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CHAPTER 1

Introduction to Scilab

1.1  �Introduction to Numerical Computing
Numerical computing is a field of mathematics where problems are 

made to be solved on a computing device. A variety of software tools 

exists for this purpose. In fact, MATLAB, Mathematica, Octave, and 

Scilab are specialized softwares for this purpose. A developer can also 

use general-purpose programming languages such as C, C++, Python, 

and Julia to define mathematical problems, but specialized softwares 

present predefined libraries that have been either optimized for stability or 

speed or, in same cases, for both. They can also be produced on targeted 

hardware for a chosen hardware platform. Thus, using specialized software 

is a good way to learn the numerical recipes for physical problems in 

an easy fashion. But, the primary question is why we should go for a 

numerical solution at all.

The postwar era has seen tremendous advances in computing 

technologies as well as in associated software development for specific 

purposes. Cost-effective computing resources have made it possible to 

simulate almost all physical problems. As a result, numerical computing 

has developed as a separate area of mathematics that constantly borrows 

and contributes to other areas of mathematics, creating an ecosystem of 

computing resources for model-based simulation of physical reality.
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The need for numerical computing has its roots in the difficulty of 

deriving analytical solutions for problems. Analytical solutions start with a 

super-simplified version of physical reality. Such solution are then refined 

by adding complexities and defining additional parameters to the governing 

equation(s). But, most of the time, the efforts to just define the problem 

grow exponentially to the point that it becomes difficult even when you have 

a team of humans, let alone one person. Thus, the need for an alternative 

way became apparent, which came in the form of numerical computing.

While analytical computation requires only a pencil, paper, and the 

human mind, numerical computation requires a calculating device, or 

a computer. Successful implementation of a computing device to solve 

problems (especially involving repeated tasks) over a large array of data 

points was first observed in many fields of science and engineering, for 

example, when breaking an enemy’s secret codes and simulating nuclear 

reactions before nuclear explosions. The scope of numerical computation 

was further expanded for civilian purposes. Designing and simulating 

waterways, dams, electric power stations, and urban roadways are just 

a few areas of engineering where similar techniques were utilized. All of 

these applications needed to solve an equation or system of equations for 

a physical model representing a physical problem.

There are two ways in which we can solve these equations—namely,  

by using analytical methods and by implementing numerical techniques. We 

will only concentrate on numerical methods of solving equations in this book.

As time progressed, various schemes to define analytical functions— 

like differentiation, integration, and trigonometric—were written for 

digital computers. This involved their digitization, which certainly 

introduced some errors. Knowledge of the introduced errors and their 

proper nullification yielded valuable information quicker than analytical 

results. Thus, it became one of the most actively researched fields of 

science and continues to be one to this day. The search for faster and 

accurate algorithms continues to drive innovation in the field of numerical 

computing and enables humanity to simulate otherwise impossible tasks.

Chapter 1  Introduction to Scilab
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1.2  �Various Software Alternatives
A number of alternatives exists to perform numerical computation. 

Programming languages written to handle mathematical functions, such 

as FORTRAN, C, Python, and Java, can be used to write algorithms for 

numerical computation. A set of specialized softwares exists that include 

MATLAB, Scilab, and Mathematica. Their rich libraries now run in many 

GBs of data. MATLAB has been tremendously popular among the scientific 

community since 1984. The cheap availability of digital computing 

resources propelled its usage in industry and academia to such an extent 

that virtually every lab needed MATLAB. Even though it wasn’t very 

expensive for a relatively rich western world, it proved to be a costly piece 

of software for the rest of the world, particularly third-world countries. 

This part of the world, which has a rich pool of scientists, needed an open 

source alternative to MATLAB. The solution came in the form of Octave 

and Scilab. Scilab is extremely powerful, yet it was not designed exactly 

along the lines of MATLAB, syntax-wise. On the other hand, Octave was 

developed so that MATLAB’s .m files could directly run on Octave. Scilab 

is now being developed for developers who would like to shift their work 

to an open source platform completely but do not mind editing their 

MATLAB files if required.

When compared to the MATLAB package, including specialized 

packages for various engineering domains and Simulink for the graphical 

programming paradigm, Octave presents a limited variety of solutions.  

It includes almost all the functions found in MATLAB’s basic package and 

some specialized packages, but it does not provide Simulink’s equivalent. 

One the other hand, Scilab proves to be a complete alternative since 

Scilab’s XCOS provides Simulink’s equivalent, and specialized packages of 

Scilab can rival the packages provided by MATLAB’s functionalities. In this 

book, we will introduce their basic usage.

Other alternatives include programming languages such as Python, 

C, C++, and Java. They each have advantages as well as disadvantages, 

Chapter 1  Introduction to Scilab
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so we advise users to consider their own needs when they make their 

choice. Scilab is a good choice for prototyping a problem quickly and 

checking the results. General-purpose programming languages turn out 

to be a better alternative while working with web-based data collection, 

analysis and visualization, and implementation of a physical problem on 

a physical computing platform like FPGA boards, microcontrollers, and 

so on. Scilab is a high-level language, primarily intended for numerical 

computation, and it has a rich library of tools for solving numerical linear 

algebra problems, finding the roots of nonlinear equations, integrating 

ordinary functions, manipulating polynomials, and solving ordinary as 

well as partial-differential and differential algebraic equations. This makes 

it suitable for most basic numerical computational work.

1.3  �History
The history of Scilab’s creation starts in the 1980s [1]. It was inspired by 

MATLAB’s Fortran code, which was developed by Cleve Moler. Moler 

later cofounded the MathWorks company with John Little. Scilab initially 

started as Blaise, a CACSD (computer-aided control system design) 

software. It was created at the IRIA (French Institute for Research in 

Computer Science and Control) by François Delebecque and Serge 

Steer. In 1984, Blaise became Basile and was distributed for a few years 

by Simulog, the first Inria (French National Institute for Research in 

Computer Science and Control) startup.

In the 1990s, Simulog stopped distributing Basile. Inria renamed the 

software Scilab and continued its developed with just six researchers. 

Scilab 1.1 was released on January 2, 1994, under an open source license. 

Until version 2.7, the Scilab community grew quite large. With support 

from companies and institutions, the Scilab Consortium was created in 

2003 by Inria. In June 2017, Scilab Enterprises was formed and took charge 

of development. Based on the classic open source business model, Scilab 

Chapter 1  Introduction to Scilab
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Enterprises also offered professional services and support for Scilab. 

Scilab Enterprises joined the ESI group in 2017 and now develops as well 

as provides services related to Scilab. Scilab is in use in every strategic 

domain of science, industry, and services including space, aeronautics, 

automobile, energy, defense, finance, and transport.

1.4  �Installation
Scilab is an open source software distributed under CeCILL license [2], 

which is a version of GNU-GPL compatible licenses for free software. 

Please note that the following instructions have been tested on version 

6.0.0. It can be downloaded from its web site [3] as per the requirements 

of the operating system. Installation is quite straightforward and user 

forums and simple Google searches yield answers to common problems 

encountered by users. Scilab includes a GUI-based console for easy user 

interface.

The online implementation of software is available at an Indian web 

site [4]. In this case, users do not need to install the software on their own 

systems. They simply need to connect to a remote server using a web 

browser and they can run the Scilab program in a manner similar to local 

installation. This does, of course, require a rather fast Internet connection. 

(Users are encouraged to test this facility.) For the purpose of this book, we 

will recommend a local installation and work on the same.

After proper installation at a windows OS, users can see a Scilab 

icon among the list of installed programs. Double-clicking the icon will 

open a Scilab session. The same is true for MacOSX. For Linux-based OS 

distributions, you can choose either to click a desktop icon or simply to 

type scilab at the command line.

Chapter 1  Introduction to Scilab
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1.5  �Workspace
Figure 1-1 presents a screenshot of installed Scilab version 6.0.0. You can 

observe various partitions in the main windows:

•	 File browser

•	 SCILAB 6.0.0 console

•	 Variable browser

•	 Command history

•	 News feed

Figure 1-1.  Scilab screenshot

All these partitions have options of undocking (separating from the 

main window and opening it in another window) and closing as per 

requirements. We recommend keeping all these partitions open for now 

so first-time users can observe the computation and their results in an 

interactive way.

Chapter 1  Introduction to Scilab
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To check if installation has been done for the version selected for 

download, we can type a simple command ver at the Scilab command 

prompt (shown as --> at the Scilab console window). The following output 

is displayed at the time of writing:

 1   −−>ver
 2   ans =

 3

 4

 5   column 1

 6

 7   ! Scilab Version:                   !

 8   !                                   !

 9   ! Operating System:                 !

10   !                                   !

11   ! Java version:                     !

12   !                                   !

13   ! Java runtime information:         !

14   !                                   !

15   ! Java Virtual Machine information: !

16   !                                   !

17   ! Vendor specif ication:             !

18

19   column 2

20

21   ! 6.0.0.1487071837

           !

22   !

           !

23   ! Mac OS X 10.12.6

           !

24   !

           !

Chapter 1  Introduction to Scilab
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25   ! 1.8.0_51

           !

26   !

           !

27   ! Java(TM) SE Runtime Environment (build 1.8.0_51−b16)
            !

28   !

            !

29   �! Java HotSpot (TM) 64−Bit Server VM (build 25.51−b03, 
mixed mode)

            !

30   !

            !

31   ! Oracle Corporation

            !

This output shows that the Scilab version is 6.0.0.1487071837 on 

MacOSX 10.12.6.

1.6  �Command Prompt
Scilab presents a full-featured, interactive, command-line REPL (read-

eval-print loop). The interactive shell of the Scilab programming language 

is commonly known as REPL because it does the following:

•	 Reads what a user types

•	 Evaluates what it reads

•	 Prints out the return value after evaluation

•	 Loops back and does it all over again

Chapter 1  Introduction to Scilab
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This kind of interactive working environment proves very useful for 

interactive coding as well as for debugging. You can check the results of 

a particular code as soon as you finish writing it. The way to work with 

Scilab’s REPL is to write the code, analyze the results, and continue this 

process until the final result is computed. In addition to allowing a quick 

and easy evaluation of Scilab statements, it also showcases the following:

•	 A searchable history

•	 Tab completion

•	 Many helpful key bindings

•	 Help and documentation

A section of the left side of a Scilab window shows the command 

history, which shows all the commands used at the command prompt. 

Clicking a particular command enables its execution at Scilab’s command 

prompt. This is a quick way to repeat commands. Alternatively, users can 

use the Up and Down arrow keys on a traditional keyboard of a computer 

to browse through the commands.

The option of tab completion allows users to just type a few characters 

for a command and then press the Tab key to obtain either a list of options 

to choose from if there is more than one option, or it just completes the 

right syntax of the command. This feature is extremely useful since it 

avoids syntax errors, which are one of the leading causes of bugs.

The key bindings depend on the operating systems. When you click 

various items on the menu bar (the top of Scilab’s main window), you can 

see the key bindings alongside the name of the options.

Getting help with various topics and locating documentation is 

also quite easy in Scilab. You can simply put any argument as a string 

(characters enclosed within double quotes " ") to the built-in function 

help(). For example, we used the function ver earlier. Suppose you wish 

Chapter 1  Introduction to Scilab
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to know its proper usage and wish to see the complete documentation. You 

can type the following at the Scilab command prompt:

1   −−>help("ver")

This will open up a help browser window, as shown in Figure 1-2.

The help browser hosts all the built-in functions as well as other topics. 

You can learn Scilab using this browser window and can consult this 

window in case any questions come up during the development process. 

The Scilab community maintains very high-quality documentation, which 

has helped Scilab to become popular.

Figure 1-2.  Help browser window

Chapter 1  Introduction to Scilab
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Another way to get help on a topic is by clicking the ? symbol in 

the menu bar, which opens up Scilab Help as one of the options. This 

requires the use of a mouse to locate the symbol and click.

Sometimes users need to obtain a clear screen. To do this, they can 

use the clc command. This command presents a fresh command prompt, 

just as in the case of opening Scilab for the first time. It is worth noting that 

Scilab does not restart during this process. It stores all the variables and 

their respective values; it just clears the screen o all the previous content. 

Users can also use this command as a function by typing clc(n) where n 

can be an integer so that the command will clear those many numbers of 

lines from the previous session. If users type clc() instead, all lines are 

cleared from the screen.

The symbol used for this Scilab command is --> to distinguish it from 

the MATLAB or Octave command prompt. This information is stored in 

the prompt variable and can be scanned as follows:

1   −−>prompt
2   ans =

3

4   −−>

REPL replies with the value --> i. e. symbol for Scilab prompt.

1.7  �Variable Browser
The variable browser lists the variables (explained later) used, their sizes, 

types, and visibility. Having this information on the screen helps users to 

track the memory usage and also avoid mixing up variable names. The 

variable browser is appended with new information when users add new 

variables or remove the same ones from calculations. The variable list can 

be emptied by the command clear, which removes the variables from the 

computer memory. This action can be verified by the empty contents of 

the variable browser.

Chapter 1  Introduction to Scilab
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After any kind of activity at the variable browser, there is at least one 

variable named ans created in a Scilab session that stores the value of the 

last evaluated expression at the command, as verified by the following 

code:

 1   −−>2+2
 2   ans =

 3

 4   4.

 5

 6

 7   −−>ans
 8   ans =

 9

10   4.

1.8  �SciNotes
SciNotes is an embedded Scilab text editor. The SciNotes window can be 

used to write multiline programs and can be opened via Application -> 

SciNotes from the menu bar. (See Figure 1-3.)

Chapter 1  Introduction to Scilab
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It can also be opened using the command prompt by either typing 

scinotes or editor. The editor has features to create new windows, save 

the present session, cut, copy, and paste, as well as play the program  

(in other words, run the program). The output of the code is seen at 

Scilab’s command prompt. The command scinote() makes use of the 

built-in function. When an argument is given as the filename or filepath, 

then that particular file opens in the SciNotes environment. The filename 

must be given as a string. If an additional option, 'readonly', is added, 

then the file is opened in read-only mode; it cannot be edited. This 

prohibits unwanted editing of the code.

Figure 1-3.  SciNotes window

Chapter 1  Introduction to Scilab
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1.9  �Summary
Scilab offers an open source alternative for numerical computing. Even 

though users have to convert MATLAB code to make it compatible to 

Scilab, it is sometimes an exercise worthwhile since Scilab provides a rich 

ecosystem of engineering modules to perform complex mathematical 

calculations. In case of confusion, documentation for particular 

commands can be easily available using the help command. In this 

chapter, we have outlined the importance of using Scilab. Subsequent 

chapters will explain its usage for scientific computing.
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CHAPTER 2

Working with Scilab

2.1  �Working with Scilab
As explained in Chapter 1, there are two ways to work within Scilab. The 

first way is to work at the command line by typing one command at a time. 

The partition titled “Scilab 6.0.0 Console” (shown in the middle part of 

Figure 1-1) presents the command line where the cursor is shaped as −−>. 

You can write commands here for immediate execution. As an example, 

let’s start with writing the first program of any programming language—

printing the words Hello World at the command prompt.
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This can be done by simply writing the following at the command 

prompt:

1  −−>message = "Hello World!"
2  message =

3  Hello World!

4  −−>disp(message)
5  Hello World!

As soon as the first command message = "Hello World!" is given, 

you can see that the window titled Variable Browser is populated by two 

variables: ans and message.

The window also states properties of values stored in these variables. 

Both of them store the same value, which is a string of characters. The ans 

variable will get appended with new values depending on what is typed 

next at the command prompt, but the variable message will remain until it 

is assigned another value.

Figure 2-1.  Variable browser window showing two variables

Chapter 2  Working with Scilab
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2.2  �Working with Scilab Files
The second method is to write a script (in other words, a set of multiple 

commands) as a file. Scilab provides two kinds of script files. Two formats, 

.sci and .sce, differentiate them explicitly:

•	 .sci files contain Scilab and/or user-defined functions.

•	 The execution of such files simply loads them in the 

Scilab environment but does not execute them.

•	 .sce files contain both Scilab functions and executable 

commands. When these files are called, they are 

executed.

Having two types of files is what differentiates Scilab from 

MATLAB. The distinction between a function file and a file for execution 

is not present in MATLAB, where all files are simply denoted by an .m 

extension.

In Listing 2-1, we will write a Scilab file named hello.sce and run 

it. The file uses a similar code to what we saw in Section 2.1, where we 

printed Hello World! at the command prompt.

Listing 2-1.  hello.sce

1  message = "Hello World"

2  disp(message)

To run this file, you can simply click the Play icon on the menu bar in 

the SciNotes window. Alternatively, you can mention the full path of the 

file to run it. If you are working in the same directory as that of the file, you 

simply have to print the name of the file without mentioning its extension 

within the command exec().

The usual conventions of naming the files are followed. The first letter 

should not be a special character or a numeric value, and file names are 

case-sensitive. Keywords should be avoided when naming files. It is also 
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recommended that users should work in a single folder for a particular 

project. The advantage of this approach is that to run programs, users only 

need to write the name of the program instead of the full path of the file. 

Also, it is easier to share the codes for executions because paths will differ 

with different computers.

2.3  �Second Example: A Mathematical 
Calculation

You can write the first program printing the string “Hello World!” by typing 

the following at the command prompt:

 1  −−>a = 2
 2  a =

 3  2.

 4  −−>b = 3
 5  b =

 6  3.

 7  −−>a+b
 8  ans =

 9  5.

10  −−>a−b
11  ans =

12  −1.

First, the variable a is assigned to a numeric value, 2. Even though 

it was defined as an integer, it was treated as the floating point number 

2, signifying the numeric value 2.0. Similarly, the variable named b is 

stored as the numeric value 3.0. These values can then be used to perform 

calculations using these variables. The word variable means that they can 

store various values. At any instant of time, the values that they store will 

be used for calculations. Hence, a+b is calculated as 2.0 + 3.0 = 5.0, and a-b 
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is evaluated as 2.0 − 3.0 = −1.0. The variable named ans stores the value of 

the last evaluated Scilab expression. These concepts are demonstrated in 

Listing 2-2.

Listing 2-2.  addsub.sce

1  a = 2

2  b = 3

3  summing = a+b

4  subtracting = a−b
5  disp(summing)

6  disp(subtracting)

Alternatively, you can store these commands by assigning values, 

calculating them, and then printing them in a file, namely addsub.sce. You 

can run this file by typing exec(addsub.sce). You can also run the program 

by simply clicking the Play button in the menu bar. The results can be seen 

in Scilab’s command prompt and found to match the expectations.

To edit the contents of a file, you need to open the editor (SciNotes). You 

can either open it using the icon provided at the top-left corner of the menu 

card, or you can type edit addsub.sce at the command prompt. A new 

window pops up where you can write the code and save it as addsub.sce or 

a different name as desired. If you don’t define the format of the file as .sce, 

Scilab gives if the format .sci since it treats the file as a Scilab function.

The Scilab command prompt is represented by the symbol --> by 

default. Scilab is an interpreted language with dynamically typed objects. 

This implies that after entering a command at the command prompt, if 

the Enter key is pressed on a keyboard, the command is executed. You can 

write the code one line at a time and execute the same. The code executes 

well until an error is presented.

One way to learn Scilab is to run demonstration programs. Click the 

? symbol in the list the menu presents at the top of the main window. 

Choose Demonstrations and click Introduction: Getting started with Scilab. 
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Choose the appropriate topic to learn the same. This approach requires 

users to structure their learning experience themselves; thus, it is not 

recommended for the first-time user. This book will help with this aspect 

since the learning structure has been devised for the first-time user.

2.3.1  �Calculator
Because the Scilab command prompt executes any expression at 

the command prompt, Scilab effectively works as a calculator with 

mathematical operators including multiplication (symbol is *), division 

(symbol is /), addition (symbol is +), subtraction (symbol is -), and 

exponentiation (symbol is ^):

 1  −−>2+4.2
 2  ans =

 3  6.2

 4  −−>2+4
 5  ans =

 6  6.

 7  −−>2−4.2
 8  ans =

 9  − 2.2
10  −−>2∗4.2
11  ans =

12  8.4

13  −−>2/4.2
14  ans =

15  0.4761905

16  −−>2ˆ4
17  ans =

18  16.
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This example shows that when a command is fed at the command 

prompt -->, it is executed and the answer is given by displaying the results 

in the next line as ans =.

2.4  �Formatting Command Prompt Display
The display of numbers at the command prompt can be formatted in 

two ways: in scientific notations (also known as exponent notation) or in 

normal notations. This is done by issuing the command format e, which 

prints all answers in scientific notation. At any point, if the command 

format v is issued, variable adaptive formatting is chosen. Here Scilab 

chooses either the direct representation or the exponential/engineering/

scientific notation in order to cope with each processed value, as well as 

with the required width, with a maximal number of output digits. This 

behavior is shown in the following code:

1  −−>format e
2  −−>2/4.2
3  ans =

4  4.762D−01
5  −−>format v
6  −−>2/4.2
7  ans =

8  0.4761905

When the format() function is used, it can take two inputs—the mode 

and width of characters—to display. The width of numbers denotes the 

number of output characters used. This includes the following:

•	 Sign of the mantissa

•	 Its digits

•	 Decimal separator

•	 Exponent symbol
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•	 Sign

•	 Digits of the exponent

The default width is 10 and the minimal width in 'e' mode is 8. The 

following sample code explains this behavior:

 1  −−>format('e',10)
 2  −−>2/4.2
 3  ans =

 4  4.762D−01
 5  −−>format('e',20)
 6  −−>2/4.2
 7  ans =

 8  4.7619047619048D−01
 9  −−>format('v',20)
10  −−>2/4.2
11  ans =

12  0.4761904761904762

When the --> format('e',20) command is issued, 20 digits can be 

used to display the result so more digits get represented on the screen. 

Displaying the result with more digits does not alter the storage of the 

result. The result is stored with a precision of a fixed number of bits, as we 

will discuss in Section 2.11.1. merely its display is affected.

2.5  �Operator Precedence
When a number of operations needs to be performed, the BODMAS rule is 

followed. Mathematical operations have a precedence order as follows:

•	 Any expression in brackets is solved first.

–– If brackets further enclose brackets, the inner  

brackets are solved first and then the successive 

outer brackets are solved.
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•	 Division

•	 Multiplication

•	 Addition

•	 Subtraction

As shown in the following code, placing brackets has an immediate 

effect in calculations as brackets are solved first. Hence, we advise that 

longer mathematical statements are enclosed in brackets appropriately:

1  −−>(2ˆ2)/3
2  ans =

3  1.3333333

4  −−>2ˆ(2/3)
5  ans =

6  1.5874011

2.6  �Variable Browser Window
As soon as the answer is displayed, the variable browser window shows 

that a new variable named ans has been created and the value of 

calculations is stored by this variable name. ans is the default variable 

name for Scilab. During the course of programming, all variables and their 

values as well as their type are displayed at the variable browser window.

Double clicking a variable name or any of its properties opens the 

same as in a graphic interface, which looks similar to an Excel sheet. This 

is because Scilab performs matrix calculations and, hence, stores values as 

matrices. A single value is a 1 × 1 matrix (a matrix having one row and one 

column). When users learn to define arrays, they can correlate the fact that 

variables will store values as an n × m dimensional matrix where data is 

stored in n rows and m columns. Apart from these two-dimensional arrays, 

users can also define multidimensional arrays.
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2.7  �Clearing Variables
Variable values are stored at specific memory locations. The command 

clear kills these variables, unless they are protected. Protected variables 

are standard libraries and variables with the percent prefix. As soon as you 

type clear at the command prompt, you can see that the variable browser 

is cleared of all values and information.

If three variables a, b, and c have been defined so that they can be 

selectively killed by issuing the command clear a where only the variable 

named a is killed, the other two safe. The function isdef() checks whether 

a variable is live. Listing 2-3 illustrates this point.

Listing 2-3.  clear.sce

 1  disp("Def ine three vaiables named a,b,c")

 2  a = 10;

 3  b = 12.2;

 4  c = a∗b;
 5  disp("Checking if variables have been def ined as a,b,c")

 6  disp(isdef("a"))

 7  disp(isdef("b"))

 8  disp(isdef("b"))

 9  disp("After clearing the variable a")

10  clear a

11  disp(isdef("a"))

12  disp(isdef("b"))

13  disp(isdef("b"))

When executed (by typing exec(clear.sce)), it produces the following 

output:

 1  −−>exec('clear.sce')
 2  −−>disp("Def ine three vaiables named a,b,c")
 3  Def ine three vaiables named a,b,c
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 4  −−>a = 10;
 5  −−>b = 12.2;
 6  −−>c = a∗b;
 7  −−>disp("Checking if variables have been def ined as a,b,c")
 8  Checking if variables have been def ined as a,b,c

 9  −−>disp(isdef("a"))
10  T

11  −−>disp(isdef("b"))
12  T

13  −−>disp(isdef("b"))
14  T

15  −−>disp("After clearing the variable a")
16  After clearing the variable a

17  −−>clear a
18  −−>disp(isdef("a"))
19  F

20  −−>disp(isdef("b"))
21  T

22  −−>disp(isdef("b"))
23  T

2.8  �Comments
All programming languages are designed to encourage programmers 

to put comments at desired places in the program so that they can be 

understood by humans. Scilab uses the double forward slash (//) for this 

purpose. Anything written in front of a comment is not executed by the 

interpreter. Comments are used as texts explaining the flow of information 

and for tagging information at specific locations in the program.
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It is a good practice to write comments for each relevant line of code 

for better understanding. This is particularly important if more than 

one person shares the code. The end user can understand the usage of 

variables and the logic behind calculation by reading the comments.

2.9  �Predefined Constants
Scientific computing requires some predefined constants that are 

frequently used. They are preceded by the % sign, as shown in Listing 2-4.

Listing 2-4.  constants.sce

 1  disp("value of pi:")

 2  disp(%pi)

 3  disp("value of eps:")

 4  disp(%eps)

 5  disp("Value of inf inity:")

 6  disp(%inf)

 7  disp("Value of e:")

 8  disp(%e)

 9  disp("Value of imaginary number i:")

10  disp(%i)

11  disp("value of boolean True:")

12  disp(%t)

13  disp("Value of boolean False:")

14  disp(%f)

15  disp("value of Not−a−number variable i.e. nan:")
16  disp(%nan)
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When executed (by typing exec(constants.sce)), it produces the 

following output:

 1  value of pi:

 2  3.1415927

 3  value of eps:

 4  2.220D−16
 5  Value of inf inity:

 6  Inf

 7  Value of e:

 8  2.7182818

 9  Value of imaginary number i:

10  i

11  value of boolean True:

12  T

13  Value of boolean False:

14  F

15  value of Not−a−number variable i.e. nan:
16  Nan

A number of physical constants are predefined:

•	 pi

•	 e (Euler’s number)

•	 i is the imaginary number = -1

•	 inf (infinity = ∞),

•	 NaN (Not a Number—resulting from undefined 

operations, such as Inf/Inf) and eps, which is defined 

as 2−52
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2.9.1  �Common Mathematical Functions
A number of predefined mathematical functions exists in Scilab. Following 

are some of them:

•	 Absolute value: abs() gives the positive value of 

argument

•	 Logarithm: Natural logarithm log(), Base 10 logarithm 

log10()

•	 Trigonometric functions: sin(), cos(), tan()

(Arguments are taken in radians.)

•	 Inverse-trigonometric functions: asin(), acos(), 

atan()

 1  −−>abs(%i) // absolute value of sqrt(−1)
 2  ans =

 3  1.

 4  −−>abs(%pi) // absolute value of pi
 5  ans =

 6  3.1415927

 7  −−>abs(−%pi)
 8  ans =

 9  3.1415927

10  −−>log(10) // logarithmic valaue to the base e
11  ans =

12  2.3025851

13  −−>log(−10)
14  ans =

15  2.3025851 + 3.1415927i

16  −−>log(%e)
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17  ans =

18  1.

19  −−>log(−%e)
20  ans =

21  1. + 3.1415927i

22  −−>log10(10) // logarithmic valaue to the base 10
23  ans =

24  1.

25  −−>log10(−10)
26  ans =

27  1. + 1.3643764i

28  −−>sin(45) // sine value
29  ans =

30  0.8509035

31  −−>sin((45∗%pi)/180) // argument converted to degrees
32  ans =

33  0.7071068

34  −−>sqrt(2) // square root
35  ans =

36  1.4142136

37  −−>acos(1) // inverse cosine
38  ans =

39  0.

Complex calculations using these functions and operations can be 

performed with ease, as demonstrated in Listing 2-5.

	
sin cos10 10

2 2( ) + ( ) 	
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Listing 2-5.  complexCal.sce

1  theta = 10; // Theta is taken as 10 here

2  s = sin(theta);

3  s_sq = sˆ2;
4  c = cos(theta);

5  c_sq = cˆ2;
6  �result = sqrt(s_sq + c_sq); // Variable named "result" 

stores value of answer

7  disp(result)

The result is displayed as 1 in compliance with trigonometric identity:

	
sin cosq q( ) + ( ) =2 2

1 	

2.10  �Variable
Variables are used to store values temporarily at computer memory 

locations. They are actually references to memory locations that store the 

data. They are addressed using a alphanumeric symbol or set of symbols 

called strings. The example of this approach is given in Scilab code 

complexCalc.sce (see Section 2.9.1) where the numeric value 10 is stored 

in the variable named theta. Then sin(θ) is calculated and stored in the 

variable named s. Similarly cos(θ) is stored as c. Their respective squares 

are stored in variables named s_sq and c_sq. Finally, a variable named 

result stores the calculation sin cosq q( ) + ( )2 2
, and this variable name is 

used to print the final answer of the calculation. The main advantage of 

using this approach is that value allocation to a variable is a dynamic 

process. If a user changes the value of the variable theta to 5 instead of 10, 

the value changes at all places where this variable is called.
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2.10.1  �Assignment Operator =
The symbol "=" works as an assignment operator that assigns the value 

present on the right-hand side to the variable name on the left-hand side. 

In mathematics, the symbol is used to equate two sides of an equation, 

but in Scilab, the symbol is used for assigning values. The equivalent of 

a mathematical symbol for equality is the symbol ==, which checks the 

equality of data value for quantities on both sides:

 1  −−>1==2
 2  ans =

 3  F

 4  −−>1==1.0
 5  ans =

 6  T

 7  −−>a=1
 8  a =

 9  1.

10  −−>b=2
11  b =

12  2.

13  −−>a==b
14  ans =

15  F

In this case, 1 2¹ . Hence, the result is the boolean value F, signifying 

false. The numerical values of 1 and 1.0 are the same, so when their 

equality is probed, you obtain T, signifying the expression is evaluated to 

be True. Variables can also be used for evaluation. In this case, the latest 

value stored in a variable is used for evaluation, and the result is declared 

as a boolean value.
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Multiple assignments can be performed by using the comma (,) 

operator. Also, if we do not wish to produce the results on screen, we can 

suppress this by using the ; operator:

1  −−>a1=10, a2=20, a3=30
2  a1 =

3  10.

4  a2 =

5  20.

6  a3 =

7  30.

Printing output can be suppressed using the ; operator in front of the 

command. In the following case, the assignment for a3 is not produced on 

the terminal since it is suppressed with the ; operator. In the second case, 

all outputs are suppressed:

 1  −−>a1=10, a2=20, a3=30;
 2  a1 =

 3  10.

 4  a2 =

 5  20.

 6  −−>a3
 7  a3 =

 8  30.

 9  −−>a1=10; a2=20; a3=30;
10  −−>

Note that the only printing of the output at the terminal is suppressed, 

but the assignment operation is unaffected by the ; operator. It can still be 

accessed as shown by the second command at the terminal.
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2.10.2  �Naming Conventions for Variables
There are some naming conventions for variables names that must be 

respected to avoid errors:

•	 Names should not start with a number; however, 

numbers can be used anywhere afterward.

•	 Variable names are case-sensitive.

•	 Keywords cannot be used as names.

•	 Names can include underscore (_) but cannot include 

a whitespace.

2.10.3  �Global and Local Variables
A variable declared globally within the main program is known as a global 

variable, whereas a variable declared locally within a function is known 

as local variable. Global variables are available to all functions, while local 

variables are available only for particular functions. They are defined 

using a global declaration statement. Once defined, they remain the same 

irrespective of any new definition unless the clear command is issued for 

clearing variable names and values from the memory. Another command, 

clearglobal, performs the task of killing global variables selectively. To 

check if a variable is global, users can use the isglobal() function.

Global variables are used to define constants during numerical 

calculations. Suppose we wish that all variables except a select few should 

change values. We then name those unchanging values to be global 

variables by giving the name of our choice. The predefined variables such 

as %pi and %e have been defined in a similar manner.
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2.10.4  �List of Variables
A list of all variables can be obtained by the commands who and whos 

where who simply presents the list of variables in the workspace and 

whos presents the same with more details such as the size of the variable, 

the number of bytes used to store the variable, and the variable type. 

who('local') or who('get') returns current variable names and the 

memory used in double precision words. who('global') returns global 

variable names and the memory used in double precision words. 

who('sorted') displays all variables in alphabetical order. By using who 

and whos, you can keep track of memory requirements judiciously. This is 

critical in memory- and speed-starved systems like Raspberry Pi.

2.11  �Data Types
While assigning data to a variable, it is important to understand that 

data can be defined as a variety of an object defined by its data type. The 

command help(type) gives detailed documentation about various data 

types.

2.11.1  �Numerical Data
Numbers are the basic building blocks of numerical analysis. The 

representation of numbers as computable quantities for a computer 

requires them to be stored as data in the computer’s memory and 

represent them by a predefined system on various output terminals. Since 

the memory is limited in nature, fixed spaces of memory are assigned for 

various number types like integers, real numbers, and complex numbers. 

In the same manner, various output terminals have fixed capabilities to 

represent numbers. For example, if the fraction -
2

3
 must be displayed, 

then Scilab must be able to print the numerator and denominator 

Chapter 2  Working with Scilab



35

separated by a horizontal line matching the size of both numerals, and the 

negative sign should be placed at the same height as the horizontal bar, but 

separated by a distance to distinguish it clearly. Similarly, showing the 

number as 2 ×10−3 includes storing information about the numbers 2, 10, 

and −3 separately and displaying them accordingly where −3 must be 

superscript of 10, and so on. The graphic capabilities of Scilab are quite 

limited and this topic is out of the scope of this book. Consequently, we 

will concentrate on the topics related to the storage of numerals.

In the era of cheap computer memory, why should we care to seek less 

of it for the data? If we have a machine with 64-bit architecture, then it can 

assign 64 bits for each entity. But would it be wise to use 64 bits to store the 

small values (say 0)? Automatic assignment faces this inefficient way of 

computation. Hence, it remains a developer’s choice to either declare the data 

type strictly or let Scilab take care of it. When used judiciously, this quality 

speeds up computation and lessens the requirements of memory space.

Table 2-1 shows how signed and unsigned integers are stored.

Table 2-1.  Number Datatypes for Integers with Varying Precision

Data type Meaning Range

int8 Signed integer of 8 bits ±28 − 1

uint8 Unsigned integer of 8 bits [0, 28]

int16 Signed integer of 16 bits ±215 − 1

uint16 Unsigned integer of 16 bits [0, 216]

int32 Signed integer of 32 bits ±231 − 1

uint32 Unsigned integer of 32 bits [0, 232]

int64 Signed integer of 64 bits ±263 − 1

uint64 Unsigned integer of 64 bits [0, 264]
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Let’s test these limits starting with the int8 and unit8 data types. They 

can be used to convert an input number into an object of the their type by 

using functions int8() and uint8(), respectively:

 1  −−>2ˆ8
 2  ans =

 3  256.

 4  −−>int8(2ˆ8)
 5  ans =

 6  0

 7  −−>uint8(2ˆ8)
 8  ans =

 9  0

10  −−>uint8(2ˆ8−1)
11  ans =

12  255

13  −−>int8(2ˆ8−1)
14  ans =

15  −1
16  −−>uint8(2ˆ8+1)
17  ans =

18  1

19  −−>int8(2ˆ8+1)
20  ans =

21  1

28 = 256 so, with 8 bits, this is the biggest number you can store. 

However, since the numbers also include 0, an 8-bit storage system can 

store a maximum of 0 to 255 as numeral values. When you use int8 

representation, then one of the bits is used up to represent the signed 

bit. This leaves the range of ± -2 18 . For this reason, int8(2ˆ8) does not 

equal 256. But even unit8(2ˆ8) does not equal 256 because the maximum 

number that can be stored is 255. Why, then, is 0 is shown as answer?
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The system of storage follows a cyclic nature where the next number 

after the maximum number 255 is 0. This can be verified by the fact that 

uint8(2ˆ8-1) equals 255. On the other hand, int8(2ˆ8-1) is −1 because 

int8 data type can also store the negative numbers and, hence, −1. Both 

uint8(2ˆ8+1) and int8(2ˆ8+1) results in 1 since 1 comes after 0.

For storing numbers beyond the range allowed by a particular 

precision, you must use data types with more precision (more numbers of 

bits used to store digits). For example:

1  −−>a = int8(2ˆ10)
2  a =

3  0

4  −−>a = int16(2ˆ10)
5  a =

6  1024

7  −−>a = int32(2ˆ10)
8  a =

9  1024

Since 210 = 1024, which is beyond the range of int8 data type, it results 

in the storage of 0 as its value, whereas it can be stored in int16, int32 data 

types.

Other data types for numerical values are double and float, which 

store real numbers. Real numbers are represented as floating point 

numbers in a computer. The mapping of a real number to a computer’s 

storage system is a formulaic representation (called floating point 

representation). For example, the value of 
1

3
 is 0.3333333… . Let’s suppose 

that we have only four significant digits for a particular calculations. If 

so, the value can be rewritten as 3.3333 × 10−1 where 3.3333 is called the 

significand, 10 is called the base, and −1 is called the exponent. This is 

further explained in Section 2.11.2.

While assigning a number to the significand, the information about the 

number of significant digits is used. The significant figures of a number are 
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digits that carry meaningful contribution to its measurement resolution. In 

the previous case, we assumed only four significant digits, depending on 

requirements of calculations/measurements. The term floating point refers 

to the fact that a number’s radix point (decimal point) can “float”; that is, 

it can be placed anywhere relative to the significant digits of the number. 

This position is indicated as the exponent component Thus, the floating-

point representation can be thought of as a kind of scientific notation.

2.11.2  �How to Store Floating Point Numbers
Computers can store numbers as floating point objects. A floating point 

object stores a number as follows:

	 ± ¼ ´d d ds
e

1 2 b 	 (2.1)

where di = ¼ -0 1 2 1, , b  but d1 0¹  and m ≤ e ≤ M where m IÎ -  and M IÎ + .

Following are the three parts of a floating point:

•	 Sign (±)

•	 Significand (Mantisa) (d1d2…ds)

•	 Exponent (β)

Each part of a floating point number is stored at different memory 

locations and occupies a specified number of bits. How many bits are 

defined to which part? These questions have been answered by IEEE 

standards known as IEEE754. First, let’s look at the concept of precision of 

a number representation:

	 1.	 Single precision:

•	 Occupies 4 bytes = 32 bits

	 2.	 Double precision:

•	 Occupies 8 bytes = 64 bits
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	 3.	 Extended double precision:

•	 Occupies 80 bits

	 4.	 Quadruple precision:

•	 Occupies 16 bytes = 128 bits

On a 64-bit operating system machine having Scilab software, real 

variables are stored as 64 bit floating point numbers (double precision, 

hence, the name double for the data type). This format includes the 

following:

•	 One bit to store the sign of the number

–– 21 = 2 possible values (0 and 1, which are used to 

represent sign)

•	 52 significant bits

–– 252 possible values

•	 11 for exponent

–– 211 possible values

This complies with IEEE 754 standard.

Converting between a higher-precision data type to a lower-precision 

data type can result in saving the computer’s memory and speeding up 

calculations at the cost of precision. These decisions must be taken by 

the developer beforehand. You do not always need higher precisions. For 

example, if you are working with dimensions of a bridge and the numbers 

are represented in units of meters, you can usually work with a precision 

of 
1

10

th

m  for most measurements involved in civil engineering. However,  

if you are working with nano materials or talking about atoms when 

calculations involve precision around Å= 10−9m, you obviously need better 

precision. It is important to perform back-of-the-envelop calculations for a 

particular problem to get an idea about the maximum and minimum 

Chapter 2  Working with Scilab



40

numbers expected during the running of a program. Accordingly, you can 

assign data types. But what if you don’t set a data type? In this case, default 

data types are used like floating point numbers on a 64-bit machine are 

stored with double-precision floating point numbers by default.

Specialized packages exist for Scilab where arbitrary precision can be 

used for more accurate mathematical calculations. Even though a detailed 

discussion of this topic is beyond the scope of this book, users are advised 

to check out the packages Xnum (maximum precision of 200 digits) [1] and 

Mupat [2]. Precision plays an important role in producing meaningfully 

reliable numerical values for critical applications so data types in such 

cases must be used judiciously.

2.11.3  �Formatted Display of Numbers
Controlling the format of displaying the number of digits of a numerical 

value is one of the most significant abilities of an advanced programming 

environment. Scilab provides the command format. Its description can 

be obtained using the command help format. The command format() 

takes integer values as arguments for displaying the number of digits in a 

numerical value. The range for this input argument is [2, 25]:

 1  −−>exp(1)
 2  ans =

 3  2.7182818

 4  −−>format(5)
 5  −−>exp(1)
 6  ans =

 7  2.72

 8  −−>format(25)
 9  −−>exp(1)
10  ans =

11  2.7182818284590450907956
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exp(1) represents e1 = 2.7182818, which is also called Euler’s number. 

When format(5) is issued as a command, then the answer to e1 is shown 

as 2.72, whereas format(255) reveals 2.7182818284590450907956.

It is important to note that the stored value is unaffected by the fact that 

it is being represented on a graphic terminal with fewer digits. The symbolic 

representation of a number on a computer terminal is independent of the 

way it is stored (which is determined entirely by its data type).

2.12  �Boolean Data
help(boolean) provides a detailed description about boolean variables 

namely \%T for true and \%F for false. Boolean variables must be 

operated using boolean operators such as the following:

•	 NOT

–– Represented by the symbolic operator ~

–– Negates an input (~%T=%F and ~%F=%T)

•	 AND

–– Represented by either the symbolic operator & or 

the function or()

–– Behavior is shown in Table 2-2

–– Bitwise operations are done by the bitand() 

function

•	 OR

–– Represented by either the symbolic operator | or 

the function or()

–– Behavior is shown in Table 2-3

–– Bitwise operations are done by bitor() function
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•	 XOR

–– Represented by the function bitxor()

–– Behavior is shown in Table 2-4

 1  −−>a = %T // a is give value True
 2  a =

 3  T

 4  −−>b = ˜a // b is NOT a
 5  b =

 6  F

Table 2-2.  Truth Table for AND Operator

AND T F

T T F

F F F

Table 2-3.  Truth Table for OR Operator

OR T F

T T T

F T F

Table 2-4.  Truth Table for XOR Operator

XOR T F

T F T

F T F
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 7  −−>a&b // a AND b
 8  ans =

 9  F

10  −−>a|b // a OR b
11  ans =

12  T

The bitxor() operator works bitwise, so it converts an input into its 

binary representation and performs the computation. Let’s understand 

this concept by using an example. bitxor(1000,1001) is 1 because binary 

representations (obtained by the function dec2bin()) show that only 

the last bit is different and, hence, the result is the binary number whose 

decimal equivalent is 1:

 1  −−>bitxor(1000,1001)
 2  ans =

 3  1.

 4  −−>dec2bin([1000;1001;1])
 5  ans =

 6

 7  !1111101000   !

 8  !             !

 9  !1111101001   !

10  !             !

11  !0000000001   !

12  −−>bin2dec("0000000001")
13  ans =

14  1.

It is important to note that, in binary logic, the values True and False 

are equivalently used with 1 and 0. So Tables 2-2, 2-3 and 2-4 would simply 

replace the value T with 1 and F with 0.
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Similarly, the bitand() and bitor() operators can be understood with 

the following example:

 1  −−>bitor(100,99)
 2  ans =

 3  103.

 4  −−>bitand(100,99)
 5  ans =

 6  96.

 7  −−>dec2bin([100;99;103;96])
 8  ans =

 9

10  !1100100  !

11  !         !

12  !1100011  !

13  !         !

14  !1100111  !

15  !         !

16  !1100000  !

2.13  �Strings
Alphabets along with special characters are treated as string data types. 

The built-in function string() converts a given value to string data type. 

As shown in the following example, the numerical value 2 is converted to a 

string data type when the string() function is applied to it and remains an 

integer type otherwise:

1  −−>a = string(2)
2  a =

3  2
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4  −−>b = string(3)
5  b =

6  3

7  −−>a+b
8  ans =

9  23

It is worth noting that binary data for 2 as a string (stored in variable 

a) and as a number will be quite different and, thus, the numerical 

computations will treat them differently even if it is always displayed as 2. 

When it is represented as a string, operators will first understand the data 

type and then operate. An addition operator is simply a concatenation 

operator for strings. Hence, a+b equals 23. A numerical computation of  

2 + 3 results in the value 5.

Without the string() function, strings can be defined by enclosing 

them in single quotes (") or double quotes (""). Strings are case-sensitive, 

too. This can be verified by the following code:

1  −−>a = "hello world"
2  a =

3  hello world

4  −−>b = 'Hello World'
5  b =

6  Hello World

7  −−>a==b
8  ans =

9  F

a contains h and w characters (lowercase) while b contains H and W 

characters. For this reason, a==b gives F (false) since their values are 

different.
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2.14  �Complex Numbers
One of the most important parts of doing mathematical calculations on 

computers is the ability to work with complex numbers and their algebra. 

Computations involving complex numbers can be found in almost all 

branches of science and mathematics. Finding flexible ways of defining 

complex numbers and their mathematics is an art that all developers must 

employ to compute efficiently.

A graphical description of a complex number is shown in Figure 2-2.  

On a real-imaginary axis-based complex plane, a particular point is 

defined by a complex number a + ib where a is the magnitude of the 

projection of a point on real axis and b is the magnitude of projection of a 

point on imaginary axis.

Figure 2-2 shows a point depicting the complex number z x iy= + .  

The value of r z=  (absolute value) and ϕ (argument) are given by the 

following:

	 r x y= +2 2 	 (2.2)

	
f = æ

è
ç

ö
ø
÷

-tan
y

x
1

	
(2.3)

Figure 2-2.  Complex number depicted on complex plane [3]
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The absolute value of a complex number is simply its distance from 

its origin. The argument of a complex number is simply the angle it makes 

with the horizontal axis in a counterclockwise direction. The absolute 

value of a complex number can be calculated using the abs() function:

1  −−>complex(2,3)
2  ans =

3  2. + 3.i

4  −−>abs(complex(2,3))
5  ans =

6  3.61

The angle can be calculated by using real and imaginary parts of the 

complex number as follows:

 1  −−>a = complex(2,3)
 2  a

 3  2. + 3.i

 4  −−>type(a)
 5  ans =

 6  1.

 7  −−>real(a)
 8  ans =

 9  2.

10  −−>imag(a)
11  ans =

12  3.

13  −−>atan(imag(a)/real(a))
14  ans =

15  0.98
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2.14.1  �Real and Imaginary Parts
Real and imaginary parts of a real number are given by the built-in 

functions real()and imag() as follows:

 1  −−>r = real(complex(2,3))
 2  r =

 3  2.

 4  −−>i = imag(complex(2,3))
 5  i =

 6  3.

 7  −−>r = real(complex([2,3],[−3,−4]))
 8  r =

 9  2. 3.

10  −−>i = imag(complex([2,3],[−3,−4]))
11  i =

12  −3. −4.

2.14.2  �Complex Conjugates
The complex conjugate of a complex number x + iy is x − iy and that of  

x − iy is x + iy. The built-in function conj() produces the complex 

conjugate of a given complex number:

1  −−>a = complex(2,3)
2  a =

3  2. + 3.i

4  −−>b = conj(a)
5  b =

6  2. − 3.i
7  −−>a∗b
8  ans =

9  13.
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The product of a complex number with its conjugate can be 

understood as

	
a ib a ib a b+( ) -( )( ) = +Õ , 2 2

	 (2.4)

where a and b are real and imaginary parts.

For multiple entries (complex numbers) as array elements:

1  −−>a = complex([1 2 3],[4 5 6])
2  a =

3  1. + 4.i     2. + 5.i     3. + 6.i

4  −−>b = conj(a)
5  b =

6  1. − 4.i     2. − 5.i     3. − 6.i
7  −−>a.∗b
8  ans =

9  17.   29.   45.

2.14.3  �imult
The built-in function imult() is an efficient way of multiplying a real 

number with i (the imaginary unitary) especially when %inf and %nan are 

present in the calculation:

 1  −−>imult(%nan)
 2  ans =

 3  Nani

 4  −−>imult(%inf)
 5  ans =

 6  Inf i

 7  −−>%i∗%nan
 8  ans =

 9  Nan + Nani
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10  −−>%i∗%inf
11  ans =

12  Nan + Inf i

13  −−>imult(4)
14  ans =

15  4.i

16  −−>imult(complex(4,4))
17  ans =

18  −4. + 4.i

As seen when

	 4 4´ =i i 	

and

	 4 4 4 4 4 4+( )´ = - = - +i i i i 	

2.14.4  �Checking If a Variable Has Complex 
Components

The built-in function isreal() checks if a variable has complex 

components. It produces an boolean output T if the input variable does not 

have complex numbers and outputs F otherwise:

 1  −−>a = [1 2 3]
 2  a =

 3  1.     2.     3.

 4  −−>a1 = complex(a,a)
 5  a1 =

 6  1. + i       2. + 2.i       3. + 3.i

 7  −−>isreal(a)
 8  ans =

 9  T
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10  −−>isreal(a1)
11  ans =

12  F

2.14.5  �Complex Arithmetic
Complex arithmetic involves similar operations as for real numbers such 

as addition, subtraction, multiplication, division, raised to a power, and so 

on. Rules for complex numbers are a bit different for these operations.

Adding two complex numbers involves adding their real and imaginary 

parts. So is the case with subtraction. Suppose we define two complex 

numbers as follows:

	

z a b i

z a b i
1 1 1

2 2 2

= +
= + 	

Then you can define their addition and subtraction:

	

z z a a b b i

z z a a b b i
1 2 1 2 1 2

1 2 1 2 1 2

+ = +( )+ +( )
- = +( )- +( ) 	

Multiplication and division operations for complex numbers are not so 

straightforward:

	
z z a a a b i a b b b i1 2 1 2 1 2 2 2 1 2

2´ = ´( )+ ´( ) + ´( )+ ´( )( ) 	

which simplifies by collecting real terms and imaginary terms:

	 z z a a b b a b a b i1 2 1 2 1 2 1 2 2 1´ = -( )+ +( ) 	

because i2 1= - . Multiplying and dividing a complex number with a real 

number can be done in a simpler manner by performing the multiplication 

or division for real and imaginary part, respectively.

Chapter 2  Working with Scilab



52

A complex conjugate of a complex number z a b i1 1 1= +  is defined as 

z a b i1 1 1
* = - . Geometrically, z1

*  is the “reflection” of z1 about the real axis. 

Hence, if we calculate the conjugate twice, we get the same number: 

( )z1 1
* * = z .

Division of a complex number can be performed using its conjugate as 

follows:

	

a b i

a b i

a b i

a b i

a b i

a b i

a a b b

a b

b1 1

2 2

1 1

2 2

2 2

2 2

1 2 1 2

2
2 2

1

2

+
+

=
+
+

´
-
-

=
+
+

+
aa a b

a b
i2 1 2

2
2 22

-
+ 	

Thus, multiplying the denominator’s complex conjugate with both the 

numerator and denominator yields a new complex number that is the 

result of division of two complex numbers. This can be checked for two 

complex numbers, z i1 2 3= +  and z i2 3 4= - + , as follows:

 1  −−>z1 = complex(2,3)
 2  z1 =

 3  2. + 3.i

 4  −−>z2 = complex(−3,4)
 5  z2 =

 6  −3. + 4.i
 7  −−>z1+z2 // summing two complex numbers
 8  ans =

 9  −1. + 7.i
10  −−>z1−z2 // subtracting two complex numbers
11  ans =

12  5. − i
13  −−>z1∗z2 // multiplying two complex numbers
14  ans =

15  −18. − i
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16  −−>z1/z2 // dividing two complex numbers
17  ans =

18  0.24−0.68i
19  −−>z1ˆ2 // complex number raised to the power 2
20  ans =

21  −5. + 12.i
22  �−−>z1ˆz2 // complex number raised to the power another 

complex number

23  ans =

24  −2.0D−04 + 3.0D−04i
25  −−>2∗z1 // complex number multiplied by a real number
26  ans =

27  4. + 6.i

28  −−>z1/2 // complex number divided by a real number
29  ans =

30  1. + 1.5i

31  −−>z1+2 // complex number added with a real number
32  ans =

33  4. + 3.i

34  −−>z1−2 // complex number and real number subtracted
35  ans =

36  3.i

A real number can be understood as a complex number with the 

imaginary part as zero. When addition and subtraction of a complex 

number is performed, only the real part is operated. When a complex 

number is multiplied and/or divided by a real number, each real and 

imaginary part is operated accordingly.
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2.15  �Summary
In this chapter, we have discussed the usage of different types of numbers 

and strings. We have illustrated operating on numbers and strings. 

It is important to keep in mind that all numerical computations are 

approximations because, due to the finite precision of numbers expressed 

on a computing machine, errors are introduced in the computation. Users 

can choose the precision of a number before a computation, but this 

should be done cautiously. Working with low-precision numbers occupies 

less storage and also computes faster; however, it is more inaccurate. 

Scilab enables defining complex numbers and these defined complex 

numbers can be operated using the same arithmetic operators as that 

of real numbers without any modification even though their rules of 

arithmetic are different.
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CHAPTER 3

Working with Arrays

3.1  �Introduction
Matrix formulation of mathematical problems enables faster numerical 

computations. For a two-dimensional matrix, elements have a unique 

row and column index through which users can access them. Rows and 

columns can be attributed to different properties under study. In this 

way, users can fit data for two properties as a matrix and then use these 

matrices for numerical calculations. For example, suppose an element of a 

row is defined as 1 if a compound is a conductor, 2 if it is a semiconductor, 

and 3 if it is an insulator. Then the row vector (a matrix composed of only 

one row) [1 0 0 3 2 1 3 0 1 0 3 2 1] has information about  

13 compounds. In a numerical calculation involving the conductive nature 

of a compound, this row vector (a 13 × 1 matrix) can be utilized where  

13 compounds can be simultaneously scanned mathematically.

Scilab objects named arrays deal with defining matrices. Using 

different properties of this object, users can define various kinds of 

matrices. Built-in functions for matrix operations make it easier for a 

programmer to deal with large numbers of data by arranging them as a 

matrix in the desired format and performing array operations.
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3.2  �Arrays and Vectors
Arrays are particularly interesting since they are used to define vectors, 

tables, and matrices for scientific computing:

•	 A 1-D (one-dimensional) array acts as a vector or list.

•	 A 2-D array can be used as a table or matrix.

•	 3-D and more-D arrays can represent 

multidimensional matrices.

In this way, instead of just pointing to a single number, a variable 

name can point to a sequential set of numbers. The syntax to define arrays 

dictates that they must be defined within square brackets []:

 1  −−>a = [1 2 3 4 5] // separated by white space
 2  a =

 3  1.    2.    3.    4.    5.

 4  −−>b = [1, 2, 3, 4, 5] // separated by commas
 5  b =

 6  1.    2.    3.    4.    5.

 7  �−−>c = [1.0 2.0 3.0 4.0 5.0] // arrays of floating point 
numbers

 8  c =

 9  1.    2.    3.    4.    5.

10  −−>matrix22 = [1 2; 3 4] // The ; operator def ines new row
11  matrix22 =

12  1.    2.

13  3.    4.

14  −−>matrix33 = [1 2 3;4 5 6;7 8 9] // arrays with three rows
15  matrix33 =

16  1.    2.    3.

17  4.    5.    6.

18  7.    8.    9.
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19  �−−>size(matrix22) // size of array i.e number of rows and 
columns

20  ans =

21  2.    2.

22 −−>size(matrix33)
23  ans =

24  3.    3.

25  −−>matrix32 = [1 2;3 4;5 6]
26  matrix32 =

27  1.    2.

28  3.    4.

29  5.    6.

30  −−>size(matrix32)
31  ans =

32  3.    2.

33  −−>size(size(matrix33)) // size also outputs an array
34  ans =

35  1.    2.

As seen in this example code, an array can be understood as a matrix 

consisting of rows and columns. Thus, users can make a desired sized matrix. 

For example, matrix22 is a 2 × 2 matrix and matrix33 is a 3 × 3 matrix, 

whereas a is a 1 × 5 matrix. The first number when defining the size gives the 

number of rows, while the second number gives the number of columns. 

The comma (,) operator operates by defining the next element in the same 

row, whereas the (;) operator defines the numbers in the next line/row. The 

use of the comma operator is optional. If skipped, it must be replaced by a 

whitespace. The built-in function size() outputs a 2 × 1 array where the first 

number signifies the number of rows and the second number represents the 

number of columns.
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If the number of elements in each row/column doesn’t match, the user 

will obtain an error message:

 1  >> right33 = [1, 2, 3; 4, 5, 6; 7, 8, 9]

 2  right33 =

 3  1   2   3

 4  4   5   6

 5  7   8   9

 6  −−>wrong33 = [2, 3; 4, 5, 6; 7, 8, 9]
 7  !−−error 6
 8  Inconsistent row/column dimensions.

 9  wrong33 = [1, 2, 3; 4, 5, 6; 8, 9]

10  !−−error 6
11  Inconsistent row/column dimensions.

Elements of an array can be any data type as defined in Chapter 2, 

Section 2.11. The built-in function type() can be used to determine the 

data type of stored values. All elements of an array can be set to a particular 

data type by the following commands:

 1  −−>a = uint8([1 2 3])
 2  a  =

 3  1  2  3

 4  −−>b = uint16([1 2 3])
 5  b  =

 6  1  2  3

 7  −−>c = uint32([1 2 3])
 8  c  =

 9  1  2  3

10  −−>type(a)
11  ans  =

12  8.
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13  −−>type(b)
14  ans  =

15  8.

16  −−>type(c)
17  ans  =

18  8.

3.3  �Operations on Arrays and Vectors
Operating on arrays has two aspects:

•	 Operating on two or more arrays

•	 Elementwise operations

3.3.1  �Elementwise Operations
All arithmetic operators—such as +,-,*,/,ˆ, and so on—can be used in both 

cases. When we need to do elementwise operations, a . is placed before 

the operator so that elementwise operators become .+,.-,.*,./, and .ˆ. 

This will become more clear in the following example:

 1  −−>a = [1 2 3; 4 5 6; 7 8 9]
 2  a  =

 3  1.    2.    3.

 4  4.    5.    6.

 5  7.    8.    9.

 6  −−>b = a
 7  b  =

 8  1.    2.    3.

 9  4.    5.    6.

10  7.    8.    9.
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11  −−>a. / b
12  ans   =

13  1.    1.    1.

14  1.    1.    1.

15  1.    1.    1.

16  −−>aˆb
17  !−−error 43
18  Not implemented in scilab ...

19  at line 61 of function %s_pow called by:

20  aˆb
21  −−>a.ˆb // Element wise operation
22  ans =

23

24  1.     4.     27.

25  256.   3.0 D+03   4.0 D+04

26  8.0 D+05   1.0 D+07   3.0 D+08

3.3.2  �Matrix Multiplication
A matrix of dimensions a × b can only be multiplied by a matrix of 

dimensions b × c, which results in a matrix of dimensions a × c. It is 

performed by multiplying elements of rows by elements of columns to get 

new elements.

The following code will illustrate this matrix multiplication method:

 1  −−>a = [1, 2; 3, 4; 5, 6] // Def ining a 3 X 3 matrix
 2  a =

 3  1.   2.

 4  3.   4.

 5  5.   6.

 6  −−>size(a) // size is found to be 3 X 2
 7  ans =

 8  3.   2.
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 9  −−>a_t = a' // def ining transpose
10  a_t =

11  1.   3.   5.

12  2.   4.   6.

13  −−>size(a_t) // size of transpose is 2 X 3
14  ans =

15  2.   3.

16  −−>mul=a∗a_t // multiplying two matrices
17  ans =

18  5.    11.   17.

19  11.   25.   39.

20  17.   39.   61.

21  −−>size(mul) // size of multiplication matrix is 3 X 3
22  ans =

23  3.   3.

a' gives the transpose of a matrix (rows are made columns and vice 

versa). This makes a 3 × 2 matrix become a 2 × 3 matrix. When they are 

multiplied, you get a 3 × 3 matrix.

3.3.3  �Inverse of Matrices
Performing division of a matrix involves matrix inversion. An inverse 

matrix is such that its multiplication with the original matrix yields an 

identity matrix (a matrix with determinant as 1), that is, a matrix with 1 at 

its diagonal elements and 0 otherwise:

 1  −−>a = [2 5 4;−4 6 −3;4 7 −1] // Def ining a 3 X 3 matrix
 2  a =

 3  2.   5.  4.

 4  −4.  6.  −3.
 5  4.   7.  −1.
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 6  −−>inverse = inv(a) // calculating inverse of matrix a
 7  inverse =

 8  −0.06   −0.13   0.15
 9  0.06    0.07    0.04

10  0.2    −0.02    −0.12
11  �−−>a∗inverse // matrix multiplied by inverse is identity 

matrix

12  ans =

13  1.   0.   0.

14  0.   1.   0.

15  0.   0.   1.

The function pinv() is used if the input matrix is a nonsquare matrix. 

In other words, the number of rows and the number of columns are not 

equal. The pinv() function gives a psuedo-inverse of a matrix such that if 

X=pinv(a), then a × X × a = a, X × a × X = X, and both a × X and X × a are a 

Hermitian matrix:

 1  −−>a = [1,2,3; −5 4 −7]
 2  a =

 3  1.   2.   3.

 4  −5.   4.  −7.
 5  −−>inverse = pinv(a)
 6  inverse =

 7  0.    −0.06
 8  0.27   0.1

 9  0.15  −0.05
10  −−>a∗inverse
11  ans =

12  1.   0.

13  0.   1.
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I is known as an identity matrix because all its diagonal elements are 1 

and all its nondiagonal elements are zero, which makes its determinant 1.

3.3.4  �det()
The determinant of a matrix a is calculated by the command det(a):

1  −−>a = [1 2 3;4 5 6;7 8 9]
2  a =

3  1.   2.   3.

4  4.   5.   6.

5  7.   8.   9.

6  −−>det(a)
7  ans =

8  −9.0 D−16

3.3.5  �rank()
The rank of a matrix (the number of linearly independent rows or 

columns) can be determined by the built-in rank() function:

1  −−>a = eye(3,3)
2  a =

3  1.   0.   0.

4  0.   1.   0.

5  0.   0.   1.

6  −−>rank(a) // all rows are linearly independent
7  ans =

8  3.

9  �−−>a = [1, 2, 3;2, 4, 6;4, 6, 3] // second row in just 
f irst rwo multiplied by 2
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10  a =

11  1.   2.   3.

12  2.   4.   6.

13  4.   6.   3.

14  −−>rank(a)
15  ans =

16  2.

17  �−−>a = [1, 2, 3;2, 4, 6;3, 6, 9] // second and third row 
are merely f irst row multiplied by 2 and 3 res pectively

18  a =

19  1.   2.   3.

20  2.   4.   6.

21  3.   6.   9.

22  −−>rank(a)
23  ans =

24  1.

3.3.6  �trace()
The sum of the diagonal elements of a matrix is called the trace of the 

matrix. This is given by the built-in trace() function as follows:

1  −−>a = [1, 2, 3;2, 4, 6;3, 6, 9]
2  a =

3  1.   2.   3.

4  2.   4.   6.

5  3.   6.   9.

6  −−>trace(a)
7  ans =

8  14.
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The automatic generation of an identity matrix is done by using the 

command eye(a,b) where a and b are values of the number of rows and 

columns:

 1  −−>eye(2,3)
 2  ans =

 3  1.     0.     0.

 4  0.     1.     0.

 5  −−>a = eye(4,4)
 6  a =

 7  1.    0.    0.    0.

 8  0.    1.    0.    0.

 9  0.    0.    1.    0.

10  0.    0.    0.    1.

11  −−>det(a)
12  ans =

13  1.

3.3.7  �Magnitude of a Vector
A mathematical vector can be defined as a 1 × 3 array. The built-in function 

norm() gives the magnitude of a vector. This is the Euclidean distance from 

the origin to the vector. So, if a vector is defined as the following:

	
   

a Ax By Cz= + + 	

its magnitude can be defined as:

	 N A B C= + +2 2 2 	
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A unit vector for a vector is obtained by dividing the vector by its own 

norm/magnitude. This operation can be performed with ease in Scilab:

1  −−>a = [1 2 3]
2  a =

3  1.    2.    3.

4  −−>norm(a)
5  ans =

6  3.74166

7  −−>a = [1 2 3]/norm(a)
8  a =

9  0.26726    0.53452    0.80178

3.3.8  �Random Matrix
Using random number generators, a random matrix can be created by the 

command rand(a,b):

 1  −−>rand(4,5)
 2  ans =

 3  0.21132      0.66538      0.87822      0.72635      0.23122

 4  0.75604      0.62839      0.06837      0.19851      0.21646

 5  0.00022      0.84975      0.56085      0.54426      0.88339

 6  0.33033      0.68573      0.66236      0.23207      0.65251

 7  −−>rand(4,5)
 8  ans =

 9  0.30761      0.36164      0.33217      0.26931      0.04373

10  0.93296      0.29223      0.59351      0.63257      0.48185

11  0.21460      0.56642      0.50153      0.40520      0.26396

12  0.31264      0.48265      0.43686      0.91847      0.41481

13  −−>rand(1)
14  ans =

15  0.28065
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16  −−>rand(4,1)
17  ans =

18  0.12801

19  0.77831

20  0.21190

21  0.11214

22  −−>rand(1,4)
23  ans =

24  0.68569      0.15312      0.69709      0.84155

Please note that the numbers generated in the previous example will 

be different each time, even on the same machine, since they are supposed 

to be random in nature. By default, they are uniformly distributed over 

the interval (0, 1). A vector is simply a row vector so it can be generated 

randomly by the command rand(a). help(“rand”) gives a detailed 

description about various other features and arguments of a random 

number generator:

 1  −−>rand(4,5, 'uniform')
 2  ans =

 3  0.11384      0.68540      0.38738      0.37601      0.26386

 4  0.19983      0.89062      0.92229      0.73409      0.52536

 5  0.56187      0.50422      0.94882      0.26158      0.53762

 6  0.58962      0.34936      0.34353      0.49935      0.11999

 7  −−>rand(4,5, 'normal')
 8  ans =

 9  − 1.28586   − 0.37782   − 0.45753    0.01164     1.74874
10    0.59712       1.14562       0.56232    0.22327      1.86518

11    0.61078       2.57491   − 0.64533  − 1.43445      0.16459
12  − 1.05679   − 0.50056   − 0.36478    1.73638    − 1.03589
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The 'normal' and 'uniform' functions provide normal and uniform 

distributions of random numbers. The normal distribution has a mean at 

0 and variance 1. All the random numbers follow Gaussian distribution 

with their mean at 0 and distributed between −1 and 1. On the other hand, 

default random number distribution is 'uniform' and these numbers are 

generated between 0 and 1.

A more refined built-in function named grand() gives a variety of 

options to choose distributions and set limits for the set of numbers. 

Simply typing help("grand") provides detailed documentation for its 

usage.

3.3.9  �Indexing
Each element of the matrix is characterized by two numbers, the row 

number and the column number. These numbers are used to pinpoint an 

element and operate on that. They are called an index of elements. The 

assignment operator can be used to set the value at a particular index 

to produce a new matrix with updated value(s). The following example 

illustrates these concepts:

 1 −−>a = rand(3,4)
 2 a =

 3 0.38850    0.04070    0.44219     0.01109

 4 0.67899    0.64673    0.48739     0.84484

 5 0.37286    0.81418    0.76592     0.89999

 6 −−>a(2,1) // element at row 2 and column 1
 7 ans =

 8 0.67899

 9 −−>a(4,2) // element at row 4 and column 2 does not exist
10  Invalid index.

11  −−>a(2,2)=0 // setting element at row 2 column 2 to 0
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12  a =

13  0.38850    0.04070    0.44219    0.01109

14  0.67899    0.         0.48739    0.84484

15  0.37286    0.81418    0.76592    0.89999

It is important to note that, unlike some programming languages 

where indices start from 0, in Scilab indices start from 1 and Scilab does 

not take negative numbers as indices.

3.3.10  �Using Indices to Make New Vectors
In the following example, b is a new vector formed from vector a where 

successive elements are made up of elements taken from a index vector  

[2 4 2 4]:

1  −−>a = [1 4 1 3 1 4 1 4 2 4 5]
2  a =

3  1.   4.   1.   3.   1.   4.   1.   4.   2.   4.   5.

4  −−>b = a([2 4 2 4])
5  b =

6  4.   3.   4.   3.

The same method can be employed for two-dimensional and higher-

dimensional matrices:

1  −−>a
2  a =

3  0.61618   0.38019   0.76251   0.40089

4  0.63517   0.35260   0.7284    0.55388

5  0.15988   0.91202   0.27883   0.27174

6  −−>a([1, 2], [2, 3])
7  ans =

8  0.38019   0.76251

9  0.35260   0.7284
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Please note that since the use of the comma operator is optional, 

vectors and matrices will be defined by simply inserting a whitespace.

3.3.11  �Slicing
Matrices can be sliced to desired portions by using indices and the colon 

: operator. If n:m is provided for slicing, a new matrix is fabricated where 

elements with index n to index m are placed. Also the ; operator defines 

the new column while slicing. Some examples will make the usage clear:

 1  −−>a = [1,2,3;4,5,6]
 2  a =

 3  1.   2.   3.

 4  4.   5.   6.

 5  −−>B = [(1:3);(4:6);(7:9)]
 6  B =

 7  1.   2.   3.

 8  4.   5.   6.

 9  7.   8.   9.

10  −−>c = [a;B]
11  c =

12  1.   2.   3.

13  4.   5.   6.

14  1.   2.   3.

15  4.   5.   6.

16  7.   8.   9.

17  −−>c = [a,B]
18  inconsistent row/column dimensions
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Here the matrix a has elements 1, 2, 3 in the first row and then a row 

separator ; defines the next row of elements 4, 5, 6. Similarly, matrix B is 

defined by rows defined by commands:

•	 (1 : 3), which results in (1, 2, 3)

•	 (4 : 6), which results in (4, 5, 6)

•	 (7 : 9), which results in (178, 9)

Please note the Scilab variable names are case-sensitive, hence a will 

not be the same as A. Now a new matrix is created named c by vertically 

concatenating the matrices a and B. Consequently, the resultant matrix 

c is made of the elements of a stacked on top of the elements of B. The 

command c=[a,B] yields an error because the dimensions of a and B are 

not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the 

following way in our case:

 1  −−>a = 1:3 // array whose element start from 1 and ends at 3
 2  a =

 3  1.   2.   3.

 4  �−−>A = [a,a] // New array with old array as its two 
element in a row

 5  A =

 6  1.   2.   3.   1.   2.   3.

 7  �−−>A = [a;a] // New array with old array as its two 
elements in a column

 8  A =

 9

10  1.   2.   3.

11  1.   2.   3.
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It is worth noting that the comma operator (,) separates the elements 

of a row, while the columns are separated by the semicolon operator (;). 

This fact can also be used in the case of multidimensional arrays:

 1  −−>a = 2:7
 2  a =

 3  2.   3.   4.   5.   6.   7.

 4  −−>A = [a;a]
 5  A =

 6  2.   3.   4.   5.   6.   7.

 7  2.   3.   4.   5.   6.   7.

 8  −−>AA = [A,A]
 9  AA =

10  2.   3.   4.   5.   6.   7.   2.   3.   4.   5.   6.   7.

11  2.   3.   4.   5.   6.   7.   2.   3.   4.   5.   6.   7.

3.3.12  �Appending Rows and Columns
When an entire row or column of a matrix needs to be appended, only one 

thing must be taken into consideration. The size of the new matrix, which 

is used for this purpose, must match the row and column requirement. 

As an example, let’s define an array A,B,D with sizes 2 × 2, 1 × 2, and 2 × 1, 

respectively. Row matrix B can be inserted as a row to A and column matrix 

D can be inserted as a row to A:

 1  −−>A = [4,−3;5,−5]
 2  A =

 3  4.   −3.
 4  5.   −5.
 5  −−>B = [−9,1]
 6  B =

 7  −9.   1.

Chapter 3  Working with Arrays



73

 8  −−>size(A)
 9  ans =

10  2.   2.

11  −−>size(B)
12  ans =

13  1.   2.

14  −−>C = [A;B]
15  C =

16  4.   −3.
17  5.   −5.
18  −9.   1.
19  −−>size(C)
20  ans =

21  3.   2.

22  −−>D = [5;6]
23  D =

24  5.

25  6.

26  −−>size(D)
27  ans =

28  2.   1.

29  −−>E = [A,D]
30  E =

31  4.   −3.   5.
32  5.   −5.   6.
33  −−>size(E)
34  ans =

35  2.   3.
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3.3.13  �Deleting a Row and/or Column 
of a Matrix

Rows and columns can be deleted by assigning null matrices [] to them. 

For example, ()1,:)=[] deletes the first row, and ():,1) deletes the first 

column of a matrix:

 1  −−>A = rand(3,3)
 2  A =

 3  0.88   0.93   0.36

 4  0.65   0.21   0.29

 5  0.31   0.31   0.57

 6  −−>A (1,:)=[]
 7  A =

 8  0.65   0.21   0.29

 9  0.31   0.31   0.57

10  −−>A(:,1)=[]
11  A =

12  0.21   0.29

13  0.31   0.57

3.3.14  �Concatenation along a Dimension
Concatenation of two matrices along a dimension can be obtained using 

cat(dim, A,B,...) where dim presents the dimension and A and B are 

input matrices. The following example demonstrates its usage:

 1  −−>A = rand (2,2) // 2X2 matrix is def ined
 2  A =

 3  0.48   0.59

 4  0.33   0.5
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 5  −−>B = rand(2,2)
 6  B =

 7  0.44   0.63

 8  0.27   0.41

 9  �−−>cat(1,A,B) // A and B are concatenated along columns 
(dimension=1)

10  ans =

11  0.48   0.59

12  0.33   0.5

13  0.44   0.63

14  0.27   0.41

15  �−−>cat(2,A,B) // A and B are concatenated along columns 
(dimesnion −2)

16  ans =

17  0.48   0.59   0.44   0.63

18  0.33   0.5    0.27   0.41

19  �−−>C = cat(3,A,B) // A and B are concatenated a long third 
dimesnion where f irst element is A and second is B

20  C =

21

22  (:,:,1)

23

24  0.48   0.59

25  0.33   0.5

26  (:,:,2)

27

28  0.44   0.63

29  0.27   0.41

30  �−−>size(C) // new matrix has 3 dimesnions i.e its size is 
2X2X2

31  ans =

32  2.   2.   2.
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When cat(1,A,B) is fed to the command prompt, A and B are 

concatenated row-wise and cat(2,A,B) results concatenation 

columnwise. In the case of cat(3,A,B), a new matrix is created whose first 

element of the third dimension is the matrix A and the second element is 

the matrix B.

3.4  �Logical Operations on Arrays
Logical operations are performed elementwise. They are mainly used for 

comparisons. Suppose we wish to find if all elements of two arrays are 

same. Here == is used. Similarly, <, ><=, and >= operators can also be used. 

It’s important to note that these element-by-element operations produce 

an array of boolean values. In other words, the element result is either %T 

or %F, signifying a True or False value for the comparison:

 1  −−>a = [1,2,3;4,5,6]
 2  a =

 3  1.   2.   3.

 4  4.   5.   6.

 5  −−>a == a // all elements are same in value
 6  ans =

 7  T T T

 8  T T T

 9  −−>b = [1,2,3;4,5,8]
10  b =

11  1.   2.   3.

12  4.   5.   8.

13  �−−>a == b // all elements except row 2 column 3 is  
dis−similar

14  ans =
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15  T T T

16  T T F

17  �−−>b > a // all elements of b except row 2 column 3, are 
not bigger than those of a

18  ans =

19  F F F

20  F F T

21  −−>b > = a // all elements are either equal OR greater than
    corresponding elements

22  ans =

23  T T T

24  T T T

3.5  �Automatic Generation of Vectors
Most often, users want to generate a long list of sequential numbers as 

elements of an array. This is called the automatic generation of vectors. 

You can generate a series of numbers and store them as arrays by using the 

following command:

start:step:stop

1  −−>a = 1:1:10 // start from 1 with a step of 1 and end at 10
2  a =

3  1.    2.    3.    4.    5.    6.    7.    8.    9.    10.

4  −−>a = [1:1:10]
5  a =

6  1.    2.    3.    4.    5.    6.    7.    8.    9.    10.

7  −−>a = 1:2:10 // star at 1 with step of 2 and end at 10
8  a =

9  1.    3.    5.    7.    9.
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Please note that brackts[] are optional here. Also, if the step is not 

defined, its default value (1) is taken:

1  −−>a = 1:10 // start at 1 and end at 10 (defaule step is 1)
2  a =

3  1.    2.    3.    4.    5.    6.    7.    8.    9.    10.

3.5.1  �Linearly Spaced Vectors
The command linspace(start,stop,n) produces an array starting from 

the first number and stopping at the second one, with a total of n numbers. 

Hence, they are linearly spaced:

1  −−>a = linspace(1,2,5)
2  a =

3  1 .    1.25    1.5    1.75    2.

4  −−>a = linspace(1,10,10)
5  a =

6  1.    2.    3.    4.    5.    6.    7.    8.    9.    10.

3.5.2  �Logarithmically Spaced Vectors
Similar to linspace, logspace(start,stop,n) produces n numbers from 

start to stop that are linearly spaced in logarithmic nature:

1  −−>a = logspace(1,10,5)
2  a =

3  10.    1778.28    316228.    5.6D+07    1.0D+10
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3.5.3  �meshgrid
The built-in functions linspace and logpspace are used to derive points 

on a line segment graphically. If we wish to derive a surface as equally 

spaced mesh points, we use the built-in function meshgrid as follows:

1  −−>a = 1:0.1:100;
2  −−>b = 1:0.1:100;
3  −−>[X, Y]= meshgrid(a,b);

Here [X,Y] is an 2D array containing two numbers for each element. 

One of the elements is taken from the array a and another element is taken 

from the array b.

3.5.4  �ndgrid
The built-in function meshgrid provides a 2D grid of points on which a 3D 

function can be defined to fabricate a 3D surface. The built-in function 

ndgrid provides an n-dimensional grid in a similar fashion:

1  −−>a = 1:0.1:10;
2  −−>b = 1:0.1:10;
3  −−>c = 1:0.1:10;
4  −−>[X Y Z] = ndgrid(a,b,c);

3.6  �Matrix Manipulations
Some common matrix manipulations have already been written in 

function form, which makes it easier for a developer to use them right 

away rather than investing time to write an optimum code.

Chapter 3  Working with Arrays



80

3.6.1  �Scaling a Matrix
Scalar multiplication of a matrix can be performed by simply multiplying a 

scalar with a matrix. It can be argued that a scalar is a 1 × 1 dimensional matrix. 

If so, how can it operate on, say, a m × n matrix? In this case, a scalar is projected 

onto a m × n dimension and then an elementwise operation is performed:

 1  −−>a = [1 2 3; 4 5 6; 7 8 9]
 2  a =

 3  1.    2.    3.

 4  4.    5.    6.

 5  7.    8.    9.

 6  −−>a 2 = 2∗a
 7  a2 =

 8  2.    4.      6.

 9  8 .    10.    12.

10  14.    16.    18.

11  −−>a3 = a/2
12  a3 =

13  0.5    1.    1.5

14  2.     2.5   3.

15  3.5    4.    4.5

3.6.2  �Reshaping a Matrix
The number of rows and columns can be changed provided that the total 

number of elements remains the same. For this purpose, the matrix() 

function can be used. Its usage is illustrated well in help("matrix").

 1  −−>a = [1 2 3; 4 5 6; 7 8 9] // 3X3 matrix of 9 elements
 2  a =

 3  1.    2.    3.

 4  4.    5.    6.

 5  7.    8.    9.
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 6  −−>a1 = matrix(a,1,9) // 1X9 matrix of 9 elements
 7  a1 =

 8  1.    4.    7.    2.    5.    8.    3.    6.    9.

 9  �−−>a1 = matrix(a,2,5) // cant make a 2X5 matrix with 9 
elements

10  Wrong size for argument: Incompatible dimensions.

3.7  �Special Matrices
Matrix algebra defines some kinds of matrices that are special in nature 

and find their use in some problems. Octave has some functions defined to 

create these matrices.

3.7.1  �Upper and Lower Triangular Matrices
An upper triangular matrix is one where only the diagonal and elements 

above the diagonal are non-zero. Similarly, a lower triangular matrix is one 

where the diagonal and the elements below the diagonal are non-zero. 

tril and triu fabricate a lower and upper triangular matrix:

 1  −−>a = rand(3,3)
 2  a =

 3  0.40409    0.31513    0.02929

 4  0.41941    0.78735    0.18410

 5  0.24369    0.63817    0.26223

 6  −−>tril(a)
 7  ans =

 8  0.40409    0.         0.

 9  0.41941    0.78735    0.

10  0.24369    0.63817    0.26223

11  −−>triu(a)
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12  ans =

13  0.40409  0.31513     0.02929

14  0.       0.78735     0.18410

15  0.       0.          0.26223

3.7.2  �Ones and Zeros Matrices
A matrix having all its numbers as 1 or 0 makes up a ones and zeros matrix, 

respectively:

 1  −−>ones(3,3)
 2  ans =

 3  1.    1.    1.

 4  1.    1.    1.

 5  1.    1.    1.

 6  −−>zeros(3,3)
 7  ans =

 8  0.    0.    0.

 9  0.    0.    0.

10  0.    0.    0.

3.7.3  �Diagonal Matrices
Diagonal matrices with predefined diagonal elements can be fabricated 

using the diag() command:

 1  −−>diag([1 3])
 2  ans =

 3  1.    0.

 4  0.    3.

 5  −−>diag([1 3 4 6 7])
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 6  ans =

 7  1.    0.    0.    0.    0.

 8  0.    3.    0.    0.    0.

 9  0.    0.    4.    0.    0.

10  0.    0.    0.    6.    0.

11  0.    0.    0.    0.    7.

3.7.4  �Special Matrices
The built-in function testmatrix() generates special matrices like a magic 

square, Franck, and the inverse of a n × n Hilbert matrix when used with 

input arguments magi, frk, and hilb as strings:

 1  −−>testmatrix('magi',3)
 2  ans =

 3

 4  8.    1.    6.

 5  3.    5.    7.

 6  4.    9.    2.

 7

 8  −−>testmatrix('frk',4)
 9  ans =

10

11  4.    3.    2.    1.

12  3.    3.    2.    1.

13  0.    2.    2.    1.

14  0.    0.    1.    1.

15

16  −−>testmatrix('hilb',4)
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17  ans =

18

19    16.    −120.     240.    −140.
20     −120.     1200.     −2700.     1680.
21    240.   −2700.    6480.   −4200.
22     −140.     1680.     −4200.     2800.

3.8  �Mathematical Matrix Operations
A variety of matrix operations like dot product, cross product, and so on, 

exists in matrix algebra. These operations can be performed in Scilab using 

appropriate code for the same.

3.8.1  �Dot Products
A dot product of two vectors produces a scalar as follows:

	
  



A x i y j z k1 1 1 1= + + 	

	

  


A x i y j z k2 2 2 2= + + 	

	

 

A A x x y y z z1 2 1 2 1 2 1 2× = ´ + ´ + ´ 	

This operation can be performed using the following code where the 

vector dot product is defined as multiplication of a with transpose of b:

1  −−>a1=[1 2 3];
2  −−>a2=[2 3 4];
3  −−>a1∗a2'
4  ans =

5  20.
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3.8.2  �Cross Products
The built-in function cross() returns the cross product of two input 

vectors:

 1  −−>a=[1 2 3];
 2  −−>b=[2 3 4];
 3  −−>cross(a,b)
 4  ans =

 5  − 1.    2.    −1.
 6  −−>a1=[%t,%t,%f];
 7  // One can def ine vector using booleans too

 8  −−>a2=[%f,%f,%f];
 9  −−>cross(a1,a2)
10  ans =

11  0.    0.    0.

12  �−−>cross(a1,a) // cross product of boolean vector with 
vector of real numbers

13  ans =

14  3.   − 3.    1.

3.9  �Discrete Mathematics
Scilab has a limited but useful set of built-in functions to work with 

discrete mathematics as follows:

	 1.	 primes outputs the primes numbers until the given 

number

1  −−>x = 30;
2  −−>y = primes(x)
3  y =

4  2.  3.  5.  7.  11.  13.  17.  19.  23.  29.

5  
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	 2.	 factor derives the factors of a given number—if n is 

the given number, then factor produces an array of 

prime numbers a,b,c ...z such that

	
n a b c z= ¼( )Õ , , 	

 1  −−>x=3∗10e4;
 2  −−>y=factor(x)
 3  y =

 4  2.  2.  2.  2.  2.  3.  5.  5.  5.  5.  5.

 5  −−>x=79867858;
 6  −−>y=factor(x)
 7  y =

 8  2.    7.    5704847.

 9  −−>x=9999;
10

11  −−>y=factor(x)
12  y =

13  3.    3.    11.    101.

14

	 3.	 rat() derives a floating point rational 

representation of a given number. help rat gives its 

detailed usage for input arguments.

 1   −−>[n,d]=rat(%pi)
 2   d =

 3   113.

 4   n =

 5   355.

 6   −−>[n,d]=rat(%e)
 7   d =
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 8   465.

 9   n =

10   1264.

11   −−>[n,d]=rat(500)
12   d =

13   1.

14   n =

15   500.

16   −−>[n,d]=rat(500.5)
17   d =

18   2.

19   n =

20   1001.

21

	 4.	 factorial outputs the factorial of a given number

 1   −−>x = 87;
 2   −−>y=factorial(x)
 3   y =

 4   2.10D+132

 5   −−>x = 7;
 6   −−>y=factorial(x)
 7   y =

 8   5040.

 9   −−>x=0;
10   −−>y=factorial(x)
11   y =

12   1.

13
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	 5.	 perm outputs permutations of a given set of 

numbers

 1   −−>x = [1 2 3]
 2   x =

 3   1.    2.    3.

 4   −−>y=perms(x)

 5   y =

 6   3.    2.    1.

 7   3.    1.    2.

 8   2.    3.    1.

 9   2.    1.    3.

10   1.    3.    2.

11   1.    2.    3.

12

3.10  �Finding Roots for Sets of Linear 
Equations

As an example to practically apply arrays to solve real-world problems, let’s 

use arrays to find roots of a set of linear equations. Let’s assume that we 

have the following:

	 2 4 3 4x y z+ - = 	 (3.1)

	 - - + = -2 3 2 3x y z 	 (3.2)

	 4 6 8 1x y z+ - = 	 (3.3)
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We wish to find those values of x, y, and z for which all three equations 

hold true. To do the same, the first matrix form of these equations can be 

written as follows:

	

2 4 4

2 3 2

4 6 8

4

3

1

-
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú
´
é

ë

ê
ê
ê

ù

û

ú
ú
ú
= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

x

y

z 	

(3.4)

If we assume that

	

A =
-

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

2 4 4

2 3 2

4 6 8 	

(3.5)

	

X

x

y

z

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú 	

(3.6)

	

B = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

4

3

1 	

(3.7)

then we can write

	 Ax B= 	 (3.8)

for which the solution is

	 X A B= -1 	 (3.9)
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This can be found with ease in Scilab using just a one-line command:

 1  −−>A = [2,4,−4;−2,−3,2;4,6,−8]
 2  A =

 3

 4  2.    4.    −4.
 5  −2.   −3.    2.
 6  4.    6.    −8.
 7

 8

 9  −−>B = [4; − 3;1]
10  B =

11

12  4.

13  −3.
14  1.

15

16  −−>A\B
17  ans =

18

19  −2.5
20  3.5

21  1.25

Thus, x = −2.5, y = 3.5, and z = 1.25 satisfy the equations. In this way, 

Scilab can help perform complex matrix calculations with ease.

3.11  �Summary
Array-based computing lies at the very heart of modern computational 

techniques. Scilab presents a very suitable platform to perform these 

techniques with ease. A variety of predefined functions enable users 
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to save time while prototyping a problem. Flexible methods to define 

multidimensional arrays and performing fast computation are the main 

necessitites of our times. Most of the time spent during a simulation 

is either in loops or in array operations. Predefined array operations 

have been optimized with algorithms for reliability, time efficiency, and 

effective memory management.
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CHAPTER 4

Plotting

4.1  �Introduction
Without visualization, numerical computations are difficult to understand 

and eventually judge. Producing publication-quality images of complex plots 

that give a meaningful analysis of numerical results has been a challenge for 

scientists all over the world. Many commercial softwares satisfy this need. 

Scilab also provides this facility quite efficiently. Its plotting features includs 

choosing from various types of plots in 2D and 3D regimes; decorating 

plots with additional information such as titles, labeled axes, grids, and data 

labels; and writing equations and other important information about the 

data. The following sections will describe these actions in detail. It is worth 

mentioning that plotting capabilities are essential to certain numerical 

analysis experiments since visual directions from the progressive steps give 

an intuitive understanding of the problem under consideration.

4.2  �2D Plotting
4.2.1  �plot(x,y)
Since we need data on two axes to be plotted, we first need to create them. 

Let’s assume that the x-axis has 100 linearly spaced data points and the 

points on the y-axis are defined by an equation, as illustrated in Figure 4-1:

	 y x= 2 	
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1  >> x = linspace(0,100,100);

2  >> y = x.ˆ2
3  >> plot(x,y)

First, we define a variable x and place 100 equally spaced data points 

from 0 to 100. This makes a 1 x 100 matrix. Using a scalar operation of 

exponentiation, we define a variable y as x2. It is important to note that this 

operation is defined using an elementwise operator so that each element 

of matrix x is operated by the operator. Without this approach, the array 

would have to be squared, that is, multipled by itself. This would produce 

an error since an n × m matrix can only be multipled by a m × n matrix. 

Finally, one can use the function plot(), which takes two arguments as the 

x-axis and y-axis data points.

Figure 4-1.  y = x2
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Typing help plot or help'plot' at the command prompt gives useful 

insight into this wonderful function written to plot two-dimensional data. 

By default, successive plots are superposed. To clear the previous plot, use 

clf(). Also, the plot function can evaluate the input arguments:

1  −−>plot(x = linspace(0,100,100),x.ˆ2.5,'r∗')

The result of this line code is shown in Figure 4-2. Please note that the 

third argument, a string: "r*", plots the data with * at each point of input array.

Multiple plots can be plotted using the plot() command. As an 

example, let’s plot sin(x) and cos(x) functions between −π and π. The 

following is the first version of the code:

1  −−>x = linspace(−%pi,%pi,100);
2  −−>plot(x,sin(x),'r∗',x,cos(x),'b−')

Figure 4-2.  y = x2

Chapter 4  Plotting



96

The following code is the second version of the code:

1  −−>x = linspace(−%pi,%pi,100);
2  −−>plot(x,sin(x),'r∗')
3  −−>plot(x,cos(x),'b−')

Both codes produce similar figures because, in the second version, the 

second plot is overwritten on the first plot to produce multiple plots on the 

same figure window. Figure 4-3 shows the result where sin(x) and cos(x) 

are plotted with * and - markers.

Figure 4-3.  sin(x) and cos(x)
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4.2.2  �plot2d(), plot2d2(), plot2d3(), and plot2d4()
The plot2d command works similarly to the plot command. In addition, 

some other variations of these functions exist with respect to specialized 

way in which plots are plotted:

	 1.	 plot2d2 same as plot2d, but the curve is supposed 

to be piecewise constant

	 2.	 plot2d3 same as plot2d, but the curve is plotted 

with vertical bars

	 3.	 plot2d4 same as plot2d, but the curve is plotted 

with arrows

Listings 4-1, 4-2, 4-3, and 4-4 illustrate their usage. Figures 4-4 and 4-5 

show how they are represented graphically.

Listing 4-1.  plot2d.sce

1  // Program to plot using plot2d function

2  x = linspace(−%pi,%pi,20)
3  plot2d(x,sin(x))

4  xtitle('Graph for plotting sin(x) using plot2d')

5  xlabel('angle')

6  ylabel('sin(x)')

Listing 4-2.  plot2d2.sce

1  // Program to plot using plot2d2 function

2  x = linspace(−%pi,%pi,20)
3  plot2d2(x,sin(x))

4  xtitle('Graph for plotting sin(x) using plot2d2')

5  xlabel('angle')

6  ylabel('sin(x)')
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Listing 4-3.  plot2d3.sce

1  // Program to plot using plot2d3 function

2  x = linspace(−%pi,%pi,20)
3  plot2d3(x,sin(x))

4  xtitle('Graph for plotting sin(x) using plot2d3')

5  xlabel('angle')

6  ylabel('sin(x)')

Listing 4-4.  plot2d4.sce

1  // Program to plot using plot2d4 function

2  x = linspace(−%pi,%pi,20)
3  plot2d4(x,sin(x))

4  xtitle('Graph for plotting sin(x) using plot2d4')

5  xlabel('angle')

6  ylabel('sin(x)')

Chapter 4  Plotting



99

Figure 4-4.  sin(x) and cos(x)
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4.2.3  �polarplot()
During mathematical analysis, polar coordinates become important in 

cases that do not exhibit symmetry in Cartesian systems, but that show 

symmetry in polar coordinates. In these cases, we prefer to plot in polar 

coordinates rather than Cartesian coordinates. So, instead of x, y our 

coordinates are r, θ, which are related by equations, as shown in Figures 4-6 

and 4-7.

Figure 4-5.  sin(x) and cos(x)
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Figure 4-6.  sin(x) and cos(x)
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x = r × cos(θ)

y = r × sin(θ)

The code given by polarplot.sce plots one such case, as shown in 

Listing 4-5. The result is given in Figure 4-8.

Listing 4-5.  polarplot.sce

1  // Program to plot using polarplot function

2  theta= 0:.01:3∗%pi;
3  polarplot(sin(2∗theta), cos((2∗theta)))
4  xtitle('Using polarplot')

Figure 4-7.  sin(x) and cos(x)
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4.3  �Special Plots
4.3.1  �Histograms
Histograms are traditionally used to visualize the number of events occurring 

within different ranges. Scilab provides a useful function, histplot(), for 

this purpose that takes input for the number of bins and data provided as 

an array. For example, in the code titled hist.sce found in Listing 4-6, the 

normalized distribution of random numbers is plotted in Figure 4-9.

Figure 4-8.  Polar graph
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Listing 4-6.  hist.sce

1  // Program to plot histogram

2

3  �n = rand(1,10e4,'normal');   // normalized gaussian random 

sample

4  bins=20

5  histplot(bins,n)

6  title('Histogram plotting random numbers')

7  xlabel('x')

8  ylabel('y')

Figure 4-9.  Histogram plot
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Histograms are used to show the sampled data. From a dataset, one can 

segregate the data points according to their values into the number of bins 

and visualize which range of values dominate the profile. This provides 

useful information about the system. For example, values following 

normalized distribution represent systems that always follow certain 

kinds of statistics. In the present case depicted in Figure 4-9, most of the 

data events occur in the middle. If this graph represents the probability 

of finding an electron between two atoms, then we can conclude that the 

electron is found mostly in the middle of the atoms. If this graph represents 

grades obtained by students in a class, then we can deduce that very few 

students obtain either very good or very bad grades (extremes of graph) 

and that most of the students got close to grades of 50 percent.

4.3.2  �matplot
To plot colors representing certain values, the matplot command is used, 

as shown in Listing 4-7 and illustrated in Figure 4-10.

Listing 4-7.  matplot.sce

1  // Program to plot using Matplot function

2  x = [1 2 3 4;5 4 3 6]

3  Matplot(x)

4  grayplot(x,y,m)

5  xtitle('Using Matplot')

6  xlabel('x')

7  ylabel('y')
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4.3.3  �grayplot
Sometimes, we need to see the value of a two-dimensional function on a 

2D plot. This is done by visualizing the components of the functional value 

z on x and y coordinates. grayplot plots a graph window for a 2D plot of 

the surface given by z on a grid defined by x and y. Each rectangle on the 

grid is filled with a gray or color level depending on the average value of z 

on the corners of the rectangle. (See Listing 4-8 and Figure 4-11.)

Listing 4-8.  grayplot.sce

1  // Program to plot using grayplot function

2  x = −10:10;
3  y = −10:10;
4  m = rand(21,21);

Figure 4-10.  Matplot figure for [1 2 3 4;5 4 3 6]
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5  grayplot(x,y,m)

6  xtitle('Using grayplot for random numbers')

7  xlabel('x')

8  ylabel('y')

Figure 4-11 shows the color value as per the value of z (which is given 

by a random number in this case). The graph will result in different plots 

each time it is run because the value z is given by a random number. In 

fact, the effectiveness of random-number-generating algorithms can be 

visually inspected using grayplot by checking if two colors are situated 

close to each other.

Figure 4-11.  grayplot figure for random numbers
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4.3.4  �champ
Scientific and engineering studies employ the theoretical study of vector 

fields. Both in theoretical and practical studies, it is sometimes important 

to plot vector fields as per a given equation. Vectors are best described by 

arrows. To provide this facility, champ draws a 2D vector field. The length of 

the arrows is proportional to the intensity of the field. (See Listing 4-9 and 

Figure 4-12.)

Listing 4-9.  champ.sce

 1  �// Program to plot using champ function for plotting a 

vector f ield

 2  x = linspace(−1,1,10);
 3  y = linspace(−1,1,10);
 4  [X,Y] = meshgrid(x,y);

 5  fy = 3.∗Y;
 6  fx = 0.5.∗X;
 7  champ(x,y,fx',fy')

 8  xtitle('Using champ function to plot vector f ield')

 9  xlabel('x')

10  ylabel('y')
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Complex polynomials can be used to represent the horizontal and 

vertical components of the vector field, which are usually measured. 

champ provides an easy way to visualize the vector field and then make 

deductions about forces arising out of it. (See Listing 4-1 and Figure 4-13.)

Listing 4-10.  champ1.sce

 1  �// Program to plot using champ function for plotting a 

vector f ield

 2  x = linspace(−2,2,10);
 3  y = linspace(−2,2,10);
 4  [X,Y] = meshgrid(x,y);

 5  fy = X.ˆ3−2.∗X.ˆ2+4.∗X−10;
 6  fx = X.ˆ3+2.∗X.ˆ2−4.∗X+10;

Figure 4-12.  Plotting a vector field using champ
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 7  champ(x,y,fx',fy')

 8  xtitle('Using champ function to plot vector f ield')

 9  xlabel('x')

10  ylabel('y')

Adding color (indicating field intensity) to the arrows gives a more 

meaningful visual presentation, as shown in Listing 4-11 and Figure 4-14.

Listing 4-11.  champcolor.sce

 1  �// Program to plot using champ function for plotting a 

vector f ield

 2  x = linspace(−1,1,20);
 3  y = linspace(−1,1,20);

Figure 4-13.  Plotting a vector field using champ
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 4  [X,Y] = meshgrid(x,y);

 5  fy = 3.∗Y;
 6  fx = 0.5.∗X;
 7  champ1(x,y,fx',fy')

 8  xtitle('Using champ function to plot vector f ield')

 9  xlabel('x')

10  ylabel('y')

4.3.5  �Contour Maps
Contour maps are frequently used to visualize the projection of a function 

on a 2D surface. They are used in various branches of science and 

engineering, especially geophysics where information of measurement 

Figure 4-14.  Plotting a vector field using champ

Chapter 4  Plotting



112

parameters like temperature, pressure, and humidity is projected onto 

a map. In addition, contour maps are also used to visualize the 2D 

mathematical projection on a plane.

Scilab provides the built-in function contour2d() for this purpose. 

Its usage is explained in the example code in Listing 4-12. Detailed usage 

of the function can be learned by using the command help contour2d. 

Essentially, the function takes x, y, and z values and the value for the 

number of levels. The code produces random numbers and plots them as 

per their value on a 2D matrix.

Listing 4-12.  contour.sce

1  // Program to plot 2D contours

2  x = 1:10;

3  y = 1:10;

4  z = rand(10,10);

5  level_number = 8;

6  contour2d(x,y,z, level_number)

7  title('Plotting contour map')

8  xlabel('x')

9  ylabel('y')

Figure 4-15 shows the result of the code.
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Instead of contour outlines, filled contours can be obtained using the 

built-in function contourf(). It follows a similar syntax as the contour2d() 

function. (See Listing 4-13 and Figure 4-16.)

Listing 4-13.  contourf.sce

1  // Program to plot 2D contours

2  x = 1:10;

3  y = 1:10;

4  z = rand(10,10);

5  level_number = 8;

6  contourf(x,y,z, level_number)

Figure 4-15.  Plotting a vector field using champ
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7  title('Plotting contour map')

8  xlabel('x')

9  ylabel('y')

The color-coded areas are on the same level in Figure 4-16. Since the 

z values are taken from a random number generator function, rand(), the 

figure will be different each time the code contourf.sce is run.

Contour maps are easy way to visualize the smoothness of 2D data. 

Smooth data will have little variation and, hence, will fall under the same 

level. The choice of the level range will define the degree of smoothness. 

For example, suppose an infrared camera measures the temperature of 

a room and the data are color-coded for visual display. Contours will be 

defined by the different levels of temperature ranges. If the temperature is 

uniform in a region, it will be coded with a similar color. The difference in 

Figure 4-16.  Plotting a vector field using champ
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temperature of that region will be within the range defined and, thus, the 

definition of the range will become critical. If the minimum and maximum 

values of temperature are T1 and T2 and the number of levels are n, then 

the temperature range of a zone is given by

	

T T

n
2 1-

	

4.4  �2D Animation
During simulation, it is sometimes useful to animate an equation to 

understand its evolution. Scilab contains very useful functions for this 

purpose. Please note that figures provided are snapshots-at-the-end for the 

animations. Users should write the code as discussed and test it on their 

own to see the animation on a computer monitor. Animations are found to 

be particularly useful for teaching concepts to students.

4.4.1  �comet
The comet() function comes in handy in such cases. In Listing 4-14, we 

animate the equation x 5 − x3 + x +5 using the comet function.

Listing 4-14.  comet.sce

1  // Program to demonstarte usage of comet

2  

3  x = linspace(−%pi,%pi,500);
4  comet(x,%sˆ5−%sˆ3+%s+5)
5  xtitle('Using comet function to animate an equation')

6  xlabel('x')

7  ylabel('y')
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4.4.2  �paramfplot2d()
Time evolution of a function at multiple points can be represented by the 

paramfplot2d() function. Let’s consider the evolution of the function  

y = sin(x) + sin(2x) + sin(4x) (mixing of a signal with double and four times 

its own frequency). The resulting signal is the complex waves combining 

these three primary waves (sin(x), sin(2x), and sin(4x)), as shown in 

Figure 4-17 and Listing 4-15.

Figure 4-17.  Plotting using the comet function
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Listing 4-15.  paramfplot2d.sce

1  �deff('y=f(x,t)','y=t∗sin(x)+sin(2∗x)+sin(4∗x)')  
// Def ining equation

2  �x = linspace(−4∗%pi,4∗%pi,10e3); // def ining spatial steps
3  t = 100;

4  �time_speed = 0:0.05:1; // step size determines speed of 

animation

5  paramfplot2d(f,x,time_speed);

6  xtitle('Using paramfplot2d function to animate an equation')

7  xlabel('x')

8  ylabel('y')

Please note that deff is used to define a function. Its usage can be 

checked from help deff. Its detailed usage will be discussed in the 

chapter concerning the definition of Scilab function.

4.5  �Plotting Multiple Plots in the Same 
Graph

Multiple plots can be plotted within the same figure by simply supplying 

x-axis and y-axis vectors, as shown in Listing 4-16 and Figure 4-18.
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Listing 4-16.  multi.sce

 1  // Program for multiple plots with legends

 2

 3  x = linspace(1,10,30);

 4  plot(x,x.ˆ2,'k∗')
 5  plot(x,x.ˆ2.5,'r−')
 6  plot(x,x.ˆ3,'b−−')
 7  legend(['xˆ2';'xˆ3';'xˆ4']);
 8  title('Plotting multiple plots in same window')

 9  xlabel('x')

10  ylabel('y')

Figure 4-18.  Plotting using the paramfplot2d function
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Figure 4-18 is obtained by running the code in Listing 4-16. These 

types of plots are generally used to check the variation of results by varying 

a particular parameter.

4.5.1  �Plotting Multiple Plots Separately
The subplot(row,coloumn, index) command is used to plot multiple 

plots within the same figure separately. subplot(2,2,4) means that the 

plot will be on the second row, second column, and fourth index.  

(See Listing 4-17 and Figure 4-19.)

Listing 4-17.  subplot.sce

 1  // Program to show usage of subplot function

 2  // subplot function produces a f igure as a matrix

 3

 4  x = linspace(−2∗%pi,2∗%pi,1000);
 5  //1st f igure of a 2X2 f igure matrix

 6  subplot(221)

 7  plot(x,sin(x),'r∗')
 8  title('Plot for sin(x)')

 9  xlabel('x')

10  ylabel('sin(x)')

11

12  //2nd f igure of a 2X2 f igure matrix

13  subplot(222)

14  plot(x,sin(x)+sin(2.∗x),'b∗')
15  title('Plot for sin(x) + sin(2x)')

16  xlabel('x')

17  ylabel('sin(x) + sin(2x)')

18
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19  //3rd f igure of a 2X2 f igure matrix

20  subplot(2,2,3)

21  plot(x,sin(x) + sin(3.∗ x),'g∗')
22  title('Plot for sin(x) + sin(3x)')

23  xlabel('x')

24  ylabel('sin(x) + sin(3x)')

25

26  //4th f igure of a 2X2 f igure matrix

27  subplot(2,2,4)

28  plot(x,sin(x) + sin(4.∗x),'k∗')
29  title('Plot for sin(x) + sin(4x)')

30  xlabel('x')

31  ylabel('sin(x) + sin(4x)')

Figure 4-19.  Multiple plots within the same figure
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As seen in Figure 4-20, plots are organized as a matrix where the row 

number as well as the column number dictate its position. The index of 

the plot can then be used to treat it as an object for further processing 

on a graphical object. Theoretically, the limit of the number of rows 

and columns depends on the memory of computer but, while printing, 

users must understand that according to the size of plots, some of them 

will go outside the print area. Hence, judicious usage of this command 

is recommended. The automatic generation of a figure matrix can be 

achieved by generating the index of plots using a loop.

Figure 4-20.  Separate multiple plots within the same figure using a 
subplot
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4.6  �3D Plots
There are various functions available for 3D plotting in Scilab. Choosing 

one of them depends on your particular problem.

4.6.1  �plot3d
The built-in function plot3d() plots a 3D plot for the given values of x, y, 

and z defined as arrays. One of its uses is shown in Listing 4-18, where the 

equation 4.1 is plotted

	
z x y= +2 2

	 (4.1)

Listing 4-18.  plot3d.sce

1  // Program to plot 3D graph using plot3d

2

3  a = linspace(−8,8,41)';
4  b = linspace(−8,8,41)'
5  [xx, yy] = meshgrid(a,b);

6  c = sqrt(xx.ˆ2 + yy.ˆ2)+%eps;
7  plot3d(a,b,c)

4.6.2  �plot3d1()
The built-in function plot3d1() plots a colored 3D plot for the given 

values of x, y, and z defined as arrays. The color of cells indicates the z 

value range. Its usage is shown in Listing 4-19 and Figure 4-21, where 

Equation 4.1 is plotted.
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Listing 4-19.  plot3d1.sce

1  // Program to plot 3D graph using plot3d1

2

3  a = linspace(−8,8,41)';
4  b = linspace(−8,8,41)'
5  [xx, yy] = meshgrid(a,b);

6  c = sqrt(xx.ˆ2 + yy.ˆ2)+%eps;
7  plot3d1(a,b,c)

The color coding provided by plot3d1() becomes an additional 

feature in some critical analyses. The contours in a 3D plot give the shape 

of projection areas where the value of the measured system is the same. 

For example, suppose Figure 4-22 represents the electric field near a 

charged particle placed at its center. The color represents the zone in 3D 

where the force on that charged particle will be within a certain range.

Figure 4-21.  3D plot of an equation
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4.6.3  �plot3d2()
Another built-in function plot3d2() builds the 3D graph using rectangular 

facets. One example is shown in Listing 4-20.

Listing 4-20.  plot3d2.sce

1  // Program to plot 3D graph using plot3d2

2

3  u = linspace(−%pi/2,%pi/2,40);
4  v = linspace(0,2∗%pi,20);
5  X = cos(u)'∗cos(v);
6  Y = cos(u)'∗sin(v);
7  Z = sin(u)'∗ones(v);
8  plot3d2(X,Y,Z);

Figure 4-22.  3D plot of an equation
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The result is shown in Figure 4-23. It is important to note that a finer 

mesh will make the figure have better resolution of its 3D feature. For a 

finer mesh, the linspace() arguments should be defined with a smaller 

step size. However, at the same time, having a finer mesh increases the 

computational time. Thus, 3D rendering is a computationally intensive 

task, but it is sometimes desired. The choice of parameters depends upon 

the requirements of data analysis. When a finer resolution of 3D surface 

features is sought, users have to go for higher rendering power (which 

directly results in high computational power requirements).

4.6.4  �plot3d3()
Another built-in function, plot3d3(), builds the 3D mesh graph using 

rectangular facets. The only difference between plot3d2 and plot3d3 is 

that the former produces a surface plot and the latter produces a mesh plot 

on rectangular facets. One example is shown in Listing 4-21.

Figure 4-23.  3D plot of an equation
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Listing 4-21.  plot3d3.sce

1  // Program to plot 3D graph using plot3d3

2

3  u = linspace(−%pi/2,%pi/2,40);
4  v = linspace(0,2∗%pi,20);
5  X = cos(u)'∗cos(v);
6  Y = cos(u)'∗sin(v);
7  Z = sin(u)'∗ones(v);
8  plot3d3(X,Y,Z);

The same arguments apply for the resolution of mesh as that for 

surface. It is, however, important to note that rendering a mesh is a bit less 

computationally intensive than rendering a surface.

4.6.5  �Surface Plots
Surface plots are obtained using the built-in function surf(), which takes 

a single argument of the height of the mesh point. By connecting these 

mesh points, a surface is created. By default, surface facets are color-coded 

differently to identify them. This can be checked in the code shown in 

Listing 4-22 and Figure 4-24.

Listing 4-22.  surf.sce

 1  // Program to plot 3D graph using surf

 2  subplot(2,2,1)

 3  z = rand(10,10);

 4  surf(z)

 5  title('surf')

 6

 7  subplot(2,2,2)

 8  surf(z,'facecol','red','edgecol','blu')
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 9  title('surf function with face and edge color')

10

11  subplot(2,2,3)

12  surf(z,'facecol','interp')

13  title('surf function interpolated')

14

15  subplot(2,2,4)

16  x=rand(10,10);

17  y=rand(10,10);

18  z=rand(10,10);

19  surf(z,'facecol','red','edgecol','blu')

20  �title('surf function with each coordinated def ined 

seperately')

Figure 4-24.  3D plot of an equation
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Note that when additional arguments about face color being red and 

edge colors being blue are fed, the plot is plotted with a red-colored surface 

having blue-colored edges, as shown in Figure 4-25. The input to the 

surf() command is an array. It is created by the built-in function rand() 

in this case, but it can be created externally and fed to the surf() function.

In the third subplot, random mesh values are defined by the rand() 

function, but intermediate values between the two mesh points are 

interpolated. This results in color coding of contours. In the fourth subplot, 

individual Cartesian coordinates for x, y, and z taken from the rand() 

function are fed to the surf function seperately.

Figure 4-25.  3D plot of an equation
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4.6.6  �Mesh Plots
Mesh plots are generated by joining mesh points defined by coordinates. 

As an example, consider the code in Listing 4-23.

Listing 4-23.  mesh.sce

1  // Program to explain the usage of mesh function

2

3  [X,Y] = meshgrid(−5:0.5:5, −5:.5:5);
4  Z = sin(X)+cos(Y);

5  mesh(X,Y,Z);

Here, a 2D coordinate system is generated and stored in two arrays 

named X and Y. For these points defining x and y, an equation is defined as 

follows:

	
z x x= ( )+ ( )sin cos 	 (4.2)

These three values (one each from arrays x, y, and z) are fed to the mesh 

function.

The result is shown in Figure 4-26. The three coordinates (x, y, and z) 

are defined by the corresponding elements of vectors X, Y, and Z. These 

points are used to create the mesh plot.
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4.6.7  �3D Histogram
Just like 2D histograms, 3D histograms give visual clues about segregation 

of data having 2D dependency. 3D visualization is presented as vertical 

solid bars, as demonstrated in Listing 4-24.

Listing 4-24.  hist3d.sce

1  // Program to make a 3D histogram

2

3  hist3d(5∗rand(10,10));
4  hist3d(−5∗rand(10,10));
5  title('3D histogram')

Figure 4-26.  3D plot of an equation
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In hist3d.sce, random numbers are amplifiled and plotted on a 

2D matrix. The random numbers generate the height of the bar. Two 

histograms, one in the positive quandrant and one in the negative 

quadrant, are generated. The result is shown in Figure 4-27.

4.7  �Summary
In this chapter, we have presented a variety of built-in functions for 2D 

and 3D plotting as well as for animations. With these rich features, Scilab 

provides a nice developing environment for scientists and engineers. 

Figure 4-27.  3D histogram
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The visualization tools presented in the chapter are comparable to many 

commercial alternatives. Explaining each and every option for the plots 

is beyond the scope of this chapter so we have only discussed the most 

relevant functions. We advise users to study the documentation using the 

command help plot and see the variety of options for 2D and 3D plotting 

along with options to modify plot properties.
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CHAPTER 5

Data Through File 
Reading and Writing

5.1  �Introduction
Using the information in Chapter 4, you can now formulate physical 

problems in terms of numerical computations and solve them on digital 

computers. This process calls for the following requirements:

•	 Data should be in digital form (a digital file).

•	 Computer programs should be able to read the file and 

make arrays without errors.

–– If errors have been made, a mechanism to check for 

those errors and give a warning to the user should 

be in place.

–– Error correction will be an added feature in this case.

•	 Data should be stored as an array as per the data type 

and should be displayed on demand in proper format.

•	 Array operations on data will result in memory usage in 

terms of reading and writing data on disks. This should 

be facilitated by the system. Users should be able to 

check the status of memory as and when required.
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•	 Post-processing tasks include visualizing data in 

various formats: as a printout from a printer, as a graph 

on a terminal or printer/plotter, and so on.

•	 If a report for a particular experiment having input 

parameters, processing data, and output as a file or 

graph can be generated, the task is made easier for the 

user.

Scilab has some features for each of these requirements. In this 

chapter, we will discuss some of the features that are related to handling 

files both for inputting and outputting data in various formats.

5.2  �File Operations
File operations constitute an important part of solving computations. It is 

important to note that the file system is OS (Operating System) dependent. 

Since Unix/Linux has been the popular operating system for scientific 

and engineering work, Scilab supports Unix/Linux commands for file 

management. When Scilab is installed on Windows, you use the same 

commands for dealing with files as you would with Linux since you always 

works in a Scilab micro-environment. The codes in the following sections 

have been tested on Windows 8, MacOSX 10.12, and Ubuntu 16.04 systems.

5.2.1  �Users
A computing system is accessed by different users using an operating 

system. Each user defines and then works in a workspace to avoid 

damaging another user’s files. After login, a user’s workspace becomes 

active for that user. Scilab does not provide the facility of login for the 

software, but when users log into their OS, their workspace for Scilab is 

activated as well. (A public computer does not provides this facility.)  
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A workspace is made up of various files and folders. Files store data, and 

folders/directories are just special files that store links to other files. Hence, 

multiple files can be stored in one folder.

There are many operations that you can do with a file object. Reading 

a file involves inputting the data in the file to a desired location. When 

this location is the computer monitor and you have a text-visualization 

tool, you can see the data as characters or symbols. When this location 

is a program to accept the data in the file, it is read by the program and 

fed to the desired function. Data come in a variety of formats if format 

interchanging is required as per the requirement of input and output ends. 

Some files (Scilab’s .sci and .sce files in the present case) need to be 

executed (that is, run the program).

For all of the purposes mentioned, files are opened before an operation 

and must be closed after an operation. The status of a file (whether it’s 

open or closed) is shown by a flag (usually an integer number).

Some files are essential for the OS to define the behavior of a system. 

As a result, these files should not be altered. Unwanted alterations are 

prevented by giving permissions to users. “Reading” and “writing” a file 

are restricted by permissions. The “administrator” (fondly called admin) 

is also called the “super user” and has all the privileges and permissions 

to edit any file/folder. You need to understand the defined user type on 

a particular computer system and then issue commands accordingly. If 

you are not permitted to access certain folders and input data is placed 

inside those files/folders, then, unless you ask the admin to change the 

permission parameters, you will always get an error.

On a public computer, admin privileges are usually not given. This 

restricts read, write, and execute operations. When users are on a 

personal computer, they usually declare themselves the super user and, 

thus, their account has all the required privileges. On a computer shared 

by many users, the admin assigns privileges to read, write, and execute 

selectively. Users must seek the appropriate permission for a desired 

operation.
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5.2.2  �File Path
Directories/folders can contain subdirectories/subfolders and files. 

This behavior can go to any level if this process is not restricted by the 

administrator. The pwd command stands for print working directory. On 

a Scilab terminal, typing pwd displays the path of the present working 

directory as shown in the following example:

1  −−>pwd
2  ans =

3  /Users/<userName>

Under the user, the /Users directory contains another directory named 

by the username (shown by <userName>) given to the user while installing 

the operating system. This is the primary workshop assigned to a Scilab 

session. Unless the user changes the directory, the user performs all tasks 

in this workspace. When pwd is typed in the terminal, a variable named ans 

stores the data (file path). As illustrated before, ans stores the last output at 

Scilab REPL. A variable (name chosen by the user) can be assigned to store 

the file name as a string.

A file/folder is accessed by writing the file path on the terminal. Let’s 

do a small exercise to understand this process. To make a new directory, 

use mkdir 'name' as shown the following code:

 1  −>mkdir scilab // make new directory called 'scilab'
 2   ans =

 3  1.

 4  �−−>cd scilab /// change present directory to the directory 
name 'scilab'

 5  ans =

 6  /Users/sandeepnagar/scilab

 7  −−>mkdir test // make a directory named 'test'
 8  ans =

 9  1.
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10  �−−>cd test // change present directory to the directory 
name 'test'

11  ans =

12  /Users/sandeepnagar/scilab/test

13  −−>ls // List the contents of present directory i.e 'test'
14  ans =

15  []

16  −−>mkdir new // make a directory here named 'new'
17  ans =

18  1.

19  −−>ls // List the contents of present directory i.e 'test'
20  ans =

21  new

22  −−>rmdir new // remove the directory named 'new'
23  ans =

24  1.

25  −−>ls // List the contents of present directory i.e 'test'
26  ans =

27  []

28  �−−>isdir('/Users/sandeepnagar/scilab/test')  
// Checking if a directory 'test' exists

29  ans =

30  T

At line number 1, mkdir scilab makes a directory named 'scilab'. 

To see the contents of the present directory, we can use the command ls, 

which stands for list. To change the directory, we can use the command cd 

"file path". We will work in this directory for the rest of the exercises in 

this book.

We can create a directory named test in the directory named scilab. 

We can see the list of its contents by using the command ls. When the 
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directory is empty, ans=[] is displayed. If we now create a new directory 

named new within the subdirectory test by issuing the command mkdir 

new and then check for the list of contents, the result is shown as ans=new. 

To remove a directory, we can use the command rmdir. So, by executing 

rmdir new, we can see that the user has removed the directory named new.

The command isdir checks whether the input argument (path) 

directs to a directory. When a directory is found at the input path, the 

output is the boolean variable T (True); otherwise, the output is F (False).

5.2.3  �Creating Files and Saving Them
The save and load commands enable us to write and read data to the 

memory:

 1  −−>a = rand(3,3)
 2  a =

 3  0.2113249    0.3303271    0.8497452

 4  0.7560439    0.6653811    0.6857310

 5  0.0002211    0.6283918    0.8782165

 6  −−>save('rand_matrix.dat','a')
 7  −−>ls
 8  ans =

 9  ! rand_matrix.dat   !

10  −−>load('rand_matrix.dat','a')
11  −−>a =
12  0.2113249    0.3303271    0.8497452

13  0.7560439    0.6653811    0.6857310

14  0.0002211    0.6283918    0.8782165

At line number 1, a variable named a, which stores a random value  

3 × 3 matrix, is created first. At line number 2, this data is stored as a .dat 

file (data file) named rand_matrix.dat, which passes the variable name 
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as the argument. When required, this file can be loaded in the workspace 

using the load command. Please note that the data don’t always have to be 

comprised of numbers.

The data can be anything that a digital computer can handle, including 

pictures, videos, strings, and characters, just to name a few.

Multiple variables can be stored in the same file by passing the name of 

variables at the time of saving:

 1  −−>a = rand(2,2)
 2  a =

 3  0.0683740    0.6623569

 4  0.5608486    0.7263507

 5  −−>b = rand(3,3)
 6  b =

 7  0.1985144    0.2312237    0.6525135

 8  0.5442573    0.2164633    0.3076091

 9  0.2320748    0.8833888    0.9329616

10  −−>c = rand(3,2)
11  c =

12  0.2146008    0.2922267

13  0.312642     0.5664249

14  0.3616361    0.4826472

15  −−>save('rand_matrix1.dat','a','b','c')
16  −−>ls
17  ans =

18  !rand_matrix1.dat   !

19  !                   !

20  !rand_matrix.dat    !

21  −−>load('rand_matrix1.dat','a','b','c')
22  −−>a
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23  a =

24  0.0683740    0.6623569

25  0.5608486    0.7263507

26  −−>b
27  b =

28  0.1985144    0.2312237    0.6525135

29  0.5442573    0.216463     0.3076091

30  0.2320748    0.8833888    0.9329616

31  −−>c
32  c =

33  0.2146008    0.2922267

34  0.312642     0.5664249

35  0.3616361    0.4826472

help("save") and help("load") give very useful instructions about 

using these commands.

The load() function follows the same logic as the save() function. 

Data can be unzipped and loaded from a particular formatted file as 

an array. An array, thus populated, can be used for computation, and 

resultant files can be made using the save() function again (if required). 

Elaborate computations require this procedure to be repeated successively 

many times. Thus, the functions have been optimized to locate and load 

required data in a short time.

5.2.3.1  �Opening and Closing Files

To read and write data files, they must be opened and defined as readable 

and/or writeable. The command mopen() is used to create a nonexistent 

file or to open an existing file. For example, the following code shows 

how to create a file named test.sce in write mode. A variable named 

file_handle is used to store the event. Looking at the list of contents of the 
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folder, you can see that a file by this name is indeed created. Similar to the 

mopen() command, the mclose() command is used to close the file:

1  �−−>f ile_handle = mopen('test.sce','w') // creates the f ile 
in 'write' mode

2  f ile_handle =

3  1.

4  −−>ls
5  ans =

6  test.sce

7  �−−>mclose(f ile_handle) // close the f ile and an integer 0 
is returned signifying successful closing of f ile

8  ans =

9  0.

The mode parameter controls the access type for the file that can have 

one of the values found in Table 5-1.

Table 5-1.  Different File Modes

r opens for reading (default). The file must exist; otherwise, it fails.

w opens for writing. If the file exists, its contents are destroyed.

a opens for appending. It creates the file if it does not exist.

r+ opens for both reading and writing. The file must exist; otherwise, it 

fails.

w+ opens for both reading and writing. If the file exists, its contents are 

destroyed.

a+ opens for both reading and appending. It creates the file if it does not 

exist.
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In addition, the characters in Table 5-2 can be used to specify the type 

of file.

The default access mode is 'rb' (binary file reading).

5.2.3.2  �csvread() and csvwrite()

The functions csvRead() and csvWrite() are used to read data from the 

.csv file, which stands for comma separated values:

 1  −−>a = rand(4,4);
 2  −−>csvWrite(a,'csv f ile data');
 3  −−>b = csvRead('csv f ile data');
 4  −−>a
 5  a =

 6

 7  column 1 to 2

 8

 9  0.3321719    0.2693125

10  0.5935095    0.6325745

11  0.5015342    0.4051954

12  0.4368588    0.9184708

13

14  column 3 to 4

15

16  0.0437334    0.2806498

17  0.4818509    0.1280058

Table 5-2.  Different File Types

t text file

b binary file (default)
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18  0.2639556    0.7783129

19  0.4148104    0.2119030

20

21  −−>b
22  b =

23

24  column 1 to 2

25

26  0.3321719    0.2693125

27  0.5935095    0.6325745

28  0.5015342    0.4051954

29  0.4368588    0.9184708

30

31  column 3 to 4

32

33  0.0437334    0.2806498

34  0.4818509    0.1280058

35  0.2639556    0.7783129

36  0.4148104    0.2119030

The functions to write and read a .csv file have a number of options 

that can be understood by using the command help("csvRead") and 

help("csvWrite"). Users are encouraged to explore the options since 

.csv files are used abundantly in the domain of data analytics. Using and 

manipulating them is an important skill of a data scientist.

Note A  number of other functions to read and write files exists, 
but we have focused only on some of the most commonly used 
ones. Documentation can be accessed to explore other specialized 
functions, if required.
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5.3  �Summary
In this chapter, we have illustrated various functions enabling reading 

and writing permissions, as well as taking data to and from a file. These 

functions comprise an essential part of a numerical computation exercise. 

The data can be generated in the form of files using a software package 

or hardware (an instrument). Scilab does not care about its origin. It 

treats data by their type and file type. Judging an appropriate function to 

operate using files has to be done by the user as the situation requires. File 

operations provide faculties to trim the data so that only the useful part of 

the data is fed as an array. Further trimming can be performed by slicing 

operations. With the art of handling files, you can confidently proceed to 

handling sophisticated numerical computations.
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CHAPTER 6

Functions and Loops

6.1  �Introduction
When a particular numerical task needs to be “repeated” over different 

data points, digital computers become a useful tool since they can perform 

this action with greater speeds than humans. Loops perform exactly this 

task. Using a condition to check the start and termination rules, users can 

perform repetitive parts of a process as desired. Different programming 

languages and environments have different rules for defining loops. 

Scilab provides a simple way to define and run loops. In addition to 

loops, functions also define an important part of modern programming 

architecture. A big program may require a set of instructions to be 

called at different times. Hence, this set of instructions can be defined 

as a subprogram, which can be requested to perform the computation 

at a desired time. In this way, a complicated task can be divided into 

many small parts. This architecture of programming is called modular 

programming. It is the most popular way of programming since it is quite 

logical, good at visualizing the problem, and easy to debug. The most 

popular way of defining these small sets of instructions is to define them as 

functions. Together, functions and loops break a numerical computation 

problem into a series of simpler problems that can be accessed as 

required. In this chapter, we will discuss both of these concepts in detail.
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6.2  �Loops
Loops form an essential part of an algorithm since they perform the 

tasks that computers perform best: doing repetitive actions in a very fast 

manner. Loops can come in many flavors such as for loop, which repeats 

certain tasks over a list of variable values; while loop, which checks a 

logical condition before executing a certain task; and if-then-else loop, 

which checks a condition and directs the flow of an algorithm. The loop 

you choose depends on the problem at hand.

A variety of functions and their usage are described in the following 

sections. Judging their usage critically becomes supremely important because 

the looping part of an algorithm consumes most of the execution time.

6.2.1  �while
while loop defines a logical condition and, until it is satisfied, it runs a 

block of code. The syntax for while loop is the following:

1  while condition

2  BODY

3  endwhile

Here, the keyword while initiates the execution of a while loop.  

The condition is a logical condition whose answer can be 'true' (1) 

or 'false' (0). The BODY encompasses the string of commands that is 

executed until the condition holds true, as shown in Listing 6-1.

Listing 6-1.  while.sce

1  i = 1

2  while i<20

3      disp(i);

4      i = i∗2;
5   end
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The result is shown as follows:

1  −−>exec('/Users/sandeepnagar/.../while.sce', −1)
2  1.

3  2.

4  4.

5  8.

6  16

The code while.sce first initializes the variable i to the numerical 

value 1. It then checks the condition i < 20. This is true at the first step 

when i = 1. Consequently, it enters the loop and executes the command 

disp(i). (The numerical value 1 is printed on the terminal.) Then the next 

line is executed ( i = i * 2 ), which makes the new value of i = 2. At the end 

of the loop, the control is further taken by the condition statement ( i < 20). 

Until this holds true, the loop runs and, hence, 1, 2, 4, 8, 16 are printed. 

When i = 16 and the statement i = i * 2 is executed, the new value of i 

becomes 32. Now the condition is not satisfied and the loop is terminated.

6.2.2  �Infinite Loops
Some loops can run infinitely so they are called infinite loops. Try the code 

while.sce by initializing i = 0 instead of i = 1. In this case, the value of i will 

always be 0 inside the loop and the condition i < 20 will always be true. 

Hence, the code will run forever if it is not interrupted. Infinite loops can 

be interrupted by the Ctrl+C key combination on an an ASCII keyboard.

The onus of avoiding infinite loops lies with the user. Scilab will simply 

execute the statements mindlessly without showing a warning or error 

message. Technically, infinite loops are not programming errors as they 

are syntactically correct. In fact, infinite loops can be used if you need 

to generate an infinite stream of data or if you need to execute a Scilab 

program infinitely. For example, suppose a Scilab program reports the 

status of a remote wind turbine. This code needs to run infinitely unless 
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interrupted. In another scenario, suppose an application requires a stream 

of random numbers. In this case, a Scilab code can be written to generate 

an infinite sequence of random numbers.

6.2.3  �for
for loop is used to perform computation on a list of known values. The 

syntax of for loop is the following:

1  for variable = vector

2    BODY

3  end

The keyword for declares the starting of the loop where a variable 

takes the values stored in a vector. Then a body of code (represented by 

BODY) is executed. The keyword end declares the end of for loop. This is 

explained in Listing 6-2.

Listing 6-2.  for.sce

1  for i = 1:10

2      square_root = sqrt(i);

3      disp(square_root)

4  end

5

6  disp("Program f inished")

Executing for1.m yields:

 1  −−−>exec('/Users/sandeepnag.../for.sce', −1)
 2  1.

 3  1.4142136

 4  1.7320508

 5  2.
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 6  2.236068

 7  2.4494897

 8  2.6457513

 9  2.8284271

10  3.

11  3.1622777

12  Program f inished

The for statement creates a vector of numerals from 1 to 10 and stores 

it in a variable named i. Each member of this vector is fed to the body 

of the loop. A variable named square_root stores the square root of the 

value stored in the array. It is then printed on a Scilab terminal using the 

command disp(square_root). When these two commands are finished, 

the next member of the vector is picked and the same is repeated. This 

is continued until the last member of the vector is stored in the variable 

named i ( i = 10).

6.2.4  �if-elseif-else
In situations where a number of conditions needs to be checked at 

different points of time, if-elseif-else loop works well. The syntax for 

this loop is given by the following:

1  if condition1

2  BODY1

3  elseif condition2

4  BODY2

5  else

6  BODY3

7  endif
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At line 1, a condition is defined. If this condition is satisfied, then 

line 2 is executed or else line 3 is executed. Hence, BODY1 and BODY2 are 

the blocks of codes that are executed by checking for different set of 

conditions, and BODY3 set of codes is executed in the case when none of the 

condition is executed. (See Listing 6-3.)

Listing 6-3.  ifelse.sce

1  i = rand(1,1);

2  if i>0.5 then

3  disp(i);

4  disp("True");

5  else

6  disp(i);

7  disp("False");

8  end

Running the code yields the following:

1  −−−>exec('/Users/sandeepnagar/.../ ifelse.sce', −1)
2  0.5376230

3  True

4  −−−>exec('/Users/sandeepnagar/.../ifelse.sce', −1)
5  0.1199926

6  False

7  −−−>exec('/Users/sandeepnagar/.../ifelse.sce', −1)
8  0.2256303

9  False

Whenever the value of a random number is more than 0.5, True is 

printed; False is printed otherwise. (See Listing 6-4.)
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Listing 6-4.  ifelseif.sce

 1  i = rand(1,1);

 2  if i>0.5 then

 3  disp(i);

 4  disp("Value is larger then 0.5");

 5  elseif i>0.3 then

 6  disp(i);

 7  disp("value is larger than 0.5 and 0.3");

 8  else

 9  disp(i)

10  disp("value is smaller than 0.5")

11  end

When executing the code ifelseif.sce, we obtain the following 

results on a Scilab terminal:

 1  −3−>exec('/Users/sandeepnagar/.../ifelseif.sce', −1)
 2  0.0485566

 3  value is smaller than 0.5

 4  −3−>exec('/Users/sandeepnagar/.../ifelseif.sce', −1)
 5  0.6723950

 6  Value is larger then 0.5

 7  −3−>exec('/Users/sandeepnagar/.../ifelseif.sce', −1)
 8  0.2017173

 9  value is smaller than 0.5

10  −3−>exec('/Users/sandeepnagar/.../ifelseif.sce', −1)
11  0.3911574

12  value is larger than 0.5 and

13  0.3
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6.3  �Functions
A function is a set of codes that can be called when required. As a result, 

it can be defined separately either its own file or within the body of the 

program. A script file is similar in nature. A script file stores a sequence 

of commands to be executed. It seems that a function and a script have a 

similar nature, but, unlike MATLAB and Octave, Scilab provides separate 

kinds of files for each one of them. This is based on the nature of their 

behavior with the core Scilab program.

Whereas a script file (with extension .sce) is an executable file, 

a function file (with extension .sci) stores a set of instructions. The 

function file behaves like a black box where input is fed and output is 

obtained. On the other hand, a script file changes its behavior as per input 

values. Whatever input data a script file accesses is taken from the Scilab 

workspace. Output data from a script file is put into the Scilab workspace. 

The semantics of input data, local variables, are visible only within the 

function.

The definition of a function follows this syntax:

1  function [o1,o2,...] = function_name (i1,i2,...)

2  statement_1

3  statement_2

4  ...

5  statement_n

6  endfunction

Here the function keyword defines the object types as function. 

Then a set of variables is defined that this function is expected to return 

(o1,o2,... signifying output1, output2,…). Next comes an = operator and 

then the name of the function. In the previous case, it is function_name. 

A function take inputs (i1,i2,... signifying input1, input2,...) to produce 

an output according to calculation defined in its body. Then comes the 

main body of the function where commands for executing the purpose of 
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the function are mentioned. The last statement, endfunction, signifies the 

end of the function.

For example, we can write a function to find x2 − y2 and assign it to 

variable name z, as shown in Listing 6-5.

Listing 6-5.  fn1.sci

1  function y = fn1(a,b)

2  y = aˆ2−bˆ2;
3  endfunction

Notice that the extension of this code is .sci. This file must first be 

loaded in a Scilab workspace. We need to provide the full path of the file to 

the built-in function exec()first and then use the function by providing its 

name with input arguments:

1  −−−>exec('/Users/sandeepnagar/.../fn1.sci', −1)
2  −−−>fn1(2,3)
3  ans =

4  −5.

It is good practice to define the program as a group of function files 

and call them in the master program stored as a script file. This modular 

approach makes it easy to experiment with the idea and also makes it 

easier to debug and test the code. A function can return more than two 

values as well, as shown in Listing 6-6.

Listing 6-6.  fn2.sci

1  function[y1,y2,y3] = fn2(x,y)

2  y1 = x − y;
3  y2 = x + y;

4  y3 = y − x;
5  endfunction
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This gives the following result:

1  −−−>exec('/Users/sandeepnagar/.../fn2.sci', −1)
2  −−−>[a,b,c] = fn2(2,3)
3  c =

4  1.

5  b =

6  5.

7  a =

8  −1.

Functions can incorporate loops to regulate the repetitive tasks inside 

the program. For example, the factorial of a number can be calculated 

using a function given in Listing 6-7.

Listing 6-7.  factorial1.sci

1  function result = factorial1(n)

2    if(n == 0)

3       result = 1;

4       return;

5    else

6      result = prod(1:n);

7    end

8  endfunction

A function named factorial1, which takes a number n as an 

argument, calculates the product of the number with all its successive 

numbers. When called from a Scilab command line, the function yields the 

following result:

1  −−−>exec('/Users/sandeepnagar/.../factorial1.sci', −1)
2  −−−>factorial1(10)
3  ans =

4  3628800.
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5  −−−>factorial1(10e5)
6  ans =

7  Inf

6.3.1  �Inline Functions
An inline function is a short function that can be defined without having 

to use the function skeleton discussed previously. This is useful only when 

the body of the function is short:

1  −−−>deff('[x] = mult(y,z)','x=y∗z')
2  −−−>mult(2,3)
3  ans =

4  6

The built-in function deff() is used to define another built-in 

function. The first argument of deff defines the output variable (x in this 

case), function name (mult), and input variables (y and z). The second 

argument defines the body of the function (x=y*z). This kind of function 

is defined in a .sce file, just like a command, and thus does not need 

a separate loading action. Once defined, functions can be called by their 

function name along with input parameters.

6.4  �Summary
Defining functions is the key to modular programming. Scilab presents an 

elegant way to define and use functions both inline and in separate files. 

When combined with the ability to write functions inside a loop, complex 

problems can be implemented in a few lines of codes. It requires an artistic 

attitude while designing an algorithm where functions and loops are the 

paintbrush to devise an elegant solution to a given numerical problem.
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CHAPTER 7

Numerical Computing 
Formalism

7.1  �Introduction
Numerical computation enables us to compute solutions for physical 

problems, provided we can frame them into a proper format. This process 

requires certain considerations. First and foremost is the understanding of 

approximate solutions. For example, if we digitize continuous functions, 

then we are going to introduce certain errors due to the sampling at a finite 

frequency. Hence, a very accurate result would require a very fast sampling 

rate. In cases when a large data set needs to be computed, it becomes 

computationally an intensive and time-consuming task. Users need to 

understand that the numerical solutions are an approximation at best 

when compared to analytical solutions. The onus of finding their physical 

meaning and significance lies with user. The art of discarding solutions 

that do not have a meaning for real-world scenarios is a skill that a scientist 

or engineer develops over the years. Also, a computational device is just 

as intelligent as its operator. The law of GIGO (garbage in, garbage out) is 

followed very strictly in this domain.

In this chapter, we will discuss some of the important steps involved 

in solving a physical problem using numerical computation. Defining a 



158

problem in proper terms is just the first step. Making the right model and 

then using the right method to solve (solver) the problem distinguishes the 

experienced scientist/engineer from the naïve one.

7.2  �Physical Problems
Everything in our physical world is governed by physical laws. Thanks to 

scientists who toiled under difficult circumstances and came up with fine 

solutions to phenomena happening around us, we obtained mathematical 

theories for physical laws. To test these mathematical formalisms of 

physical laws, we use computational techniques. Analytical computation 

involves the use of symbols. Numerical computation, instead, involves 

the use of computers, which follow binary logic. Both approaches have 

their limitations. Even though analytical solutions are very accurate, they 

are difficult to derive, especially if a predefined framework is absent. On 

the other hand, numerical solutions are always an approximation of real 

values. In any case, if the computation yields the same results as that of a 

real experiment, the two results validate each other. Numerical simulations 

can remove the need of doing an experiment altogether provided we have 

a well-tested mathematical formalism. For example, nuclear powers of 

our times don’t test nuclear bombs “for real” any more. The data about 

nuclear explosion, which were obtained during real nuclear explosions, 

enabled scientists to model these physical systems quite accurately, thus 

eliminating the need for real testing.

In addition to applications like simulating a real experiment, modeling 

physical problems is a good educational exercise. While modeling, hands-

on exercises enable students to explore a subject in depth and give proper 

meaning to the topic being investigated. Solving numerical problems and 

the visualization of results make the learning permanent and also ignites 

research regarding flaws in mathematical theory, which ultimately leads to 

new discoveries.
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7.3  �Defining a Model
Modeling means writing equations for a physical system. As the name 

suggests, an equation is about equating two sides. An equation is written 

using an = sign where terms on the left-hand side equal terms on the 

right-hand side. The terms on either side of equations can be numbers or 

expressions. For example:

	 3 4 9 10x y z+ + = 	

This is an equation having one term, 3x + 4y + 9z, on the left-hand side 

(LHS) and one term, 10, on the right-hand side (RHS). Please note that 

whereas LHS is an algebraic expression, RHS is a number.

Expressions are written using functions, which are simply relations 

between two domains. The function f (x) = y is a relation between y and 

x using rules of algebra. Mathematics has a rich library of functions that 

we can use to make expressions. The function we choose depends on the 

problem. Some functions describe certain situations better than others. 

For example, oscillatory behavior can be described in a reasonable 

manner using trigonometric functions like sin(x) and cos(x). Objects 

moving in straight lines can be described well using linear equations like  

y = mx + c where x is their present position, m is the constant rate of change 

of x with respect to y, and c is the offset position. Objects moving in a 

curved fashion can be described by various nonlinear functions (where the 

power of the dependent variable, like x in the previous example, is not 1).

In real life, we can have situations that are a mixture of these scenarios. 

For example, an object can oscillate and move in curved fashion at the 

same time. In this case, we would write an expression using a mixture 

of functions or find new functions that could explain the behavior of 

the object. Verification of these choices of functions is done by finding 

solutions to equations describing the behavior and matching it with 

observations made about an object. If they match perfectly, we obtain 
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perfect solutions. In most cases, an exact solution might be difficult to 

obtain. In these cases, we get an “approximate” solution. If the errors 

involved while obtaining an approximate solution are within tolerance 

limits, the models can be acceptable.

As previously discussed, physical situations can be analytically solved 

by writing mathematical expressions in terms of functions involving 

dependent variables. The simplest problems have simple functions 

between dependent variables with a single equation. There can be 

situations where multiple equations are needed to explain a physical 

behavior. In cases of multiple equations being solved, the theory of 

matrices comes in handy.

Suppose Equations 7.1 and 7.2 define the physical behavior of a 

system:

	 − + =x y3 4 	 (7.1)

	 2 4 3x y− = − 	 (7.2)

Then this system of two equations can be represented by a matrix 

equation, as follows:
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Now, using matrix algebra, the values of variables x and y can be found 

such that they satisfy the equations. Those values are called roots of these 

equations. These roots are the point in 2D space (because we have two 

dependent variables) where the system will find stability for that physical 

problem. In this way, we can predict the behavior of a system without 

actually doing an experiment.

The mathematical concept of differentiation and integration becomes 

very important when we need to work with a dynamic system. When 

the system is constantly changing the values of dependent variables to 
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produce a scenario, it becomes important to know the rate of change of 

these variables. When these variables are independent of each other, we 

use simple derivatives to define their rate of change. When they are not 

independent of each other, we use partial derivatives for the same.

For example, Newton’s second law of motion indicates that the rate of 

change of velocity of an object is directly proportional to the force applied 

on it. Equation 7.3 demonstrates this concept mathematically:

	
F

dv

dx
∝ 	 (7.3)

The proportionality is turned into equality by substituting for a 

constant of multiplication m such that

	 F m
dy

dx
= × 	 (7.4)

If we know the values or expressions for F, this equation can be solved 

analytically and solutions can be found to this equation. But, in some 

cases, the analytical solution may be too difficult to obtain. In such cases, 

we digitize the system and find a numerical solution.

There are many methods to digitize and numerically solve a given 

function. Programs to implement a particular method to solve a function 

numerically are called solvers. Many solvers exist to solve a function. 

The choice of solver is critical to successfully obtain a solution. For 

example, Equation 7.4 is a differential equation. It is a first-order ordinary 

differential equation. A number of solvers exist to solve it including 

Euler and Runge-Kutta. The choice of a particular solver depends on the 

accuracy of its solution, the time taken for obtaining a solution, and the 

amount of memory used during the process. The latter is important where 

memory is not a freely expendable commodity like microcomputers with 

limited memory storage (for example, RaspberryPi).
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The advantage of using Scilab to perform a numerical computation 

lies in the fact that it has a very rich library of functions to perform various 

tasks required. The predefined functions have been optimized for speed 

and accuracy (in some cases, accuracy can be predefined). This enables 

the user to rapidly prototype the problem instead of concentrating 

on writing functions to do basic tasks and optimizing them for speed, 

accuracy, and memory usage.

7.4  �Scilab Packages
A number of packages exists to perform numerical computations in a 

particular scientific domain. Scilab uses the Atoms package manager for 

managing (installing, deleting, and updating) a Scilab package. The web 

site https://wiki.scilab.org/ATOMS describes its usage.

Clicking the menu item Applications -> Module Manager ATOMS 

opens up the Atoms (AuTomatic mOdules Management for Scilab) 

package manager. It lists a variety of specialized modules for Scilab. It is 

frequently updated with new developments. You can select a package by 

clicking its name and install it using the Install button. In a similar way, 

you can uninstall the package. You can also perform these actions using a 

Scilab command line.

7.4.1  �Searching a Package
If you know the name of the package, you can search for the same using 

the following command:

1  −−>atomsSearch("coselica")
2  ans =

3  !coselica Standard Open Modelica Blocks   !
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4  −−>atomsSearch("arduino")
5  ans =

6  !arduino Arduino Communication through Serial   !

7  −−>atomsSearch("raspberrypi")
8  ans  =

9  []

Whereas the modules named coselica and arduino could be found, 

the module named raspberrypi returned an empty string. (In other 

words, it could not be found.)

7.4.2  �Installing a Package
The commands to install a module use the built-in function 

atomInstall() as follows:

1  −−>atomsInstall("scidemo")
2  ans =

3

4  �!scidemo 0.2.2  allusers    SCI/contrib/scidemo 

/0.2.2  I   !

5  !                                                          !

6  �!apifun  0.4.2  allusers    SCI/contrib/apifun 

/0.4.2   A   !

The returned argument shows the version number of the module as 

well as the path at which it is stored. The module is loaded during the next 

startup run of Scilab automatically. To load a module manually, you can 

use the command atomsLoad("scidemo").
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7.4.3  �Removing a Package
The built-in function atomsRemove("scidemo") can be used to remove the 

package arduino:

1  −−>atomsRemove("scidemo")
2  ans =

3

4  �!scidemo 0.2.2  allusers    SCI/contrib/scidemo 

/0.2.2   I    !

5  !                                                          !

6  �!apifun  0.4.2  allusers    SCI/contrib/apifun 

/0.4.2    A    !

7.4.4  �Listing Packages
The built-in function atomsList() can be issued at the command line to 

obtain a detailed list of packages sorted in alphabetical order. For example, 

the following output is produced at the time of writing:

 1  −−>atomsList
 2  apifun − Check input arguments in macros
 3  assert − A collection of predicate functions
 4  condnb − Evaluates the condition number of functions.
 5  coselica − Standard Open Modelica Blocks
 6  CPGE − CPGE dedicated Xcos blocks
 7  dbldbl − Double−Double floating point numbers
 8  diffcode − Automatic differentiation
 9  dispmat − Display matrices graphically
10  �Dynpeak − Scilab toolbox for the detection of pulses in 

hormonal signals
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11  �FACT − a toolbox for chemometric applications , e.g. 
regressions , discriminant analysis , multiway analysis

12  floatingpoint − Functions to manage floating point numbers
13  guibuilder − A Graphic User Interface Builder
14  helptbx − Update the help of a module automatically .
15  �iodelay − manipulation and frequency analysis of linear 

dynamical systems with input or output delays

16  makematrix − A collection of test matrices .
17  �Mathieu − Solve Mathieu equations , calculate Mathieu 

functions

18  mingw − Dynamic link with MinGW for Scilab on Windows
19  �neuralnetwork − This is a Scilab Neural Network Module 

which covers supervised and unsupervised training 

algorithms

20  number − Integers algorithms
21  �optkelley − Scilab software for Iterative Methods for 

Optimization

22  �removed − All pages of functions removed from Scilab 4.1.2 
to 6.0 gathered in a single place

23  scibench − A collection of benchmarks
24  scicv − Interface to the Computer Vision library OpenCV
25  scidemo − A collection of demonstrations
26  �serial − A toolbox for communication over a Serial Port in 

Scilab

27  specfun − A collection of special functions
28  stixbox − Statistics toolbox
29  �uman − User MANual in console + online + browser , easy 

languages switch , related bugs , comb mailing lists ...

30  uncprb − Provide 35 unconstrained optimization problems
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7.5  �XCOS
One of the most attractive features of Scilab (which is absent in both 

MATLAB and Octave) is an XCOS graphical programming environment. 

It is similar to MATLAB’s graphical programming environment called 

Simulink. A detailed discussion of XCOS is the topic of Chapter 8.

7.6  �Summary
Almost all branches of science and engineering require the performance 

of numerical computations. Scilab is one of the alternatives for doing 

such computations. Scilab has a rich library of optimized functions for 

general computation that is growing day-by-day as developers all around 

the world are contributing to the effort. Also, it has a variety of packages 

for performing specialized jobs. This makes Scilab an ideal choice for 

prototyping a numerical computation problem efficiently.
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CHAPTER 8

XCOS

8.1  �Introduction
Historically, MATLAB has had one feature that makes it stand out among 

others when it comes to ease of teaching computing—Simulink. Simulink 

is not part of basic MATLAB, so it must be purchased separately. With 

Simulink, you can make a program by visually connecting block of codes. 

Scilab provides an equivalent to XCOS. XCOS is a toolbox for the modeling 

and simulation of dynamic (continuous and discrete) systems. Although 

its main purpose is to simulate dynamic systems, XCOS can also be used 

for signal generation, data visualization, and simple algebraic operations. 

While simulating systems that deal with interconnected continuous-time 

and discrete-time components, XCOS will fit perfectly for modeling and 

simulation.

XCOS is one of the most powerful tools from Scilab for new users. 

Because it is a GUI-based programming environment, Scilab just requires 

users to connect blocks to write a code. These blocks of code can be 

dragged and connected as the users wish. The flow of the information 

within a code is defined by the directions and usage of connectors 

between the code block. The blocks are actually visual representations to 

generalized code whose inputs and outputs can be changed as per usage.

XCOS provides a modular approach for complex system modeling, 

using a block diagram visual editor. The modular approach makes the 
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activity of developing a simulation quite simple since users can just 

replace a module with another one to test the system under different 

scenarios. XCOS models are compiled and simulated in a single run. The 

resulting mathematical equations are integrated by a numerical solver 

with configurable parameters.

8.2  �Installing XCOS
XCOS comes pre-installed with the latest version of Scilab, but if you are 

using older versions, you can easily install it using the Atoms package 

manager, just like any other package. The graphical way to install it is to 

click Applications in the menu bar and then click the module manager 

Atoms. Next, you find XCOS and click Install. You need an active Internet 

connection for this activity and the installaltion time depends on the 

time taken to download the package and then the speed of computing 

resources.

An offline installation would require you to download the XCOS 

package as a .zip file at a particular location and then issue the following 

command at at a Scilab command terminal:

1  −−>atomsInstall("download_path\f ile_name_zip_")

Here you substitute a relevant download path of the .zip file that was 

downloaded.

8.3  �Launching XCOS
XCOS can be launched using command lines as well as clicking an icon 

in the toolbar. It is important to note that you need a graphics terminal 

for this purpose. Most modern computers running the latest operating 

systems have graphics capabilities The graphic visualizations of XCOS 

depends on the native operating system’s graphics configurations.  
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Most often, a new user doesn’t need to play with graphics configurations 

to work with XCOS, but if problems persist, consulting the system 

administrator is a good option.

8.3.1  �Using a Command Line
At the Scilab command line, you can simply type the command xcos to 

launch the XCOS environment. A palette browser and a simulation editor 

open up for th euser to edit. A sample screenshot of a computer screen is 

shown in Figure 8-1.

8.3.2  �Using a Graphical Symbol
You can also open XCOS by clicking a symbol in the main toolbar of Scilab, 

as highlighted by an arrow in Figure 8-2. The symbol in the toolbar looks 

like Figure 8-3.

Figure 8-1.  Screenshot of XCOS window
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Figure 8-2.  Screenshot of XCOS window

Figure 8-3.  Screenshot of XCOS window

8.3.3  �From the Menu Bar
From the Scilab menu bar, you can click Applications and then XCOS to 

open up an XCOS session.

8.4  �XCOS Palettes
The XCOS palette window (as seen in Figure 8-4) allows you to choose 

blocks clubbed under a variety of applications.
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XCOS palette windows display a library of all available libraries of 

blocks to be used. They can be dragged to the XCOS editor window (8.5) 

and dropped there to be connected to each other. The palette browser 

has two panes. The one on the left presents the list of available predefined 

palettes (libraries) sections as per different functionalities. (See Figure 8-2.)

•	 Recently used blocks

–– As you use XCOS, you use some blocks more  

frequently than others. They are stored here so that 

you don’t have to look for them each time.

•	 Continuous time systems

•	 Discontinuities

•	 Discrete time systems

•	 Lookup tables

Figure 8-4.  Screenshot of XCOS’s palette window

Chapter 8  XCOS



172

•	 Event handling

•	 Mathematical operations

•	 Matrix

•	 Electrical

•	 Integer

•	 Port & Subsystems

•	 Zero crossing detection

•	 Signal Routing

•	 Signal Processing

•	 Implicit

•	 Annotations

•	 Sinks

•	 Sources

•	 Thermo-Hydraulics

•	 Demonstrations Blocks

•	 User-defined functions

The right pane contains the available blocks for each palette. By 

clicking another palette in the left pane, a new set of blocks will appear on 

the right pane.

8.5  �XCOS Editor
The editing window is the Xcos workspace for developing new models 

(diagrams). The XCOS editor window (as seen in Figure 8-5) allows you to 

design a model by choosing palettes from the palette window, dragging 
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them with a mouse, and releasing them at the editor. You can also add 

block to the diagram by right-clicking the block in the library and Add to 

-> “name of the diagram”.

Multiple blocks appear on editor windows and they have input and 

output ports. These ports can be connected to make a model. Multiple 

blocks can be connected in a desired way to define a particular simulation. 

A simulation can then be run by clicking the arrow icon on the toolbar 

of the editor window. If the simulation is not timed to stop, it will keep 

running. You can stop it by clicking the Stop button, which is placed next 

to the Start button. The following buttons are also found in the editor in 

order from left to right:

•	 New: To start a new diagram

•	 Open: To open an existing diagram saved anywhere on 

computer

Figure 8-5.  Screenshot of XCOS’s editor window
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•	 Open file in Scilab Current Directory: To open an 

existing diagram saved in the current working directory

•	 Save: To save a diagram in the computer

•	 Save as: To save a diagram in any other format such as 

zcos (Zipped XCOS file), xcos (XCOS file), xmi (Eclipse 

EMF file)

•	 Print: To print the diagram to a printer or as a PDF file

•	 Delete: To delete a block

•	 Undo: To undo the last action performed. This can be 

done successively.

•	 Redo: To restore the previous state after performing an 

Undo action. This action can also be done successively.

•	 Fit diagram or blocks to view: Sometimes the area 

required to make the diagram extends the screen area 

and scroll bars appear on this window. By using this 

button, the whole diagram can be made to fit the size of 

window.

•	 Start: To start a simulation

•	 Stop: To stop a simulation

•	 Zoom in: To zoom in the view of diagram

•	 Zoom out: To zoom out the view of diagram

•	 Xcos Demonstrations: To run some basic 

demonstrations

•	 Help: To seek help on XCOS commands where you 

can type queries and then be directed to useful and 

relevant documentation
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Let’s start a simple demonstration diagram by clicking the Xcos 

Demonstrations button. We will get a window similar to the one shown in 

Figure 8-6.

By clicking Standard Demos and then Bouncing Balls, we get a 

window similar to the one shown in Figure 8-7.

Figure 8-6.  Window showing XCOS demonstration options
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When we run this simulation, we observe a simulation model where 

four balls of different sizes and colors bounce off the walls of their window 

at different rates. The screenshot of this window is presented in Figure 8-8.

Figure 8-7.  Window showing XCOS demonstration ⇒ standard 
demos ⇒ bouncing balls
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8.6  �XCOS Menu Bar
In this section, we will describe the menu bar of XCOS so that beginners 

can navigate their workflow efficiently. The XCOS menu bar exists at the 

top of the XCOS window. Shortcut keys are displayed by the side of the 

command and they have been mentioned here as well. Most of the time, 

these keys use the Control key on the keyboard, which is depicted by Ctrl. 

When keys must be pressed together, the key combinations are shown by a 

plus sign in between. For example Ctrl+N means pressing the Control and 

N keys together.

•	 File

–– New (Ctrl+N): This menu item opens a new empty 

Xcos diagram in a new window

Figure 8-8.  Screenshot of window showing bouncing ball 
animation
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–– Open (Ctrl+O): This item is used to load a XML 

(.zcos) or a binary file (.cos), which contains a 

saved block diagram or a palette. The command 

opens a dialog box that allows you to choose the 

folder and the file.

–– Save (Ctrl+S): Select the Save menu item to save 

the diagram in an XML file. When this is done for 

the first time or if the Save As menu item has not 

been operated upon, a dialog allows you to choose 

a directory and specify a file name without exten-

sion. The default extension is .zcos. The diagram 

takes the name of the file (without the extension).

–– Save as (Ctrl+Shift+S): This menu item is used to 

save the block diagram or palette in a file with a 

new name. A dialog box allows specifying a file 

name without the extension and a saving folder. 

The default extension is .zcos. The diagram takes 

the name of the file (without the extension).

–– Export (Ctrl+E): This item is used to export a figure 

of the current XCOS diagram. The export can be 

done in the wbmp, gif, html, JPEG, JPG, png, svg, and 

vml formats.

–– Recent Files: This menu item allows quick access 

to the recent opened files.

–– Print (Ctrl+P): This item prints the current dia-

gram onto a printer.

–– Close (Ctrl+W): When several diagrams are 

opened, this item closes the current diagram.

–– Quit (Ctrl+Q): The menu item will close XCOS.
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•	 Edit

–– Undo (Ctrl+Z): Select the Undo menu item to undo 

the last edit operation in case of a mistake.

–– Redo (Ctrl+Y): Select the Redo menu item to redo 

the last undo edit operation.

–– Cut (Ctrl+X): This item is used to remove the 

selected objects from the diagram and to copy 

them in the clipboard. When you cut a block, all 

links connected to it are deleted as well.

–– Copy (Ctrl+C): Copy is used to place a copy of the 

selected item in the clipboard.

–– Paste (Ctrl+V): Paste places the content of the 

clipboard in the current diagram.

–– Delete (Delete): To delete blocks or links, select 

objects to be deleted and then the Delete menu 

item. When you delete a block, all links connected 

to it are deleted as well.

–– Select all (Ctrl+A): This menu item selects all the 

blocks in the current diagram.

–– Invert selection: This menu item inverts the 

current selection.

–– Block Parameters (Ctrl+B): This item opens the 

block configuration dialog for the current selected 

block. The configuration depends on the used 

block (see the Block Help menu item to obtain 

more information on its configuration).

–– Selection to superblock: This menu item 

converts a selection of blocks into a superblock.
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•	 View

–– Zoom in (Ctrl+Plus): When you select this menu 

item, the diagram is zoomed in by a factor of 10.

–– Zoom out (Ctrl+Minus): When you select this menu 

item, the diagram is zoomed out by a factor of 10.

–– Fit diagram to view: When you select this menu 

item, the diagram is fit to the size of the current 

window.

–– Normal 100%: This menu item resize the diagram 

components at their normal displaying dimensions.

–– Palette browser: This menu item opens the 

palette browser.

–– Diagram browser: This menu item displays a 

window that lists the global properties of a diagram 

and all its objects (blocks and links).

–– Viewport: This menu item displays the Viewport 

window. With Viewport, you can move the working 

area onto a part of the diagram. You can zoom and 

unzoom parts of a diagram.

–– Details: This menu item displays a window by a 

selected block that lists properties of a block.

•	 Simulation:

–– Setup: In the main XCOS window, clicking the 

Setup menu item invokes the dialog box, which 

allows changing governing parameters.

–– Execution Trace and Debug: This menu item sets 

XCOS in debug mode. It opens a dialog box in 

which you can choose the debugging mode.
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–– Set Context: With this menu item, you obtain a 

dialog box where you can enter Scilab instructions 

for defining the symbolic XCOS parameters used in 

block definitions. These instructions will be evalu-

ated each time the diagram is loaded. If you change 

the value of a symbolic XCOS parameter in the 

context, all the blocks that contains this symbolic 

parameter are updated when you click OK.

–– Compile: This menu item compiles the block 

diagram. This doesn’t need to be used because 

compilation is done automatically. Normally, a new 

compilation is not needed if only system param-

eters and internal states are modified.

–– Modelica initialize: This menu item opens a 

specific dialog to the Modelica compiler, where you 

can see the components of a drawn model and also 

select the solvers.

–– Start: This menu item starts the simulation. If the 

system has already been simulated, a dialog box 

appears where you can choose to continue, restart, 

or end the simulation.

–– Stop: You can interrupt the simulation by clicking 

the Stop menu item. Block parameters can be 

changed and then simulation can be continued 

again.

•	 Format:

–– Rotate (Ctrl+R): Rotate allows you to turn a block 

on the left with an angle of 90°. Rotation affects all 

the selected blocks.
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–– Flip (Ctrl+F): To reverse the positions of the 

activation inputs and outputs set at the top and the 

bottom of a block, select a block and select the Flip 

menu item. This neither affects the order nor the 

position of the input and output event ports, which 

are numbered from left to right. Flipping affects all 

the selected blocks.

–– Mirror (Ctrl+M): To reverse the positions of the 

(regular) inputs and outputs set on the left and the 

right of a block, select a block and select the Mirror 

menu item. This does not affect the order or the 

position of the input and output ports, which are 

numbered from top to bottom. Mirroring affects all 

the selected blocks.

–– Show/Hide shadow: This menu item allows you to 

select 3D shapes for selected blocks and associated 

parameters.

–– Align Blocks: When you select several blocks, it is 

possible to align them on a horizontal axis (top, 

bottom, and middle) or on vertical axis (left, right, 

center).

–– Border Color: This menu item allows you to 

change the border color of the selected blocks.

–– Fill Color: This menu item allows you to change 

the fill color of the selected blocks.

–– Auto-Position: This menu item allows you to 

change the position of the block. First, select the 

block(s) and select the appropriate menu item or 

use the shortcut (P).
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–– Link Style: This menu item allows you to change 

the style of the link. First, select the link and select 

the appropriate menu item or use the shortcuts 

(H), (S), (V), and (O).

–– Diagram background: This menu item allows you 

to change the background color.

–– Grid: This menu item allows you to activate/

de-activate the grid. With the grid, the block and 

link placement on the working area is easier and 

you obtain a more readable diagram.

•	 Help

–– Xcos Help (F1): This menu item opens the main 

help browser (if it is not open) on the XCOS help 

chapter.

–– Block Help: To get help on a XCOS block, select the 

block and then click this menu item.

–– XCOS Demonstrations: This item allows you to 

open some examples of XCOS diagrams.

–– About XCOS: The About XCOS item displays the 

current version of XCOS in a dialog.

8.7  �Reconstructing the Bouncing Balls 
Example from Scratch

As an example, let’s try to reconstruct the bouncing ball example discussed 

earlier from scratch. We will start with the option Demonstration blocks 

in the left pane of the XCOS palette window. Clicking this option presents 
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three blocks, as shown in Figure 8-9. This example presents an XCOS 

simulation for visualizing three colored balls that bounce from the walls 

of their environment. One of the blocks, Bounce, produces the input, and 

another block, BounceXY, produces the output. For this reason, the former 

has two output ports on its right-hand side, whereas the latter has two 

input ports on its left-hand side.

Now, let’s drag and drop the blocks titled Bounce and BounceXY on 

the XCOS editor window. The block Bounce has two output options, while 

BouncyXY has two input options. The BounceXY block actually has a third 

port for timer. The timer block can be collected from the section Event 

Handling. When all three are dragged and dropped at the editor window, 

you get a screen similar to the one shown in Figure 8-9.

Figure 8-9.  Screenshot of XCOS’s screen for the bouncing balls 
example

Chapter 8  XCOS



185

As soon as you click one of the outputs of the Bounce block, a small, 

green colored square is highlighted around it. A connector can be 

clicked and dragged until the output of BouncyXY block and in this way a 

connection can be made. You also need a timing block, which controls 

the timing parameters for this simulation. This can be found in the Event 

Handing section of the left pane of the palette window.

Now these three blocks can be connected to obtain a connected 

diagram, as shown in Figure 8-10.

Figure 8-10.  XCOS palette window’s section named “Event 
Handling”
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You can save this simulation with a name, say BouncingBalls.zcos 

file. This simulation can then be made to run by clicking the Start button. 

As opposed to the simulation model in Section 8.8, here you observe only 

two balls bouncing off very fast.

The properties of a block can be changed by right-clicking a block 

and choosing Block Parameters. For example, for all three blcoks in the 

current simulation, you can see that a list of parameters (as shown in 

Figures 8-12, 8-13, and 8-14) can be changed for running the simulation.

Figure 8-11.  Screenshot of XCOS’s screen for the bouncing balls 
diagram made from scratch
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Figure 8-12.  Changing the parameters of the “bouncing balls” 
block

Figure 8-13.  Changing the parameters of “BOUNCEXY” block
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8.8  �Making Simulations Using XCOS
Simulation can prove to be a very powerful tool to both teach and quickly 

make scientific simulations. Since they are graphical in nature, the 

problems are quite intuitive to design. While teaching, you can avoid 

technical parts about defining the code at first. Also, the animations are 

quite visually appealing.

Since the primary task of this chapter has been to demonstrate a very 

primary usage of XCOS, outlining the usage of all blocks has been skipped. 

Users are encouraged to explore other blocks as needed. Each simulation 

model has different needs, but they can follow a similar pattern as follows:

•	 Break down the physical problem into smaller blocks

–– Each block must define the specific task to be 

performed in terms of well-defined input + opera-

tion + output.

•	 Define the input and output for each block

–– Define the nature of each block in terms of number 

of channels, type of data at each channel, fre-

quency of data, and so on

Figure 8-14.  Changing the parameters of “CLOC Kc” block
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•	 Choose XCOS blocks that match these requirements 

and connect them as per model requirements

•	 Tune the model by changing the properties of the 

block(s) as required

Very complicated models would require defining a superblock. A 

superblock is a fully functional XCOS diagram that can be further made as 

a single block and used in other simulation diagrams. This way, you can 

break a bigger problem into blocks and their sub-blocks. This modular 

approach enables easy debugging provided all blocks are well labeled and 

th edeveloper is well informed about the capabilities of a particular block.

8.9  �Summary
In this chapter, we have discussed the usage of the XCOS module available 

with Scilab. It provides the capabilities to program a physical problem in 

a graphical way. The physical problems must be chopped up in pieces of 

code. These blocks must explicitly define the input and output ports and 

the purpose as a code development process provided the developers know 

which block to find, where to find it, and how to use it. The documentation 

for each block is quite extensive and can be found using the help window. 

With this final chapter about XCOS, our introduction to Scilab is complete.

Chapter 8  XCOS
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