
www.allitebooks.com

http://www.allitebooks.org

Ionic Framework By Example

Build amazing cross-platform mobile apps with Ionic,
the HTML5 framework that makes modern mobile
application development simple

Sani Yusuf

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Ionic Framework By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1200116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-272-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Sani Yusuf

Reviewer
Luca Mezzalira

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Subho Gupta

Content Development Editor
Athira Laji

Technical Editor
Prajakta Mhatre

Copy Editor
Vatsal Surti

Project Coordinator
Harshal Ved

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Sani Yusuf is the founder of Haibrid, a company focused on creating innovative
mobile solutions with hybrid technologies operating from London, England. Starting
his career as a web developer, he moved on to native development of both desktop
and mobile applications before developing a focus on hybrid mobile apps due to
their philosophy of reusability and cross-platform operability.

When not managing his company, Sani spends his time public speaking, writing,
and endlessly researching new educational and healthcare mobile solutions.
Although a Nigerian by birth, Sani moved to the UK in 2010 to pursue a degree
in computer science, having a great interest in healthcare and educational
advancement with mobile technology.

A lover of the movie "Avatar" and a speaker of four languages, namely French,
English, Arabic, and Hausa, Sani spends his free time travelling, watching movies,
and watching Arsenal football club being great.

During his career, Sani has worked with companies like Anritsu, Microsoft,
Huddlebuy, Envato, and more recently, Nexercise, with some of his works awarded
by Microsoft, Samsung, and Aimia Ltd.

He has also written Windows Phone Beginner Series, an online tutorial series
for Envato.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Acknowledgments

Firstly, I would like to thank Subho Gupta, acquisition editor of Packt Publishing,
for providing me with the opportunity of writing such a wonderful book. Athira
Laji, you are a gem of a unique kind for all your hard work throughout the process
of writing this book. Also Luca, thanks for your kind editorial efforts.

A legendary mention of Mark Dickens, my manager while working at Anritsu, for
his mentoring and great management.

A worthy mention of the people at Huddlebuy for believing in me when I pitched
Ionic as a solution for their mobile needs.

I would like to recognize Alhaji Sani Nuhu Abubakar for gifting me my very first
computer in 2001, a gift that would change my life forever. Also, I would love to
recognize Alhaji Mohammed Ariyo, and everyone involved in helping me make
conscious educational decisions. And to my kind friends Tsoma, Azeez, Anthony,
Aisha B, Bhoomi, Nabeel, Samia, Sarah B, Sarah S, Sanu, Seun, and Amina. All of
you gave me comfort in your own way and I appreciate it.

Massive thanks to the Ionic for building such a great framework that has changed
lives. A special mention to Ryan Hana, founder of Sworkit; you empowered me to
co-create Ionic UK and it is an honor to do great things with you.

Unmatched thanks to my father Alhaji Yusuf Umar, you are my everything and I
am forever indebted to you. You have given me more than anyone could ever, and
I will always be grateful. Mum, I will get you that mansion. Mama Maryam, I will
get you that G6. Mama Saeeda, I am what I am today because of your love. Thanks
to all my siblings, Maimuna, Amina, Rukaaya, Amma, Fatima, Faruq, Afrah, Chuya,
and Fuad. Love you all. Thanks to all my teachers and everyone else that made this
possible.

Finally, thanks to God for life and good health.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

About the Reviewer

Luca Mezzalira is a passionate Italian solutions architect with more than 10 years
of experience of frontend technologies, particularly in JavaScript, HTML 5, Haxe,
Flash, Flex, AIR, Lua, and Swift.

He has often been involved in cutting-edge projects for mobile (iOS, Android,
Blackberry,) desktop, web, TV, set top boxes, and embedded devices.

He thinks the best way to use any programming language is mastering their models.
That's why he has spent a lot of time studying and researching topics like OOP,
functional programming, and functional reactive programming.

With these skills, he is able to swap quite easily between different programming
languages, applying the best practices learnt to drive any team to success.

He is a natural leader, delivery focused, a problem solver, and a game changer.
He uses his passion on every aspect of the work, from the flow definition to the
automation process.

He tries to cover every detail to improve the company standards, empower the
teams, and deliver great products.

He is certified as: certified scrum master and SAFe agilist; Adobe-certified expert
and instructor on Flash, Flex, AIR; Adobe community professional; and Adobe
Italy consultant.

He has written for national and international technical magazines and editors. He is
also a technical reviewer for Packt Publishing, Pragmatic Bookshelf, and O'Reilly.

He is a speaker for national and international conferences or community events
such as O'Reilly media webinars, FullStack conference, React London UG, Scrum
Gathering, Lean Kanban United Kingdom, Mobile World Congress, Flash Camp,
360 Flex, Better Software, Pycon, and so on.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

In 2013, he organized an itinerant event in six different cities in Italy called "Having
fun with Adobe AIR" where people learnt how to develop mobile applications for
iOS, Android, and BlackBerry with Adobe AIR and Starling.

In 2015, he started the London JavaScript Community (http://www.meetup.com/
London-JavaScript-Community/), organizing a monthly meetup event about the
top "hot topics" in the JavaScript world.

The first mention is for my family that always helps me, and in
particular, for my parents who support and inspire me everyday
with their strength and love.

A big thanks to my brother who is also one of my best friends. He is
the most clever person that I've ever met in my life; his suggestions
and his ideas are so important to me.

I really have a lot of other friends to say thanks to for what we
have created together until now. I hope I don't forget anybody:
Piergiorgio Niero, Chiara Agazzi, Cinzia Menichelli, Francesco
Bardoni, Giorgio Bianchi, Ilaria Dehò, Alessandro Bianco, Raffaella
Brandoli, Mark Stanley, Frank Amankwah, Matteo Oriani, Manuele
Mimo, Goy Oracha, Tommaso Magro, Sofia Faggian, Matteo Lanzi,
Peter Elst, Francesca Beordo, Federico Pitone, Tiziano Fruet, Giorgio
Pedergnani, Andrea Sgaravato, Fabio Bernardi, Sumi Lim, and many
many others.

Last but not least, I'd like to say thanks to my girlfriend and life
partner, Maela, for the amazing time we are spending together. Her
passion and commitment in our relationship gives me the strength to
go ahead and do my best everyday. Many thanks my love!

www.allitebooks.com

http://www.meetup.com/London-JavaScript-Community/
http://www.meetup.com/London-JavaScript-Community/
http://www.allitebooks.org

[FM-8]

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: First Look at Ionic 1

The beginning 1
The problem 2

Apache Cordova 3
Early hybrid apps 4

What is Ionic? 5
Short history of Ionic 5

Features of Ionic 6
Setting up Ionic 10

Summary 11
Chapter 2: To-Do List App 13

Creating our first application 13
Creating our to-do list app 14

The Ionic workflow 14
In-depth look at our project 17
Envisioning our app 18
Building our todo app 19

Creating the UI 19
The code 20
Wiring things up 20

Summary 21
Chapter 3: Running Ionic Apps 23

Running our todo app 23
The ionic serve technique 24

Emulating with Chrome 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Ionic serve labs 27
The Ionic view 28

Testing todo app with the Ionic view 29
Device 30

Android 30
iOS 31

Summary 31
Chapter 4: Ionic Components 33

Creating a new to-do list application 33
Overview of the Bucket-List app 34

Breaking down the app 34
Designing the UI 34

Implementing the input box 35
Implementing the ion-list application 37

Writing the Angular code for our Bucket-List app 42
Coding our input box 42
Wire it all up 46

Testing our Bucket-List app 49
Summary 49

Chapter 5: The London Tourist App 51
Introduction to the London Tourist App 51

Creating the London Tourist app 51
The side menu app design 52
Using the Ionic side menu template 52
Seeing the LTA side menu app in action 53
Exploring the LTA side menu app's code 54
Developing the LTA application 59

Summary 66
Chapter 6: Advanced Ionic Components 67

The Ionic Popover 67
Implementing the popover 68

Adding the menu button 69
Coding the popover 71
Adding the $ionicPopover service 71
Creating the popover.html file 72
Wiring up the popover 73

The Ionic Modal 75
Creating the modal 75
Implementing the modal 76
Creating the modal.html file 78
Wiring up the modal 79

Summary 80

Table of Contents

[iii]

Chapter 7: Customizing the App 81
Customizing the look and feel of your app 81

Ionic styles with SASS 82
Ionic SCSS overview 82

The ionic.app.scss file 85
Setting up SCSS 86
Customizing the SCSS 89

$ionicConfigProvider	 93
Summary	 93

Chapter	8:	Building	a	Simple	Social	App	 95
The	Ionic	tabs	application	 95

Creating an Ionic tabs application 96
Running the tabs-app application 97
Overview of the tabs-app application 99
Overview of the tabs.html file 100

The <ion-tab> element 101
Adding tabs to the tabs-app application 102

Adding the state for the new tab 102
Creating the tab-wall.html file 104
Creating the WallController controller 106
Creating the tab 108

Summary 110
Chapter	9:	Connecting	to	Firebase	 111

Extending our tabs-app Ionic app 111
Implementing the post wall feature 112

The backend challenge 115
Firebase	 115

Setting up a new Firebase account 115
Integrate Firebase into tabs-app application 118

Adding Firebase and Angular-Fire scripts 118
Implementing Firebase to our app 120
Pulling from database 120

Summary	 123
Chapter	10:	Roundup	 125
Uncovered	features	of	Ionic	 125

Appcamp.IO 125
The Ionic documentation 126
The Ionic creator 127
The Ionic code pen 127
Ionic.IO 128

Table of Contents

[iv]

The Ionic playground 129
The Ionic community 130

Useful resources 131
Summary 132

Index 133

Preface

[v]

Preface
Ionic Framework By Example is a step-by-step guide that covers the very basics of Ionic
aiming to equip the reader with all the necessary knowledge needed to understand
and create Ionic apps. You will start off by learning a bit about the history of Ionic,
and then slowly learn to get it set up and work with its great features. You will learn
to work with Ionic and create four different Ionic apps, with each app teaching you
different important features of Ionic. You will also learn to connect your app to a
database using Firebase. This book will also provide you with links to some great
resources to further your quest for more advanced Ionic knowledge.

What this book covers
Chapter 1, First Look at Ionic, covers a brief history of Ionic and aims to make the user
understand exactly what Ionic is, briefly exposing some of its features to the user.
This chapter will also teach you how to set up Ionic on your computer.

Chapter 2, To-Do List App, will help the reader to create their first Ionic application,
a simple to-do list application. The user will also write their very first lines of Ionic
code and get to understand what an Ionic project looks like.

Chapter 3, Running Ionic Apps, equips you with the necessary knowledge of how
to see your Ionic apps in action in different ways. You will run and test your app
on a browser, on a mobile device using the Ionic view app, and also on a real
mobile device.

Chapter 4, Ionic Components, teaches some really cool components that are part of
Ionic. You will create a more advanced to-do list application that will have some Ionic
components that will enable you to create some complex list items in your application.

Chapter 5, The London Tourist App, creates a new type of Ionic application. You will
create an application that will hold some very cool tourist destinations in the city
of London.

Preface

[vi]

You will also learn to query data from a JSON resource and consume this data in
your application.

Chapter 6, Advanced Ionic Components, helps the reader learn to implement some more
advanced Ionic components. You will learn to implement Ionic Popover and Modal
windows in your application.

Chapter 7, Customizing the App, focuses on customizing an Ionic application. The Ionic
SDK comes by default with some great tools that make it easy to customize your
application to fit the design guides of your brand.

Chapter 8, Building a Simple Social App, focuses on learning how to create an Ionic
application that has tabs using the Ionic tabs template. You will also have a look at
some of the things that make up the tabs template and learn how to add features to it.

Chapter 9, Connecting to Firebase, focuses solely on learning how to use Firebase to
integrate a backend to our Ionic application. You will also be using the tabs-app that
we created in Chapter 8, Building a Simple Social App, to learn to integrate Firebase into
our application.

Chapter 10, Roundup, gives an overview of the important things that we haven't
covered yet about Ionic that you might find very useful. You will also learn some
useful tips about Ionic and discover some great tips on how to make even better use
of Ionic to develop great apps.

What you need for this book
Firstly, you will need a Windows, Linux, or Mac computer to follow the code
samples in this book. A beyond basic or intermediate knowledge of JavaScript and
HTML5 is certainly essential to understand concepts discussed in this book. A basic
understanding of Cordova is expected at the very least. You are expected to also
have an idea of how to issue commands in a terminal window. You should also
have access to a working Internet connection, and a Google account is necessary for
Chapter 9, Connecting to Firebase.

Who this book is for
This book is aimed at individuals looking to learn how to create hybrid mobile
applications with Ionic. This book is perfect for current web developers with beyond
basic familiarity of HTML5 and JavaScript. AngularJS developers will also feel at home
reading this book as Ionic is built with AngularJS. Native iOS and Android developers
with a good understanding of HTML5 and JavaScript will also benefit highly from this
book and gain knowledge on how to create hybrid mobile apps.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You will also notice that in your www/lib folder, there is a folder called ionic that
contains all the required files to run Ionic."

A block of code is set as follows:

<div class="list">
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="enter todo item">
 </label>
 <button class="button button-small">
 Add
 </button>
 </div>

Any command-line input or output is written as follows:

ionic serve

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Scroll down to the
More Tools options and select the Developer Tools option, as shown in the following
screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have purchased.
If you purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1

[1]

First Look at Ionic
Before we begin this book, it is very important that we understand just exactly what
we are dealing with. The best way to understand this is by having a short history on
mobile development, in general, and understand how tools like Ionic help mobile
developers create beautiful mobile apps.

The beginning
The year 2006 saw the beginning of the smartphone era with the launch of the
iPhone by Apple. By 2008, Google had launched its answer to Apple's iOS operating
system. This new operating system was called Android, and by 2010, it was clear that
smartphones running iOS and Android dominantly covered the mobile ecosystem.
Fast forward to today, the dominance of iOS and Android is not so different even
though Windows for mobile by Microsoft has made some gains on the mobile front.
It is fair to say that Android, iOS, and Windows make up the majority of the ecosystem
with the first two at the forefront by a large margin.

The launch of the smartphone era also gave birth to the concept of mobile
applications. Mobile apps are the medium by which we deliver and obtain most
of our content on mobile phones. They are great and everyone with a smartphone
pretty much has a number of apps downloaded on their devices to perform specific
actions or achieve specific goals. This was massive for developers, and the software
vendors also provided tools that enabled developers to create their own third-party
mobile apps for users. We refer to these applications, built using the tools provided
by the software vendors, as native mobile applications.

www.allitebooks.com

http://www.allitebooks.org

First Look at Ionic

[2]

The problem
As great as mobile apps are, there is a small problem with how they are developed.
Firstly, for each mobile development platform, the software vendor provides its
own unique set of tools to build applications for its platforms. We know these tools
as SDKs. The following table shows how each platform differs in terms of tools and
SDK options to create native mobile apps for their ecosystems:

Operating system SDK Programming language

iOS iOS SDK Objective-C/Swift

Android Android SDK JAVA

Windows for mobile Windows SDK .NET

To make a clear statement, we are not trying to downplay the use of native tools. As
noted earlier, native tools are great but come with a great cost and time constraint.
Firstly, you are unable to build the same app for different platforms with the same set
of tools. For the Android version of your app, you will need a team of skilled android
developers. For the iOS version of your app, you will need a team of Objective-C or
Swift developers to create the iOS version of the same app. Also, there is no code
sharing between these two teams, meaning that a feature developed on one platform
will have to be completely developed on the other platform again. This is highly
inefficient in terms of development and very time consuming.

Another problem is that because you are hiring two separate teams that are
completely independent of one another even though they are both trying to create
the same thing, you are left with a growing cost. For example, if you decided you
wanted to create a Windows for mobile version of your mobile app, you will need
to recruit another team of .NET developers and they will have to build everything
present on the other existing platforms from scratch since they cannot reuse any of
the already built tools.

For a company like Facebook, which makes revenue in the billions, it might make
sense to go down the native path as cost and talent for native development would
probably not be a part of their concern. However, for the most part, not everyone
building or trying to build a mobile app is a company like Facebook. Most people
want to get a simple, great, powerful app out there as quick as possible. Furthermore,
some of these people want to use their preexisting skill set to build apps for multiple
platforms without having to learn new programming languages.

Chapter 1

[3]

Before mobile applications, web apps ruled the world for the most part. We had
more people developing for the web technologies consisting mostly of HTML, CSS,
and JavaScript. One great thing we got used to with the web was that it was platform
independent. This meant that as long as you had a browser application on any
device, you were able to interact with any web application without any problem.

So when mobile apps came, it was a big change for most web developers because
with mobile apps, each platform was self-dependent, and apps made for one
platform would not work for another platform.

Apache Cordova
Apache Cordova is a technology that lets any web application be packaged as a
native mobile application while also providing access to device features. Thanks to
Adobe and the open source community, this technology has seen great growth over
the years and more and more apps are being built with Cordova. The apps built with
Cordova are commonly referred to as hybrid applications. But what is a hybrid app?

First Look at Ionic

[4]

A hybrid application in the context of Cordova is actually a web app that lives within
the thin container of a native mobile application.

In reality, the only difference between a native mobile app and a web application
in terms of what they can do is the fact that the native mobile app has access to the
device hardware features.

HYBRID NATIVE PURE NATIVE

BROWSER

MOBILE WEB

��

�� ��

<html>

<head>

<script src

NATIVE
CONTAINER

DEVICE
APIs PLUGINS

01101011

01101101

01100001

01100011

NATIVE
APPLICATION

DEVICE APIs

< >

In truth, a hybrid app is actually a native app that serves up a web application on the
phone's web view. It behaves and acts like a normal application and has complete
device access, thanks to Cordova.

However, the main advantage that Cordova has over native development techniques
is that you only have to maintain one code base, and can use that same code base to
build applications for multiple platforms. This was and still is the main selling point
of Cordova to date, as with this technique you are provided with a big cost and time
saving advantage.

Early hybrid apps
When the first few hybrid apps started rolling out, there were a couple of problems
that seemed to persist. The first problem was that a lot of people complained that
these hybrid applications did not have the same user interface and user experience
as native mobile apps. The major reason for this was that when building a native
app, all the building blocks are already provided for you. For example, we have
things like pre-provided animations, swipe gestures, tabs, and so on. Hybrid
apps failed to provide similar features like these because on the web, all we
have is HTML, CSS, and JS. There is no pre-provided component for things like
animations, gestures, and tabs.

Chapter 1

[5]

This meant that pretty much anyone trying to build a hybrid app had to build these
features from scratch. This was not very good and different people had different
implementations of the same features. As a result, a lot of applications that were
built by the hybrid way were not so visually appealing. What we needed was a
framework that was centrally maintained that provided us with all the tools we
needed to build features that native apps had with web technologies.

What is Ionic?
Ionic is a framework that lets you build hybrid mobile applications with web
technologies like HTML5, CSS, and JavaScript. But that is not where it stops with
Ionic. Ionic provides you with components that you can use to build native-like
features for your mobile applications. Think of Ionic as the SDK for making your
Hybrid mobile application. Most of the features you have on a native app such as
modals, gestures, popups, and many more, are all provided to you by Ionic and
can be easily extended for new features or customized to suit your needs.

Ionic itself does not grant you the ability to communicate with device features
like GPS and camera; instead, it works side-by-side with Cordova to achieve this.
Another great feature of Ionic is how loosely coupled all its components are. You
can decide to use only some of Ionic on an already existing hybrid application if
you wish to do so.

The Ionic framework is built with AngularJS, which is arguably the most well-tested
and widely-used JavaScript framework out there. This feature is particularly
powerful as it gives you all the goodness of Angular as part of any Ionic app you
develop. In the past, architecting hybrid applications proved to be difficult, but with
Angular, we can create our mobile applications using the Single Page Application
(SPA) technique. Angular also makes it really easy to organize your application for
the development and working across teams while providing you the possibility of
easily adding custom features or libraries.

Short history of Ionic
Before we dive in, first let's revisit what we already know about hybrid applications
and how they work. Remember that a hybrid mobile application is simply a web
application that runs in a web view, within a thin native wrapper environment.

First Look at Ionic

[6]

Also remember that native apps came with already built components that enabled
you to create beautiful user interfaces for mobile applications. Since hybrid apps
used web technologies, there was no SDK or components provided for creating
mobile UIs. The Ionic team saw this problem and created a solution in the form of the
Ionic framework. The Ionic framework provides UI components to build beautiful
hybrid applications.

Features of Ionic
Ionic provides you with a lot of cool neat features and tricks that help you create
beautiful and well functioning hybrid apps in no time. The features of Ionic come
under three categories:

• CSS features
• JavaScript features
• Ionic CLI

CSS features
To start off, Ionic comes stock with a great CSS library that provides you with
some boilerplate styles. These Ionic CSS styles are generated with SASS, a CSS
preprocessor for more advanced CSS style manipulation.

Some of the cool CSS features that come built-in with Ionic include:

• Buttons
• Cards
• Header and footers
• Lists
• Forms elements
• Grid system

All these features and more, are already provided for you and are easily customizable.
They also have the same look and feel that native equivalents have so you will not
have to do any editing to make them look like native components.

Chapter 1

[7]

JavaScript features
The JavaScript features are at the very heart of the Ionic framework and essential for
building Ionic apps. They also consist of other features that let you do things from
under the hood like customize your application or even provide you with helper
functions you can use to make developing your app more pleasant. A lot of these
JavaScript features actually exist as HTML custom elements that make it easy to
declaratively use these features.

Some of these features include:

• Modal
• Slide box

• Action sheet

First Look at Ionic

[8]

• Side menu

• Tabs

Chapter 1

[9]

• Complex lists

• Collection repeat

All the JavaScript features of Ionic are built with Angular, and most can be easily
plugged in as Angular directives. Each of them also perform different actions that
help you achieve specific functions and are all documented in the Ionic website.

The Ionic CLI
This is the final part that makes up the three major arms of the Ionic framework.
The Ionic CLI is a very important tool that lets you use the Ionic commands via the
command line/terminal. It is also with the Ionic CLI that we get access to some Ionic
features that make our app development process more streamlined. It is arguably the
most important part of Ionic and it is also the feature you will use to do most actions.

Ionic CLI features let you do the following:

• Create Ionic projects
• Issue Cordova commands
• Development and testing
• Ionic splash/Icon generator

First Look at Ionic

[10]

• Ionic labs
• SASS
• Upload app to Ionic view
• Access Ionic.IO tools

The Ionic CLI is a very powerful tool and most of the time, it is the tool we will be
using throughout this book to perform specific actions. This is why the first thing we
are going to do is set up the Ionic CLI.

Setting up Ionic
The following steps will give a brief of how to setup Ionic:

1. Install NodeJS: To set up Ionic, the first thing you will need to do is to install
NodeJS on your computer so you can have access to Node Package Manager
(NPM). If you already have node installed on your computer, you can skip
this step and go to step 2. To install NodeJS on your computer, perform the
following steps:

1. Go to www.nodejs.org and click on the latest stable version for
your computer. That should download the latest version of NodeJS
on your computer. Don't worry if you are on Mac, PC, or Linux,
the correct one for your operating system will be automatically
downloaded.

2. After the download is finished, install the downloaded software on
your computer. You might need to restart your computer if you are
running Windows.

3. Open up the terminal if you are on Mac/Linux or the Windows
command line if you are on a Windows machine. Type the command
node –v and press Enter.

You should see the version number of your current installation of NodeJS.
If you do not see a version number, this might mean that you have not
correctly installed NodeJS and should try running step 1 again.

2. Install Ionic CLI: The next step is to use NPM to install the Ionic CLI.

1. Open a new terminal (OS X and Linux) or command-line (Windows)
window and run the following command: npm install ionic –g.
If you are on Linux/OS X, you might need to run sudo npm install
ionic –g. This command will aim to install Ionic globally.

www.nodejs.org

Chapter 1

[11]

2. After this has finished running, run the command ionic –v on your
terminal/command line and press Enter.

You should see a version number of your Ionic CLI. This means that
you have Ionic installed correctly and are good to go. If you are on a
Windows machine, you might need to restart your machine to see the
version number appear.
If you did not see a version number, then you do not have Ionic installed
correctly on your machine and should do step 2 again.

Summary
In this chapter, we started off by getting to know a bit of background about mobile
applications in general. We learned how native mobile applications work, how
they are built with native SDKs, and how each platform is built with a completely
different set of tools without any resource sharing between them all. We then went
ahead and discussed briefly about Apache Cordova and how it aimed to solve the
problem of cross-platform development.

We then discussed exactly what Ionic means and what problems it aims to
solve. We also got to discuss the CSS, JS, and Ionic CLI features of the Ionic
framework lightly.

In the next chapter, we will be creating our very first Ionic application with the
Ionic CLI, and we will create a nice to-do list style application with some great
Ionic features.

Chapter 2

[13]

To-Do List App
In this chapter, we will be diving headfirst into Ionic and will be using a lot of the
Ionic CLI tool. We will create our first Ionic application and add some basic Ionic
features to our app. We will also get to run our app for the first time using Ionic and
will debug our app in Chrome. We will finish this chapter by creating a to-do list
application with Ionic. This application will simply let us add items to our app and
also provide us a way of deleting these items or marking them as done.

Creating our first application
Creating a new project with Ionic is actually a very pain-free experience with the
Ionic CLI. There are different ways to create a new Ionic project but the easiest and
more standard technique is to use the Ionic templates. This is by far the easiest way,
and it let us use any of the three standard templates provided by Ionic.

These templates include:

• The blank template: This creates a new project with some boilerplate code
to help you get set up with a blank application

• The tabs template: This is the same as the first but instead of a blank
application, you get an application with a tabbed design

• The side menu template: This creates a new application with a side menu
design and some boilerplate

To-Do List App

[14]

We will be using each of these in this book at some point of time. For now, we are
going to start with the first and create a brand new Ionic project using the blank
template. Before we move on, let's have a look at the command that the Ionic CLI
uses to create a new application:

ionic create [Name Of App] [template]

The create command for the Ionic CLI allows us to provide two parameters, the
first being the name we want our app to be called. This first parameter will also be
the name given to the folder that gets generated with our files. The second parameter
is the template name. As discussed earlier, there are three template styles. You
can either pass in blank, tabs, or side menu as a parameter to represent the type of
template you want your app to be generated with.

Creating our to-do list app
We are going to create our to-do list application. We are going to use the blank
template to do this. We will be calling our app todo for the sake of consistency.
To create the todo app, go ahead and run the following command:

ionic start todo blank

This command will create a new blank Ionic application called todo. When this
command has finished running, enter the project of your application via the
command line by running the following command:

cd todo

To further explore our newly created todo app, open the todo app folder in your
favorite IDE.

The Ionic workflow
When you create a new Ionic project, there are a couple of folders and files that come
as stock as part of the generated project. Your directory should look similar to what
is seen in the following screenshot:

Chapter 2

[15]

The structure you see is pretty much the same as in every Cordova project, with the
exception of a few files and folders. For example, there is a scss folder. This contains
a file that lets us customize the look and feel of our application and will be covered
in detail in later chapters. There are also the platforms and plugins folder. The
platforms folder, in most cases is auto-generated, but we will not be covering them
in this book so you can ignore them for the time being.

You will also notice that in your www/lib folder, there is a folder called ionic that
contains all the required files to run Ionic. There are css, fonts, js, and scss folder.

• css: This folder contains all the default CSS that come with an Ionic app.
• fonts: Ionic comes with its own font and Icon library called Ionicons. This

Ionicons library contains hundreds of icons, which are all available for use in
your app.

To-Do List App

[16]

• js: This contains all the code for the core Ionic library. Since Ionic is built
with Angular, there is a version of Angular here with a bunch of other files
that make up the Ionic framework.

• scss: This is the folder that contains SASS files that are used to build the
beautiful Ionic framework CSS styles. Everything here can be overwritten
easily in order to make your app feel a bit more customized and we will
discuss how you can do this in Chapter 7, Customizing the App.

If you have a look at the root folder, you will see a lot of other files that are generated
for you as part of the Ionic workflow. These files are not overly important now, but
let's have a look at the more important ones in the following list:

• bower.json: This is the file that contains some of the dependencies acquired
from the bower package manager. The browser dependencies are resolved in
the lib folder as specified in the bowerrc file. This is a great place to specify
other third-party dependencies that your project might need.

• config.xml: This is the standard config file that comes along with any
Phonegap/Cordova project. This is where you request permissions for device
features and also specify universal and platform-specific configurations for
you app.

• gulpfile: Ionic uses the Gulp build tool, and this file contains some code
that is provided by Ionic that enables you do some amazing things. We will
use some features of this file in Chapter 7, Customizing the App, when we do
some customization tasks.

• ionic.project: This is a file specific for Ionic services. It is the file used by
the Ionic CLI and the ionic.IO services as a place to specify some of your
Ionic-specific configuration. We will use some of the features of this file when
we use the Ionic view app in Chapter 3, Running Ionic Apps.

• package.json: This is a file used by node to specify some node
dependencies. When you create a project with the Ionic CLI, Ionic uses
both the Node and Bower Package Manager to resolve some of your
dependencies. If you require a node module when you are developing Ionic
apps, you can specify these dependencies here.

These files are some of the more important files that are by default a part of a project
created with the Ionic CLI. At the moment you do not need to worry too much about
them, but it's always good to know that they exist and have an idea about what they
actually represent.

Chapter 2

[17]

In-depth look at our project
Before we go ahead and do any development, it is imperative that we understand
how to actually add features to our app and where to do this. There are two files in
particular that we are going to pay great attention to:

• index.html: This file is the entry point of your application in terms of what
you actually see. It is a normal HTML page with some boilerplate code
based on the blank Ionic template. If you pay close attention, you will see
some custom HTML tags such as <ion-pane>, <ion-header>, and <ion-
content>. These custom tags are actually Ionic components that have been
built with Angular, and for now, you need not worry about what they do as
we will be discussing this shortly. A closer look at the <body> tag will also
reveal the attribute ng-app=starter. This is a custom attribute provided
by Angular, which we use to provide the name of the main module of an
angular application.

• app.js: This file lives in the js folder, and this is the file that contains the
main module of our application. In Angular, modules provide us a way to
create isolated chunks of code that our application uses. The main module is
the module that actually gets loaded to our application when it starts. Think
of the main module as the entry point of our application. If you take a closer
look at the app.js file, you will see how we create the module and specify its
name as starter:

angular.module('starter', ['ionic'])

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to
 show the accessory bar above the keyboard
 // for form inputs)
 if(window.cordova && window.cordova.plugins.Keyboard) {
 cordova.plugins.Keyboard
 .hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
 StatusBar.styleDefault();
 }
 });
})

To-Do List App

[18]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

You will also see that it takes a second parameter, an array which contains
one string called ionic. In Angular, this array is used to provide the names
of any module that our application depends on. So, just like we specified the
name of our main module, starter to the ng-app attribute in the index.html
file, we specify a list of modules that our main module relies on, in this case,
ionic.
You would have also noticed a run function in the app.js. This function
is the function that fires as soon as our app is ready and all our dependent
Angular modules and factories have loaded. The run function is a great
place to do little pieces of tidying up that you want done as soon as your
application begins.

These two files are the ones you need to worry about as they are the two main files
we will be working with in order to build our to-do list application.

Envisioning our app
It is always good to do a small bit of wireframing before you build any application.
This enables you to understand how the app will work and how it will probably look
just before you actually begin to code the app. The following screenshot is a rough
wireframe of what our todo app will look like:

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[19]

Our todo application allows a user to simply enter any task they want added to their
to-do list. Think of this app as a mini diary where you put in things you want done
later. In this section, we will only be building the very basic feature of our todo app,
and we will only be allowing the user to add new items. In later chapters, as we learn
more about Ionic, we will be adding more complex features like using a complex list
and also letting the user edit, remove, and even archive to-do list items.

Building our todo app
To get started with building our todo app, we will need to further break down what
we want to achieve into smaller steps. The first thing we need to do is to create the
UI for our application.

Creating the UI
The first thing we are going to do to get started with building our todo application is
building the user interface. We are going to build the input form and the button that
will add the todo item currently typed in the input. After we have written the code
for this, we will add the markup for the list where we want any entered todo item to
be displayed. I have already compiled this markup for you in the following code:

<div class="list">
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="enter todo item">
 </label>
 <button class="button button-small">
 Add
 </button>
 </div>
</div>
<ul class="list">
 <li class="item>

From the preceding code, you can see the skin of our user interface ready. We have
an input that receives what we want entered into our to-do list. We have an HTML
unordered list that will be placed where our to-do list items will be situated. You
can see some classes on some of our elements. These are actually classes from the
auto-generated Ionic CSS styles that come as part of any Ionic project.

To-Do List App

[20]

The code
Since we have written the user interface for our application, we will also need to
write the Angular code to enable it to work. What we need to do is to create an
array that will hold the list of todo items and also create a function that will add a
todo item into this list anytime we click the Add button we created earlier. We will
achieve this all by creating an Angular controller in our main module and insert all
this logic into it. I have already written this code and you can copy it and get it into
your project from the following:

.controller('TodoController', function ($scope) {
 $scope.todos = [];
 $scope.todoModel = {};
 $scope.todoModel.todo = '';
 $scope.addTodo = function () {
 $scope.todos.push($scope.todoModel.todo);
 $scope.todoModel = {
 todo: ''
 };
 };
})

From the preceding code, you can see that we have created a controller called the
TodoController. Within this TodoController, we have a todos array. This is the
array that will hold all our todo items. We also have a todoModel object that is an
empty object that will hold our entered todo item. Lastly, we have a function called
addTodo that adds the current value in our todoModel object to our todos array and
then sets the value of our current todoModel object to an empty string so we can type
from scratch again.

Wiring things up
Now that we have created our user interface boilerplate code and also written our
code for it, it is time to wire the two together and dictate what gets to appear where:

<ion-content ng-controller="TodoController">
 <div class="list">
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="enter todo item"
 ng-model="todoModel.todo">
 </label>
 <button class="button button-small" ng-
 click="addTodo()">
 Add

Chapter 2

[21]

 </button>
 </div>
 </div>
 <ul class="list">
 <li class="item" ng-repeat="todo in todos track by
 $index">
 {{todo}}

</ion-content>

If you have a look at the preceding code, you will see that the UI code now looks
a bit different. Firstly, we have associated our <ion-content> element with our
TodoController. This is done in order to create a binding context, meaning any
variable within the TodoController is now available for data binding to all its
descendants. Secondly, you will also notice that our input now has a new ng-
model attribute that binds to our todoModel variable from our TodoController.
This is binding the value of the input tag at any point in time to the todoModel
object. Thirdly, we have set an ng-click attribute on the add todo button to ensure
that any time it is clicked, a new todo item is added to our array. Finally, we have
done an ng-repeat within the UL element to specify that we want all children of
the todo array to be rendered with the LI.

With this, we have successfully completed the todo application and all that is left
is to see it in action. We will be learning how to run this application we have just
built-in different ways in the next chapter, so do follow up to learn how to get your
app to run and test it live.

Summary
In this chapter, we got to create our very first Ionic application using the Ionic
blank application template. We had a look at what the Ionic workflow looks like
and also got to see some of the files that make up the workflow. We then dived
in and discussed about how we intended to build our to-do list application. We
further went ahead and actually implemented the UI of our to-do list app based
on a wireframe. We wrote some Angular code and wired it up to the user interface
we created.

In the next chapter, we will learn different ways to run and test our application
for the very first time with the Ionic CLI.

Chapter 3

[23]

Running Ionic Apps
In this chapter, we are going to learn how to test and run our Ionic application using
various methods. We will start by learning to test our application using the simplest
Ionic technique: by serving our app to the Chrome browser using the ionic serve
command. We will then go ahead and use the Ionic view mobile app for iOS/
Android to see how we can test our application on a mobile device. Lastly, we will
learn to run and deploy our Ionic application to a mobile device using the traditional
build system of the native SDKs of our respective platforms.

Running our todo app
In the last chapter, we created our first Ionic application using the Ionic blank template.
We worked on the application further, and made a to-do list app. We wrote some
Angular code and had some initial exposure to some Ionic code. However, we did not
get to see our application in action. There are many ways by which we can run an Ionic
app, and the first technique we will be learning is the ionic serve technique.

The ionic serve technique
The ionic serve technique is the simplest way to see your app in action. It requires
no extra setup after the Ionic CLI, and only requires you to have a web browser. We
are now going to test our todo application, which we created in the preceding chapter
using the ionic serve technique. To test your application with this technique, simply
open a new command-line window and follow the following steps.

Running Ionic Apps

[24]

Browser choice
It is advisable that you use Google Chrome as your default browser.
Google Chrome has some very powerful development tools and all
exercises in this book expect that you have Google Chrome installed
as your default browser. You can download a copy of Google Chrome
by visiting this URL: http://www.google.com/chrome.

1. From your terminal, navigate to the root directory of your Ionic todo
application.

2. Run the following command in your command-line window:
ionic serve

In case you are prompted to select an IP address, you can select any
one from the list prompted and press Enter to initiate.

If you followed the steps correctly, you should see a browser window come up with
your app running in it. You will also notice that the command-line window where
you typed the command has some things going on within it.

With this, we have successfully served our application to the browser and can test
our Ionic application like any other web application on Chrome. The great thing
about this technique is the fact that no extra setup is required, and all you need is just
Ionic CLI and the Chrome browser installed on your machine.

Emulating with Chrome
Even though our application is served on the Chrome browser, it is fullscreen and is
served like a normal fullscreen web app. This is not ideal for us, as our application
is a mobile application. Luckily, Chrome has a neat emulation tool that lets you
emulate your application as if it were running on a normal mobile phone.

http://www.google.com/chrome

Chapter 3

[25]

To use Chrome's emulation feature, follow the following steps.

These steps assume that you already have your app served on the
Chrome browser and you are currently on the tab that it is served on.

1. Click the Chrome menu icon, as shown in the following screenshot:

2. Scroll down to the More Tools options and select the Developer Tools
option, as shown in the following screenshot:

Running Ionic Apps

[26]

3. Click the Device Mode toggle icon, as shown in the following screenshot:

This should bring up the Chrome emulator window with your app running on it.
You might need to refresh the page for it to render the app correctly. If you have a
look at the window, you will see a dropdown menu on the upper-left corner that has
a list of devices that you can emulate. I normally recommend using the Nexus 5 for
testing Android and the iPhone 6 for iOS. The reason for this is that the resolution
of the Nexus 5 eclipses many of the Android phones available today so using it as a
basis makes a lot of sense. The same goes for the iPhone 6 as well; since it is Apple's
flagship device at the time of writing, it makes sense to use it for emulation.

Chapter 3

[27]

You can fully interact with your app as if it were running in an emulator. You also
have the full power of the Chrome developer tools to inspect elements and see how
the code of your application is represented. Why don't you have a go with your app
and try and add some to-do list items and see them populating.

Ionic serve labs
There is another flavor in the ionic serve technique that lets us see our app the
way it looks on both iOS and Android simultaneously. This technique is called the
Ionic labs technique.

This technique should only be used to view your app and is
not intended to be used for debugging.

To view your app using the Ionic labs technique, simply follow the following steps.

If you are already viewing your app using the ionic serve
technique, simply press Q to quit the current session or close
the command-line window and open a new one.

Running Ionic Apps

[28]

1. Make sure you are in the root folder of your project.
2. Enter the following command in your terminal:

ionic serve --lab

Running this should bring up a new browser window the same way as it did the first
time when we ran the ionic serve command; only that this time, you will see two
emulations for your app, one for iOS and one for Android, as shown in the preceding
screenshot. This is a really nice way to see your app running in action on both
platforms simultaneously. Ionic has a term called Continuum which you will see
in action in later chapters. This phenomenon refers to the fact that certain elements
look different on different platforms. For example, tabs on iOS are normally placed
on the bottom, while on Android, they are traditionally positioned on the top. Ionic
offers us these features out of the box with a further way to override these behaviors.
The ionic serve technique is a great way to see the features like the tab positioned
differently on different platforms simultaneously.

The Ionic view
Another technique to view an Ionic app is by using the Ionic view application.
The Ionic view app is a mobile application created by Ionic with Ionic framework
available on iOS and Android. The application is used to view any Ionic application
you are developing and works hand-in-hand with the Ionic IO platform. The Ionic
IO platform is a suite of tools that Ionic provides for some extra services like push
notifications, analytics, and so on.

Chapter 3

[29]

Testing todo app with the Ionic view
In order to use the Ionic view app, you must have an iOS or Android device.
You must also possess an Ionic IO account. Navigate to http://apps.ionic.io to
create your Ionic IO account. Go ahead and download the Ionic view app by visiting
http://view.ionic.io on your mobile device and downloading the correct version
for your mobile device.

In order to test our todo application, follow the following steps to test it with the
Ionic view app:

1. Open a terminal window and navigate to the root folder of your todo
application from Chapter 2.

2. Simply enter the following command on your terminal:
ionic upload

This command will request the e-mail and password details of your Ionic IO account.
Enter these details when prompted and if the app uploaded correctly, you should
see a message saying Successfully Uploaded (APP_ID), where APP_ID is an
auto-generated identifier for you app.

Now you are ready to view the app on your mobile device. To do this, simply open
your Ionic view app on your phone and login with the same Ionic IO account you
uploaded your app to. You should see your application in a similar fashion to the
following screenshot:

http://apps.ionic.io
http://view.ionic.io

Running Ionic Apps

[30]

From here, you simply tap the todo app and a prompt will come up with a number
of options. You should select the download files option. After this has finished, you
can simply click the View App option. If you followed the instructions correctly, the
todo app should replace your current view and you should see it running within the
Ionic view app.

You can simply tap the screen with three fingers to go
back to the Ionic view menu at any time.

The Ionic view is a good way to view your application, and is extremely useful
when you want to share progress with your friends, clients, or your boss about an
app. It has a feature that lets you share to people's e-mails and you can find these
documented in the Ionic official documentation. You can also manage the apps
you upload to Ionic view from within the app or online via the Ionic IO website at
http://apps.ionic.io.

Device
You can also test your Ionic application by running it on a physical device. To do
this, however, you must have the native SDK for each platform installed on your
computer. Let's take a brief look at how you can run an Ionic app on your device.

Android
To run an Ionic app on a physical device, first you simply ensure that you have
your Android device plugged in via USB. You also need to ensure that you have
developer mode enabled in your computer with USB debugging on.

This step assumes that you have already set up the Android
SDK on your computer and you also have Cordova and Ionic
set up on your machine.

Ensure that you are in the root folder of your project in a terminal window and run
the following command:

ionic run android

If you have everything set up correctly, this command will build your app and run it
on the device plugged into the computer automatically.

http://apps.ionic.io

Chapter 3

[31]

iOS
To run an Ionic app on an iOS device, first you need to ensure that you have the iOS-
deploy package installed.

You can only deploy your app to an iOS device using a Mac computer.
This step also assumes that you have the iOS SDK set up correctly
alongside X-Code on your Mac computer.

If you do not have the iOS-deploy package installed, you can install it via NPM by
running the following command:

npm install ios-deploy -g

Plug in your device to your Mac computer and ensure that it does not have the
lock screen enabled. Simply run the following command to deploy your Ionic app
to your device:

ionic run ios --device

This command should build and run your application automatically on your
plugged iOS device.

Summary
In this chapter, we learned the various ways to test and deploy our app. We started
off by using the ionic serve command to deploy our app to the browser using
Chrome. We then had a look at how we can also serve our application using Ionic
labs. We then went ahead to use the Ionic view application to see how we can run
our app on an iOS and Android device with the Ionic view app installed in it. Lastly,
we touched on how we can actually run our Ionic application on a real Android or
iOS device.

In the next chapter, we are going to dive into some more complex Ionic controls,
and we will get to use Angular's $http service to see how we can make Ajax calls
and retrieve data within our Ionic application.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[33]

Ionic Components
In this chapter, we will be learning how to use some more complex Ionic components
and controls. We will be creating a more advanced version of our to-do list
application we created in Chapter 2, To-Do List App, using some more advanced
built-in Ionic list components. We will call this more advanced to-do list application
Bucket-List app. The idea behind this application is that it will allow us to enter all
the interesting things we want to try in a lifetime. Therefore, we can enter the names
of places we want to visit, the names of activities we want to do, and so on.

Creating a new to-do list application
In Chapter 2, To-Do List App, we created a simple to-do list application with the Ionic
blank template. We were able to get this application to work by allowing us to add
items into our to-do list application. We will be creating a new to-do list application
using the Ionic blank template for us to add our new, more advanced components
to our brand new BucketList application. Let's go ahead and create this new blank
application by following the following steps. We will be calling our new application
Bucket-List in order to differentiate it from the one we created in Chapter 2, To-Do
List App.

1. To create the Bucket-List app, fire up a terminal window on your computer
and navigate to the Desktop folder of your computer by running the
following command:
cd Desktop

2. After navigating to the Desktop folder of your computer, go ahead and run
the following command to create the Bucket-List application based on the
Ionic blank template:
ionic start Bucket-List blank

Ionic Components

[34]

3. This command will create a new blank Ionic application called Bucket-List.
When this command has finished running, navigate to the project of your
application via the command line by running the following command:
cd Bucket-List

Now you have successfully completed the process of creating your Bucket-List
application, and we can start developing the app by adding features to it.

Overview of the Bucket-List app
To understand what we are trying to build, have a closer look at the following
screenshot. We aim to achieve a final app that closely resembles what we have
in the following screenshot:

Breaking down the app
A good way to build Ionic apps is by building them in bits. For our Bucket-List
application, we can start by first developing the user interface and then writing the
code behind it to enable it to work. Our user interface will contain an input box to
enter a new item into our bucket list. Secondly, we have to design the UI for the list
of Bucket-List items.

Designing the UI
Designing the UI involves two main implementations:

• Implementing the input box
• Implementing the ion-list element

We will have a look at each.

Chapter 4

[35]

Implementing the input box
The first thing we are going to implement is an input box. This input box is the
form where the users of our app will enter an interesting item they wish to add in
the Bucket-List application. This will be in the form of an HTML textarea input
box with some Ionic CSS styles applied to it in order to give it a more mobile look
and feel. There also will be a button next to the input box with the label ADD. This
button will be what we tap after we have typed some text and want it to appear as a
part of our list. Perform the following steps:

1. Open up the Bucket-List application you created earlier in your favorite
text editor.

2. Now, open the index.html file that can be found in the www folder of your
project. You will see a screen that closely resembles what we have in the
following screenshot:

Ionic Components

[36]

You can see that this boilerplate code already contains some code for some custom
Ionic elements just like we saw in our first application in Chapter 2, To-Do List App all
of which are prefixed with ion. Pay close attention to the <ion-content> element!
This element is the element that contains the bits and pieces of our application or the
content area. It is in between this element that we are going to place all the markup
for our Bucket-List application.

Let's start by placing the code for the input box of our application. I have provided
the code for our input box in the following code block. You are to place this code
within the <ion-content> element in your index.html file:

<div class="list">

<div class="item item-input-inset">
<label class="item-input-wrapper">
<input type="text">
</label>
<button class="button button-small">
 Add
</button>
</div>

</div>

The preceding code is the HTML code that will display an input box and a button
as we described earlier. If you pay close attention to the markup, you will see that
some elements contain some classes. These classes are custom Ionic classes that are
available as part of the Ionic CSS. The Ionic CSS comes with a lot of nifty classes and
features, but for now just be aware of these classes and know that they are part of the
Ionic CSS.

If you run your app in the browser using the ionic serve method, you should be able
to see something that looks very similar to what I have in the following screenshot.
Enter the following command in a terminal window to run your app using the ionic
serve method. Make sure you run it from the root folder of your project:

ionic serve

You should be able to see the input box with the button placed on its right-hand side.

Chapter 4

[37]

Implementing the ion-list application
The next step of developing our Bucket-List application is to implement the
ion-list application. We are going to use one of the built-in components called
ion-list. The ion-list element is a component for creating and rendering lists.
It has a lot of cool features that let us render complex lists that can have side options.
Take a look at the following screenshot that shows the mail app from an iOS mobile
device showing a list of features that we can implement using ion-list:

As seen above, one of the most obvious features we can implement with ion-list
is the ability to show options when we swipe on a list item. It also has other features
like the ability to delete items or rearrange them.

Ionic Components

[38]

Using ion-list for our Bucket-List app
For our Bucket-List application, we will be aiming to use the <ion-list>
component to render every item we enter through the input box. In addition, we
would want to be able to delete each item from the list by simply swiping from
the left and thus revealing a delete button, which we can click. The following
screenshot gives a sample graphic breakdown of what we aim to achieve and
what items are involved:

The ion-list component
The first thing we will do is implement the code for our <ion-list> component.
The following code is the code for<ion-list>. You are to copy this code and place
it just below the code for the input box you already implemented:

<ion-list>

</ion-list>

This is the top-level component needed to create our <ion-list>component. The
<ion-list>component has some attributes that let us perform some more complex
implementations. We will not be exploring these attributes but it is worth knowing
that they do exist.

The next step is to implement the child item for our<ion-list> component.
Each item in an <ion-list>component is called <ion-item>.

Chapter 4

[39]

ion-item
As briefly noted in the previous subsection about the <ion-list>component, each
item in an <ion-list> is called an <ion-item>. Within an <ion-item>, we will put
the code for what we want each list item to render. It is also the <ion-item> where
we will use Angular's ng-repeat feature. For our application, we simply want to
render the name of each Bucket-List item. This means that we can think of every
Bucket-List item as an <ion-item>.

For now, we are just going to have some dummy text in our implementation
showing how a Bucket-List item will prospectively look. The following block
of code is the implementation of our <ion-item> representing a Bucket-List
item in our app:

<ion-item>
<h2>Bucket List Item</h2>
</ion-item>

This is a sample representation of our <ion-item>. If you still have your app
running in the browser via the ionic serve technique, you should be able to
see the <ion-item> rendered just like in the following screenshot:

Now, with that implementation completed, there is one more thing we need to do in
order to finish the implementation of the user interface of our Bucket-List app. The
one thing remaining is the delete feature. Remember from our initial implementation
plan that we want the user to be able to swipe each item in our list and have a Delete
button revealed. Luckily for us, the <ion-item> component has a neat feature for
this called the <ion-option>.

Ionic Components

[40]

ion-option-button
The <ion-option-button> component lives within an <ion-item> component as
its child. Its sole purpose is to allow us to define buttons that we can reveal when
the user of our app swipes from the right of each <ion-item>component just like in
the original sample screenshot of our implementations. To get this implementation
underway, copy the following code and paste it just before the closing tag of your
<ion-item> component markup:

<ion-option-button class="button-assertive">
 Delete
</ion-option-button>

If you have a look at the preceding code, you can see that<ion-option-button> has
a class attribute of button-assertive. This is also another Ionic class that is used
to define a red button by default on Ionic buttons. Ionic has some built-in classes to
easily add colors to elements. We will be discussing this later on in this book but for
now just be aware of this feature.

By now, your final code for your<ion-item>component should look something
similar to what I have in the following code block:

<ion-item>

<h2>Bucket List Item</h2>

<ion-option-button class="button-assertive">
 Delete
</ion-option-button>

</ion-item>

Your final code for your <ion-content> component should closely resemble what
we have in the following code block:

<ion-content>
<div class="list">
<div class="item item-input-inset">
<label class="item-input-wrapper">
<input type="text">
</label>
<button class="button button-small">
 Add
</button>
</div>

Chapter 4

[41]

</div>

<ion-list>
<ion-item>

<h2>Bucket List Item</h2>

<ion-option-button class="button-assertive">
 Delete
</ion-option-button>

</ion-item>
</ion-list>

</ion-content>

With this, we have completed the implementation of the user interface of our
Bucket-List application using the <ion-list> component. Provided you still have
your app running in the browser via the ionic serve technique, go and try to swipe
the sample list item in your app from the left-hand side. You should be able to see a
Delete button when you do this. See the following screenshot for guidance:

With this step completed, we are finished with the user interface of our application
completely. Now, it is time we start to wire up the app by focusing on the Angular
code that we will be writing to ensure our application works the way we want it to.

Ionic Components

[42]

Writing the Angular code for our Bucket-List
app
Before we begin, let's recap what behavior we want to implement in order for our
application to work the way we want it to.

Coding our input box
The first thing we want is to be able to enter some text into our input box later. After
we enter the text, we want to click the Add button and have this text entered into an
array that holds all out Bucket-List items. To begin this first, we create our Angular
controller that will hold all the logic for our app.

Creating the controller
Open to the app.js file of your application in your favorite IDE. This file can be
found in the js folder, which is found in the www folder of your app.

www/js/app.js

There should already be a folder called starter with code similar to that which
I have in the following code block:

angular.module('starter', ['ionic'])

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show the
 accessory bar above the keyboard
 // for form inputs)
if(window.cordova&&window.cordova.plugins.Keyboard) {
cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
StatusBar.styleDefault();
 }
 });
})

Chapter 4

[43]

To begin, we will first start by creating a controller called BucketListController
just after where we declared our module. If you have done this correctly, you should
have code that closely resembles the following:

angular.module('starter', ['ionic'])

 .controller('BucketListController', function ($scope) {

 })

.run(function($ionicPlatform) {
 $ionicPlatform.ready(function() {
 // Hide the accessory bar by default (remove this to show
 the accessory bar above the keyboard
 // for form inputs)
if(window.cordova&&window.cordova.plugins.Keyboard) {
cordova.plugins.Keyboard.hideKeyboardAccessoryBar(true);
 }
 if(window.StatusBar) {
StatusBar.styleDefault();
 }
 });
 })

With this done, we have now completed the process of creating our controller called
BucketLisController. This controller is where all the logic for our app will live.

Creating the input box model
We are going to need to create a model that will be bound to our input box. This model
will be in the form of an object, and it will hold the data that will be represented by the
text we enter in our input box. We will call this model bucketListItem. To create this
model, simply enter the following code within BucketListController that you just
created in the previous step:

$scope.bucketListItem = {
title : ''
};

The preceding code is initializing the model for our bucketListItem model.
This model has a property called title that will hold the text of what we type
in the input box at every point in time.

Ionic Components

[44]

Creating an array for the Bucket-List items
The aim of our app is to have a list of the Bucket-List items. These items, as we
enter them in our input box, will need to be stored in an array. We are going to create
this array, and we will simply call it bucketListItems. This array is what we will
use in Angular's ng-repeat attribute to iterate and render in our view. To create this
array for our Bucket-List items, simply attach an array called bucketListItems to
the $scope variable of your controller. The following code illustrates this step:

$scope.bucketListItems = [];

Implementing code for the Add button
The final step to ensure that we are able to add items to our Bucket-List app with the
input is by writing the code in the form of a function for the Add button. This button
is responsible for two things. Firstly, it will ensure that the current text in our input
box is added as an entry to the output box array of the Bucket-List items. Secondly,
it will also clear up the model to ensure that after we click the button, the input box
is cleared up for the next item.

The following code represents the implementation for our Add button:

$scope.addBucketListItem = function () {
 //Add Current Bucket List Item To The Front Of Our Bucket List
 Items Array
 $scope.bucketListItems.unshift($scope.bucketListItem);
 //Clear Current Bucket List For Next Entry
 $scope.bucketListItem = {
 title: ''
 };
};

From the preceding code you can see that we have created a function called
addBucketListItem, and attached it to the $scope variable of our controller so it
is available to our view. Within our function, we first add the current value of the
bucketListItem variable to our bucketListItems array. Secondly, we clear up the
bucketListItem variable to ensure it is cleared for the next entry.

Now, you can go ahead and implement the preceding code within your controller.

Chapter 4

[45]

Implementing the Delete button
The last piece of our code is to implement the Delete button of our <ion-option-
button>. Remember that we want this button to be able to delete the item which it
belongs to. The following code shows the implementation of the Delete button:

$scope.deleteBucketListItem = function (index) {
$scope.bucketListItems.splice(index, 1);
};

The preceding code simply shows how we have created a function called
deleteBucketListItem. This function takes in the index of the current item to be
deleted as a parameter. It then uses this index to remove the corresponding element
that is placed in that index from the bucketListItems array, which holds all our
Bucket-List items.

With that complete, we have pretty much finished the code aspect of our application.
Your final controller should look similar to what I have in the following code block:

controller('BucketListController', function ($scope) {
 $scope.bucketListItem = {
 title : ''
 };

 $scope.bucketListItems = [];

 $scope.addBucketListItem = function () {
 //Add Current Bucket List Item To The Front Of Our Bucket
 List Items Array
 $scope.bucketListItems.unshift($scope.bucketListItem);
 //Clear Current Bucket List For Next Entry
 $scope.bucketListItem = {
 title: ''
 };
 };

 $scope.deleteBucketListItem = function (index) {
 $scope.bucketListItems.splice(index, 1);
 };

 })

Now, before we go ahead and test your application, we have one last step to
complete. We need to wire up all the code we have just created with the UI we
implemented earlier so that they can work together.

Ionic Components

[46]

Wire it all up
With our controller ready, now we have to go ahead and wire all the code to the UI
so that they can work together in harmony.

Binding the controller
The first thing we need to do is to wire up the controller we created. The simple
and easiest way to do this is by simply using Angular's ng-controller attribute
directive to specify our controller. In our case, we will be wiring the controller
on <ion-content> of our app. Once again, open up the index.html file of your
application. Find the opening <ion-content> tag of the page and specify an
ng-controller attribute with the name of your controller.

Your code should closely resemble the following code:

<ion-content ng-controller="BucketListController">

This code is simply telling Angular that we wish to use BucketListController
within the scope of this <ion-content> element. This means that all the methods
and properties scoped within this controller are now available to the <ion-content>
element and all its descendant elements.

Binding the input box model
The next step is to ensure that the bucketListItem variable we created in our
controller is data bound to our input box in the view. Angular also has a simple but
great attribute directive for this called ng-model. We simply provide ng-model with
a value that matches an object or variable that we want to data bind to. In our case,
we want to data bind to the title property of our bucketListItem variable from our
controller. Again, I have provided the following code for your convenience:

<input type="text" ng-model="bucketListItem.title">

The preceding piece of code we just added tells Angular to bind this variable to this
input box. Therefore, anytime the value of the input changes from the view, we have
the same value in our controller and vice versa.

Wiring up the Add button
The Add button is next in line for our implementation. For this button, we simply
need to tell it to run our addBucketListItem function every time it is clicked. Once
again, Angular has a helper directive for this called the ng-click directive. The
ng-click directive is like the classic Java onClick event listener and you provide
it with a function that you want to run every time the wired element is clicked.
The following code demonstrates how we can wire up our Add button with the
ng-click directive:

Chapter 4

[47]

<button class="button button-small" ng-
click="addBucketListItem()">
 Add
</button>

The preceding code implementation simply ensures that when the Add button is
clicked, the addBucketListener function will run with its expected behavior.

Binding ion-item
The last part of our wiring up will be to wire our bucketListItems array to
our Ion-Item elements, and also bind the ion-option-button element to our
deleteBucketListItem() function.

Using ng-repeat to render the list
Right now we have a sample implementation that has one hardcoded ion-item.
However, we will want a more dynamic solution where we automatically render
the items within the bucketListItems array each as an ion-item. For this
implementation, we are going to use one of the most important Angular features in
the form of ng-repeat. The ng-repeat angular directive lets us dynamically repeat
an array.

Right now, you have a code that looks similar to the following:

<ion-item>

<h2>Bucket List Item</h2>

<ion-option-button class="button-assertive">
 Delete
</ion-option-button>

</ion-item>

We are going to change this implementation to use the ng-repeat directive of
Angular. The following code shows you how this is achieved:

<ion-item ng-repeat="item in bucketListItems">

<h2>{{item.title}}</h2>

<ion-option-button class="button-assertive">
 Delete
</ion-option-button>

</ion-item>

Ionic Components

[48]

The preceding code now uses Angular's ng-repeat attribute. This code tells Angular
to repeat the bucketListItems array and also binds the title of each item to an
HTML <h2> element.

Wiring up the ion-option-button element
The ion-option-button element is still untouched and will do nothing if we don't
tell it to do so. All we need to do for this element is to provide it with a function we
want to be executed when it is clicked, like we did with the Add button. For this,
we will be using the ng-click directive again, but this time, we will point it to the
deleteBucketListItem() function from our controller. The following code shows
just how we can achieve that:

<ion-option-button class="button-assertive" ng-
click="deleteBucketListItem($index)">
 Delete
</ion-option-button>

From the preceding code, you will notice one alien thing, $index being specifically
passed as a parameter for our deleteBucketListItem function. This variable is a
magic variable that the ng-repeat directive of Angular exposes to us. It represents
the index of the current element being rendered by ng-repeat. With this index, we
can learn what particular element should be deleted from our array of bucket list
items, and delete the correct one.

The final <ion-content> in your index.html file should closely resemble what
I have in the following code block:

<ion-content ng-controller="BucketListController">

<div class="list">
<div class="item item-input-inset">
<label class="item-input-wrapper">
<input type="text" ng-model="bucketListItem.title">
</label>
<button class="button button-small" ng-
click="addBucketListItem()">
 Add
</button>
</div>
</div>

<ion-list>

<ion-item ng-repeat="item in bucketListItems">

Chapter 4

[49]

<h2>{{item.title}}</h2>

<ion-option-button class="button-assertive" ng-
click="deleteBucketListItem($index)">
 Delete
</ion-option-button>

</ion-item>

</ion-list>

</ion-content>

Testing our Bucket-List app
We have completed the implementation of our application, and now it is time
for us to see it in action. Ensure you have your app running in the browser via
the ionic serve technique, and test it. Try entering some things into your
Bucket-List app such as skydiving, jet-skiing, and so on. You should see that
every time you enter an item and click Add, the item will appear in the list and
the input box will clear up ready for your next input. Also, make sure you test the
delete option by swiping an item from the left to reveal the Delete button, and
clicking it to see the item disappear.

Summary
In this chapter, we focused on creating our Bucket-List application from scratch
using the Ionic blank template. We also learned to use the <ion-list> component
of Ionic and its child elements. We wrote some Angular code to wire everything up
and got it running. The <ion-list>component is a very powerful component, and
although the task of this chapter might appear a bit more complex that the previous
ones, there are still some more powerful features that the <ion-list> component
lets us do. For more information about <ion-list>, visit the official documentation
of <ion-list> from the provided links in the appendix of this book to learn even
more complex features.

In the next chapter, we will be learning some very exciting stuff about creating side
menu applications with Ionic. We will also build ourselves a tourist application and
work with the AJAX calls for the very first time using Angular's $HTTP service.

Chapter 5

[51]

The London Tourist App
In the previous chapter, we created an application called the Bucket-List application
that enabled us to create a list of interesting things we wanted to do in our lifetime.
In this chapter, we will create a new application called "The London Tourist"
application. It is an application that will display a list of top tourist attractions in the
city of London in England. We will build this application with a new type of Ionic
template called the side menu template. We will also be using the Angular $http
service to query our data via Ajax.

Introduction to the London Tourist App
London is the largest city in England and it is a city that is well known to attract
tourists around the world. The city is very urban but it has many historical and
non-historical tourist attractions. With this large number of attractions, it can be
difficult to pick out the best places to go. This is the entire idea behind the London
Tourist App as it will provide users with five handpicked destinations that tourists
visiting London can actually visit. These destinations will be stored in a JSON file in
our project that we will be querying via AJAX and populating.

Creating the London Tourist app
To begin the process of creating our app, we are going to start by creating a brand
new Ionic application. So far in this book, we have learned to create a new Ionic
application using the blank template. For the application we are about to build, we
are going to use a new type of Ionic template to create the application. We are going
to be using the side menu template to create our London Tourist app.

The London Tourist App

[52]

The side menu app design
You might not be familiar with what the side menu template looks like. In fact,
the side menu design for mobile applications is very common in mobile app
development. It involves having the ability to slide from the left or right edges
of a mobile application to reveal more options, normally more menu options:

The side menu design technique is one that is used in a lot of contexts, both on mobile
and on the web. Normally, you will see an icon positioned either on the far upper-right
or upper-left, indicating that you can swipe or click that icon to reveal the extra menu
options. This icon is normally referred to as the hamburger menu icon.

The Ionic framework actually comes built-in with a side menu template that
automatically creates a side menu application for us with some useful boilerplate
code. We will be using this template to create our London Tourist Application.

Using the Ionic side menu template
To begin developing our London Tourist Application, we will begin by using the
Ionic CLI to create the app. You can do this by running the following command
from a terminal window:

We will shorten the name of our app from London Tourist App
to LTA to make it easier to type.

ionic start LTA sidemenu

Chapter 5

[53]

This command will create a new Ionic application called LTA using the default Ionic
side menu template.

Seeing the LTA side menu app in action
As soon as your LTA app is created, you can simply change your directory into
the app from the terminal and run it on your computer using the ionic serve
technique. You can do this by running the following commands:

• Change directory to app:
cd LTA

• Run using the ionic serve technique:
ionic serve

Remember to use Chrome and emulate to a device of your choice
with the Chrome emulation tools as taught in previous chapters.

You should see a screen that looks something like the following screenshot:

As you can see from the preceding screenshot, the side menu app we have just
created contains some pre-rendered content.

The London Tourist App

[54]

Exploring the LTA side menu app's code
Now, we are going to have a look at the code of the LTA app based on the side
menu template:

Now, I will require you to fire up the LTA project you have just created in your
favorite IDE. The first thing you will notice is the folder structure that you are
already used to from previous chapters.

The index.html file
Now, focus on the www folder and open the index.html file. A look through this file
should show you something similar to what we have in the following screenshot:

To get to this file from the root folder, navigate to
www/index.html.

Chapter 5

[55]

A look at this file will show you some things we have seen from previous projects in
this book. For example, you can see some CSS and JS references to the Ionic styles
and script files respectively. You will also see from the body tag that a generated
Angular module called starter is being instantiated using the ng-app attribute.

Pay close attention to the <ion-nav-view> tags within the <body> tags. This is an
Ionic element that is used to specify the view to which the entire app is injected into.
It is similar to the ng-view feature of Angular but has more powerful features. It also
automatically handles navigation for us within our Ionic app. You need not pay a
great deal of attention to this part of the code anymore but just have it at the back of
your mind that <ion-nav-view> is where all content gets injected in, and acts like a
wrapper for our app's content.

The menu.html file
The next file we are going to explore is the menu.html file. This file is probably the
most important file at this moment as it contains most of the generated code for the
side menu parts of our app. To have a look at this file, navigate to the menu.html file
which can be found by navigating into the folder called templates under the www
folder. Here is the path: www/templates/menu.html.

If you have successfully done this, you should see a file that closely resembles what
we have in the following screenshot:

The London Tourist App

[56]

The <ion-side-menus>element
The first thing you should pay attention to is the <ion-side-menus> element. Think of
this element as a container for any side menu application. It allows us to specify what
the main content area will be via the <ion-side-menu-content> element and also
allows us to specify the side menus via the <ion-side-menu> elements. There can be
more than one side menu specified within the <ion-side-menus> elements and we
have the ability to specify whether the menu is placed on the left, right, or even both.
There are a lot of cool and powerful controls that the <ion-side-menus> elements
let us utilize to control its containing items. For now, we will focus on trying to learn
more about the child elements that are needed to work with the <ion-side-menus>
elements. These are the <ion-side-menu-content>and<ion-side-menu> elements.

The <ion-side-menu-content>element
This element is what houses the main content area or the visible part of the app:

In the preceding screenshot, which is a view of our LTA app, the part you see is a
representative of<ion-side-menu-content>. Let's have a closer look at the code
of < ion-side-menu-content> to see how it actually works in detail:

Within <ion-side-menu-content>, you can see two direct child elements.

Chapter 5

[57]

Firstly, you can see the <ion-nav-bar> element which is used to build the
navigation buttons of the main content area with the<ion-nav-buttons> element
as its child element. For example, within these<ion-nav-buttons> elements, you
can see a navigation button on line 8-9, which has a menu-toggle attribute of value
left. This is simply saying that when this button is tapped, the left-sided side menu
should be triggered. Remember that there can be up to two side menus with one
being on the left and one being on the right in a side menu app.

The second direct child element is the<ion-nav-view> element on line 12 from the
preceding screenshot. We talked about this same element earlier when we had a look
at the index.html file. This element is a placeholder for where the actual content is
injected. This particular <ion-nav-view> element has a name attribute with the value
of menuContent. This attribute is important as it is used like a value to uniquely
identify<ion-nav-view>.

With all that said, we have now lightly touched on the <ion-side-menu-content>
element and its main functions. Always think of this element as the element that
houses the main content area of your side menu application.

The <ion-side-menu>element
The <ion-side-menu> element is an element that we use to specify the side menu of
our app. Just like the <ion-side-menu-content> element, it lives as a direct child of
the <ion-side-menus> element. There can be up to two<ion-side-menu> elements
within the<ion-side-menus> element, with only one being on each side. Let's have a
closer look at the code of<ion-side-menu> of our LTA application.

The London Tourist App

[58]

The preceding screenshot is from our menu.html file, and it showcases the code of
<ionic-side-menu> from our LTA application. If you look at it closely, you will
notice that opening tag of our <ion-side-menu> element has a side attribute with
value left. This is basically saying that we want this particular side menu to be on
the left-hand side. Remember that we can have up to two side menus in our app,
and one can be positioned on the left and another on the right, but two side menus
cannot be positioned on the same side. We can also see that this <ion-side-menu>
has two direct child elements. These child elements are <ion-header-bar> and
<ion-content>. <ion-header-bar> is an element used to construct the header of
a side menu. If you have a look at the following screenshot of our side menu, you
should see a representation of it:

From the preceding screenshot, you can see the header with the title LEFT as reflected
in the code as an<h1> element.

The second child element we can see from the code is the <ion-content>element.
Think of this element as what houses the content area below the header of the
side menu. Basically, this is anything below the header. <ion-content> could
contain any HTML code we want but in this case, it contains<ion-list> which is
something that we used to build our Bucket-List application from Chapter 4, Ionic
Components. You can also see a reflection of this code on the screenshot from when
we ran our application.

With that said, you can see that we have successfully had a brief look at what
the<ion-side-menu> element entails and how the side menu template of Ionic
functions. The next step is for us to actually go ahead and build our LTA application
in full scale now.

Chapter 5

[59]

Developing the LTA application
We are now equipped with the know-how on how to code our LTA side menu based
application. Remember that the idea behind our application is to have some of our
favorite tourist destinations listed in our app. In a normal scenario, we would query
this data from a real API. But for the sake of simplicity, we will mimic this API
request by making a request to a local JSON file that would act like a real database
with the information we need.

The local JSON database
As discussed earlier, we are going to create a JSON file that will act like a
real-life API containing our destinations. This local file will contain five top
tourist destinations in London. The first thing we will need to do is to create
this file.

Creating the local JSON database file
If you do not have your LTA application open, make sure you open it in your
favorite IDE. Now, go ahead and create a new JSON file called sites.json within
the www folder of your project. Make sure you name the file as the .json extension in
order for it to be parsed as a JSON file. Your directory structure should look similar
to what is shown in the following screenshot:

With that done, you have successfully created your local JSON file representing your
database for your tourist sites.

The London Tourist App

[60]

Populating the JSON file
Now we are going to populate the JSON file with some data. This data will be the
data of five top tourist attractions in the city of London. The following is a JSON
array that represents the content of our local JSON database. You should copy
all the content of the following piece of code into your sites.json file:

[
 {
"id":"1",
"name":"London Eye",
"description":"Shows you a great view of the city"
 },
 {
"id":"2",
"name":"The Shard",
"description":"Highest building in London"
 },
 {
"id":"3",
"name":"Oxford Circus",
"description":"The place to shop in London"
 },
 {
"id":"4",
"name":"Buckingham Palace",
"description":"The Queen lives here"
 }
]

The preceding piece of code is a JSON array that represents four top destinations
in London as JSON objects. Each object representing a site has three properties.
These properties are:

• ID: A unique identifier for the site.
• Name: The name of the Tourist site.
• Description: Some small information about the site.

By now, we have successfully completed the creation of our JSON local database.
The next step is to see how we can actually render these items and query the database.

Chapter 5

[61]

Designing the view
We have created our app and we have the data for the application. Before we
query data, we first need to design how the data will look when rendered. For this
very task, we will call on an old friend of ours in the face of<ion-list>. We will
use<ion-list> to render a list of tourist attractions from our JSON database.

Currently if we run our application, the first page we see is the playlist application,
as shown in the following screenshot:

This is because by default the page is specified in the app.js file by Angular as the
root page of our app. We will keep things simple and change the contents of this
playlist page and design the view of our LTA application on it. From your LTA
project folder, navigate into the www folder and look into the templates folder.
Within the templates folder, there is a playlists.html file. This is the file that
contains the code for our playlist page shown in the preceding screenshot. Open
this file and you should see some code that closely resembles what we have in the
following screenshot:

The playlists.html file from the root folder of your LTA
project will have a path www/templates/playlists.html.

www.allitebooks.com

http://www.allitebooks.org

The London Tourist App

[62]

The first thing we will want to do here is to change the name of the title of our view.
Currently, the view as seen from the screenshots previously, has a title Playlists.
This is specified by the view-title attribute of the opening<ion-view> element.
This view-title attribute currently has a value Playlists. Change this to London
Sites. This is to ensure that the title reflects the mission of our app, which is to show
the top London tourist sites.

The second thing we need to do is to edit the code for<ion-list>. Replace the
<ion-list> code with the one provided in the following code block:

<ion-list>
<ion-item ng-repeat="site in sites">
 {{site.name}}
</ion-item>
</ion-list>

If you have done this correctly, your code should now closely resemble what we
have in the following screenshot:

With this done, we have now completed the process of designing our UI. The next
step is to go ahead and wire up our data to our view.

Wiring up the data
Earlier, we created a sites.json file that represented our database. We will be
making a real Ajax call to this file in order to retrieve its data and serve it within
our app. The thing we need to do to achieve this is firstly to write the code to
retrieve the data.

Retrieving the data with the $http service
To retrieve the data, we will need to make an Ajax call to the sites.json file.
For this, Angular has a great service called the $http service. This is a service that
provides us with functionality to make Ajax calls to local and remote resources via
Ajax. To begin using the $http service to write our code, we first need to go to the
controller associated with our view. By default, when you create an Ionic app based
on the side menu template, there is a controller attached to the views. To find out
which controller is attached to our playlist.html file, we need to look at the app.
js file of our app to discover this.

Chapter 5

[63]

You can find the app.js file by navigating to the www folder of your project and
looking into the js folder within it. You should see the app.js file. Open it. After
you open this app.js file, look thorough the part where you have code that looks
closely to what we have in the following screenshot:

The code from the preceding screenshot represents the state definition of the
playlist.html file. Pay close attention to the part of the code from the preceding
screenshot where the controller is defined and you will see that the controller
specified there is called PlaylistsCtrl. This is the name of the Angular controller
that our playlist.html file is wired with.

The next step is to go to this PlaylistsCtrl controller and write the code to retrieve
our data. By default, the controllers are contained in the controller.js file that can
be found in the same js folder as our app.js file.

The London Tourist App

[64]

Open the controller.js file and look for a stub of code that closely resembles what
I have in the following screenshot:

The preceding code block represents the controller definition of PlaylistsCtrl. The
first thing we need to do is to clear all the code within the controller. Basically, we need
to delete all the code found within the controller. If you have done this correctly, your
controller should now look similar to what we have in the following screenshot:

With that done, we can now begin to create the code to query our local JSON
database with the angular $http service. The first thing we need to do to achieve this
is to first add the dependency of our $http service to our controller. This step is very
important as if we do not add this dependency correctly, our app will not load. To do
this, simply add $http as the second parameter in the anonymous function part of
your controller definition. If you have done this correctly, you should see something
similar to what I have in the following screenshot:

With that done, we can now go ahead and start writing the code to grab our data
from our local database. To start this process, simply write the following code into
your controller:

$scope.sites = [];
$http.get('/sites.json')
.then(function (response) {
 $scope.sites = response.data;
});

Chapter 5

[65]

If you have done this correctly, your code should look very close to what we have in
the following screenshot:

At this point, I will explain what this block of code is doing. We start by simply
initializing the variable sites as an array to the $scope. It is a good practice to
always initialize your Angular $scope variables before using them. The next thing
we try to do is make an Ajax get request using the shorthand $http.get() method.
This $http.get method returns a promise so we handle this promise by using the
.then() method of promise handling of Angular. In the promise handler function,
you can see that we start by setting the data property of the response from the
promise (response.data). This data property of the promise response (response.
data) is the property that holds any data returned which in our case is the data from
our sites.json file.

One thing that might be a bit confusing is the fact that, for the
first parameter of the $http.get() function, which takes the
URL of the API or the file we want to consume, we have provided
the following relative path'/sites.json'. You might be
wondering why we have not correctly given a path relative to the
controller.js file. This is because when working with Angular,
all paths are referenced from the root index.html file. In our case,
the sites.json and index.html files are in the same directory
under the www directory, which is why we do not have the path
'../sites.json', and instead have the path'/sites.json'.

With all this done, we have completed the process of creating our LTA application.
All that is left now is to run the application. Go ahead and run this application using
the ionic serve technique learned from Chapter 1, First Look at Ionic. Make sure you
run this command from the root directory of your LTA app project.

The London Tourist App

[66]

If you have done this correctly, you should see a list of our tourist destinations as
shown in the following screenshot:

Summary
In this chapter, we learned how to create an Ionic application based on the side menu
template. We used this knowledge to create our London Tourist Application. We
also had a look at the code that makes up an Ionic side menu template and learned
about the building block elements of a side menu application. We rounded up by
querying some data via Ajax using the Angular $http service and rendered our
tourist destinations.

In the next chapter, we will extend our existing application and use some more
complex Ionic components to do some really cool stuff.

Chapter 6

[67]

Advanced Ionic Components
In this chapter, we will extend the application we created in Chapter 5, The London
Tourist App. We are going to learn how to add some more complex features like the
Ionic Popover and the Ionic Modal components to our current application. At the
end of this chapter, we will have a popover menu and a modal window as part of
our application.

The Ionic Popover
The Ionic Popover component allows us to add a popover menu to our application.
A popover menu is a contextual menu that is used to provide a hidden menu or extra
menu options. It is normally used when we have limited space and want to present
a list of options. Instead of cramming our limited available space, we create some
sort of button so that, when clicked, the popover menu can pop up and show these
menu items.

Advanced Ionic Components

[68]

The following screenshot shows a good description of what a popover does in reality:

Implementing the popover
We are going to implement our popover in our already existing application.
The first thing you should do is open your application, as you have left the London
Tourist Application in the previous chapter. What we will be aiming to do is create
a popover that has three extra options as a list. These three options are About, Help
and Logout. These three options will not perform any action as we will only be
placing them for the sake of example. The following screenshots show a sample of
what we will be aiming to achieve.

• For iOS:

Chapter 6

[69]

• For Android:

To begin implementing our popover, open the playlists.html file of your LTA
application project. Remember that this playlists.html file can be found by
navigating to the www folder and looking into the templates folder within it.
Here is the path: www/templates/playlists.html.

Now, you should have a file that closely resembles the following code:

<ion-view view-title="London Sites">
 <ion-content>
 <ion-list>
 <ion-item ng-repeat="site in sites">
 {{site.name}}
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Adding the menu button
The first thing we are going to do is add the menu button that we want to trigger for
our popover. This menu will display the popover when tapped. The following code
block represents the code for button icon of our popover:

<ion-nav-buttons side="right">
 <button class="button button-clear icon ion-more"></button>
</ion-nav-buttons>

Advanced Ionic Components

[70]

You are to replicate the preceding code just after the opening <ion-view> tag of your
playlists.html page. The preceding code is using the <ion-nav-buttons> element
to specify that we want to place a navigation button in our header. This element
also has a side attribute with the value right. This side attribute is there to tell the
<ion-nav-buttons> element which side of the page title to position itself. Within the
<ion-nav-buttons> element is a simple button with some ionic styles that ensure
that the button has an icon (ion-more) as our popover icon. If you have followed all
the steps and replicated the code block correctly, your code should closely resemble
the following code block:

<ion-view view-title="London Sites">

 <ion-nav-buttons side="right">
 <button class="button button-clear icon ion-more"></button>
 </ion-nav-buttons>

 <ion-content>
 <ion-list>
 <ion-item ng-repeat="site in sites">
 {{site.name}}
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

At the moment, it is probably a good idea to test our application and see how our
icon button looks. Fire up your application on a Chrome browser using the Ionic
serve technique as we have done in the past. Your screen should look close to what
we have in the following screenshot.

If your title is centered to the left when using an Android emulator on
Chrome, this is perfectly normal. The iOS equivalent will be centered.

Chapter 6

[71]

Coding the popover
The next step is to write the actual logic for our popover menu. The first thing we
need to do is go into our controller.js file. This file can be found by looking in the
following path from the root of your project:

www/js/controller.js

Within the controller.js file, locate the PlaylistsCtrl controller. It is within this
controller that we will be implementing our popover, as it is the controller associated
with our playlists.html.

Adding the $ionicPopover service
In order to use the Ionic Popover, Ionic has a special service called $ionicPopover
that makes this very easy. Add $ionicPopover as a dependency by specifying it as
a parameter on your PlaylistsCtrl controller. If you have done this correctly, your
PlaylistsCtrl controller should now look similar to the following code:

.controller('PlaylistsCtrl', function($scope, $http,
$ionicPopover) {
 $scope.sites = [];
 $http.get('/sites.json')
 .then(function (response) {
 $scope.sites = response.data;
 });
})

Advanced Ionic Components

[72]

Finishing the popover code
The next step is to write the actual code to create the popover using the
$ionicPopover service, as shown in the following code:

$ionicPopover.fromTemplateUrl('templates/popover.html', {
 scope: $scope
 }).then(function(popover) {
 $scope.popover = popover;
 });

 $scope.openPopover = function($event) {
 $scope.popover.show($event);
 };

The preceding code block uses the $ionicPopover service to instantiate a new
popover. We also use the .fromTemplateUrl function of $ionicPopover to create
the popover. This function allows us to pass a URL for a file that contains the HTML
for our popover. The .fromTemplateUrl function also returns a promise which
returns the instance of a popover created. We then bind this popover instance to our
scope so that it is available for use in our view. There is, however, one small part
that we have not done. We passed in a file path templates/popover.html as the file
which contains the code for our popover. However, this popover.html file does not
currently exist so we need to create it.

Creating the popover.html file
To create our popover.html file, create a new file called popover.html under the
templates folder. This templates folder can be found under the www folder located in
the root directory of your project. Here is the path: www/templates/popover.html.

Now that we have created this file, the next step is to populate this file. Remember
that what we are trying to achieve is to have a list of menu items in popover.html.
We want these three options to be About, Help, and Logout to mimic a fake set of
popover options.

To start creating the content of our popover, replicate the following code block into
your popover.html:

<ion-popover-view>
 <ion-content>
 <div class="list">
 <b class="item" href="#">
 About

 <b class="item" href="#">

Chapter 6

[73]

 Help

 <b class="item" href="#">
 Logout

 </div>
 </ion-content>
</ion-popover-view>

If you have done this, you have completed implementing the template of your
popover. Now, let's understand what the HTML code we just implemented on our
popover.html file does. The <ion-popover-view> element is an element that is
essential for indicating that this particular view is a popover. It also contains an
<ion-content> element which is a container for all the visible parts of our view,
or popover in this case. We then put a div tag with a class list which is one of
the Ionic's built-in classes. Within this div, there are three HTML bold tags that
represent our three fake options. That is all we need to complete the implementation
for our template. The final step is to wire our popover to ensure it works as it should.

Wiring up the popover
This is the final step to get our popover to work. Remember that we created a
function on our PlayListsCtrl controller called openPopover() which takes in
a $event parameter. This function will initiate the popover when executed. We
will also have to pass the $event parameter, which is a reserved parameter that
represents an event sent from the view.

To put this into action, we will first need to wire this openPopover() function to be
executed when the popover icon we created earlier is clicked. This popover button
is in our playlists.html file from earlier steps. Your current playlists.html file
should look close to what we have in the following code block:

<ion-view view-title="London Sites">

 <ion-nav-buttons side="right">
 <button class="button button-clear icon ion-more"></button>
 </ion-nav-buttons>

 <ion-content>
 <ion-list>
 <ion-item ng-repeat="site in sites">
 {{site.name}}
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

Advanced Ionic Components

[74]

What we need to do is add an Ionic tap event on the popover icon button that we
created. We can do this with the Ionic provided attribute directive called on-tap.
This on-tap attribute directive takes in a function which we want to be executed
when the containing element is tapped. In our case, we want this function to be the
openPopover function. Right now our popover Icon button code looks as follows:

<ion-nav-buttons side="right">
 <button class="button button-clear icon ion-more"></button>
 </ion-nav-buttons>

Now, the code for the on-tap ionic attribute directive for <button> will look
as follows:

on-tap="openPopover($event)"

You can see $event being passed as a parameter. Remember that this is very
important and must be passed exactly as that. The final code for your playlists.
html will look like the following code block:

<ion-view view-title="London Sites">

 <ion-nav-buttons side="right">
 <button class="button button-clear icon ion-more" on-
 tap="openPopover($event)"></button>
 </ion-nav-buttons>

 <ion-content>
 <ion-list>
 <ion-item ng-repeat="site in sites">
 {{site.name}}
 </ion-item>
 </ion-list>
 </ion-content>
</ion-view>

With that done, we have completely finished the implementation of our popover.
Now, we can run it in our browser using the ionic serve technique to see what it
looks like.

If you correctly ran your app using the ionic serve technique, you should see
something that looks like the following screenshot when you click the popover icon
button. The view will be different depending on whether you are testing with an
Android or iOS emulator setting:

Chapter 6

[75]

The popover is a great contextual menu tool for fitting extra menu options. It also
has an automatic way of displaying a different version depending on what mobile
operating system it is being displayed on. Now that we have learned how to use the
Ionic Popover, let's learn to use the Ionic Modal.

The Ionic Modal
The Ionic Modal is a component feature that Ionic provides and is used to create
a modal window in our application. A modal window is a view that pops up on
an existing page without losing the context of your current action. As soon as it is
dismissed, the previous view state is restored. It is a great tool for collecting extra
information or displaying something on the screen without losing track of our
current state.

Creating the modal
Ionic exposes the modal functionality via a service called the $ionicModal service.
This service provides us a way of creating a modal in our application. Before we
begin implementing our modal, let's understand what we aim to do with the modal
feature in our application.

We will still be using our LTA application and adding a modal. We want this modal
to mimic a sample About page of our application which will have some small details
about the app. Remember that we already have a button from the popover we created
earlier which has a text labeled as About. We will wire this popover item to simply
open the modal when tapped.

Advanced Ionic Components

[76]

Implementing the modal
To begin implementing the modal, open your controller.js file and locate
the PlaylistsCtrl controller. The first thing to do is add a dependency to the
$ionicModal service on the PlaylistsCtrl controller. This is done by adding
$ionicModal as a parameter for the PlaylistsCtrl controller function definition.
Doing this correctly should make your PlaylistsCtrl controller look like what we
have in the following code block:

.controller('PlaylistsCtrl', function($scope, $http,
$ionicPopover, $ionicModal) {
 $scope.sites = [];
 $http.get('/sites.json')
 .then(function (response) {
 $scope.sites = response.data;
 });

 $ionicPopover.fromTemplateUrl('templates/popover.html', {
 scope: $scope
 }).then(function(popover) {
 $scope.popover = popover;
 });

 $scope.openPopover = function($event) {
 $scope.popover.show($event);
 };
})

The next thing we are going to do is write the code for our modal in our
PlaylistsCtrl controller. The following code represents the code for our modal:

$ionicModal.fromTemplateUrl('templates/modal.html', {
 scope: $scope
 }).then(function(modal) {
 $scope.modal = modal;
 });
 $scope.openModal = function() {
 $scope.modal.show();
 };
 $scope.closeModal = function() {
 $scope.modal.hide();
 };

Chapter 6

[77]

Replicate the preceding code into your PlaylistsCtrl controller. If you have done
this correctly, your code block for the PlaylistsCtrl controller should look like
the following:

.controller('PlaylistsCtrl', function($scope, $http,
$ionicPopover, $ionicModal) {
 $ionicModal.fromTemplateUrl('templates/modal.html', {
 scope: $scope
 }).then(function(modal) {
 $scope.modal = modal;
 });

 $scope.openModal = function() {
 $scope.modal.show();
 };

 $scope.closeModal = function() {
 $scope.modal.hide();
 };

 $scope.sites = [];
 $http.get('/sites.json')
 .then(function (response) {
 $scope.sites = response.data;
 });

 $ionicPopover.fromTemplateUrl('templates/popover.html', {
 scope: $scope
 }).then(function(popover) {
 $scope.popover = popover;
 });

 $scope.openPopover = function($event) {
 $scope.popover.show($event);
 };
 })

Now, let's understand what the code for the modal is doing. We used the
$ionicModal service to create a modal via its .fromTemplateUrl() method. This
method takes two parameters; the first being the path to an HTML file containing
the modal, and the second being an options object. This options object lets us
customize the modal and even provides us with ways to customize things like what
animation to use. For now, we only specify the scope the modal should use, which in
this case is the scope of our controller.

Advanced Ionic Components

[78]

The .fromTemplateUrl method returns a promise with the created modal, which we
set to our $scope. The following code is a reflection of the modal creation:

$ionicModal.fromTemplateUrl('templates/modal.html', {
 scope: $scope
 }).then(function(modal) {
 $scope.modal = modal;
 });

We also have two functions that we created. These functions are .openModal() and
.closeModal(). The openModal() function is bound to the $scope, and all it does
is use the created modal's .show() method. The .closeModal() function does the
opposite by implementing the .hide() method of the created modal. One thing we
have not done yet is create the HTML template we passed, which is the modal.html
in this case.

Creating the modal.html file
Navigate to your templates folder and create a new HTML file called modal.
html. The following code represents the template file for our modal, and you are to
replicate this code into your modal.html file:

<ion-modal-view>
 <ion-header-bar class="bar bar-header bar-positive">
 <h1 class="title">About The App</h1>
 <button class="button button-clear button-primary" on-
 tap="closeModal()">Cancel</button>
 </ion-header-bar>

 <ion-content class="padding">
 The LTA app is part of the Ionic By Example book written
 by Sani Yusuf.
 </ion-content>
</ion-modal-view>

If you look at this code closely, you can see an <ion-modal-view> element as the
root element of the code. This <ion-modal-view> element is the root element of
any modal template. We can also see that we have an <ion-header-bar> element
and this element has a <h1> element used to declare the title of the modal header.
There is also a <button> element that has an on-tap attribute that is directed to a
closeModal() function which we created earlier.

There is also an <ion-content> element which is used to contain the visible main
body of the modal. There is some dummy text to mimic the About page of the LTA
app, but feel free to add some of your own HTML text. The last step we need to do is
wire our popover button to open our modal.

Chapter 6

[79]

Wiring up the modal
To wire up our modal, remember that we want our About popover menu item to
open the modal when tapped. To begin, first open the popover.html file of your
project. What you have currently is as follows:

<ion-popover-view>
 <ion-content>
 <div class="list">
 <b class="item">
 About

 <b class="item">
 Help

 <b class="item">
 Logout

 </div>
 </ion-content>
</ion-popover-view>

All we need to do is use the Ionic on-tap attribute on the About entry to reference
the openModal() function. Doing this correctly will make our popover code look like
the following:

<ion-popover-view>
 <ion-content>
 <div class="list">
 <b class="item" on-tap="openModal()">
 About

 <b class="item">
 Help

 <b class="item">
 Logout

 </div>
 </ion-content>
</ion-popover-view>

Advanced Ionic Components

[80]

With this done, we have completed the implementation of our modal window.
The next thing to do is to go ahead and test this. To do this, run your application
using the Ionic serve technique. When your app is up and running in the browser,
tap the popover icon and the About option. This should bring up a modal window
like the one shown in the following screenshot:

Summary
In this chapter, we used two very important features of Ionic and learned to create
a popover and modal. We still used our LTA application from the previous chapter.
The Ionic Popover is a great feature which is used to add extra menu items or
provide contextual menu options. We also learned about the Ionic Modal, which is
used to provide a view over another view of the app while maintaining the context.

In the next chapter, we will learn to use some of the customization techniques of
Ionic, along with how to customize our Ionic app.

Chapter 7

[81]

Customizing the App
In the previous chapter, we dug deeply into some more advanced features of Ionic
like the popover and the modal features. In this chapter, we will be focusing on
customizing an Ionic application. The Ionic SDK comes by default with some great
tools that make it easy to customize your application to fit the design guides of your
brand. This is thanks to its built-in integration of Gulp for your build process needs
and SCSS for CSS preprocessing.

Ionic also has a special Angular provider called $ionicConfigProvider. This provider
can be used to do a lot of configuration and customization like specifying what type of
animations your application should use or even more advanced stuff like specifying
how many cache items you want in your cache. The $ionicConfigProvider also lets
you specify these configurations on a global level, or on a platform-by-platform basis.

Customizing the look and feel of your
app
When you created an Ionic application using one of the Ionic templates, you would
have noticed by now that it comes with some built-in default CSS styles. Many times
you will want to know how you can add your own colors and styles while keeping
some of the built-in Ionic styles.

Customizing the App

[82]

Ionic styles with SASS
This is well thought out by the Ionic team and for this reason, they actually created
all their CSS styles using SCSS. SCSS is an independent technology based on SASS
that lets you write CSS in an object-oriented way which then gets compiled into CSS.
SCSS is a really cool way to write CSS rules as it allows us to create variables and use
them to create our style sheet. If you are completely new to SCSS and you want to
see some brief information about SCSS, feel free to visit http://sass-lang.com.

Now, let's have a look at the folder structure of an Ionic project once more with
customization of our styles with SCSS in mind.

Ionic SCSS overview
To have an overview of the SCSS structure of Ionic, we are going to create a brand
new application using the Ionic blank template. We are going to call this application
custom-app. The following is the command to create this new application. Fire up a
terminal window on your computer and CD into a directory of your choice and run
the following command:

ionic start custom-app blank

After you have created your new custom-app application, open this new project
in your favorite IDE to have an overview of the folder structure. You should see
something close to what we have in the following screenshot:

http://sass-lang.com

Chapter 7

[83]

There are two folders that you should pay close attention to. The first folder is the
scss folder found in the root directory of the project. This folder has a file called
ionic.app.scss within it; we will take a look at this in more detail. The following
is a screenshot of what this folder looks like:

The second folder is also titled scss, but this folder can be found by navigating to
the following path from the root folder www/lib/ionic/scss.

Customizing the App

[84]

The following screenshot shows this folder:

Now, if you look even further within this second scss folder, you should see
something that closely resembles what we have in the following screenshot with
a number of SCSS files within the scss folder:

Chapter 7

[85]

This scss folder contains a numerous amount of files and you might be wondering
what these files are for. As a part of this book, you do not need to understand the
entire process of what these files are doing, but you need to know that they are the
files that contain the SCSS code for every Ionic element. The entire Ionic CSS style
sheet is generated by compiling these SCSS files. It is possible to go into these files to
make changes to any SCSS file, but this is probably not a good idea, as you will risk
breaking any dependencies in the SCSS code. For this reason, Ionic provides a much
simpler way to do this thanks to ionic.app.scss that we briefly looked at earlier
and will be looking at closely now.

The ionic.app.scss file
The ionic.app.scss file can be found within a directory called scss in the project
root directory, as shown in the following screenshot:

This file is the most important file for customizing the styles of your Ionic app. Think
of this file as an interface for overriding any SCSS style contained in any of the SCSS
files we noted in the www/lib/ionic/scss path. If you look at this ionic.app.scss
file currently, it should look like what we have in the following code:

/*
To customize the look and feel of Ionic, you can override the
variables in ionic's _variables.scss file.

For example, you might change some of the default colors:

$light: #fff !default;
$stable: #f8f8f8 !default;
$positive: #387ef5 !default;
$calm: #11c1f3 !default;
$balanced: #33cd5f !default;
$energized: #ffc900 !default;
$assertive: #ef473a !default;
$royal: #886aea !default;
$dark: #444 !default;
*/

// The path for our ionicon's font files, relative to the built CSS in
www/css

Customizing the App

[86]

$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

From the preceding code, you can even see some comments that tell you how to use
the file to override your SCSS styles. Now, before we start learning how to actually
override these files, first let's learn how to set up our SCSS for our project.

Setting up SCSS
Before we set up the SCSS, we will first have a brief look at how our CSS is currently
integrated. When you create a new Ionic project, the project uses styles from two
sources by default.

The first source is the ionic.css file which can be found in the path lib/ionic/
css/ionic.css. This file contains already compiled CSS code for all the Ionic default
styles. It is simply a CSS compilation of all the SCSS files found in the www/lib/
ionic/scss/ionic directory relative to the root directory of your project.

The second source is the style.css file found in the css/style.css path relative to
the root directory of your project. This file is normally empty at the time you create
your project and is a place where you can enter your own custom styles in CSS, if you
do not want to use SCSS. A look at the index.html file as shown in the following
screenshot shows how these two files are referenced as CSS style sheets by default:

Chapter 7

[87]

With this explained, we will go ahead and start setting up SCSS on our Ionic
application.

Setting up SCSS can be quite challenging traditionally but Ionic comes built-in with
some tools that make it easy. To begin the process of setting up the SCSS of your
project, fire up a terminal window and simply navigate into your project's root
directory by running the cd custom-app command.

The next step is to install bower on your computer if you do not already have this
installed. You can do so by running the following command:

npm install bower –g

You might need to prefix the sudo command if you are on a Linux
or Mac computer. This will be sudo npm install bower –g.

After this, the final step to get SCSS setup is by running the following command:

ionic setup sass

This command will do all the necessary things behind the scenes that are needed to
enable your project to work with SCSS. After this command is complete, you will
notice a new folder called the node-modules folder in the root of your project. This
is completely normal and is the folder that contains the packages necessary for your
project to work with SCSS.

By now, we have successfully set up SCSS for our project. The first thing you should
look at is your index.html file. Your index.html should resemble the following
code block:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1, maximum-
 scale=1, user-scalable=no, width=device-width">
 <title></title>

 <!-- compiled css output -->
 <link href="css/ionic.app.css" rel="stylesheet">

 <!-- ionic/angularjs js -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>

Customizing the App

[88]

 <!-- cordova script (this will be a 404 during development)
 -->
 <script src="cordova.js"></script>

 <!-- your app's js -->
 <script src="js/app.js"></script>
 </head>
 <body ng-app="starter">

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 </ion-content>
 </ion-pane>
 </body>
</html>

The first thing you will notice in the header is that the reference to CSS files have
changed in comparison to what we briefly discussed earlier. Now, you have only
one CSS reference in the <head> part of index.html pointing to css/ionic.app.
css. You might be wondering how this happened. Well, basically when you set up
SCSS like we have done in this chapter so far, Ionic automatically sets up the SCSS
to compile all the SCSS and output them into ionic.app.css.

If you navigate to the www/css path, you will see that we have three files as opposed
to one as we saw earlier. You will see an ionic.app.css file and an ionic.app.
min.css file. These two files are the same with ionic.app.min.css being a minified
version of the ionic.app.css. They are the output of all the SCSS files that we
checked out earlier compiled into one file. There are a lot more things that happen
behind the scenes to ensure that this SCSS compilation happens, but for the sake of
simplicity we won't be going deep into that in this book.

Chapter 7

[89]

Customizing the SCSS
To begin customizing our app, the first thing you want to do is to run your application
using the ionic serve technique learned from previous chapters in this book, using
the following command:

ionic serve

This should bring up your application running in the browser and you should see
something that closely resembles what we have in the following screenshot:

Make sure you don't close your terminal or terminate the serve session
from here on, in order to follow the instructions that come soon.

Now to explain what we will try to do, first let's have a look at the code for the
head of this app. The code block is the code for our app and you can find this in the
index.html file in the www folder of your project:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="initial-scale=1, maximum-
 scale=1, user-scalable=no, width=device-width">
 <title></title>

 <!-- compiled css output -->
 <link href="css/ionic.app.css" rel="stylesheet">

 <!-- ionic/angularjs js -->
 <script src="lib/ionic/js/ionic.bundle.js"></script>

Customizing the App

[90]

 <!-- cordova script (this will be a 404 during development)
 -->
 <script src="cordova.js"></script>

 <!-- your app's js -->
 <script src="js/app.js"></script>
 </head>
 <body ng-app="starter">

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 </ion-content>
 </ion-pane>
 </body>
</html>

Pay close attention to the piece of code that represents the main view part of the
preceding code block which is also represented in the following code block:

 <ion-pane>
 <ion-header-bar class="bar-stable">
 <h1 class="title">Ionic Blank Starter</h1>
 </ion-header-bar>
 <ion-content>
 </ion-content>
 </ion-pane>

If you look at the opening <ion-header> tag, you will see that it has a class called
bar-stable. This is an in-built class that Ionic comes with which gives the header a
sort of light gray color, as seen from the screenshot we visited earlier.

Let's say we want to customize this header to fit our brand color and let's say, for
example, that our brand color and this brand happens to be my favorite accent of red
which has the hex code of #D71300.

Now, you might be tempted to go into the ionic.app.css file to look for every
occurrence of this in our CSS style sheet and change it. But remember that this
ionic.app.css is generated based on our SCSS files. Ionic gives us a great way to
override default styles with SCSS thanks to the ionic.app.scss file which can be
found in the scss directory. We looked at this file earlier and we are going to look
at it again:

/*
To customize the look and feel of Ionic, you can override the
variables in ionic's _variables.scss file.

Chapter 7

[91]

For example, you might change some of the default colors:

$light: #fff !default;
$stable: #f8f8f8 !default;
$positive: #387ef5 !default;
$calm: #11c1f3 !default;
$balanced: #33cd5f !default;
$energized: #ffc900 !default;
$assertive: #ef473a !default;
$royal: #886aea !default;
$dark: #444 !default;
*/

// The path for our ionicons font files, relative to the built CSS
in www/css
$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

The preceding code block resembles what you currently have in your ionic.app.
scss file. To override the color of the header, we will override the current color of
the $stable variable of our SCSS.

The code for this is as follows:

$stable: #D71300;

You are supposed to replicate the preceding code anywhere but just before the last
line of the following code block:

@import "www/lib/ionic/scss/ionic";

Now, your final code should resemble the following:

/*
To customize the look and feel of Ionic, you can override the
variables in ionic's _variables.scss file.

For example, you might change some of the default colors:

$light: #fff !default;
$stable: #f8f8f8 !default;
$positive: #387ef5 !default;
$calm: #11c1f3 !default;
$balanced: #33cd5f !default;
$energized: #ffc900 !default;

Customizing the App

[92]

$assertive: #ef473a !default;
$royal: #886aea !default;
$dark: #444 !default;
*/

$stable: #D71300;

// The path for our ionicons font files, relative to the built CSS
in www/css
$ionicons-font-path: "../lib/ionic/fonts" !default;

// Include all of Ionic
@import "www/lib/ionic/scss/ionic";

Once this is done, save the ionic.app.scss file. By doing this, you have completed
the process of overriding the app, and your header should now be red. Go back to
your application on the browser or run your app with the ionic serve technique if
you don't have it running and you should see something that looks similar to what
we have in the following screenshot:

You can see that header now takes the color of the hex code we provided in the
ionic.app.scss file. We can override any default file with this file. All you need to
do is have a glance through the lib/ionic/scss folder, identify the SCSS rule you
want to override, and override in ionic.app.scss.

With this done, we have completed the process of learning how to override and set
up SCSS of our Ionic app. The next step is to learn about $ionicConfigProvider.

Chapter 7

[93]

$ionicConfigProvider
$ionicConfigProvider is a provider that Ionic exposes and which allows us to do
some very powerful configurations. We will not be writing any code for this as it is
an advanced feature but you should be well aware of its existence.

Some of the features that $ionicConfigProvider lets you do, include the following:

• Specify the transition type for your app
• Set the maximum cache
• Disable/enable animations
• Enable/enable native scrolling
• Specify tabs positions

These and many more are some of the features that $ionicConfigProvider lets
you fiddle with. Remember that this feature is a fairly advanced feature and it is
very likely possible to completely design your app without it. Most apps most likely
do not use its features but if you find yourself ever needing to use it, you can visit
the official documentation for $ionicConfigProvider to see its full potential at
http://ionicframework.com/docs/api/provider/$ionicConfigProvider/.

Summary
In this chapter, we learned how to customize our application by setting up SCSS for
our Ionic app. We also had a brief look at $ionicConfigProvider and saw some of
its wonderful features. In the next chapter, we will get to learn how to create a new
type of Ionic app based on the tabs template.

http://ionicframework.com/docs/api/provider/$ionicConfigProvider/

Chapter 8

[95]

Building a Simple Social App
In this chapter, we are going to focus on learning how to create an Ionic application
that has tabs using the Ionic tabs template. We will also have a look at some of the
things that make up the tabs template and learn how to add features into it.

The Ionic tabs application
Tabs are a very common menu system in mobile apps. They provide users with a
simple yet effective way to create independent views in an app that sort of act like
apps within an app.

Building a Simple Social App

[96]

The preceding screenshot is a view of a sample Ionic tabs application. One great
feature that a tabbed menu system provides is the ability to maintain the independent
context within each individual tab menu. No matter where you are in the application,
you always have the option of switching to another tab at any point. Navigation
history is another feature that the tabs menu provides. You are able to navigate to
different views within each tab, and you do not lose this navigation history when you
switch back and forth between any tab menu. Now that we have some clarity about
what the tabs application entails, let's go ahead and create a brand new tab application
and look in detail at how it operates.

Creating an Ionic tabs application
Creating an Ionic tabs application is not too different from creating the side menu
and blank Ionic applications as we have done in the previous chapters of this book.
We are going to create a new Ionic tabs application, and we will call this application
tabs-app. To create this new application, fire up a terminal window and run the
following command:

ionic start tabs-app tabs

Using the preceding command, you will create your tabs-app ionic application
successfully. The next thing we are going to do is to have an overview of the
application we just created. To do this, simply open the tabs-app project in your
favorite IDE. You should have a projects folder structure that looks similar to
what I have in the following screenshot:

Chapter 8

[97]

Running the tabs-app application
Now that we have created our app, let's go ahead and see it in action. To do this, fire
up a terminal window on your computer and run your application using the ionic
serve technique.

Make sure you are within your project's folder by running cd tabs-
app. To run your app using the ionic serve technique, run the ionic
serve command on your terminal.

Building a Simple Social App

[98]

You should see an application with three tabs that looks similar to what we have in
the following screenshots.

• For iOS:

• For Android:

Chapter 8

[99]

Overview of the tabs-app application
To begin to understand the life cycle of our tabs-app Ionic tabs application,
we first need to have a look at the entry module of our application. Our entry
module is normally specified within the index.html file of our app via
the ng-app directive.

The index.html file is located in the www directory of your application.

A look through your index.html will reveal a file that closely resembles what we
have in the following screenshot:

Building a Simple Social App

[100]

You will see an Angular module called starter specified as on the opening
<body> tag of our page via the ng-app directive. This can be seen highlighted in the
preceding screenshot. This starter module is normally located in our app.js file,
and we are going to have a look at it to understand the module even more deeply.

The app.js file is located in the www/js path of you project.

Open your app.js file and pay close attention to the .config() function where your
routes are configured. Pay close attention to the first route definition of a route called
tab. This route definition is represented in the following screenshot:

This tab state is an abstract state. An abstract state in Angular is a state that you
cannot directly navigate to but which can contain child states that can be navigated
to. This is a great way to create some sort of hierarchy for your states.

Based on the state definition of the tabs as highlighted in the preceding screenshot,
you can see that it references templateUrl to the tabs.html file contained in the
templates/template.html directory. To understand how Ionic works with tabs,
let's explore the tabs.html file.

Overview of the tabs.html file
When you open your tabs.html file, you will see something that closely resembles
what I have in the following screenshot:

Chapter 8

[101]

You will clearly see that the entire markup is wrapped within the <ion-tabs>
element. This <ion-tabs> element is the root element that acts like a container for
the tabs that you declare in your Ionic tabs application. You can see that the opening
<ion-tabs> tag also has a class attribute with some built-in Ionic CSS classes
provided. This is because the <ion-tabs> element is just like every other element
and is submissive to some CSS styling.

The <ion-tab> element
Within the <ion-tabs> element, you will see three distinct <ion-tab> elements.
The <ion-tab> element is the element used to create a tab and must be a child
element of the <ion-tabs> element. You will see that each <ion-tab> element has
some attributes. The title attribute is used to specify the title that that particular
tab will display. The icon-on and icon-off are attributes that are used to define
what icons get displayed when the tab is in focus and out of focus. Lastly, the href
attribute is used to provide the path of the route that should be navigated to when
that particular tab is selected.

There are a lot more attributes that are available for different
customizations and actions for <ion-tab>, and these are all available
and duly documented on the official Ionic documentation page.

Building a Simple Social App

[102]

Within each <ion-tab> element, you will find an <ion-nav-view> declaration.
The <ion-nav-view> is an element used to refer to an Angular view. If you pay
close attention, you will see that the <ion-nav-view> elements have a name attribute,
which has values. This name attribute is used to specify the name of a particular view
that is defined in our app.js file. If you have another short look at the app.js file,
as we did previously in this chapter, you will see that some of the states have views
defined. A clear demonstration of this is shown in the following screenshot of the
tab.dash state:

You can see that there is a tab-dash view named within the views object, and this
tab-dash view has a templateUrl definition as well as a controller definition
similar to a normal state definition. This is how Ionic provides a hierarchy that
enables each tab to have a separate <ion-nav-view>, where its view is placed.
To get an even better understanding of how this tab system works, we will be
adding another tab to our application.

Adding tabs to the tabs-app application
We will add one new tab which will contain a feature that will let users post
messages like a message board and see that it appears similar to a Facebook wall
or a Twitter wall. We will be calling this new tab the wall tab. To add this new tab,
the first thing we need to do is to add the route for our new tab.

Adding the state for the new tab
To add the state for our new tab, we need to define this tab in our app.js file where
all our default tab routes are defined. Within the .config() function found in your
app.js file, place the following block of code just after the state definition of the tab
abstract state:

Chapter 8

[103]

.state('tab.wall', {
 url: '/wall',
 views: {
 'tab-wall': {
 templateUrl: 'templates/tab-wall.html',
 controller: 'WallController'
 }
 }
 })

If you have done this correctly, parts of the .config() function of your app.js file
should look something like this:

Let's try to understand what we have just done here. We have created a new state
called tab.wall, which has a route /tab. This means that we are able to navigate to
this tab.wall state or /tab route as part of our Angular application. We have also
created a new view called tab-wall, and later in this chapter, we will use this
tab-wall view to reference it as where we want the content of our newly created
tab to be displayed.

Building a Simple Social App

[104]

If you take a closer look at our new state definition, you will see that we referenced
a templateUrl to a file with the path templates/tab-wall.html and a controller,
WallController, both of which we have not yet created. We will need to create this
tab-wall.html file and also create the WallController controller.

Creating the tab-wall.html file
To create the tab-wall.html file correctly, we need to make sure that we create it
within the templates directory in order for it to match the templates/tab-wall.
html directory which we passed when declaring our state definition.

Create a file called tab-wall.html within your templates folder. If you have done
this correctly, your templates directory should look something very similar to what
we have in the following screenshot:

The next step is to actually populate the newly created tab-wall.html file. Place the
code as shown in the following code block into your tab-wall.html file:

<ion-view view-title="Wall">
 <ion-content class="padding">

 <div class="list">
 <div class="item item-input-inset">

Chapter 8

[105]

 <label class="item-input-wrapper">
 <input type="text" placeholder="enter your message">
 </label>
 <button class="button button-small">
 Post
 </button>
 </div>
 </div>

 <div class="card">
 <div class="item item-text-wrap">
 This Is A Sample Message Post
 </div>
 </div>

 </ion-content>
</ion-view>

If you have correctly done this, your tab-wall.html should look something like the
following screenshot:

This next step is to create the controller we defined in our state definition.

Building a Simple Social App

[106]

Creating the WallController controller
To create the WallController controller, first we need to open the controller.js
file. This file can be found within the same folder as our app.js file, that is, the JS
folder. Your controller.js file should closely resemble what we have in the
following screenshot:

To create the WallController file, simply place the code found in the following
code block just after the first line where you can find the line of code, angular.
module('starter.controllers', []):

.controller('WallController', function($scope) {

 })

Chapter 8

[107]

If you have correctly replicated this code, your controller.js file should closely
resemble to the following screenshot:

By doing this, we have successfully created the WallController controller. However,
we still have one last step to complete the implementation of our new tab. We need to
actually create the tab itself using the <ion-tab> element.

Building a Simple Social App

[108]

Creating the tab
To create our tab, we need to revisit the tabs.html file. Within the file, locate the
opening <ion-tabs> tag and place the code mentioned in the following code block
just after that:

<!-- Wall Tab -->
 <ion-tab title="Wall" icon-off="ion-ios-compose-outline" icon-
 on="ion-ios-compose" href="#/tab/wall">
 <ion-nav-view name="tab-wall"></ion-nav-view>
 </ion-tab>

If you have done this correctly, your tabs.html file should look like what is shown
in the following screenshot:

By doing this, we have successfully created a new tab in our application. Let's recap
what we did to achieve this feat. First, we created a new state definition for our tab
and referenced it a controller and template file. We then went ahead to create the tab
itself using the <ion-tab> element, as in the preceding screenshot.

If you look at the preceding screenshot and pay close attention to <ion-tab> that
we just replicated from the code block, you will see that its <ion-nav-view> child
element has a name attribute with the value tab-wall. This is simply referencing the
view we defined while defining our tab.wall state in our app.js file. These steps
complete our tabs implementation.

Chapter 8

[109]

Now, the next step is to go on and run our app and see it in action. To do this, simply
run your application using the ionic serve technique.

To run your app using the ionic serve technique, simply run ionic
serve from the root directory of your tab-app application.

If you have done this correctly, you should see something that closely resembles
what we have in the following screenshots.

• For iOS:

• For Android:

Building a Simple Social App

[110]

Summary
In this chapter, we learned about the Ionic tabs application template. We also created
a tabs application called tabs-app and even got as far as adding a new tab of our
own. In the next chapter, we will be using this same application to learn how to use
Firebase to add backend services to our application.

Chapter 9

[111]

Connecting to Firebase
In this chapter, we are going to focus solely on learning how to use Firebase to
integrate a backend with our Ionic application. Firebase is a real-time data store
technology that uses JSON-style database structure to let you store your data in the
cloud. We will also be using the tabs-app app that we created in Chapter 8, Building
a Simple Social App, to learn to integrate Firebase into our application.

Extending our tabs-app Ionic app
In Chapter 8, Building a Simple Social App, we created tabs-app. If you recall correctly,
we added a new tab called walls.

The basic idea we had for the wall tab we added was that it would be like a message
board where a user could type a post and then tap the button labeled Post to see it on
the message board, as shown in the following screenshot:

Connecting to Firebase

[112]

The first thing we need to do is to implement our mechanism to allow users to post,
as this does not currently work in our tab-app application.

Implementing the post wall feature
To recap what we want from our wall tab, we want to be able to enter message in
the message box, as seen in the preceding screenshot, and have the message appear
like the sample message post. To begin, we start by implementing the code for
adding a post in our controller.

This code is provided in the following code block:

$scope.post = {
 message : ''
 };

 $scope.posts = [];

 $scope.addPost = function () {
 $scope.posts.unshift($scope.post);

 $scope.post = {
 message: ''
 };
 };

You will need to replicate the code provided in the preceding block within your
WallController controller. This WallController controller can be found within the
controller.js file of your tabs-app application. The WallController controller
can be found in the path www/js/controller.js.

If you have done this correctly, your WallController controller will look like what
we have in the following screenshot:

Chapter 9

[113]

Let's understand what this code is doing. We are simply attaching a post object to
the controller. We are also declaring a posts array where all our posts will be stored.

Lastly, we have a function called addPost() which will add a new post to the posts
array every time it is fired.

The next step is to wire this controller into the view of our Wall tab. The markup for
this view is located in the tab-wall.html file. Now, this file looks like what we have
in the following screenshot:

You will need to completely replace the markup found within <ion-content> with
the markup provided in the following code block:

<div class="list">
 <div class="item item-input-inset">
 <label class="item-input-wrapper">
 <input type="text" placeholder="enter your message"
 ng-model="post.message">
 </label>
 <button class="button button-small" on-tap="addPost()">
 Post
 </button>
 </div>
 </div>

 <div class="card" ng-repeat="post in posts">
 <div class="item item-text-wrap">

Connecting to Firebase

[114]

 {{post.message}}
 </div>
 </div>

If you have done this correctly, your tab-wall.html file will have a markup that
looks like the following screenshot:

By doing this, we have completed the process of implementing and wiring our
wall post feature on the Wall tab. The next step is to test it using the ionic serve
technique. Go ahead and run your app using the ionic serve technique and you
should see your app running in the browser.

If you try to add a message in the text box found in the Wall tab and click
the Post button, you will see a message appear, like what we have in the
following screenshot:

Chapter 9

[115]

The backend challenge
The one problem or challenge we have with our current application is that it does
not persist. By this, we mean that once we refresh the browser, all our data is gone
and we have to start again. How cool would it be if we could enter a post and when
we revisited our app, we could carry on from where we left off just like every other
message board in other applications? Well, we can achieve this thanks to a great
technology called Firebase. The first thing we will do is try to understand Firebase
and what exactly it is.

Firebase
Before we begin this chapter, it is very important that we understand the technology
we are going to be using to integrate our backend. The technology in question is
called Firebase. Firebase is a technology that lets us store real-time data. Unlike
traditional backend databases where you need a server running, you do not need to
have a hosted server with Firebase.

All you need to get going with Firebase is an active Google account and you are
good to go. Let's set up a new Firebase account.

If you do not have a Google account, you can create one by visiting http://www.
gmail.com.

Setting up a new Firebase account
The first thing you need to do to set up your Firebase account is go to the Firebase
website, which is http://www.firebase.com.

http://www.gmail.com
http://www.gmail.com
http://www.firebase.com

Connecting to Firebase

[116]

You should see a screen that looks like what we have in the following screenshot:

Once this is done, you should see a button labeled Sign Up With Google on the top
right-hand corner.

When you click this button, you should see a Gmail window asking you to select or
log in to a Google account. After you select the Google account you want to use, you
should be redirected to your brand new Firebase account. The window you will be
redirected to should look like what we have in the following screenshot:

Chapter 9

[117]

All the examples we have here are based on our sample account. You
should not use the URLs from the preceding screenshot but instead use
the ones you see in your own window. If you do not, your sample
will not work.

You will see that there is a Firebase app created for you called MY FIRST APP.
When using Firebase, for each app we create we also create an app for it on our
Firebase dashboard. This is because Firebase uses a distinct URL to provide you
access to the data of each unique application you create. So, think of this MY FIRST
APP Firebase app as a database.

Now, let's take a closer look at MY FIRST APP:

You should see something very similar to the preceding screenshot. You can
access the URL for your Firebase database by clicking on the post fixed with the
.firebaseIO.com URL. Remember that the URL you see on the screenshots will be
different from the ones you see on your dashboard, and you are to use the ones on
your dashboard.

You can see that the URL we have here for demonstration is luminous-
inferno-8905.firebaseIO.com.

luminous-inferno-8905.firebaseIO.com
luminous-inferno-8905.firebaseIO.com

Connecting to Firebase

[118]

Click the URL you have on your dashboard and that should take you to your
Firebase database, which should look similar to the following screenshot:

Just to clarify once again, Firebase uses URLs to access databases. What you see in
the preceding screenshot is the dashboard for your database. You can also see the
same database URL in the browser's address bar. Firebase uses JSON-style data
structure, so basically what we send to it is JSON, and what we store is JSON too.

When we add data to our database, we will be able to see it in this dashboard.

Integrate Firebase into tabs-app application
Now that we have our Firebase account and know how to get the URL of our
Firebase database, the next step is to integrate it into our application.

Adding Firebase and Angular-Fire scripts
The first thing we need to do is to add the scripts we will need. We will need two
scripts. The first is the Firebase library. The second script is the Angular-Fire library.
Angular-Fire is an Angular library that makes working with Firebase in an AngularJS
application much simpler.

Chapter 9

[119]

The simplest way is to use the hosted library references. To add this to our app,
open your index.html file and add the following script references within <head>
of your application:

<!-- Firebase -->
<script src="https://cdn.firebase.com/js/client/2.2.4/firebase.js"></
script>
<!-- AngularFire -->
<script
src="https://cdn.firebase.com/libs/angularfire/1.1.3/
angularfire.min.js"></script>

If you have done this correctly, the head part of your index.html should look like
the following screenshot:

Make sure your references are below the Ionic bundle as seen in the
preceding screenshot. This is very important or else your app will not
work properly.

The next step is to reference your Angular-Fire module. This step will ensure that we
can use Angular-Fire within our application. The name of this module is firebase.
This will be added to the root module of your application, called starter in your
app.js file.

Connecting to Firebase

[120]

Currently, this module's declaration looks something like what we have in the
following screenshot:

You will need to add the firebase module as a dependent module. Doing this
will make the module declaration to look something like what we have in the
following screenshot:

You can see that the firebase module is now added to the module declaration as a
dependency. By doing this, we have successfully integrated Firebase into the skin of
our app. The next step is to actually implement it to save our data.

Implementing Firebase to our app
To implement Firebase in our app, we will need to do some work within our
WallController controller. The first thing we need to code for is the ability to pull
items from the database. The second thing we need to code for is the ability to add
items to the database.

Pulling from database
The first thing we need to do is to add the $firebaseArray service dependency into
our WallController controller. This service is part of the Angular-Fire library and
makes it easy for us to work with arrays in Firebase.

Adding the service dependency correctly should make your WallController
controller definition look like what we have in the following screenshot:

The next step is to actually write code to pull the data from the database. Replicate
the code provided in the following code block in your WallController controller:

 var postsDatabaseRef = new Firebase("https://<YOUR-
 FIREBASE-APP>.firebaseio.com").child('posts');
 var postsData = $firebaseArray(postsDatabaseRef);

Chapter 9

[121]

This piece of code creates a new Firebase reference at first. We passed in the URL of
the Firebase database that we created earlier. Make sure you change the placeholder
text (YOUR-FIREBASE-APP) to reflect the URL of your Firebase database.

After this, we used the $firebase service that we added earlier to create a path
called postData. The last step we need to do is to allow our app to load data
from this postData path and use it. To do this, we need to edit the code of our
WallController slightly. Currently, our WallController controller's code looks
like what we have in the following screenshot:

Pay close attention to the piece of code highlighted in the preceding screenshot.
We need to edit this piece of code such that instead of equating to an empty array,
it should equate to our postData variable. Doing this correctly should make us end
up with a WallController controller that looks like the following screenshot:

Connecting to Firebase

[122]

By doing this, we have implemented the first part; our Firebase implementation and
our app now loads data from our database. The next step is to implement the code to
add our posts to our database.

Adding to database
Adding to the database is actually pretty easy. All we need to do is slightly edit our
addPost() function. Currently, our addPost() function looks like what we have in
the following screenshot:

To make our data persist in our database, we only need to replace the code
highlighted in the preceding screenshot with the following code block:

 $scope.posts.$add($scope.post);

Now, your addPost() function should look like what we have in the
following screenshot:

All we did was just change the unshift() method to the $add() method.
The $add() method is a method from Firebase that adds items to a Firebase
database. At this point, we have completed the implementation of our backend.
As easy as that was, we have a working database in just a few short steps and
can now test this live. Your final WallController controller should look like the
following code block:

.controller('WallController', function($scope, $firebaseArray) {
 var postsDatabaseRef = new Firebase("https://<YOUR-FIREBASE-
 APP>.firebaseio.com").child('posts');
 var postsData = $firebaseArray(postsDatabaseRef);

 $scope.post = {

Chapter 9

[123]

 message : ''
 };

 $scope.posts = postsData;

 $scope.addPost = function () {
 $scope.posts.$add($scope.post);

 $scope.post = {
 message: ''
 };
 };

 })

To test your application, simply run your app using the ionic serve technique.
When you do this, you should be able to enter messages in your application, and
even after you refresh your browser, the data that you have already posted will still
exist. Also, if you have a look at the Firebase dashboard for your database, you will
see that the data you entered in the app is present there.

Summary
In this chapter, we learned some really cool ways of using Firebase to easily add a
backend to our Ionic app. We only touched upon what Firebase lets us do, and you
can look at the Firebase documentation available at https://www.firebase.com/
docs/ to see the full features of Firebase.

At this point, we have almost come to the end of our book. The next chapter will
be the final one, and it is one you should definitely read. It contains some very
useful information on how to harness skills learned in this book to get even better
at using Ionic.

https://www.firebase.com/docs/
https://www.firebase.com/docs/

Chapter 10

[125]

Roundup
In this chapter, we are going to have an overview of the important things that we
haven't covered yet about Ionic and which you might find very useful. You will also
learn some useful tips about Ionic and discover some great tips about how to make
even better use of Ionic to develop great apps.

Uncovered features of Ionic
Although we covered many great topics in this book, there are a lot of great features
that we did not cover as they were beyond the scope of this book. We mostly focused
on the core features of Ionic, such as how to get Ionic set up. We then learned to
create Ionic apps using the blank, side menu, and tabs templates. We also learned to
test our Ionic application using the Chrome browser via the ionic serve technique.

In this section of the book, I will name a couple of things that will be useful for you
to get to grips with in order to become better at Ionic.

Appcamp.IO
Appcamp.IO is a free website created by some of the Ionic staff. It is a place where you
can go and learn some tips and tricks that will sharpen your Ionic development skills.

Appcamp.IO

Roundup

[126]

The content on Appcamp.IO is great for beginners, and it is in some ways in line with
the philosophy of this book.

The Ionic documentation
The Ionic documentation page is pretty much the Bible for everything on Ionic.
Ionic is very well documented and any feature you want to use is provided there
with the sample code and how to use it. You can access the Ionic documentation at
http://www.ionicframework.com/docs:

Appcamp.IO
http://www.ionicframework.com/docs

Chapter 10

[127]

The Ionic creator
This is the drag-and-drop tool built by Ionic for people who want to design their
first app or people with limited coding skills. Its greatest feature is that anything you
design by dragging and dropping Ionic elements can be tested in the browser, and the
code can be extracted as a ready-to-go application. This is great news for designers
who don't know how to code as they can quickly use the visual drag-and-drop features
of the Ionic creator to design their apps and pass on the code to seasoned developers.
You can visit the Ionic creator website at https://creator.ionic.io.

The Ionic code pen
Sometimes, even after you have visited the documentation for some component
of Ionic, you will still want to see a real code sample. Or maybe you want to try to
reproduce a bug to show others. This is where the Ionic code pen site shines. It is a
place where you can find some really great implementations of different features
with the code available for you to learn from. It is also the best way to showcase a
bug to people who can see it and help you resolve any issues.

https://creator.ionic.io

Roundup

[128]

You can visit the Ionic code pen website at http://codepen.io/ionic.

Ionic.IO
The Ionic.IO platform is a complete suite of premium tools that enable you to add
great services to your Ionic application. With Ionic.IO, you can add things like Push
Notification, Analytics, and the ability to build your app for the app store in the
cloud. There is also Ionic deploy, which is a feature that lets you update your app
live without resubmitting it to the app store.

At the time of writing this book, the Ionic.IO tools were all in beta, and although they
were free at the time of writing, Ionic has announced that they will be paid services
in future. This is something that you should closely follow as you might find yourself
needing to use some of the services provided by the Ionic.IO platform.

http://codepen.io/ionic

Chapter 10

[129]

You can visit the Ionic.IO platform at http://www.ionic.io.

The Ionic playground
The Ionic playground is a very new and useful tool to quickly bootstrap an idea.
It is a great way to simply spin off code and have it show you the results right there
in the browser. I personally see this tool as very useful in the educational world as it
makes it easy to create Ionic applications with only a browser.

If you find yourself needing to showcase/demo something quickly without any setup,
and have a computer close-by, then make sure you give the Ionic playground a try.

http://www.ionic.io

Roundup

[130]

You can visit the Ionic playground at http://play.ionic.io/.

The Ionic community
One of the chief reasons Ionic is very successful is the fact that it has a strong active
community. From social media and meetup groups to open source activists, Ionic
has a wide range of support from people around the world. This means that if you
do run into problems of any sort, you are never too far from help. With that in mind,
here are some great links to community elements that you might want to keep an
eye on:

• The Ionic forum: The Ionic forum really is a great place to voice your troubles
or find solutions to shared problems. There are multiple active members
and users who also get motivational badges for contributing to the forum by
commenting and helping others find solutions. You can access this forum at
http://forum.ionicframework.com.

• The Ionic Slack channel: This channel has over 4000 people active on it 24/7
and in multiple countries. It is a great place to meet people, find work, look for
help, employ someone, or just simply express yourself. To join the Ionic Slack
channel, simply request an invitation for free at http://ionicworldwide.
herokuapp.com.

• Twitter: Twitter is the most vibrant social medium when it comes to finding
the latest and greatest thing about Ionic. If you use Twitter, you can follow
@ionicframework for more information and updates.

http://play.ionic.io/
http://forum.ionicframework.com
http://ionicworldwide.herokuapp.com
http://ionicworldwide.herokuapp.com

Chapter 10

[131]

• The Ionic blog: Ionic writes blog posts very actively about various topics
relating to using Ionic. Some of these posts could be about critical updates,
inspirational stories, or even announcements of new products or features.
You can find the Ionic blog at http://blog.ionic.io.

• Ionic meetup groups: Around the world, there are hundreds of meetup
groups autonomously hosting events and meetups. This is a community
effort by local people to grow Ionic awareness in their locality, and you are
almost guaranteed to have one in your nearby city. If you do not have one,
feel free to start your own local meetup. You can find a list of all meetups at
http://blog.ionic.io/ionic-worldwide.

The community around Ionic is pretty much the main reason why it grew so rapidly,
and you should be sure to trust the community for any needs. As a note, make sure to
use the skills you have learned from this book to really strive and improve your Ionic
skills and build some great mobile applications. Remember that nothing is too simple
to be great and nothing is too great to be too difficult to build.

Useful resources
The following are some useful links to some sites and resources that will aid you
further in your quest to learn more about Ionic:

• The Ionic framework: http://www.ionicframework.com
• The Ionic GitHub: http://www.github.com/driftyco/ionic
• AngularJS: http://www.angularjs.org
• Ionic stack overflow: http://stackoverflow.com/questions/tagged/

ionic-framework

• Firebase: http://www.firebase.com
• NodeJS: http://www.nodejs.org
• Bower: http://www.bower.io
• Gulp: http://www.gulpjs.com
• Cordova: https://cordova.apache.org
• Ionic market: https://market.ionic.io
• ngCordova: http://ngcordova.com
• Ionic jobs: http://jobs.ionic.io
• Ionic showcase: http://showcase.ionicframework.com
• Ionic lab: http://lab.ionic.io

http://blog.ionic.io
http://blog.ionic.io/ionic-worldwide
http://www.ionicframework.com
http://www.github.com/driftyco/ionic
http://www.angularjs.org
http://stackoverflow.com/questions/tagged/ionic-framework
http://stackoverflow.com/questions/tagged/ionic-framework
http://www.firebase.com
http://www.nodejs.org
http://www.bower.io
http://www.gulpjs.com
https://cordova.apache.org
https://market.ionic.io
http://ngcordova.com
http://jobs.ionic.io
http://showcase.ionicframework.com
http://lab.ionic.io

Roundup

[132]

Summary
This chapter was a roundup of Ionic and all its features. I hope you will now know
how to build rich features for your mobile applications and have them possess
native-like features with the help of Ionic.

[133]

Index
Symbols
$ionicConfigProvider

about 81, 93
URL 93

$ionicPopover service
adding 71
code, finishing 72

<ion-tab> element 101, 102

A
abstract state 100
account, Firebase

setting up 115-118
Android 1
Android device

todo app, running 30
Angular code, Bucket-List app

Add button, wiring up 46
controller, binding 46
input box model, binding 46
ion-item, binding 47
text, entering into input box 42
wiring, to UI 46
writing 42

AngularJS
URL 131

Apache Cordova 3, 4
Appcamp.IO 125

B
Bower

URL 131
Bucket-List app

about 33

Angular code, writing 42
breaking down 34
creating 33, 34
overview 34
testing 49
UI, designing 34

C
code pen, Ionic

about 127
URL 127

Continuum 28
Cordova

URL 132

D
data, London Tourist App (LTA)

designing 61, 62
retrieving, with $http service 62-65
wiring up 62

documentation page, Ionic
about 126
URL 126

F
features, Ionic

about 125
Appcamp.IO 125
code pen 127
community 130
CSS 6
documentation page 126
Ionic creator 127
Ionic.IO 128

[134]

JavaScript 7-9
playground 129

Firebase
about 115
adding 118
Angular-Fire scripts, adding 118-120
data, adding to database 122
data, pulling from database 120, 121
implementing, into Ionic tabs

application 120
integrating, into Ionic tabs

application 118-122
new account, setting up 115-118
pulling, from database 120
URL 115

G
Google account

URL 115
Google Chrome

about 24
emulation feature, using 24-27
URL 24

Gulp
URL 131

H
hybrid applications

about 3, 4
issues 4, 5

I
input box, Bucket-List app

array, creating for Bucket-List items 44
code, implementing for Add button 44
controller, creating 42, 43
Delete button, implementing 45
model, creating 43
text, entering into 42

Ionic
about 5
features 6, 125
history 5
jobs, URL 132

lab, URL 132
resources 131
setting up 10, 11
showcase, URL 132
stack overflow, URL 131

Ionic application
blank template 13
creating 13, 14
customizing 81
side menu template 13
tabs template 13
to-do list app, creating 14

ionic.app.scss file 85, 86
Ionic CLI

about 9, 10
features 9
installing 10, 11

Ionic community
about 130
Ionic blog 131
Ionic forum 130
meetup groups 131
Twitter 130

Ionic creator
about 127
URL 127

ionic folder, Ionic workflow
css folder 15
fonts folder 15
js folder 16
scss folder 16

Ionic forum
URL 130

Ionic framework
URL 131

Ionic GitHub
URL 131

Ionic IO
URL 30

Ionic.IO platform
about 128
URL 128

Ionic labs technique
about 27
used, for viewing app 27, 28

Ionic market
URL 132

[135]

Ionic Modal
about 75
creating 75
implementing 76, 77
modal.html file, creating 78
wiring up 79, 80

Ionicons 15
Ionic Popover

$ionicPopover service, adding 71
about 67
coding 71
implementing 68, 69
menu button, adding 69, 70
popover.html file, creating 72
wiring up 73, 74

Ionic SCSS
$ionicConfigProvider 93
customizing 89-91
ionic.app.scss file 85, 86
overview 82-85
setting up 86-88
URL 82

Ionic serve labs 27, 28
ionic serve method 36
ionic serve technique

about 23, 24
emulating, with Chrome 24-27

Ionic setup
Ionic CLI, installing 10, 11
NodeJS, installing 10

Ionic Slack channel
about 130
URL 130

Ionic tabs application
about 95, 96
creating 96
extending 111, 112
overview 99, 100
post wall feature, implementing 112-114
running 97
state for new tab, adding 102, 103
tab, creating 108, 109
tabs, adding 102
tabs.html file 100, 101
tab-wall.html file, creating 104, 105
WallController controller,

creating 106, 107

Ionic view
about 28
URL 29
used, for testing todo app 29, 30

Ionic workflow
about 14-16
app, envisioning 18, 19
app.js file 17, 18
bower.json 16
config.xml 16
gulpfile 16
index.html file 17
ionic folder 15
ionic.project 16
package.json 16
todo app, building 19

ion-item
about 39
ion-option-button 40, 41
ion-option-button element, wiring 48
ng-repeat, used for rendering list 47

ion-list application, Bucket-List app
implementing 37
ion-item 39
ion-list component 38
ion-option-button 40, 41
using 38

iOS device
todo app, running 31

L
local JSON database file, London Tourist

App (LTA)
about 59
creating 59
populating 60

London Tourist App (LTA)
about 51
creating 51
data view, designing 61
developing 59
Ionic side menu template, using 52
local JSON database 59
side menu app, designing 52
side menu app's code, exploring 54
side menu app, using 53
view, designing 61, 62

[136]

M
meetup groups

URL 131
menu button

adding, to Ionic Popover 69, 70
menu.html file, London Tourist App (LTA)

<ion-side-menu-content>element 56, 57
<ion-side-menu>element 57, 58
<ion-side-menus>element 56
about 55

mobile development
history 1
issues 2, 3

N
native mobile applications 1
ngCordova

URL 132
NodeJS

installing 10
URL 10

Node Package Manager (NPM) 10

P
playground, Ionic

about 129
URL 129

popover.html file
creating 72, 73

post wall feature
backend challenge 115
implementing 112-114

S
SASS

about 6
used, for ionic styles 82

side menu app's code, London Tourist
App (LTA)

exploring 54
index.html file 54, 55
menu.html file 55

Single Page Application (SPA) 5

T
tab

adding, to Ionic tabs application 102
creating 108, 109
state, adding 102-104

tab-wall.html file
creating 104, 105

todo app
building 19
code 20
Ionic serve labs 27
ionic serve technique 24
Ionic view 28
running, on Android device 30
running, on devices 30
running, on iOS device 31
testing, with Ionic view 29, 30
UI, creating 19
user interface, connecting to code 20, 21

to-do list app
Bucket-List app, creating 33
creating 14

U
UI, Bucket-List app

designing 34
input box, implementing 35, 36
ion-list application, implementing 37

W
WallController controller

creating 106, 107

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: First Look at Ionic
	The beginning
	The problem

	Apache Cordova
	Early hybrid apps

	What is Ionic?
	Short history of Ionic
	Features of Ionic

	Setting up Ionic

	Summary

	Chapter 2: To-Do List App
	Creating our first application
	Creating our to-do list app

	The Ionic workflow
	In-depth look at our project
	Envisioning our app
	Building our todo app
	Creating the UI
	The code
	Wiring things up

	Summary

	Chapter 3: Running Ionic Apps
	Running our todo app
	The ionic serve technique
	Emulating with Chrome

	Ionic serve labs
	The Ionic view
	Testing todo app with the Ionic view

	Device
	Android
	iOS

	Summary

	Chapter 4: Ionic Components
	Creating a new to-do list application
	Overview of the Bucket-List app
	Breaking down the app

	Designing the UI
	Implementing the input box
	Implementing the ion-list application

	Writing the Angular code for our Bucket-List app
	Coding our input box
	Wire it all up

	Testing our Bucket-List app

	Summary

	Chapter 5: The London Tourist App
	The London Tourist app
	Creating the London Tourist app
	The side menu app design
	Using the Ionic side menu template
	Seeing the LTA side menu app in action
	Exploring the LTA side menu app's code
	Developing the LTA application

	Summary

	Chapter 6: Advanced Ionic Components
	The Ionic Popover
	Implementing the popover
	Adding the menu button
	Coding the popover
	Adding the $ionicPopover service
	Creating the popover.html file
	Wiring up the popover

	The Ionic Modal
	Creating the modal
	Implementing the modal
	Creating the modal.html file
	Wiring up the modal

	Summary

	Chapter 7: Customizing the App
	Customizing the look and feel of your app
	Ionic styles with SASS

	Ionic SCSS overview
	The ionic.app.scss file
	Setting up SCSS
	Customizing the SCSS

	$ionicConfigProvider
	Summary

	Chapter 8: Building a Simple Social App
	The Ionic tabs application
	Creating an Ionic tabs application
	Running the tabs-app application
	Overview of the tabs-app application
	Overview of the tabs.html file

	The <ion-tab> element
	Adding tabs to the tabs-app application
	Adding the state for the new tab

	Creating the tab-wall.html file
	Creating the WallController controller
	Creating the tab

	Summary

	Chapter 9: Connecting to Firebase
	Extending our tabs-app Ionic app
	Implementing the post wall feature
	The backend challenge

	Firebase
	Setting up a new Firebase account
	Integrate Firebase into tabs-app application
	Adding Firebase and Angular-Fire scripts
	Implementing Firebase to our app
	Pulling from database
	Adding to database

	Summary

	Chapter 10: Roundup
	Uncovered features of Ionic
	Appcamp.IO
	The Ionic documentation
	The Ionic creator
	The Ionic code pen
	Ionic.IO
	The Ionic playground
	The Ionic community

	Useful resources
	Summary

	Index

