyond the canvas height,
and yspeed is updated to –8.

2. the y coordinate decreases to 1 pixel beyond the canvas height,
and yspeed is set to +6.4.

the position then never gets below the canvas height because
yspeed is updated (reversed and shrunk) in every frame. to fix
this problem, make sure the circle is moved to the canvas height
whenever yspeed is reversed.

Now we would like to see the circle “wrap” around the canvas

horizontally. Add the following lines to your update function:

if(x <= 0 || x >= context.canvas.width) {

 x = (x + context.canvas.width) % context.canvas.width;

}

Now we can take this a bit further by adding more variables and

optionally drawing a Pac-Man instead of a ball. This shows the benefit

of keeping the updating and drawing code separate and having handy

drawing functions available. Update your code to reflect Listing 6-2.

Chapter 6 BasiC animation

88

Listing 6-2. A Bouncing Ball/Pac-Man

<!doctype html>

<html>

 <head>

 <title>Animation</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 </head>

 <body>

 <h1>Animation</h1>

 <canvas id="asteroids" width="300" height="300"></canvas>

 <script>

 var context = document.getElementById("asteroids").

getContext("2d");

 context.strokeStyle = "white";

 context.lineWidth = 1.5;

 let x = 0, y = context.canvas.height / 5, radius = 20;

 let xspeed = 1.5, yspeed = 0, gravity = 0.1;

 let mouth = 0;

 function frame() {

 context.clearRect(0, 0, context.canvas.width, context.

canvas.height);

 draw(context);

 update();

 }

 function update() {

 x += xspeed;

 y += yspeed;

 yspeed += gravity;

 if(y >= context.canvas.height - radius) {

Chapter 6 BasiC animation

89

 y = context.canvas.height - radius;

// add an extra radius

 yspeed *= -0.6;

// reverse and slow down

 xspeed *= 0.95;

// just slow down a bit

 }

 if(x <= 0 || x >= context.canvas.width) {

 x = (x + context.canvas.width) % context.canvas.width;

 }

 mouth = Math.abs(Math.sin(6 * Math.PI * x / (context.

canvas.width)));

 }

 function draw(ctx) {

 draw_grid(ctx);

 // draw a simple circle

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 ctx.fill();

 ctx.stroke();

 // or try this instead

 // ctx.save();

 // ctx.translate(x, y);

 // draw_pacman(ctx, radius, mouth);

 // ctx.restore();

 }

 setInterval(frame, 1000.0/60.0); // 60 fps

 </script>

 </body>

</html>

Chapter 6 BasiC animation

90

We’ve gone to town here by keeping track of another variable to

control the mouth angle. The mouth angle is now tied to the x coordinate

and follows a sine wave that opens and closes the mouth six times each

time Pac-Man crosses the canvas. The mouth position is tightly tied to the

position in the x coordinate. This is just for fun. Feel free to update the

mouth variable however you like.

Notice the other major changes relate to adding an xspeed variable

and a radius and also adapting the code that bounces our item off the

bottom of the canvas. We no longer sink halfway through the canvas.

The draw_pacman function will need to be updated to draw at the

context origin, as in Listing 6-3.

Listing 6-3. Draw Pac-Man at the Origin

function draw_pacman(ctx, radius, mouth) {

 angle = 0.2 * Math.PI * mouth;

 ctx.save();

 ctx.fillStyle = "yellow";

 ctx.strokeStyle = "black";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.arc(0, 0, radius, angle, -angle);

 ctx.lineTo(0, 0);

 ctx.closePath()

 ctx.fill();

 ctx.stroke();

 ctx.restore();

}

Chapter 6 BasiC animation

91

To clarify what’s going on here, we can follow the code in the other

direction. The call to setInterval is causing frame to be called 60 times

per second. The repeated calls to frame clear the canvas, call update, and

then call draw. The update function updates the variables x, y, yspeed,

xspeed, and mouth. The draw function renders the circle (or Pac-Man)

using the variables to determine its position and mouth angle. The end

result is that the circle/Pac-Man bounces across the canvas. You should see

something like Figure 6-1.

Try removing the call to context.clearRect to see why it needs to be

there.

Figure 6-1. Pac-Man chomping his way across the canvas

Chapter 6 BasiC animation

92

 Summary
In this chapter we looked at the basic principles of animation: we render

a scene frame by frame and control the data associated with our game

elements. Dividing these two basic tasks of drawing the scene and

updating the data into two distinct functions is the first step in maintaining

a structured approach. How we manage this data is a critical aspect of how

our game will be able to grow in complexity as it develops.

I should be clear that animating based on setInterval is not best

practice. Modern browsers implement a mechanism specifically designed

for animating on the web. We should quickly move to using the window.

requestAnimationFrame method to control our game loop. So let’s do it.

Chapter 6 BasiC animation

93
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_7

CHAPTER 7

Animating Asteroids
In this chapter we’re going to introduce some critical structure into our

code. The previous few chapters introduced the requirement to store data

tied to our game elements. This chapter introduces the use of objects as

a solution to the explosion in complexity this brings. Objects are a great

solution because they enable data and code to be intimately connected.

Now that we can animate, we can start to build out the main parts

of the game. We’ll start by getting some asteroids on the screen, floating

about. Asteroids float in space, and they keep going until they’re shot or

the game ends. Their velocity and rotation are randomly initialized and

never changes.

 A Solid Game Loop
The window.requestAnimationFrame API allows developers to specifically

make a request of the browser to draw the next frame of an animation. It

benefits from many optimizations, such as working at the refresh rate of

the system and ensuring rendering is synchronized with the browser’s own

repaint cycle. It also benefits from not rendering frames when the page is

minimized or when another browser tab is selected. This saves processing

power and battery life.

94

In this exercise, we’ll implement a robust game loop to control an

animated asteroid. Create a new folder and copy the drawing.js library

and the stylesheet. Copy the template from the previous example and save

the file as exercise7.html. Rename the page title and header and replace

the script with the code from Listing 7-1.

Listing 7-1. Setting Up an Asteroid

var context = document.getElementById("asteroids").

getContext("2d");

// asteroid shape

var segments = 24;

var shape = [];

for(var i = 0; i < segments; i++) {

 shape.push(Math.random() - 0.5);

}

var radius = 50;

var noise = 0.2;

// asteroid state

var x = context.canvas.width * Math.random();

var y = context.canvas.height * Math.random();

var angle = 0;

// asteroid movement

var x_speed = context.canvas.width * (Math.random() - 0.5);

var y_speed = context.canvas.height * (Math.random() - 0.5);

var rotation_speed = 2 * Math.PI * (Math.random() - 0.5);

This code defines the global variables we’re using for this animation.

The context is accessed as usual. We define variables to store the number

of segments in the asteroid, and we set up the asteroid shape data. We also

store the radius as a variable and the asteroid noise. All this should be

fairly self-explanatory from the previous asteroid drawing example.

Chapter 7 animating asteroids

95

The asteroid is given a randomized position, and its angle is initialized

to 0 (since its shape is randomized anyway). It’s also given an x_speed and

a y_speed, which determine its velocity. The rotation_speed variable

is also randomized, indicating how fast the asteroid should spin and in

what direction. These movement variables are all randomized to be either

positive or negative using Math.random() – 0.5.

Now add the draw function from Listing 7-2 to render the scene.

Listing 7-2. A Function to Draw the Scene

function draw(ctx, guide) {

 if(guide) {

 draw_grid(ctx);

 }

 ctx.save();

 ctx.translate(x, y);

 ctx.rotate(angle);

 draw_asteroid(ctx, radius, shape, {

 guide: guide,

 noise: noise

 });

 ctx.restore();

}

We’re taking a new guide argument because we want to be able to

switch the grid and guide lines as well as our other guides on and off for

the whole scene. First we draw the grid, but only if the guide argument is

set to true. Then between save and restore calls we prepare the context

and call draw_asteroid with our stored parameters. The asteroid options

are constructed as a new object literal which is passed directly into the

draw_asteroid function.

Chapter 7 animating asteroids

96

The state of the asteroid is determined by the global variables, which

are continuously changed in the update function. This determines the

asteroid’s behavior. Add the update function from Listing 7-3.

Listing 7-3. A Function to Update the Asteroid Variables

function update(elapsed) {

 if(x - radius + elapsed * x_speed > context.canvas.width)

{x = -radius;}

 if(x + radius + elapsed * x_speed < 0) {x = context.canvas.

width + radius;}

 if(y - radius + elapsed * y_speed > context.canvas.height)

{y = -radius;}

 if(y + radius + elapsed * y_speed < 0) {y = context.canvas.

height + radius;}

 x += elapsed * x_speed;

 y += elapsed * y_speed;

 angle = (angle + elapsed * rotation_speed) % (2 * Math.PI);

}

The first difference we see here is that the update function receives

an argument. This represents the elapsed time (in seconds) since the last

frame was rendered. It allows us to maintain consistent game speed even if

performance and refresh rate fall. Our x_speed and y_speed variables are

defined in units of pixels per second. We can calculate the exact number of

pixels to move our asteroid each frame by multiplying these values by the

elapsed time.

Most of the code in the update function ensures that the asteroid

wraps correctly around the canvas. When it goes completely off one edge,

it’s moved seamlessly to just beyond the opposite edge. Each edge of the

canvas is checked with an if statement. If the asteroid is about to pass

over the edge, then its position is flipped to the opposite edge. The last line

increments the angle variable.

Chapter 7 animating asteroids

97

With this, we can finally implement the actual game loop. Add the code

from Listing 7-4 to your script.

Listing 7-4. The Game Loop

var previous, elapsed;

function frame(timestamp) {

 context.clearRect(0, 0, context.canvas.width, context.canvas.

height);

 if (!previous) previous = timestamp;

 elapsed = timestamp - previous;

 update(elapsed / 1000);

 draw(context, true);

 previous = timestamp;

 window.requestAnimationFrame(frame);

}

window.requestAnimationFrame(frame);

Here we introduce some more global variables, define the frame

function, and make a call to window.requestAnimationFrame. The

last line in the script triggers the first frame and begins the infinite

loop. The frame function is the callback, which is passed to window.

requestAnimationFrame. Its main job is just like in the previous exercise:

to call the update and draw functions.

The requestAnimationFrame API specifies that the callback will be

passed a single argument containing a timestamp accurate to at least 1 ms.

We make use of this timestamp to calculate the elapsed time between

this frame and the previous frame. To do that, we store a global variable

containing the previous value of the timestamp argument. On the first

invocation the previous timestamp isn’t set, so we initialize it to the given

timestamp, and the elapsed time is 0 (zero). In subsequent frames the

previous timestamp is known, and the elapsed time is indeed the time that

has elapsed since the previous frame was calculated and drawn.

Chapter 7 animating asteroids

98

The last line in the frame function is a call to window.request

AnimationFrame with the frame function itself as an argument. This call is

a request to the browser to “please run this function when you’re ready to

do so.” It simply adds the function to a list of functions that will be called

during the page refresh. So, although it looks like a recursion, it isn’t. The

frame function isn’t calling itself directly. This call ensures that once a

frame has completed, the next frame is queued for rendering. The browser

will usually try to achieve 60 frames per second, and as long as the calls to

update and draw don’t take too long to run this will usually be achieved.

Study the frame function and make sure you understand every line.

We’ll use a version of this function in every exercise from now on and in

the final game. You should see something like Figure 7-1.

This exercise has animated an asteroid. What if we wanted to include

two asteroids in our game? How would we do it? What about five or ten

asteroids?

Figure 7-1. An animated asteroid floating in space

Chapter 7 animating asteroids

99

 Refactoring into Simple Objects
In the preceding code we keep all the data associated with the asteroid

in the global scope. The shape, position, and velocity of the asteroid are

declared as simple variables at the top of the script. This doesn't scale

well—imagine managing this data for ten asteroids. What we need is some

structure.

We can use objects to represent a game element. Objects can store

a collection of data related to a given game object. Replace the variable

declarations between segments and rotation_speed with the code from

Listing 7-5.

Listing 7-5. An Object Literal

var asteroid = {

 segments: 24,

 shape: [],

 radius: 50,

 noise: 0.5,

 x: context.canvas.width * Math.random(),

 y: context.canvas.height * Math.random(),

 angle: 0,

 x_speed: context.canvas.width * (Math.random() - 0.5),

 y_speed: context.canvas.height * (Math.random() - 0.5),

 rotation_speed: 2 * Math.PI * (Math.random() - 0.5)

};

Here we’re defining a single object called asteroid and storing our

variables inside it. JavaScript objects allow related variables to be stored

together. The syntax is straightforward. We specify comma-separated key:

value pairs between curly braces. Object properties can then be accessed

either with dotted syntax (asteroid.radius) or with square brackets and a

string index (asteroid["radius"]).

Chapter 7 animating asteroids

100

We can assign data to object parameters as normal. Randomize the

asteroid.shape array with the code in Listing 7-6.

Listing 7-6. Getting in Shape

for(var i = 0; i < asteroid.segments; i++) {

 asteroid.shape.push(Math.random() - 0.5);

}

Now we need to upgrade our draw function to use data from the new

object. Replace the draw function with the code in Listing 7-7.

Listing 7-7. Use the Object Data

function draw(ctx, guide) {

 if(guide) {

 draw_grid(ctx);

 }

 ctx.save();

 ctx.translate(asteroid.x, asteroid.y);

 ctx.rotate(asteroid.angle);

 draw_asteroid(ctx, asteroid.radius, asteroid.shape, {

 noise: asteroid.noise,

 guide: guide

 });

 ctx.restore();

}

Do the same to the update function. Wherever a variable has been

moved into the asteroid object, add the prefix to access the data. Refresh

the page, and the animation should work as before. If nothing happens,

check the console for error messages—they should be clear enough

to debug your code. If you miss a variable, then it will complain of an

“uncaught reference error” and should tell you which variable and on

which line in the code the problem was found.

Chapter 7 animating asteroids

101

Note most browsers feature built-in developer tools. these
can usually be accessed by pressing F12, but see your browser
documentation for details. the Javascript console is an extremely
useful tool—it shows error messages and allows you to interact
directly with your program.

Now type the word asteroid in the browser console and press Enter.

You should see the asteroid parameters as they were the moment your

command was handled. All the asteroid data is held in a single object. This

is good. But the object literal syntax is pretty unwieldy for our purposes.

If there were a neater way to create asteroids, we could simplify our code

considerably.

 Using Object Constructors
Object constructors are a great way to create multiple similar objects and

they’re easy to create. Simply define a function and assign data to a special

this keyword when inside the function.

Listing 7-8 is a handy object constructor for creating asteroids just like

in the previous example. Place this in a new library file objects.js and

add a new <script> element into the <head> element of the page.

Listing 7-8. An Object Constructor

function Asteroid(segments, radius, noise) {

 this.x = context.canvas.width * Math.random();

 this.y = context.canvas.height * Math.random();

 this.angle = 0;

 this.x_speed = context.canvas.width * (Math.random() - 0.5);

 this.y_speed = context.canvas.height * (Math.random() - 0.5);

 this.rotation_speed = 2 * Math.PI * (Math.random() - 0.5);

Chapter 7 animating asteroids

102

 this.radius = radius;

 this.noise = noise;

 this.shape = [];

 for(let i = 0; i < segments; i++) {

 this.shape.push(Math.random() - 0.5);

 }

}

It’s good practice but not obligatory to capitalize object constructors

in order to identify them in code. In this case we’ve called the constructor

Asteroid. We’ve assigned all the variables to properties of the this

keyword within the function. Notice that we take three arguments: the

number of segments, radius, and noise. All the other variables are

defined randomly, have default values, or are derived from the provided

arguments. We don’t even store the segments argument as a property. It is

only used to allocate the correct number of items in the shape property.

To use a constructor to create an instance of an object, we must use the

new keyword, like so:

var asteroid = new Asteroid(24, 50, 0.2);

Update your code by replacing the object literal with the preceding

one-liner. Make sure you include the link to the constructor function in

your page. See your asteroid continue inexorably on its journey though

deep space. Feel satisfied that your code is now far better organized than it

was. But so what? Why do we bother with organizing code like this?

 Extending the Asteroid Prototype
JavaScript is a prototype-based system. All objects created with our

constructor will share a common prototype. A huge benefit of objects in

JavaScript is that any properties or methods we define on that prototype

will be available to all instances of our object type.

Chapter 7 animating asteroids

103

This is our route to drawing and updating multiple asteroids with ease.

Let’s say we create a lot of asteroids, in an array. If we define an update

and draw function on the Asteroid.prototype, we’ll be able to update or

draw any asteroid with a single method call. Looping over our Asteroid

objects and calling the appropriate methods will be trivial, and all the

intelligence about how an asteroid behaves will be located in one place on

the Asteroid.prototype.

Listing 7-9 shows an update function on the Asteroid.prototype. Add

the function into objects.js, making sure to add it after the constructor is

defined.

Listing 7-9. A Prototype Method

Asteroid.prototype.update = function(elapsed) {

 if(this.x - this.radius + elapsed * this.x_speed > context.

canvas.width) {

 this.x = -this.radius;

 }

 if(this.x + this.radius + elapsed * this.x_speed < 0) {

 this.x = context.canvas.width + this.radius;

 }

 if(this.y - this.radius + elapsed * this.y_speed > context.

canvas.height) {

 this.y = -this.radius;

 }

 if(this.y + this.radius + elapsed * this.y_speed < 0) {

 this.y = context.canvas.height + this.radius;

 }

 this.x += elapsed * this.x_speed;

 this.y += elapsed * this.y_speed;

 this.angle = (this.angle + this.rotation_speed * elapsed) %

(2 * Math.PI);

}

Chapter 7 animating asteroids

104

This is almost identical to our original update function except now we’re

referring to the instance properties of the object. For now, we can replace

our global update function with the simple one-liner from Listing 7-10.

Listing 7-10. A Simplified update Function

function update(elapsed) {

 asteroid.update(elapsed);

}

Refreshing the page should show our asteroid is still going. Nothing

has changed except our code quality. Now add the draw function from

Listing 7-11 to the Asteroid.prototype in the same way.

Listing 7-11. Another Prototype Method

Asteroid.prototype.draw = function(ctx, guide) {

 ctx.save();

 ctx.translate(this.x, this.y);

 ctx.rotate(this.angle);

 draw_asteroid(ctx, this.radius, this.shape, {

 guide: guide,

 noise: this.noise

 });

 ctx.restore();

}

Again, we’re simply transferring existing code into the function and

specifying the instance variables. We’ve also specified two arguments: a

context, ctx, and the optional guide. Our global draw function now looks

like Listing 7-12.

Chapter 7 animating asteroids

105

Listing 7-12. A Simplified draw Function

function draw(ctx, guide) {

 if(guide) {

 draw_grid(ctx);

 }

 asteroid.draw(ctx, guide);

}

This hasn’t changed much. We just replaced all the asteroid drawing

code with a single call to the preceding function. The guide drawing is still

here as it’s a global concern and not related to this individual asteroid.

 Working with Multiple Asteroids
Now that our basic Asteroid “class” is complete, we can try working with

multiple asteroid instances. Update your code in line with Listing 7-13.

Listing 7-13. Three Asteroids

var asteroids = [

 new Asteroid(24, 50, 0.2),

 new Asteroid(24, 50, 0.5),

 new Asteroid(5, 50, 0.2)

];

function draw(ctx, guide) {

 if(guide) {

 draw_grid(ctx);

 }

 asteroids.forEach(function(asteroid) {

 asteroid.draw(context, guide);

 });

}

Chapter 7 animating asteroids

106

function update(elapsed) {

 asteroids.forEach(function(asteroid) {

 asteroid.update(elapsed);

 });

}

We’ve replaced the asteroid variable with an array of Asteroid objects.

In our draw function, we replace the call to the asteroid.draw function

with a loop that calls draw on each item in the asteroids array. Finally,

we replace the call to the asteroid.update function in a similar way.

Figure 7-2 shows the result. Refresh the page and behold the three

quite different asteroids you’ve brought into being!

Figure 7-2. Three asteroids floating about

Chapter 7 animating asteroids

107

Summary
In this chapter we transformed the structure of our code. We now store

and update asteroid data and render the asteroid to the canvas all within a

new object type. The logic we employ in the code is pretty much identical

to before. We haven't changed the way the asteroid is drawn or updated;

we’ve simply added structure to the code.

This additional structure allows us to create asteroids with a simple call

to a constructor. We can then call methods on the asteroid objects in a very

convenient way. In Listing 7-13, a few small changes allowed us to add any

number of asteroids to our scene in parallel. Without the restructuring, this

would have been much more difficult to manage.

Chapter 7 animating asteroids

109
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_8

CHAPTER 8

Practicing Objects
The benefits of the object-oriented approach should be clear by now. We

can design our objects (Asteroid, Ship, and so on) with a simple and

intuitive API. Our objects track their own state and update themselves

when we ask them to (in their update functions). They can also easily be

drawn to the canvas in the correct position with a simple function call

(their draw functions). The game loop itself can update all our objects in

turn and then draw them all. We should be able to read the high-level code

without too much trouble. All the nitty-gritty details are delegated to the

objects themselves.

In this chapter, we’ll practice using objects in this way with a familiar

example.

 Why Objects?
It’s an important point of modern development practice that there’s often

a trade-off between the efficiency of an implementation and the clarity

of the code we produce. With the computing power available in low-end

machines being more than enough for a simple game like this, we should

focus our attention on making our code easily understandable. Although

efficiency of an implementation is very important, and we should always

strive to be efficient by default, we shouldn’t allow this to affect the overall

design of our code. Indeed, we may actively choose to sacrifice efficiency

for clarity on occasion.

110

By pushing the low-level code into objects (and moving this code

into library modules), we keep the low-level implementation details out

of sight. Our top-level scope (we’re currently coding in the global scope)

is then easy to follow and can focus on the higher-level game logic. We

can work on this code without needing to think about how the asteroid

behavior is implemented or how asteroids are drawn, maintaining a

separation of concerns and allowing us to focus on the job at hand.

 Pac-Man Chased by Ghosts
In the next few chapters we’ll get stuck into coding the asteroid game

in detail. Before we do that, though, we’ll spend a bit of time reviewing

our game design and see how the principles we applied in the previous

chapter can be applied to another pseudo-game involving Pac-Man.

We’ll define behaviors for our Pac-Man and create a new object

to represent the Pac-Man ghosts. Pac-Man will be allowed to move

horizontally and vertically across the canvas and will wrap around the

canvas as in the previous Pac-Man and Asteroids examples. Occasionally,

he’ll randomly decide to turn left or right (clockwise or anti-clockwise).

He’ll be pursued by ghosts. The ghosts will have the advantage of being able

to move in any direction and will be programmed to head straight for Pac-

Man. We’ll ensure the ghosts have a hard time by making Pac-Man faster.

Create a new folder called exercise8 and copy the usual libraries and

stylesheets into the new folder. Add a new template called exercise8.html,

and include a link to drawing.js and objects.js as before. Begin with the

code in Listing 8-1. This instantiates a PacMan object, updates it and draws

it in the respective functions and controls everything with the main game

loop function, frame.

Chapter 8 praCtiCing ObjeCts

111

Listing 8-1. A Simple Template

<!doctype html>

<html>

 <head>

 <title>Animation</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 <script src="objects.js"></script>

 </head>

 <body>

 <h1>Animation</h1>

 <canvas id="pacman" width="300" height="300"></canvas>

 <script>

 var context = document.getElementById("pacman").

getContext("2d");

 pacman = new PacMan(150, 150, 20, 120);

 function draw(ctx, guide) {

 pacman.draw(ctx);

 }

 function update(elapsed) {

 pacman.update(elapsed, 300, 300);

 }

 var previous, elapsed;

 function frame(timestamp) {

 context.clearRect(0, 0, context.canvas.width, context.

canvas.height);

 if (!previous) previous = timestamp;

 elapsed = timestamp - previous;

 update(elapsed / 1000);

 draw(context, true);

Chapter 8 praCtiCing ObjeCts

112

 previous = timestamp;

 window.requestAnimationFrame(frame);

 }

 window.requestAnimationFrame(frame);

 </script>

 </body>

</html>

 The PacMan object
Now we need to define the PacMan constructor in objects.js. PacMan

is pretty simple: we’ll allow his radius and speed to be configurable with

arguments. We initialize his location to the center of the canvas. Internally,

PacMan has x_speed and y_speed (initially he’s moving to the right). He

also has an angle property that determines the direction he’s pointing

and a mouth_angle property to record where his mouth is in its chomping

cycle. Add Listing 8-2 to your objects.js library. Note that no default

values are provided.

Listing 8-2. The PacMan Constructor

function PacMan(x, y, radius, speed) {

 this.x = x;

 this.y = y;

 this.radius = radius;

 this.speed = speed;

 this.angle = 0;

 this.x_speed = speed;

 this.y_speed = 0;

 this.time = 0;

 this.mouth = 0;

}

Chapter 8 praCtiCing ObjeCts

113

The PacMan.prototype.draw method should look fairly familiar. It’s

the same as that for Asteroid. Add Listing 8-3 after the constructor.

Listing 8-3. The Pacman.prototype.draw Method

PacMan.prototype.draw = function(ctx) {

 ctx.save();

 ctx.translate(this.x, this.y);

 ctx.rotate(this.angle);

 draw_pacman(ctx, this.radius, this.mouth);

 ctx.restore();

}

Now, before we code the behavior of our Pac-Man in the PacMan.

prototype.update function, we need a few helper functions. The main

helper function we need is one that will turn our Pac-Man through 90

degrees, either left or right. Listing 8-4 shows the new function; add it to

your library.

Listing 8-4. The Pacman.prototype.turn Method

PacMan.prototype.turn = function(direction) {

 if(this.y_speed) {

 // if we are travelling vertically

 // set the horizontal speed and apply the direction

 this.x_speed = -direction * this.y_speed;

 // clear the vertical speed and rotate

 this.y_speed = 0;

 this.angle = this.x_speed > 0 ? 0 : Math.PI;

 } else {

 // if we are travelling horizontally

 // set the vertical speed and apply the direction

 this.y_speed = direction * this.x_speed;

Chapter 8 praCtiCing ObjeCts

114

 // clear the horizontal speed and rotate

 this.x_speed = 0;

 this.angle = this.y_speed > 0 ? 0.5 * Math.PI : 1.5 * Math.

PI;

 }

}

This function relies on the restriction that our Pac-Man can only move

on the horizontal and vertical. That is, we rely on the fact that either the

x_speed or the y_speed will always be 0. The first thing the function does

is test whether we’re moving vertically or horizontally. It then changes the

direction of travel accordingly and moves the angle so Pac-Man always

faces in the correct direction. The function takes an argument that’s used

to select whether it’s a left turn or a right turn.

To make the API clearer, we can add a few intermediate methods, as

shown in Listing 8-5.

Listing 8-5. Supporting Methods Make the API Nice

PacMan.prototype.turn_left = function() {

 this.turn(-1);

}

PacMan.prototype.turn_right = function() {

 this.turn(1);

}

With these, we don’t need to remember the helper function API

rules, we can simply call the appropriate function to turn Pac-Man

left or right. Now we can use the functions in a very clear way in our

PacMan.prototype.update function, keeping the code clear and

concise. Add the code from Listing 8-6.

Chapter 8 praCtiCing ObjeCts

115

Listing 8-6. The Pacman.prototype.update Method

PacMan.prototype.update = function(elapsed, width, height) {

 // an average of once per 100 frames

 if(Math.random() <= 0.01) {

 if(Math.random() < 0.5) {

 this.turn_left();

 } else {

 this.turn_right();

 }

 }

 if(this.x - this.radius + elapsed * this.x_speed > width) {

 this.x = -this.radius;

 }

 if(this.x + this.radius + elapsed * this.x_speed < 0) {

 this.x = width + this.radius;

 }

 if(this.y - this.radius + elapsed * this.y_speed > height) {

 this.y = -this.radius;

 }

 if(this.y + this.radius + elapsed * this.y_speed < 0) {

 this.y = height + this.radius;

 }

 this.x += this.x_speed * elapsed;

 this.y += this.y_speed * elapsed;

 this.time += elapsed;

 this.mouth = Math.abs(Math.sin(2 * Math.PI * this.time));

}

Chapter 8 praCtiCing ObjeCts

116

The first code block only runs, on average, once per 100 frames. It

randomly chooses either the turn_left or turn_right functions to call.

This controls the x_speed and y_speed properties as well as the angle

property.

The next four code blocks should be familiar from the Asteroid.

prototype.update function mentioned earlier. In each block we check to

see if we’re about to cross one edge of the canvas. If we do cross the edge,

then we’re positioned on the opposite side of the canvas. With this move

done, we update the x and y coordinates as usual. Notice we’ve removed any

reliance on the global context object. We take width and height arguments

and use these to determine where the x and y attributes will wrap.

Finally, we have two lines that update the mouth value, which

determines how open the mouth is. The first line increments the time by

the elapsed time. The second line updates the mouth to the absolute value

of the sine of the time value. This causes mouth to progress in a sine wave

that opens and shuts the mouth twice per second.

Create a global PacMan object and update your global draw and update

functions to draw and update it. You should see when you open the file in

your browser that Pac-Man is chomping away and taking random turns.

Figure 8-1 shows the result.

Chapter 8 praCtiCing ObjeCts

117

 The Ghost Object
The ghosts will move in a straight line directly towards Pac-Man. They will

be different colors and have different speeds. They won’t need to wrap

around the canvas because they’ll always be moving towards Pac-Man.

Because Pac-Man wraps around the canvas, they turn around to follow him.

Drawing Pac-Man ghosts is pretty tricky. Here is a basic approach.

Copy Listing 8-7 into drawing.js.

Listing 8-7. Drawing a Ghost

function draw_ghost(ctx, radius, options) {

 options = options || {}

 var feet = options.feet || 4;

 var head_radius = radius * 0.8;

 var foot_radius = head_radius / feet;

 ctx.save();

 ctx.strokeStyle = options.stroke || "white";

Figure 8-1. Pac-Man snapping and turning

Chapter 8 praCtiCing ObjeCts

118

 ctx.fillStyle = options.fill || "red";

 ctx.lineWidth = options.lineWidth || radius * 0.05;

 ctx.beginPath();

 for(foot = 0; foot < feet; foot++) {

 ctx.arc(

 (2 * foot_radius * (feet - foot)) - head_radius - foot_

radius,

 radius - foot_radius,

 foot_radius, 0, Math.PI

);

 }

 ctx.lineTo(-head_radius, radius - foot_radius);

 ctx.arc(0, head_radius - radius, head_radius, Math.PI, 2 *

Math.PI);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

 ctx.restore();

}

We draw a series of upside-down half-circles for the “feet,” draw a line

up to the head, and draw another half-circle for the head. Then we close

the path to finish. Working out the positioning of all this stuff is tricky, but

once you have it, everything works and you can forget about it. Figure 8-2

shows a ghost with added eyes.

Chapter 8 praCtiCing ObjeCts

119

Try adding eyes to your ghost. Filled black circles will do, but white

circles with black circles inside them gives more character.

For the Ghost constructor, we specify the radius, speed, and colour as

arguments. Copy Listing 8-8 into your objects.js file.

Listing 8-8. Ghost Constructor

function Ghost(x, y, radius, speed, colour) {

 this.x = x;

 this.y = y;

 this.radius = radius;

 this.speed = speed;

 this.colour = colour;

}

Figure 8-2. A big red ghost with five “feet”

Chapter 8 praCtiCing ObjeCts

120

We simply store the given arguments as properties—no default values

are provided. The Ghost.prototype.draw method in Listing 8-9 is again

familiar. We transform the context to the correct location and call the

draw_ghost function, passing in the colour attribute as required. Copy it

into your objects.js file after the constructor.

Listing 8-9. The Ghost.prototype.draw Method

Ghost.prototype.draw = function(ctx) {

 ctx.save();

 ctx.translate(this.x, this.y);

 draw_ghost(ctx, this.radius, {

 fill: this.colour

 });

 ctx.restore();

}

The Ghost.prototype.update method in Listing 8-10 defines the ghost

behavior. We take an extra argument called target. The method calculates

the angle between the ghost and the target and then sets the x_speed

and y_speed properties so the ghost moves towards the target at its given

speed. The ghost coordinates are then updated to reflect the velocity.

Listing 8-10. The Ghost.prototype.update Method

Ghost.prototype.update = function(target, elapsed) {

 var angle = Math.atan2(target.y - this.y, target.x - this.x);

 var x_speed = Math.cos(angle) * this.speed;

 var y_speed = Math.sin(angle) * this.speed;

 this.x += x_speed * elapsed;

 this.y += y_speed * elapsed;

}

Chapter 8 praCtiCing ObjeCts

121

Instantiate an array of four Ghost objects in the global scope. Initialize

their positions to random locations on the canvas. Loop over each ghost in

the draw and update functions and call the appropriate ghost method. You

should see the ghosts chasing Pac-Man all over the canvas, as in Figure 8-3.

You should end up with something like the code shown in Listing 8-11.

Listing 8-11. Controlling Pac-Man and Ghosts

<!doctype html>

<html>

 <head>

 <title>Animation</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 <script src="objects.js"></script>

 </head>

 <body>

Figure 8-3. Ghosts chasing Pac-Man

Chapter 8 praCtiCing ObjeCts

122

 <h1>Animation</h1>

 <canvas id="pacman" width="300" height="300"></canvas>

 <script>

 let context = document.getElementById("pacman").

getContext("2d");

 let pacman = new PacMan(150, 150, 20, 120);

 let ghosts = [

 new Ghost(Math.random() * 300, Math.random() * 300, 20,

70, 'red'),

 new Ghost(Math.random() * 300, Math.random() * 300, 20,

60, 'pink'),

 new Ghost(Math.random() * 300, Math.random() * 300, 20,

50, 'cyan'),

 new Ghost(Math.random() * 300, Math.random() * 300, 20,

40, 'orange')

]

 function draw(ctx, guide) {

 pacman.draw(ctx);

 ghosts.forEach(function(ghost) {

 ghost.draw(context, guide);

 });

 }

 function update(elapsed) {

 pacman.update(elapsed, 300, 300);

 ghosts.forEach(function(ghost) {

 ghost.update(pacman, elapsed);

 });

 }

Chapter 8 praCtiCing ObjeCts

123

 var previous, elapsed;

 function frame(timestamp) {

 context.clearRect(0, 0, context.canvas.width, context.

canvas.height);

 if (!previous) previous = timestamp;

 elapsed = timestamp - previous;

 update(elapsed / 1000);

 draw(context, true);

 previous = timestamp;

 window.requestAnimationFrame(frame);

 }

 window.requestAnimationFrame(frame);

 </script>

 </body>

</html>

 Summary
Hopefully this chapter has gone some ways towards establishing a clear

pattern here. The “things” we want on the screen must all be updated and

drawn in every frame. We can do this in a very organized way by defining

objects with constructors and defining methods on the object prototype for

drawing and updating. This makes our global draw and update functions

very straightforward—they simply draw and update each object in turn.

Enough practice! Let’s get back to working on our game. In the

next chapter, we’ll make another few steps towards building a solid

infrastructure of objects.

Chapter 8 praCtiCing ObjeCts

125
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_9

CHAPTER 9

Inheritance
In this chapter we’ll begin to build our final version of the Asteroids

game. We’ll need objects to describe asteroids and our ship and we will

eventually need objects for our projectiles too, which the ship will use to

destroy asteroids. In this case, the objects will all share some common

features, and this makes them good candidates for inheritance. Inheritance

is an important concept in object-oriented software engineering because it

allows for potentially complex logic to be expressed once and used across

multiple object types. We’ll learn this in the usual way—by doing.

 Set Up a Template
To start, create a new folder called exercise9, copy the library files and

stylesheet into the new folder, and save the template in Listing 9-1 as

exercise9.html. As usual, we’ll reuse our drawing.js and objects.js

libraries, where we place our drawing code and object definitions

respectively.

126

Listing 9-1. exercise9.html

<!doctype html>

<html>

 <head>

 <title>Inheritance</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 <script src="objects.js"></script>

 </head>

 <body>

 <h1>Inheritance</h1>

 <canvas id="asteroids" width="600" height="600"></canvas>

 <script>

 'use strict';

 var context = document.getElementById("asteroids").

getContext("2d");

 function draw(ctx) {

 draw_grid(context);

 }

 function update(elapsed) {

 }

 var previous;

 function frame(timestamp) {

 if (!previous) previous = timestamp;

 var elapsed = timestamp - previous;

 context.clearRect(0, 0, context.canvas.width, context.

canvas.height);

 update(elapsed/1000);

Chapter 9 InherItanCe

127

 draw(context);

 previous = timestamp;

 window.requestAnimationFrame(frame);

 }

 window.requestAnimationFrame(frame);

 </script>

 </body>

</html>

The result should be a blank grid. We’ve increased the size of the grid

to accommodate our game. Note that the animation is drawing a frame 60

times per second, it’s just that the frame is the same each time.

 Newton’s Laws of Motion
Any attempt to produce a model of objects floating in space should comply

with all three basic laws of classical mechanics:

 1. A mass in space will keep going with the same

velocity unless a force acts upon it.

 2. The force applied to an object is equal to the mass of

the object multiplied by the resultant acceleration.

 3. When one mass pushes another, it will be pushed

back with equal and opposite force.

When we created our Asteroid object, we coded its behavior in line

with Newton’s first law. The Asteroid instances store their velocity and

simply keep moving at that velocity. With no forces acting upon them, this

is what asteroids do. In our game, we’re piloting a ship floating in space.

The ship will also need to be coded to obey Newton’s first law. In fact,

everything in the game (unless we’ve implemented some kind of laser,

which you’re welcome to try) should comply with all three basic laws of

classical mechanics.

Chapter 9 InherItanCe

128

 A General-Purpose Mass Class
In this exercise we’ll encode the laws of classical mechanics into a general-

purpose Mass class and extend this Mass class to produce our Asteroid and

Ship classes. The basic Mass class stores a position (x and y coordinates)

and a velocity (x_speed and y_speed). It also has an angle and a rotation_

speed. Add the constructor shown in Listing 9-2 to your objects.js file.

Listing 9-2. The Mass Constructor

function Mass(x, y, mass, radius, angle, x_speed, y_speed,

rotation_speed) {

 this.x = x;

 this.y = y;

 this.mass = mass || 1;

 this.radius = radius || 50;

 this.angle = angle || 0;

 this.x_speed = x_speed || 0;

 this.y_speed = y_speed || 0;

 this.rotation_speed = rotation_speed || 0;

}

The list of arguments is long because we don’t want any complex

default behavior. All the parameters are required for a mass to properly

operate. Default values are provided for most parameters, but in typical

usage they’re not likely to be relied upon. They have sensible default

values of 0 in most cases, so the mass is stationary by default. A mass value

of 1 and a radius of 50 is also provided by default. The (x, y) coordinates are

required arguments because otherwise the Mass object will be located at

the canvas origin, which is confusing.

The update method in Listing 9-3 is responsible for enforcing Newton’s

first law. We also use it to wrap the Mass around the canvas if it moves off

the canvas edge. Copy it under your constructor.

Chapter 9 InherItanCe

129

Listing 9-3. The Mass.prototype.update Method

Mass.prototype.update = function(elapsed, ctx) {

 this.x += this.x_speed * elapsed;

 this.y += this.y_speed * elapsed;

 this.angle += this.rotation_speed * elapsed;

 this.angle %= (2 * Math.PI);

 if(this.x - this.radius > ctx.canvas.width) {

 this.x = -this.radius;

 }

 if(this.x + this.radius < 0) {

 this.x = ctx.canvas.width + this.radius;

 }

 if(this.y - this.radius > ctx.canvas.height) {

 this.y = -this.radius;

 }

 if(this.y + this.radius < 0) {

 this.y = ctx.canvas.height + this.radius;

 }

}

This should be a familiar pattern because it’s much like the update

function of the original asteroid. One difference is that this time we take

the context as an argument because this code now sits in the objects.js

library and has (or should have) no knowledge of the canvas or context in

our main scope.

We implement Newton’s second law with the simple Mass.

prototype.push method shown in Listing 9-4. Calling this method with

an angle, a force, and an elapsed time will apply the force to the mass,

causing acceleration that is inversely proportional to the mass. Add it to

your library.

Chapter 9 InherItanCe

130

Listing 9-4. The Mass.prototype.push Method

Mass.prototype.push = function(angle, force, elapsed) {

 this.x_speed += elapsed * (Math.cos(angle) * force) / this.

mass;

 this.y_speed += elapsed * (Math.sin(angle) * force) / this.

mass;

}

The very similar Mass.prototype.twist method shown in Listing 9-5

does the same thing for angles. Positive forces rotate the mass clockwise,

and negative forces rotate the mass counterclockwise. Again, add it to your

growing code base.

Listing 9-5. The Mass.prototype.twist Method

Mass.prototype.twist = function(force, elapsed) {

 this.rotation_speed += elapsed * force / this.mass;

}

We’ll also add the pair of methods shown in Listing 9-6. These

calculate the speed and angle of movement of a Mass and will be useful

later.

Listing 9-6. Other Useful Methods

Mass.prototype.speed = function() {

 return Math.sqrt(Math.pow(this.x_speed, 2) +

Math.pow(this.y_speed, 2));

}

Mass.prototype.movement_angle = function() {

 return Math.atan2(this.y_speed, this.x_speed);

}

Chapter 9 InherItanCe

131

To test out our parent Mass class, we need a draw method. This will be

overridden in any child classes. Add the method in Listing 9-7.

Listing 9-7. A Placeholder Mass.prototype.draw Method

Mass.prototype.draw = function(c) {

 c.save();

 c.translate(this.x, this.y);

 c.rotate(this.angle);

 c.beginPath();

 c.arc(0, 0, this.radius, 0, 2 * Math.PI);

 c.lineTo(0, 0);

 c.strokeStyle = "#FFFFFF";

 c.stroke();

 c.restore();

}

We simply draw a circle and a line to the center to indicate the

position, radius, and angle of the Mass. To test this out, instantiate a Mass

object and define the global update and draw functions to drive your mass.

Follow the code in Listing 9-8.

Listing 9-8. A Simple Test

var mass = new Mass(context.canvas.width/2, context.canvas.

height/2, 10, 20);

function draw() {

 context.clearRect(0, 0, context.canvas.width, context.canvas.

height);

 draw_grid(context);

 mass.draw(context);

}

Chapter 9 InherItanCe

132

function update(elapsed) {

 mass.update(elapsed, context);

}

Refreshing your browser displays our Mass object sitting static in the

middle of the canvas, as shown in Figure 9-1. It has 0 (zero) x_speed,

y_speed, and rotation_speed, so it’s not moving. When we call our object

functions from the global update and draw methods, we’re linking the

objects into the game loop. We will sometimes refer to this job of linking

objects into the game as plumbing code or hooking up the objects.

Open your browser’s developer tools (press F12 in Google Chrome)

and navigate to the JavaScript console, which enables you to interact with

the web page. In this case, because we’re defining our variables in the

global scope, we can access them and call methods directly.

Figure 9-1. An abstract mass rendered as a circle with a line

Chapter 9 InherItanCe

133

Type mass into the console, and you should see the mass variable

printed out. Try typing mass.twist(Math.PI, 10). This applies a twisting

force, and we see the mass rotate. Calling the method again accelerates

the rotation. The same applies to calling mass.push(0.75 * Math.PI,

10, 10). The mass is accelerated by the push. Experiment with this on

the command line for a bit. Contemplate the fact that you can define any

method you like and have ultimate power over your own canvas game.

 A Simple Approach to Inheritance
In order for our Asteroid class to inherit the behavior of a Mass, we’ll need

to manipulate the object prototypes. Place the function shown in Listing 9-9

at the top of objects.js, above your Mass constructor.

Listing 9-9. The extend Method

function extend(ChildClass, ParentClass) {

 var parent = new ParentClass();

 ChildClass.prototype = parent;

 ChildClass.prototype.super = parent.constructor;

 ChildClass.prototype.constructor = ChildClass;

}

This function emulates classes and implements a simple inheritance

mechanism. To extend a child class with the properties and methods of a

parent class, simply call this function with the two class objects. The first

line of the function creates an instance of the parent class. The child class

prototype is replaced with this instance. The third line sorts out a way

to call the parent constructor from within the child constructor. Finally,

the constructor of the child class prototype (which is the parent class

instance) is set back to the child class. This prototype manipulation allows

for a child class constructor to pass parameters to the parent constructor

Chapter 9 InherItanCe

134

via the super method. It doesn’t handle any extra methods added to the

prototype. If these need to call the parent implementation, they need to do

it manually, as we’ll see later.

 Asteroids
Listing 9-10 shows how we create the Asteroid class as an extension of

the Mass class. Replace the existing Asteroid definition in your object.js

library with Listing 9-10.

Listing 9-10. The Asteroid Class

function Asteroid(mass, x, y, x_speed, y_speed, rotation_speed)

{

 var density = 1; // kg per square pixel

 var radius = Math.sqrt((mass / density) / Math.PI);

 this.super(mass, radius, x, y, 0, x_speed, y_speed,

rotation_speed);

 this.circumference = 2 * Math.PI * this.radius;

 this.segments = Math.ceil(this.circumference / 15);

 this.segments = Math.min(25, Math.max(5, this.segments));

 this.noise = 0.2;

 this.shape = [];

 for(var i = 0; i < this.segments; i++) {

 this.shape.push(2 * (Math.random() - 0.5));

 }

}

extend(Asteroid, Mass);

Asteroid.prototype.draw = function(ctx, guide) {

 ctx.save();

 ctx.translate(this.x, this.y);

Chapter 9 InherItanCe

135

 ctx.rotate(this.angle);

 draw_asteroid(ctx, this.radius, this.shape, {

 noise: this.noise,

 guide: guide

 });

 ctx.restore();

}

The Asteroid constructor is much the same as our previous example,

with a few minor enhancements. It takes six arguments, the most

important being the mass and the (x, y) coordinates. We also allow for the

velocity and rotation speed to be set, which we’ll use later when we split

asteroids.

Internally, the asteroid calculates a radius value from the given mass

based on a fixed density value. If you want larger or smaller asteroids,

tweaking the density value is the way to do it. We then call this.super,

which we can see from the extend function is a reference to the parent

class constructor, Mass. By calling this, we set the mass, radius, x, y, angle,

x_speed, y_speed, and rotation_speed properties of our object. The

final steps are to set the asteroid shape. To do this, we first calculate the

circumference and use this to set the number of segments so that larger

asteroids have more detail. We make sure the number of segments is at

least 5 and no more than 25. We set the noise to 0.2 and set the random

shape as before.

After we define the constructor, we call the extend function and

pass in the child class, Asteroid, and the parent class, Mass. This is what

sets Asteroid.super to the Mass constructor—and, critically, it sets the

Asteroid.prototype to an instance of Mass.

The Asteroid.prototype.draw method holds no surprises. It’s

unchanged from our previous asteroid example. Notice we don’t need

to define an Asteroid.prototype.update method because the one we

inherit from Mass does everything we need.

Chapter 9 InherItanCe

136

Create an instance of Asteroid in the center of the canvas with

randomized mass, as shown in Listing 9-11.

Listing 9-11. Instantiate an Asteroid

var asteroid = new Asteroid(

 10000,

 Math.random() * context.canvas.width,

 Math.random() * context.canvas.height

);

Hook up the update and draw functions and refresh your browser. Now

experiment again in the browser console with our asteroid.push and

asteroid.twist API. Notice that larger, heavy asteroids need more force

to give the same acceleration. Figure 9-2 shows an asteroid.

Try creating a list of asteroids (remember to hook up the update and

draw functions to the asteroid objects). Use the browser console to push

and twist each of the asteroids in turn.

Figure 9-2. A similar asteroid but this time inheriting from mass

Chapter 9 InherItanCe

137

 The Ship
Now we can do the same thing with the ship. The ship is a mass floating in

space just like an asteroid. Add the code in Listing 9-12 to your library.

Listing 9-12. The Ship Class

function Ship(x, y) {

 this.super(x, y, 10, 20, 1.5 * Math.PI);

}

extend(Ship, Mass);

Ship.prototype.draw = function(c, guide) {

 c.save();

 c.translate(this.x, this.y);

 c.rotate(this.angle);

 c.strokeStyle = "white";

 c.lineWidth = 2;

 c.fillStyle = "black";

 draw_ship(c, this.radius, {

 guide: guide

 });

 c.restore();

}

In your exercise9.html file, add some code to set up your asteroids and

ship properly. Try to automatically push and twist the asteroids to send

them floating off into space. Instantiate a ship right in the middle of the

canvas. Listing 9-13 shows one approach.

Chapter 9 InherItanCe

138

Listing 9-13. Set Up a Simple Scene

var asteroids = [];

for (let i=0; i<4; i++) {

 let asteroid = new Asteroid(

 Math.random() * context.canvas.width,

 Math.random() * context.canvas.height,

 2000 + Math.random() * 8000

);

 asteroid.push(Math.random() * 2 * Math.PI, 2000, 60);

 asteroid.twist((Math.random()-0.5) * 500, 60);

 asteroids.push(asteroid);

}

var ship = new Ship(context.canvas.width / 2, context.canvas.

height / 2);

We now have a set of asteroids, each of which has been given a push

and a twist to get them started. We also have a ship in the middle of the

canvas. Plumb all the game elements to the update and draw functions to

activate them. Try pushing and twisting the ship in the browser console.

Figure 9-3 shows the kind of scene you should be able to produce.

Chapter 9 InherItanCe

139

Now let’s play with the ship. Change your global update function as

shown in Listing 9-14 and refresh your browser.

Listing 9-14. Playing with the Ship

function update(elapsed) {

 // if its nearly stopped, turn

 if(Math.abs(ship.speed()) < 15) {

 ship.angle += Math.PI * 2 * 0.01;

 }

 // If Its going fast, turn around to slow down

 if(Math.abs(ship.speed()) > 100) {

 ship.angle = ship.movement_angle() + Math.PI;

 }

Figure 9-3. The ship and the asteroid both inherit from mass

Chapter 9 InherItanCe

140

 // push in the direction its pointing (thrusters?)

 ship.push(ship.angle, 1000, elapsed)

 asteroids.forEach(function(asteroid) {

 asteroid.update(elapsed, context);

 })

 ship.update(elapsed, context);

}

Here we’re implementing a simple set of instructions to control the

ship. We accelerate the ship forward all the time (as if the ship’s thrusters

were on). If the ship speed gets above 100 pixels per second, we turn

around to face the opposite direction. When we’re travelling slowly, we

increase the ship’s angle. This is beginning to look like a game.

 Summary
In this chapter, you’ve learned how to define common functionality and

share it between multiple game elements. We implemented methods on

the parent Mass class that can be inherited by any massive objects we need

to float around according to the basic laws of motion.

We also played with developing a scene. The structured way we’ve

developed our objects makes it easy. It allows us to write very simple code

to initialize game elements, decide on their initial behavior, and “hook

them up” to our game loop to place them on the canvas.

This is a powerful approach. Pushing the implementation details of our

objects into their definitions means we can easily switch contexts when

writing code and can focus on developing more complexity without getting

bogged down in detail.

Playing with the ship in Listing 9-14 shows how we can experiment

with controlling our game elements in the global update loop. But for

behavior that’s more intrinsic to our object, we should place code in the

object definition. Before we look closer at the ship behavior, we need to

look into how we can take user inputs via the keyboard to control our game.

Chapter 9 InherItanCe

PART III

Building the Game

We’ve defined our main game objects and set them floating in space. Now

we need to add the game logic. In the case of our Asteroids clone, we need

to enable the ship to take damage when it collides with asteroids and to

accrue score when it destroys asteroids. We’ll also enable the player to

shoot asteroids somehow and implement a “game over” state and game

levels.

Before we get into the gameplay aspects, we’ll also find out how to

accept user interaction so the ship can be controlled.

143
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_10

CHAPTER 10

Simple Keyboard
Interaction
Now that we have our main game objects in place, we need to hand some

control over to the user. In this chapter we’ll do this using keyboard events.

In JavaScript, you can use many events to control your program. We use

events by defining an event handler (a function) that will be called with the

event object as an argument when the event is triggered. In this case, we’ll

be using keyboard events—in particular, the keyDown and keyUp events.

These are called when keys are pressed and released. The event object

contains information about which key triggered the event.

 Controlling Pac-Man
Let’s demonstrate how to use keyboard events with a simple example. Take

a copy of your exercise8 folder and save it as exercise10. We’ll upgrade the

example to take user input. First, we need to add a few methods to our

PacMan model. Add the new methods shown in Listing 10-1 to your PacMan

object.

144

Listing 10-1. Add Controls to PacMan

PacMan.prototype.move_right = function() {

 this.x_speed = this.speed;

 this.y_speed = 0;

 this.angle = 0;

}

PacMan.prototype.move_down = function() {

 this.x_speed = 0;

 this.y_speed = this.speed;

 this.angle = 0.5 * Math.PI;

}

PacMan.prototype.move_left = function() {

 this.x_speed = -this.speed;

 this.y_speed = 0;

 this.angle = Math.PI;

}

PacMan.prototype.move_up = function() {

 this.x_speed = 0;

 this.y_speed = -this.speed;

 this.angle = 1.5 * Math.PI;

}

Now run the code in your browser and try typing pacman.move_up()

in the console. You’ll see that you have some control over Pac-Man’s

movements. Now we need to hook up an event handler for the keyDown

event. Add the code in Listing 10-2 to the end of your HTML script.

Chapter 10 Simple Keyboard interaCtion

145

Listing 10-2. Handle the onkeydown Event

window.onkeydown = function(e) {

 let key = e.key || e.keyCode;

 switch(key) {

 case "ArrowLeft":

 case 37: // left arrow keyCode

 pacman.move_left();

 break;

 case "ArrowUp":

 case 38: // up arrow keyCode

 pacman.move_up();

 break;

 case "ArrowRight":

 case 39: // right arrow keyCode

 pacman.move_right();

 break;

 case "ArrowDown":

 case 40: // down arrow keyCode

 pacman.move_down();

 break;

 }

}

Now refresh the browser, and you should be able to control Pac-Man

by pressing the arrow keys! The handler is triggered on every key press

with an event object as the argument. The event attribute event.key

contains a string representation for the key that was pressed. In some

browsers (including Safari at the time of writing), the event.key attribute

isn’t supported, so we fall back to a deprecated API using event.keyCode.

This is irritating but necessary if you want to support the most common

browsers. For a list of keyCodes, see http://keycode.info.

Chapter 10 Simple Keyboard interaCtion

http://keycode.info/

146

Note that the original behavior of occasionally changing direction is

still included in the PacMan.prototype.update method. Remove it to give

yourself full control over Pac-Man. You can remove quite a lot of code.

This approach has a serious problem. The arrow keys already have a

function in most browsers. Imagine your canvas is part of a larger page

with content below it. It’s normal and expected that the arrow keys can be

used to scroll the page down to see that content. But because we placed the

event handler on the main window object, we’re overriding this behavior,

and now the arrow keys won’t scroll the page. A more polite approach is to

add the handler just to the canvas element. This requires the focus to be

set to the canvas element in order for the key presses to be handled by our

code. If the canvas doesn’t have the focus, the handler isn’t triggered.

First, we need to give our canvas a tabindex attribute. Without this,

you can’t set the focus on the canvas. Edit your <canvas> element, as

shown in Listing 10-3.

Listing 10-3. Handle the onkeydown Event

<canvas id="pacman" width="300" height="300" tabindex="1"></canvas>

Now, we could simply change the reference from window.onkeydown to

context.canvas.onkeydown. Alternatively, we can define our handler as a

function, as shown in Listing 10-4.

Listing 10-4. An Event Handler Function

function keydown_handler(e) {

 let key = e.key || e.keyCode;

 let nothing_handled = false;

 switch(key) {

 case "ArrowLeft":

 case 37: // left arrow keyCode

 pacman.move_left();

 break;

Chapter 10 Simple Keyboard interaCtion

147

 case "ArrowUp":

 case 38: // up arrow keyCode

 pacman.move_up();

 break;

 case "ArrowRight":

 case 39: // right arrow keyCode

 pacman.move_right();

 break;

 case "ArrowDown":

 case 40: // down arrow keyCode

 pacman.move_down();

 break;

 default:

 nothing_handled = true;

 }

 if(!nothing_handled) e.preventDefault();

}

Notice that we’ve ensured that we’re overriding only the keys we

want to use. We’re using the default case to set the nothing_handled

variable when no keys are being handled. Notice also the additional call

to e.preventDefault() only applies when something has been handled

by our code. This call stops the default behavior of the event (for example,

scrolling the window) from happening. This means that standard key

combinations (such as Ctrl+R to refresh the page) aren’t blocked. We only

block default behavior for our chosen keys.

Now we can connect it in a more general way with the addEventListener

method. This will only apply when a key is pressed and the canvas has the

focus. Listing 10-5 connects the keydown event to our handler function.

Chapter 10 Simple Keyboard interaCtion

148

Listing 10-5. Add an Event Listener and Set the Focus on the

Canvas

context.canvas.addEventListener("keydown", keydown_handler);

context.canvas.focus();

We also set the focus on the canvas programmatically so there’s no

need to click the canvas. We can unset the focus by clicking away from the

canvas with the mouse or by using Tab to cycle around all the selectable

elements in the page. To get a visual indication of whether the canvas has

the focus, update your styles.css file as shown in Listing 10-6.

Listing 10-6. Highlight the Canvas on Focus

body {

 text-align: center;

 font-family: sans-serif;

}

canvas {

 background-color: black;

 border: 10px solid white;

}

canvas:focus {

 border: 10px solid grey;

}

Now if we click anywhere else on the page, our canvas will lose focus,

and normal key handling will resume. If we then click the canvas, we get

control of the game, and the page no longer scrolls. We should also be able

to refresh the page with Ctrl+R while the canvas has the focus. Nice.

Chapter 10 Simple Keyboard interaCtion

149

 Summary
This short chapter has introduced the event handling API. You learned

how to define an event handler and get information from the event object.

We also discussed how to connect events to handler functions.

These concepts will be used extensively in our game. In the next

chapter, we’ll take control of our ship.

Chapter 10 Simple Keyboard interaCtion

151
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_11

CHAPTER 11

Controlling the Ship
In this chapter we’ll finally implement user control of the ship. This is

where all the hard work in setting up our objects will begin to pay off. At

the end of this chapter you’ll be able to fly the ship gracefully around the

canvas and even shoot projectiles from the nose of the ship. As with the

Pac-Man example, we’ll need to add some properties to our ship class so

we can use keyboard events to control the ship. The ship remains a mass

floating in space, so we only want to use the Mass.prototype.push and

Mass.prototype.twist methods to do the actual moving.

Copy exercise9.html and all related files (styles.css and the libraries

drawing.js and objects.js) into a new folder and rename the HTML file

as exercise11.html. Remove all the ship-controlling stuff from the global

update function.

 Thruster Control
Starting simply, the ship needs a thruster. When the thruster is on, the ship

will be pushed forwards. When the thruster is off, the ship will behave as

normal. Update the Ship constructor with the code in Listing 11-1.

152

Listing 11-1. Ship Thruster Properties

function Ship(x, y, power) {

 this.super(x, y, 10, 20, 1.5 * Math.PI);

 this.thruster_power = power;

 this.thruster_on = false;

}

We’ve added two properties to the ship. The thruster_power property

determines how much force is applied to the ship when the thruster is

on. The thruster_on property determines whether the thruster is on. The

thruster is initialized to off (that is, thrusters_on is set to false). We also

make the ship mass and size configurable. Update the ship instantiation in

exercise11.html to match Listing 11-2.

Listing 11-2. Create a Nice Ship

var ship = new Ship(context.canvas.width / 2, context.canvas.

height / 2, 1000);

Now we need to add a Ship.prototype.update method because the

standard Mass.prototype.update method isn't good enough any more.

We want to push the ship in the direction it’s pointing using the correct

power, but only if this.thruster_on is true. So, we call the this.push

method with the angle (this.angle) and this.thruster_power multiplied

by the Boolean value this.thruster_on, as shown in Listing 11-3. Boolean

values are cast automatically to 1 or 0, so the result is exactly what we need

to calculate the force and apply it over the elapsed time.

Listing 11-3. The Ship.prototype.update Method

Ship.prototype.update = function(elapsed) {

 this.push(this.angle, this.thruster_on * this.thruster_power,

elapsed);

 Mass.prototype.update.apply(this, arguments);

}

Chapter 11 Controlling the Ship

153

We then call the Mass.prototype.update method. We can’t call

it on the this keyword because we’ve overwritten the method on the

Ship.prototype. Consequently, we need to use function.apply to

call the Mass.prototype.update method, passing in our this keyword

to reference the ship instance and the arguments list passed into the

function. This is a generic way to call methods of a parent class when the

child class has overridden them.

Now that we’ve adapted the behavior of the ship, we should be able to

refresh the browser and turn on the thrusters via the console. Type ship.

thruster_on = true into the console and check that the ship responds correctly.

We can add some visual feedback on the thruster state by updating the

draw_ship function. First, we should pass the ship.thruster_on property

into the call to draw_ship, as shown in Listing 11-4.

Listing 11-4. The Ship.prototype.draw Method

Ship.prototype.draw = function(c, guide) {

 c.save();

 c.translate(this.x, this.y);

 c.rotate(this.angle);

 draw_ship(c, this.radius, {

 guide: guide,

 thruster: this.thruster_on

 });

 c.restore();

}

Now add the code snippet in Listing 11-5 into the draw_ship function

before the ship is drawn. We draw a simple filled red curve with a yellow

outline and we put this before the ship is drawn so that the ship will hide

the overlap and it appears neat.

Chapter 11 Controlling the Ship

154

Listing 11-5. Addition to the draw_ship Function

if(options.thruster) {

 ctx.save();

 ctx.strokeStyle = "yellow";

 ctx.fillStyle = "red";

 ctx.lineWidth = 3;

 ctx.beginPath();

 ctx.moveTo(

 Math.cos(Math.PI + angle * 0.8) * radius / 2,

 Math.sin(Math.PI + angle * 0.8) * radius / 2

)

 ctx.quadraticCurveTo(-radius * 2, 0,

 Math.cos(Math.PI - angle * 0.8) * radius / 2,

 Math.sin(Math.PI - angle * 0.8) * radius / 2

);

 ctx.fill();

 ctx.stroke();

 ctx.restore();

}

Now, setting the ship.thruster_on property to true will make the ship

move and will also draw a filled red curve at the rear of the ship. Figure 11- 1

shows the result of turning the thruster on via the browser console.

Chapter 11 Controlling the Ship

155

We’ll complete this first step with a pair of event handlers, one for

keydown and one for keyup. First, add the helper function to do the actual

ship control, as shown in Listing 11-6.

Listing 11-6. Control the Ship Thruster

function key_handler(e, value) {

 var nothing_handled = false;

 switch(e.key || e.keyCode) {

 case "ArrowUp":

 case 38: // up arrow

 ship.thruster_on = value;

 break;

 default:

 nothing_handled = true;

 }

 if(!nothing_handled) e.preventDefault();

}

Figure 11-1. Thruster indicator

Chapter 11 Controlling the Ship

156

This function takes an event and a value as arguments. If the key that

triggered the event is the up arrow ("ArrowUp" or 38), then it sets the ship.

thruster_on property to whatever value is passed to it. Finally, we connect

the event handler function to event listeners on the canvas, as shown in

Listing 11-7.

Listing 11-7. Event Handlers to Do the Job

context.canvas.addEventListener("keydown", function(e) {

 key_handler(e, true);

}, true);

context.canvas.addEventListener("keyup", function(e) {

 key_handler(e, false);

}, true);

Finally, we also need to set the tabindex of the canvas and call canvas.

focus(), as in the preceding exercise. Once we’ve done this, we should

find that pressing and releasing the up arrow controls the thruster!

 Steering
The real fun begins when we hook up the steering. Update the Ship

constructor to reflect Listing 11-8.

Listing 11-8. Add Steering Properties

function Ship(x, y, power) {

 this.super(x, y, 10, 20, 1.5 * Math.PI);

 this.thruster_power = power;

 this.steering_power = power / 20;

 this.right_thruster = false;

 this.left_thruster = false;

Chapter 11 Controlling the Ship

157

 this.thruster_on = false;

}

extend(Ship, Mass);

Now use the new properties to twist the ship at every frame, as shown

in the Ship.prototype.update method in Listing 11-9. We take the

difference between the this.right_thruster and this.left_thruster

to determine the twisting force to apply. If both are on or neither is on,

the result is zero. Otherwise, it’s either –1 or +1. This is multiplied by the

steering force.

Listing 11-9. Twist the Ship with Thrusters

Ship.prototype.update = function(elapsed, c) {

 this.push(this.angle, this.thruster_on * this.thruster_power,

elapsed);

 this.twist((this.right_thruster - this.left_thruster) * this.

steering_power, elapsed);

 Mass.prototype.update.apply(this, arguments);

}

Finally, update the key_handler function to respond to left and right

arrows, as shown in Listing 11-10.

Listing 11-10. Control Thrusters with Arrow Keys

function key_handler(e, value) {

 var nothing_handled = false;

 switch(e.key || e.keyCode) {

 case "ArrowUp":

 case 38: // up arrow

 ship.thruster_on = value;

 break;

 case "ArrowLeft":

Chapter 11 Controlling the Ship

158

 case 37: // left arrow

 ship.left_thruster = value;

 break;

 case "ArrowRight":

 case 39: // right arrow

 ship.right_thruster = value;

 break;

 case "g":

 case 71: //g

 if(value) guide = !guide;

 default:

 nothing_handled = true;

 }

 if(!nothing_handled) e.preventDefault();

}

Refresh the browser and give it a try. Now it feels a lot like a working

game! Fly around the canvas in triumph as you learn how to control the

ship. Notice we’ve added a response to the G key that toggles a new guide

variable. Have a go at implementing this. You’ll need to define the global

guide variable and initialize it to true. You’ll also need to pass it into the

draw methods of your asteroids and ship and use it to determine whether

the grid is drawn.

 Shooting
To shoot, we need to introduce a new Projectile class. The Projectile

class inherits from Mass just like Asteroid and Ship. We throw projectiles

out from the front of the ship and hope they hit asteroids.

Chapter 11 Controlling the Ship

159

Add the basic Projectile class from Listing 11-11 into your objects.js

library. Start with the constructor—this is very similar to an asteroid except

that a new lifetime argument is provided and saved to a property. We also

create a life property and initialize it to 1.0.

Listing 11-11. The Projectile Constructor

function Projectile(mass, lifetime, x, y, x_speed, y_speed,

rotation_speed) {

 var density = 0.001; // low density means we can see very

light projectiles

 var radius = Math.sqrt((mass / density) / Math.PI);

 this.super(mass, radius, x, y, 0, x_speed, y_speed,

rotation_speed);

 this.lifetime = lifetime;

 this.life = 1.0;

}

extend(Projectile, Mass);

Notice we also extend from Mass. The Projectile class has special

behavior in that it’s instantiated with a finite lifetime and will be removed

from the game when that lifetime has run its course. This avoids

accumulating an ever-growing number of projectiles that would drain

system resources. Listing 11-12 shows that the projectile updates its own

remaining life property from the initial 1.0 by decrementing it at each

frame proportional to the elapsed time. Otherwise, it’s a simple Mass with a

very low density.

Listing 11-12. The Projectile.prototype.update Method

Projectile.prototype.update = function(elapsed, c) {

 this.life -= (elapsed / this.lifetime);

 Mass.prototype.update.apply(this, arguments);

}

Chapter 11 Controlling the Ship

160

As shown in Listing 11-13, drawing is very familiar. The only thing to

note is that we pass this.life to the drawing function.

Listing 11-13. The Projectile.prototype.draw Method

Projectile.prototype.draw = function(c, guide) {

 c.save();

 c.translate(this.x, this.y);

 c.rotate(this.angle);

 draw_projectile(c, this.radius, this.life, guide);

 c.restore();

}

Implement a draw_projectile function in your drawing.js library.

Using Listing 11-14 as a template, we use the life argument to set the fill

color. Remember to call context.beginPath().

Listing 11-14. Template for Drawing a Projectile

function draw_projectile(ctx, radius, lifetime) {

 ctx.save();

 ctx.fillStyle = "rgb(100%, 100%, " + (100 * lifetime) + "%)";

 // ***

 // ** your code goes here **

 // ** draw a path to fill the radius **

 // ***

 ctx.fill();

 ctx.restore();

}

Now that we have projectiles, we need a mechanism for adding them

to the game data and for hooking them up to the game loop. Mostly this is

as expected. We initialize an empty array of projectiles, as shown in

Listing 11-15.

Chapter 11 Controlling the Ship

161

Listing 11-15. Add an Empty Array for Projectiles

var asteroid = new Asteroid(

 10000,

 Math.random() * context.canvas.width,

 Math.random() * context.canvas.height

);

asteroid.push(Math.random() * 2 * Math.PI, 1000, 60);

asteroid.twist(Math.random() * 100, 60);

var ship = new Ship(10, 15, context.canvas.width / 2, context.

canvas.height / 2, 1000, 200);

var projectiles = []; // new array

Then we draw projectiles in the usual way, as shown in Listing 11-16.

Listing 11-16. Hook Up Projectiles in the draw Function

function draw() {

 if(guide) {

 draw_grid(context);

 }

 asteroid.draw(context, guide);

 projectiles.forEach(function(p) {

 p.draw(context);

 });

 ship.draw(context, guide);

}

The update function in Listing 11-17 has a few surprises. We update

the projectiles as expected in a forEach loop over the array. Then we check

the value of projectile.life. If the value is 0 or less, we call the array.

prototype.splice method on our projectiles array to remove the dead

projectile. This removes all references to the projectile, and it gets removed

from memory.

Chapter 11 Controlling the Ship

162

Listing 11-17. Hook Up Projectiles in the update Function

function update(elapsed) {

 asteroid.update(elapsed, context);

 ship.update(elapsed, context);

 projectiles.forEach(function(projectile, i, projectiles) {

 projectile.update(elapsed, context);

 if(projectile.life <= 0) {

 projectiles.splice(i, 1);

 }

 });

 if(ship.trigger) {

 projectiles.push(ship.projectile(elapsed));

 }

}

After the loop, we check a new property: ship.trigger. If it’s set, we

push a new projectile onto the projectiles array. We get the projectile by

calling ship.projectile and passing in the elapsed time.

Let’s create the new projectiles in the new Ship.prototype.

projectile method. We add this method to the Ship class for a number

of reasons—mainly because it makes sense for the ship to generate

projectiles. From a practical point of view, we need to access some of the

ship’s properties in order to create a projectile with the correct behavior.

Alternatively, you could do this by passing the ship instance to another

function. Listing 11-18 has the code.

Listing 11-18. Create Projectiles with the Ship.prototype.projectile

Method

Ship.prototype.projectile = function(elapsed) {

 var p = new Projectile(0.025, 1,

 this.x + Math.cos(this.angle) * this.radius,

Chapter 11 Controlling the Ship

163

 this.y + Math.sin(this.angle) * this.radius,

 this.x_speed,

 this.y_speed,

 this.rotation_speed

);

 p.push(this.angle, this.weapon_power, elapsed);

 this.push(this.angle + Math.PI, this.weapon_power, elapsed);

 return p;

}

The first expression creates a new Projectile and assigns it to the

variable, p. It’s created with a fixed mass of 0.025 (very light compared to

the ship, this is important). The lifetime argument is set to 1 second. The

(x, y) coordinates are calculated to place the projectile at the front of the

ship. The (x_speed, y_speed) velocity of the projectile is initialized to that

of the ship, as is the rotation_speed.

The next two expressions ensure that we adhere to Newton’s third law.

We push the projectile in the direction the ship is pointing in with the force

determined by a new property of the ship, weapon_power. Then we push

the ship back with the same force. So, it’s important that the mass of the

projectile is very small relative to the mass of the ship. When we apply the

same force to both, the projectile is accelerated much more than the ship.

The new property weapon_power must exist on the ship. Create it in the

Ship constructor function, as shown in Listing 11-19. Make sure you also

give the ship a value for weapon_power when you instantiate it (I’ve given it

a default value just in case).

Listing 11-19. Update the Ship Constructor

function Ship(mass, radius, x, y, power, weapon_power) {

 this.super(mass, radius, x, y, 1.5 * Math.PI);

 this.thruster_power = power;

 this.steering_power = this.thruster_power / 20;

Chapter 11 Controlling the Ship

164

 this.right_thruster = false;

 this.left_thruster = false;

 this.thruster_on = false;

 this.weapon_power = weapon_power || 200;

}

extend(Ship, Mass);

The final line of the Ship.prototype.projectile method returns our

projectile so we can add it to our projectiles array as shown earlier in the

global update function. Now if ship.trigger is set to true, we’ll create

new projectiles and fire them out from the front of the ship. Once the

projectile has been alive for one second, it’s removed from play.

The last step is simple. We update our key_handler to connect the

spacebar to the ship.trigger property, as shown in Listing 11-20.

Listing 11-20. Hooking Up the key_handler

function key_handler(e, value) {

 var nothing_handled = false;

 switch(e.key || e.keyCode) {

 case "ArrowUp":

 case 38: // up arrow

 ship.thruster_on = value;

 break;

 case "ArrowLeft":

 case 37: // left arrow

 ship.left_thruster = value;

 break;

 case "ArrowRight":

 case 39: // right arrow

 ship.right_thruster = value;

 break;

Chapter 11 Controlling the Ship

165

 case " ":

 case 32: //spacebar

 ship.trigger = value;

 break;

 case "g":

 if(value) guide = !guide;

 default:

 nothing_handled = true;

 }

 if(!nothing_handled) e.preventDefault();

}

Take the time to study how this works and make sure you understand it.

When the spacebar is pressed, ship.trigger becomes true. From this we’re

adding new projectiles into our array on every frame. Projectiles are removed

from the array when their lifetime is up. Figure 11-2 shows the result.

Figure 11-2. Shooting a stream of projectiles

Chapter 11 Controlling the Ship

166

Refresh your browser and try it out. Notice that the ship is being pushed

back by the projectiles as intended. We’re creating projectiles at an extremely

fast rate, one per frame. We should throttle this in order to make the game

more challenging and keep down the number of projectiles in play.

Add a new restriction to the global update function; replace the

existing conditional statement with the code from Listing 11-21.

Listing 11-21. Throttle the Projectile Creation

if(ship.trigger && ship.loaded) {

 projectiles.push(ship.projectile(elapsed));

}

Here we’re specifying that the ship’s weapon must be loaded before it can

be fired. Update your Ship constructor with the new code in Listing 11-22.

Listing 11-22. Update the Ship Constructor Again

this.loaded = false;

this.weapon_reload_time = 0.25; // seconds

this.time_until_reloaded = this.weapon_reload_time;

We’re initializing the ship weapon to be not loaded. We’re defining the

time it will take for the weapon to reload. And we’re setting a property to

record how much time there is left until the weapon is reloaded. Now add

the few lines of Listing 11-23 to the Ship.prototype.update method.

Listing 11-23. Control the Reload Time

// reload as necessary

this.loaded = this.time_until_reloaded === 0;

if(!this.loaded) {

 this.time_until_reloaded -= Math.min(elapsed, this.time_

until_reloaded);

}

Chapter 11 Controlling the Ship

167

This simple piece of code controls the ship.loaded property. It will be

true whenever the this.time_until_reloaded property is equal to 0. This,

in turn, is decremented every frame by the elapsed time. If the elapsed time

is greater than the this.time_until_reloaded property, then it will be set

to 0. This alone will ensure that we must wait the 0.25 seconds specified in

this.weapon_reload_time before we can fire the weapon the first time.

Once the weapon is fired, we need to reset the this.time_until_

reloaded property to the value of this.weapon_reload_time. Add this line

to the Ship.prototype.projectile method before the line that returns

the projectile:

this.time_until_reloaded = this.weapon_reload_time;

Now refresh the page and behold! You should have something like

Figure 11-3.

Figure 11-3. Shooting is now restricted by the weapon
reload time

Chapter 11 Controlling the Ship

168

The ship is now shooting at the rate you prescribed with

this.weapon_reload_time. If you change the property, the rate of fire will

adjust accordingly. This is a good target for a powerup to decrease the

weapon reload time. Also perhaps the projectile lifetime property might

be a good one to increase to give a concrete advantage to the player.

For practice, implement a retro-thruster that can be triggered with

the down arrow key. Think about how to integrate it with the existing

mechanism. Look at how we combine ship.left_thruster and ship.

right_thruster in the Ship.prototype.update method. Try to replicate

this using a ship.retro_on property. Don’t worry about drawing the retro-

thrusters unless you really want to (in which case, you may want to draw

the left and right thrusters too).

 Summary
In this chapter we added a lot of controllable properties to our ship object.

We connected event listeners to allow us to control the ship’s movement.

We’ve introduced a projectile object and triggered projectile generation

via a function on the ship. We call this function when the spacebar is

pressed but only once every quarter-second. We also managed the

projectiles population so they’re destroyed after one second in play.

This chapter has been a very quick addition of new functionality. If

you encounter any problems, go through the chapter again carefully until

you’re crystal clear on what has happened.

Chapter 11 Controlling the Ship

169
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_12

CHAPTER 12

Collision Detection
In this chapter we’ll look at detecting collisions between objects. Now that

we’re in control of the ship and shooting projectiles, we should think about

taking damage and scoring points. These require that we detect collisions

between ship and asteroids for damage and between projectiles and

asteroids for scoring points.

We’ll use a simple circle-to-circle collision detection, so all our

objects must approximate to circles. It’s very simple to calculate: first, you

need to calculate the distance between the centers of the two circles. If

that distance is less than the sum of the circle radii, then the circles are

overlapping.

 A Quick Refactor
We’re going to add complexity, so we’ll start by wrapping existing

functionality into an AsteroidsGame class. This has many advantages, the

main one being to tidy up our global scope. We want to keep the global

scope as clear as possible so our game can work well with other code

that may be on the page. Keeping our code tidy in this way forces us to be

organized and allows us to increase the complexity in a manageable way.

170

Create a new folder and copy our stylesheet and the drawing.js and

objects.js libraries across. Add a new file called exercise12.html. Let’s

start by writing the code we’d like to be able to work with. Listing 12-1

shows how we might want to work.

Listing 12-1. Our Game as a One-Liner

<!doctype html>

<html>

 <head>

 <title>Asteroids</title>

 <link rel="stylesheet" href="styles.css">

 <script src="drawing.js"></script>

 <script src="objects.js"></script>

 <script src="game.js"></script>

 </head>

 <body>

 <h1>Asteroids</h1>

 <canvas id="asteroids" width="600" height="600"

tabindex="1"></canvas>

 <script>

 'use strict';

 var game = new AsteroidsGame("asteroids");

 </script>

 </body>

</html>

Thinking about our AsteroidsGame class before we create it is a useful

way to ensure that we build a good interface. What information does the

game actually need? All it really needs is to know where to draw itself. We

want our game to run on a given canvas, so we pass in the canvas element’s

id attribute into the game constructor. There may be multiple games and/

or multiple canvases on a page. Notice there’s a new script element in the

page head called game.js. This is where we’ll code up our new object.

Chapter 12 Collision DeteCtion

171

Now, of course, this doesn't work. Our job is to take the code from the

previous exercise and put it all into an AsteroidsGame class in the new

library. We’ve already defined an element of the API. Let’s code to this

interface by creating the AsteroidsGame constructor. Place the code from

Listing 12-2 into the new game.js file.

Listing 12-2. The AsteroidsGame Constructor

var AsteroidsGame = function(id) {

 this.canvas = document.getElementById(id);

 this.c = this.canvas.getContext("2d");

 this.canvas.focus();

 this.guide = false;

 this.ship_mass = 10;

 this.ship_radius = 15;

 this.asteroid_mass = 5000; // Mass of asteroids

 this.asteroid_push = 500000; // max force to apply in one

frame

 this.ship = new Ship(

 this.canvas.width / 2,

 this.canvas.height / 2,

 1000, 200

);

 this.projectiles = [];

 this.asteroids = [];

 this.asteroids.push(this.moving_asteroid());

 this.canvas.addEventListener("keydown", this.keyDown.

bind(this), true);

 this.canvas.addEventListener("keyup", this.keyUp.bind(this),

true);

 window.requestAnimationFrame(this.frame.bind(this));

}

Chapter 12 Collision DeteCtion

172

The constructor takes one argument: the id attribute of the canvas

element we want to draw our game onto. We use this to create a reference

to a canvas. We also extract a reference to the 2D canvas context and

store it as this.c for easy access. We then set the focus on the canvas so

key presses will register properly (this might be better left to the calling

code if many canvases and many games are running). We then set some

properties that were previously either global variables or were “magic

numbers” that appeared in the code. These will be useful when we create

ships and asteroids.

Then we create a new ship and set the projectiles and asteroids

properties to blank arrays. We add a single moving asteroid into the

asteroids array by calling the new AsteroidsGame.prototype.moving_

asteroid helper method. Finally, we connect some event handler code

and start the game loop. Notice we “bind” these callback functions to the

game instance.

This still doesn't work. Let’s build out the necessary code piece by piece.

In AsteroidsGame.prototype.moving_asteroid, we create an

asteroid, push it, twist it, and return it. We do this using two more helper

methods: AsteroidsGame.prototype.new_asteroid and AsteroidsGame.

prototype.push_asteroid. The implementation is shown in Listing 12-3.

Listing 12-3. Helper Methods for Creating Asteroids

AsteroidsGame.prototype.moving_asteroid = function(elapsed) {

 var asteroid = this.new_asteroid();

 this.push_asteroid(asteroid, elapsed);

 return asteroid;

}

Chapter 12 Collision DeteCtion

173

AsteroidsGame.prototype.new_asteroid = function() {

 return new Asteroid(

 this.canvas.width * Math.random(),

 this.canvas.height * Math.random(),

 this.asteroid_mass

);

}

AsteroidsGame.prototype.push_asteroid = function(asteroid,

elapsed) {

 elapsed = elapsed || 0.015;

 asteroid.push(2 * Math.PI * Math.random(), this.asteroid_

push, elapsed);

 asteroid.twist(

 (Math.random() - 0.5) * Math.PI * this.asteroid_push *

0.02,

 elapsed

);

}

The AsteroidsGame.prototype.new_asteroid method simply creates

an asteroid in a random position with the asteroid_mass property. The

AsteroidsGame.prototype.push_asteroid helper method pushes and

twists an asteroid using the asteroid_push property as the force. It pushes

over the provided elapsed time. If no elapsed time is provided, it assumes

a standard frame at 60 fps (frames per second).

It still doesn’t work. The event handler functions shown in

Listing 12-4 are simple wrappers for the AsteroidsGame.prototype.key_

handler function, which replaces the old key_handler function. Inside it, we

refer to this.ship rather than just ship. Notice also the addition of a down

arrow handler and the use of the G key to toggle the this.guide property.

Chapter 12 Collision DeteCtion

174

Listing 12-4. The Key Event Handling Methods

AsteroidsGame.prototype.keyDown = function(e) {

 this.key_handler(e, true);

}

AsteroidsGame.prototype.keyUp = function(e) {

 this.key_handler(e, false);

}

AsteroidsGame.prototype.key_handler = function(e, value) {

 var nothing_handled = false;

 switch(e.key || e.keyCode) {

 case "ArrowLeft":

 case 37: // left arrow

 this.ship.left_thruster = value;

 break;

 case "ArrowUp":

 case 38: // up arrow

 this.ship.thruster_on = value;

 break;

 case "ArrowRight":

 case 39: // right arrow

 this.ship.right_thruster = value;

 break;

 case "ArrowDown":

 case 40:

 this.ship.retro_on = value;

 break;

 case " ":

 case 32: //spacebar

 this.ship.trigger = value;

 break;

Chapter 12 Collision DeteCtion

175

 case "g":

 case 71: // g for guide

 if(value) this.guide = !this.guide;

 break;

 default:

 nothing_handled = true;

 }

 if(!nothing_handled) e.preventDefault();

}

The final line in the constructor calls window.requestAnimationFrame

with the AsteroidsGame.prototype.frame method as the callback.

Listing 12-5 replaces the old global frame function and does much the

same, the main difference being that we call this.update and this.draw

and store the previous timestamp as this.previous.

Listing 12-5. The AsteroidsGame.prototype.frame Method

AsteroidsGame.prototype.frame = function(timestamp) {

 if (!this.previous) this.previous = timestamp;

 var elapsed = timestamp - this.previous;

 this.update(elapsed / 1000);

 this.draw();

 this.previous = timestamp;

 window.requestAnimationFrame(this.frame.bind(this));

}

Notice that the this.frame function is bound to the game instance

when passed into window.requestAnimationFrame. This forces the this

keyword to be set to the game instance when the frame function is called.

Chapter 12 Collision DeteCtion

176

The AsteroidsGame.prototype.update method in Listing 12-6

controls all the game elements. It updates all the asteroids, the ship, and all

the projectiles. It controls the removal of dead projectiles and the creation

of new projectiles when the ship is loaded and the trigger is pulled. It

contains nothing new, but we’re now always referencing attributes of our

game object.

Listing 12-6. The AsteroidsGame.prototype.update Method

AsteroidsGame.prototype.update = function(elapsed) {

 this.ship.compromised = false;

 this.asteroids.forEach(function(asteroid) {

 asteroid.update(elapsed, this.c);

 }, this);

 this.ship.update(elapsed, this.c);

 this.projectiles.forEach(function(p, i, projectiles) {

 p.update(elapsed, this.c);

 if(p.life <= 0) {

 projectiles.splice(i, 1);

 }

 }, this);

 if(this.ship.trigger && this.ship.loaded) {

 this.projectiles.push(this.ship.projectile(elapsed));

 }

}

The AsteroidsGame.prototype.update method makes many calls to

the Array.prototype.forEach method. The method takes two arguments:

a callback function called for each element in the array and a value to

set the value of the this keyword available within the callback function.

Notice that we’re passing this as the second argument so that within the

callback function we can correctly refer to the game instance as this from

within the callback. You can see this happening in all the calls to Array.

prototype.forEach.

Chapter 12 Collision DeteCtion

177

The AsteroidsGame.prototype.draw method shown in Listing 12-7 is in

charge of drawing the whole game. It draws all the asteroids, the ship, and all

the projectiles. It also makes use of Array.prototype.forEach and passes

this as the second argument, as in AsteroidsGame.prototype.update.

Listing 12-7. The AsteroidsGame.prototype.draw Method

AsteroidsGame.prototype.draw = function() {

 this.c.clearRect(0, 0, this.canvas.width, this.canvas.height);

 if(this.guide) {

 draw_grid(this.c);

 this.asteroids.forEach(function(asteroid) {

 draw_line(this.c, asteroid, this.ship);

 }, this);

 }

 this.asteroids.forEach(function(asteroid) {

 asteroid.draw(this.c, this.guide);

 }, this);

 this.ship.draw(this.c, this.guide);

 this.projectiles.forEach(function(p) {

 p.draw(this.c);

 }, this);

}

The method is fairly similar to the draw function in the last example.

It optionally draws the grid and draws lines between asteroids and the

ship using the new draw_line function. It only does this if the this.guide

property is set.

The draw_line function is in drawing.js and is shown in Listing 12-8.

Add the function to your drawing.js library.

Chapter 12 Collision DeteCtion

178

Listing 12-8. The draw_line Function

function draw_line(ctx, obj1, obj2) {

 ctx.save();

 ctx.strokeStyle = "white";

 ctx.lineWidth = 0.5;

 ctx.beginPath();

 ctx.moveTo(obj1.x, obj1.y);

 ctx.lineTo(obj2.x, obj2.y);

 ctx.stroke();

 ctx.restore();

}

Now we have a comprehensive AsteroidsGame class that can be used

to run a game on any canvas. We’ve hooked it up to keyboard events and

run it frame by frame with its own event loop. There’s no code triggered

outside of the AsteroidsGame class. We make use of some very simple

helper functions. It’s all pretty straightforward.

Refresh the page to see if the game is working as expected. Try toggling

the guide property by pressing the G key.

Ship vs. Asteroids
Now we need to do some actual collision detection. We’ll detect collisions

between the circles that approximate the ship and the asteroids. When

the circle around the ship contacts the circle around an asteroid, we’ll

set a new compromised property on the ship. When the ship is in the

compromised state, it loses health. The first thing to do is to initialize the

required properties in the Ship constructor. Update your constructor, as

shown in Listing 12-9.

Chapter 12 Collision DeteCtion

179

Listing 12-9. Initialize the compromised and health Properties in

the Ship Constructor

function Ship(x, y, power, weapon_power) {

 this.super(x, y, 10, 20, 1.5 * Math.PI);

 this.thruster_power = power;

 this.steering_power = this.thruster_power / 20;

 this.right_thruster = false;

 this.left_thruster = false;

 this.thruster_on = false;

 this.retro_on = false;

 this.weapon_power = weapon_power;

 this.loaded = false;

 this.weapon_reload_time = 0.25; // seconds

 this.time_until_reloaded = this.weapon_reload_time;

 this.compromised = false;

 this.max_health = 2.0;

 this.health = this.max_health;

}

We can also update the Ship.prototype.draw method to indicate

(when the guide is turned on) whether the ship is in the compromised state.

This is shown in Listing 12-10.

Listing 12-10. Draw a Red Circle When compromised

Ship.prototype.draw = function(c, guide) {

 c.save();

 c.translate(this.x, this.y);

 c.rotate(this.angle);

 if(guide && this.compromised) {

 c.save();

 c.fillStyle = "red";

Chapter 12 Collision DeteCtion

180

 c.beginPath();

 c.arc(0, 0, this.radius, 0, 2 * Math.PI);

 c.fill();

 c.restore();

 }

 draw_ship(c, this.radius, {

 guide: guide,

 thruster: this.thruster_on

 });

 c.restore();

}

We could have placed this in the draw_ship function and added

an argument. That would probably be neater, but would take longer to

describe, so I’ll leave it as an optional exercise.

Now we need a general purpose collision function to test for collisions

between any two objects. The objects must have (x, y) coordinates and

radius properties. Add the functions in Listing 12-11 at the top of game.js.

Listing 12-11. Collision Detection

function collision(obj1, obj2) {

 return distance_between(obj1, obj2) < (obj1.radius +

obj2.radius);

}

function distance_between(obj1, obj2) {

 return Math.sqrt(Math.pow(obj1.x - obj2.x, 2) +

Math.pow(obj1.y - obj2.y, 2));

}

Collision between circles is simple: the circles intersect if the distance

between their centers is smaller than the sum of their radii. We also split

out the distance calculation into its own function.

Chapter 12 Collision DeteCtion

181

To implement collision detection, we need the game to check each

asteroid against the ship for collisions and to set the ship.compromised

property accordingly. Listing 12-12 shows the implementation.

Listing 12-12. Update compromised Property

AsteroidsGame.prototype.update = function(elapsed) {

 this.ship.compromised = false;

 this.asteroids.forEach(function(asteroid) {

 asteroid.update(elapsed, this.c);

 if(collision(asteroid, this.ship)) {

 this.ship.compromised = true;

 }

 }, this);

 this.ship.update(elapsed, this.c);

 this.projectiles.forEach(function(p, i, projectiles) {

 p.update(elapsed, this.c);

 if(p.life <= 0) {

 projectiles.splice(i, 1);

 }

 }, this);

 if(this.ship.trigger && this.ship.loaded) {

 this.projectiles.push(this.ship.projectile(elapsed));

 }

}

We set the ship.compromised property to false and then, as we loop

over each asteroid, if a collision is detected we set it to true. Notice that we

also move things around to ensure we test for collisions before we update

the asteroids and the ship.

Refresh the page and admire the results. Press G to turn on the guide

and you should see that if we hit the asteroid with our ship, a red circle

appears under the ship!

Chapter 12 Collision DeteCtion

182

 Taking Damage
Now let’s update things so the ship takes damage when it’s compromised.

Effectively, we’re giving the ship a collision time limit (max_health—let’s

say 2 seconds). This value will be a property of the ship, so the health

property can be topped up at any time.

Listing 12-13. Drain Health

Ship.prototype.update = function(elapsed, c) {

 this.push(this.angle,

 (this.thruster_on - this.retro_on) * this.thruster_power,

elapsed

);

 this.twist(

 (this.right_thruster - this.left_thruster) * this.steering_

power, elapsed

);

Figure 12-1. Collision detection

Chapter 12 Collision DeteCtion

183

 this.loaded = this.time_until_reloaded === 0;

 if(!this.loaded) {

 this.time_until_reloaded -= Math.min(elapsed, this.time_

until_reloaded);

 }

 if(this.compromised) {

 this.health -= Math.min(elapsed, this.health);

 }

 Mass.prototype.update.apply(this, arguments);

}

Notice how similar this is to the reload time. Also notice how the

retro- thruster is implemented.

Now we can’t see the ship’s health, so let’s draw it onto the canvas. Add

the following to the end of AsteroidsGame.prototype.draw:

 this.c.save();

 this.c.font = "18px arial";

 this.c.fillStyle = "white";

 this.c.fillText("health: " + this.ship.health.toFixed(1), 10,

this.canvas.height - 10);

 this.c.restore();

Now refresh the page and admire your new health indicator. Try hitting

an asteroid and watch your health deplete. But we can do better than this!

We’re JavaScript ninjas by now. Add the code from Listing 12-14 to the end

of objects.js.

Listing 12-14. Indicator Class

function Indicator(label, x, y, width, height) {

 this.label = label + ": ";

 this.x = x;

 this.y = y;

Chapter 12 Collision DeteCtion

184

 this.width = width;

 this.height = height;

}

Indicator.prototype.draw = function(c, max, level) {

 c.save();

 c.strokeStyle = "white";

 c.fillStyle = "white";

 c.font = this.height + "pt Arial";

 var offset = c.measureText(this.label).width;

 c.fillText(this.label, this.x, this.y + this.height - 1);

 c.beginPath();

 c.rect(offset + this.x, this.y, this.width, this.height);

 c.stroke();

 c.beginPath();

 c.rect(offset + this.x, this.y, this.width * (max / level),

this.height);

 c.fill();

 c.restore()

}

The new Indicator constructor takes a label, a position (x, y), and a

size (width, height) as its arguments. Think of it as a rectangle with a label.

It has a draw method that takes a context and two values: the max and the

level. It works out how wide the label will be and writes the label in (just

below) the specified position. It measures how wide the label is so it can

draw an empty rectangle of the specified size to the right of the label. It also

draws a filled rectangle inside the empty rectangle that’s sized according to

the given level as a proportion of max.

At the end of the AsteroidGame constructor, add the following

property:

this.health_indicator = new Indicator("health", 5, 5, 100, 10);

Chapter 12 Collision DeteCtion

185

To draw the indicator, add the following to the AsteroidGame.

prototype.draw method. This should replace our first attempt:

this.health_indicator.draw(this.c, this.ship.health, this.ship.

max_health);

Now we’re seriously impressed. Collide with the asteroid to see your

health drop, as shown in Figure 12-2.

 Asteroid vs. Projectile
The next step is to detect collisions between asteroids and projectiles. If

an asteroid is hit, we’ll take away some mass, split the asteroid, and add

some score. We’ll treat every unit of mass destroyed as one point for now.

We’ll remove 500 units of mass for each hit and award 500 points. We’ll add

these new values as properties of AsteroidsGame in the constructor:

this.mass_destroyed = 500;

this.score = 0;

Figure 12-2. Health indicator

Chapter 12 Collision DeteCtion

186

To implement the collision detection and trigger asteroids to split

when they’re hit, we need to add some logic to our AsteroidsGame.

prototype.update method. Listing 12-15 shows the new method:

Listing 12-15. Trigger an Asteroid to Split When Hit

AsteroidsGame.prototype.update = function(elapsed) {

 this.ship.compromised = false;

 this.asteroids.forEach(function(asteroid) {

 asteroid.update(elapsed, this.c);

 if(collision(asteroid, this.ship)) {

 this.ship.compromised = true;

 }

 }, this);

 this.ship.update(elapsed, this.c);

 this.projectiles.forEach(function(p, i, projectiles) {

 p.update(elapsed, this.c);

 if(p.life <= 0) {

 projectiles.splice(i, 1);

 } else {

 this.asteroids.forEach(function(asteroid, j) {

 if(collision(asteroid, p)) {

 projectiles.splice(i, 1);

 this.asteroids.splice(j, 1);

 this.split_asteroid(asteroid, elapsed);

 }

 }, this);

 }

 }, this);

 if(this.ship.trigger && this.ship.loaded) {

 this.projectiles.push(this.ship.projectile(elapsed));

 }

}

Chapter 12 Collision DeteCtion

187

The addition of an else clause to the if(p.life <= 0) block ensures

that we only test projectiles that are currently live in the game. For every

live projectile, we loop over all the asteroids (which have already been

updated) and test for collisions. If a collision is detected, we remove the

asteroid and the projectile from play. Then we call a new helper method,

split_asteroid, passing in the damaged asteroid.

The new helper method needs to create new child asteroids and

update the score accordingly. It needs to remove the appropriate mass

from the parent asteroid, generate two child asteroids with the correct

total mass, and give each of them a push so they separate out. Listing 12-16

shows a basic implementation.

Listing 12-16. Split an Asteroid

AsteroidsGame.prototype.split_asteroid = function(asteroid,

elapsed) {

 asteroid.mass -= this.mass_destroyed;

 this.score += this.mass_destroyed;

 var split = 0.25 + 0.5 * Math.random(); // split unevenly

 var ch1 = asteroid.child(asteroid.mass * split);

 var ch2 = asteroid.child(asteroid.mass * (1 - split));

 [ch1, ch2].forEach(function(child) {

 if(child.mass < this.mass_destroyed) {

 this.score += child.mass;

 } else {

 this.push_asteroid(child, elapsed);

 this.asteroids.push(child);

 }

 }, this);

}

Chapter 12 Collision DeteCtion

188

The function does quite a lot. First, it removes some mass from the

given asteroid and adds some score to the game. It then determines a

(more or less even) split ratio used to distribute mass between the two

new asteroids. Two asteroids are created, and the total mass of each is

determined by the remaining mass of the original asteroid and the split

ratio. We use the Asteroid.child helper method to create asteroids with

the same properties (position, speed, and so on) as the parent. For each

new child asteroid, we give it a push and add it to the game.

We’ve implemented a minimum size for asteroids because tiny

asteroids are very difficult to hit and they tend to fly around at high speeds

when pushed. If a child asteroid is too small, it’s not added to the game—

its mass is simply added to the score.

The new child asteroids are created using another helper method:

Asteroid.child. This simply initializes new asteroids with the same velocity,

rotation, and position as their parent. Listing 12-17 shows the function.

Listing 12-17. Spawn child Asteroids

Asteroid.prototype.child = function(mass) {

 return new Asteroid(

 this.x, this.y, mass,

 this.x_speed, this.y_speed,

 this.rotation_speed

)

}

Now refresh your browser and shoot some asteroids!

Chapter 12 Collision DeteCtion

189

In order to see the collision detection comparisons at every frame, we

now draw lines between projectiles and asteroids. Update the if(this.

guide) block in the AsteroidsGame.prototype.draw method. Add a loop

over the projectiles nested within the existing loop over asteroids and call

the existing draw_line function. Toggle the guides with the G key and

shoot to see the new guide lines. You should end up seeing something like

Figure 12-3.

The final thing we’ll do in this exercise is add a score indicator and

a frame rate indicator. The score and frame rate should be presented as

numbers, so we’ll add the new NumberIndicator class from Listing 12-18

to our objects.js file.

Figure 12-3. Projectiles break asteroids

Chapter 12 Collision DeteCtion

190

Listing 12-18. NumberIndicator

function NumberIndicator(label, x, y, options) {

 options = options || {}

 this.label = label + ": ";

 this.x = x;

 this.y = y;

 this.digits = options.digits || 0;

 this.pt = options.pt || 10;

 this.align = options.align || 'end';

}

NumberIndicator.prototype.draw = function(c, value) {

 c.save();

 c.fillStyle = "white";

 c.font = this.pt + "pt Arial";

 c.textAlign = this.align;

 c.fillText(

 this.label + value.toFixed(this. digits),

 this.x, this.y + this.pt - 1

);

 c.restore();

}

The class allows us to specify a label and position for our indicator. It

also takes an optional options argument that overrides default values. The

options.digits attribute sets the number of decimal places to present

(default is 0), the options.pt attribute sets the font size (default is 10

points), and the options.align attribute determines the text alignment. It

has a draw method that takes two arguments, a canvas context on which

to draw, and the value to show. It simply prints the label and the value

separated by a colon.

Chapter 12 Collision DeteCtion

191

Like the Indicator class, the NumberIndicator class avoids the need

for low-level drawing code in our main AsteroidsGame class. This avoids

clutter and helps us to organize our code and keep track of what everything

does. We’re also going to use it twice, which avoids repeating similar code

(which is bad). We need to add a couple of lines in our AsteroidsGame

constructor, as shown in Listing 12-19.

Listing 12-19. Some Indicators

this.score_indicator = new NumberIndicator("score",

 this.canvas.width - 10, 5

);

this.fps_indicator = new NumberIndicator("fps",

 this.canvas.width - 10,

 this.canvas.height - 15,

 {digits: 2}

);

Then we update our AsteroidsGame.prototype.draw method, as

shown in Listing 12-20. We only show the frame rate when the guide is on.

Listing 12-20. Some More Indicators

AsteroidsGame.prototype.draw = function() {

 this.c.clearRect(0, 0, this.canvas.width, this.canvas.

height);

 if(this.guide) {

 draw_grid(this.c);

 this.asteroids.forEach(function(asteroid) {

 draw_line(this.c, asteroid, this.ship);

 this.projectiles.forEach(function(p) {

 draw_line(this.c, asteroid, p);

 }, this);

Chapter 12 Collision DeteCtion

192

 }, this);

 this.fps_indicator.draw(this.c, this.fps);

 }

 this.asteroids.forEach(function(asteroid) {

 asteroid.draw(this.c, this.guide);

 }, this);

 this.ship.draw(this.c, this.guide);

 this.projectiles.forEach(function(p) {

 p.draw(this.c);

 }, this);

 this.health_indicator.draw(this.c, this.ship.health, this.

ship.max_health);

 this.score_indicator.draw(this.c, this.score);

}

The last thing we need is to calculate the frame rate. Add a line to the

AsteroidsGame.prototype.frame method, as shown in Listing 12-21.

Listing 12-21. Calculating the Frame Rate

AsteroidsGame.prototype.frame = function(timestamp) {

 if (!this.previous) this.previous = timestamp;

 var elapsed = timestamp - this.previous;

 this.fps = 1000 / elapsed;

 this.update(elapsed / 1000);

 this.draw();

 this.previous = timestamp;

 window.requestAnimationFrame(this.frame.bind(this));

}

Chapter 12 Collision DeteCtion

193

That’s it! Refresh the page and enjoy your new score indicator.

Figure 12-4 shows what you should see. Notice that destroying all the

asteroids leaves you with a score equal to the mass of one asteroid. All

the mass has been converted to score. You can also toggle the guide and

admire the new fps indicator.

 Summary
We’ve added functionality to our game. We can now fly around destroying

asteroids. And we’ve added significant complexity to our code—in the

update and draw functions, we’re now managing the game itself. We detect

collisions and encode the consequences of collisions.

Figure 12-4. Score and frame rate indicated

Chapter 12 Collision DeteCtion

194

The main lesson here is that new code should always have a place of

its own in the structure. We refactored our code at the beginning of the

chapter to create a home for our newly composed complexity. We didn’t

have to do that, but it brings many small benefits and simplifications. The

functions themselves provide structure within the game object. When we

read through our functions, it’s possible to understand what’s going on.

Having complex code declared directly in the global scope is always a sign

that a refactoring to add structure should be considered.

Chapter 12 Collision DeteCtion

195
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1_13

CHAPTER 13

Death or Glory
Our game is nearly finished. In this chapter we’ll add the finishing touches.

We’ll add a “game over” state that will end the game when our health

reduces to zero. We’ll then add the ability to restart the game without

reloading the page. Finally, we’ll add levels that will allow us to play the

game continuously, with increasing difficulty and an increasing score

multiplier.

Copy your code into a new folder for the final time. Save a copy of your

exercise12.html file and rename it to exercise13.html.

 Game Over
When the ship runs out of health, nothing happens. We need to change

it so the game ends. We’ll indicate the game has ended by setting a game_

over property. First, we need to add the property to our AsteroidsGame

constructor:

this.game_over = false;

196

Now, when we’re in our “game over” state, we want to show the

remaining asteroids still moving through space, but everything else

can stop updating and won’t be drawn. Add the following lines into the

AsteroidsGame.prototype.update method, just after we finish updating

the asteroids, before the ship and projectiles are updated:

if(this.ship.health <= 0) {

 this.game_over = true;

 return;

}

Here we’re setting the “game over” state if the ship’s health drops

to 0. We also return from the method so nothing beyond this line will

be processed.

Similarly, in the AsteroidsGame.prototype.draw method, add the

following lines after we’ve drawn the asteroids and before we draw the ship:

if(this.game_over) {

 return;

}

This ensures that we don’t draw the ship when the game is up. The

asteroids will continue to float about.

Refresh your browser and try it. If you lose all your health, your ship

will disappear, and the remaining asteroids will arrogantly celebrate their

victory. Anything you want to show all the time should be above the if

block containing the return statement. Anything you want to show only

during “game over” state should be placed inside the if block and before

the return statement. Anything you want to show only during a running

game should be placed after the if block.

We need to tell the user the game is over. Change it as shown in

Listing 13-1.

Chapter 13 Death or Glory

197

Listing 13-1. Send a Message

if(this.game_over) {

 this.message.draw(this.c, "GAME OVER", "Press space to play

again");

 return;

}

Now add the Message object from listing 13-2 into objects.js.

Listing 13-2. Deliver a Message

function Message(x, y, options) {

 options = options || {};

 this.x = x;

 this.y = y;

 this.main_pt = options.main_pt || 28;

 this.sub_pt = options.sub_pt || 18;

 this.fill = options.fill || "white";

 this.textAlign = options.align || 'center';

}

Message.prototype.draw = function(c, main, sub) {

 c.save();

 c.fillStyle = this.fill;

 c.textAlign = this.textAlign;

 c.font = this.main_pt + "pt Arial";

 c.fillText(main, this.x, this.y);

 c.font = this.sub_pt + "pt Arial";

 c.fillText(sub, this.x, this.y + this.main_pt);

 c.restore();

}

Chapter 13 Death or Glory

198

Finally, update the game object constructor to set up the message

object:

this.message = new Message(this.canvas.width / 2, this.canvas.

height * 0.4);

Now refresh the page and admire the nice “GAME OVER” message

that appears when you run out of health. You should see something like

Figure 13-1.

Figure 13-1. Introducing jeopardy

Chapter 13 Death or Glory

199

 Restarting the Game
We need to handle a spacebar press to reset the game. We’ll implement a

reset_game method so we need to update the AsteroidsGame.prototype.

key_handler method to call this if the game_over property is set when the

spacebar is pressed.

Listing 13-3. Restarting the Game with the Spacebar

case " ":

case 32: //spacebar

 if(this.game_over) {

 this.reset_game();

 } else {

 this.ship.trigger = value;

 }

 break;

Now we need to divide the game constructer into one-off things that

can remain in the constructor and things that need to be called every time

the game restarts. We now call the AsteroidsGame.prototype.reset_game

method at the end of the constructor, as shown in Listing 13-4.

Listing 13-4. Separate out the AsteroidsGame.prototype.reset_

game Method

var AsteroidsGame = function(id) {

 this.canvas = document.getElementById(id);

 this.c = this.canvas.getContext("2d");

 this.canvas.focus();

 this.guide = false;

 this.ship_mass = 10;

 this.ship_radius = 15;

 this.asteroid_mass = 10000; // Mass of asteroids

Chapter 13 Death or Glory

200

 this.asteroid_push = 5000000; // max force to apply in one

frame

 this.mass_destroyed = 500;

 this.health_indicator = new Indicator("health", 5, 5, 100, 10);

 this.score_indicator = new NumberIndicator("score", this.

canvas.width - 10, 5);

 this.message = new Message(this.canvas.width / 2, this.

canvas.height * 0.4);

 this.canvas.addEventListener("keydown", this.keyDown.

bind(this), true);

 this.canvas.addEventListener("keyup", this.keyUp.bind(this),

true);

 window.requestAnimationFrame(this.frame.bind(this));

 this.reset_game();

}

AsteroidsGame.prototype.reset_game = function() {

 this.game_over = false;

 this.score = 0;

 this.ship = new Ship(

 this.canvas.width / 2,

 this.canvas.height / 2,

 1000, 200

);

 this.projectiles = [];

 this.asteroids = [];

 this.asteroids.push(this.moving_asteroid());

}

This is just a simple reorganization of preexisting code. Try refreshing

the browser and losing all your health. Pressing space now calls our new

method, and the game restarts! Nice.

Chapter 13 Death or Glory

201

 Implementing Levels
Currently, when we destroy all the asteroids, nothing happens. We just

keep floating around in empty space with nothing to do. What we want to

happen is that we progress to the next level and more asteroids appear. As

the levels progress, we should face more and more asteroids.

First things first: add a level property to the game. We set the level in

the new reset_game method:

this.level = 1

We also want a level indicator, so add one in the constructor, based on

Listing 13-5.

Listing 13-5. A Level Indicator

this.level_indicator = new NumberIndicator("level", this.

canvas.width / 2, 5, {

 align: "center"

});

Don’t forget to draw it to the canvas in the AsteroidsGame.prototype.

draw method:

this.level_indicator.draw(this.c, this.level);

Now we need to update the level property when the asteroids array

is empty. Add this to the beginning of the AsteroidsGame.prototype.

update method:

if(this.asteroids.length == 0) {

 this.level_up();

}

The new AsteroidsGame.prototype.level_up method will increment

the level property and set up more asteroids. Add the new method shown

in Listing 13-6.

Chapter 13 Death or Glory

202

Listing 13-6. The AsteroidsGame.prototype.level_up Method

AsteroidsGame.prototype.level_up = function() {

 this.level += 1;

 for(var i = 0; i < this.level; i++) {

 this.asteroids.push(this.moving_asteroid());

 }

}

Now we can tidy up our AsteroidsGame.prototype.reset_game

method by initializing the level to 0 and calling level_up. Listing 13-7

shows the new method.

Listing 13-7. A Tidy AsteroidsGame.prototype.reset_game

Method

AsteroidsGame.prototype.reset_game = function() {

 this.score = 0;

 this.level = 0;

 this.game_over = false;

 this.ship = new Ship(

 this.canvas.width / 2,

 this.canvas.height / 2

);

 this.projectiles = [];

 this.asteroids = [];

 this.level_up();

}

Refresh the browser and play your fully featured game. When all the

asteroids are destroyed, they’re replaced with a larger batch. The game

starts out easy but quickly gets harder. Once you lose all your health, the

“game over” state shows, and the game restarts when the spacebar is

pressed.

Chapter 13 Death or Glory

203

Sit back and contemplate what you’ve done. By my calculations, you

now have over 700 lines of code and a really solid, extendable game. The

code is beautifully organized, and adding features such as a particle system

for explosions and thruster trails, powerups, and sounds would be easy.

 Summary
In this chapter we’ve refined our game into a complete user experience by

introducing states. Our game previously had two dead-ends. If the player

was killed, the game continued as if nothing had happened. If the player

destroyed the last asteroid, the game simply continued with nothing to

shoot at. By adding a “game over” state, we introduced jeopardy. By adding

a level system and bringing more asteroids into the game, we introduced

ambition and potential. There are now no longer any states in the game

where the user gets stuck.

Of course, the game is still very simple, and other than challenging

friends to achieve the highest score there’s little long-term playability here.

That situation can be improved by introducing features such as powerups

(especially if rare powerups enable progression in later levels). You could

also make improvements such as a scoreboard to record precisely who

the best player is, which can make the game more attractive. The look

and feel of the game can be improved by adding a snazzy particle system

for the thruster trails and explosions when asteroids are hit. Finally,

adding sounds can make a huge difference to a game like this, making the

experience richer and more immersive.

The improvements just mentioned are just suggestions but would

make excellent projects for an enthusiastic and creative reader to develop

their knowledge further.

Chapter 13 Death or Glory

204

 Conclusions
JavaScript is a great tool for building games and game-like systems. The

web provides a perfect means to put your creations into the hands of

millions of waiting users. Of course, other technology stacks are also

available; there’s great benefit to be had from gaining experience with

multiple languages and systems. Hopefully, some of the key points I’ve

covered in this book will prove useful to you in the future, whatever path

you choose.

You’ve been through a long process and I hope you’ve learned a few

things about structuring code and the kinds of logic necessary for building

games. This puts you in a good position to open a blank text file and get

creative with your own project.

If I were to offer any parting advice, it would be this: try to view

software engineering as a process of managing complexity. Any non-trivial

software will be complex. It’s important to design our code one step at a

time, gradually building the complexity and restructuring all the time as

we go. This means starting with no structure and only adding functions

and classes and inheritance when you’re sure they will help. When we

create new code, we need the freedom to be creative. Too much structure

in the early stages will limit the options and reduce the chance for us

to find good solutions. The real trick is balancing this with the absolute

necessity of building structure to enable the complexity to grow. We should

allow structure to emerge naturally by a process of trial and error. Adding

structure should simplify the code that uses that structure. It should create

an interface you can use effectively for the problem at hand.

I want to mention some pointers you can use to get started. Write code

into global scope while you experiment. Always start simple. Identify the

components you’ll need (in our case, we started with asteroids and a ship)

and develop them one at a time. Try to start with the individual behavior

of the simplest components and don’t worry about how they’ll interact

until later. Only add structure such as functions and objects when the code

Chapter 13 Death or Glory

205

looks good. Don’t change code inside functions and objects too often.

Study messy code and try to simplify it. Add more functions to break up

large pieces of code into smaller pieces.

Experimentation is important. Once you have something you’re

happy with, add structure to crystalize the component down into the

functionality it provides. Move good code into libraries—quality control is

important. Build all your low-level components in this way. At each stage,

move your best code from the global scope into function and objects, and

move your best functions and objects into libraries.

Refactor early, refactor often. Develop your instincts by confidently

experimenting with how you do things (always save a copy just in case).

Use version control and commit every incremental improvement.

Experiment with your components to see what they can do. Once

your objects are stable, start to consider their interactions. Compose

component interactions experimentally. Once you’re happy, build more

structure—perhaps a master object. Refactor again and improve the

structure of your components to meet the needs you’re identifying.

Great developers manage the interplay between chaos and order.

True mastery comes when we develop instincts that can guide us towards

structures at multiple levels that are helpful rather than harmful to the

whole. These instincts can only come with practice. Remember, code

doesn’t appear fully formed with perfect structure. Blindly copying

structure from examples in a book won’t help you to understand how

those examples came about. The secret is to have a goal in mind while you

experiment. Develop your instincts by experimenting with many different

structures until you hit upon one you consider to be good for your current

goal. Do this enough times, and it will become easier.

With that, I have to leave it. Thank you for taking the time to read my

book. If you liked it, tell someone about it. If you didn’t like it, tell me about it.

Graeme

Chapter 13 Death or Glory

207
© Graeme Stuart 2017
G. Stuart, Introducing JavaScript Game Development,
https://doi.org/10.1007/978-1-4842-3252-1

Index

A
Animation

Bouncing Ball, 87–88, 90
gravity effect, 86
moving circle, 83, 85
Pac-Man, 87, 88, 90
Pac-Man at origin, 90–91

Asteroids
adding randomness, 74–75
basic shapes, 72
draw, 95
frame, 98–99
game loop, 97
multiple, 105–106
noise argument, 75
object, 99–101
object constructors, 101–102
prototype, 102, 104–105
regular shapes, 73
segments, 94
segments argument, 78–79
shape data, 76, 78
update, 96

B
Bezier curves, 34, 36

C
Canvas element

fancy text, 11–12
fillStyle, 9–10
rectangle script, 5–6
render text, 10–12
stick figure, 13–15
styles, 7–8

Canvas grid system
altering line thickness, 21
basic pattern, 20
code, 19
context.stroke() method, 20
for loop, 19
major/minor grid lines, 22
ternary operator, 21

Collision detection
AsteroidsGame, 171–172
asteroid vs. projectile, 185–187,

189–191, 193
damage

health property, 182–183
Indicator class, 183–185

draw, 177
draw_line, 177
event handler, 173, 175
frame, 175–176

https://doi.org/10.1007/978-1-4842-3252-1

208

helper methods, 172–173
ship vs. asteroids,

178–180, 182

D, E
Detecting collisions, see Collision

detection

F
Fancy text, 11–12

G
Game Over

game_over property, 195
level property, 201–202
Message object, 197–198
restarting, 199–200

Ghost object
constructor, 119
control, 121, 123
creation, 117
prototype.draw, 120
prototype.update, 120

H
HyperText Markup

Language (HTML)
basic template, 4, 17–18
stylesheet, 18

I, J, K, L
Inheritance

asteroid, 134–136
creation, 125, 127
extend, 133
laws of motion, 127
Mass class (see Mass class)
ship, 137–139

M, N, O
Mass class

constructor, 128
draw, 131
push, 129
test, 131–132
twist, 130
update, 128–129

P
Pac-Man game

context.arc method, 42–43
create, 40, 42–43
draw_pacman function, 43
randomization, 44–46

Pac-Man objects
animation, 87–88, 90–91
API, 114
constructor, 112
controls, 144
creation, 110, 112
onkeydown, 145–146, 148

Collision detection (cont.)

Index

209

prototype.draw, 113
prototype.turn, 113
prototype.update, 115

Path
Bezier curves, 34, 36
closed shapes, 32
closing, 31
draw some lines, 27
fill with straight line, 30
quadratic

curves, 33–34

Q
Quadratic curves, 34, 61

R
Refactor

code library, 23
create empty file, 23
draw_grid function, 24–26

S
Ship

mass, 137, 139
shooting

constructor, 163–164, 166

Projectile, 159–162, 166
reload time, 166–167

steering, 156–157
thruster control, 151–152,

154–156
update and draw, 138

Spaceship
add curve, 63
combining rotate and

translate, 58–59
rotate canvas context, 55
controls variables, 59–60
current origin, 57
curvy ship, 64, 67
draw_ship function, 50–51
multiple variations, 68–69
object literals, 52
options set, 52–53
quadratic curves, 61
rear corners, 54
template for drawing

ship, 49
Stick figure, 13–14

T, U, V, W, X, Y, Z
Ternary operator, 21

Trigonometry, 47–48

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Drawing
	Chapter 1: HTML5 and the Canvas Element
	 HTML Primer
	 Drawing to the Canvas
	 Style the Page to Highlight the Canvas
	 Experiment with fillStyle
	 Rendering Text
	 More Shapes and Lines
	 Summary

	Chapter 2: Understanding Paths
	 Organizing Your Files
	 The Canvas Grid System
	 Refactor Early, Refactor Often
	 Working with Paths
	 Adding Curves to a Path
	 Summary

	Chapter 3: Drawing to a Design
	 Pac-Man
	 Create a Function
	 Randomization
	 Summary

	Chapter 4: Drawing a Spaceship
	 Basic Trigonometry
	 A Basic Ship
	 Using Object Literals
	 Transforming the Canvas Context
	 Adding Some Curves
	 Summary

	Chapter 5: Drawing an Asteroid
	 Drawing Basic Shapes
	 Storing Shape Data
	 Summary

	Part II: Animation
	Chapter 6: Basic Animation
	 Start Simple
	 A More Complicated Example
	 Summary

	Chapter 7: Animating Asteroids
	 A Solid Game Loop
	 Refactoring into Simple Objects
	 Using Object Constructors
	 Extending the Asteroid Prototype
	 Working with Multiple Asteroids
	Summary

	Chapter 8: Practicing Objects
	 Why Objects?
	 Pac-Man Chased by Ghosts
	 The PacMan object
	 The Ghost Object
	 Summary

	Chapter 9: Inheritance
	 Set Up a Template
	 Newton’s Laws of Motion
	 A General-Purpose Mass Class
	 A Simple Approach to Inheritance
	 Asteroids
	 The Ship
	 Summary

	Part III: Building the Game
	Chapter 10: Simple Keyboard Interaction
	 Controlling Pac-Man
	 Summary

	Chapter 11: Controlling the Ship
	 Thruster Control
	 Steering
	 Shooting
	 Summary

	Chapter 12: Collision Detection
	 A Quick Refactor
	Ship vs. Asteroids
	 Taking Damage
	 Asteroid vs. Projectile
	 Summary

	Chapter 13: Death or Glory
	 Game Over
	 Restarting the Game
	 Implementing Levels
	 Summary
	 Conclusions

	Index

