
Java APIs,
Extensions and
Libraries

With JavaFX, JDBC, jmod, jlink,
Networking, and the Process API
—
Second Edition
—
Kishori Sharan

www.allitebooks.com

http://www.allitebooks.org

Java APIs, Extensions
and Libraries

With JavaFX, JDBC, jmod, jlink,
Networking, and the Process API

Second Edition

Kishori Sharan

www.allitebooks.com

http://www.allitebooks.org

Java APIs, Extensions and Libraries: With JavaFX, JDBC, jmod, jlink, Networking, and the Process API

Kishori Sharan
Montgomery, Alabama, USA

ISBN-13 (pbk): 978-1-4842-3545-4 ISBN-13 (electronic): 978-1-4842-3546-1
https://doi.org/10.1007/978-1-4842-3546-1

Library of Congress Control Number: 2018939410

Copyright © 2018 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio
rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book’s product page, located at www.apress.com/9781484235454. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3546-1
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
editorial@apress.com
bookpermissions@springernature.com
http://www.apress.com/bulk-sales
www.apress.com/9781484235454
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

 ■Chapter 1: Introduction to Swing �� 1

What Is Swing? �� 2

The Simplest Swing Program ��� 3

Components of a JFrame ��� 7

Adding Components to a JFrame ��� 9

Some Utility Classes ��� 13

The Point Class ��� 13

The Dimension Class �� 13

The Insets Class �� 14

The Rectangle Class ��� 14

Layout Managers �� 15

FlowLayout ��� 16

BorderLayout �� 21

CardLayout�� 24

BoxLayout ��� 26

GridLayout �� 31

GridBagLayout �� 33

SpringLayout �� 51

GroupLayout ��� 59

The null Layout Manager �� 68

www.allitebooks.com

http://www.allitebooks.org

■ Contents

iv

Creating a Reusable JFrame �� 70

Event Handling ��� 72

Handling Mouse Events �� 79

Summary �� 82

 ■Chapter 2: Swing Components �� 85

What Is a Swing Component? �� 85

JButton ��� 90

JPanel��� 95

JLabel ��� 96

Text Components �� 97

JTextComponent ��� 100

JTextField�� 102

JPasswordField �� 107

JFormattedTextField ��� 108

JTextArea �� 111

JEditorPane �� 114

JTextPane ��� 119

Validating Text Input ��� 127

Making Choices �� 128

JSpinner ��� 137

JScrollBar ��� 139

JScrollPane �� 140

JProgressBar �� 142

JSlider �� 143

JSeparator �� 145

Menus��� 145

JToolBar�� 153

JToolBar Meets the Action Interface ��� 156

JTable ��� 157

www.allitebooks.com

http://www.allitebooks.org

■ Contents

v

JTree ��� 163

JTabbedPane and JSplitPane ��� 169

Custom Dialogs �� 171

Standard Dialogs �� 174

File and Color Choosers�� 181

JFileChooser ��� 181

JColorChooser �� 185

JWindow ��� 186

Working with Colors ��� 186

Working with Borders ��� 187

Working with Fonts �� 190

Validating Components��� 192

Painting Components and Drawing Shapes ��� 193

Immediate Painting �� 198

Double Buffering �� 198

JFrame Revisited �� 200

Summary �� 202

 ■Chapter 3: Advanced Swing �� 205

Using HTML in Swing Components �� 206

Threading Model in Swing �� 207

Pluggable Look and Feel �� 215

Drag and Drop �� 221

Multiple Document Interface Application ��� 229

The Toolkit Class ��� 232

Decorating Components Using JLayer ��� 234

Translucent Windows ��� 241

Shaped Window �� 247

Summary �� 250

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

 ■Chapter 4: Network Programming ��� 253

What Is Network Programming? �� 253

Network Protocol Suite �� 255

IP Addressing Scheme �� 258

IPv4 Addressing Scheme �� 258

IPv6 Addressing Scheme �� 261

Special IP Addresses �� 262

Loopback IP Address �� 262

Unicast IP Address �� 263

Multicast IP Address ��� 264

Anycast IP Address ��� 264

Broadcast IP Address �� 264

Unspecified IP Address ��� 265

Port Numbers ��� 265

Socket API and Client-Server Paradigm ��� 266

The Socket Primitive ��� 268

The Bind Primitive �� 268

The Listen Primitive �� 269

The Accept Primitive ��� 269

The Connect Primitive��� 269

The Send/Sendto Primitive ��� 270

The Receive/ReceiveFrom Primitive ��� 270

The Close Primitive ��� 270

Representing a Machine Address ��� 270

Representing a Socket Address ��� 273

Creating a TCP Server Socket �� 274

Creating a TCP Client Socket �� 278

Putting a TCP Server and Clients Together ��� 280

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Working with UDP Sockets ��� 281

Creating a UDP Echo Server ��� 284

A Connected UDP Socket �� 288

UDP Multicast Sockets ��� 289

URI, URL, and URN �� 292

URI and URL as Java Objects�� 295

Accessing the Contents of a URL ��� 299

Non-Blocking Socket Programming ��� 306

Socket Security Permissions �� 318

Asynchronous Socket Channels ��� 319

Setting Up an Asynchronous Server Socket Channel ��� 320

Setting Up an Asynchronous Client Socket Channel �� 327

Putting the Server and the Client Together ��� 330

Datagram-Oriented Socket Channels ��� 332

Creating the Datagram Channel ��� 332

Setting the Channel Options ��� 332

Sending Datagrams �� 334

Multicasting Using Datagram Channels ��� 337

Creating the Datagram Channel ��� 337

Setting the Channel Options ��� 337

Binding the Channel ��� 337

Setting the Multicast Network Interface ��� 338

Joining the Multicast Group �� 339

Receiving a Message �� 340

Closing the Channel �� 340

Further Reading �� 343

Summary �� 343

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 5: JDBC API �� 347

What Is the JDBC API? �� 348

System Requirements �� 348

Types of JDBC Drivers �� 349

JDBC Native API Driver ��� 349

JDBC-Net Driver ��� 349

JDBC Driver �� 350

A Brief Overview of Apache Derby �� 350

Downloading Derby �� 350

Installing Derby ��� 350

Derby Installation Files ��� 350

Configuring Derby ��� 351

Running the Derby Server �� 351

Creating a Database Table �� 355

Oracle Database ��� 356

Adaptive Server Anywhere Database ��� 356

SQL Server Database �� 356

DB2 Database ��� 356

MySQL Database �� 357

Apache Derby Database ��� 357

Connecting to a Database �� 357

Obtaining the JDBC Driver �� 357

Setting Up the Module Path �� 358

Registering a JDBC Driver �� 358

Constructing a Connection URL �� 360

Establishing the Database Connection ��� 364

Setting the Auto-Commit Mode �� 369

Committing and Rolling Back Transactions �� 369

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Transaction Isolation Level ��� 370

Dirty Read ��� 370

Non-Repeatable Read ��� 370

Phantom Read �� 371

JDBC-Types-to-Java-Types Mapping ��� 372

Knowing About the Database ��� 375

Executing SQL Statements ��� 377

Results of Executing a SQL Statement ��� 378

Using the Statement Interface �� 379

Using the PreparedStatement Interface ��� 386

CallableStatement Interface ��� 389

Processing Result Sets ��� 402

What Is a ResultSet?��� 402

Getting a ResultSet ��� 406

Getting the Number of Rows in a ResultSet ��� 412

Bidirectional Scrollable ResultSets ��� 415

Scrolling Through Rows of a ResultSet �� 417

Knowing the Cursor Position in a ResultSet ��� 420

Closing a ResultSet ��� 420

Making Changes to a ResultSet ��� 421

Inserting a Row Using a ResultSet ��� 421

Updating a Row Using a ResultSet ��� 423

Deleting a Row Using a ResultSet �� 426

Handling Multiple Results from a Statement�� 426

Getting a Result Set from a Stored Procedure ��� 428

MySQL Database �� 429

Adaptive Server Anywhere Database ��� 429

Oracle Database ��� 429

SQL Server Database �� 430

DB2 Database ��� 430

Apache Derby Database ��� 431

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

ResultSetMetaData ��� 435

Using RowSets ��� 437

Creating a RowSet �� 440

Working with a Large Object (LOB)��� 462

Retrieving LOB Data �� 464

Creating a LOB Data ��� 465

Batch Updates �� 472

Savepoints in a Transaction �� 478

Using a DataSource �� 481

Retrieving SQL Warnings �� 483

Enabling JDBC Trace �� 484

Summary �� 484

 ■Chapter 6: Java Remote Method Invocation �� 489

What Is Java Remote Method Invocation? ��� 490

The RMI Architecture �� 491

Developing an RMI Application ��� 493

Writing the Remote Interface �� 493

Implementing the Remote Interface ��� 494

Writing the RMI Server Program ��� 496

Writing the RMI Client Program �� 499

Separating the Server and Client Code �� 500

Generating Stub and Skeleton �� 500

Running the RMI Application �� 501

Running the RMI Registry ��� 502

Running the RMI Server �� 503

Running an RMI Client Program ��� 503

Troubleshooting an RMI Application ��� 504

java�rmi�StubNotFoundException ��� 504

java�rmi�server�ExportException ��� 505

■ Contents

xi

java�security�AccessControlException �� 505

java�lang�ClassNotFoundException ��� 506

Debugging an RMI Application ��� 507

Dynamic Class Downloading �� 508

Garbage Collection of Remote Objects ��� 509

Summary �� 512

 ■Chapter 7: Java Native Interface ��� 515

What Is the Java Native Interface? ��� 515

System Requirements �� 516

Getting Started with the JNI ��� 517

Writing the Java Program ��� 517

Compiling the Java Program �� 521

Creating the C/C++ Header File ��� 521

Writing the C/C++ Program �� 523

Creating a Shared Library ��� 524

Running the Java Program ��� 527

Native Function Naming Rules ��� 528

Data Type Mapping ��� 531

Using JNI Functions in C/C++ �� 532

Working with Strings �� 533

Working with Arrays ��� 536

Accessing Java Objects in Native Code�� 540

Getting a Class Reference �� 540

Accessing Fields and Methods of a Java Object/Class ��� 541

Creating Java Objects ��� 547

Exception Handling ��� 549

Handle the Exception in Native Code �� 550

Handling the Exception in Java Code ��� 551

Throwing a New Exception from Native Code �� 551

■ Contents

xii

Creating an Instance of the JVM �� 552

Synchronization in Native Code �� 557

Summary �� 558

 ■Chapter 8: Introduction to JavaFX ��� 561

What Is JavaFX? ��� 561

History of JavaFX ��� 563

System Requirements �� 564

The JavaFX Modules �� 564

JavaFX Source Code ��� 565

JavaFX API Documentation ��� 565

Your First JavaFX Application ��� 565

Creating the HelloJavaFX Class �� 565

Overriding the start() Method ��� 566

Showing the Stage ��� 567

Launching the Application �� 568

Adding the main() Method �� 570

Adding a Scene to the Stage �� 570

Improving Your First JavaFX Application �� 572

The Lifecycle of a JavaFX Application �� 574

Terminating a JavaFX Application �� 576

What Are Properties and Bindings? �� 576

Properties and Bindings in JavaFX ��� 577

Using Properties in JavaFX Beans �� 580

Handling Property Invalidation Events �� 584

Handling Property Change Events �� 586

Property Bindings in JavaFX ��� 589

Observable Collections ��� 595

■ Contents

xiii

Event Handling ��� 598

Event Processing Mechanism ��� 599

Creating Event Filters and Handlers ��� 602

Registering Event Filters and Handlers �� 603

Layout Panes �� 607

Controls �� 614

Using 2D Shapes �� 620

Drawing on a Canvas�� 624

Applying Effects ��� 626

Applying Transformations ��� 629

Animation ��� 632

Using the Timeline Animation ��� 634

FXML �� 637

Printing ��� 642

Summary �� 647

 ■Chapter 9: Scripting in Java �� 651

What Is Scripting in Java? �� 651

Executing Your First Script ��� 653

Using Other Scripting Languages ��� 655

Exploring the javax�script Package �� 658

The ScriptEngine and ScriptEngineFactory Interfaces ��� 658

The AbstractScriptEngine Class �� 658

The ScriptEngineManager Class ��� 658

The Compilable Interface and the CompiledScript Class �� 658

The Invocable Interface �� 658

The Bindings Interface and the SimpleBindings Class ��� 659

The ScriptContext Interface and the SimpleScriptContext Class �� 659

The ScriptException Class �� 659

Discovering and Instantiating Script Engines ��� 659

■ Contents

xiv

Executing Scripts ��� 660

Passing Parameters ��� 662

Passing Parameters from Java Code to Scripts ��� 662

Passing Parameters from Scripts to Java Code ��� 664

Advanced Parameter Passing Techniques �� 665

Bindings �� 665

Scope �� 666

Defining the Script Context ��� 667

Putting Them Together �� 671

Using a Custom ScriptContext �� 677

Return Value of the eval() Method �� 680

Reserved Keys for Engine Scope Bindings ��� 681

Changing the Default ScriptContext ��� 682

Sending Script Output to a File �� 683

Invoking Procedures in Scripts��� 684

Implementing Java Interfaces in Scripts �� 687

Using Compiled Scripts �� 691

Using Java in Scripting Languages �� 693

Declaring Variables ��� 694

Importing Java Classes��� 694

Creating and Using Java Objects �� 697

Using Overloaded Java Methods �� 698

Using Java Arrays ��� 700

Extending Java Classes and Implementing Interfaces ��� 703

Using Lambda Expressions ��� 706

Implementing a Script Engine �� 707

The Expression Class �� 708

The JKScriptEngine Class ��� 713

The JKScriptEngineFactory Class ��� 715

■ Contents

xv

Packaging the JKScript Files �� 716

Using the JKScript Script Engine �� 717

The jrunscript Command-Line Shell ��� 719

The Syntax �� 719

Execution Modes of the Shell ��� 721

Listing Available Script Engines �� 722

Adding a Script Engine to the Shell �� 722

Using Other Script Engines ��� 723

Passing Arguments to Scripts��� 723

The jjs Command-Line Tool �� 724

JavaFX in Nashorn ��� 729

Summary �� 732

 ■Chapter 10: Process API �� 735

What Is the Process API? �� 735

Knowing the Runtime Environment �� 737

The Current Process ��� 738

Querying Process State �� 739

Comparing Processes��� 742

Creating a Process ��� 743

Obtaining a Process Handle ��� 755

Terminating Processes ��� 757

Managing Process Permissions ��� 758

Summary �� 760

 ■Chapter 11: Packaging Modules �� 763

The JAR Format �� 763

What Is a Multi-Release JAR? �� 764

Creating Multi-Release JARs �� 765

Rules for Multi-Release JARs ��� 771

Multi-Release JARs and JAR URL ��� 773

Multi-Release Manifest Attribute �� 773

■ Contents

xvi

The JMOD Format �� 774

Using the jmod Tool �� 774

Summary �� 780

 ■Chapter 12: Custom Runtime Images �� 783

What Is a Custom Runtime Image? �� 783

No More rt�jar ��� 784

Creating Custom Runtime Images �� 784

Binding Services �� 788

Using Plugins with the jlink Tool ��� 790

The jimage Tool �� 793

Summary �� 795

Index ��� 797

xvii

About the Author

Kishori Sharan works as a senior software engineer lead at IndraSoft,
Inc. He earned a master’s of science degree in computer information
systems from Troy State University, Alabama. He is a Sun-certified Java 2
programmer and has over 20 years of experience in developing enterprise
applications and providing training to professional developers using the
Java platform.

xix

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys learning new technologies for
his own experiments and creating new integrations.

Manuel won the 2010 Springy Award – Community Champion and Spring Champion 2013. In his
little free time, he reads the Bible and composes music on his guitar. Manuel is known as dr_pompeii.
He has technically reviewed numerous books for Apress, including Pro Spring Messaging (2017),
Pro Spring, 4th Edition (2014), Practical Spring LDAP (2013), Pro JPA 2, Second Edition (2013), and
Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies, contact him through his blog at http://
www.manueljordanelera.blogspot.com, and follow him on his Twitter account at @dr_pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

xxi

Acknowledgments

I would like to thank my family members and friends for their encouragement and support—my mom
Pratima Devi; my elder brothers, Janki Sharan and Dr. Sita Sharan; my nephews, Gaurav and Saurav; my
sister Ratna; and my friends Karthikeya Venkatesan, Rahul Nagpal, Ravi Datla, Mahbub Choudhury, Richard
Castillo, and many more friends not mentioned here.

My wife, Ellen, was always patient as I spent long hours at my computer desk working on this book.
I want to thank her for all of her support in writing this book.

Special thanks to my friend Preethi Vasudev for offering her valuable time and providing solutions
to the exercises in this book. She likes programming challenges—particularly Google Code Jam. I bet she
enjoyed solving the exercises in each chapter of this book.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of
this book. Thanks to Mark Powers, the editorial operations manager, for providing excellent support. Thanks
to the technical reviewer, Manuel Jordan Elera, for his technical insights and feedback during the review
process; he was instrumental in weeding out several technical errors. Last but not least, my sincere thanks to
Steve Anglin, the lead editor at Apress, for taking the initiative for the publication of this book.

www.allitebooks.com

http://www.allitebooks.org

xxiii

Introduction

How This Book Came About
My first encounter with the Java programming language was during a one-week Java training session in 1997.
I did not get a chance to use Java in a project until 1999. I read two Java books and took a Java 2 programmer
certification examination. I did very well on the test, scoring 95 percent. The three questions that I missed on
the test made me realize that the books that I had read did not adequately cover details about all the topics
necessary. I made up my mind to write a book on the Java programming language. So, I formulated a plan
to cover most of the topics that a Java developer needs to use the Java programming language effectively in a
project, as well as to get a certification. I initially planned to cover all essential topics in Java in 700 to 800 pages.

As I progressed, I realized that a book covering most of the Java topics in detail could not be written in
700 to 800 pages. One chapter alone that covered data types, operators, and statements spanned 90 pages.
I was then faced with the question, “Should I shorten the content of the book or include all the details that
I think a Java developer needs?” I opted for including all the details in the book, rather than shortening its
content to keep the number of pages low. It has never been my intent to make lots of money from this book.
I was never in a hurry to finish this book because that rush could have compromised the quality and
coverage. In short, I wrote this book to help the Java community understand and use the Java programming
language effectively, without having to read many books on the same subject. I wrote this book with the
plan that it would be a comprehensive one-stop reference for everyone who wants to learn and grasp the
intricacies of the Java programming language.

One of my high school teachers used to tell us that if one wanted to understand a building, one
must first understand the bricks, steel, and mortar that make up the building. The same logic applies to
most of the things that we want to understand in our lives. It certainly applies to an understanding of the
Java programming language. If you want to master the Java programming language, you must start by
understanding its basic building blocks. I have used this approach throughout this book, endeavoring to
build each topic by describing the basics first. In the book, you will rarely find a topic described without
first learning its background. Wherever possible, I have tried to correlate the programming practices with
activities in our daily life. Most of the books about the Java programming language either do not include any
pictures at all or have only a few. I believe in the adage, “A picture is worth a thousand words.” To the reader,
a picture makes a topic easier to understand and remember. I have included plenty of illustrations in the
book to aid readers in understanding and visualizing the contents. Developers with little or no programming
experience have difficulty in putting things together to make it a complete program. Keeping them in mind,
the book contains over 200 complete Java programs that are ready to be compiled and run.

I spent countless hours doing research for writing this book. My main source of research was the Java
Language Specification, whitepapers and articles on Java topics, and Java Specification Requests (JSRs).
I also spent quite a bit of time reading the Java source code to learn more about some of the Java topics.
Sometimes, it took a few months researching a topic before I could write the first sentence on the topic.
Finally, it was always fun to play with Java programs, sometimes for hours, to add them to the book.

■ IntroduCtIon

xxiv

Introduction to the Second Edition
I am pleased to present the second edition of the Java APIs, Extensions, and Libraries book. It is the third
book in the three-volume series. It was not possible to include all JDK9 changes in the one volume. I have
included JDK9-specific changes at appropriate places in the three volumes, including this one. If you
are interested in learning only JDK9-specific topics, I suggest that you read my Java 9 Revealed book
(www.apress.com/9781484225912), which contains only JDK9-specific topics. There are several changes in
this edition and they are as follows.

I dropped the chapter on applets, which was part of the first edition. The Applet API in JDK9 has been
deprecated and all modern browsers either have discontinued or will discontinue the support for the Java
plug-in, which is needed to run applets. I consider the Applet API dead for any new development. This was
the reason I dropped it in this edition.

I added the following three chapters to this edition: Process API (Chapter 10), Packaging Modules
(Chapter 11), and Custom Runtime Images (Chapter 11).

I felt that this book was missing a chapter on the Process API. JDK9 added several enhancements to
the Process API. I thought that a chapter on the Process API would be a good addition to this book. I added
Chapter 10 to cover the Process API including enhancements to the Process API in JDK9.

Java applications were packaged in JARs before JDK9. JDK9 has added several enhancements to the JAR
format. JDK9 added a new type of JAR called the multi-release JAR, which can package code for a library for
multiple JDK releases. You can also package modules in JMOD format that can be used at compile-time and
link time. Chapter 11 covers the enhancements to the JAR format and the new JMOD format. This chapter
also covers how to use the jmod tool to work with JMOD files.

JDK9 added a new phase between compile-time and runtime, which is called the linking phase (or
link time). You can use the jlink tool, which was introduced in JDK9, to link application modules and
JDK modules to their dependencies to create a custom runtime image. The custom runtime image will
contain only these modules that are needed by your application, not the entire Java runtime modules—thus
reducing the size of the runtime image. Chapter 12 covers how to create custom runtime images using the
jlink tool.

Apart from these changes, I updated all the chapters from the first edition. I edited the contents to
make them flow better, changed or added new examples, and updated the contents to include JDK9-specific
features.

It is my sincere hope that this edition of the book will help you learn Java better.

Structure of the Book
This is the third book in the three-book Beginning Java series. This book contains 12 chapters.

The chapters cover the Java libraries and extensions such as Swing, JavaFX, Nashorn, Java Native
Interface, network programming, JDBC, jmod and jlink tools, etc. If you have intermediate level Java
experience, you can conquer the chapters in any order—except for the first three chapters, which should be
read in order. The new features of Java 9 are included wherever they fit in the chapters. Chapters 11 and 12
cover JDK9-specific features exclusively.

Audience
This book is designed to be useful to anyone who wants to learn the Java programming language. If you
are a beginner, with little or no programming background in Java, you are advised to read the companion
book Beginning Java 9 Fundamentals (second edition) and Java Language Features (second edition) before
reading this book. This book contains topics of various degrees of complexity. As a beginner, if you find
yourself overwhelmed while reading a section in a chapter, you can skip to the next section or the next
chapter and revisit it later when you gain more experience.

http://www.apress.com/9781484225912
http://dx.doi.org/10.1007/978-1-4842-3546-1_10
http://dx.doi.org/10.1007/978-1-4842-3546-1_11
http://dx.doi.org/10.1007/978-1-4842-3546-1_11
http://dx.doi.org/10.1007/978-1-4842-3546-1_10
http://dx.doi.org/10.1007/978-1-4842-3546-1_11
http://dx.doi.org/10.1007/978-1-4842-3546-1_12
http://dx.doi.org/10.1007/978-1-4842-3546-1_11
http://dx.doi.org/10.1007/978-1-4842-3546-1_12

■ IntroduCtIon

xxv

If you are a Java developer with an intermediate or advanced level of experience, you can jump to
a chapter or a section in a chapter directly. If you are reading this book to get a certification in the Java
programming language, you need to read almost all of the chapters, paying attention to all of the detailed
descriptions and rules. Most of the certification programs test your fundamental knowledge of the language,
not advanced knowledge. You need to read only those topics that are part of your certification test.
Compiling and running over 200 complete Java programs will help you prepare for your certification.

If you are a student who is attending a class in the Java programming language, you should read the
chapters of this book selectively. You need to read only those chapters that are covered in your class syllabus.
I am sure that you, as a Java student, do not need to read the entire book page by page.

How to Use This Book
This book is the beginning, not the end, of gaining the knowledge of the Java programming language. If
you are reading this book, it means you are heading in the right direction to learn the Java programming
language, which will enable you to excel in your academic and professional career. However, there is always
a higher goal for you to achieve and you must constantly work hard to achieve it. The following quotations
from some great thinkers may help you understand the importance of working hard and constantly looking
for knowledge with both your eyes and mind open.

The learning and knowledge that we have, is, at the most, but little compared with that of
which we are ignorant.

—Plato

True knowledge exists in knowing that you know nothing. And in knowing that you know
nothing, that makes you the smartest of all.

—Socrates

Readers are advised to use the API documentation for the Java programming language as much
as possible while using this book. The Java API documentation is where you will find a complete list of
everything available in the Java class library. You can download (or view) the Java API documentation from
the official website of Oracle Corporation at www.oracle.com. While you read this book, you need to practice
writing Java programs yourself. You can also practice by tweaking the programs provided in the book. It does
not help much in your learning process if you just read this book and do not practice by writing your own
programs. Remember that “practice makes perfect,” which is also true in learning how to program in Java.

Source Code and Errata
Source code for this book can be accessed by clicking the Download Source Code button located at
www.apress.com/9781484235454.

Questions and Comments
Please direct all your questions and comments for the author to ksharan@jdojo.com.

http://www.oracle.com/
http://www.apress.com/9781484235454

1© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_1

CHAPTER 1

Introduction to Swing

In this chapter, you will learn:

•	 What Swing is

•	 The difference between a character-based interface and a graphical user interface

•	 How to develop the simplest Swing program

•	 What a JFrame is and how it is made up of different components

•	 How to add components to a JFrame

•	 What a layout manager is and the different types of layout managers in Swing

•	 How to create reusable frames

•	 How to handle events

•	 How to handle mouse events and how to use the adapter class to handle mouse
events

All example programs in this chapter are members of a jdojo.swing.intro module, as declared in
Listing 1-1.

Listing 1-1. The Declaration of a jdojo.swing.intro Module

// module-info.java
module jdojo.swing.intro {
 requires java.desktop;
 exports com.jdojo.swing.intro;
}

Swing and AWT APIs are defined in the java.desktop module. Your module that uses Swing needs to
read the java.desktop module as the jdojo.swing.intro module does.

https://doi.org/10.1007/978-1-4842-3546-1_1

Chapter 1 ■ IntroduCtIon to SwIng

2

What Is Swing?
Swing provides graphical user interface (GUI) components to develop Java applications with a rich set of
graphics such as windows, text fields, buttons, checkboxes, etc. What is a GUI? Before I define a GUI, let me
first define a user interface (UI). A program does three things:

•	 Accepts inputs from the user

•	 Processes the inputs

•	 Produces outputs

A user interface provides a means to exchange information between a user and a program, in terms of
inputs and outputs. In other words, a user interface defines the way the interaction between the user and a
program takes place. Typing text using a keyboard, selecting a menu item using a mouse, or clicking a button
can provide input to a program. The output from a program can be displayed on a computer monitor in the
form of character-based text, a graph such as a bar chart, a picture, etc.

You have written many Java programs. You have seen programs where users had to provide inputs to the
program in the form of text entered on the console, and the program would print the output on the console.
A user interface where the user’s input and the program’s output are in text form is known as a character-
based user interface. A GUI lets users interact with a program using graphical elements called controls or
widgets, using a keyboard, a mouse, and other devices.

Figure 1-1 shows a program that lets users enter a person’s name and date of birth (DOB) and save the
information by using the keyboard. It is an example of a character-based user interface.

Figure 1-2 lets the user perform the same actions, but using a graphical user interface. It displays six
graphical elements in a window. It uses two labels (Name: and DOB:), two text fields where the user will
enter the Name and DOB values, and two buttons (Save and Close). A graphical user interface, compared to
a character-based user interface, makes the user’s interaction with a program easier. Can you guess what
kind of application you are going to develop in this chapter? It will be all about GUI. GUI development is
interesting and a little more complex than character-based program development. Once you understand the
elements involved in GUI development, it will be fun to work with it.

Figure 1-1. An example of a program with a character-based user interface

Figure 1-2. An example of a program with a graphical user interface

Chapter 1 ■ IntroduCtIon to SwIng

3

This chapter attempts to cover the basics of GUI development using Swing’s components and top-
level containers. Care has been taken to explain GUI-related details for those programmers who might
not have used any programming languages/tools to develop a GUI before. If you have already used a GUI
development language/tool, it will be easier for you to understand the materials covered in this chapter.
Swing is a vast topic and it is not possible to cover every detail of it. It deserves a book by itself. In fact, there
are a few books in the market dedicated only to Swing.

A container is a component that can hold other components inside it. A container at the highest level
is called a top-level container. JFrame, JDialog, JWindow, and JApplet are examples of top-level containers.
JPanel is an example of a simple container. JButton, JTextField, etc. are examples of components. In
a Swing application, every component must be contained within a container. The container is known as
the component’s parent and the component is known as container’s child. This parent-child relationship
(or container-contained relationship) is known as containment hierarchy. To display a component on the
screen, a top-level container must be at the root of the containment hierarchy. Every Swing application must
have at least one top-level container. Figure 1-3 shows the containment hierarchy of a Swing application.
A top-level container contains a container called “Container 1,” which in turn contains a component
called “Component 1” and a container called “Container 2,” which in turn contains two components called
“Component 2” and “Component 3.”

The Simplest Swing Program
Let’s start with the simplest Swing program. You will display a JFrame, which is a top-level container with no
components in it. To create and display a JFrame, you need to do the following:

•	 Create a JFrame object.

•	 Make it visible.

Figure 1-3. Containment hierarchy in a Swing application

Chapter 1 ■ IntroduCtIon to SwIng

4

One of the constructors of the JFrame class takes a String argument, which is the title of the JFrame.
Classes representing Swing components are in the javax.swing package, and so is the JFrame class. The
following snippet of code creates a JFrame object with its title set to Simplest Swing:

// Create a JFrame object
JFrame frame = new JFrame("Simplest Swing");

When you create a JFrame object, by default, it is not visible. You need to call its setVisible(boolean
visible) method to make it visible. If you pass true to this method, the JFrame is made visible, and if you
pass false, it is made invisible.

// Make the JFrame visible on the screen
frame.setVisible(true);

That is all you have to do to develop your first Swing application! In fact, you can wrap the two
statements, to create and display a JFrame, into one statement, like so:

new JFrame("Simplest Swing").setVisible(true);

Creating a JFrame and making it visible from the main thread is not the correct way to start a Swing
application. However, it does not do any harm in the trivial programs that you will use here, so I will
continue using this approach to keep the code simple to learn, so you can focus on the topic you are
learning. It also takes an understanding of event-handling and threading mechanisms in Swing to
understand why you need to start a Swing application the other way. Chapter 3 explains how to start a Swing
application in detail. The correct way of creating and showing a JFrame is to wrap the GUI creation and
make it visible in a Runnable and then pass the Runnable to the invokeLater() method of the javax.swing.
SwingUtilities or java.awt.EventQueue class as follows:

import javax.swing.JFrame;
import javax.swing.SwingUtilities;
...
SwingUtilities.invokeLater(() -> new JFrame("Test").setVisible(true));

Listing 1-2 contains the complete code to create and display a JFrame. When you run this program, it
displays a JFrame at the top-left corner of the screen, as shown in Figure 1-4. The figure shows the frame
when the program was run on Windows 10. On other platforms, the frame may look a little different. Most of
the screenshots for the GUIs in this chapter were taken on Windows 10.

Listing 1-2. Simplest Swing Program

// SimplestSwing.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;

public class SimplestSwing {
 public static void main(String[] args) {
 // Create a frame
 JFrame frame = new JFrame("Simplest Swing");

http://dx.doi.org/10.1007/978-1-4842-3546-1_3

Chapter 1 ■ IntroduCtIon to SwIng

5

 // Display the frame
 frame.setVisible(true);
 }
}

This was not very impressive, was it? Do not despair. You will improve this program as you learn more
about Swing. This was just to show you the tip of the iceberg of what Swing offers.

You can resize the JFrame shown in the Figure 1-4 to make it bigger. Place your mouse pointer on any of
the four edges (left, top, right, or bottom) or any of the four corners of the displayed JFrame. The mouse pointer
changes its shape to a resize pointer (a line with arrows at both ends) when you place it on the JFrame’s edge.
Then just drag the resize mouse pointer to resize the JFrame in the direction you want to resize it.

Figure 1-5 shows the resized JFrame. Note that the text “Simplest Swing” that you passed to the
constructor when you created the JFrame is displayed in the title bar of the JFrame.

How do you exit a Swing application? How do you exit when you run the program listed in Listing 1-2?
When you click the close button in the title bar (right-most button on the title bar with an X), the JFrame
is closed. However, the program does not exit. If you are running this program from a command prompt,
the prompt does not return when you close the JFrame. You will have to force exit the program, for
example, by pressing Ctrl+C if you are running it from a command prompt on Windows. So, how do
you exit a Swing application? You can define one of the four behaviors of a JFrame to determine what
happens when the JFrame is closed. They are defined in the javax.swing.WindowConstants interface as
four constants. The JFrame class implements the WindowConstants interface. You can reference all these
constants using JFrame.CONSTANT_NAME syntax (or you can use the WindowConstants.CONSTANT_NAME
syntax). The four constants are as follows:

•	 DO_NOTHING_ON_CLOSE

•	 HIDE_ON_CLOSE

•	 DISPOSE_ON_CLOSE

•	 EXIT_ON_CLOSE

The DO_NOTHING_ON_CLOSE option does not do anything when the user closes a JFrame. If you set this
option for a JFrame, you must provide some other way to exit the application, such as an Exit button or an
Exit menu option in the JFrame.

Figure 1-4. The simplest Swing frame

Figure 1-5. The simplest Swing frame after resizing

Chapter 1 ■ IntroduCtIon to SwIng

6

The HIDE_ON_CLOSE option just hides a JFrame when the user closes it. This is the default behavior. This
is what happened when you clicked the close button in the title bar to close the program listed in Listing 1-2.
The JFrame was just made invisible and the program was still running.

The DISPOSE_ON_CLOSE option hides and disposes of the JFrame when the user closes it. Disposing a
JFrame releases any operating system-level resources used by it. Note the difference between HIDE_ON_CLOSE
and DISPOSE_ON_CLOSE. When you use the option HIDE_ON_CLOSE, a JFrame is just hidden, but it is still using
all the operating system resources. If your JFrame is hidden and shown very frequently, you may want to use
this option. However, if your JFrame consumes many resources, you may want to use the DISPOSE_ON_CLOSE
option, so the resources may be released and reused while the JFrame is not being displayed.

The EXIT_ON_CLOSE option exits the application. Setting this option works when a JFrame is closed,
as if System.exit() has been called. This option should be used with some care. This option will exit the
application. If you have more than one JFrame or any other type of window displayed on the screen, using
this option for one JFrame will close all other windows. Use this option with caution as you may lose any
unsaved data when the application exits.

You can set the default close behavior of a JFrame by passing one of the four constants to its
setDefaultCloseOperation() method as follows:

// Exit the application when the JFrame is closed
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

You solved one problem with the first example. Another problem is that the JFrame is displayed with no
viewable area. It displays only the title bar. You need to set the size and position of your JFrame before or after it
is visible. The size of a frame is defined by its width and height in pixels that you can set using its setSize(int
width, int height) method. The position is defined by the (x, y) coordinates in pixels of the top-left corner
of the JFrame with respect to the top-left corner of the screen. By default, its position is set to (0, 0) and this is
the reason the JFrame was displayed at the top-left corner of the screen. You can set the (x, y) coordinates of
the JFrame using its setLocation(int x, int y) method. If you want to set its size and its position in one
step, use its setBounds(int x, int y, int width, int height) method instead. Listing 1-3 fixes these two
problems in the simplest Swing program.

Listing 1-3. Revised Simplest Swing Program

// RevisedSimplestSwing.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;

public class RevisedSimplestSwing {
 public static void main(String[] args) {
 // Create a frame
 JFrame frame = new JFrame("Revised Simplest Swing");

 // Set the default close behavior to exit the application
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Set the x, y, width and height properties in one go
 frame.setBounds(50, 50, 200, 200);

 // Display the frame
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

7

 ■ Tip You can position a JFrame in the center by calling its setLocationRelativeTo(Component c) method
with a null argument.

Components of a JFrame
You displayed a JFrame in the previous section. It looked empty; however, it was not really empty. When you
create a JFrame, the following things are automatically done for you:

•	 A container, which is called a root pane, is added as the sole child of the JFrame.
The root pane is a container. It is an object of the JRootPane class. You can get the
reference of the root pane by using the getRootPane() method of the JFrame class.

•	 Two containers called glass pane and layered pane are added to the root pane. By
default, the glass pane is hidden and it is placed on top of the layered pane. As the
name suggests, the glass pane is transparent, and even if you make it visible, you can
see through it. You can use the glass pane to block all mouse events from reaching
other components in layers below it. You can also use the glass pane to display
messages to the user and fade out the contents behind the pane. Typically, you do
not use glass pane. The layered pane is named as such because it can hold other
containers or components in its different layers. Optionally, a layered pane can
hold a menu bar. However, a menu bar is not added by default when you create a
JFrame. You can get the reference of the glass pane and the layered pane by using the
getGlassPane() and getLayeredPane() methods of the JFrame class, respectively.

•	 A container called a content pane is added to the layered pane. By default, the
content pane is empty. This is the container in which you are supposed to add all
your Swing components, such as buttons, text fields, labels, etc. Most of the time, you
will be working with the content pane of the JFrame. You can get the reference of the
content pane by using the getContentPane() method of the JFrame class.

Figure 1-6 shows the assembly of a JFrame. The root pane, layered pane, and glass pane cover the entire
viewable area of a JFrame. The viewable area of a JFrame is its size minus its insets on all four sides. Insets
of a container consist of the space used by the border around the container on four sides: top, left, bottom,
and right. For a JFrame, the top inset represents the height of the title bar. Figure 1-6 depicts the layered pane
smaller than the size of the root pane for better visualization.

Chapter 1 ■ IntroduCtIon to SwIng

8

Are you confused? If you are confused with all the panes of a JFrame, here is a simpler explanation. Think
of a JFrame as a picture frame. A picture frame has a glass cover, and so does a JFrame, in the form of a glass
pane. Behind the glass cover, you place your picture. That is your layered pane. You can place multiple pictures
inside one picture frame. Each picture will make up one layer behind the glass cover. As long as one picture is
not fully overlapped by another, you can view it wholly or partly. All pictures taken together in different layers
form the layered pane of your picture frame. The picture layer, which is farthest from the glass cover, is your
content pane. Usually your picture frame contains only one picture in it. So does the layered pane; by default, it
contains one content pane. The picture in the picture frame is the content of interest and paintings are placed
there. So is the case with the content pane; all components are placed in the content pane.

The containment hierarchy of a JFrame is listed below. A JFrame is at the top of the hierarchy, whereas
the menu bar (it is not added by default; it is shown here for completeness) and the content pane are at the
bottom of the containment hierarchy.

JFrame
 root pane
 glass pane
 layered pane
 menu bar
 content pane

If you are still not able to understand all of the “pains” (read panes) of a JFrame, you can revisit this
section later. For now, you have to understand only one pane of the JFrame, and that is the content pane,
which holds the Swing components of a JFrame. You should add all components you want to add to a JFrame
to its content pane. You can get the reference of the content pane as follows:

// Create a JFrame
JFrame frame = new JFrame("Test");

// Get the reference of the content pane
Container contentPane = frame.getContentPane();

Figure 1-6. The making of a JFrame

Chapter 1 ■ IntroduCtIon to SwIng

9

Adding Components to a JFrame
This section explains how to add components to the content pane of a JFrame. Use the add() method of a
container (note that a content pane is also a container) to add a component to the container.

// Add aComponent to aContainer
aContainer.add(aComponent);

The add() method is overloaded. The arguments to the method, apart from the component being
added, depend on other factors such as how you want the component to be laid out in the container. The
next section discusses all versions of the add() method.

I limit the current discussion to adding a button, which is a Swing component, to a JFrame. An object of
the JButton class represents a button. If you have used Windows, you must have used a button such as an
OK button on a message box and the Back and Forward buttons on an Internet browser window. Typically, a
JButton contains text that is also called its label or text. This is how you create a JButton:

// Create a JButton with Close text
JButton closeButton = new JButton("Close");

To add closeButton to the content pane of a JFrame, you need to get the reference of the content pane
of the JFrame and call its add() method:

// Get the reference of the content pane of the JFrame Container contentPane = frame.
getContentPane();

// Call the add() method of the content pane contentPane.add(closeButton);

That is all it takes to add a component to the content pane. If you want to add a JButton using one line
of code, you can do so by combining all three statements into one, like so:

frame.getContentPane().add(new JButton("Close"));

The code to add components to a JFrame is shown in Listing 1-4. When you run the program, you get a
JFrame, as shown in the Figure 1-7. Nothing happens when you click the Close button because you have not
yet added any action to it.

Listing 1-4. Adding Components to a JFrame

// AddingComponentToJFrame.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.Container;

public class AddingComponentToJFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Components to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

Chapter 1 ■ IntroduCtIon to SwIng

10

 // Add a Close button
 JButton closeButton = new JButton("Close");
 contentPane.add(closeButton);

 // Set the size of the frame 300 x 200
 frame.setBounds(50, 50, 300, 200);
 frame.setVisible(true);
 }
}

The code did its job of adding a JButton with the Close text to the JFrame. However, the JButton looks
very big and it fills the entire viewable area of the JFrame. Note that you have set the size of the JFrame to 300
pixels wide and 200 pixels high using the setBounds() method. Since the JButton fills the entire JFrame,
can you set the JFrame’s size little smaller? Alternatively, can you set the size for the JButton itself? Both
suggestions are not going to work in this case. If you want to make the JFrame smaller, you need to guess
how much smaller it needs to be made. If you want to set the size for the JButton, it will fail miserably;
the JButton will always fill the entire viewable area of the JFrame. What is going on? To get a complete
understanding of what is going on, you need to read the next section about the layout manager.

Swing provides a magical and quick solution to the problem of computing the size of the JFrame and
JButton. The pack() method of the JFrame class is that magical solution. The method goes through all
the components you added to the JFrame, decides their preferred size, and sets the size of the JFrame just
enough to display all the components. When you call this method, you do not need to set the size of the
JFrame. The pack() method will calculate the size of the JFrame and set it for you. To fix the sizing problem,
remove the call to the setBounds() method and add a call to the pack() method instead. Note that the
setBounds() method was setting the (x, y) coordinates for the JFrame too. If you still want to set the (x, y)
coordinates of the JFrame to (50, 50), you can use its setLocation(50, 50) method. Listing 1-5 contains the
modified code and Figure 1-8 shows the resulting JFrame.

Listing 1-5. Packing All Components of a JFrame

// PackedJFrame.java
package com.jdojo.swing.intro;

Figure 1-7. A JFrame with a JButton with Close as its text

Chapter 1 ■ IntroduCtIon to SwIng

11

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;

public class PackedJFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Components to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Add a close button
 JButton closeButton = new JButton("Close");
 Container contentPane = frame.getContentPane();
 contentPane.add(closeButton);

 // Calculates and sets appropriate size for the frame
 frame.pack();

 frame.setVisible(true);
 }
}

So far, you have been successful in adding one JButton to a JFrame. Let’s add another JButton to the
same JFrame. Call the new button helpButton. The code will be similar to Listing 1-5, except that this time
you will add two instances of JButton. Listing 1-6 contains the complete program. Figure 1-9 shows the
result when you run the program.

Listing 1-6. Adding Two Buttons to a JFrame

// JFrameWithTwoJButtons.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;

public class JFrameWithTwoJButtons {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Adding Components to JFrame");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Figure 1-8. Packed JFrame with a JButton

Chapter 1 ■ IntroduCtIon to SwIng

12

 // Add two buttons - Close and Help
 JButton closeButton = new JButton("Close");
 JButton helpButton = new JButton("Help");
 Container contentPane = frame.getContentPane();
 contentPane.add(closeButton);
 contentPane.add(helpButton);
 frame.pack();
 frame.setVisible(true);
 }
}

When you added the Help button, you lost the Close button. Does this mean that you can add only one
button to a JFrame? The answer is no. You can add as many buttons to a JFrame as you want. So, where is your
Close button? You need to understand the layout mechanism of a content pane before I can answer this question.

A content pane is a container. You add components to it. However, it hands over the task of laying out
all components within it to an object known as a layout manager. A layout manager is simply a Java object
whose sole job is to determine the position and size of components within a container. The example in
Listing 1-6 was carefully chosen to introduce you to the concept of the layout manager. Many types of layout
managers exist. They differ in the way they position and size components within the container.

By default, the content pane of a JFrame uses a layout manager called BorderLayout. Only the
Help button was displayed in the previous example because of the way the BorderLayout lays out the
components. In fact, when you added two buttons, the content pane received both of them. To confirm
that both buttons are still there in the content pane, add the following snippet of code at the end of the
main() method in Listing 1-6 that displays the number of components that the content pane has. It will
print a message on the standard output: "Content Pane has 2 components." Each container has a
getComponents() method, which returns an array of components added to it.

// Get the components added to the content pane
Component[] comps = contentPane.getComponents();

// Display how many components the content pane has
System.out.println("Content Pane has " + comps.length + " components.");

With this background, it is time to learn various layout managers. You will solve the puzzle of the
missing Close button when I discuss the BorderLayout manager in a later section. But before I discuss the
various layout managers, I will introduce you to some utility classes that are frequently used when working
with Swing applications.

 ■ Tip a component can be added to only one container at one time. If you add the same component to
another container, the component is removed from the first container and then added to the second one.

Figure 1-9. A JFrame with two buttons: Close and Help. Only the Help button is visible.

Chapter 1 ■ IntroduCtIon to SwIng

13

Some Utility Classes
Before you start developing some serious Swing GUIs, it is worth mentioning some frequently used
utility classes. They are simple classes. Most of them have some properties that can be specified in their
constructors, and have getters and setters for those properties. These classes are in the java.awt package.

The Point Class
As the name suggests, an object of the Point class represents a location in a two-dimensional space. A
location in a two-dimensional space is represented by two values: an x coordinate and a y coordinate. The
following snippet of code demonstrates its use:

// Create an object of the Point class with (x, y) coordinate of (20, 40)
Point p = new Point(20, 40);

// Get the x and y coordinates of p
int x = p.getX();
int y = p.getY();

// Set the x and y coordinates of p to (10, 60)
p.setLocation(10, 60);

The main usage of the Point class in Swing is to set and get the location (x and y coordinates) of a
component. For example, you can set the location of a JButton.

JButton closeButton = new JButton("Close");

// The following two statements do the same thing.
// You will use one of the following statements, not both.
closeButton.setLocation(10, 15);
closeButton.setLocation(new Point(10, 15));

// Get the location of the closeButton
Point p = closeButton.getLocation();

The Dimension Class
An object of the Dimension class wraps the width and height of a component. The width and height of a
component are collectively known as its size. In other words, an object of the Dimension class is used to
represent the size of a component.

// Create an object of the Dimension class with a width and height of 200 and 20
Dimension d = new Dimension(200, 20);

// Set the size of closeButton to 200 X 20. Both of the statements have the same effect.
// You will use one of the following two statements.
closeButton.setSize(200, 20);
closeButton.setsize(d);

// Get the size of closeButton
Dimension d2 = closeButton.getSize();
int width = d2.width;
int height = d2.height;

Chapter 1 ■ IntroduCtIon to SwIng

14

The Insets Class
An object of the Insets class represents spaces that are left around a container. It wraps four properties
named top, left, bottom, and right. Their values represent the spaces left on the four sides of a container.

// Create an object of the Insets class using its constructor Insets(top, left, bottom, right)
Insets ins = new Insets(20, 5, 5, 5);

// Get the insets of a JFrame
Insets ins = frame.getInsets();
int top = ins.top;
int left = ins.left;
int bottom = ins.bottom;
int right = ins.right;

The Rectangle Class
As its name suggests, an instance of the Rectangle class represents a rectangle. You can define a rectangle in
many ways. A Rectangle is defined by three properties:

•	 (x, y) coordinates of the upper-left corner

•	 Width

•	 Height

You can think of a Rectangle object as a combination of a Point object and a Dimension object; the Point
object holds the (x, y) coordinates of the upper-left corner and the Dimension object holds the width and
height. You can create an object of the Rectangle class by specifying different combinations of its properties.

// Create a Rectangle object whose upper-left corner is at (0, 0) with zero width and height
Rectangle r1 = new Rectangle();

// Create a Rectangle object from a Point object with zero width and height
Rectangle r2 = new Rectangle(new Point(10, 10));

// Create a Rectangle object from a Point object and a Dimension object
Rectangle r3 = new Rectangle(new Point(10, 10), new Dimension(200, 100));

// Create a Rectangle object by specifying its upper-left corner's
// coordinate at (10, 10) and width as 200 and height as 100
Rectangle r4 = new Rectangle(10, 10, 200, 100);

The Rectangle class defines many methods to manipulate a Rectangle object and to inquire about its
properties, such as the (x, y) coordinate of its upper-left corner, width, and height.

An object of the Rectangle class defines the location and size of a Swing component. The location and
size of a component are known as component’s bounds. Two methods, setBounds() and getBounds(), can
be used to set and get the bounds of any component or container. The setBounds() method is overloaded
and you can specify x, y, width, and height properties of a component, or a Rectangle object. The
getBounds() method returns a Rectangle object. In Listing 1-3, you used the setBounds() method to set the
x, y, width, and height of the frame. Note that the “bounds” of a component is a combination of its location
and its size. The combination of the setLocation() and setSize() methods will accomplish the same as
the setBounds() method does. Similarly, you can use the combination of getLocation() (or getX() and
getY()) and getSize() (or getWidth() and getHeight()) instead of using the getBounds() method.

Chapter 1 ■ IntroduCtIon to SwIng

15

Layout Managers
A container uses a layout manager to compute the position and size of all its components. In other words,
the job of a layout manager is to compute four properties (x, y, width, and height) of all components in a
container. The x and y properties determine the position of a component within the container. The width
and height properties determine the size of the component. You might ask, “Why do you need a layout
manager to perform a simple task of computing four properties of a component? Can’t you just specify
these four properties in the program and let the container use them for displaying the components?” The
answer is yes. You can specify these properties in your program. If you do that, your component will not
be repositioned and resized when the container is resized. In addition, you will have to specify the size of
the component for all platforms on which your application will run because different platforms render
components a little differently. Suppose your application displays text in multiple languages. The optimal
size for a JButton, say a Close button, will be different in different languages and you will have to calculate
the size of the Close button in each language and set it, depending on the language the application is using.
However, you do not have to take all of these into consideration if you use a layout manager. The layout
manager will do these simple, though time-consuming, things for you.

Using a layout manager is optional. If you do not use a layout manager, you are responsible for
computing and setting the position and size of all components in a container.

Technically, a layout manager is an object of a Java class that implements the LayoutManager interface.
There is another interface called LayoutManager2 that inherits from the LayoutManager interface. Some of the
layout manager classes implement the LayoutManager2 interface. Both interfaces are in the java.awt package.

There are many layout managers. Some layout managers are simple and easy to code by hand. Some are
very complex to code by hand and they are meant to be used by GUI builder tools such as NetBeans. If none
of the available layout managers meet your needs, you can create your own. Some useful layout managers
are available for free on the Internet. Sometimes you need to nest them to get the desired effects. I discuss
the following layout managers in this section:

•	 FlowLayout

•	 BorderLayout

•	 CardLayout

•	 BoxLayout

•	 GridLayout

•	 GridBagLayout

•	 GroupLayout

•	 SpringLayout

Every container has a default layout manager. The default layout manager for the content pane of a JFrame
is BorderLayout, and for a JPanel, it is FlowLayout. The layout manager is set when you create the container.
You can change the default layout manager of a container by using its setLayout() method. If you do not
want your container to use a layout manager, you can pass null to the setLayout() method. The getLayout()
method of a container returns the reference of the layout manager the container is currently using.

// Set FlowLayout as the layout manager for the content pane of a JFrame
JFrame frame = new JFrame("Test Frame");
Container contentPane = frame.getContentPane();
contentPane.setLayout(new FlowLayout());

Chapter 1 ■ IntroduCtIon to SwIng

16

// Set BorderLayout as the layout manager for a JPanel
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

// Get the layout manager for a container
LayoutManager layoutManager = container.getLayout()

Starting from Java 5, the calls to add() and setLayout() methods on a JFrame are forwarded to its
content pane. Before Java 5, calling these methods on a JFrame would throw a runtime exception. That
is, from Java 5, the two calls frame.setLayout() and frame.add() will do the same as calling frame.
getContentPane().setLayout() and frame.getContentPane().add(). It is very important to note that the
getLayout() method of a JFrame returns the layout manager of the JFrame, not its content pane. To avoid
this trouble of asymmetric call forwarding (some calls are forwarded and some not) from the JFrame to its
content pane, it is better to call the content pane’s methods directly rather than calling them on a JFrame.

FlowLayout
The FlowLayout is the simplest layout manager. It lays out the components horizontally, and then vertically.
It lays the components in the order they are added to the container. When it is laying the components
horizontally, it may lay them left to right, or right to left. The horizontal layout direction depends on the
orientation of the container, which you can set by calling its setComponentOrientation() method. If you
want to set the orientation of a container and all its children, you can use the applyComponentOrientation()
method instead. Here is a snippet of code that sets the orientation of a container:

// Method – 1
// Set the orientation of the content pane of a frame to "right to left"
JFrame frame = new JFrame("Test");
Container pane = frame.getContentPane();
pane.setComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

// Method – 2
// Set the orientation of the content pane and all its children to "right to left"
JFrame frame = new JFrame("Test");
Container pane = frame.getContentPane();
pane.applyComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

If your application is multilingual and the component orientation will be decided at runtime, you may
want to set the components locale and orientation in a more generic way rather than hard-coding them. You
can globally set the default locale for all Swing components in your application like so:

// "ar" is used for Arabic locale
JComponent.setDefaultLocale(new Locale("ar"));

When you create a JFrame, you can get the component’s orientation according to the default locale and
set it to the frame and its children. This way, you do not have to set the orientation for every container in
your application.

// Get the default locale
Locale defaultLocale = JComponent.getDefaultLocale();

Chapter 1 ■ IntroduCtIon to SwIng

17

// Get the component's orientation for the default locale
ComponentOrientation componentOrientation = ComponentOrientation.
getOrientation(defaultLocale);

// Apply the component's default orientation for the whole frame
frame.applyComponentOrientation(componentOrientation);

A FlowLayout tries to place all components into one row, giving them their preferred size. If all
components do not fit into one row, it starts another row. Every layout manager has to compute the height
and width of the space where it needs to lay out all components. A FlowLayout asks for width, which is the
sum of the preferred widths of all components. It asks for height, which is the height of the tallest component
in the container. It adds extra space to the width and height to account for horizontal and vertical gaps
between the components. Listing 1-7 demonstrates how to use a FlowLayout for the content pane of a
JFrame. It adds three buttons to the content pane. Figure 1-10 shows the screen with three buttons using the
FlowLayout. When you expand the frame horizontally, the buttons are displayed, as shown in Figure 1-11.

Listing 1-7. Using a FlowLayout Manager

// FlowLayoutTest.java
package com.jdojo.swing.intro;

import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;

public class FlowLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Flow Layout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new FlowLayout());

 for (int i = 1; i <= 3; i++) {
 contentPane.add(new JButton("Button " + i));
 }

 frame.pack();
 frame.setVisible(true);
 }
}

Figure 1-10. Three buttons in a JFrame with a FlowLayout Manager

Chapter 1 ■ IntroduCtIon to SwIng

18

By default, a FlowLayout aligns all components in the center of the container. You can change the
alignment by using its setAlignment() method or passing the alignment in its constructor, like so:

// Set the alignment when you create the layout manager object
FlowLayout flowLayout = new FlowLayout(FlowLayout.RIGHT);

// Set the alignment after you have created the flow layout manager
flowLayout.setAlignment(FlowLayout.RIGHT);

The following five constants are defined in the FlowLayout class to represent the five different
alignments: LEFT, RIGHT, CENTER, LEADING, and TRAILING. The definitions of the first three constants
are obvious. The LEADING alignment may mean either left or right; it depends on the orientation of the
component. If the component’s orientation is RIGHT_TO_LEFT, the LEADING alignment means RIGHT. If
component’s orientation is LEFT_TO_RIGHT, the LEADING alignment means LEFT. Similarly, TRAILING
alignment may mean either left or right. If the component’s orientation is RIGHT_TO_LEFT, the TRAILING
alignment means LEFT. If component’s orientation is LEFT_TO_RIGHT, the TRAILING alignment means RIGHT.
It is always a good idea to use LEADING and TRAILING instead of RIGHT and LEFT, so you do not have to worry
about the orientation of your component.

You can set the gaps between two components either in the constructor of the FlowLayout class or using
its setHgap() and setVgap() methods. Listing 1-8 contains the complete code that adds three buttons to a
JFrame. The content pane uses a FlowLayout with the LEADING alignment and the JFrame's orientation is set
to RIGHT_TO_LEFT. When you run the program, the JFrame will look as shown in Figure 1-12.

Listing 1-8. Customizing a FlowLayout

// FlowLayoutTest2.java
package com.jdojo.swing.intro;

import java.awt.ComponentOrientation;
import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;

public class FlowLayoutTest2 {
 public static void main(String[] args) {
 int horizontalGap = 20;
 int verticalGap = 10;
 JFrame frame = new JFrame("Flow Layout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = frame.getContentPane();
 FlowLayout flowLayout

Figure 1-11. After the JFrame using a FlowLayout has been expanded horizontally

Chapter 1 ■ IntroduCtIon to SwIng

19

 = new FlowLayout(FlowLayout.LEADING, horizontalGap, verticalGap);
 contentPane.setLayout(flowLayout);
 frame.applyComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT);

 for (int i = 1; i <= 3; i++) {
 contentPane.add(new JButton("Button " + i));
 }

 frame.pack();
 frame.setVisible(true);
 }
}

You must remember that a FlowLayout tries to lay out all components in only one row. Therefore, it
does not ask for a height that will fit all components. Rather, it asks for the height of the tallest component in
the container. To demonstrate this subtle point, try adding 30 buttons to the JFrame so they all do not fit into
one row. The following snippet of code demonstrates this:

JFrame frame = new JFrame("FlowLayout");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().setLayout(new FlowLayout());

for (int i = 1; i <= 30; i++) {
 frame.getContentPane().add(new JButton("Button " + i));
}

frame.pack();
frame.setVisible(true);

The JFrame is shown in Figure 1-13. Notice that not all 30 buttons are displayed. If you resize the JFrame
to make it bigger in height, you will be able to see all the buttons, as shown in Figure 1-14. The FlowLayout
hides the components that it cannot display in one row.

Figure 1-12. A JFrame having three buttons and a customized FlowLayout

Figure 1-13. A JFrame with 30 buttons. Not all buttons are displayed.

Chapter 1 ■ IntroduCtIon to SwIng

20

There is a very important implication of the feature of the FlowLayout where it tries to lay out all
components in only one row. It asks for the height just enough to display the tallest component. If you nest
a container with a FlowLayout manager inside another container that also uses a FlowLayout manager, you
will never see more than one row in the nested container. Just to demonstrate this, add 30 instances of the
JButton to a JPanel. A JPanel is an empty container with a FlowLayout as its default layout manager. Set the
layout manager of the content pane of the JFrame to a FlowLayout and add the JPanel to the content pane of
the JFrame. This way, you have the container JPanel with a FlowLayout nested within another container (a
content pane), with a FlowLayout. Listing 1-9 contains the complete program to demonstrate this. When you
run the program, the resulting JFrame is shown in Figure 1-15. You will always see only one row of buttons
even if you resize the JFrame to make it bigger in height.

Listing 1-9. Nesting FlowLayout Managers

// FlowLayoutNesting.java
package com.jdojo.swing.intro;

import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class FlowLayoutNesting {
 public static void main(String[] args) {
 JFrame frame = new JFrame("FlowLayout Nesting");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Set the content pane's layout to FlowLayout
 frame.getContentPane().setLayout(new FlowLayout());

 // JPanel is an empty container with a FlowLayout manager
 JPanel panel = new JPanel();

 // Add 30 JButtons to the JPanel
 for (int i = 1; i <= 30; i++) {
 panel.add(new JButton("Button " + i));
 }

Figure 1-14. A JFrame with 30 buttons after it is resized

Chapter 1 ■ IntroduCtIon to SwIng

21

 // Add JPanel to the content pane
 frame.getContentPane().add(panel);

 frame.pack();
 frame.setVisible(true);
 }
}

I would like to finish the discussion about FlowLayout with a note that it has very limited use in a real
world applications because of the limitations discussed in this section. It is typically used for prototyping.

BorderLayout
The BorderLayout divides a container’s space into five areas: north, south, east, west, and center. When you
add a component to a container with a BorderLayout, you need to specify to which of the five areas you want
to add the component. The BorderLayout class defines five constants to identify each of the five areas. The
constants are NORTH, SOUTH, EAST, WEST, and CENTER. For example, to add a button to the north area, you write:

// Add a button to the north area of the container
JButton northButton = new JButton("North");
container.add(northButton, BorderLayout.NORTH);

The default layout for the content pane of a JFrame is a BorderLayout. Listing 1-10 contains the
complete program that adds five buttons to the content pane of a JFrame. The resulting JFrame is shown in
Figure 1-16.

Listing 1-10. Adding Components to a BorderLayout

// BorderLayoutTest.java
package com.jdojo.swing.intro;

import java.awt.BorderLayout;
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;

public class BorderLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BorderLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container container = frame.getContentPane();

 // Add a button to each of the five areas of the BorderLayout
 container.add(new JButton("North"), BorderLayout.NORTH);
 container.add(new JButton("South"), BorderLayout.SOUTH);

Figure 1-15. A nested FlowLayout always displays only one row

Chapter 1 ■ IntroduCtIon to SwIng

22

 container.add(new JButton("East"), BorderLayout.EAST);
 container.add(new JButton("West"), BorderLayout.WEST);
 container.add(new JButton("Center"), BorderLayout.CENTER);

 frame.pack();
 frame.setVisible(true);
 }
}

You can add at most one component to one area of a BorderLayout. You may leave some areas empty.
If you want to add more than one component to an area of a BorderLayout, you can do so by adding those
components to a container, and then adding that container to the desired area.

The five areas in a BorderLayout (north, south, east, west, and center) are fixed in direction and are not
dependent on the orientation of components. Four more constants exist to specify areas in a BorderLayout.
These constants are PAGE_START, PAGE_END, LINE_START, and LINE_END. The PAGE_START and PAGE_END
constants are the same as the NORTH and SOUTH constants, respectively. The LINE_START and LINE_END
constants change their positions depending on the orientation of the container. If the container’s orientation
is left to right, LINE_START is the same as WEST, and LINE_END is the same as EAST. If the container’s orientation
is right to left, LINE_START is the same as EAST, and LINE_END is the same as WEST. Figure 1-17 and Figure 1-18
depict the differences in positioning of the areas of a BorderLayout with different component orientations.

Figure 1-16. Five areas of the BorderLayout

Figure 1-17. A BorderLayout’s areas when the container’s orientation is left to right

Chapter 1 ■ IntroduCtIon to SwIng

23

If you do not specify the area for a component, it is added to the center. The following two statements
have the same effect:

// Assume that the container has a BorderLayout.
// Add a button to the container without specifying the area
container.add(new JButton("Close"));

// The above statement has the same effect as the following
container.add(new JButton("Close"), BorderLayout.CENTER);

I have already stated that you can add at most five components to a BorderLayout, one in each of the
five areas. What happens if you add more than one component to the same area of a BorderLayout? That is,
what happens if you write the following code?

// Assume that container has a BorderLayout
container.add(new JButton("Close"), BorderLayout.NORTH);
container.add(new JButton("Help"), BorderLayout.NORTH);

You will find that the north area of the BorderLayout displays only one button: the button that was
added to it last. That is, the north area will only display the Help button. This is what happened in Listing 1-6.
You added two buttons called Close and Help to the content pane of the JFrame. Since you did not specify
the area of the BorderLayout in which you wanted to add them, both of them were added to the center area.
Since you can have only one component in each area of a BorderLayout, the Help button replaced the Close
button. This is the reason that you did not see the Close button when you ran the program in Listing 1-6. To
fix this problem, specify the areas for both buttons when you add them to the container.

 ■ Tip If you are missing some components in a BorderLayout managed container, make sure that you
have not added more than one component in the same area. If you add components to a BorderLayout mixing
the area constants, the PAGE_START, PAGE_END, LINE_START, and LINE_END constants take precedence over
the NORTH, SOUTH, EAST, and WEST constants. that is, if you add two components to a BorderLayout using
add(c1, NORTH) and add(c2, PAGE_START), c2 will be used, not c1.

How does a BorderLayout compute the size of the components? It computes the size of the components
based on the area in which they are placed. It respects the preferred height of the component in north and
south. However, it stretches the component’s width horizontally according to the available space in north
and south. That is, it does not respect the preferred width of the components in north and south. It respects
the preferred width of the components in east and west and gives them the height necessary to fill the entire
space vertically. The component in the center area is stretched horizontally as well as vertically to fit the
available space. That is, the center area does not respect its component’s preferred width and height.

Figure 1-18. A BorderLayout’s areas when the container’s orientation is right to left

Chapter 1 ■ IntroduCtIon to SwIng

24

CardLayout
The CardLayout lays out components in a container as a stack of cards. Like a stack of cards, only one card
(the card at the top) is visible in a CardLayout. It makes only one component visible at a time. You need to
use the following steps to use a CardLayout for a container:

•	 Create a container such as a JPanel.

JPanel cardPanel = new JPanel();

•	 Create a CardLayout object.

CardLayout cardLayout = new CardLayout();

•	 Set the layout manager for the container.

cardPanel.setLayout(cardLayout);

•	 Add components to the container. You need to give a name to each component. To
add a JButton to the cardPanel, use the following statement:

cardPanel.add(new JButton("Card 1"), "myLuckyCard");

You have named your card myLuckyCard. This name can be used in the show()
method of the CardLayout to make this card visible.

•	 Call its next() method to show the next card.

cardLayout.next(cardPanel);

The CardLayout class provides several methods to flip through components. By default, it shows the
first component that was added to it. All flipping-related methods take the container it manages as its
argument. The first() and last() methods show the first and the last card, respectively. The previous()
and next() methods show the previous and the next card from the card currently being shown. If the last
card is showing, calling the next() method shows the first card. If the first card is showing, calling the
previous() method shows the last card.

Listing 1-11 demonstrates how to use a CardLayout. Figure 1-19 shows the resulting JFrame. When you
click the Next button, the next card is flipped. The program adds two JPanels to the content pane of the
JFrame. One JPanel, buttonPanel, has the Next button, and it is added to the south area of the content pane.
Note that, by default, a JPanel uses a FlowLayout.

Chapter 1 ■ IntroduCtIon to SwIng

25

Listing 1-11. The CardLayout in Action

// CardLayoutTest.java
package com.jdojo.swing.intro;

import java.awt.Container;
import javax.swing.JFrame;
import java.awt.CardLayout;
import javax.swing.JPanel;
import javax.swing.JButton;
import java.awt.Dimension;
import java.awt.BorderLayout;

public class CardLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("CardLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Add a Next JButton in a JPanel to the content pane
 JPanel buttonPanel = new JPanel();
 JButton nextButton = new JButton("Next");
 buttonPanel.add(nextButton);
 contentPane.add(buttonPanel, BorderLayout.SOUTH);

 // Create a JPanel and set its layout to CardLayout
 final JPanel cardPanel = new JPanel();
 final CardLayout cardLayout = new CardLayout();
 cardPanel.setLayout(cardLayout);

 // Add five JButtons as cards to the cardPanel
 for (int i = 1; i <= 5; i++) {
 JButton card = new JButton("Card " + i);
 card.setPreferredSize(new Dimension(200, 200));
 String cardName = "card" + 1;
 cardPanel.add(card, cardName);
 }

 // Add the cardPanel to the content pane
 contentPane.add(cardPanel, BorderLayout.CENTER);

 // Add an action listener to the Next button
 nextButton.addActionListener(e -> cardLayout.next(cardPanel));

 frame.pack();
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

26

The program adds an action listener to the Next button. I have not discussed how to add an action
listener to a button yet. It is necessary to see the CardLayout in action. I discuss how to add an action to a
button in detail in the event handling section. For now, it is sufficient to mention that you need to call the
addActionListener() method of the JButton class to add an action listener to it. This method accepts an
object of type ActionListener interface and has one method called actionPerformed(). The code in the
actionPerformed() method is executed when you click the JButton. The code that flips the next card is the
call to the cardLayout.next(cardPanel) method. The ActionListener interface is a functional interface
and you can use a lambda expression to create its instance, like so:

// Add an action listener to the Next JButton to flip the next card
nextButton.addActionListener(e -> cardLayout.next(cardPanel));

 ■ Tip a CardLayout is not used very often because all but one component are hidden from the user.
a JTabbedPane, which is easier to use, provides functionality similar to a CardLayout. I will discuss the
JTabbedPane in Chapter 2. a JTabbedPane is a container, not a layout manager. It lays out all components as
tabs and lets the user switch between those tabs.

BoxLayout
The BoxLayout arranges components in a container either horizontally in one row or vertically in one
column. You need to use the following steps to use a BoxLayout in your program:

•	 Create a container, for example, a JPanel.

JPanel hPanel = new JPanel();

Figure 1-19. A CardLayout in action. Click the Next button to flip through the cards.

http://dx.doi.org/10.1007/978-1-4842-3546-1_2

Chapter 1 ■ IntroduCtIon to SwIng

27

•	 Create an object of the BoxLayout class. Unlike other layout managers, you need to
pass the container to the constructor. You also need to pass the type of box you are
creating (horizontal or vertical) to its constructor. The class has four constants: X_AXIS,
Y_AXIS, LINE_AXIS, and PAGE_AXIS. The constant X_AXIS is used to create a horizontal
BoxLayout that lays out all components from left to right. The constant Y_AXIS is used
to create a vertical BoxLayout that lays out all components from top to bottom. The
other two constants, LINE_AXIS and PAGE_AXIS, are similar to X_AXIS and Y_AXIS.
However, they use the orientation of the container in laying out the components.

// Create a BoxLayout for hPanel to lay out components from left to right
BoxLayout boxLayout = new BoxLayout(hPanel, BoxLayout.X_AXIS);

•	 Set the layout for the container.

hPanel.setLayout(boxLayout);

•	 Add the components to the container.

hPanel.add(new JButton("Button 1"));
hPanel.add(new JButton("Button 2"));

Listing 1-12 uses a horizontal BoxLayout to display three buttons, as shown in Figure 1-20.

Listing 1-12. Using a Horizontal BoxLayout

// BoxLayoutTest.java
package com.jdojo.swing.intro;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JPanel;
import javax.swing.BoxLayout;
import java.awt.BorderLayout;

public class BoxLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BoxLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 JPanel hPanel = new JPanel();
 BoxLayout boxLayout = new BoxLayout(hPanel, BoxLayout.X_AXIS);
 hPanel.setLayout(boxLayout);

 for (int i = 1; i <= 3; i++) {
 hPanel.add(new JButton("Button " + i));
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to SwIng

28

 contentPane.add(hPanel, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }
}

A BoxLayout tries to give the preferred width to all components in a horizontal layout and the preferred
height in a vertical layout. In a horizontal layout, the height of the tallest component is given to all other
components. If it cannot adjust the height of a component to match the tallest component in the group, it
aligns the component horizontally along the center. You can change this default alignment by setting the
component’s alignment or the container alignment by using the setAlignmentY() method. In a vertical
layout, it tries to give the preferred height to all components and tries to make the size of all components the
same width as the widest component. If it cannot make all components have the same width, it aligns them
vertically along their centerlines. You can change this default alignment by changing either the component’s
alignment or the container’s alignment using the setAlignmentX() method.

The javax.swing package contains a Box class that makes using a BoxLayout easier. A Box is a container
that uses a BoxLayout as its layout manager. The Box class provides static methods to create a container with
a horizontal or vertical layout. The createHorizontalBox() and createVerticalBox() methods create a
horizontal box and vertical box, respectively.

// Create a horizontal box
Box hBox = Box.createHorizontalBox();

// Create a vertical box
Box vBox = Box.createVerticalBox();

To add a component to a Box, use its add() method, like so:

// Add two buttons to the horizontal box
hBox.add(new JButton("Button 1");
hBox.add(new JButton("Button 2");

The Box class also allows you to create invisible components and add them to a box, so you can adjust
spacing between two components. It provides four types of invisible components:

•	 Glue

•	 Strut

•	 Rigid Area

•	 Filler

Figure 1-20. A JFrame with a horizontal BoxLayout with three buttons

Chapter 1 ■ IntroduCtIon to SwIng

29

A glue is an invisible, expandable component. You can create horizontal and vertical glues using the
createHorizontalGlue() and createVerticalGlue() static methods of the Box class. The following snippet
of code uses horizontal glue between two buttons in a horizontal box layout. You can also create a glue
component using the createGlue() static method of the Box class that can expand horizontally as well as
vertically.

Box hBox = Box.createHorizontalBox();
hBox.add(new JButton("First"));
hBox.add(Box.createHorizontalGlue());
hBox.add(new JButton("Last"));

The buttons with a glue in between them are shown in Figure 1-21. Figure 1-22 shows them after the
container is expanded horizontally. Notice the horizontal empty space between the two buttons, which is
the invisible glue that has expanded.

A strut is an invisible component of a fixed width or a fixed height. You can create a horizontal strut using
the createHorizontalStrut() method, which takes the width in pixels as an argument. You can create a
vertical strut using the createVerticalStrut() method, which takes the height in pixels as an argument.

// Add a 100px strut to a horizontal box
hBox.add(Box.createHorizontalStrut(100));

A rigid area is an invisible component that is always the same size. You can create a rigid area by using
the createRigidArea() static method of the Box class. You need to pass a Dimension object to it to specify its
width and height.

// Add a 10x5 rigid area to a horizontal box
hBox.add(Box.createRigidArea(new Dimesnion(10, 5)));

Figure 1-22. A horizontal box with two buttons and a horizontal glue between them after resizing

Figure 1-21. A horizontal box with two buttons and a horizontal glue between them

Chapter 1 ■ IntroduCtIon to SwIng

30

A filler is an invisible custom component that you can create by specifying your own minimum,
maximum, and preferred sizes. The Filler static nested class of the Box class represents a filler.

// Create a filler, which acts like a glue. Note that the glue is just a
// filler with a minimum and preferred size set to zero
// and a maximum size set to
// Short.MAX_VALUE in both directions
Dimension minSize = new Dimension(0, 0);
Dimension prefSize = new Dimension(0, 0);
Dimension maxSize = new Dimension(Short.MAX_VALUE, Short.MAX_VALUE);
Box.Filler filler = new Box.Filler(minSize, prefSize, maxSize);

You can get a very powerful layout by nesting boxes with a horizontal and vertical BoxLayout. The Box
class provides convenience methods to create glue, strut, and rigid areas. However, they are all objects of the
Box.Filler class. When the minimum and preferred sizes are set to zero, and the maximum size to Short.
MAX_VALUE in both directions, a Box.Filler object acts as a glue. When the maximum height of a glue is set
to zero, it acts like a horizontal glue. When the maximum width of a glue is set to zero, it acts like a vertical
glue. You can create a horizontal strut using the Box.Filler class by using its minimum and preferred sizes of
a specified width and zero height, and a maximum size as the specified width and Short.MAX_VALUE height.
Can you think of a way to create a rigid area using the Box.Filler class? All sizes (minimum, preferred, and
maximum) will be the same for a rigid area. The following snippet of code creates a rigid area of 10x10:

// Create a 10x10 rigid area
Dimension d = new Dimension(10, 10); JComponent rigidArea = new Box.Filler(d, d, d);

Listing 1-13 demonstrates how to use the Box class and glue. Figure 1-23 shows the resulting JFrame
after you expand it horizontally. When the JFrame is opened, there is no gap between the Previous and Next
buttons.

Listing 1-13. A BoxLayout Using the Box Class and Glue

// BoxLayoutGlueTest.java
package com.jdojo.swing.intro;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.Box;
import java.awt.BorderLayout;

public class BoxLayoutGlueTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("BoxLayout with Glue");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = frame.getContentPane();
 Box hBox = Box.createHorizontalBox();
 hBox.add(new JButton("<<First"));
 hBox.add(new JButton("<Previous"));
 hBox.add(Box.createHorizontalGlue());
 hBox.add(new JButton("Next>"));
 hBox.add(new JButton("Last>>"));

Chapter 1 ■ IntroduCtIon to SwIng

31

 contentPane.add(hBox, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 }
}

GridLayout
A GridLayout arranges components in a rectangular grid of equally sized cells. Each component is placed
in exactly one cell. It does not respect the preferred size of the component. It divides the available space into
equally sized cells and resizes each component to the cell’s size.

You can specify either the number of rows or the number of columns in the grid. If you specify both, only
the number of rows is used, and the number of columns is computed. Suppose ncomponents is the number of
components added to the container, and nrows and ncols are the specified number of rows and columns. If
nrows is greater than zero, the number of columns in the grid is computed using the following formula:

ncols = (ncomponents + nrows - 1)/nrows

If nrows is zero, the number of rows in the grid is computed using the following formula:

nrows = (ncomponents + ncols - 1)/ncols

You cannot specify a negative number for nrows or ncols, and at least one of them must be greater than
zero. Otherwise, a runtime exception is thrown.

You can create a GridLayout using one of the following three constructors of the GridLayout class:

•	 GridLayout()

•	 GridLayout(int rows, int cols)

•	 GridLayout(int rows, int cols, int hgap, int vgap)

You can specify the number of rows, the number of columns, a horizontal gap, and a vertical gap
between two cells in the grid. You can also set these properties using the methods setRows(), setColumns(),
setHgap(), and setVgap().

The noargs constructor creates a grid of one row. The number of columns is the same as the number of
components added to the container.

// Create a grid layout of one row
GridLayout gridLayout = new GridLayout();

Figure 1-23. A BoxLayout with glue

Chapter 1 ■ IntroduCtIon to SwIng

32

The second constructor creates a GridLayout with a specified number of rows or columns.

// Create a grid layout of 5 rows. Specify 0 as the number of columns.
// The number of columns will be computed.
GridLayout gridLayout = new GridLayout(5, 0);

// Create a grid layout of 3 columns. Specify 0 as the number of rows.
// The number of rows will be computed.
GridLayout gridLayout = new GridLayout(0, 3);

// Create a grid layout with 2 rows and 3 columns. You have specified
// a non-zero value for rows, so the value for columns will be ignored.
// It will be computed based on the number of components.
GridLayout gridLayout = new GridLayout(2, 3);

The third constructor lets you specify the number of rows or the number of columns, and horizontal
and vertical gaps between two cells. You can create a GridLayout of three rows with a horizontal gap of 10
pixels and a vertical gap of 20 pixels between cells, as shown:

GridLayout gridLayout = new GridLayout(3, 0, 10, 20);

Listing 1-14 demonstrates how to use a GridLayout. Note that you do not specify in which cell the
component will be placed. You just add the component to the container and the layout manager decides the
placement.

Listing 1-14. Using GridLayout

// GridLayoutTest.java
package com.jdojo.swing.intro;

import java.awt.GridLayout;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;

public class GridLayoutTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("GridLayout Test");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(3, 0));

 for (int i = 1; i <= 9; i++) {
 buttonPanel.add(new JButton("Button " + i));
 }

Chapter 1 ■ IntroduCtIon to SwIng

33

 contentPane.add(buttonPanel, BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
}

Figure 1-24 shows a container with a GridLayout that has three rows and nine components. Figure 1-25
shows a container with a GridLayout that has three rows and seven components. If you resize the container
with a GridLayout, all components will be resized and they will be of the same size. Try resizing the JFrame
by running the program in Listing 1-14.

A GridLayout is a simple layout manager to code by hand. However, it is not very powerful, for two
reasons. First, it forces each component to have the same size, and second, you cannot specify the row and
column number (or exact location) of a component in the grid. That is, you can only add a component to the
GridLayout. They will be laid out horizontally, and then vertically in the order you add them to the container.
If the container’s orientation is LEFT_TO_RIGHT, components are laid out from left-to-right, and then top-to-
bottom. If the container’s orientation is RIGHT_TO_LEFT, components are laid out from right-to-left, and then
top-to-bottom. One good use of the GridLayout is to create a group of buttons of the same size. For example,
suppose you add two buttons with the text OK and Cancel to a container and want them to have the same size.
You can achieve this by adding the buttons to a container managed by a GridLayout layout manager.

GridBagLayout
The GridBagLayout lays out components in a grid of rectangular cells arranged in rows and columns similar
to the GridLayout. However, it is much more powerful than the GridLayout. Its power comes with an
added complexity in its usage. It is not as easy to use as the GridLayout. There are so many things you can
customize in the GridBagLayout that it becomes hard to learn and use all of its features quickly.

Figure 1-25. A GridLayout with three rows and seven components

Figure 1-24. A GridLayout with three rows and nine components

Chapter 1 ■ IntroduCtIon to SwIng

34

It lets you customize many properties of the components, such as size, alignment, expandability, etc.
Unlike the GridLayout, all cells of the grid do not have to be the same size. A component does not have to
be placed exactly in one cell. A component can span multiple cells horizontally as well as vertically. You can
specify how a component inside its cell should be aligned.

The GridBagLayout and GridBagConstraints classes are used while working with a GridBagLayout
layout manager. Both classes are in the java.awt package. An object of the GridBagLayout class defines
a GridBagLayout layout manager. An object of the GridBagConstraints class defines constraints for a
component in a GridBagLayout. The constraints of a component are used to lay out the component. Some of
the constraints include the component’s position in the grid, width, height, alignment inside the cell, etc.

The following snippet of code creates an object of the GridBagLayout class and sets it as the layout
manager for a JPanel:

// Create a JPanel container
JPanel panel = new JPanel();

// Set GridBagLayout as the layout manager for the JPanel
GridBagLayout gridBagLayout = new GridBagLayout();
panel.setLayout(gridBagLayout);

Let’s use the GridBagLayout in the simplest form: create a frame, set the layout for its content pane to
GridBagLayout, and add nine buttons to the content pane. This is accomplished in Listing 1-15. Figure 1-26
shows the screen you get when you run the program.

Listing 1-15. A GridBagLayout Used in Its Simplest Form

// SimplestGridBagLayout.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;
import java.awt.GridBagLayout;

public class SimplestGridBagLayout {
 public static void main(String[] args) {
 String title = "GridBagLayout in its Simplest Form";
 JFrame frame = new JFrame(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new GridBagLayout());

 for (int i = 1; i <= 9; i++) {
 contentPane.add(new JButton("Button " + i));
 }

 frame.pack();
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

35

At first, it seems that a GridBagLayout behaves like a FlowLayout. The effect is the same as if you used a
FlowLayout. However, a GridBagLayout is not the same as a FlowLayout, although it has the ability to work
like a FlowLayout. It is much more powerful (and error prone too!) than a FlowLayout. When you added nine
buttons, you did not specify their cells. You used the contentPane.add(Component c) method to add the
buttons. The result was that it placed one button after another in a single row.

You can specify the cell in which a component in a GridBagLayout should be placed. To specify the
cell for a component, you need to call the add(Component c, Object constraints) method, where the
second argument is an object of the GridBagConstraints class. If you do not specify the constraints object
for a component in a GridBagLayout, it places the component in the next cell. The next cell is the cell after
the cell that was used to place the previous component. If you do not use constraints for any components in
a GridBagLayout, all components are placed in one row, as shown in Figure 1-26. I discuss more about this
when I cover the gridx and gridy properties of a GridBagConstraints object shortly.

Let’s set the record straight for the GridBagLayout by showing that it is really a grid layout and that it
places components in a grid of cells. To prove this, you will display nine buttons in the previous example in a
grid of cells with three rows and three columns. This time, there will be only one difference: you will specify
the position of the cell in the grid for the buttons. The combination of the row number and column number
denotes the position of a cell in the grid. All properties for the components and its cells are specified using
an object of the GridBagConstraints class, which has many public instance variables. Its gridx and gridy
instance variables specify the column number and row number of a cell, respectively. The first column is
denoted by gridx = 0, the second column by gridx = 1, and so on. The first row is denoted by gridy = 0,
the second row by gridy = 1, and so on.

Which one is the first cell in a grid—the upper-left corner, the upper-right corner, the lower-left corner,
or the lower-right corner? It depends on the orientation of the container. If the container uses the LEFT_TO_
RIGHT orientation, the cell in the upper-left corner of the grid is the first cell. If the container uses the RIGHT_
TO_LEFT orientation, the cell in the upper-right corner of the grid is the first cell. Table 1-1 and Table 1-2
show the cells with their corresponding gridx and gridy values in a GridBagLayout with different container
orientations. These tables show only nine cells. A GridBagLayout is not limited to having only nine cells. You
can have as many cells as you want. To be exact, you can have a maximum of Integer.MAX_VALUE number of
rows and columns, which you will never use in any application for sure.

Table 1-1. Values of gridx and gridy for Cells in a Container with LEFT_TO_RIGHT Orientation

gridx=0, gridy=0 gridx=1, gridy=0 gridx=2, gridy=0

gridx=0, gridy=1 gridx=1, gridy=1 gridx=2, gridy=1

gridx=0, gridy=2 gridx=1, gridy=2 gridx=2, gridy=2

Figure 1-26. Nine buttons in a GridBagLayout

Table 1-2. Values of gridx and gridy for Cells in a Container with RIGHT_TO_LEFT Orientation

gridx=2, gridy=0 gridx=1, gridy=0 gridx=0, gridy=0

gridx=2, gridy=1 gridx=1, gridy=1 gridx=0, gridy=1

gridx=2, gridy=2 gridx=1, gridy=2 gridx=0, gridy=2

Chapter 1 ■ IntroduCtIon to SwIng

36

Setting the gridx and gridy properties of a component is easy. You create a constraint object for your
component, which is an object of the GridBagConstraints class; set its gridx and gridy properties; and pass
the constraint object to the add() method when you add your component to the container. The following
snippet of code shows how to set the gridx and gridy properties in a constraint for a JButton. When you call
the container.add(component, constraint) method, the constraint object is copied for the component
being added, so that you can change some of its properties and reuse it for another component. This way, you
do not have to create a new constraint object for each component you add to a GridBagLayout. However, this
approach is error prone. You may set a constraint for a component and forget to change that when you reuse
the constraint object for another component. So, be careful when you reuse a constraint object.

// Create a constraint object
GridBagConstraints gbc = new GridBagConstraints();

// Set gridx and gridy properties in the constraint object
gbc.gridx = 0;
gbc.gridy = 0;

// Add a JButton passing the constraint object as the 2nd argument to the add() method
container.add(new JButton("B1"), gbc);

// Set the gridx property to 1. The gridy property remains as 0 as set previously
gbc.gridx = 1;

// Add another JButton to the container
container.add(new JButton("B2"), gbc);

Listing 1-16 demonstrates how to set gridx and gridy values (or cell number) for a component.
Figure 1-27 shows the JFrame that you get when you run the program.

Listing 1-16. Setting gridx and gridy Properties for Components in a GridBagLayout

// GridBagLayoutWithgridxAndgridy.java
package com.jdojo.swing.intro;

import java.awt.GridBagLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.GridBagConstraints;

public class GridBagLayoutWithgridxAndgridy {
 public static void main(String[] args) {
 String title = "GridBagLayout with gridx and gridy";
 JFrame frame = new JFrame(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = frame.getContentPane();
 contentPane.setLayout(new GridBagLayout());

 // Create an object for GridBagConstraints to set
 // the constraints for each JButton
 GridBagConstraints gbc = new GridBagConstraints();

Chapter 1 ■ IntroduCtIon to SwIng

37

 for (int y = 0; y < 3; y++) {
 for (int x = 0; x < 3; x++) {
 gbc.gridx = x;
 gbc.gridy = y;
 String text = "Button (" + x + ", " + y + ")";
 contentPane.add(new JButton(text), gbc);
 }
 }

 frame.pack();
 frame.setVisible(true);
 }
}

You can specify other constraints for a component using a GridBagConstraints object. All constraints
in a GridBagConstraints object are set using one of the instance variables listed in Table 1-3. The class also
defines many constants such as RELATIVE, REMAINDER, etc. Note that all instance variables are in lowercase.

Figure 1-27. A GridBagLayout with nine buttons

Chapter 1 ■ IntroduCtIon to SwIng

38

The following sections discuss the effects of each constraint in detail.

Table 1-3. Instance Variables of the GridBagConstraints Class

Instance Variable Default Value Possible Values Usage

gridx
gridy

RELATIVE RELATIVE
An integer

Column number and row number
of the cell in the grid in which the
component is placed.

gridwidth
gridheight

1 An integer
RELATIVE
REMAINDER

Number of grid cells used to display
the component.

fill NONE BOTH
HORIZONTAL
VERTICAL
NONE

Specifies how the component will fill
the cell(s) allotted to it in the grid.

ipadx
ipady

0 An integer Specifies the internal padding of
a component that is added to its
minimum size. A negative integer
is allowed, which will decrease the
minimum size of the component.

insets (0,0,0,0) An Insets object Specifies the external padding between
edges of the components and its cell in
the grid. Negative values are allowed.

anchor CENTER CENTER, NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST,
PAGE_START, PAGE_END,
LINE_START, LINE_END,
FIRST_LINE_START, FIRST_
LINE_END, LAST_LINE_START,
LAST_LINE_END, BASELINE,
BASELINE_LEADING,
BASELINE_TRAILING, ABOVE_
BASELINE, ABOVE_BASELINE_
LEADING, ABOVE_BASELINE_
TRAILING,BELOW_BASELINE,
BELOW_BASELINE_LEADING,
BELOW_BASELINE_TRAILING

Specifies where in the display area the
component is placed.

weightx
weighty

0.0 A positive double value Specifies how the extra space
(horizontally and vertically) is
distributed among the grid cells when
the container is resized.

Chapter 1 ■ IntroduCtIon to SwIng

39

The gridx and gridy Constraints
The gridx and gridy constraints specify the cell in the grid in which the component is placed. A component
can occupy multiple cells horizontally as well as vertically. All the cells that a component occupies, when
taken together, are known as the display area of the component.

Let’s have a precise definition of the gridx and gridy constraints. They specify the starting cell of the
display area of a component. By default, each component occupies only one cell. I discuss how to make
a component occupy multiple cells in the next section when I discuss the gridwidth and gridheight
constraints. Refer to Listing 1-16 for more details on setting gridx and gridy constraints values for a
component.

You can specify a RELATIVE value for either or both gridx and gridy constraints. If you specify the
values for gridx and gridy (an integer greater than or equal to zero), you decide where the component will
be placed. If you specify either or both constraint values as RELATIVE, the layout manager will determine
the value for gridx and/or gridy. If you read the API documentation for the GridBagLayout class, the
description of the RELATIVE value for gridx and/or gridy is not very clear. All it says is that when you specify
the value for gridx and/or gridy as RELATIVE, the component will be placed next to the component that was
added before this component. This description in the API documentation is as clear as mud! The following
paragraphs will describe setting the values for gridx and gridy in full detail with examples.

Case #1

You have specified values for both gridx and gridy. This is the case of absolute positioning in the grid. Your
component is placed according to the value of gridx and gridy that you have specified. You have already
seen an example of this kind in Listing 1-16.

Case #2

You have specified a value for gridx and you have set the value for gridy to RELATIVE. In this case, the
layout manager needs to determine the value for gridy. Let’s look at an example. Assume that you have
three buttons to place in the grid, and you have a container object whose layout manager is set to a
GridBagLayout. The following snippet of code adds the three buttons to the grid. Figure 1-28 shows the
screen with three buttons.

GridBagConstraints gbc = new GridBagConstraints();
JButton b1 = new JButton("Button 1");
JButton b2 = new JButton("Button 2");
JButton b3 = new JButton("Button 3");

gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);

gbc.gridx = 0;
gbc.gridy = GridBagConstraints.RELATIVE;
container.add(b2, gbc);

gbc.gridx = 1;
gbc.gridy = GridBagConstraints.RELATIVE ; container.add(b3, gbc);

Chapter 1 ■ IntroduCtIon to SwIng

40

There is no confusion about the placement of button b1 because you have specified both gridx and
gridy values. It is placed in the first row (gridy = 0) and first column (gridx = 0).

For button b2, you have specified gridx = 0. You want it to be placed in the first column and the result
is the same as you expected. You have specified gridy as RELATIVE for b2. This means that you are telling
the GridBagLayout to find an appropriate row for b2 by placing it in the first column (gridx = 0). Since the
first row is already occupied by b1 in the first column, the next row available for b2 is the second row and it is
placed there.

You have set gridx = 1 for button b3. This means that it should be placed in the second column. You
have specified its gridy as RELATIVE. It means that the layout manager needs to find a row for it in the second
column. Since the very first row does not have any component placed in the second column, the layout
manager places it in the first row. Where will b3 be placed if you had specified its gridx as 0? Apply the same
logic again. Since the first column already had b1 and b2 in the first row and the second row, respectively, the
next row available for b3 is the third row and the layout manager would place it just below b2.

Case #3

You have specified a value for gridy and you have set the value for gridx to RELATIVE. In this case, the layout
manager needs to determine the value for gridx. That is, based on the specified value of the row number,
the layout manager has to determine its column number. Figure 1-29 shows the three buttons laid out when
you use the following snippet of code. The logic to lay out the buttons this way is the same as in the previous
example, except that this time the layout manager decides the column numbers for b2 and b3 instead of their
row numbers.

gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 0;
container.add(b2, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
container.add(b3, gbc);

Figure 1-28. Specifying gridx and setting gridy to RELATIVE

Chapter 1 ■ IntroduCtIon to SwIng

41

Case #4

This is the last of the four possibilities in which you specify both gridx and gridy as RELATIVE. The layout
manager has to determine the row number as well as the column number for the component being added.
It will determine the row number first. The row for the component will be the current row. Which row
is the current row? By default, the first row (gridy = 0) is the current row. When you add a component,
you can also specify its gridwidth constraint. One of its values is REMAINDER, which means that this is the
last component in the row. If you add a component to the first row with its gridwidth set to REMAINDER,
the second row becomes the current row. Once the layout manager determines the row number for a
component, which is the current row, it will place the component in the column next to the last component
added in that row. The default value for gridx and gridy is RELATIVE. Now you can understand why Listing 1-15
placed all buttons in the first row, which used RELATIVE as gridx and gridy for all buttons, by default. Since
the default gridwidth is 1, the first row was always the current row. Whenever you added a button, the first
row (the current row) was assigned as its row and its column was the next to the last button added in that
row. Let’s look at some examples in which you will set both gridx and gridy to RELATIVE.

Example #1

The following snippet of code lays out the buttons as shown in Figure 1-30:

gbc.gridx = 0;
gbc.gridy = 0;
container.add(b1, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = GridBagConstraints.RELATIVE;
container.add(b2, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
container.add(b3, gbc);

Figure 1-29. Specifying gridy and setting gridx to RELATIVE in a GridBagLayout

Figure 1-30. Specifying both gridx and gridy as RELATIVE

Chapter 1 ■ IntroduCtIon to SwIng

42

You used absolute positioning for b1 by specifying its gridx = 0 and gridy = 0. It resulted in placing b1
in the first row and the first column. You have specified both gridx and gridy for b2 as RELATIVE. The layout
manager has to determine the row number and the column number for b2. It looks at the current row, which
is the first row by default. Therefore, it sets b2’s row number to 0. It finds that there is already one component
(b1) placed in the first column. Therefore, it sets the next column, which is the second column, for b2. And
here you see b2 placed in the first row and the second column. It is simple to understand the placement of
b3. Since you have specified its gridy = 1, it is placed in the second row. Its gridx is RELATIVE and since the
first column is available in the second row, it is placed in the first column.

Example #2

The following snippet of code lays out the buttons as shown in Figure 1-31. Note that the b1 button is placed
in the center of its available space, which is the default behavior. You can customize the placement of a
component inside its allocated space using the anchor property, which I discuss shortly.

gbc.gridx = 0;
gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.REMAINDER; // Last component in the row
container.add(b1, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = GridBagConstraints.RELATIVE;
gbc.gridwidth = 1; // Reset to the default value
container.add(b2, gbc);

gbc.gridx = GridBagConstraints.RELATIVE;
gbc.gridy = 1;
container.add(b3, gbc);

You specified gridx = 0 and gridy = 0 for b1. This time, you specified gridwidth for b1 as REMAINDER.
This means that b1 is the last component in the first row. Since this is the only component added to the
first row, it becomes the first and the last component in this row. After b1 is added with its gridwidth as
REMAINDER, the second row becomes the current row. For b2, gridx and gridy are set to RELATIVE. The
layout manager will set the second row (gridy = 1) as its row number. Since there is no component placed
in the second row before b2, it will be the first one in the row. This results in placing b2 in the second row
and the first column. Note that you set the value for gridwidth to 1 for b2 and b3. Determining the position
of b3 is simple. Since you specified its gridy to 1 (the second row), it is placed in the second row. Its gridx is
RELATIVE. Since b2 is already in the first column, it is placed in the second column.

Figure 1-31. Specifying gridx and gridy as RELATIVE with gridwidth as REMAINDER

Chapter 1 ■ IntroduCtIon to SwIng

43

The gridwidth and gridheight Constraints
The gridwidth and gridheight constraints specify the width and height of the display area of a component,
respectively. The default value for both is 1. That is, by default, a component is placed in one cell. If you specify
gridwidth = 2 for a component, its display area will be two cells wide. If you specify gridheight = 2 for a
component, its display area will be two cells high. If you have worked with HTML tables, you can compare
gridwidth with colspan and gridheight with rowspan, which are properties of a cell in an HTML table.

You can specify two predefined constants for gridwidth and gridheight. They are REMAINDER and
RELATIVE. The REMAINDER value for gridwidth means that the component will span from its gridx cell
to the remainder of the row. In other words, it is the last component in the row. The REMAINDER value for
the gridheight indicates that it is the last component in the column. The RELATIVE value for gridwidth
indicates that the width of the display area of the component will be from its gridx to the second last
cell in the row. The RELATIVE value for gridheight indicates that the height of the display area of the
component will be from its gridy to the second last cell. Let’s take an example of each kind for gridwidth.
You can extend this concept for gridheight. The only difference is that the gridwidth affects the width of a
component’s display area, whereas the gridheight affects the height.

The following snippet of code adds nine buttons to a container—three in the first row and six in the
second row:

// Expand the component to fill the whole cell
gbc.fill = GridBagConstraints.BOTH;

gbc.gridx = 0;
gbc.gridy = 0;
container.add(new JButton("Button 1"), gbc);

gbc.gridx = 1;
gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.RELATIVE;
container.add(new JButton("Button 2"), gbc);

gbc.gridx = GridBagConstraints.RELATIVE; gbc.gridy = 0;
gbc.gridwidth = GridBagConstraints.REMAINDER;
container.add(new JButton("Button 3"), gbc);

// Reset gridwidth to its default value 1
gbc.gridwidth = 1;

// Place six JButtons in second row
gbc.gridy = 1;
for (int i = 0; i < 6; i++) {
 gbc.gridx = i;
 container.add(new JButton("Button " + (i + 4)), gbc);
}

The very first statement is new to you. It sets the fill instance variable of GridBagConstraints to BOTH,
which indicates that the components added to cells will be expanded in both directions (horizontally and
vertically) to fill the entire cell area. I discuss this in more detail later. The first button is placed in the first
row and the first column.

Chapter 1 ■ IntroduCtIon to SwIng

44

The second button is placed in the first row and the second column. Its gridwidth is set to RELATIVE,
which means it will span from the second column (gridx = 1) to the second to last column in the row.
Which column is the last column in the first row? You do not know yet. You must look at all components that
are added to a GridBagLayout to find out the maximum number of rows and columns in the grid. For now,
you know that the second button starts in the second column, but you do not know in which column it will
end (or up to what column it will extend).

Let’s look at the third button. You have specified its gridy = 0, which means that it should be placed in
the first row. You have set its gridx to RELATIVE, which means that it will be placed after the second button
in the first row. You have set its gridwidth value as REMAINDER, which means this is the last component in
the first row. There is an interesting point to note. The second button will expand as needed from the second
column to the second to last column. You are saying that the third button is the last component in the first
row and it should occupy the rest of the cells. The result is that there will always be only one cell (the last cell)
left for the third button because of the greedy value of RELATIVE for the gridwidth of the second button.

In the second row, you have added six buttons. The total number of cells in each row is decided by the
maximum number of columns in a row. Therefore, each row (first and second) will have six cells. You have
set the gridwidth to its default value of 1, so each button in the second row will occupy only one cell. In the
first row, the first button occupies one cell, the third one occupies one cell, and the second one occupies the
remaining four, as shown in Figure 1-32.

The fill Constraint
A GridBagLayout gives the preferred width and height to each component. The width of a column is decided
by the widest component in the column. Similarly, the height of a row is decided by the highest component
in the row. The fill constraint value indicates how a component is expanded horizontally and vertically
when its display area is bigger than its size. Note that the fill constraint is only used when the component’s
size is smaller than its display area.

The fill constraint has four possible values: NONE, HORIZONTAL, VERTICAL, and BOTH. Its default value
is NONE, which means “do not resize the component.” The value HORIZONTAL means “expand the component
horizontally to fill its display area.” The value VERTICAL means “expand the component vertically to fill its
display area.” The value BOTH means “expand the component horizontally and vertically to fill its display area.”

The following snippet of code adds nine buttons to a grid of three rows and three columns, as shown in
Figure 1-33.

gbc.gridx = 0; gbc.gridy = 0;
container.add(new JButton("Button 1"), gbc);
gbc.gridx = 1; gbc.gridy = 0;
container.add(new JButton("Button 2"), gbc);
gbc.gridx = 2; gbc.gridy = 0;
container.add(new JButton("Button 3"), gbc);

Figure 1-32. Specifying gridwidth and gridheight

Chapter 1 ■ IntroduCtIon to SwIng

45

gbc.gridx = 0; gbc.gridy = 1;
container.add(new JButton("Button 4"), gbc);
gbc.gridx = 1; gbc.gridy = 1;
container.add(new JButton("This is a big Button 5"), gbc);
gbc.gridx = 2; gbc.gridy = 1;
container.add(new JButton("Button 6"), gbc);

gbc.gridx = 0; gbc.gridy = 2;
container.add(new JButton("Button 7"), gbc);
gbc.gridx = 1; gbc.gridy = 2;
gbc.fill = GridBagConstraints.HORIZONTAL;
container.add(new JButton("Button 8"), gbc);
gbc.gridx = 2; gbc.gridy = 2;
gbc.fill = GridBagConstraints.NONE;
container.add(new JButton("Button 9"), gbc);

The fifth button decides the width of the second column because it is the widest JButton in that
column. Note the empty space in the second column of the first row. It has empty space because for the
second button the fill value is NONE, which is the default and the second button was not expanded to take
the entire width of its display area. It was left to its preferred size. Look at the eighth button. You specified
that it should expand horizontally, and it did so to match the width of its display area.

The ipadx and ipady Constraints
The ipadx and ipady constraints are used to specify internal padding for a component. They increase the
preferred size and the minimum size of the component. By default, both constraints are set to zero. Negative
values are allowed. The negative value for these constraints will decrease the component’s preferred and
minimum size. If you specify the value for ipadx, the component’s preferred and minimum width will be
increased by 2*ipadx. Similarly, if you specify the value for ipady, the component’s preferred and minimum
height will be increased by 2*ipady. These options are rarely used. The values for ipadx and ipady are
specified in pixels.

Figure 1-33. Specifying the fill constraint for a component in a GridBagLayout

Chapter 1 ■ IntroduCtIon to SwIng

46

The insets Constraint
The insets constraint specifies the external padding around the component. It adds spaces around the
component. You specify the insets value as an object of the java.awt.Insets class. It has one constructor:
Insets(int top, int left, int bottom, int right). You can specify the padding for all four sides of
the component. By default, the value for insets is set to an Insets object with zero pixels on all four sides.
The following snippet of code adds nine buttons in a 3X3 grid with five-pixel insets on all four sides for all
buttons. The resulting layout is shown in Figure 1-34. Note that you have specified the fill constraint as
BOTH for all buttons but you still see the gap between adjacent buttons because of their insets constraints.
The insets constraints tell the layout manager to leave a space between the edge of the component and the
edge of the display area.

gbc.fill = GridBagConstraints.BOTH;
gbc.insets = new Insets(5, 5, 5, 5);
int count = 1;
for (int y = 0; y < 3; y++) {
 gbc.gridy = y;
 for(int x = 0; x < 3; x++) {
 gbc.gridx = x;
 container.add(new JButton("Button " + count++), gbc);
 }
}

The anchor Constraint
The anchor constraint specifies where a component should be placed within its display area when its size is
smaller than that of its display area. By default, its value is set to CENTER, which means that the component is
centered within its display area.

There are many constants defined in the GridBagConstraints class that can be used as a value for the
anchor constraint. All constants can be categorized in three categories: absolute, orientation-based, and
baseline-based.

The absolute values are NORTH, SOUTH, WEST, EAST, NORTHWEST, NORTHEAST, SOUTHWEST, SOUTHEAST, and
CENTER. Figure 1-35 shows how a component is placed inside a cell with different absolute anchor values.
Note that all nine components in the figure have their fill constraint set to NONE.

Figure 1-34. Specifying insets for components in a GridBagLayout

Chapter 1 ■ IntroduCtIon to SwIng

47

The orientation-based values are used based on the ComponentOrientation property of the container.
They are PAGE_START, PAGE_END, LINE_START, LINE_END, FIRST_LINE_START, FIRST_LINE_END, LAST_LINE_
START, and LAST_LINE_END. Figure 1-36 and Figure 1-37 show the effects of using orientation-based anchor
values when the container’s orientation is set to LEFT_TO_RIGHT and RIGHT_TO_LEFT. You may notice that the
orientation-based values adjust themselves according to the orientation used by the container.

Figure 1-36. Orientation-based anchor values and their effects when the container’s orientation is
LEFT_TO_RIGHT

Figure 1-37. Orientation-based anchor values and their effects when the container’s orientation is
RIGHT_TO_LEFT

Figure 1-35. Absolute anchor values and their effects on component location in the display area

Chapter 1 ■ IntroduCtIon to SwIng

48

The baseline-based anchor’s values are used when you want to align the components in a row along
their baseline. What is the baseline of a component? The baseline is relative to text. It is an imaginary line
on which the characters of the text rest. A component may have a baseline. Generally, the baseline for a
component is the distance in pixels between its top edge and the baseline of the text it displays. You can
get the baseline value for a component by using its getBaseline(int width, int height) method. Note
that you need to pass the width and height of the component to get its baseline. Not every component
has a baseline. If a component does not have a baseline, this method returns –1. Figure 1-38 shows three
components, a JLabel, a JTextField and a JButton, that are aligned along their baseline in a row in a
GridBagLayout.

Each row in a GridBagLayout can have a baseline. Figure 1-38 shows the baseline for a row that has
three components. A solid horizontal line in the figure indicates the baseline. Note that this solid horizontal
baseline is an imaginary line and it does not really exist. It is shown only to demonstrate the baseline
concept. A row in a GridBagLayout has a baseline only if at least one component has a valid baseline and
whose anchor value is BASELINE, BASELINE_LEADING, or BASELINE_TRAILING. Figure 1-39 shows some of the
baseline-based anchor values in action. Table 1-4 lists all possible values and their descriptions.

Figure 1-39. Some baseline-based anchor values in action

Figure 1-38. A JLabel, a JTextField, and a JButton aligned along their baselines

Chapter 1 ■ IntroduCtIon to SwIng

49

The weightx and weighty Constraints
The weightx and weighty constraints control how the extra space in the container is distributed among rows
and columns. The default values for weightx and weighty are zero. They can have any non-negative value.

Figure 1-40 shows a JFrame using the GridBagLayout with nine buttons. Figure 1-41 shows the same
JFrame expanded horizontally and vertically.

Figure 1-40. A JFrame with a GridBagLayout having nine buttons with no extra spaces

Table 1-4. Baseline-Based Anchor’s Values and Descriptions

Baseline-Based Anchor Values Vertical Alignment Horizontal Alignment

BASELINE Row baseline Center

BASELINE_LEADING Row baseline Aligned along the leading edge**

BASELINE_TRAILING Row baseline Aligned along the trailing edge***

ABOVE_BASELINE Bottom edge touches baseline of
the starting row

Center

ABOVE_BASELINE_LEADING Bottom edge touches baseline of
the starting row*

Aligned along the leading edge**

ABOVE_BASELINE_TRAILING Bottom edge touches baseline of
the starting row

Aligned along the trailing edge***

BELOW_BASELINE Top edge touches baseline of the
starting row*

Center

BELOW_BASELINE_LEADING Top edge touches baseline of the
starting row

Aligned along the leading edge**

BELOW_BASELINE_TRAILING Top edge touches baseline of the
starting row*

Aligned along the trailing edge***

*Starting row: The phrase “starting row” applies only when a component spans multiple rows. Otherwise,
read it as the row in which the component is placed. If a row has no baseline, the component is vertically
centered.
**Leading edge is left edge for LEFT_TO_RIGHT orientation and right edge for RIGHT_TO_LEFT orientation.
***Trailing edge is right edge for LEFT_TO_RIGHT orientation and left edge for RIGHT_TO_LEFT orientation.

Chapter 1 ■ IntroduCtIon to SwIng

50

Notice the extra spaces generated around the group of buttons. You have set the fill constraint as BOTH
for all buttons, so all buttons represent the grid of cells in the GridBagLayout. The weightx and weighty
constraints were left to their default values of zero. When all the components have their weightx and
weighty constraints set to zero, any extra space in the container appears between the edge of the container
and the edge of the grid of cells.

The weightx value determines the distribution of extra horizontal space among the columns, whereas
the weighty value works on distributing the extra vertical space among rows. If all components have the
same weightx and weighty, extra space is distributed equally among them. Figure 1-42 shows all nine
buttons when their weightx and weighty are set to 1.0. You could have set any positive values for weightx
and/or weighty. As long as they are the same for all components, extra space will be distributed equally
among them.

Figure 1-42. A JFrame with a GridBagLayout having nine buttons after resizing. All buttons have their
weightx and weighty set to 1. Extra space is distributed among the display area of all buttons equally.

Figure 1-41. A JFrame with a GridBagLayout having nine buttons after resizing

Chapter 1 ■ IntroduCtIon to SwIng

51

Here is how the extra space for each column is computed based on the weightx values. Suppose a
container with a GridBagLayout is expanded horizontally to make ES pixels of additional space available.
Suppose there are three columns in the grid with three rows. The layout manager will find the maximum
value of weightx value for the components in each column. Suppose cwx1, cwx2, and cwx3 are the maximum
values for weightx for column 1, column 2, and column 3, respectively. Column 1 will get (cwx1 * ES)/
(cwx1 + cwx2 + cwx3) amount of the additional space. Column 2 will get (cwx2 * ES)/(cwx1 + cwx2 +
cwx3) amount of the additional space. Column 3 will get (cwx3 * ES)/(cwx1 + cwx2 + cwx3) amount of
the additional space. It is necessary to compute the extra space given to a column by using the maximum
weightx value in that column to maintain the grid of cells. The computation for distributing extra vertical
space among the cells using weighty is similar.

 ■ Tip the weightx and weighty constraints affect the size of the display area of a component and the
size of the component itself. It is customary to use a value between 0.0 and 1.0 for weightx and weighty.
however, you can use any non-negative value. the size of the component is affected by other constraints
such as fill, gridwidth, gridheight, etc. If you want your component to expand as the extra space
becomes available, you need to set its fill constraint to HORIZONTAL, VERTICAL, or BOTH. You can also set
the constraints for a component in a GridBagLayout after you have added it to the container by using the
setConstraints(Component c, GridBagConstraints cons) method of the GridBagLayout class.

SpringLayout
An instance of the SpringLayout class, which is in the javax.swing package, represents a SpringLayout
manager. Recall that the job of a layout manager is to compute four properties (x, y, width, and height)
of components in a container. In other words, it is responsible for positioning the components inside
the container and computing their size. A SpringLayout manager represents these four properties of a
component in terms of springs. It is cumbersome to code by hand. It is meant for GUI builder tools. I cover
the basics of this layout in this section by hand-coding some simple examples.

What is a spring? In the context of a SpringLayout manager, you can think of a spring the same way as a
mechanical spring, which can be stretched, compressed, or stay in its normal state. An object of the Spring
class represents a spring in a SpringLayout. A Spring object has four properties: minimum, preferred,
maximum, and current value. You can think of these four properties as its four types of length. A spring has
its minimum value when it is most compressed. In its normal state (neither compressed nor stretched), it
has its preferred value. In its most stretched state, it has its maximum value. Its value at any given point in
time is its current value. When the minimum, preferred, and maximum values of a spring are the same, it is
known as a strut.

How do you create a spring? The Spring class has no public constructors. It contains factory methods
to create springs. To create a spring or strut from scratch, you can use its overloaded constant() static
method. You can also create a spring using the width or height of a component. The minimum, preferred,
and maximum values of the spring are set from the corresponding values of the width or height of the
component. The following are a few examples of how to create springs:

// Create a strut of 10 pixels
Spring strutPadding = Spring.constant(10);

// Create a spring with 10, 25 and 50 as its minimum, preferred, and maximum values
Spring springPadding = Spring.constant(10, 25, 50);

Chapter 1 ■ IntroduCtIon to SwIng

52

// Create a spring from the width of a component named c1
Spring s1 = Spring.width(c1);

// Create a spring from the height of a component named c1
Spring s2 = Spring.height(c1);

The Spring class contains some utility methods that let you manipulate spring properties. You can
create a new spring by adding two springs using the sum() method, like so:

// Assuming that s1 and s2 are two springs
Spring s3 = Spring.sum(s1, s2);

The computation sum is not performed at the time the statement is executed. Rather, the spring s3 stores
the references of s1 and s2. Whenever s1, s2, or both change, the value for s3 is computed. In this case, s3
behaves as if you have connected springs s1 and s2 in series.

You can also create a spring by subtracting one spring from another. However, you do not have a
method named subtract(). There is a method called minus() that gives you the negative of a spring. You
can use the combination of the sum() and minus() methods to perform a subtraction, like so:

// Perform s1 – s2, which is the same as s1 + (-s2)
Spring s4 = Spring.sum(s1, Spring.minus(s2));

To get the maximum of two springs s1 and s2, you can use Spring.max(s1, s2). Note that there is no
corresponding method called min(). However, you can simulate it by using the combination of the minus()
and max() methods, like so:

// Minimum of 2 and 5 is the minus of the maximum of –2 and –5. To get the minimum of two
// spring s1 and s2, you can use minus of maximum of –s1 and –s2
Spring min = Spring.minus(Spring.max(Spring.minus(s1), Spring.minus(s2)));

You can also get a fraction of another spring using the scale() method. For example, if you have a
spring s1 and you want to create a spring that is 40% of its value, you can do so by passing 0.40f as the second
argument to the scale() method, like so:

String fractionSpring = Spring.scale(s1, 0.40f);

 ■ Tip You cannot change the minimum, preferred, and maximum values of a spring after you have created it.
You can set its current value by using its setValue() method.

You just had a great deal of discussion about springs. It is time to see them in action. How do you
add a component to a container with a SpringLayout? In the simplest form, you use the add() method
of the container to add a component. Listing 1-17 sets the layout for the content pane of a JFrame to a
SpringLayout and adds two buttons to it. Figure 1-43 shows the JFrame when you run the program.

Listing 1-17. The Simplest SpringLayout

// SimplestSpringLayout.java
package com.jdojo.swing.intro;

Chapter 1 ■ IntroduCtIon to SwIng

53

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.SpringLayout;
import javax.swing.JButton;

public class SimplestSpringLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Simplest SpringLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Set the content pane's layout as SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);

 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 contentPane.add(b1);
 contentPane.add(b2);

 frame.pack();
 frame.setVisible(true);
 }
}

Figure 1-43 shows that you see only the title bar of the JFrame. When you expand the JFrame, you see
the screen shown in Figure 1-44. Note that both of your buttons are in the JFrame. However, they overlap.
The simplest SpringLayout example may be the simplest to code; however, it is not that simple to see the
result.

Figure 1-43. The JFrame when you run the SimplestSpringLayout class

Figure 1-44. After expanding the JFrame when you run the SimplestSpringLayout class

Chapter 1 ■ IntroduCtIon to SwIng

54

So, what was wrong with your simplest SpringLayout example? I mentioned that a SpringLayout was
hard to hand-code and you saw it now! You used the pack() method on the frame to give it an optimal size.
But your frame is shown with no display area. When you use a SpringLayout, you must specify the x, y,
width, and height for all components and the container. It is too much work for developers, and this is why I
stated that this layout manager is meant for a GUI builder, not for coding by hand.

Let’s examine the screens shown in Figure 1-43 and Figure 1-44 one more time. You see that the
container got a position (x and y) and the buttons got size (width and height). A JFrame is displayed at (0, 0)
by default, and this is how you see the position for the container (in fact, your container is a content pane).
Buttons get their default minimum, preferred, and maximum size (all set to the same value) and this is how
you see the buttons after you expand the screen. By default, a SpringLayout positions all components at (0,
0) within the container. In this case, both buttons are positioned at (0, 0). To fix this problem, specify the x, y,
width, and height of two buttons and the content pane.

A SpringLayout uses constraints to arrange components. An object of the Constraints class, which
is a static inner class of the SpringLayout class, represents constraints for a component and the container.
A Constraints object lets you specify x, y, width, and height of a component using its methods. All four
properties must be specified in terms of a Spring object. When you specify these properties, you need to
specify them using one of the constants defined in the SpringLayout class, listed in Table 1-5.

You can set the x and y constraints of a component relative to the container or to another component.
An object of the Constraints class specifies the constraints for a component. You need to create an object
of the SpringLayout.Constraints class and use its methods to set the constraints’ values. When you add
a component to a container, pass this constraint object to the add() method. Listing 1-18 sets the x and y
constraints for the two buttons. Note that the values (10, 20) and (150, 20) are specified in terms of Spring
objects and they are measured from the edges of the content pane. Figure 1-45 shows the screen when you
run the program and after you expand the JFrame.

Listing 1-18. Setting x and y Constraints for Components

// SpringLayout2.java
package com.jdojo.swing.intro;

import javax.swing.SpringLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.Spring;

Table 1-5. Constants Defined in the SpringLayout Class

Constant Name Description

NORTH It is synonymous with y. It is the top edge of the component.

WEST It is synonymous with x. It is the left edge of the component.

SOUTH It is the bottom edge of the component. Its value is the same as NORTH + HEIGHT.

EAST It is the right edge of the component. It is the same as WEST + WIDTH.

WIDTH The width of the component.

HEIGHT The height of the component.

HORIZONTAL_CENTER It is the horizontal center of the component. It is the same as WEST + WIDTH/2.

VERTICAL_CENTER It is the vertical center of the component. It is the same as NORTH + HEIGHT/2.

BASELINE It is the baseline of the component.

Chapter 1 ■ IntroduCtIon to SwIng

55

public class SpringLayout2 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("SpringLayout2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Set the content pane's layout to a SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);

 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");

 // Create Constraints objects for b1 and b2
 SpringLayout.Constraints b1c = new SpringLayout.Constraints();
 SpringLayout.Constraints b2c = new SpringLayout.Constraints();

 // Create a Spring object for y value for b1 and b2
 Spring yPadding = Spring.constant(20);

 // Set (10, 20) for (x, y) for b1
 b1c.setX(Spring.constant(10));
 b1c.setY(yPadding);

 // Set (150, 20) for (x, y) for b2
 b2c.setX(Spring.constant(150));
 b2c.setY(yPadding);

 // Use the Constraints object while adding b1 and b2
 contentPane.add(b1, b1c);
 contentPane.add(b2, b2c);

 frame.pack();
 frame.setVisible(true);
 }
}

Figure 1-45. After expanding the JFrame when the (x, y) are set for two buttons

Chapter 1 ■ IntroduCtIon to SwIng

56

You have not fixed the size of the JFrame yet. When you run the program, the JFrame is still displayed
with no display area. At least the two buttons are not overlapping this time. You picked an arbitrary value
of 150 pixels as the value of x for b2. That is, the left edge of b2 is 150 pixels from the left edge of the content
pane. There is a way to specify that the left edge of b2 should be at a specified distance from the right edge of
b1. To achieve this, you need to add b1 to the container first. When you add a component to the container,
SpringLayout associates a Constraints object to the component, irrespective of whether you pass a
constraints object to the add() method of the container or not. You can get the constraint for any edge for a
component using the getConstraint(String edge, Component c) method of the SpringLayout class. The
following snippet of code does the same. It sets (x, y) for b1 to (10, 20) and sets (x, y) for b2 to (b1’s right edge
+ 5, 20). If you replace the code for adding two buttons in Listing 1-18 with the following snippet of code,
b2 will appear 10 pixels right of b1:

// Create a Spring object for y value for b1 and b2
Spring yPadding = Spring.constant(20);

// Set (10, 20) for (x, y) for b1
b1c.setX(Spring.constant(10));
b1c.setY(yPadding);

// Add b1 to the content pane first
contentPane.add(b1, b1c);

// Query the layout manager for b1's EAST constraint, which is the right edge of b1
Spring b1Right = springLayout.getConstraint(SpringLayout.EAST, b1);

// Add a 5-pixel strut to the right edge of b1 to define the left edge of b2 and set
// it using setX() method on b2c
Spring b2Left = Spring.sum(b1Right, Spring.constant(5));
b2c.setX(b2Left);
b2c.setY(yPadding);

// Now add b2 to the content pane
contentPane.add(b2, b2c);

There is an easier and more intuitive way to set the constraints for components in a SpringLayout.
First, add all components to the container without worrying about their constraints and then define the
constraints using the putConstraint() method of the SpringLayout class. Here are two versions of the
putConstraint() method:

•	 void putConstraint(String targetEdge, Component targetComponent, int
padding, String sourceEdge,Component sourceComponent)

•	 void putConstraint(String targetEdge, Component targetComponent, Spring
padding, String sourceEdge, Component sourceComponent)

The first version uses a strut. The third argument (int padding) defines a fixed spring, which will
behave as a strut (a fixed distance) between the edges of two components. The second version uses a spring
instead. You can read the method description as, “The targetEdge of the targetComponent is at a padding
distance from the sourceEdge of the sourceComponent.” For example, if you want the left edge of b2 to be five
pixels from the right edge of b1, you call this method:

// Set b2's left edge 5 pixels from b1's right edge
springLayout.putConstraint(SpringLayout.WEST, b2, 5,
 SpringLayout.EAST, b1);

Chapter 1 ■ IntroduCtIon to SwIng

57

To set the left edge of b1 (left edge defines the x value) 10 pixels from the left edge of the content pane,
you use

springLayout.putConstraint(SpringLayout.WEST, b1, 5,
 SpringLayout.WEST, contentPane);

Let’s go back to the sizing problem of your JFrame when you call its pack() method. You need to set
the position for the bottom and right edges for the content pane so that the pack() method will resize it
correctly. You set its bottom edge to 10 pixels below the bottom edge of b1 (or b2, whichever is the closest to
its bottom edge). In this example, both are at the same distance from the bottom edge of the content pane.
You set its right edge 10 pixels from the right edge of b2, which is the rightmost JButton in the content pane.
The following snippet of code does this:

// Set the bottom edge of the content pane
springLayout.putConstraint(SpringLayout.SOUTH, contentPane, 10,
 SpringLayout.SOUTH, b1);

// Set the right edge of the content pane
springLayout.putConstraint(SpringLayout.EAST, contentPane, 10,
 SpringLayout.EAST, b2);

Listing 1-19 contains the complete program and Figure 1-46 shows the JFrame when you run the program.

Listing 1-19. Using the putConstraint() Method of the SpringLayout Class

// NiceSpringLayout.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.SpringLayout;
import javax.swing.JButton;

public class NiceSpringLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("SpringLayout2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Set the content pane's layout to a SpringLayout
 SpringLayout springLayout = new SpringLayout();
 contentPane.setLayout(springLayout);

 // Create two JButtons
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");

 // Add two JButtons without using any constraints
 contentPane.add(b1);
 contentPane.add(b2);

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to SwIng

58

 // Now add constraints to both JButtons
 // Set x for b1 as 10
 springLayout.putConstraint(SpringLayout.WEST, b1, 10,
 SpringLayout.WEST, contentPane);
 // Set y for b1 as 20
 springLayout.putConstraint(SpringLayout.NORTH, b1, 20,
 SpringLayout.NORTH, contentPane);

 // Set x for b2 as 10 from the right edge of b1
 springLayout.putConstraint(SpringLayout.WEST, b2, 10,
 SpringLayout.EAST, b1);
 // Set y for b1 as 20
 springLayout.putConstraint(SpringLayout.NORTH, b2, 20,
 SpringLayout.NORTH, contentPane);

 /* Now set height and width for the content pane as the bottom
 edge of b1 + 10 and right edge of b2 + 10. Note that source
 is b1 for content pane's height and b2 for its width
 */

 // Set the bottom edge of the content pane
 springLayout.putConstraint(SpringLayout.SOUTH, contentPane, 10,
 SpringLayout.SOUTH, b1);

 // Set the right edge of the content pane
 springLayout.putConstraint(SpringLayout.EAST, contentPane, 10,
 SpringLayout.EAST, b2);

 frame.pack();
 frame.setVisible(true);
 }
}

SpringLayout is a very powerful layout to mimic many complex layouts. The following snippet of code
has some more examples. The comments explain what it is supposed to do.

// Place a JButton b1 horizontally centered at the top of the content
// pane, you would set its constraints as below. Replace
// HORIZONTAL_CENTER with
// VERTICAL_CENTER to center the JButton vertically

Figure 1-46. Nice SpringLayout with the JFrame sized automatically

Chapter 1 ■ IntroduCtIon to SwIng

59

springLayout.putConstraint(SpringLayout.HORIZONTAL_CENTER, north, 0,
 SpringLayout.HORIZONTAL_CENTER,
 contentPane);

// You can set the width of two JButtons, b1 and b2, to be the same
// by assigning the maximum width to the both of them.
// Assuming that you already added b1 and b2 JButtons
// to the container
SpringLayout.Constraints b1c = springLayout.getConstraints(b1);
SpringLayout.Constraints b2c = springLayout.getConstraints(b2);

// Get a spring that represents the maximum of the width of b1 and
// b2 and set that spring as width for both b1 and b2
Spring maxWidth = Spring.max(b1c.getWidth(), b2c.getWidth());
b1c.setWidth(maxWidth);
b2c.setWidth(maxWidth);

GroupLayout
The GroupLayout is in the javax.swing package. It is meant to be used by GUI builders. However, it is easy
enough to be hand-coded as well.

A GroupLayout uses the concept of a group. A group consists of elements. An element of a group may be
a component, a gap, or another group. You can think of a gap as an invisible area between two components.
You must understand the concept of groups before using a GroupLayout. There are two types of groups:

•	 Sequential group

•	 Parallel group

When the elements in a group are placed in series, one after another, it is called a sequential group.
When the elements in a group are placed in parallel, it is called a parallel group. A parallel group aligns its
elements in one of the four ways—baseline, centered, leading, and trailing. In a GroupLayout, you need to
define the layout for each component twice—once along the horizontal axis and once along the vertical axis.
That is, you need to specify separately how all components form a group horizontally and vertically. Let’s
look at some examples of groups. Figure 1-47 shows a group of two components.

Figure 1-47. Two components, C1 and C2, form a sequential group along the horizontal axis and a parallel
group along the vertical axis

Chapter 1 ■ IntroduCtIon to SwIng

60

In Figure 1-47, the two axes have been shown only for discussion purpose and they are not part of
the layout. Components are placed one after another (left to right), forming a sequential group along the
horizontal axis. They form a parallel group along the vertical axis. Along the vertical axis, in the parallel group,
the two components are aligned along their top edges. If you have a problem visualizing the sequential
and parallel groups along the horizontal and vertical axes, you can redraw Figure 1-47 as Figure 1-48. The
two dashed arrows in the horizontal direction (left to right) represent C1 and C2 when you visualize their
grouping in the horizontal direction. You can see that two arrows are in series and therefore C1 and C2 form
a sequential group along the horizontal axis. The two dashed arrows in the vertical direction (top to bottom
placed left of the component C1) represent C1 and C2 when you visualize them along the vertical axis. You
can see that these two arrows are not in series. Rather, they are in parallel. Therefore, C1 and C2 form a
parallel group along the vertical axis. You need to figure out the alignment for a parallel group. In this case, C1
and C2 are aligned along their top edges, which is called leading alignment in the GroupLayout terminology.

What are the other possible alignments for C1 and C2? There are four possible alignments in a parallel
group: baseline, centered, leading, and trailing. If the parallel group occurs along the vertical axis, all four
types of alignment are possible. If the parallel group occurs along the horizontal axis, only three alignments
(centered, leading, and trailing) are possible. Along the vertical axis, leading is the same as top edge, trailing
is the same as bottom edge. Along the horizontal axis, leading is left edge if the component orientation
is LEFT_TO_RIGHT, and it is right edge if the component orientation is RIGHT_TO_LEFT. Figure 1-49 and
Figure 1-50 show the possible alignments along the vertical and horizontal axes. The alignment is shown by
dashed lines. Note that along the vertical axis, the alignment line is horizontal and along horizontal axis, it is
vertical. The four constants in the GroupLayout.Alignment enum, LEADING, TRAILING, CENTER, and BASELINE,
are used to represent the four alignment types.

Figure 1-48. Groupings for components C1 and C2

Chapter 1 ■ IntroduCtIon to SwIng

61

How do you create sequential and parallel groups for a GroupLayout? The GroupLayout class contains
three inner classes: Group, SequentialGroup, and ParallelGroup. Group is an abstract class and the other
two classes are inherited from the Group class. You do not have to create an object of these classes directly.
Rather, you use the factory methods of the GroupLayout class to create their objects.

The GroupLayout class provides two separate methods to create groups: createSequentialGroup()
and createParallelGroup(). It is obvious from the name of these methods the kind of groups they create.
Note that you need to specify the alignment for a parallel group. The createParallelGroup() method is
overloaded. The version with no arguments defaults the alignment to LEADING. Another version lets you
specify the alignment. Once you have a group object, you can add components, gaps, and groups to it using
its addComponent(), addGap(), and addGroup() methods, respectively.

How do you use the GroupLayout manager? Here are the steps you need to follow to use a GroupLayout.
Assume that you have to place two buttons in a JFrame, as shown in Figure 1-51.

C2 C2 C2

C1C1C1

Figure 1-50. The three possible alignments in a parallel group along the horizontal axis in a group for
component orientation of LEFT_TO_RIGHT. For RIGHT_TO_LEFT orientation, LEADING and TRAILING will
swap edges.

Figure 1-49. The four possible alignments in a parallel group along the vertical axis in a group

Chapter 1 ■ IntroduCtIon to SwIng

62

Assume that the JFrame is named frame and the two JButtons are named b1 and b2. First, you need to
create an object of the GroupLayout class. It contains only one constructor that takes the container reference
as an argument. This means that you need to get the reference to the container for which you want to create
the GroupLayout, before you can create an object of the GroupLayout class.

// Get the reference of the container
Container contentPane = frame.getContentPane();

// Create a GroupLayout object
GroupLayout groupLayout = new GroupLayout(contentPane);

// Set the layout manager for the container
contentPane.setLayout(groupLayout);

Second, you need to create the group of components along horizontal axis (called horizontal group)
and set that group to the GroupLayout using the setHorizontalGroup() method. Note that a group can be
sequential or parallel along any axis—horizontal and vertical. In your case, two buttons, b1 and b2, form a
sequential group along the horizontal axis.

// Create a sequential group
GroupLayout.SequentialGroup sGroup = groupLayout.createSequentialGroup();

// Add two buttons to the group
sGroup.addComponent(b1);
sGroup.addComponent(b2);

// Set the horizontal group for the GroupLayout
groupLayout.setHorizontalGroup(sGroup);

You can combine all steps into one, like so:

groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2));

Finally, create the group of components along the vertical axis (called vertical group) and set that group
to the GroupLayout using the setVerticalGroup() method. Two buttons form a parallel group along vertical
axis. You can accomplish this as follows:

groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2));

Figure 1-51. The simplest GroupLayout in which two buttons are placed side by side

Chapter 1 ■ IntroduCtIon to SwIng

63

 ■ Tip In a GroupLayout, you do not add a component to the container using its add() method. rather, you
add a component to a group along the horizontal and vertical axes and add the group to the GroupLayout using
the setHorizontalGroup() and setVerticalGroup() methods.

Listing 1-20 demonstrates how to use a GroupLayout to display two buttons side by side in a JFrame.
When you run the program, the JFrame is displayed as shown in Figure 1-51. I discuss more complex
examples shortly.

Listing 1-20. The Simplest GroupLayout

// SimplestGroupLayout.java
package com.jdojo.swing.intro;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.GroupLayout;

public class SimplestGroupLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Simplest GroupLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Create an object of the GroupLayout class for contentPane
 GroupLayout groupLayout = new GroupLayout(contentPane);

 // Set the content pane's layout to a GroupLayout
 contentPane.setLayout(groupLayout);

 // Add two JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");

 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2));

 groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(GroupLayout.Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2));

 frame.pack();
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

64

A GroupLayout has two more features that are worth discussing:

•	 It lets you add a gap between two components.

•	 It lets you specify the resizing behaviors for the components–gaps and groups.

You can think of a gap as an invisible component. There are two types of gaps: the gap between
two components, and the gap between a component and the container. You can add a gap between two
components using the addGap() method of the Group class. You can add a rigid gap as well as a flexible gap
(as a spring). A rigid gap is fixed in size. A flexible gap has a minimum, a preferred, and a maximum size, and
it acts like a spring when the container is resized. To add a rigid gap of 10 pixels between b1 and b2 in your
previous example, you set up your horizontal group like so:

groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addGap(10)
 .addComponent(b2));

There are three ways to add gaps between two components. They are based on the gap size and their
ability to resize. The three gap types are:

•	 Rigid gap

•	 Flexible gap

•	 Preferred gap

You can add a rigid gap between two components using the addGap(int gapSize).
You can add a flexible (spring-like) gap between two components, which has a minimum, a preferred,

and a maximum size, using the addGap(int min, int pref, int max) method. To add a flexible gap with
5, 10, and 50 as the minimum, preferred, and maximum size respectively, you set up your horizontal group
like so:

groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addGap(5, 10, 50)
 .addComponent(b2));

You can add a preferred gap between two components. In this case, you have the option to specify
the size of the gap or let the layout manager compute it for you. However, you must specify the way in
which these two components are related as far as this gap is concerned. There are three kinds of such gaps:
RELATED, UNRELATED, and INDENT. If you are adding a preferred gap between a label and its corresponding
field, you add a RELATED gap between them. For example, if you have a login form, and you want to add a
preferred gap between “User ID:” and the text field to enter the user ID, you add a RELATED gap between
them. You use an UNRELATED gap when two components belong to different groups. When you are adding
a gap just to indent a component, you add an INDENT gap. Three types of gaps are represented by three
constants, RELATED, UNRELATED and INDENT, defined in the LayoutStyle.ComponentPlacement enum. Use the
addPreferredGap() method to add a preferred gap. The following snippet of code adds a RELATED preferred
gap between b1 and b2:

groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addPreferredGap(LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(b2));

Chapter 1 ■ IntroduCtIon to SwIng

65

You need to use the addContainerGap() method of the GroupLayout.SequentialGroup class to add a
gap between edges of a component and a container. The method is overloaded. It also lets you specify the
preferred and maximum size of the gap.

Setting hard-coded gaps may create problems when you run your application on different
platforms. This is the reason that the GroupLayout has two methods that let you specify that you want
the GroupLayout to compute the preferred gaps depending on the platform your application is running
on. To let the GroupLayout compute and set the gaps between two components, you need to call its
setAutoCreateGaps(true) method. To let it compute and set gaps between components and the container
edges, you need to call its setAutoCreateContainerGaps(true) method. By default, the auto-computing of
gaps is disabled. Replace the statement

// Create an object of the GroupLayout class
GroupLayout groupLayout = new GroupLayout(contentPane);

in Listing 1-20 with the following statements

// Create an object of the GroupLayout class and setup gaps
GroupLayout groupLayout = new GroupLayout(contentPane);
groupLayout.setAutoCreateGaps(true);
groupLayout.setAutoCreateContainerGaps(true);

Now, the JFrame will look as shown in Figure 1-52. You can see that the layout manager added the
necessary gaps for you.

A GroupLayout respects the minimum, preferred, and maximum size of a component. When the
container is resized, the layout manager asks the components for their sizes and resizes them accordingly.
However, you can override this behavior by using the addComponent(Component c, int min, int pref,
int max) method that lets you specify the minimum, preferred, and maximum size of a component. You
need to understand the meaning of the two constants defined in the GroupLayout class. They are DEFAULT_
SIZE and PREFERRED_SIZE. They can be used for the min, pref, and max arguments in the addComponent()
method. DEFAULT_SIZE means that the layout manager should ask the component for this size type and use
it. PREFERRED_SIZE means that the manager should use the component’s preferred size. For example, if you
want the JButton b2 in your previous example to expand (by default, a JButton has the same min, pref, and
max size), you add it to the horizontal group like so:

groupLayout.setHorizontalGroup(groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2,
 GroupLayout.PREFERRED_SIZE,
 GroupLayout.PREFERRED_SIZE,
 Integer.MAX_VALUE));

Figure 1-52. The simplest GroupLayout with auto gaps enabled

Chapter 1 ■ IntroduCtIon to SwIng

66

By specifying PREFERRED_SIZE as the minimum size and preferred size, you are telling the layout
manager that b2 should not be shortened below its preferred size. Integer.MAX_VALUE as its maximum size
tells the layout manager that it can expand the button infinitely. To make a component not resizable, you can
use all three of its sizes the same as GroupLayout.PREFERRED_SIZE.

You can nest groups in a GroupLayout. Let’s look at a layout of four buttons named b1, b2, b3, and b4, as
shown in Figure 1-53.

Let’s look at components layout along horizontal axis. You can see two parallel groups (b1, b3) and
(b2, b4) and these two groups are placed sequentially. Let’s use PG and SG to represent parallel and
sequential groups, respectively, in the pseudocode. Note that in PG(b1, b3), the components are aligned
along the LEADING edge (here, the left edge) and in PG(b2, b4), they are aligned along the TRAILING edge
(here, the right edge). Let’s insert the alignment to your pseudocode and the groups will look like this:
PG[LEADING](b1, b3) and PG[TRAILING](b2, b4). I made up this syntax for the purpose of discussing this
example. You will see the Java code shortly. If you have a problem visualizing the arrangement, you can refer
to Figure 1-54, where each button is shown by an arrow along the horizontal axis.

The arrows are aligned the same as the buttons. You can observe that arrows for b1 and b3 are parallel,
and that the arrows for b2 and b4 are parallel. If you visualize the two parallel groups, you can observe that
these two groups make up one sequential group along the horizontal axis. To help you visualize this final
arrangement, the arrow arrangements have been refined in Figure 1-55.

Figure 1-54. Four buttons represented by four arrows along horizontal axis

Figure 1-55. Four buttons represented by four arrows along the horizontal axis

Figure 1-53. Nested groups in GroupLayout

Chapter 1 ■ IntroduCtIon to SwIng

67

Each parallel group is shown inside a dashed rectangle. The arrow coming out of the dashed rectangle
shows that these groups are sequential along the horizontal axis. It may take a while to understand these
parallel and sequential arrangements of components along an axis. Once you get it, it will be quite easy to
use a GroupLayout in a complex scenario. Most likely, you will be using a GUI builder tool to arrange your
components, and you won’t care about the complexity of the groups. However, it always helps to understand
the concept behind a layout.

To finalize this discussion along the horizontal axis, the pseudocode looks as follows:

Horizontal Group = SG(PG[LEADING](b1, b3), PG[TRAILING](b2, b4))

Similarly, you can visualize the grouping arrangements along the vertical axis. If you have a problem
visualizing this, you can draw all four buttons as arrows pointing from top to bottom and see how they form
groups along the vertical axis. Here is the vertical groupings arrangement:

Vertical Group = SG(PG[BASELINE](b1, b2), PG[BASELINE](b3, b4))

Now, it is easy to translate the pseudocode into Java code, as shown in Listing 1-21.

Listing 1-21. Nested Groups in GroupLayout

// NestedGroupLayout.java
package com.jdojo.swing.intro;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.GroupLayout;
import static javax.swing.GroupLayout.Alignment.*;

public class NestedGroupLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Nested Groups in GroupLayout");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();

 // Set the content's pane layout to GroupLayout
 GroupLayout groupLayout = new GroupLayout(contentPane);
 groupLayout.setAutoCreateGaps(true);
 groupLayout.setAutoCreateContainerGaps(true);
 contentPane.setLayout(groupLayout);

 // Add four JButtons to the content pane
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");
 JButton b3 = new JButton("3");
 JButton b4 = new JButton("Button 4");

 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(LEADING)
 .addComponent(b1)
 .addComponent(b3))

Chapter 1 ■ IntroduCtIon to SwIng

68

 .addGroup(groupLayout.createParallelGroup(TRAILING)
 .addComponent(b2)
 .addComponent(b4))
);

 groupLayout.setVerticalGroup(
 groupLayout.createSequentialGroup()
 .addGroup(groupLayout.createParallelGroup(BASELINE)
 .addComponent(b1)
 .addComponent(b2))
 .addGroup(groupLayout.createParallelGroup(BASELINE)
 .addComponent(b3)
 .addComponent(b4))
);

 frame.pack();
 frame.setVisible(true);
 }
}

How do you make the sizes of two components the same? Let’s try to make b1 and b3 the same size.
You need to consider two things when making a component resizable. First, you need to consider the
resizable behavior of the group. Second, you need to consider the resizable behavior of the components
inside the group. The size of a parallel group is the size of the largest element. If you consider PG{LEADING]
(b1, b3), the width of this group would be the size of b1 because b1 is the largest component in this group.
By default, a JButton has a fixed size. To make b3 stretch to the size of the group (which is the size of b1), you
must add it to the group specifying that it can expand as addComponent(b3, GroupLayout.DEFAULT_SIZE,
GroupLayout.DEFAULT_SIZE, Integer.MAX_VALUE). This will force b3 to stretch to the same size as its
group, which in turn is the same as the b1 width. If two components are not in the same parallel group, to
make them the same size, you can use the linkSize() method of the GroupLayout class. When you use the
linkSize() method to make components the same size, the components become non-resizable irrespective
of their minimum, preferred, and maximum size.

// Make b1, b2, b3 and b4 the same size
groupLayout.linkSize(b1, b2, b3, b4);

// Make b1 and b3 the same size horizontally
groupLayout.linkSize(SwingConstants.HORIZONTAL, new Component[]{b1, b3});

You can also make a group resizable when you create a parallel group using the createParallelGroup
(GroupLayout.Alignment a, boolean resizable) method. If you place resizable components in a resizable
group, the group will resize when you resize the container, which in turn makes the components resize.

The null Layout Manager
By now, you may have realized that a layout manager handles the positioning and resizing of components
within a container. If a container is resized, the layout manager will take care of repositioning and resizing
of the components within it. If you do not want to have a layout manager, you lose this benefit and you are

Chapter 1 ■ IntroduCtIon to SwIng

69

responsible for positioning and resizing of all components within a container. It is simple to tell a container
that you do not want a layout manager. Just set the layout manager to null, like so:

// Do not use a layout manager for myContainer
myContainer.setLayout(null);

You can set the layout manager of a JFrame’s content pane to null, like so:

JFrame frame = new JFrame("No Layout Manager Frame");
Container contentPane = frame.getContentPane();
contentPane.setLayout(null);

The phrase “null layout manager” simply means that there is no layout manager. It is also known as
absolute positioning. Note that your program may run on different platforms. The size of components may
differ when they are displayed on different platforms, and your null layout manager cannot account for
this inconsistency. When you are using a null layout manager, make sure that your component’s size is big
enough to be displayed properly on all platforms.

Listing 1-22 uses a null layout manager for the content pane of a JFrame. It adds two buttons to it. It
also sets the position and size of buttons and JFrame using the setBounds() method. Figure 1-56 shows the
resulting JFrame.

Listing 1-22. Using a null Layout Manager

// NullLayout.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JButton;

public class NullLayout {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Null Layout Manager");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = frame.getContentPane();
 contentPane.setLayout(null);

 JButton b1 = new JButton("Small Button 1");
 JButton b2 = new JButton("Big Big Big Button 2...");
 contentPane.add(b1);
 contentPane.add(b2);

 // Must set (x, y) and (width, height) of components
 b1.setBounds(10, 10, 100, 20);
 b2.setBounds(120, 10, 150, 20);

 // Must set the size of JFrame, because it uses a null layout.
 // Now, you cannot use the pack() method to compute its size.
 frame.setBounds(0, 0, 350, 100);
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

70

Note that the labels for buttons are not displayed fully. This is one of the problems that you will face
when using a null layout manager. If you try to resize the JFrame at runtime, you will notice that the buttons
are not resized automatically, as they would have been if you had used a layout manager. A layout manager
computes the size of a JButton based on the platform, its text, and font, whereas with a null layout manager
you are supposed to compute (most of the time, you just guess) the button’s size considering all these
factors. It is not good practice in Java to use a null layout manager, except when you are prototyping or
learning the null layout manager.

Creating a Reusable JFrame
In previous sections, you created a JFrame by instantiating the JFrame class and you used the main() method
of the class to write the code to build the GUI. The JFrames in those examples were not reusable. So far, you
were fine because the Swing programs were simple and their sole purpose was to display some components
in a JFrame. As you start writing more complex Swing programs, this way of programming is not going to
work well. For example, suppose you want to make a JButton in a JFrame invisible or disabled after the
JFrame is displayed. Since you have been declaring all your JButtons as local variables inside the main()
method, you will not have access to their references once the main() method has finished executing. To
make your JFrame reusable and keep the references of the components added to the JFrame handy, so you
can refer to them later, you need to change the approach of creating a JFrame. Here is your new approach to
creating a JFrame. You create your own class, inheriting it from the JFrame class as shown:

public class CustomFrame extends JFrame {
 // Code for CustomFrame goes here
}

All your components are declared as instance variables in your custom class, as shown:

public class CustomFrame extends JFrame {
 // Declare all components in the JFrame as instance variables
 JButton okButton = new JButton("OK");
 JButton cancelButton = new JButton("Cancel");
}

You have an initFrame() method to add components to the JFrame’s content pane. You call this
method from the constructor of your custom JFrame. The method initFrame() is not required by Java. It is
just your convention for writing code for your Swing applications. To display your JFrame, you instantiate
your class and make it visible. This approach has similar code, arranged differently, so you can write some
more serious Swing programs. Listing 1-23 accomplishes the same thing as the code in Listing 1-20.

Figure 1-56. A JFrame using a null layout manager

Chapter 1 ■ IntroduCtIon to SwIng

71

Listing 1-23. Creating a Custom JFrame

// CustomFrame.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import javax.swing.GroupLayout.Alignment;
import javax.swing.JButton;
import java.awt.Container;
import javax.swing.GroupLayout;

public class CustomFrame extends JFrame {
 // Declare all components as instance variables
 JButton b1 = new JButton("Button 1");
 JButton b2 = new JButton("Little Bigger Button 2");

 public CustomFrame(String title) {
 super(title);
 initFrame();
 }

 // Initialize the frame and add components to it.
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 GroupLayout groupLayout = new GroupLayout(contentPane);
 contentPane.setLayout(groupLayout);

 groupLayout.setHorizontalGroup(
 groupLayout.createSequentialGroup()
 .addComponent(b1)
 .addComponent(b2)
);

 groupLayout.setVerticalGroup(
 groupLayout.createParallelGroup(Alignment.BASELINE)
 .addComponent(b1)
 .addComponent(b2)
);
 }

 // Display the CustomFrame
 public static void main(String[] args) {
 CustomFrame frame = new CustomFrame("Custom Frame");
 frame.pack();
 frame.setVisible(true);
 }
}

Chapter 1 ■ IntroduCtIon to SwIng

72

Event Handling
What is an event? The literal meaning of an event is as follows:

“An occurrence of something at a specific point in time.”

The meaning of an event in a Swing application is similar. An event in Swing is an action taken by a
user at a particular point in time. For example, pressing a button, pressing a key down/up on the keyboard,
and moving the mouse over a component are events in a Swing application. Sometimes the occurrence
of an event in Swing (or any GUI-based application) is also known as “triggering an event” or “firing an
event.” When you say that a clicked event has occurred on a button, you mean that the button has been
pressed using the mouse, the spacebar, or by any other means your application allows you to press a button.
Sometimes you can use the phrase “clicked event has been triggered or fired on a button” to mean the same
that the button has been pressed.

When an event occurs, you want to respond to the event. Taking an action in a program is nothing
but executing a piece of code. Taking an action in response to the occurrence of an event is called event
handling. The piece of code that is executed when an event occurs is called an event handler. Sometimes an
event handler is also called an event listener.

How you write an event handler depends on the type of event and the component that generates the
event. Sometimes the event handler is built into a Swing component, and sometimes you need to write the
event handler yourself. For example, when you press a JButton, you need to write the event handler yourself.
However, when you press a letter key on the keyboard when the focus is in a text field, the corresponding letter
is typed in the text field because the key pressed event has a default event handler that is supplied by Swing.

There are three participants in an event:

•	 The source of the event

•	 The event

•	 The event handler (or the event listener)

The source of an event is the component that generates the event. For example, when you press a
JButton, the clicked event occurs on that JButton. In this case, the JButton is the source of the clicked event.

An event represents the action that takes place on the source component. An event in Swing is
represented by an object that encapsulates the details about the event such as the source of the event, when
the event occurred, what kind of event occurred, etc. What is the class of the object that represents an event?
It depends on the type of the event that occurs. There is a class for every type of event. For example, an object
of the ActionEvent class in the java.awt.event package represents a clicked event for a JButton.

I do not discuss all types of events in this chapter. I list the important events for a component when
I discuss components in Chapter 2. In this section, I explain how to handle any type of event in a Swing
application.

An event handler is the piece of code that is executed when an event occurs. Like an event, an event
handler is also represented by an object, which encapsulates the event handling code. An object of what
class represents an event handler? It depends on the type of event that the event handler is supposed to
handle. An event handler is also known as an event listener because it listens for the event to occur in
the source component. I will use the phrases “event handler” and “event listener” interchangeably in this
chapter. Typically, an event listener is an object that implements a specific interface. The specific interface
an event listener has to implement depends on the type of event it will listen for. For example, if you are
interested in listening for a clicked event of a JButton (to rephrase, if you are interested in handling the
clicked event of a JButton), you need an object of a class that implements the ActionListener interface,
which is in the java.awt.event package.

http://dx.doi.org/10.1007/978-1-4842-3546-1_2

Chapter 1 ■ IntroduCtIon to SwIng

73

Looking at the descriptions of the three participants of an event handling, it seems you need to write a
lot of code to handle an event. Not really. Event handling is easier than it seems. I will list the steps to handle
an event, followed by an example of how to handle the clicked event of a JButton. Here are the steps to
handle an event. These steps apply to handle any kind of event on any Swing component.

•	 Identify the component for which you want to handle the event. Assume that
you have named the component as sourceComponent. So your event source is
sourceComponent.

•	 Identify the event that you want to handle for the source component. Assume that
you are interested in handling Xxx event. Here Xxx is an event name that you will
have to replace by the actual event name that exists for the source component.
Recall that an event is represented by an object. The Java naming convention for
event classes comes to your rescue in identifying the name of the class whose
object represents Xxx event. The class whose object represents Xxx event is named
XxxEvent. Usually the event classes are in the java.awt.event and javax.swing.
event package.

•	 It is time to write an event listener for the Xxx event. Recall that an event listener is
nothing but an object of a class that implements a specific interface. How do you
know what specific interface you need to implement in your event listener class?
Here again, the Java naming convention comes to your rescue. For Xxx event, there
is an XxxListener interface that you need to implement in your event listener class.
Usually the event listener interfaces are in the java.awt.event and javax.swing.
event package. The XxxListener interface will have one or more methods. All
methods for XxxListener take an argument of type XxxEvent because these methods
are meant to handle an XxxEvent. For example, suppose you have an XxxListener
interface that has a method named aMethod() as

public interface XxxListener {
 void aMethod(XxxEvent event);
}

•	 Your event listener class will look as follows. Note that you will be creating this class.

public class MyXxxEventListener implements XxxListener {
 public void aMethod(XxxEvent event) {
 // Your event handler code goes here
 }
}

•	 You are almost done. You have identified the event source, the event you are
interested in, and the event listener. There is only one thing missing. You need to
let the event source know that your event listener is interested in listening to its Xxx
event. This is also known as registering an event listener with the event source. You
register an object of your event listener class with the event source. In your case, you
will create an object of the MyXxxEventListener class.

MyXxxEventListener myXxxListener = new MyXxxEventListener();

Chapter 1 ■ IntroduCtIon to SwIng

74

	 How do you register an event listener with the event source? Here again, the Java
naming convention comes in handy. If a component (an event source) supports an
Xxx event, it will have two methods, addXxxListener(XxxListener listener) and
removeXxxListener(XxxListener listener). When you are interested in listening
for an Xxx event of a component, you call the addXxxListener() method, passing
an event listener as an argument. When you do not want to listen for Xxx event of
a component anymore, you call its removeXxxListener() method. To add your
myXxxListener object as the Xxx event listener for sourceComponent, you write

sourceComponent.addXxxListener(myXxxListener);

That is all you need to do to handle an Xxx event. It may seem that you have to perform many steps
to handle an event. However, that is not the case. You can always avoid writing a new event listener class,
which implements the XxxListener interface by using an anonymous inner class, which implements the
XxxListener interface. For example, you could have written the previous pieces of code in two statements,
like so:

// Create an event listener object using an anonymous inner class
XxxListener myXxxListener = new XxxListener() {
 public void aMethod(XxxEvent event) {
 // Your event handler code goes here
 }
};

// Add the event listener to the event source component
sourceComponent.addXxxListener(myXxxListener);

If the listener interface is a functional interface, you can use a lambda expression to create its instance.
Your XxxListener is a functional interface because it contains only one abstract method. You can avoid
creating the bulky anonymous class and rewrite the previous code as follows:

// Add the event listener using a lambda expression
sourceComponent.addXxxListener((XxxEvent event) -> {
 // Your event handler code goes here
});

I have discussed enough theories about handling events. It is time to look at an example. Add an event
listener to a JButton, and then add a JButton with text Close to a JFrame. When the JButton is pressed, the
JFrame is closed and the application exits. A JButton generates an Action event when it is pressed. Once
you know the name of the event, which is Action in this case, you just need to replace Xxx in the previous
generic example with the word Action. You will come to know the class and method names you need to use
to handle the Action event of JButton. Table 1-6 compares the names of classes/interfaces/method used to
handle an Action event for a JButton to the generic names I used in the discussion.

Chapter 1 ■ IntroduCtIon to SwIng

75

The ActionListener interface is simple. It has one method called actionPerformed(). The interface
declaration is as follows:

public interface ActionListener extends EventListener {
 void actionPerformed(ActionEvent event);
}

All event listener interfaces inherit from the EventListener interface, which is in the java.util
package. The EventListener interface is a marker interface, and it does not have any methods. It just acts as
the ancestor for all event listener interfaces. When a JButton is pressed, the actionPerformed() method of
all its registered Action listeners is called.

Using a lambda expression, here is how you add an Action listener to a JButton:

// Add an ActionListener to closeButton
closeButton.addActionListener(e -> System.exit(0));

Listing 1-24 displays a JFrame that contains a JButton. It adds an Action listener to the JButton.
The Action listener simply exits the application. Clicking the Close button in the JFrame will close the
application.

Listing 1-24. A JFrame with a Close JButton with an Action

// SimplestEventHandlingFrame.java
package com.jdojo.swing.intro;

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;

public class SimplestEventHandlingFrame extends JFrame {
 JButton closeButton = new JButton("Close");

Table 1-6. A Comparison Between Generic Event Handlers with Action Event Handlers for a JButton

Generic Event Xxx Action Event for JButton Comments

XxxEvent ActionEvent An object of an ActionEvent class
in the java.awt.event package
represents an Action event for
JButton.

XxxListener ActionListener An object of a class that
implements an ActionListener
interface represents an Action
event handler for a JButton.

addXxxListener
(XxxListener listener)

addActionListener
(ActionListener listener)

The addActionListener()
method of a JButton is used to
add a listener to its Action event.

removeXxxListener
(XxxListener listener)

removeActionListener
(ActionListener listener)

The removeActionListener()
method of JButton is used to
remove a listener from its Action
event.

Chapter 1 ■ IntroduCtIon to SwIng

76

 public SimplestEventHandlingFrame() {
 super("Simplest Event Handling JFrame");
 this.initFrame();
 }

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Set a FlowLayout for the content pane
 this.setLayout(new FlowLayout());

 // Add the Close JButton to the content pane
 this.getContentPane().add(closeButton);

 // Add an ActionListener to closeButton
 closeButton.addActionListener(e -> System.exit(0));
 }

 public static void main(String[] args) {
 SimplestEventHandlingFrame frame = new SimplestEventHandlingFrame();
 frame.pack();
 frame.setVisible(true);
 }
}

Let’s look at one more example of adding an Action listener to JButton. This time, we add two buttons
to a JFrame: a Close button and another to display the number of times it is clicked. Every time the second
button is clicked, its text is updated to show the number of times it has been clicked. You need to use an
instance variable to maintain the click count. Listing 1-25 contains the complete code. Figure 1-57 shows the
JFrame when it is displayed and after the counter button has been clicked three times.

Listing 1-25. A JFrame with Two Buttons with Actions

// JButtonClickedCounter.java
package com.jdojo.swing.intro;

import javax.swing.JFrame;
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import javax.swing.JButton;
import java.awt.event.ActionListener;

public class JButtonClickedCounter extends JFrame {
 int counter;
 JButton counterButton = new JButton("Clicked #0");
 JButton closeButton = new JButton("Close");

 public JButtonClickedCounter() {
 super("JButton Clicked Counter");
 this.initFrame();
 }

Chapter 1 ■ IntroduCtIon to SwIng

77

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Set a FlowLayout for the content pane
 this.setLayout(new FlowLayout());

 // Add two JButtons to the content pane
 this.getContentPane().add(counterButton);
 this.getContentPane().add(closeButton);

 // Add an ActionListener to the counter JButton
 counterButton.addActionListener(e -> counterButton.setText("Clicked #" +

++counter));

 // Add an ActionListener to the closeButton JButton
 closeButton.addActionListener(e -> System.exit(0));
 }

 public static void main(String[] args) {
 JButtonClickedCounter frame = new JButtonClickedCounter();
 frame.pack();
 frame.setVisible(true);
 }
}

Figure 1-58 shows the class diagram for the classes and interfaces involved in handling the Action event.

Figure 1-57. A JFrame when it is displayed and after the counter JButton is clicked three times

Chapter 1 ■ IntroduCtIon to SwIng

78

Note that you do not create an object of the ActionEvent class. The JButton, when pressed, creates
an object of the ActionEvent class, and passes it to the actionPerformed() method of your event handler
object. The getActionCommand() method of the ActionEvent returns, by default, the text of the JButton.
You can explicitly set the action command text for a JButton using its setActionCommand() method. The
getModifiers() returns the state of the modifier keys such as Shift, Ctrl, and Alt held down during the action
event. A modifier key is a key on the keyboard that is meaningful only when it’s used in combination with
other keys. The paramString() method returns a string describing the action event. It is typically used for
debugging purposes.

One of the uses of the getActionCommand() method is to take some action, depending on the text
displayed on the JButton. For example, you may have a JButton that is used to show or hide some details
on the screen. Suppose you want to display the text of a JButton as Show or Hide. You can write its Action
listener as follows:

JButton showHideButton = new JButton("Hide");
showHideButton.addActionListener(e -> {
 if (e.getActionCommand().equals("Show")) {
 // Show the details here...
 showHideButton.setText("Hide");

Figure 1-58. A class diagram for classes and interfaces related to the Action event

Chapter 1 ■ IntroduCtIon to SwIng

79

 } else {
 // Hide the details here...
 showHideButton.setText("Show");
 }});

In this section, you learned how to add an event handler for a component. The examples were simple.
They added action event handlers to JButtons. The ActionListener interface is a functional interface
and you took advantage of lambda expressions to write the action event listener. Swing was developed a
long time before the lambda expressions. All event listener interfaces are not functional interfaces, so you
cannot use lambda expressions for creating their objects. In those cases, you can use an anonymous class, a
member inner class, or implement the listener interface in your main class.

Handling Mouse Events
You can handle mouse activities (clicked, entered, exited, pressed, and released) on a component. You
will experiment with mouse events using a JButton. An object of the MouseEvent class represents a mouse
event on a component. Now, you can guess that to handle mouse events, you will need to work with the
MouseListener interface. Here is how the interface is declared:

public interface MouseListener extends EventListener {
 public void mouseClicked(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
}

The MouseListener interface has five methods. You cannot use a lambda expression to create a mouse
event handler. One of the methods of the MouseListener interface is called when a specific mouse event
occurs. For example, when a mouse pointer enters a component’s boundary, a mouse entered event occurs
on the component, and the mouseEntered() method of the mouse listener object is called. When the
mouse pointer leaves the boundary of the component, a mouse exited event occurs, and the mouseExited()
method is called. The names of other methods are self-explanatory.

The MouseEvent class has many methods that provide the details about a mouse event:

•	 The getClickCount() method returns the number of clicks a mouse made.

•	 The getX() and getY() methods return the x and y positions of the mouse relative to
the component when the event occurs.

•	 The getXOnScreen() and getYOnScreen() methods return the absolute x and y
positions of the mouse at the time the event occurs.

Suppose you are interested in handling only two kinds of mouse events for a JButton: the mouse
entered and mouse exited events. The text of the JButton changes to describe the event. The mouse event
handler code is as follows:

mouseButton.addMouseListener(new MouseListener() {
 @Override
 public void mouseClicked(MouseEvent e) {
 // Nothing to handle
 }

Chapter 1 ■ IntroduCtIon to SwIng

80

 @Override
 public void mousePressed(MouseEvent e) {
 // Nothing to handle

 }

 @Override
 public void mouseReleased(MouseEvent e) {
 // Nothing to handle
 }

 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }

 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
});

In this code, you provided an implementation for all five methods of the MouseListener interface even
though you were interested in handling only two kinds of mouse events. You left the body of three methods
empty. Listing 1-26 demonstrates the mouse entered and exited event for a JButton. When the JFrame is
displayed, try moving your mouse in and out of the boundary of the JButton to change its text to indicate the
appropriate mouse event.

Listing 1-26. Handling Mouse Events

// HandlingMouseEvent.java
package com.jdojo.swing.intro;

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.MouseListener;
import java.awt.event.MouseEvent;

public class HandlingMouseEvent extends JFrame {
 JButton mouseButton = new JButton("No Mouse Movement Yet!");

 public HandlingMouseEvent() {
 super("Handling Mouse Event");
 this.initFrame();
 }

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());
 this.getContentPane().add(mouseButton);

Chapter 1 ■ IntroduCtIon to SwIng

81

 // Add a MouseListener to the JButton
 mouseButton.addMouseListener(new MouseListener() {
 @Override
 public void mouseClicked(MouseEvent e) {
 }

 @Override
 public void mousePressed(MouseEvent e) {
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 }

 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }

 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
 });
 }

 public static void main(String[] args) {
 HandlingMouseEvent frame = new HandlingMouseEvent();
 frame.pack();
 frame.setVisible(true);
 }
}

Do you always have to provide implementation for all event-handling methods of an event listener
interface, even though you are not interested in all of them? No, you do not. Swing designers thought
of this inconvenience and devised a way to avoid this. Swing includes a convenience class for some
XxxListener interfaces. The class is named XxxAdapter. I will call them adapter classes. An XxxAdapter class
is declared abstract and it implements the XxxListener interface. The XxxAdapter class provides empty
implementation for all methods in the XxxListener interface. The following snippet of code shows the
relationship between an XxxListener interface having two methods m1() and m2() and its corresponding
XxxAdapter class.

public interface XxxListener {
 public void m1();
 public void m2();
}

public abstract class XxxAdapter implements XxxListener {
 @Override
 public void m1() {
 // No implementation provided here
 }

Chapter 1 ■ IntroduCtIon to SwIng

82

 @Override
 public void m2() {
 // No implementation provided here
 }
}

Not all event listener interfaces have corresponding adapter classes. The event listener interface, which
declares more than one method, has a corresponding adapter class. For example, you have an adapter class
for the MouseListener interface that is called MouseAdapter. What good will the MouseAdapter do for you? It
can save you a few lines of unnecessary code. If you only want to handle a few of the mouse events, you can
create an anonymous inner class (or regular inner class) that inherits from the adapter class and overrides
the only methods that are of interest to you. The following snippet of code rewrites the event handler used in
Listing 1-26 using the MouseAdapter class:

mouseButton.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseEntered(MouseEvent e) {
 mouseButton.setText("Mouse has entered!");
 }

 @Override
 public void mouseExited(MouseEvent e) {
 mouseButton.setText("Mouse has exited!");
 }
});

You may notice that you did not have to worry about three other methods of the MouseListener
interface because the MouseAdapter class provided empty implementation for you.

There is no adapter class named ActionAdapter for the ActionListener interface. Can you guess why
there is no ActionAdapter class? Since the ActionListener interface has only one method in it, providing an
adapter class will not save you any keystrokes.

Summary
Swing is a widget toolkit to develop Java applications with GUIs. Most classes used in developing Swing
applications are in the javax.swing package. A GUI consists of several parts; each part represents a graphic
that displays information to the users and lets them interact with the application. Each part in a Swing-based
GUI application is called a component that is a Java object. A component that can contain other components
is called a container. Containers and components are arranged to form a parent-child hierarchy.
Components are contained within a container that, in turn, can be contained within another container.
Two types of containers exist: top-level containers and non-top-level containers. A top-level container is
not contained within another container and it can be displayed directly on the desktop. For example, an
instance of the JFrame class represents a top-level container, which is a window that can have a title bar, a
menu bar, a border, and other components. An instance of the JButton class represents a component.

A top-level container consists of many layers such as root pane, layered panes, a glass pane, and a
content pane. Components are added to the content pane.

Swing provides layout managers that are responsible for laying out components in a container. A
layout manager is an object that is responsible for determining the position and size of components to be
displayed in a container. Each container has a default layout manager. For example, BorderLayout is the
default layout manager for a JFrame. You can use the setLayout() method of the container to set a different
layout manager. If the layout manager of a component is set to null, no layout manager is used and you are
responsible for laying out the components in a container.

Chapter 1 ■ IntroduCtIon to SwIng

83

FlowLayout is the simplest of all layout managers that lays out components horizontally, and then
vertically. BorderLayout divides the container’s space into five areas (north, south, east, west, and center)
that can be used to lay out components. CardLayout lays out components in a container as a stack of cards
in which only one component is visible at a time. BoxLayout arranges components in a container either
horizontally in one row or vertically in one column. GridLayout arranges components in a rectangular grid
of equally sized cells placing each component in exactly one cell. GridBagLayout lays out components in a
grid of rectangular cells arranged in rows and columns where each component occupies one or multiple cells.
SpringLayout lays out components by defining constraints between their edges; constraints are defined in
terms of springs. GroupLayout lays out components by forming sequential and parallel groups of components.

An event indicates a user action, for example, clicking of a button by the user. Users interact with Swing
components through events. Taking an action in a program in response to an event is called event handling.
There are three participants in an event: the event source, the event, and the event handler. The source of
an event is the component that generates the event. The event is represented by an object that encapsulates
the details of the user’s action that led to the occurrence of the event. The event handler is an instance of
a specific interface that is executed in response to the occurrence of the event. Components that let you
handle events contain methods to add and remove event handlers. The classes, interfaces, and methods
used in event handling follow a naming convention that makes names easy to remember.

QUESTIONS AND EXERCISES

1. what is Swing?

2. what is the use of the following classes in Swing applications: Point, Dimension,
Insets, and Rectangle?

3. where in a JFrame do you add components: to the content pane or glass pane?

4. Complete the missing code in the following snippet of code that obtains the
reference of the content pane of a JFrame:

JFrame frame = new JFrame("My Frame");
Container contentPane = frame./* your code goes here */;

5. what does the pack() method of the JFrame do?

6. what is a layout manager and why is it important to use a layout manager in your
Swing applications?

7. what is the default layout manager of the content pane of a JFrame?

8. what is a BorderLayout and how does it organize its components?

9. name the layout manager that displays all its components in a gird of cells giving
them equal size.

10. Suppose you add five components to a container having CardLayout. how many
components will be visible in that container at any time?

11. Create a Swing application with a JFrame and two buttons. the two buttons are
labeled as "Top" and "Bottom". the top button should be placed below the Bottom
button. when you make the JFrame taller, the top button should stay at the top
of the JFrame and the Bottom button should stay at the bottom, thus creating a
vertical gap between the two buttons. use the BoxLayout to achieve this layout.

Chapter 1 ■ IntroduCtIon to SwIng

84

12. what is the use of the GridBagConstraints class while using the GridBagLayout
layout manager?

13. use a GridBagLayout to display three buttons in a JFrame. the lower-right corner
of the first button should touch the upper-left corner of the second button and the
lower-right corner of the second button should touch the upper-right corner of the
third button.

14. what is absolute positing when laying out Swing components in a container? how
do you achieve it?

15. what is an event? what is the name of the event class that you need to handle
when you are interested in capturing the clicked event of a JButton?

16. Create a JFrame with a JButton. Label the JButton as Exit. when the JButton is
pressed, print a "Bye" message to the standard output and exit the application.

85© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_2

CHAPTER 2

Swing Components

In this chapter, you will learn:

•	 What Swing components are

•	 Different types of Swing components

•	 How to validate input in a text component

•	 How to use menus and toolbars

•	 How to edit tabular and hierarchical data using JTable and JTree components

•	 How to use custom and standard dialogs

•	 How to customize a component’s properties such as colors, borders, fonts, etc.

•	 How to paint components and draw shapes

•	 How to use immediate painting and double buffering

All example programs in this chapter are members of a jdojo.swing.component module, as declared in
Listing 2-1.

Listing 2-1. The Declaration of a jdojo.swing.component Module

// module-info.java
module jdojo.swing.component {
 requires java.desktop;

 exports com.jdojo.swing.component;
}

Swing and AWT APIs are defined in the java.desktop module. Your module that uses Swing needs to
read the java.desktop module as the jdojo.swing.component module does.

What Is a Swing Component?
Swing provides a huge set of components to build GUIs. A Swing component is an instance of the
JComponent class. The JComponent class is in the javax.swing package and it serves as the base class for all
Swing components. Its class hierarchy is shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-3546-1_2

Chapter 2 ■ Swing ComponentS

86

The JComponent class inherits from the java.awt.Container class, which in turn inherits from the
java.awt.Component class. JComponent is an abstract class. You cannot instantiate it directly. You must use
one of its subclasses, such as JButton, JTextField, etc.

As the JComponent class inherits from the Container class, every JComponent can also act as a container.
For example, a JButton can act like a container for another JButton or other JComponents. You would not
use (or need) a JComponent as a container unless a JComponent such as a JPanel has been provided by the
Swing library to be used as a container. However, this hierarchy allows you to write code like this:

JButton btn = new JButton("Container JButton");
btn.setLayout(new FlowLayout());
btn.add(new JButton("A container JButton. Do not use."));

The JComponent class, as a base class for all Swing components, provides the following basic
functionalities that are inherited by all Swing components. I discuss these features in detail later in this chapter.

•	 It provides support for tooltips. A tooltip is short text that is displayed when the
mouse pointer is paused on a component for a certain period of time.

•	 It provides support for a pluggable look and feel. All aspects of a component related
to how it looks (painting and layout) and how it feels (responding to the user’s
interaction with a component such as event handling) is handled by a UI delegate
object. Like the JComponent class, ComponentUI in the javax.swing.plaf package
is the base class used as a UI delegate object. Each descendant of JComponent uses
a different kind of UI delegate object, which is derived from the ComponentUI class.
For example, a JButton uses ButtonUI, a JLabel uses LabelUI, and a JToolTip uses
ToolTipUI as a UI delegate.

•	 It provides support for adding a border around a Swing component. The border can
be any one of the predefined types (Line, Bevel, Titled, Etched, etc.) or a custom
border type.

Figure 2-1. The class hierarchy for the JComponent class

Chapter 2 ■ Swing ComponentS

87

•	 It provides support for accessibility. Accessibility of an application is the degree to
which it can be used by people with varying abilities and disabilities. For example, it
has features that can display text in a bigger font size for vision-impaired users. This
book does not cover the Java Accessibility API.

•	 It provides support for double buffering that facilitates smooth on-screen painting. When
a component is erased and painted on-screen, a flicker may occur. To avoid flickering,
it provides an off-screen buffer. The erasing and repainting (updating a component) is
done in an off-screen buffer, and the off-screen buffer is copied to on-screen.

•	 It provides binding of a key on the keyboard to a Swing component. You can bind any
key on the keyboard with an ActionListener object to a component. When that key is
pressed, the actionPerformed() method of the associated ActionListener is executed.

•	 It provides support for laying out the component when a layout manager is used. It
contains methods to get and set the minimum, preferred, and maximum size of a
component. The three different type size settings for a JComponent serve as a hint to a
layout manager in deciding the size of the JComponent.

•	 It allows associating multiple arbitrary properties (key-value pairs) to a Swing
component and retrieving those properties. The putClientProperty() and
getClientProperty() methods of the JComponent allow you to work with
component properties.

Table 2-1 lists some of the commonly used methods of the JComponent class that are available to all
Swing components.

Table 2-1. Commonly Used Methods of the JComponent Class and Their Descriptions

Method Name Description

Border getBorder() Returns the border of the component or null if the
component has no border.

void setBorder(Border border) Sets the border for the component.

Object getClientProperty(Object key) Returns the value associated with the specified key. The value
must have been set using the putClientProperty (Object
key, Object value) method.

void putClientProperty(Object key,
Object value)

Adds an arbitrary key-value pair to the component.

Graphics getGraphics() Returns the graphics context object for the component, which
can be used to draw on the component.

Dimension getMaximumSize()
Dimension getMinimumSize()
Dimension getPreferredSize ()
Dimension getSize(Dimension d)
void setMaximumSize(Dimension d)
void setMinimumSize(Dimension d)
void setPreferredSize(Dimension d)
void setSize(Dimension d)
void setSize(int width, int height)

Gets/sets the maximum, minimum, preferred, and actual
size of the component. When you call the getSize() method,
you can pass a Dimension object and the size will be stored
in it and the same object is returned. This way, the method
may avoid creating a new Dimension object. If you pass null,
it creates a Dimension object, stores the actual size in it, and
returns that object.

String getToolTipText() Returns the tooltip text for this component.

(continued)

Chapter 2 ■ Swing ComponentS

88

Table 2-1. (continued)

Method Name Description

void setToolTipText(String text) Sets the tooltip text, which is displayed when the mouse
pointer pauses on the component for a specified amount of
time.

boolean isDoubleBuffered() Returns true if the component uses double buffering.
Otherwise, it returns false.

void setDoubleBuffered(boolean db) Determines if the component should use double buffering to
paint or not.

boolean isFocusable() Returns true if the component can gain focus. Otherwise, it
returns false.

void setFocusable(boolean focusable) Determines if the component can gain focus or not.

boolean isVisible() Returns true if the component is visible. Otherwise, it returns
false.

void setVisible(boolean v) Sets the component visible or invisible.

boolean isEnabled() Returns true if the component is enabled. Otherwise, it
returns false.

void setEnabled(boolean e) Enables or disables the component. A component is enabled
by default. An enabled component responds to the user
inputs and generates events.

boolean requestFocus(boolean
temporary)
boolean requestFocusInWindow()
boolean requestFocusInWindow(boolean
temporary)

The requestFocus() and requestFocusInWindow() methods
request that the component should get the input focus. You
should use the requestFocusInWindow() method instead
of the requestFocus() method because its behavior is
consistent across all platforms. The boolean argument
indicates if the request is temporary. These methods return
false if the request is guaranteed to fail. They return true if
the request will succeed unless it is vetoed.

boolean isOpaque() Returns true if the JComponent is opaque. Otherwise, it
returns false.

void setOpaque(boolean opaque) Sets the opacity of the JComponent. If a JComponent is opaque,
it will paint every pixel within its bounds. If it is non-opaque,
it may paint some or no pixels in its bounds, allowing the
pixels behind it to show through. By default, the JComponent
class sets this value to false, making it transparent. However,
the default value for opacity for its subclasses depends on the
look and feel, and the specific component.

ComponentUI getUI() Returns the look and feel delegate object that renders this
component. This method was added to the JComponent class
in JDK 9.

Table 2-2 lists some of the commonly used events that are available for all Swing components. Each
Swing component also supports some specialized events. I explain those specialized events when I discuss
those components. Note that all the events listed in Table 2-2 follow the XxxEvent class, XxxListener
interface, XxxAdapter abstract class, and addXxxListener() method naming convention unless noted
otherwise. That is, to handle Xxx event for a component, you need to call its addXxxListener(XxxListener l)

Chapter 2 ■ Swing ComponentS

89

method and pass object of a class that implements an XxxListener interface. All the methods in an XxxListener
interface accept an argument of the type XxxEvent. If there is more than one method in XxxListener, there
is a corresponding XxxAdapter abstract class that implements the XxxListener interface and it provides
empty implementations for the XxxListener methods.

Table 2-2. Some Commonly Used Events Available for All Swing Components

Event Class Name Event Listener Interface Description

ComponentEvent ComponentListener

Methods:
componentShown()
componentHidden()
componentResized()
componentMoved()

The event occurs when a component’s visibility, size, or
location is changed.

FocusEvent FocusListener

Methods:
focusGained()
focusLost()

The event occurs when a component gains or loses the
focus.

KeyEvent KeyListener

Methods:
keyPressed()
keyReleased()
keyTyped()

The event occurs when the component has the focus
and a key on the keyboard is pressed, released, or typed.
The key pressed and released events are triggered when
you press or release any key on the keyboard. The key
typed event is triggered only when a Unicode character is
typed. For example, when you type character “a” on the
keyboard, a key pressed, a key typed, and a key released
event are triggered in sequence.

MouseEvent MouseListener

Methods:
mousePressed()
mouseReleased()
mouseClicked()
mouseEntered()
mouseExited()

The mouse pressed, released, and clicked events are
triggered when the mouse is pressed, released, and
clicked on a component. When a mouse enters the
component’s bounds, a mouse entered event is triggered.
A mouse exited event is triggered when a mouse leaves the
component’s bounds.

Note that the MouseAdapter class implements three
interfaces: MouseListener, MouseMotionListener, and
MouseWheelListener (see two more mouse events in this table).

MouseEvent MouseMotionListener

Methods:
mouseDragged()
mouseMoved()

Note: It uses a MouseEvent
object as an argument
in the event methods.
There is no corresponding
MouseMotionEvent class.

A mouse dragged event is triggered when you drag the
mouse over a component by pressing a mouse button. The
mouse dragged event continues to trigger even if the mouse
leaves the component until the mouse button is released.

The mouse moved event is triggered when you move the
mouse over a component, but no mouse button is pressed.

You can use either the MouseAdapter or MouseMotionAdapter
abstract class to write your listener object for this event.

MouseWheelEvent MouseWheelListener

Method:
mouseWheelMoved()

A mouse wheel moved event is triggered if the wheel of
the mouse is rotated when the component is in focus. If a
mouse does not have a wheel, this event is not triggered.

Chapter 2 ■ Swing ComponentS

90

In the beginning, Java provided the AWT (Abstract Window Toolkit) for building a GUI. All AWT
components were in the java.awt package and they used peers to handle how they worked. If you create a
button using AWT, there is a corresponding button created by the operating system, which is called the peer,
to handle most of how the AWT button works. Because each AWT component has a peer, AWT components
are called heavyweight components.

Swing became part of the Java class library in JDK 1.2 as an alternative to AWT. Most of the Swing
components do not use peers, and hence, they are called lightweight components. For every AWT
component, you will find a corresponding Swing component. Swing provides some additional components
that are not present in AWT such as JTabbedPane. Swing components have their names prefixed with a J.
For example, to use a button component, AWT provides a Button class and Swing provides a JButton class.
To display a decorated window, AWT provides a Frame class and Swing provides a JFrame class. Some
components in Swing are still heavyweight components. After all, basic GUI capabilities are always provided
by the operating system. All top-level containers in Swing (JFrame, JDialog, JWindow, and JApplet) are
heavyweight components, and they have peers. Swing components, other than top-level containers, are
lightweight components. Swing’s lightweight components use their heavyweight containers’ area to paint.
Swing’s lightweight components are written in Java.

The main disadvantage of AWT is that a GUI may look different on different operating systems. AWT
supports features that are available on all platforms. Because of their dependence on operating system
peers, AWT can provide only rectangular components. None of these limitations exist with Swing lightweight
components. In Swing, you can have a component of any shape because Swing paints lightweight
components using Java code. Swing offers a pluggable look and feel, so that you are not limited to seeing
GUI components only in the way the operating system paints them. It is not advisable to mix Swing and AWT
components in the same application, although it is allowed. Mixing them may result in problems that are
hard to debug. This book covers only Swing.

In the next sections, I discuss several Swing components in detail.

JButton
A JButton is also known as a push button or a command button. The user presses or clicks a JButton to
perform an action. Typically, it displays text that describes the action it performs when it is clicked. The text
is also known as the label. A JButton also supports displaying an icon. You can use one of the constructors
listed in Table 2-3 to create an instance of a JButton.

Table 2-3. Constructors of the JButton Class

Constructor Description

JButton() Creates a JButton without any label or icon.

JButton(String text) Creates a JButton and sets the specified text as its label.

JButton(Icon icon) Creates a JButton with an icon and no label.

JButton(String text, Icon icon) Creates a JButton with the specified label and icon.

JButton(Action action) Creates a JButton with an Action object. You will have an
example of using an Action object for a JButton later in this
section.

You can create a JButton with its text as Close, like so:

JButton closeButton = new JButton("Close");

Chapter 2 ■ Swing ComponentS

91

To create a JButton with an icon, you need to have an image file. An icon is a fixed-sized image. An
object of a class that implements the javax.swing.Icon interface represents an icon. Swing provides a very
useful ImageIcon class that implements the Icon interface. The ImageIcon class lets you create an icon in
your program from an image file or a URL that contains a GIF, JPEG, or PNG image. The following snippet of
code shows how to create buttons with icons:

// Create icons
Icon previousIcon = new ImageIcon("C:/images/previous.gif");
Icon nextIcon = new ImageIcon("C:/images/next.gif");

// Create buttons with icons
JButton previousButton = new JButton("Previous", previousIcon);
JButton nextButton = new JButton("Next", nextIcon);

You should use a forward slash (/) in the file path in the constructor of the ImageIcon class. The file
path you specify is converted to a URL and the forward slash works on all platforms. This file path example
(C:/images/next.gif) is for the Windows platform. Figure 2-2 shows a JFrame with three buttons. Two
buttons have icons and one has only text.

Figure 2-2. Buttons with an icon and text, and with only text

There is only one event for a JButton that you will be using in your Java program most of the time. It
is called the ActionEvent. It is triggered when you click the JButton. The ActionListener interface is a
functional interface and it contains only one method called actionPerformed(ActionEvent e). You can use
a lambda expression to represent an ActionListener. Here is how you add code using a lambda expression
for the ActionEvent for a closeButton:

closeButton.addActionListener(() -> {
 // The code to handle the action event goes here
});

A JButton supports a keyboard mnemonic, which is also known as a keyboard shortcut or keyboard
indicator. It is a key that, when pressed, activates the JButton if the focus is in the window that contains the
JButton. The mnemonic key is often pressed in combination with a modifier key such as the Alt key. The
modifier key is platform-dependent; however, it is usually the Alt key. For example, suppose you set the C
key as a mnemonic for a Close JButton. When you press Alt+C, the Close JButton is clicked. If the character
that is represented by the mnemonic key is found in the JButton text, its first occurrence is underlined. The
following snippet of code sets C as a mnemonic key for a Close JButton:

// Set the 'C' key as mnemonic key for closeButton
closeButton.setMnemonic('C');

Chapter 2 ■ Swing ComponentS

92

// You can also use the following code to set a mnemonic key.
// The KeyEvent class is in the java.awt.event package.
closeButton.setMnemonic(KeyEvent.VK_C);

The code shows two methods to set the mnemonic key. The second method can be used when you do
not use a character key as a mnemonic key. For example, if you want to set the F3 key as a mnemonic key,
you can use the KeyEvent.VK_F3 constant using the second method. Figure 2-3 shows the Close JButton in
which the first character of the text is underlined. When you press Alt+C, the Close JButton is activated
(the same as if you clicked it with the mouse).

Figure 2-3. A Close button with C as its keyboard mnemonic

Table 2-4. Commonly Used Methods of the JButton Class

Method Description

Action getAction() Returns the Action object associated with the JButton.

void setAction(Action a) Sets an Action object for the JButton. When this method is called,
all properties for the JButton are refreshed from the specified Action
object. If there was an Action object already set, the new one replaces
the old one. The new Action object is registered as an ActionListener.
Any other ActionListener registered with the JButton using
addActionListener() method remains registered.

Icon getIcon() Returns the Icon object associated with the JButton.

void setIcon(Icon icon) Sets an icon for the JButton.

int getMnemonic() Returns the keyboard mnemonic for this JButton.

void setMnemonic(int n)
void setMnemonic(char c)

Sets the keyboard mnemonic for the JButton.

String getText() Returns the text for the JButton.

void setText() Sets the text for the JButton.

Table 2-4 shows commonly used methods in the JButton class.

Let’s use an Action object to create a JButton. So far, you have seen that a JButton has only four
commonly used properties: text, icon, mnemonic, and action listener. Using these properties of a JButton
is easy and straightforward. How does using an Action object help you deal with a JButton? Let’s take an
example where you have a button, say Close, placed in different areas of the window, say different tab pages.
If the button is placed four times on a window, and all of them have to look and behave the same, an Action
object will help you write the code for the Close button only once and use it at multiple times.

Chapter 2 ■ Swing ComponentS

93

An Action encapsulates the state and the behavior of a button. You set the text, icon, mnemonic, tooltip
text, other properties, and the ActionListener in an Action, and use the same Action to create all instances
of the JButton. One obvious benefit of doing this is that if you want to enable/disable all four JButtons, you
do not need to enable/disable all of them separately. Rather, you set the enabled property in the Action and
it will enable/disable all JButtons. Let’s extend this usage to the menu item and toolbar. It is common to
provide a menu item, a toolbar item, and a button to perform the same action in a window. In such cases,
you create all three of them (a menu item, a toolbar item, and a button) using the same Action to keep their
states synchronized. Now you can realize the benefits of an Action is in reusing the code and keeping the
state of multiple components synchronized.

Action is an interface. The AbstractAction class provides the default implementation for the Action
interface. AbstractAction is an abstract class. You need to inherit your class from it. Listing 2-2 defines a
CloseAction inner class, which inherits from the AbstractAction class.

Listing 2-2. Using an Action Object to Create and Configure a JButton

// ActionJButtonTest.java
package com.jdojo.swing.component;

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.event.ActionEvent;
import javax.swing.AbstractAction;
import javax.swing.Action;
import java.awt.Container;

public class ActionJButtonTest extends JFrame {
 // Inner Class starts here
 public class CloseAction extends AbstractAction {
 public CloseAction() {
 super("Close");
 }

 @Override
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 } // Inner Class ends here

 JButton closeButton1;
 JButton closeButton2;
 Action closeAction = new CloseAction(); // See inner class above

 public ActionJButtonTest() {
 super("Using Action object with JButton");
 this.initFrame();
 }

Chapter 2 ■ Swing ComponentS

94

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new FlowLayout());
 Container contentPane = this.getContentPane();

 // Use the same closeAction object to create both Close buttons
 closeButton1 = new JButton(closeAction);
 closeButton2 = new JButton(closeAction);

 contentPane.add(closeButton1);
 contentPane.add(closeButton2);
 }

 public static void main(String[] args) {
 ActionJButtonTest frame = new ActionJButtonTest();
 frame.pack();
 frame.setVisible(true);
 }
}

The ActionJButtonTest class creates an Action object, which is of type CloseAction, and uses it to
create two buttons, closeButton1 and closeButton2. The CloseAction class sets the text to Close, and in its
actionPerformed() method, it simply exits the application. Figure 2-4 shows the JFrame that you get when
you run the program. It shows two Close buttons. Clicking either of them will call the actionPerformed()
method of the Action object and that will exit the application.

Figure 2-4. Two Close buttons created using the same Action instance

If you want to set any property for the JButton while using the Action object, you can do so by using the
putValue(String key, Object value) method of the Action interface. For example, the following snippet
of code sets the tooltip text and mnemonic key for the closeAction object:

// Set the tooltip text for the Action object
closeAction.putValue(Action.SHORT_DESCRIPTION, "Closes the application");

// Set the mnemonic key for the Action object
closeAction.putValue(Action.MNEMONIC_KEY, KeyEvent.VK_C);

If you use an Action object to configure a JButton and later change a property for the JButton directly,
the changed property will be in effect until you change that property in the Action object again. Suppose you
have created two Close buttons using a CloseAction object. If you call closeButton1.setText("Exit"), the
first button will display the text as Exit. If you call closeAction.putValue(Action.NAME, "Close/Exit"),
both buttons will display the text as Close/Exit.

Chapter 2 ■ Swing ComponentS

95

JPanel
A JPanel is a container that can contain other components. You can set its layout manager, border,
and background color. Typically, you use a JPanel to group related components and add it to another
container such as to the content pane of a JFrame. Note that a JPanel is a container, but not a top-level
container, whereas a JFrame is a top-level container. Therefore, you cannot display a JPanel by itself in a
Swing application, unless you add it to a top-level container. Sometimes, a JPanel is inserted between two
components to create a gap. You can also use a JPanel as a canvas for drawing such as for drawing lines,
rectangles, circles, etc.

The default layout manager for a JPanel is FlowLayout. You have an option to specify its layout manager
in the constructor of the JPanel class. You can change its layout manager after you create it by using its
setLayout() method. Table 2-5 lists the constructors of the JPanel class.

Table 2-5. Constructors for the JPanel Class

Constructor Description

JPanel() Creates a JPanel with FlowLayout and double buffering.

JPanel(boolean isDoubleBuffered) Creates a JPanel with FlowLayout and the specified double
buffering flag.

JPanel(LayoutManager layout) Creates a JPanel with the specified layout manager and
double buffering.

JPanel(LayoutManager layout,
boolean isDoubleBuffered)

Creates a JPanel with the specified layout manager and
double buffering flag.

The following snippet of code shows how to create a JPanel with a BorderLayout and add four buttons
to it. Note that the buttons are added to the JPanel, which in turn is added to the content pane of a JFrame.
You can also add a JPanel to another JPanel to create a nested, complex components layout.

// Create a JPanel and four buttons
JPanel buttonPanel = new JPanel(new BorderLayout());
JButton northButton = new JButton("North");
JButton southButton = new JButton("South");
JButton eastButton = new JButton("East");
JButton westButton = new JButton("west");

// Add buttons to the JPanel
buttonPanel.add(northButton, BorderLayout.NORTH);
buttonPanel.add(southButton, BorderLayout.SOUTH);
buttonPanel.add(eastButton, BorderLayout.EAST);
buttonPanel.add(westButton, BorderLayout.WEST);

// Add the buttonPanel to the JFrame's content pane assuming that
// the content's pane layout is set to a BorderLayout
contentPane.add(buttonPanel, BorderLayout.SOUTH);

Chapter 2 ■ Swing ComponentS

96

JLabel
As the name suggests, a JLabel is a label used to identify or describe another component on the screen. It
can display text, an icon, or both. Typically, a JLabel is placed next to (to the right or left) or at the top of the
component it describes. Figure 2-5 shows a JLabel with its text set to Name:, which is an indicator for the
users that they are supposed to enter a name in the field that is placed next to it.

A JLabel with the text "Name:"

Figure 2-5. A JLabel component with the text Name: and the mnemonic set to N

Table 2-6. Constructors of the JLabel Class

Constructor Description

JLabel() Creates a JLabel with an empty string as its text and no icon.

JLabel(Icon icon) Creates a JLabel with an icon and an empty string as its text.

JLabel(Icon icon, int
horizontalAlignment)

Creates a JLabel with an icon and the specified horizontal
alignment. A JLabel is aligned vertically in the center inside its
display area. You can specify its horizontal alignment in its display
area as one of the following constants defined in the SwingConstants
class: LEFT, CENTER, RIGHT, LEADING, or TRAILING.

JLabel(String text) Creates a JLabel with the specified text. This is the most
commonly used constructor. It is aligned in the center vertically
and with the leading edge horizontally inside its display area. The
leading edge is determined by the component’s orientation.

JLabel(String text, Icon icon,
int horizontalAlignment)

Creates a JLabel with the specified text, icon, and horizontal
alignment.

JLabel(String text, int
horizontalAlignment)

Creates a JLabel with the specified text and horizontal alignment.

Another common use of a JLabel is to display an image. Swing does not include a component such as
a JImage to display an image. You need to use a JLabel with an Icon to display an image. Table 2-6 lists the
constructors of the JLabel class.

The following snippet of code shows some examples of how to create a JLabel:

// Create a JLabel with a Name: text
JLabel nameLabel = new JLabel("Name:");

// Display an image from a file named warning.gif in a JLabel
JLabel warningImage = new JLabel(new Icon("C:/images/warning.gif"));

Chapter 2 ■ Swing ComponentS

97

A JLabel does not generate any interesting events. However, it has some useful methods that you can
use to customize it. You will use the following methods very frequently:

•	 void setText(String text)

•	 void setDisplayedMnemonic(char aChar)

•	 void setDisplayedMnemonic(int key)

•	 void setLabelFor(Component c)

The setText() method is used to set the text for the JLabel. The setDisplayedMnemonic() method is
used to set a keyboard mnemonic for the JLabel. If the keyboard mnemonic is a character that occurs in
the text of the JLabel, that character is underlined to give a hint to the user. The setLabelFor() method
accepts a reference to another component and it indicates that this JLabel describes that component. The
two methods—setDisplayedMnemonic() and setLabelFor()—work in tandem. When the mnemonic key
for the JLabel is pressed, the focus is set to the component that was used in the setLabelFor() method. The
JLabel shown in Figure 2-5 has its mnemonic set to the character N and you can see that the character N in
its text is underlined. When the user presses Alt+N, the focus will be set to the JTextField that is displayed
to the right of the JLabel. The following snippet of code shows how to create the component arrangements
shown in Figure 2-5:

// Create a JTextField where the user can enter a name
JTextField nameTextField = new JTextField("Please enter your name...");

// Create a JLabel with N as its mnemonic and nameTextField as its label-for component
JLabel nameLabel = new JLabel("Name:");
nameLabel.setDisplayedMnemonic('N');
nameLabel.setLabelFor(nameTextField);

// Add name label and field to a container, say a contentPane
contentPane.add(nameLabel);
contentPane.add(nameTextField);

There are other methods defined in the JLabel class that let you set/get its alignments inside the display
area and its text inside its bounds. If you look at a JLabel component’s features, you will find that it exists
only to describe another component—a truly altruistic component!

Text Components
In simple terms, you can define text as a sequence of characters. Swing provides a rich set of features to work
with text. Figure 2-6 shows a class diagram for classes representing text components in Swing.

Chapter 2 ■ Swing ComponentS

98

Swing provides so many text-related features that it has a separate package, javax.swing.text, which
contains all text-related classes. The JTextComponent class is in the javax.swing.text package. The rest of
the classes are in the javax.swing package.

There are different Swing components to work with different kinds of text. We can categorize the text
components based on two criteria: the number of lines in text and the type of text they can handle. Based on
the number of lines of text that a text component can handle, you can further categorize them as follows:

•	 Single-line text component

•	 Multiline text component

A single-line text component is designed to handle one line of text, for example, a user name, a
password, a birth date, etc. Instances of the JTextField, JPasswordField, and JFormattedTextField classes
represent single-line text components.

A multiline text component is designed to handle multiple lines of text, for example, comments, the
description of an item in a store, a document, etc. Instances of the JTextArea, JEditorPane, and JTextPane
classes represent multiline text components.

Based on the type of the text that a text component can handle, you can categorize text components as
follows:

•	 Plain text component

•	 Styled text component

The style of text (or parts of text) is the way the text is displayed, such as bold, italic, underlined, etc.,
font, and color. In the context of a text component, plain text means that the entire text contained in the text
component is displayed using only one style. JTextField, JPasswordField, JFormattedTextField, and
JTextArea are examples of plain text components. That is, you cannot display multiline text in a JTextArea
in which some parts of the text are in boldface font and others are not. You can display either the entire text
in a JTextArea in boldface font or the entire text in a regular font. Note that plain text does not mean that
text cannot have a style. It means that there is only one style that applies to the entire text (all characters
comprising the text).

Figure 2-6. A class diagram for text-related components in Swing

Chapter 2 ■ Swing ComponentS

99

In styled text, you can apply different styles to different parts of the text. In styled text, some part of
the text can be in boldface (or italic, bigger font size, underlined, etc.) and some part not in boldface.
JEditorPane and JTextPane are examples of styled components.

All Swing components, including Swing text components, are based on a model-view-controller (MVC)
pattern. An MVC pattern uses three components: a model, a view, and a controller. The model is responsible
for storing the contents (the text). The view is responsible for displaying the contents. The controller is
responsible for responding to user actions. Swing combines the view and the controller into one object
called the UI, which is responsible for displaying the content and reacting to the user’s actions. It keeps the
model separate and it is represented by an instance of the Document interface, which is in the javax.swing.
text package. The model of a text component is sometimes also referred to as its document. Figure 2-7
depicts the different parts of a Swing text component.

STRANGE fits of passion have I

STRANGE fits of passion have I known:

And I will dare to tell,

But in the lover's ear alone,

What once to me befell.

Controller

View

Model

A Swing text

component

Figure 2-7. Components of the model-view-controller pattern for Swing text components

Note that the view may not always display the entire contents of a text component. In Figure 2-7, the
model contains four lines of the part of a poem by William Wordsworth, whereas the view displays only
some words from the first line.

Swing provides a default implementation of the Document interface, which makes is easy for developers
to work with commonly used text types. When you use a text component, it creates an appropriate model
(sometimes I refer to it as a document in the discussion) for you, which is suitable to store the content of
the text component. Figure 2-8 shows a class diagram for the Document interface, plus related classes and
interfaces. All classes and interfaces shown in the figure are in the javax.swing.text package.

Chapter 2 ■ Swing ComponentS

100

You can set the model for a text component using the setDocument(Document doc) method. The
getDocument() method returns the model for a text component.

By default, JTextField, JPasswordField, JFormattedTextField, and JTextArea use an instance of the
PlainDocument class as their models. If you want to customize the models for these text components, you
need to create a class inheriting from the PlainDocument class and override some of the methods.

The model for JEditorPane and JTextPane depends on the content type that is being edited and/
or displayed. The position of the characters in a text component uses a zero-based index. That is, the first
character in the text occurs at index 0.

JTextComponent
JTextComponent is an abstract class. It is the ancestor of all Swing text components. It includes common
functionalities that are available to all text components. Table 2-7 lists some commonly used methods of text
components that are included in the JTextComponent class.

Figure 2-8. A class diagram for the document interface and related interfaces and classes

Chapter 2 ■ Swing ComponentS

101

Table 2-7. Commonly Used Methods in the JTextComponent Class

Method Description

Keymap addKeymap(String name,
Keymap parentKeymap)

Adds a new keymap to the keymap hierarchy of the
component.

void copy() Copies the selected text to the system clipboard.

void cut() Moves the selected text to the system clipboard.

Action[] getActions() Returns the command list for the text editor.

Document getDocument() Returns the model for the text component.

Keymap getKeymap() Returns the currently active keymap for the text component.

static Keymap getKeymap
(String keymapName)

Returns the keymap associated with this document with the
name keymapName.

String getSelectedText() Returns the selected text in the component. It returns null if
there is no selected text or the document is empty.

int getSelectionEnd() Returns the end position of the selected text.

int getSelectionStart() Returns the start position of the selected text.

String getText() Returns the text that is contained in this text component. It
returns the text contained in the model of the component
and not what is displayed by the view.

String getText(int offset, int length)
throws BadLocationException

Returns a portion of the text contained in the text component
starting at the offset position and the number of characters
equal to the length. It throws BadLocationException if
offset or length is invalid. For example, if a text component
contains Hello as its text, getText(1, 3) will return ell.

TextUI getUI() Returns the user-interface factory for the text component.

boolean isEditable() Returns true if the text component is editable. Otherwise,
returns false.

void paste() Transfers the content of the system clipboard to the text
component model. If text is selected in the component,
the selected text is replaced. If there is no selection, the
content is inserted before the current position. If the system
clipboard is empty, it does nothing.

void print() It displays a print dialog and lets you print the content of the
text component without a header and footer. This method
is overloaded. Other versions of this method provide more
functionality to print the content of a text component.

void read(Reader source, Object
description) throws IOException

Reads the content from the source stream into the text
component, discarding the component’s old content.
The description is an object that describes the source
stream. For example, to read the text of file test.txt into a
JTextArea named ta you would write

FileReader fr = new FileReader("test.txt");
ta.read(fr, "Hello");
fr.close();

(continued)

Chapter 2 ■ Swing ComponentS

102

Table 2-7. (continued)

Method Description

void replaceSelection(String
newContent)

Replaces the selected content with the newContent. If there is
no selected content, it inserts the newContent. If newContent
is null or an empty string, it removes the selected content.

void select(int start, int end) Selects the text between the start and end positions.

void selectAll() Selects all text in a text component

void setDocument(Document doc) Sets the document (that is, the model) for the text
component.

void setEditable(boolean editable) Sets a text component as editable if editable is true. If
editable is false, sets the text component as non-editable.

void setKeymap(Keymap keymap) Sets the keymap for the text component.

void setSelectionEnd(int end) Sets the end position of selection.

void setSelectionStart(int start) Sets the start position of selection.

void setText(String newText) Sets the text of the text component.

void setUI(TextUI newUI) Sets new UI for the text component.

void updateUI() Reloads the pluggable UI for the text component.

void write(Writer output) Writes the contents of the text component to a stream defined
by output. For example, to write the text of a JTextArea
named ta into a file named test.txt, you would write

FileWriter wr = new FileWriter("test.txt");
ta.write(wr);
wr.close();

The most commonly used methods of text components are getText() and setText(String text). The
getText() method returns the contents of a text component as a String, and the setText(String text)
method sets the content of a text component specified in the argument.

JTextField
A JTextField can handle (display and/or edit) one line of plain text. You can create a JTextField in a
number of different ways using its constructors. Its constructors accept a combination of

•	 A string

•	 The number of columns

•	 A Document object

The string specifies the initial text. The number of columns specifies the width. The Document object
specifies the model. The default value for the initial text is null, the number of columns is zero, and
document (or model) is an instance of the PlainDocument class.

If you do not specify the number of columns, its width is determined by the initial text. Its preferred
width will be wide enough to display the entire text. If you specify the number of columns, its preferred
width will be wide enough to display as many m characters in the current font of the JTextField as the
specified number of columns. Table 2-8 lists constructors of the JTextField class.

Chapter 2 ■ Swing ComponentS

103

The following snippet of code creates many instances of JTextField using the different constructors:

// Create an empty JTextField
JTextField emptyTextField = new JTextField();

// Create a JTextField with an initial text of Hello
JTextField helloTextField = new JTextField("Hello");

// Create a JTextField with the number of columns of 20
JTextField nameTextField = new JTextField(20);

How many characters can you enter in a JTextField? There is no limit to the number of characters
that you can enter in a JTextField. If you want to limit the number of characters in a JTextField, you
need to customize its model. Note that the model of the JTextField stores its contents. Before you see a
custom model in action, let’s see the power of separating the model and the view for a text component
in Swing.

Let’s create two instances of JTextField named name and mirroredName. You will set the model for
mirroredName to be the same as that of name. You are doing a very simple thing. You are using the same
model for both text fields. This makes both fields as mirror fields of each other. If you enter text in one of
them, the same text is automatically displayed for you in the other. How does this happen? When you enter
text in a JTextField, its model is updated. An update in its model sends a notification to its views (in this
case, the two components act as views) to update themselves. Since two text fields are two views with the
same model, an update in the model (through either of the text fields) will send a notification to both text
fields, and both will update their views to display the same text.

Listing 2-3 demonstrates how to share a model between two text fields. Run this program and enter
some text in either of the text fields. You will see that the other text field is updated simultaneously with the
same text.

Listing 2-3. Mirroring a JTextField by Sharing Its Model With Another JTextField

// MirroredTextField.java
package com.jdojo.swing.component;

import javax.swing.JFrame;
import javax.swing.JTextField;
import javax.swing.JLabel;

Table 2-8. Constructors of the JTextField Class

Constructor Description

JTextField() Creates a JTextField with default values for initial text,
number of columns, and document.

JTextField(Document document,
String text, int columns)

Creates a JTextField with the specified document as its model,
text as its initial text, and columns as its number of columns.

JTextField(int columns) Creates a JTextField with the specified columns as its number
of columns.

JTextField(String text) Creates a JTextField with the specified text as its initial text.

JTextField(String text, int columns) Creates a JTextField with the specified text as its initial text
and columns as its number of columns.

Chapter 2 ■ Swing ComponentS

104

import java.awt.GridLayout;
import java.awt.Container;
import javax.swing.text.Document;

public class MirroredTextField extends JFrame {
 JLabel nameLabel = new JLabel("Name:") ;
 JLabel mirroredNameLabel = new JLabel("Mirrored Name:") ;
 JTextField name = new JTextField(20);
 JTextField mirroredName = new JTextField(20);

 public MirroredTextField() {
 super("Mirrored JTextField");
 this.initFrame();
 }

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setLayout(new GridLayout(2, 0));

 Container contentPane = this.getContentPane();
 contentPane.add(nameLabel);
 contentPane.add(name);
 contentPane.add(mirroredNameLabel);
 contentPane.add(mirroredName);

 // Set the model for mirroredName to be the same as name's
 // model, so they share their content's storage.
 Document nameModel = name.getDocument();
 mirroredName.setDocument(nameModel);
 }

 public static void main(String[] args) {
 MirroredTextField frame = new MirroredTextField();
 frame.pack();
 frame.setVisible(true);
 }
}

To have your own model for a JTextField, you need to create a new class. The new class can either
implement the Document interface or inherit from the PlainDocument class. The latter approach is easier
and most commonly used. Listing 2-4 contains the code for a LimitedCharDocument class, which inherits
from the PlainDocument class. You can use this class as a model for a JTextField when you want to limit the
number of characters in a JTextField. By default, it lets a user enter an unlimited number of characters. You
can set the number of allowed characters in its constructor.

Chapter 2 ■ Swing ComponentS

105

Listing 2-4. A Class That Represents a Plain Document with a Limited Number of Characters

// LimitedCharDocument.java
package com.jdojo.swing.component;

import javax.swing.text.PlainDocument;
import javax.swing.text.BadLocationException;
import javax.swing.text.AttributeSet;

public class LimitedCharDocument extends PlainDocument {
 private int limit = -1; // < 0 means an unlimited characters

 public LimitedCharDocument() {
 }

 public LimitedCharDocument(int limit) {
 this.limit = limit;
 }

 @Override
 public void insertString(int offset, String str, AttributeSet a)
 throws BadLocationException {
 String newString = str;
 if (limit >= 0 && str != null) {
 // Check for the limit
 int currentLength = this.getLength();
 int newTextLength = str.length();
 if (currentLength + newTextLength > limit) {
 newString = str.substring(0, limit - currentLength);
 }
 }

 super.insertString(offset, newString, a);
 }
}

The insertString() method in the LimitedCharDocument class is of interest. The Document interface
declares an insertString() method. The PlainDocument class provides the default implementation for
this method. The LimitedCharDocument class overrides the default implementation and checks whether the
inserted string will exceed the number of characters allowed. If the inserted string exceeds the maximum
number of characters allowed, it chops off the extra characters. If you set the limit to a negative number, an
unlimited number of characters are allowed. At the end, the method simply calls its implementation in the
PlainDocument class to execute the real action.

The insertString() method of the model is called every time text is inserted into the JTextField. This
method gets the following three arguments:

•	 int offset: It is the position where the string is inserted in the JTextField. The first
character is inserted at offset 0, the second at offset 1, and so on.

•	 String str: It is the string that is inserted into the JTextField. When you enter text in a
JTextField, the insertString() method is called for each character you enter and this
argument will contain only one character. However, when you paste text into a JTextField
or use its setText() method, this argument may contain more than one character.

•	 AttributeSet a: The attributes that have to be associated with the inserted text.

Chapter 2 ■ Swing ComponentS

106

You can use LimitedCharDocument as follows:

// Create a JTextField, which will only allow 10 characters
Document tenCharDoc = new LimitedCharDocument(10);
JTextField t1 = new JTextField(tenCharDoc, "your name", 10);

There is another way to set a document for a JTextField. You need to create a new class inheriting from
JTextField and override its createDefaultModel() method. It is declared protected in the JTextField
class, and by default, it returns a PlainDocument. You can return an instance of your custom document class
from this method. The code for your custom JTextField would look as follows:

public class TenCharTextField extends JTextField {
 @Override
 protected Document createDefaultModel() {
 // Return a document object that allows maximum 10 characters
 return new LimitedCharDocument(10);
 }

 // Other code goes here
}

You can use an instance of the TenCharTextField class whenever you need a JTextField with a
capacity of ten characters.

The createDefaultModel() method is called from the constructor in the JTextField class. Therefore,
you should not pass an argument to your custom JTextField and use that argument’s value to construct the
model in the createDefaultModel() method in your class. For example, the following snippet of code will
not produce the desired result:

static class LimitedCharTextField extends JTextField {
 private int maxChars = -1;

 public LimitedCharTextField(int maxChars) {
 this.maxChars = maxChars;
 }

 protected Document createDefaultModel() {
 /* Wrong use of maxChars!!! By the time this method is called,
 maxChars will have its default value of zero. This method will
 be called from the constructor of the JTextField class and at
 that time the constructor for this class would not
 start executing.
 */
 return new LimitedCharDocument(maxChars);
 }
}

Sometimes, you may want to force the user to enter text in a text field in a specific format, such as
entering a date in mm/dd/yyyy format or entering digits only. This is possible using a custom model for the
JTextField component. Swing contains another text component called JFormattedTextField that lets you
set the format for a text field. A JFormattedTextField makes the job a lot easier if you need a component
that should allow a user to add text in a specific format. I discuss JFormattedTextField shortly.

Chapter 2 ■ Swing ComponentS

107

JPasswordField
A JPasswordField is a JTextField, except that it allows hiding the actual characters being displayed in
the field. For example, when you are using a login form to enter your password, you do not want others
looking over your shoulders to see your password on the screen. By default, a JPasswordField displays an
asterisk (*) character for each actual character in the field. This is called the echo character. The default echo
character also depends on the look and feel used for the application. You can set your own echo character by
using its setEchoChar(char newEchoChar) method.

The JPasswordField class has the same set of constructors as the JTextField class. You can use a
combination of the initial text, the number of columns, and a Document object to create a JPasswordField
object.

// Create a password field 10 characters wide
JPasswordField passwordField = new JPasswordField(10);

The getText() method for JPasswordField has been deprecated for security reasons. You should use
its getPassword() method instead, which returns a char[]. You should reset all the elements in the char[]
to zero value after you are done using it. The following snippet of code shows how to validate a password
entered in a JPasswordField:

// Get the password entered in the field
char c[] = passwordField.getPassword();

// Suppose you have the correct password in a string.
// Usually, you will get it from a file or database
String correctPass = "Hello";

// Do not convert your password in c[] to a String. Rather, convert the correctPass
// to a char[]. Or, better you would have correctPass as char[] in the first place.
char[] cp = correctPass.toCharArray();

// Use the equals() method of the java.util.Arrays class to compare c and cp for equality
if (Arrays.equals(c, cp)) {
 // The password is correct
} else {
 // The password is incorrect
}

// Null out the password that you have in the char arrays
Arrays.fill(c, (char)0);
Arrays.fill(cp, (char)0);

You can set an echo character of your choice using the setEchoChar() method as follows:

// Set # as the echo character
password.setEchoChar('#');

You can use a JPasswordField as a JTextField by setting its echo character to zero as follows:

// Set the echo character to 0, so the actual password characters are visible
passwordField.setEchoChar((char)0);

Chapter 2 ■ Swing ComponentS

108

 ■ Tip You need to set the echo character of a JPasswordField to a character value whose aSCii value is
zero so the JPasswordField will show the actual characters. if you set the echo character to '0' (aSCii value of
48), the actual password will not be displayed. rather, a '0' character will be echoed for each actual character.

JFormattedTextField
A JFormattedTextField is a JTextField with the two additional capabilities:

•	 It lets you specify the format in which the text will be edited and/or displayed.

•	 It also lets you specify a format when the value in the field is null.

In addition to the getText() and setText() methods, which let you get and set the text in the field, the
JFormattedTextField offers two new methods, called getValue() and setValue(), which let you work with
any type of data instead of just text.

The JFormattedTextField comes preconfigured to work with three kinds of data: numbers, dates, and
strings. However, you have the ability to format any object to be displayed in this field. You can set the format
for a JFormattedTextField in many ways using its different constructors, which are listed in Table 2-9.

Table 2-9. Constructors of the JFormattedTextField Class

Constructor Description

JFormattedTextField() Creates a JFormattedTextField with no formatter.
You need to use its setFormatterFactory() or
setValue() method to set a formatter.

JFormattedTextField(Format format) Creates a JFormattedTextField and it will use the
specified format to format the text in the field.

JFormattedTextField(
JFormattedTextField.AbstractFormatter
formatter)

Creates a JFormattedTextField with the specified
formatter.

JFormattedTextField(JFormattedTextField.
AbstractFormatterFactory
factory)

Creates a JFormattedTextField with the specified
factory.

JFormattedTextField(
JFormattedTextField.AbstractFormatterFactory
factory, Object initialValue)

Creates a JFormattedTextField with the specified
factory and the specified an initial value.

JFormattedTextField(Object value) Creates a JFormattedTextField with the specified
value. The field will configure itself to format the
value based on the class of the value. If a null
is passed as the value, the field has no way of
knowing which type of value it needs to format
and it will not attempt to format the value at all.

Chapter 2 ■ Swing ComponentS

109

It is necessary to understand the difference between format, formatter, and formatter factory.
A java.text.Format object defines the format of an object in a string form. That is, it defines how an object
looks as a string; for example, a date object in mm/dd/yyyy format would look like 07/09/2008.

A formatter is represented by a JFormattedTextField.AbstractFormatter object and it uses a
java.text.Format object to format an object. Its job is to convert an object to a string and a string back to
an object.

A formatter factory is a collection of formatters. A JFormattedTextField uses a formatter factory to get
a formatter of a specific type. A formatter factory is represented by an instance of the JFormattedTextField.
AbstractFormatterFactory class.

The following snippet of code configures dobField to format the text in it as a date in the current locale
format:

JFormattedTextField dobField = new JFormattedTextField();
dobField.setValue(new Date());

The following snippet of code configures a salaryField to display a number in the current locale format:

JFormattedTextField salaryField = new JFormattedTextField();
salaryField.setValue(new Double(11233.98));

You can also create a JFormattedTextField with a formatter. You need to use the DateFormatter,
NumberFormatter, and MaskFormatter classes to format a date, a number, and a string, respectively. These
classes are in the javax.swing.text package.

// Have a field to format a date in mm/dd/yyyy format
DateFormat dateFormat = new SimpleDateFormat("mm/dd/yyyy");
DateFormatter dateFormatter = new DateFormatter(dateFormat);
dobField = new JFormattedTextField(dateFormatter);

// Have field to format a number in $#0,000.00 format
NumberFormat numFormat = new DecimalFormat("$#0,000.00");
NumberFormatter numFormatter = new NumberFormatter(numFormat);
salaryField = new JFormattedTextField(numFormatter);

You need to use a mask formatter to format a string. A mask formatter uses the special characters listed
in Table 2-10 to specify a mask.

Table 2-10. Special Characters Used to Specify a Mask

Character Description

A number.

? A letter.

A A letter or a number.

* Anything.

U A letter, with lowercase characters mapped to their uppercase equivalents.

L A letter, with uppercase characters mapped to their lowercase equivalents.

H A hexadecimal digit (A-F, a-f, 0-9).

' A single quote. It is an escape character that is used to escape any of the special
formatting characters.

Chapter 2 ■ Swing ComponentS

110

To let the user enter a social security number in the ###-##-#### format, you create a
JFormattedTextField as follows. Note that the constructor, MaskFormatter(String mask), throws a
ParseException.

MaskFormatter ssnFormatter = null;
JFormattedTextField ssnField = null;

try {
 ssnFormatter = new MaskFormatter("###-##-####");
 ssnField = new JFormattedTextField(ssnFormatter);
} catch (ParseException e) {
 e.printStackTrace();
}

When you use a mask formatter, you are forced to use only as many characters as you have specified
in the mask. All non-special characters (see Table 2-10 for the list of special characters) are displayed
as they appear in the mask. A placeholder (a space by default) is displayed for each special character in
the mask. For example, if you specify the mask as "###-##-####", the JFormattedTextField displays
" - - " as the placeholder. You can also specify a placeholder character for special characters using the
setPlaceHolderCharacter(char placeholder) method of the MaskFormatter class. To display 000-00-
0000 in a SNN field, you need to use ‘0’ as a placeholder character for the mast formatter, as shown:

ssnFormatter = new MaskFormatter("###-##-####");
ssnFormatter.setPlaceholderCharacter('0');

You can use the setFormatterFactory() method of JFormattedTextField to change the formatter
after you have created the component. For example, to set a date format to a JFormattedTextField named
dobField after you have created it, you write

DateFormatter df = new DateFormatter(new SimpleDateFormat("mm/dd/yyyy"));
DefaultFormatterFactory dff = new DefaultFormatterFactory(df, df, df, df); dobField.
setFormatterFactory(dff);

A JFormattedTextField lets you specify four types of formatters:

•	 A null formatter: It is used when the value in the field is null.

•	 An edit formatter: It is used when the field has focus.

•	 A display formatter: It is used when the field does not have focus and it has a
non-null value.

•	 A default formatter: It is used in the absence of any of these other three formatters.

You can specify all four formatters by using a formatter factory in the constructor of the
JFormattedTextField class or calling its setFormatterFactory() method. An instance of the
JFormattedTextField.AbstractFormatterFactory abstract class represents a formatter factory. The
javax.swing.text.DefaultFormatterFactory class is an implementation of the JFormattedTextField.
AbstractFormatterFactory class. When you specify a formatter, the same formatter is used in place of four
formatters. When you specify a formatter factory, you have the ability to specify different formatters in four
different situations.

Chapter 2 ■ Swing ComponentS

111

Suppose you have a JFormattedTextField named dobField to display a date. When this field has focus,
you want to let the user edit the date in the format mm/dd/yyyy (e.g., 07/07/2008). When it does not have
focus, you want to display a date in the mmmm dd, yyyy (e.g., July 07, 2008) format. The following snippet
of code will do the job:

DateFormatter df = new DateFormatter(new SimpleDateFormat("mmmm dd, yyyy"));
DateFormatter edf = new DateFormatter(new SimpleDateFormat("mm/dd/yyyy"));
DefaultFormatterFactory ddf = new DefaultFormatterFactory(df, df, edf, df);
dobField.setFormatterFactory(ddf);

If you have configured the JFormattedTextField to format a date, you can use its getValue() method
to get a Date object. The getValue() method’s return type is Object and you will need to cast the returned
value to the type Date. You can place the cursor in the month, day, year, hour, minute, and second parts
of the date value in the field and use up/down arrow key to change that specific part. If you want to
overwrite the value in the field as you type, you need to set the formatter in overwrite mode by using the
setOverwriteMode(true) method.

Another advantage of using a JFormattedTextField is to set a limit on the number of characters that
can be entered in a field. Recall that you achieved this by using a custom document for a JTextField in the
previous section. You can achieve the same by setting a mask formatter. Suppose you want to let the user
enter a maximum of two characters in a field. You can accomplish this as follows:

JFormattedTextField twoCharField = new JFormattedTextField(new MaskFormatter("**"));

JTextArea
A JTextArea can handle multiline plain text. Most often, when you have multiline text in a JTextArea, you
will need scrolling capabilities. A JTextArea does not provide scrolling by itself. Rather, you need to get help
from another Swing component called JScrollPane when you need to have scrolling capability in any Swing
component.

You can specify the number of rows and columns for a JTextArea that are used to determine its
preferred size. The number of rows is used to determine its preferred height. If you set the number of rows to
N, it means that its preferred height will be set to display N number of lines of text in the current font settings.
The number of columns is used to determine its preferred width. If you set the number of columns to M, it
means that its preferred width is set to M times the width of the character m (lowercase M) in the current font
settings.

A JTextArea provides a number of constructors to create a JTextArea component using a combination
of the initial text, the model, the number of rows, and the number of columns as arguments, as shown in
Table 2-11.

Chapter 2 ■ Swing ComponentS

112

The following snippet of code creates many instances of JTextArea using different initial values:

// Create a blank JTextArea
JTextArea emptyTextArea = new JTextArea();

// Create a JTextArea with 10 rows and 50 columns
JTextArea commentsTextArea = new JTextArea(10, 50);

// Create a JTextArea with 10 rows and 50 columns with an initial text of "Enter resume here"
JTextArea resumeTextArea = new JTextArea("Enter resume here", 10, 50);

It is very important to remember that when you work with a JTextArea, most often your text size will
be bigger than its size on the screen and you will need a scrolling capability. To add the scrolling capability
to a JTextArea, you need to add it to a JScrollPane, and add the JScrollPane to the container, not the
JTextArea. The following snippet of code demonstrates this concept. It is assumed that you have a JFrame
named myFrame whose content pane’s layout is set to BorderLayout and you want to add a scrollable
JTextArea in the center region.

// Create JTextArea
JTextArea resumeTextArea = new JTextArea("Enter resume here", 10, 50);

// Add JTextArea to a JScrollPane
JScrollPane sp = new JScrollPane(resumeTextArea);

// Get the reference of the content pane of the JFrame
Container contentPane = myFrame.getContentPane();

// Add the JScrollPane (sp) to the content pane, not the JTextArea
contentPane.add(sp, BorderLayout.CENTER);

Table 2-12 contains some of the commonly used methods of a JTextArea. Most of the time, you will use
its setText(), getText(), and append() methods.

Table 2-11. Constructors of the JTextArea Class

Constructor Description

JTextArea() Creates a JTextArea with a default model, initial string as
null, and rows/columns as zero.

JTextArea(Document doc) Creates a JTextArea with the specified doc as its model. Its
initial string is set to null, and rows/columns to zero.

JTextArea(Document doc, String text,
int rows, int columns)

Creates a JTextArea with all its properties (model, initial
text, rows, and column) as specified in its arguments.

JTextArea(int rows, int columns) Creates a JTextArea with a default model, initial string as
null, and the specified rows/columns.

JTextArea(String text) Creates a JTextArea with the specified initial text. A default
model is set and rows/columns are set to zero.

JTextArea(String text, int rows,
int columns)

Creates a JTextArea with the specified text, rows, and
columns. A default model is used.

Chapter 2 ■ Swing ComponentS

113

JTextArea uses configurable policies for wrapping lines and words in its displayable area. If the line
wrapping is set to true and a line is longer than the width of the component, the line will be wrapped.
By default, the line wrapping is set to false. The line wrapping is set using the setLineWrap(boolean
lineWrap) method.

A line can wrap at a word boundary or at a character boundary, which is determined by the word
wrapping policy. The word wrapping policy is set using the setWrapStyleWord(boolean wordWrap) method.
Calling this method takes effect only if the setLineWrap(true) is called. That is, a word wrapping policy
defines the details of the line wrapping policy. Figure 2-9 shows three JTextArea components displayed in a
JFrame.

Table 2-12. Commonly Used Methods of JTextArea

Method Description

void append(String text) Appends the specified text to the end of the JTextArea.

int getLineCount() Returns the number of lines in the JTextArea.

int getLineStartOffset(int line)
throws BadLocationException
int getLineEndOffset(int line) throws
BadLocationException

Returns the start and end offset (also called position, which
is zero based) for a specified line number. Throws an
exception if the line number is out of range. This method
is useful when you combine it with the getLineCount()
method. You can parse the text contained in the JTextArea
line by line using these three methods inside a loop.

int getLineOfOffset(int offset)
throws BadLocationException

Returns the line number in which the specified offset
occurs.

boolean getLineWrap() Returns true if line wrapping has been set. Otherwise, it
returns false.

int getTabSize() Returns the number of characters used for a tab. By default, it
returns 8.

boolean getWrapStyleWord() Returns true if word wrapping has been set to true.
Otherwise, it returns false.

void insert(String text, int offset) Inserts the specified text at the specified offset. If the
model is null or the specified text is empty or null, calling
this method has no effect.

void replaceRange(String text, int
start, int end)

Replaces the text between the start and end positions with
the specified text.

void setLineWrap(boolean wrap) Sets the line-wrapping policy for the JTextArea. If line-
wrapping is set to true, a line is wrapped if it does not fit
into the width of the JTextArea. If it is set to false, lines are
not wrapped even though it is longer than the width of the
JTextArea. By default, it is set to false.

void setTabSize(int size) Sets the number of characters that a tab will expand to the
specified size.

void setWrapStyleWord(boolean word) Sets the word-wrapping style when line wrapping is set
to true. When it is set to true, the line wraps at a word
boundary. Otherwise, the line wraps at a character boundary.
By default, it is set to false.

Chapter 2 ■ Swing ComponentS

114

For the three JTextArea components in the figure (left to right), the line wrapping and word wrapping
settings are (true, true), (true, false), and (false, true). The first one wrapped the line at the word
boundaries. The second one wrapped the lines at a character boundary. The third one did not wrap the
line at all and you are not able to view the entire text in its width. Note that each of the three JTextArea
components were added to the JFrame without adding it to a JScrollPane.

JEditorPane
A JEditorPane is a text component that is designed to handle different kinds of text. By default, it knows
how to handle plain text, HTML, and Rich Text Format (RTF). Although it is designed to edit and display
many types of content, it is primarily used to display an HTML document, which contains only basic HTML
elements. The support for RTF content is very basic.

A JEditorPane handles a specific type of content using a specific EditorKit object. If you want to
handle new types of content in this component, you will need to create a custom EditorKit class, which is
a subclass of the javax.swing.text.EditorKit class. If you are using this component only to display HTML
contents, you do not need to worry about an EditorKit; the component will handle the EditorKit related
functionalities for you. It takes only one line of code to use a JEditorPane to display an HTML page, as
shown:

// Create a JEditorPane to display yahoo.com web page
JEditorPane htmlPane = new JEditorPane("http://www.yahoo.com");

Note that some of the constructors of the JEditorPane class throw an IOException. When you specify a
URL, you must use the full form of the URL, starting with the protocol. You can let JEditorPane know what
type of an EditorKit it needs to install to handle its content in the following three different ways:

•	 By calling the setContentType(String contentType) method

•	 By calling the setPage(URL url) or setPage(String url) method

•	 By calling the read(InputStream in, Object description) method

JEditorPane is preconfigured to understand three types of contents: text/plain, text/html, and text/rtf.
You can use the following code to display the text Hello, using the <h1> tag in HTML:

htmlPane.setContentType("text/html");
htmlPane.setText("<html><body><h1>Hello</h1></body></html>");

Figure 2-9. The effects of line and word wrapping in a JTextArea

Chapter 2 ■ Swing ComponentS

115

When you call its setPage() method, it uses an appropriate EditorKit to handle the content provided by
the URL. In the following snippet of code, the JEditorPane uses an EditorKit depending on the content type:

// Handle an HTML Page
editorPane.setPage("http://www.yahoo.com");

// Handle an RTF file. When you use a file protocol, you may use three slashes instead of one
editorPane.setPage("file:///C:/test.rtf");

The JEditorPane reads the contents from a stream into the editor pane. If its editor kit is already set to
handle the HTML content and the specified description is of type javax.swing.text.html.HTMLDocument,
the content will be read as HTML. Otherwise, the content will be read as plain text.

When you work with an HTML document, you may want to navigate to a different page when you
click a hyperlink. In order to use a hyperlink, you need to add a hyperlink listener to the JEditorPane, and
in the hyperlinkUpdate() method of the event listener, navigate to the new page using the setPage()
method. One of the three type of actions, ENTERED, EXITED, and ACTIVATED, on a hyperlink triggers the
hyperlinkUpdate() method. The ENTERED event occurs when the mouse enters a hyperlink area, the EXITED
event occurs when the mouse leaves the hyperlink area, and the ACTIVATED event occurs when a hyperlink
is clicked. Make sure you check for an ACTIVATED event in the hyperlinkUpdate() method in your hyperlink
listener when you want to navigate to another page using a hyperlink. The following snippet of code uses a
lambda expression to add a HyperlinkListener to a JEditorPane:

editorPane.addHyperlinkListener((HyperlinkEvent event) -> {
 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 try {
 editorPane.setPage(event.getURL());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
});

If you want to know when a new page is loaded in the JEditorPane, you need to add a property change
listener to listen to its property change event and to check if the property with the name page has changed.
Listing 2-5 contains the complete code that uses a JEditorPane as a browser to view a web page. When you
run the program, you can enter a web page address in the URL field and press the Enter key (or press the
Go button), and the browser will display the contents of the new URL. You can also click a hyperlink in the
contents to navigate to another web page. The code is simple and contains enough comments to assist you
in understanding the program logic.

Listing 2-5. An HTML Browser Using the JEditorPane Component

// HTMLBrowser.java
package com.jdojo.swing.component;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
import javax.swing.Box;
import javax.swing.JEditorPane;
import javax.swing.JTextField;

Chapter 2 ■ Swing ComponentS

116

import javax.swing.JButton;
import java.awt.BorderLayout;
import java.net.URL;
import javax.swing.event.HyperlinkEvent;
import java.beans.PropertyChangeEvent;
import java.net.MalformedURLException;
import java.io.IOException;

public class HTMLBrowser extends JFrame {
 JLabel urlLabel = new JLabel("URL:");
 JTextField urlTextField = new JTextField(40);
 JButton urlGoButton = new JButton("Go");
 JEditorPane editorPane = new JEditorPane();
 JLabel statusLabel = new JLabel("Ready");

 public HTMLBrowser(String title) {
 super(title);
 initFrame();
 }

 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 Box urlBox = this.getURLBox();
 Box editorPaneBox = this.getEditPaneBox();

 contentPane.add(urlBox, BorderLayout.NORTH);
 contentPane.add(editorPaneBox, BorderLayout.CENTER);
 contentPane.add(statusLabel, BorderLayout.SOUTH);
 }

 private Box getURLBox() {
 // URL Box consists of a JLabel, a JTextField and a JButton
 Box urlBox = Box.createHorizontalBox();
 urlBox.add(urlLabel);
 urlBox.add(urlTextField);
 urlBox.add(urlGoButton);

 // Add an action listener to urlTextField, so when the user
 // enters a url and presses the enter key, the application
 // navigates to the new URL.
 urlTextField.addActionListener(e -> {
 String urlString = urlTextField.getText();
 go(urlString);
 });

 // Add an action listener to the Go button
 urlGoButton.addActionListener(e -> go());

 return urlBox;
 }

Chapter 2 ■ Swing ComponentS

117

 private Box getEditPaneBox() {
 // To display HTML, you must make the editor pane non-editable.
 // Otherwise, you will see an editable HTML page that does not look nice.
 editorPane.setEditable(false);

 // URL Box consists of a JLabel, a JTextField and a JButton
 Box editorBox = Box.createHorizontalBox();

 // Add a JEditorPane inside a JScrollPane to provide scrolling
 editorBox.add(new JScrollPane(editorPane));

 // Add a hyperlink listener to the editor pane, so that it
 // navigates to a new page, when the user clicks a hyperlink
 editorPane.addHyperlinkListener((HyperlinkEvent event) -> {
 if (event.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
 go(event.getURL());
 } else if (event.getEventType() == HyperlinkEvent.EventType.ENTERED) {
 statusLabel.setText("Please click this link to visit the page");
 } else if (event.getEventType()
 == HyperlinkEvent.EventType.EXITED) {
 statusLabel.setText("Ready");
 }
 });

 // Add a property change listener, so we can update
 // the URL text field with url of the new page
 editorPane.addPropertyChangeListener((PropertyChangeEvent e) -> {
 String propertyName = e.getPropertyName();
 if (propertyName.equalsIgnoreCase("page")) {
 URL url = editorPane.getPage();
 urlTextField.setText(url.toExternalForm());
 }
 });

 return editorBox;
 }

 // Navigates to the url entered in the URL JTextField
 public void go() {
 try {
 URL url = new URL(urlTextField.getText());
 this.go(url);
 } catch (MalformedURLException e) {
 setStatus(e.getMessage());
 }
 }

 // Navigates to the specified URL
 public void go(URL url) {
 try {
 editorPane.setPage(url);

Chapter 2 ■ Swing ComponentS

118

 urlTextField.setText(url.toExternalForm());
 setStatus("Ready");
 } catch (IOException e) {
 setStatus(e.getMessage());
 }
 }

 // Navigates to the specified URL specified as a string
 public void go(String urlString) {
 try {
 URL url = new URL(urlString);
 go(url);
 } catch (IOException e) {
 setStatus(e.getMessage());
 }
 }

 private void setStatus(String status) {
 statusLabel.setText(status);
 }

 public static void main(String[] args) {
 HTMLBrowser browser = new HTMLBrowser("HTML Browser");
 browser.setSize(700, 500);
 browser.setVisible(true);

 // Let us visit yahoo.com
 browser.go("http://www.yahoo.com");
 }
}

The following are the important parts of the program:

•	 The getURLBox() method packs a JLabel, a JTextField, and a JButton in a
horizontal box, and it is added to the north region of the frame. It adds an action
listener to the JTextField and to the JButton, so that when a user presses the Enter
key or the Go button after typing the new URL, the browser navigates to the new URL.

•	 The getEditPaneBox() method packs a JEditorPane inside a JScrollPane and
it is added in the center region of the frame. It also adds a hyperlink listener and
a property change listener to the JEditorPane. The hyperlink listener is used to
navigate to an URL when the user clicks a hyperlink. It also displays an appropriate
help message in the status bar when the mouse enters and exits a hyperlink area.

•	 A JLabel is used to display a brief message in the south area of the frame.

•	 The go() method has been overloaded and its main job is to navigate to a new page
using the setPage() method.

•	 The main() method is used for testing. It displays Yahoo’s home page in the browser.

As an assignment, you can add the Back and Forward buttons to the browser to let the user navigate
back and forth between the already visited web pages.

Chapter 2 ■ Swing ComponentS

119

 ■ Tip in order to display an htmL page in a nice format, you need to make the JEditorPane non-editable by
calling its setEditable(false) method. You should not use a JEditorPane to display all kinds of htmL pages
because it does not handle all kinds of different things that can be embedded in an htmL page. rather, you
should only use it to display htmL pages that contain basic htmL content, such as an htmL help file for your
application.

JTextPane
The JTextPane class is a subclass of the JEditorPane class. It is a specialized component to handle the styled
document with embedded images and components. You can set attributes for characters and paragraphs. If
you want to display an HTML, RTF, or plain document, the JEditorPane is your best choice. However, if you
need the rich set of functionalities provided by a word processor to edit/display styled text, you need to
use the JTextPane. It is a mini word processor. It always works with a styled document, even if its contents
are plain text. It is not possible to discuss all of its features in this section; it deserves a small book by itself.
I touch upon its features, such as setting styled text, embedding images, and components.

A JTextPane uses a styled document, which is an instance of the StyledDocument interface. The
StyledDocument interface inherits the Document interface. DefaultStyledDocument is an implementation
class for the StyledDocument interface. A JTextPane uses a DefaultStyledDocument as its default model.
A document in a Swing text component consists of elements that are organized in a tree-like structure. The
top element is called the root element. An element in a document is an instance of the javax.swing.text.
Element interface.

A plain document has a root element. The root element can have multiple child elements. Each child
element consists of one line of text. Note that in a plain document, all characters in the document have the
same attributes (or formatting style).

A styled document has a root element, which is also known as a section. The root element has branch
elements, which are also known as paragraphs. A paragraph has character runs. A character run is a set of
contiguous characters that share the same attributes. For example, the “Hello world” string defines one
character run. However, the “Hello world” string defines two character runs. Note that the word “world” is in
boldface font and “Hello” is not. That is why they define two different character runs. In a styled document, a
paragraph ends with a newline character unless it is the last paragraph, which need not end in a newline. You
can define attributes at the paragraph level, such as indenting, line spacing, text alignment, etc. You can define
attributes at character run level, such as font size, font family, bold, italics, etc. Figure 2-10 and Figure 2-11
show the structures of a plain document and a styled document, respectively.

Figure 2-10. Structure of a plain document

Chapter 2 ■ Swing ComponentS

120

The program in Listing 2-6 develops a basic word processor using a JTextPane. It lets you edit text and
apply styles such as bold, italics, color, and alignment to the text.

Listing 2-6. A Simple Word Processor Using JTextPane and JButtons

// WordProcessor.java
package com.jdojo.swing.component;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JTextPane;
import javax.swing.JButton;
import java.awt.BorderLayout;
import javax.swing.JPanel;
import javax.swing.text.StyledDocument;
import javax.swing.text.BadLocationException;
import javax.swing.text.Style;
import javax.swing.text.StyleContext;
import javax.swing.text.StyleConstants;
import java.awt.Color;

public class WordProcessor extends JFrame {
 JTextPane textPane = new JTextPane();

 JButton normalBtn = new JButton("Normal");
 JButton boldBtn = new JButton("Bold");
 JButton italicBtn = new JButton("Italic");
 JButton underlineBtn = new JButton("Underline");
 JButton superscriptBtn = new JButton("Superscript");
 JButton blueBtn = new JButton("Blue");
 JButton leftBtn = new JButton("Left Align");
 JButton rightBtn = new JButton("Right Align");

 public WordProcessor(String title) {
 super(title);
 initFrame();
 }

Figure 2-11. Structure of a styled document

Chapter 2 ■ Swing ComponentS

121

 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();

 JPanel buttonPanel = this.getButtonPanel();
 contentPane.add(buttonPanel, BorderLayout.NORTH);
 contentPane.add(textPane, BorderLayout.CENTER);

 this.addStyles(); // Add styles to the text pane for later use
 insertTestStrings(); // Insert some texts to the text pane
 }

 private JPanel getButtonPanel() {
 JPanel buttonPanel = new JPanel();
 buttonPanel.add(normalBtn);
 buttonPanel.add(boldBtn);
 buttonPanel.add(italicBtn);
 buttonPanel.add(underlineBtn);
 buttonPanel.add(superscriptBtn);
 buttonPanel.add(blueBtn);
 buttonPanel.add(leftBtn);
 buttonPanel.add(rightBtn);

 // Add action event listeners to buttons
 normalBtn.addActionListener(e -> setNewStyle("normal", true));
 boldBtn.addActionListener(e -> setNewStyle("bold", true));
 italicBtn.addActionListener(e -> setNewStyle("italic", true));
 underlineBtn.addActionListener(e -> setNewStyle("underline", true));
 superscriptBtn.addActionListener(e -> setNewStyle("superscript", true));
 blueBtn.addActionListener(e -> setNewStyle("blue", true));
 leftBtn.addActionListener(e -> setNewStyle("left", false));
 rightBtn.addActionListener(e -> setNewStyle("right", false));

 return buttonPanel;
 }

 private void addStyles() {
 // Get the default style
 StyleContext sc = StyleContext.getDefaultStyleContext();
 Style defaultContextStyle = sc.getStyle(StyleContext.DEFAULT_STYLE);

 // Add some styles to the document, to retrieve and use later
 StyledDocument document = textPane.getStyledDocument();
 Style normalStyle = document.addStyle("normal", defaultContextStyle);

 // Create a bold style
 Style boldStyle = document.addStyle("bold", normalStyle);
 StyleConstants.setBold(boldStyle, true);

 // Create an italic style
 Style italicStyle = document.addStyle("italic", normalStyle);
 StyleConstants.setItalic(italicStyle, true);

Chapter 2 ■ Swing ComponentS

122

 // Create an underline style
 Style underlineStyle = document.addStyle("underline", normalStyle);
 StyleConstants.setUnderline(underlineStyle, true);

 // Create a superscript style
 Style superscriptStyle = document.addStyle("superscript", normalStyle);
 StyleConstants.setSuperscript(superscriptStyle, true);

 // Create a blue color style
 Style blueColorStyle = document.addStyle("blue", normalStyle);
 StyleConstants.setForeground(blueColorStyle, Color.BLUE);

 // Create a left alignment paragraph style
 Style leftStyle = document.addStyle("left", normalStyle);
 StyleConstants.setAlignment(leftStyle, StyleConstants.ALIGN_LEFT);

 // Create a right alignment paragraph style
 Style rightStyle = document.addStyle("right", normalStyle);
 StyleConstants.setAlignment(rightStyle, StyleConstants.ALIGN_RIGHT);
 }

 private void setNewStyle(String styleName, boolean isCharacterStyle) {
 StyledDocument document = textPane.getStyledDocument();
 Style newStyle = document.getStyle(styleName);
 int start = textPane.getSelectionStart();
 int end = textPane.getSelectionEnd();
 if (isCharacterStyle) {
 boolean replaceOld = styleName.equals("normal");
 document.setCharacterAttributes(start, end - start,
 newStyle, replaceOld);
 } else {
 document.setParagraphAttributes(start, end - start, newStyle, false);
 }
 }

 private void insertTestStrings() {
 StyledDocument document = textPane.getStyledDocument();
 try {
 document.insertString(0, "Hello JTextPane\n", null);
 } catch (BadLocationException e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 WordProcessor frame = new WordProcessor("Word Processor");
 frame.setSize(700, 500);
 frame.setVisible(true);
 }
}

Chapter 2 ■ Swing ComponentS

123

The word processor program is little lengthy. However, it does simple, repetitive things. I have broken
the program’s logic down into smaller pieces for easier understanding. The intent of this program is to show
a JTextPane where a user can edit text and apply styles to the text using some buttons

There are eight buttons. Five of them are used to format text: normal, bold, italic, underline, and
superscript. The Blue button is used to set the text color to blue. The last two buttons—Left Align and Right
Align—are used to set the paragraph alignment to left and right.

What is a style and how do you set a style to text and a paragraph? In simple terms, a style is a collection
of attributes (name-value pairs). It is simple to set the style; however, you need to write a few lines of code
to have the style itself. You add styles to the document of a JTextPane and to the JTextPane itself. You need
to use the addStyle(String styleName, Style parent) method of the StyledDocument class. It returns a
Style object. The parent argument can be null. If it is not null, unspecified attributes are resolved in the
parent style. Once you have a style object, you can use a setXxx() method of the StyleConstants class to
set the appropriate attributes in that style. If you are confused, here is a recap.

Think of a style as a table with two columns: name and value. The addStyle() method of the
StyledDocument class returns an empty style (meaning an empty table). By using the setXxx() methods of
StyleConstants, you are adding new rows to the style (that is, to the table). Once you have at least one row
in the table (that is, at least one style attribute defined), you can apply that style to characters or paragraphs
depending on the type of the style. Note that you can have an empty style. An empty style may be used to
remove all current styles from a range of characters or from a paragraph. The following snippet of code
creates two styles: the first one is bold and second one is bold + italic. If you apply the first style to text, it
will format the text in boldface font. If you apply the second style to a text, it will format the text in boldface
font and italic. Note that you are setting the parent style to null.

// Get the styled document from the text pane
StyledDocument document = textPane.getStyledDocument();

// Add an empty style named "bold" to the document
Style bold = document.addStyle("bold", null);

// Add bold attribute to this style
StyleConstants.setBold(bold, true);

// From this point on, you can use the bold style

// Let’s create a bold + italic style called boldItalic.
// Add an empty style named boldItalic to the document
Style boldItalic = document.addStyle("boldItalic", null);

// Add bold and italic attributes to the boldItalic style
StyleConstants.setBold(boldItalic, true);
StyleConstants.setItalic(boldItalic, true);

// From this point on, you can use the boldItalic style

You may need the reference of the style object after you add it to a StyledDocument. You can retrieve the
reference of the same style by using its getStyle(String styleName) method.

// Get the bold style from document
Style myBoldStyle = document.getStyle("bold");

Chapter 2 ■ Swing ComponentS

124

Once you have a Style object, you can use the setCharacterAttributes(int offset, int length,
AttributeSet s, boolean replace) and setParagraphAttributes (int offset, int length,
AttributeSet s, boolean replace) methods of the StyledDocument class to set the style to a character
range or to a paragraph. If the replace argument is specified as true, any old style for that range will be
replaced with the new one. Otherwise, the new style is merged with the old one.

// Suppose a text pane has more than five characters in it.
// Make the first three characters bold
document.setCharacterAttributes(0, 3, bold, false);

A StyleContext object defines a pool of styles for their efficient use. You can get the default collection of
styles as follows:

StyleContext sc = StyleContext.getDefaultStyleContext();
Style defaultContextStyle = sc.getStyle(StyleContext.DEFAULT_STYLE);

// Let's add a default context style as normal style's parent.
// We do not add any extra attribute to normal styles
StyledDocument document = textPane.getStyledDocument();
Style normal = document.addStyle("normal", defaultContextStyle);

Table 2-13 contains a list of important methods with their descriptions, which may assist you in
understanding the code in Listing 2-6. Figure 2-12 shows how the simple word processor looks like after you
enter E = mc2 in it.

Table 2-13. Methods of the WordProcessor Class with Their Descriptions

Method Description

initFrame() Initializes the frame by adding components to it and setting the default behavior
of the JFrame.

getButtonPanel() Returns a JPanel, which contains all JButtons for formatting. It also adds action
listeners to all JButtons.

addStyles() It adds styles to the document. The default context style is named “normal” and
it is used as the parent for all other styles. Styles such as bold, italic, etc., are
character level styles, whereas left and right are paragraph level styles. These
styles are retrieved from the document for using them in the setNewStyle()
method.

setNewStyle() It sets the style to a character range or a paragraph range as indicated by its
isCharacterStyle argument. Note that if you set the “normal” style, you
replace the entire style by this style. Otherwise, you merge the style. This logic is
determined by the following statement:
boolean replaceOld = styleName.equals("normal");

insertTestStrings() Inserts a string to the JTextPane’s document using the insertString() method.

main() Creates and displays the word processor frame.

Chapter 2 ■ Swing ComponentS

125

The word processor does not have a save feature. In a real-world application, you would prompt the
user for a location and the name of the file to save. The following snippet of code saves the contents of the
JTextPane to a file named test.rtf in the current working directory:

// Save the contents of the textPane to a file
FileWriter fw = new java.io.FileWriter("test.rtf");
textPane.write(fw);
fw.close();

The write() method of JTextPane writes the text contained in its document as plain text. If you want
to save the formatted text, you need to use an RTFEditorKit object as its editor kit, and use that editor
kit’s write() method to write to a file. The following snippet of code shows how to save formatted text in a
JTextPane using an RTFEditorKit object. Note that RTFEditorKit contains a read() method to read the
formatted text back to a JTextPane.

// Set an RTFEditorKit to a JTextPane right after you create it
JTextPane textPane = new JTextPane();
textPane.setEditorKit(new RTFEditorKit());

// Other code goes here

// Save formatted text from the JTextPane to a file
String fileName = "test.rtf";
FileOutputStream fos = new FileOutputStream(fileName);
RTFEditorKit kit = (RTFEditorKit)textPane.getEditorKit();
StyledDocument doc = textPane.getStyledDocument();
int len = doc.getLength();
kit.write(fos, doc, 0, len);
fos.close();

 ■ Tip if you want to save icons and components added to a JTextPane, you need to serialize the document
object of a JTextPane to a file and load it back to display the same contents.

Figure 2-12. A simple word processor using a JTextPane and JButtons

Chapter 2 ■ Swing ComponentS

126

You can add any Swing components and icons to a JTextPane. It is just a matter of wrapping a
component or an icon in a style, and using that style in the insertString() method. The following snippet
of code shows how to add a JButton and an icon to a JTextPane:

// Add a Close button to our document
JButton closeButton = new JButton("Close");
closeButton.addActionListener(e -> System.exit(0));

Style cs = doc.addStyle("componentStyle", null);
StyleConstants.setComponent(cs, closeButton);

// Insert the component at the end of the text.
try {
 document.insertString(doc.getLength(), "Close Button goes", cs);
} catch (BadLocationException e) {
 e.printStackTrace();
}

Adding an icon to a JTextPane is similar to adding a component to it, except that you use the setIcon()
method of the StyleConstants class instead of the setComponent() method and an ImageIcon object
instead of a component, as shown:

// Add an icon to a JTextPane
StyleConstants.setIcon(myIconStyle, new ImageIcon("myImageFile"));

 ■ Tip You can also use the insertComponent(Component c) and insertIcon(Icon g) methods of a
JTextPane to insert a component and an icon into it, respectively.

You can take a look at the element structures of a JTextPane document by using the dump(PrintStream p)
method of the AbstractDocument class. The following snippet of code displays the dump on the standard
output:

// Display the document structure on the standard output
DefaultStyledDocument doc = (DefaultStyledDocument)textPane.getStyledDocument();
doc.dump(System.out);

The following is the dump of a JTextPane’s document with text, as shown in Figure 2-12. It gives you an
idea about the structure of a styled document.

<section>
 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUI
Resource[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource
[family=Dialog,name=Dialog,style=plain,size=12],size=12,italic=false,}
 >
 <content>
 [0,16][Hello JTextPane
]

Chapter 2 ■ Swing ComponentS

127

 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUIRe

source[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource[
family=Dialog,name=Dialog,style=plain,size=12],size=12,italic=false,}

 >
 <content>
 [16,17][
]
 <paragraph
 resolver=NamedStyle:default {bold=false,name=default,foreground=sun.swing.PrintColorUIRe

source[r=51,g=51,b=51],family=Dialog,FONT_ATTRIBUTE_KEY=javax.swing.plaf.FontUIResource[
family=Dialog,name=Dialog,style=plain,size=12],size=12,italic=false,}

 >
 <content
 bold=true
 name=bold
 resolver=NamedStyle:normal {name=normal,resolver=AttributeSet,}
 >
 [17,21][E=mc]
 <content
 bold=true
 name=bold
 resolver=NamedStyle:normal {name=normal,resolver=AttributeSet,}
 superscript=true
 >
 [21,22][2]
 <content>
 [22,23][
]
<bidi root>
 <bidi level
 bidiLevel=0
 >
 [0,23][Hello JTextPane

E=mc2
]

Validating Text Input
You have seen examples of validating text input in a text component: using a custom model and using
a JFormattedTextField. You can attach an input verifier object to any JComponent, including a text
component. An input verifier object is simply an object of a class, which inherits from the abstract class
named InputVerifier. The class is declared as shown:

public abstract class InputVerifier {
 public abstract boolean verify(JComponent input);

 public boolean shouldYieldFocus(JComponent input) {
 return verify(input);
 }
}

Chapter 2 ■ Swing ComponentS

128

You need to override the verify() method of the InputVerifier class. The verify() method contains
the logic to verify the input in the text field. If the value in the text field is valid, you return true from this
method. Otherwise, you return false. When the text field is about to lose focus, the verify() method of its
input verifier is called. The text field loses focus only if its input verifier’s verify() method returns true. The
setInputVerifier() method of a text component is used to attach an input verifier. The following snippet of
code sets an input verifier to an area code field. It will keep the focus in this field until the user enters a three-
digit numeric area code. It lets the user navigate to another field if the field is empty.

// Create an area code JTextField
JTextField areaCodeField = new JTextField(3);

// Set an input verifier to the area code field
areaCodeField.setInputVerifier(new InputVerifier() {
 @Override
 public boolean verify(JComponent input) {
 String areaCode = areaCodeField.getText();
 if (areaCode.length() == 0) {
 return true;
 } else if (areaCode.length() != 3) {
 return false;
 }

 try {
 Integer.parseInt(areaCode);
 return true;
 } catch(NumberFormatException e) {
 return false;
 }
 }
});

You can set an input verifier to any JComponent using the setInputVerifier() method. Typically, it is
used only for text fields. As a good GUI design practice, you should add some visual hints about the valid
input values, so the user can understand what kind of values are expected in the field. For example, you may
want to add a label for the area code field with a text “Area Code (three digits):” or display an error message
when the user enters an invalid value in the field. If there is no visual clue about the valid values for the field
with an input verifier, users will be stuck in the field without knowing what kind of value to enter.

Making Choices
Swing provides the following components that let you make a selection from a list of choices:

•	 JToggleButton

•	 JCheckBox

•	 JRadioButton

•	 JComboBox

•	 JList

Chapter 2 ■ Swing ComponentS

129

The number of choices available to select from a list may vary from 2 to N, where N is a number greater
than 2. There are different ways to make a selection from the list of choices:

•	 The selection may be mutually exclusive. That is, the user can only make one
selection from the list of choices. In mutually exclusive choices, if the user changes
the current selection, the previous selection is automatically deselected. For
example, the list of gender selection with three choices of Male, Female, and Unknown
is mutually exclusive. The user must only select one of the three choices, but not two
or more of them at the same time.

•	 There is a special case of selection where the number of choice N is 2. In this case,
the choices are of type boolean: true or false. Sometimes they are also referred to as
a Yes/No choice, or an On/Off choice.

•	 Sometimes the user can have multiple selections from a list of choices. For example,
you may present the user with a list of hobbies and the user can choose more than
one hobby from the list.

Swing components provide you with the ability to present different kinds of choices to the user and let
the user select zero, one, or multiple choices. Figure 2-13 shows the Swing components with four season
names: Spring, Summer, Fall, and Winter. The figure shows the look of the five different types of Swing
components that can be used for selecting choices from a list. Some of the components shown in this figure
may not be the appropriate way for the choices it displays. For example, even though it is possible to use
a group of checkboxes to display a list of mutually exclusive choices, it is not a good GUI practice. When
choices are mutually exclusive, a group of radio buttons is considered more appropriate than a group of
checkboxes.

Figure 2-13. Swing components to make a selection from a list of choices

A JToggleButton is a two-state button. The two states are selected and unselected. When you press the
toggle button, it toggles between being depressed and undepressed. Depressed is its selected state and
undepressed is its unselected state. Note that a JButton is different from a JToggleButton in the way it works
and in its usage. A JButton is pressed only when mouse is pressed over it, whereas a JToggleButton toggles
between depressed and undepressed states. A JButton is used to initiate an action whereas a JToggleButton
is used to select a choice from a list of possible choices. Typically, a group of JToggleButtons is used to let
the user select one choice from a list of mutually exclusive choices. One JToggleButton is used when the
user has a boolean choice where he needs to indicate true or false (or, Yes or No). The depressed state
indicates the choice of true and the undepressed state indicates the choice of false.

Chapter 2 ■ Swing ComponentS

130

A JCheckBox also has two states: selected and unselected. A group of JCheckBoxes is used when the user
can select zero or more choices from a list of two or more choices. One JCheckBox is used when the user has
a boolean choice to indicate true or false.

A JRadioButton also has two states: selected and unselected. A group of JRadioButtons is used when
there is a list of two or more mutually exclusive choices and the user must select one choice. A JRadioButton
is never used as a standalone component for making a choice from two boolean choices of true and false.
It is always used in a group of two or more. A JCheckBox (not a JRadioButton) should be used when you have
to let the user select between two boolean choices, true or false.

Constructors for JToggleButton, JCheckBox, and JRadioButton let you create them using a
combination of different arguments. You can use a combination of an Action object, a string label, an
icon, and a boolean flag (to indicate if it is selected by default) to create them. By default, JToggleButton,
JCheckBox, and JRadioButton are unselected. The following snippet of code shows some of the ways to
create them:

// Create them with no label and no image
JToggleButton tb1 = new JToggleButton();
JCheckBox cb1 = new JCheckBox();
JRadioButton rb1 = new JRadioButton();

// Create them with text as "Multi-Lingual"
JToggleButton tb2 = new JToggleButton("Multi-Lingual");
JCheckBox cb2 = new JCheckBox("Multi-Lingual");
JRadioButton rb2 = new JRadioButton("Multi-Lingual");

// Create them with text as "Multi-Lingual" and selected by default
JToggleButton tb3 = new JToggleButton("Multi-Lingual", true);
JCheckBox cb3 = new JCheckBox("Multi-Lingual", true);
JRadioButton rb3 = new JRadioButton("Multi-Lingual", true);

To select/unselect a JToggleButton, JCheckBox, and JRadioButton, you need to call their
setSelected() methods. To check if they are selected, use their isSelected() methods. The following
snippet of code shows how to use these methods:

tb3.setSelected(true); // Select tb3
boolean b1 = tb3.isSelected(); // will store true in b1
tb3.setSelected(false); // Unselect tb3
boolean b2 = tb3.isSelected(); // will store false in b2

If the selection is mutually exclusive, you must group all your choices in a button group. In a mutually
exclusive group of choices, if you select one choice, all other choices are unselected. Typically, you create
a button group for a group of mutually exclusive JRadioButtons or JToggleButtons. Theoretically, you
can also create a button group for JCheckBoxes to have mutually exclusive choices. However, it is not
recommended to use a group of mutually exclusive JCheckBoxes in a GUI.

An instance of the ButtonGroup class represents a button group. You can add and remove a
JRadioButton or JToggleButton to a button group by using its add() and remove() methods, respectively.
Initially all members of a button group are unselected. To form a button group, you need to add all mutually
exclusive choice components to an object of the ButtonGroup class. You do not add (in fact, you cannot
add) a ButtonGroup object to a container. You must add all choice components to the container. Listing 2-7
contains the complete code that shows a group of three mutually exclusive JRadioButtons.

Chapter 2 ■ Swing ComponentS

131

Listing 2-7. A Group of Mutually Exclusive Three Choices Represented by Three JRadioButtons

// ButtonGroupFrame.java
package com.jdojo.swing.component;

import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.Box;
import javax.swing.ButtonGroup;
import javax.swing.JFrame;
import javax.swing.JRadioButton;

public class ButtonGroupFrame extends JFrame {
 ButtonGroup genderGroup = new ButtonGroup();
 JRadioButton genderMale = new JRadioButton("Male");
 JRadioButton genderFemale = new JRadioButton("Female");
 JRadioButton genderUnknown = new JRadioButton("Unknown");

 public ButtonGroupFrame() {
 this.initFrame();
 }

 private void initFrame() {
 this.setTitle("Mutually Exclusive JRadioButtons Group");
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Add three gender JRadioButtons to a ButtonGroup,
 // so they become mutually exclusive choices
 genderGroup.add(genderMale);
 genderGroup.add(genderFemale);
 genderGroup.add(genderUnknown);

 // Add gender radio button to a vertical Box
 Box b1 = Box.createVerticalBox();
 b1.add(genderMale);
 b1.add(genderFemale);
 b1.add(genderUnknown);

 // Add the vertical box to the center of the frame
 Container contentPane = this.getContentPane();
 contentPane.add(b1, BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 ButtonGroupFrame bf = new ButtonGroupFrame();
 bf.pack();
 bf.setVisible(true);
 }
}

Chapter 2 ■ Swing ComponentS

132

JComboBox<E> is another type of Swing component that lets you make one selection from a list of choices.
Optionally, it can include an editable field that lets you type a new choice value. The type parameter E
is the type of the elements it contains. You can use a JComboBox instead of a group of JToggleButtons,
JCheckBoxes, or JRadioButtons when the space on the screen is limited. You save space on the screen using
a JComboBox. However, the user has to perform two clicks to make a selection. First, the user has to click on
the arrow button to display the list of choices in a drop-down list, and then he has to click on a choice from
the list. The user can also use up/down arrow keys on the keyboard to scroll through the list of choices and
select one when the component is in focus. You can create a JComboBox by passing the list of choices in one
of its constructors, as shown:

// Use an array of String as the list of choices
String[] sList = new String[]{"Spring", "Summer", "Fall", "Winter"};
JComboBox<String> seasons = new JComboBox<>(sList);

// Use a Vector of String as the list of choices
Vector<String> sList2 = new Vector<>(4);
sList2.add("Spring");
sList2.add("Summer");
sList2.add("Fall");
sList2.add("Winter");
JComboBox<String> seasons2 = new JComboBox<>(sList2);

You can create a JComboBox with no choices and afterward add choices to it by using one of its methods.
It also includes methods to remove a choice from the list and get the value of the selected choice. Table 2-14
shows a list of commonly used methods of the JComboBox class.

Table 2-14. Commonly Used Methods of the JComboBox class

Method Description

void addItem(E item) Adds an item as a choice in the list. The toString() method
on the added object is called and the returned string is
displayed as a choice.

E getItemAt(int index) Returns the item at the specified index from the list of choices.
The index starts at zero and ends at the size of the list minus
one. If the specified index is out of bound, it returns null.

int getItemCount() Returns the number of items in the list of choices.

int getSelectedIndex() Returns the index of the selected item. It returns –1, if the
selected item is not in the list. Note that for an editable
JComboBox, you can type in a new value in the field and that
may not exist in the list of choices. In this case, this method will
return –1. It also returns –1 if there is no selection.

Object getSelectedItem() Returns the currently selected item. Returns null if there is no
selection.

void insertItemAt(E item, int index) Inserts the specified item at the specified index in the list.

boolean isEditable() Returns true if the JComboBox is editable. Otherwise, it returns
false. By default, a JComboBox is non-editable.

(continued)

Chapter 2 ■ Swing ComponentS

133

Method Description

void removeAllItems() Removes all items from the list.

void removeItem(Object item) Removes the specified item from the list.

void removeItemAt(int index) Removes the item at the specified index.

void setEditable(boolean editable) If the specified editable argument is true, the JComboBox is
editable. Otherwise, it is non-editable. The user can type in
a value in an editable JComboBox, which is not in the list of
choices. Note that the new typed in value is not added to the
list of choices.

void setSelectedIndex(int index) Selects the item at the specified index in the list. If the
specified index is –1, it clears the selection. If the specified
index is less than –1 or greater than the size of the list minus 1,
it throws an IllegalArgumentException.

void setSelectedItem(Object item) Selects the item in the field. If the specified item exists in the
list, it is always selected. If the specified item does not exist
in the list, it is selected in the field only if the JComboBox is
editable.

Table 2-14. (continued)

If you want to be notified when an item is selected or deselected in the JComboBox, you can add an
item listener to it. An item listener is notified whenever an item is selected or deselected. Note that when
you change a selection in a JComboBox, it fires the deselected item event followed by a selected event. The
following snippet of code shows how to add an item listener to a JComboBox. You can use the getItem()
method of the ItemEvent class to find out which item has been selected or deselected.

String[] sList = new String[]{"Spring", "Summer", "Fall", "Winter"};
JComboBox<String> seasons = new JComboBox<>(sList);

// Add an item listener to the combobox
seasons.addItemListener((ItemEvent e) -> {
 Object item = e.getItem();
 if (e.getStateChange() == ItemEvent.SELECTED) {
 // Item has been selected
 System.out.println(item + " has been selected");
 } else if (e.getStateChange() == ItemEvent.DESELECTED) {
 // Item has been deselected
 System.out.println(item + " has been deselected");
 }
});

Chapter 2 ■ Swing ComponentS

134

A JList<T> is another Swing component that displays a list of choices and lets you select one or
more choices from that list. The type parameter T is the type of elements it contains. A JList differs from a
JComboBox mainly in the way it displays the list of choices. A JList can show multiple choices on the screen
whereas a JComboBox shows the list of choices when you click the arrow button in it. In this sense, a JList
is an expanded version of a JComboBox. A JList can display a list of choices in one column or multiple
columns. You can create a JList the same way you create a JComboBox, as shown:

// Create a JList using an array
String[] items = new String[]{"Spring", "Summer", "Fall", "Winter"};
JList<String> list = new JList<>(items);

// Create a JList using a Vector
Vector<String> items2 = new Vector<>(4);
items2.add("Spring");
items2.add("Summer");
items2.add("Fall");
items2.add("Winter");
JList<String> list2 = new JList<>(items2);

A JList does not have scrolling capability. You must add it to a JScrollPane and add the JScrollPane
to the container to get the scrolling capability, like so:

myContainer.add(new JScrollPane(myJList));

You can configure the layout orientation of a JList to arrange the list of choices in three ways:

•	 Vertical

•	 Horizontal wrapping

•	 Vertical wrapping

In a vertical arrangement, which is the default, all items in a JList are displayed using one column and
multiple rows.

In a horizontal wrapping, all items are arranged in a row and multiple columns. However, if not all items
can fit into a row, new rows are added to display them as necessary. Note that the item can flow horizontally
left-to-right or right-to-left depending on the orientation of the component.

In a vertical wrapping, all items are arranged in a column and multiple rows. However, if all items
cannot fit into a column, new columns are added to display them as necessary.

You can use the setVisibleRowCount(int visibleRows) method of the JList class to set the number
of visible rows you would prefer to see in the list without a need to scroll. When you set the number of visible
rows to zero or less, the JList will decide the number of visible rows based on width/height of the field and
its layout orientation. You can set its layout orientation using its setLayoutOrientation(int orientation)
method, where orientation value could be one of the three constants defined in the JList class: JList.
VERTICAL, JList.HORIZONTAL_WRAP, and JList.VERTICAL_WRAP.

Chapter 2 ■ Swing ComponentS

135

You can configure the mode of selection for a JList using its setSelectionMode(int mode) method.
The mode value could be one of the following three values. The mode values are defined as constants in the
ListSelectionModel interface.

•	 SINGLE_SELECTION

•	 SINGLE_INTERVAL_SELECTION

•	 MUTIPLE_INTERVAL_SELECTION

In a single selection mode, you can only select one item at a time. If you change your selection, the
previously selected item will be deselected.

In a single interval selection mode, you can select multiple items. However, the items selected must
always be contiguous. Suppose you have ten items in a JList and you have selected the seventh item. Now
you can select the sixth item or the eighth item in the list, but not any other items. You can keep selecting
more contiguous items. You can use the combination of the Ctrl or Shift keys and the mouse to make
contiguous selections.

In a multiple interval section, you can select multiple items without any restrictions. You can use the
combination of the Ctrl or Shift keys and the mouse to make selections.

You can add a list selection listener to a JList, which will notify you when a selection is changed.
The valueChanged() method of ListSelectionListener is called when a selection is changed. This
method may also be called multiple times in the middle of one selection change. You need to use the
getValueIsAdjusting() method of the ListSelectionEvent object to make sure that selection changing is
finalized, as shown in following snippet of code:

myJList.addListSelectionListener((ListSelectionEvent e) -> {
 // Make sure selection change is final
 if (!e.getValueIsAdjusting()) {
 // The selection changed logic goes here
 }
});

Table 2-15 lists the commonly used methods of the JList class. Note that a JList does not have a direct
method to give you the size of the list (the number of choices in a JList). As every Swing component uses a
model, so does a JList. Its model is an instance of the JListModel interface. To know the size of the list of
choices of a JList, you need to call the getSize() method of its model, like so:

int size = myJList.getModel().getSize();

Chapter 2 ■ Swing ComponentS

136

Table 2-15. Commonly Used Methods of the JList Class

Method Description

void clearSelection() Clears the selection made in the JList.

void ensureIndexIsVisible(int index) Makes sure the item at the specified index is
visible. Note that to make an invisible item visible,
the JList must be added in a JScrollPane.

int getFirstVisibleIndex() Returns the smallest visible index. If there is no
visible item or list is empty, it returns –1.

int getLastVisibleIndex() Returns the largest visible index. If there is no
visible item or list is empty, it returns –1.

int getMaxSelectionIndex() Returns the largest selected index. Returns –1 if
there is no selection.

int getMinSelectionIndex() Returns the smallest selected index. Returns –1 if
there is no selection.

int getSelectedIndex() Returns the smallest selected index. If JList
selection mode is single selection, it returns the
selected index. Returns –1 if there is no selection.

int[] getSelectedIndices() Returns the indices of all selected items in an int
array. The array will have zero elements if there is
no selection.

E getSelectedValue() Returns the first selected item. If the JList
has single selection mode, it is the value of the
selected item. Returns null if there is no selection
in the JList.

List<E> getSelectedValuesList() Returns a list of all the selected items in
increasing order based on their indices in the
list. It there is no selected item, an empty list is
returned.

boolean isSelectedIndex(int index) Returns true if the specified index is selected.
Otherwise, it returns false.

boolean isSelectionEmpty() Returns true if there is no selection in the JList.
Otherwise, it returns false.

void setListData(E[] listData)
void setListData(Vector<?> listData)

Sets the new list of choices in the JList.

void setSelectedIndex(int index) Selects an item at the specified index.

void setSelectedIndices(int[] indices) Selects items at the indices in specified array.

void setSelectedValue(Object item, boolean
shouldScroll)

Selects the specified item if it exists in the list.
Scrolls to the item to make it visible if the second
argument is true.

Chapter 2 ■ Swing ComponentS

137

JSpinner
A JSpinner component combines the benefits of a JFormattedTextField and an editable JComboBox. It lets
you set a list of choices in a JComboBox, and at the same time, you can also apply a format to the displayed
value. It shows only one value at a time from the list of choices. It lets you enter a new value. The name
“spinner” comes from the fact that it lets you spin up or down through the list of choices by using up and
down arrow buttons. One thing that is special about the list of choices in a JSpinner is that it must be an
ordered list. Figure 2-14 shows three JSpinners that are used to select a number, a date, and a season value.

Figure 2-14. JSpinner components in action

Since a JSpinner provides the spinning capability to a variety of list of choices, it depends heavily on its
model for its creation. In fact, you must provide a model for the JSpinner in its constructor unless you want
a trivial JSpinner with just a list of integers. It supports three different kinds of ordered lists of choices: a list
of numbers, a list of dates, and a list of any other objects. It provides three classes to create a model of three
different kinds of lists:

•	 SpinnerNumberModel

•	 SpinnerDateModel

•	 SpinnerListModel

A spinner model is an instance of the SpinnerModel interface. It defines the getValue(), setValue(),
getPreviousValue(), and getNextValue() methods to work with values in the JSpinner. All these methods
work with objects of the Object class.

The SpinnerNumberModel class provides a model for a JSpinner that lets you spin through an ordered
list of numbers. You need to specify the minimum, maximum, and current values in the list. You can also
specify the step value that is used to step through the number list when you use up/down buttons of a
JSpinner. The following snippet of code creates a JSpinner with a list of numbers from 1 to 10. It lets you
spin through the list in steps of 1. The current value for the field is set to 5. The SpinnerNumberModel class
also has methods that let you get/set different values for the spinner model after you create it.

int minValue = 1;
int maxValue = 10;
int currentValue = 5;
int steps = 1;
SpinnerNumberModel nModel = new SpinnerNumberModel(currentValue, minValue, maxValue, steps);
JSpinner numberSpinner = new JSpinner(nModel);

Chapter 2 ■ Swing ComponentS

138

The SpinnerDateModel class provides a model for a JSpinner that lets you spin through an ordered
list of dates. You need to specify the start date, the end date, the current value, and the step. The following
snippet of code creates a JSpinner to spin through a list of dates from January 1, 1950 to December 31, 2050
in steps of one day at a time. The current system date is set as the current value for the field.

Calendar calendar = Calendar.getInstance();
calendar.set(1950, 1, 1);
Date minValue = calendar.getTime();
calendar.set(2050, 12, 31);
Date maxValue = calendar.getTime();
Date currentValue = new Date();
int steps = Calendar.DAY_OF_MONTH; // Must be a Calendar field
SpinnerDateModel dModel = new SpinnerDateModel(currentValue, minValue, maxValue, steps);
JSpinner dateSpinner = new JSpinner(dModel);

Note that the date value will be displayed in the default locale format. The step value is used when you
use the getNextValue() method on the model. A JSpinner with a list of dates lets you spin through any of
the displayed date fields by highlighting a part of the date field and using the up/down button. Suppose the
date format that your JSpinner uses is mm/dd/yyyy. You can place your cursor in the year part of the field
(yyyy) and use up/down buttons to step through the list based on the year.

The SpinnerListModel class provides a model for a JSpinner that lets you spin through an ordered list
of objects. You just specify an array of objects or a List object, and the JSpinner will let you spin through the
list as it appears in the array or the List. The returned String from the toString() method of the object in
the list is displayed as the value in the JSpinner. The following snippet of code creates a JSpinner to display
a list of four seasons:

String[] seasons = new String[] {"Spring", "Summer", "Fall", "Winter"};
SpinnerListModel sModel = new SpinnerListModel(seasons);
JSpinner listSpinner = new JSpinner(sModel);

A JSpinner uses an editor object to display the current value. It has the following three static inner
classes to display three different kinds of ordered lists:

•	 JSpinner.NumberEditor

•	 JSpinner.DateEditor

•	 JSpinner.ListEditor

If you want to display a number or a date in a specific format, you need to set a new editor for the
JSpinner. The editor classes for the number and date editors let you specify the formats. The following
snippet of code sets the number format as “00”, so numbers 1 to 10 are displayed as 01, 02, 03...10. It sets
the date format to mm/dd/yyyy.

// Set the number format to "00"
JSpinner.NumberEditor nEditor = new JSpinner.NumberEditor(numberSpinner, "00");
numberSpinner.setEditor(nEditor);

// Set the date format to mm/dd/yyyy
JSpinner.DateEditor dEditor = new JSpinner.DateEditor(dateSpinner, "mm/dd/yyyy");
dateSpinner.setEditor(dEditor);

Chapter 2 ■ Swing ComponentS

139

 ■ Tip You can use the getValue() method defined in a JSpinner or SpinnerModel to get the current value
in the JSpinner, as an object. SpinnerNumberModel and SpinnerDateModel define the getNumber() and
getDate() methods that return the Number and Date objects, respectively.

JScrollBar
If you want to view a component that is bigger than the available space, you want to use a JScrollBar or a
JScrollPane component. I discuss the JScrollPane in the next section. A JScrollBar has an orientation
property that determines whether it is displayed horizontally or vertically. Figure 2-15 depicts a horizontal
JScrollBar.

Figure 2-15. A horizontal JScrollBar

Table 2-16. Commonly Used Properties of a JScrollBar and Methods to Get/Set Those Properties

Property Method Description

Orientation getOrientation()
setOrientation()

Determines whether the JScrollBar is horizontal or
vertical. Its value could be one of the two constants,
HORIZONTAL or VERTICAL, which are defined in the
JScrollBar class.

Value getValue()
setValue()

The position of the knob is its value. Initially,
it is set to zero.

Extent getVisibleAmount()
setVisibleAmount()

It is the size of the knob. It is expressed in proportion
to the size of the track. For example, if the track size
represents 150 and you set the extent to 25, the knob size
will be one sixth of the track size. Its default value is 10.

Minimum Value getMinimum()
setMinimum()

The minimum value that it represents. The default value
is zero.

Maximum Value getMaximum()
setMaximum()

The maximum value that it represents. The default value
is 100.

A JScrollBar is made up of four parts: two arrow buttons (one at each end), a knob (also known as
a thumb), and a track. When the arrow button is clicked, the knob moves on the track towards the arrow
button. You can drag the knob towards either end with the help of a mouse. You can also move the knob by
clicking on the track.

You can customize various properties of a JScrollBar by passing their values in its constructor
or by setting them after you create it. Table 2-16 lists some commonly used properties and methods to
manipulate them.

Chapter 2 ■ Swing ComponentS

140

The following snippet of code demonstrates how to create a JScrollBar with different properties:

// Create a JScrollBar with all default properties. Its orientation
// will be vertical, current value 0, extent 10, minimum 0, and maximum 100
JScrollBar sb1 = new JScrollBar();

// Create a horizontal JScrollBar with default values
JScrollBar sb2 = new JScrollBar(JScrollBar.HORIZONTAL);

// Create a horizontal JScrollBar with a current value of 50,
// extent 15, minimum 1 and maximum 150
JScrollBar sb3 = new JScrollBar(JScrollBar.HORIZONTAL, 50, 15, 1, 150);

The current value of a JScrollBar can be set only between its minimum and (maximum – extent)
value. A JScrollBar by itself does not add any value to a GUI. All it has are some properties. You can add an
AdjustmentListener to a JScrollBar that is notified when its value changes.

// Add an AdjustmentListener to a JScrollBar named myScrollBar
myScrollBar.addAdjustmentListener((AdjustmentEvent e) -> {
 if (!e.getValueIsAdjusting()) {
 // The logic for value changed goes here
 }
});

It is not simple to use a JScrollBar to scroll through a component that is bigger in size than its display
area. You need to write a significant amount of code to achieve that task if you ever want to use a JScrollBar
alone. A JScrollPane makes this task easier. It takes care of the scrolling without writing any extra code.

JScrollPane
A JScrollPane is a container that can hold and display up to nine components, as shown in Figure 2-16. It
uses its own layout manager that is an object of the class JScrollPaneLayout.

Figure 2-16. The components of a JScrollPane

Chapter 2 ■ Swing ComponentS

141

The nine components that a JScrollPane manages are two JScrollBars, a viewport, a row header, a
column header, and four corners.

•	 Two JScrollBars: In the diagram, the two scrollbars are named HSB and VSB. They
are two instances of the JScrollBar class: one horizontal and one vertical. A
JScrollPane will create and manage the two JScrollBars for you. You do not need
to write any code for that. The only things you need to indicate are whether you want
them or not, and when you want them to appear.

•	 A viewport: The viewport is the area where a JScrollPane displays the scrollable
component such as a JTextArea. You can think of a viewport as a peephole through
which you view the component by scrolling up/down and right/left using scrollbars.
A viewport is a Swing component. An object of the JViewport class represents a
viewport component. A JViewport is simply a wrapper for a Swing component
to implement a scrollable view of that component. The JScrollPane creates a
JViewport object for your component and uses it internally.

•	 Row and column headers: The row header is abbreviated as RH in the diagram. Row/
column headers are two optional viewports you can use in a JScrollPane. When you
use the horizontal scrollbar, the column header scrolls with it horizontally. When
you use the vertical scrollbar, the row header scrolls with it vertically. A good use
of row/column headers is to display horizontal and vertical rulers for a picture or
drawing in the viewport. Typically, you do not use row/column headers.

•	 Four corners: Four corners can exist in a JScrollPane. A corner exists when two
components meet vertically. The four corners are named C1, C2, C3, and C4 in the
diagram. These are not the names given to the corners by the JScrollPane. I gave
them a name for the discussion purpose. The corner C1 exists if you add a row
header and a column header. The corner C2 exists if you add a column header and
the vertical scrollbar is visible. The corner C3 exists if you add a row header and the
horizontal scrollbar is visible. The corner C4 exists if both horizontal and vertical
scrollbars are visible. You can add any Swing component as a corner component.
The only limitation is that you cannot add the same component in more than one
corner. Note that adding a corner component does not guarantee that it will be
visible. A corner component will be visible in a corner only if that corner exists
according to the rules discussed. For example, if you add a corner component for
the C4 corner, it will be visible only if both scrollbars, horizontal and vertical, are
visible. If either or both scrollbars are not visible, the corner C4 does not exist and
the component that you add for that corner will not be visible.

A scrollbar in a direction (horizontal or vertical) is needed to view the component in the viewport when
the component’s size is bigger than the JScrollPane size. A JScrollPane lets you set a scrollbar policy for
the vertical and horizontal scrollbars. A scrollbar policy is a rule to control when it should appear. You can
set one of the following three scrollbar policies:

•	 Show as needed: It means that a JScrollPane should show the scrollbar when it is
needed. A scrollbar is needed when the component in the viewport in a direction,
horizontal or vertical, is bigger than its display area. It is up to the JScrollPane
to decide when a scrollbar is needed, and if it is needed, it will make the scrollbar
visible. Otherwise, it will make the scrollbar invisible.

•	 Show always: It means that a JScrollPane should always show the scrollbar.

•	 Show never: It means that a JScrollPane should never show the scrollbar.

Chapter 2 ■ Swing ComponentS

142

The scrollbar polices are defined by six constants in the ScrollPaneConstants interface. Three
constants are for a vertical scrollbar and three are for a horizontal scrollbar. The JScrollPane class
implements the ScrollPaneConstants interface. So you can also access these constants using the
JScrollPane class. The constants that define scrollbar policies are XXX_SCROLLBAR_AS_NEEDED, XXX_
SCROLLBAR_ALWAYS, and XXX_SCROLLBAR_NEVER, where you need to replace XXX with VERTICAL or HORIZONTAL,
depending on which scrollbar’s policy you are referring to. The default value of the scrollbar policy for both
vertical and horizontal scrollbars is “Show as needed”. The following snippet of code demonstrates how to
create a JScrollPane with different options:

// Create a JScrollPane with no component as its viewport and
// with default scrollbars policy as "As Needed"
JScrollPane sp1 = new JScrollPane();

// Create a JScrollPane with a JTextArea as its viewport and
// with default scrollbars policy as "As Needed"
JTextArea description = new JTextArea(10, 60);
JScrollPane sp2 = new JScrollPane(description);

// Create a JScrollPane with a JTextArea as its viewport and
// both scrollbars policy set to "show always"
JTextArea comments = new JTextArea(10, 60);
JScrollPane sp3 = new JScrollPane(comments,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

As noted before, when you add a component to a JScrollPane, you add the JScrollPane to the
container, not the component. The viewport of a JScrollPane keeps the reference to the component you
add to the JScrollPane. You get the reference of the component in a JScrollPane by querying its viewport
as shown:

// Get the reference to the viewport of the JScrollPane sp3
JViewport vp = sp3.getViewport();

// Get the reference to the comments JTextArea added
// to the JScrollPane, sp3, using its viewport reference
JTextArea comments1 = (JTextArea)vp.getView();

If you create a JScrollPane without specifying the component for its viewport, you can add a
component to its viewport later using its setViewportView() method as shown:

// Set a JTextPane as the viewport component for sp3
sp3.setViewportView(new JTextPane());

JProgressBar
A JProgressBar is used to display the progress of a task. It has an orientation, which can be horizontal or
vertical. It has three values associated with it: the current value, the minimum value, and the maximum
value. You can create a progress bar as shown:

// Create a horizontal progress bar with current, minimum, and
// maximum values set to 0, 0, and 100, respectively.
JProgressBar hpBar1 = new JProgressBar();

Chapter 2 ■ Swing ComponentS

143

// Create a horizontal progress bar with current, minimum, and
// maximum values set to 20, 20, and 200, respectively.
JProgressBar hpbar2 = new JProgressBar(SwingConstants.HORIZONTAL, 20, 200);

// Create a vertical progress bar with current, minimum, and
// maximum values set to 5, 5 and 50, respectively.
JProgressBar vpBar1 = new JProgressBar(SwingConstants.VERTICAL, 5, 50);

As the task progresses, you need to set the current value for the progress bar using its setValue(int
value) method to indicate the progress. The component will update itself visually to reflect the new value.
The progress is reflected differently depending on the look and feel of the application. Sometimes a solid bar
is used is show the progress and sometimes solid rectangles are used to show the progress. You can use the
getValue() method to get the current value.

You can also display a string that describes the progress bar’s current value using the
setStringPainted() method. Passing true to this method displays the string value and passing false
does not display the string value. The string to be painted is specified by calling the setString(String s)
method.

Sometimes the current value of the progress of a task is unknown or indeterminate. In such cases, you
cannot set the current value for the progress bar. Rather, you can indicate to the user that the task’s execution
is in progress. You can set a progress bar in an indeterminate mode using its setIndeterminate() method.
Passing true to this method places the progress bar in an indeterminate mode and passing false places
the progress bar in a determinate mode. A JProgressBar component displays an animation to indicate its
indeterminate state.

Figure 2-17 shows a JFrame with two JProgressBars. The horizontal JProgressBar is in determinate
mode and it displays a string to describe the progress. The vertical JProgressBar has been placed in an
indeterminate mode; note the solid rectangular bar in the middle that is displayed as an animation.

Figure 2-17. JProgressBars in action

JSlider
A JSlider lets you select a value graphically from a set of values between two integers by sliding a knob
along a track. It has four important properties: an orientation, a minimum value, a maximum value, and
a current value. The orientation determines whether it is displayed horizontally or vertically. You can
use SwingConstants.VERTICAL and SwingConstants.HORIZONTAL as valid values for its orientation. The
following snippet of code creates a horizontal JSlider with the minimum value of 0, the maximum value of
10, and the current value set to 5:

JSlider points = new JSlider(0, 10, 5);

Chapter 2 ■ Swing ComponentS

144

You can get the current value of a JSlider using its getValue() method. Typically, the user sets the
current value of a JSlider by sliding the knob right/left for the horizontal JSlider and up/down for the
vertical one. You can also set its value programmatically by using its setValue(int value) method.

You can display the minor and major ticks on a JSlider. You need to set the interval at which these ticks
need to be displayed and call its method to enable the tick paintings, as shown:

points.setMinorTickSpacing(1);
points.setMajorTickSpacing(2);
points.setPaintTicks(true);

You can also display the labels showing values along the track in a JSlider. You can display standard
labels or custom labels. The standard labels will display the integer values along the track. You can call its
setPaintLabels(true) method to display the integer values at major tick spacing. Figure 2-18 shows a
JSlider with ticks and standard labels.

Figure 2-19. A JSlider with custom labels

Figure 2-18. A JSlider component with minimum = 0, maximum = 10, current value = 5, minor tick spacing = 1,
major tick spacing = 2, tick painting enabled, and showing standard labels

JSlider also lets you set custom labels. A label on a JSlider is displayed using a JLabel component.
You need to create a Hashtable with value-label pairs and use its setLabelTable() method to set the
labels. A value-label pair consists of an Integer-JLabel pair. The following snippet of code sets the label
Poor for value 0, Average for value 5, and Excellent for value 10. Setting a label table does not display the
labels. You must call the setPaintLabels(true) method to display them. Figure 2-19 shows a JSlider with
custom labels produced by the following snippet of code:

// Create the value-label pairs in a Hashtable
Hashtable labelTable = new Hashtable();
labelTable.put(new Integer(0), new JLabel("Poor"));
labelTable.put(new Integer(5), new JLabel("Average"));
labelTable.put(new Integer(10), new JLabel("Excellent"));

// Set the labels for the JSlider and make them visible
points.setLabelTable(labelTable);
points.setPaintLabels(true);

Chapter 2 ■ Swing ComponentS

145

JSeparator
A JSeparator is a handy component when you want to add a separator between two components or two
groups of components. Typically, a JSeparator is used in a menu to separate groups of related menu items.
You can create a horizontal or a vertical JSeparator by specifying its orientation. You can use it anywhere
you would use a Swing component.

// Create a horizontal separator
JSeparator hs = new JSeparator(); // By default, the type is horizontal

// Create a vertical separator
JSeparator vs = new JSeparator(SwingConstants.VERTICAL);

A JSeparator will extend itself to fill the size provided by the layout manager. You can use the
setOrientation() and getOrientation() methods to set and get the orientation of the JSeparator.

Menus
A menu component is used to provide a list of actions to the user in a compact form. You can also provide
a list of actions by using a group of JButtons, where each JButton represents an action. It is a matter of
preference to use a menu or a group of JButtons to present a list of actions. However, there is a noticeable
advantage to using a menu; it uses much less space on the screen compared to a group of JButtons. A menu
uses less space by folding (or nesting) a group of options under another option. For example, if you have
used a file editor, the options such as New, Open, Save, and Print are nested under a top-level File menu
option. A user needs to click the File menu to see the list of options that are available under it. Typically, in
case of a group of JButtons, all JButtons are visible to the user all the time, and it is easy for users to know
what actions are available. Therefore, there is a little tradeoff between the amount of space and usability
when you decide to use a menu or JButtons.

There is another kind of menu called a popup menu. It does not take any space on the screen at all.
Usually, it is displayed when the user clicks the right mouse button. It disappears as soon as the user makes a
choice or clicks the mouse outside the displayed popup menu area. It is a super compact menu component.
However, it makes it difficult for the user to know that any options are available. Sometimes, a text message
is displayed on the screen stating that the user needs to right-click to view the list of available options. An
object of the JPopupMenu class represents a popup menu in Swing. Now let’s see menus in action.

Creating and adding a menu to a JFrame is a multistep process. The following steps describe the process
in detail.

Create an object of the JMenuBar class and add it to a JFrame using its setJMenuBar() method. A JMenuBar
is an empty container that will hold a list of menu options, and each option in a JMenuBar represents a list of
options.

// Create a JMenuBar and set it to a JFrame
JMenuBar menuBar = new JMenuBar();
myFrame.setJMenuBar(menuBar);

At this point, you have an empty JMenuBar associated with a JFrame. Now, you need to add the list of
options, also called top-level menu options, to the JMenuBar. An object of the JMenu class represents a list of
options. A JMenu is also an empty container that can hold menu items that represent the options. You will need
to add menu options to a JMenu. A JMenu does not always display the options that are added to it. Rather, it
displays them when the user selects the JMenu. This is where you get the compactness when you use menus.
When you select a JMenu, it pops up a window that displays the options contained in it. Once you select an
option from the popup window or click somewhere outside the JMenu, the popup window disappears.

Chapter 2 ■ Swing ComponentS

146

// Create two JMenu (or two top-level menu options):
// File and Help, and add them to the JMenuBar
JMenu fileMenu = new JMenu("File");
JMenu helpMenu = new JMenu("Help");
menuBar.add(fileMenu);
menuBar.add(helpMenu);

At this point, your JFrame will display a menu bar at its top area with two options called File and Help,
as shown in Figure 2-20. If you select or click File or Help, nothing happens at this point.

Figure 2-21. A JMenu file with three options

Figure 2-20. A JMenuBar with two JMenu options

Let’s add some options to your JMenu. You want to display three menu options under File and they are
New, Open, and Exit. You want to add a separator (a horizontal line as a divider) between the Open and Exit
options. An object of the JMenuItem class represents an option inside a JMenu.

// Create menu items
JMenuItem newMenuItem = new JMenuItem("New");
JMenuItem openMenuItem = new JMenuItem("Open");
JMenuItem exitMenuItem = new JMenuItem("Exit");

// Add menu items and a separator to the menu
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);

At this point, you have added three JMenuItems to the File menu. When you click the File menu, it will
display the options shown in Figure 2-21. You can scroll through options under the File menu by using
down/up arrow key on the keyboard or select one of them by using the mouse. When you select any one of
the options under the File menu, nothing happens because you have not added any actions to them.

Chapter 2 ■ Swing ComponentS

147

You may want to have two suboptions under a menu item such as under the New option. That is, the
user can create two different things, Policy and Claim, and you want those two options available under the
New option. You not trying to nest options within an option. The File menu is an instance of the JMenu class,
which represents a list of options, and you want to add a New menu that should also display a list of options.
You can do this easily. The only thing you need to understand is that a JMenu represents a list of options,
whereas a JMenuItem represents only one option. You can add a JMenuItem or JMenu to a JMenu. To achieve
this, you need to make a little modification to the snippet of code shown earlier. Now the New menu will be
an instance of the JMenu class, not the JMenuItem class. You will add two JMenuItems to the New menu. The
following snippet of code will do the job:

// New is a JMenu – a list of options
JMenu newMenu = new JMenu("New");
JMenuItem policyMenuItem = new JMenuItem("Policy");
JMenuItem claimMenuItem = new JMenuItem("Claim");
newMenu.add(policyMenuItem);
newMenu.add(claimMenuItem);

JMenuItem openMenuItem = new JMenuItem("Open");
JMenuItem exitMenuItem = new JMenuItem("Exit");

fileMenu.add(newMenu);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);

Now, the menu is displayed as shown in Figure 2-22. When you select the File menu, the New menu
displays an arrow next to it indicating that it has submenus. When you select the New menu, it displays the
two submenus labeled Policy and Claim.

Figure 2-22. Nesting menus

There is no limit on the number of levels a menu can be nested. However, more than two levels of
nesting is not considered good GUI practice because the user would have to drill down several levels just to
get to the available options.

The final piece to make menus work is to add actions to the menu items. You can add action listeners
to a JMenuItem. The associated action listener is notified when the user selects the JMenuItem. The following
snippet of code adds an action listener to the Exit menu item that will exit the application:

// Add an action listener to the Exit menu item
exitMenuItem.addActionListener(e -> System.exit(0));

Chapter 2 ■ Swing ComponentS

148

Now you have added an action to the Exit menu item. If you select it, the application will exit. Similarly,
you can add action listeners to other menu items to perform actions when they are selected.

You can enable/disable a menu using the setEnabled() method. Although it is possible to make a
menu visible/invisible, it is not good practice to do it. It makes it hard for a user to learn an application. If
you keep all menu options available (either in an enabled or disabled state) all the time, the user will be
able to work with the application faster by knowing where the menu options are located. If you make menu
options visible/invisible, the locations of the menu options keep changing and the user will have to pay more
attention to the location of menu options each time he wants to use them.

You can also assign shortcuts to menu options. You can use the setMnemonic() method to add a
shortcut to a menu item by specifying a shortcut key. You can invoke the action represented by that menu
item by pressing a combination of the Alt key and the shortcut key. Note that the menu item must be visible
for its mnemonic to work. For example, if you have a mnemonic (the N key) set for a New menu option,
you must select the File menu so the New menu option is visible, and press Alt+N to invoke the action
represented by the New menu item.

If you want to invoke the associated action to a menu item irrespective of whether it is visible or not, you
need to set its accelerator key by using the setAccelerator() method. The following snippet of code sets the
E key as a mnemonic and Ctrl+E as an accelerator for the Exit menu option:

// Set E as mnemonic for Exit menu and Ctrl+E as its accelerator
exitMenuItem.setMnemonic(KeyEvent.VK_E);
KeyStroke cntrlEKey = KeyStroke.getKeyStroke(KeyEvent.VK_E, ActionEvent.CTRL_MASK);
exitMenuItem.setAccelerator(cntrlEKey);

Now you can invoke the Exit menu option in two ways: you can press Alt+E key combination when it is
visible, or you can press Ctrl+E keys combination any time.

You can use a popup menu, which is displayed on demand. The creation of a popup menu is similar to
a JMenu. You need to create an instance of the JPopupMenu class, which represents an empty popup menu
container, and then add instances of JMenuItem to it. You can also have nested menus in a popup menu, as
you had in a JMenu.

// Create a popup menu
JPopupMenu popupMenu = new JPopupMenu();

// Create three menu items for our popup menu
JMenuItem popup1 = new JMenuItem("Poupup1");
JMenuItem popup2 = new JMenuItem("Poupup2");
JMenuItem popup3 = new JMenuItem("Poupup3");

// Add menu items to the popup menu
popupMenu.add(popup1);
popupMenu.add(popup2);
popupMenu.add(popup3);

Since a popup menu does not have a fixed location and it is displayed on demand, you need to know
where to display it and when to display it. You need to use its show() method to display it at a location. The
show() method takes three arguments: the invoker component whose space will be used to display the
popup menu, plus x and y coordinates on the invoker component where it will be displayed.

// Display the popup menu
popupMenu.show(myComponent, xPos, yPos);

Chapter 2 ■ Swing ComponentS

149

Typically, you display a popup menu when the user clicks the right mouse button. Different look and
feel options use a different key event to display the popup menu. For example, one look and feel scenario
displays it when a right mouse button is released, whereas another displays it when a right mouse button
is pressed. Swing makes this job easy for you to display the popup menu by providing a isPopupTrigger()
method in the MouseEvent class. In a mouse pressed or released event, you need to call this method. If this
method returns true, display the popup menu. The following snippet of code associates a mouse listener to
a component and displays the popup menu:

// Create a mouse listener
MouseListener ml = new MouseAdapter() {
 @Override
 public void mousePressed(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
};

// Add a mouse listener to myComponent
myComponent.addMouseListener(ml);

Whenever the user right-clicks on myComponent, a popup menu will appear. Note that you need to add
the same code in both mousePressed() and mouseReleased() methods. It is decided by the look and feel
which event should display the popup menu.

Listing 2-8 contains a complete program showing how to use menus. The program is long. It does the
repetitive work of creating and adding menu items and adding action listeners to them.

Listing 2-8. Working with Menus and Popup Menus

// JMenuFrame.java
package com.jdojo.swing.component;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JLabel;
import java.awt.event.ActionListener;
import javax.swing.JTextArea;
import java.awt.BorderLayout;
import java.awt.event.KeyEvent;
import javax.swing.KeyStroke;
import javax.swing.JPopupMenu;
import java.awt.event.MouseAdapter;

Chapter 2 ■ Swing ComponentS

150

import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import javax.swing.JScrollPane;

public class JMenuFrame extends JFrame {
 JLabel msgLabel = new JLabel("Right click to see a popup menu");
 JTextArea msgText = new JTextArea(10, 60);
 JPopupMenu popupMenu = new JPopupMenu();

 public JMenuFrame(String title) {
 super(title);
 initFrame();
 }

 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();

 // Add the message label and text area
 contentPane.add(new JScrollPane(msgText), BorderLayout.CENTER);
 contentPane.add(msgLabel, BorderLayout.SOUTH);

 // Set the menu bar for the frame
 JMenuBar menuBar = getCustomMenuBar();
 this.setJMenuBar(menuBar);

 // Create a popup menu and add a mouse listener to show it
 createPopupMenu();
 }

 private JMenuBar getCustomMenuBar() {
 JMenuBar menuBar = new JMenuBar();

 // Get the File and Help menus
 JMenu fileMenu = getFileMenu();
 JMenu helpMenu = getHelpMenu();

 // Add the File and Help menus to the menu bar
 menuBar.add(fileMenu);
 menuBar.add(helpMenu);

 return menuBar;
 }

 private JMenu getFileMenu() {
 JMenu fileMenu = new JMenu("File");

 // Set Alt-F as mnemonic for the File menu
 fileMenu.setMnemonic(KeyEvent.VK_F);

Chapter 2 ■ Swing ComponentS

151

 // Prepare a New Menu item. It will have submenus
 JMenu newMenu = getNewMenu();
 fileMenu.add(newMenu);

 JMenuItem openMenuItem = new JMenuItem("Open", KeyEvent.VK_O);
 JMenuItem exitMenuItem = new JMenuItem("Exit", KeyEvent.VK_E);

 fileMenu.add(openMenuItem);

 // You can add a JSeparator or just call the convenience
 // method addSeparator() on fileMenu. You can replace the
 // following statement with fileMenu.add(new JSeparator());
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);

 // Add an ActionListener to the Exit menu item
 exitMenuItem.addActionListener(e -> System.exit(0));

 return fileMenu;
 }

 private JMenu getNewMenu() {
 // New menu will have two sub menus - Policy and Claim
 JMenu newMenu = new JMenu("New");

 // Add submenus to New menu
 JMenuItem policyMenuItem = new JMenuItem("Policy", KeyEvent.VK_P);
 JMenuItem claimMenuItem = new JMenuItem("Claim", KeyEvent.VK_C);
 newMenu.add(policyMenuItem);
 newMenu.add(claimMenuItem);

 return newMenu;
 }

 private JMenu getHelpMenu() {
 JMenu helpMenu = new JMenu("Help");
 helpMenu.setMnemonic(KeyEvent.VK_H);

 JMenuItem indexMenuItem = new JMenuItem("Index", KeyEvent.VK_I);
 JMenuItem aboutMenuItem = new JMenuItem("About", KeyEvent.VK_A);

 // Set F1 as the accelerator key for the Index menu item
 KeyStroke f1Key = KeyStroke.getKeyStroke(KeyEvent.VK_F1, 0);
 indexMenuItem.setAccelerator(f1Key);

 helpMenu.add(indexMenuItem);
 helpMenu.addSeparator();
 helpMenu.add(aboutMenuItem);

Chapter 2 ■ Swing ComponentS

152

 // Add an action listener to the index menu item
 indexMenuItem.addActionListener(e ->
 msgText.append("You have selected Help >> Index menu item.\n"));

 return helpMenu;
 }

 private void createPopupMenu() {
 // Create a popup menu and add a mouse listener to the frame,
 // so a popup menu is displayed when the user clicks a right mouse button
 JMenuItem popup1 = new JMenuItem("Popup1");
 JMenuItem popup2 = new JMenuItem("Popup2");
 JMenuItem popup3 = new JMenuItem("Popup3");

 // Create an action listener
 ActionListener al = e -> {
 JMenuItem menuItem = (JMenuItem)e.getSource();
 String menuText = menuItem.getText();
 String msg = "You clicked " + menuText + " menu item.\n";
 msgText.append(msg);
 };

 // Add the same action listener to all popup menu items
 popup1.addActionListener(al);
 popup2.addActionListener(al);
 popup3.addActionListener(al);

 // Add menu items to popup menu
 popupMenu.add(popup1);
 popupMenu.add(popup2);
 popupMenu.add(popup3);

 // Create a mouse listener to show a popup menu
 MouseListener ml = new MouseAdapter() {
 @Override
 public void mousePressed(MouseEvent e) {
 displayPopupMenu(e);
 }

 @Override
 public void mouseReleased(MouseEvent e) {
 displayPopupMenu(e);
 }
 };

 // Add a mouse listener to the msg text and label
 msgText.addMouseListener(ml);
 msgLabel.addMouseListener(ml);
 }

Chapter 2 ■ Swing ComponentS

153

 private void displayPopupMenu(MouseEvent e) {
 // Make sure this mouse event is supposed to show the popup
 // menu. Different platforms show the popup menu in different mouse events
 if (e.isPopupTrigger()) {
 this.popupMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }

 // Display the CustomFrame
 public static void main(String[] args) {
 JMenuFrame frame = new JMenuFrame("JMenu and JPopupMenu Test");
 frame.pack();
 frame.setVisible(true);
 }
}

You can also use JRadioButtonMenuItem and JCheckBoxMenuItem as menu items in a menu. As the
names suggest, they are displayed as radio buttons and checkboxes, and work the same as radio buttons
and checkboxes. You can add any swing component to a JMenu. To use radio button-type menu items, you
need to group multiple JRadioButtonMenuItem components into a button group so they represent exclusive
choices. To handle the radio button selection change, you can add an ActionListener or ItemListener to the
JRadioButtonMenuItem. To handle a change of state in JCheckBoxMenuItem, you need to use an ItemListener.

 ■ Tip i’ll finally reveal the secret of menus in Swing. a menu item in Swing is a button. aha! You were
working with buttons and calling them menus. Yes, that is correct. a JMenuBar and a JPopupMenu are simply
containers with a BoxLayout. go ahead and play with these containers by setting their properties and adding
different Swing components to them. a JMenuItem is a simple button. a JMenu is a button and it has an
associated container that is displayed when you select it.

JToolBar
A toolbar is a group of buttons that provides commonly used actions to the user in a JFrame. Typically, you
provide a toolbar along with a menu. The toolbar contains small buttons with small icons. Typically, it only
contains a subset of options available in the menu.

An object of the JToolBar class represents a toolbar. It acts as a container for the toolbar buttons. It is a
little smarter container than other containers such as a JPanel. It can be moved around at runtime. It can be
floatable. If it is floatable, it displays a handle that you can use to move it around. You can also use the handle
to pop it out in a separate window. The following snippet of code creates some toolbar components:

// Create a horizontal JToolBar
JToolBar toolBar = new JToolBar();

// Create a horizontal JToolBar with a title. The title is
// displayed as a window title, when it floats in a separate window.
JToolBar toolBarWithTitle = new JToolBar("My ToolBar Title");

// Create a Vertical toolbar
JToolBar vToolBar = new JToolBar(JToolBar.VERTICAL);

Chapter 2 ■ Swing ComponentS

154

Let’s add some buttons to the toolbar. The buttons in a toolbar need to be smaller in size than usual
buttons. You make a JButton smaller in size by setting its margin to zero. You should also add a tooltip to
each toolbar button to give a quick hint to the user about its usage.

// Create a button for the toolbar
JButton newButton = new JButton("New");

// Set the margins to 0 to make the button smaller
newButton.setMargin(new Insets(0, 0, 0, 0));

// Set a tooltip for the button
newButton.setToolTipText("Add a new policy");

// Add the New button to the toolbar
toolBar.add(newButton);

Typically, you display only small icons in a toolbar button. You can use another constructor of the
JButton that only accepts an Icon object as an argument. Finally, you need to add action listeners to the
buttons, as you have been adding to other JButtons. When a user clicks a button in a toolbar, the action
listener is notified, and the specified action is performed.

You can set the toolbar floatable/non-floatable using its setFloatable(boolean floatable) method.
By default, a toolbar is floatable. Its setRollover(boolean rollOver) method lets you specify if you want to
draw the border of the toolbar buttons only when the mouse hovers on them.

A toolbar should be added to the north, south, east, or west region in a BorderLayout to make it nicer to
move the toolbar around in different regions. Listing 2-9 displays a JToolBar in a JFrame. Figure 2-23 shows
a JFrame with a toolbar in its north region. Figure 2-24 shows the same JFrame with the toolbar floating in a
separate window.

Listing 2-9. Using a JToolBar in a JFrame

// JToolBarFrame.java
package com.jdojo.swing.component;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JToolBar;
import javax.swing.JButton;
import java.awt.Insets;
import java.awt.BorderLayout;
import javax.swing.JTextArea;
import javax.swing.JScrollPane;

public class JToolBarFrame extends JFrame {
 JToolBar toolBar = new JToolBar("My JToolBar");
 JTextArea msgText = new JTextArea(3, 45);

 public JToolBarFrame(String title) {
 super(title);
 initFrame();
 }

Chapter 2 ■ Swing ComponentS

155

 // Initialize the JFrame and add components to it
 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 prepareToolBar();

 // Add the toolbar in the north and a JTextArea in the center
 contentPane.add(toolBar, BorderLayout.NORTH);
 contentPane.add(new JScrollPane(msgText), BorderLayout.CENTER);
 msgText.append("Move the toolbar around using its" +
 "handle at the left end");
 }

 private void prepareToolBar() {
 Insets zeroInset = new Insets(0, 0, 0, 0);

 JButton newButton = new JButton("New");
 newButton.setMargin(zeroInset);
 newButton.setToolTipText("Add a new policy");

 JButton openButton = new JButton("Open");
 openButton.setMargin(zeroInset);
 openButton.setToolTipText("Open a policy");

 JButton exitButton = new JButton("Exit");
 exitButton.setMargin(zeroInset);
 exitButton.setToolTipText("Exit the application");

 // Add an action listener to the Exit toolbar button
 exitButton.addActionListener(e -> System.exit(0));

 toolBar.add(newButton);
 toolBar.add(openButton);
 toolBar.addSeparator();
 toolBar.add(exitButton);

 toolBar.setRollover(true);
 }

 // Display the frame
 public static void main(String[] args) {
 JToolBarFrame frame = new JToolBarFrame("JToolBar Test");
 frame.pack();
 frame.setVisible(true);
 }
}

Chapter 2 ■ Swing ComponentS

156

JToolBar Meets the Action Interface
What is common in all three components: JButton, JMenuItem, and an item in a JToolBar? All of them
represent an action. Sometimes you give the user the same option as a menu item, as a toolbar item, and as a
JButton. How would you disable an option that you had provided using three components? Don’t you think
that you need to disable them separately at least in three places because they are three different components
representing the same option? You may be right. However, there is an easier way to handle this kind of
situation in Swing. Whenever you have to provide an option for an action in different ways, you should work
with the Action interface. You need to wrap your option’s logic and properties in an Action object and use
that object to construct the JButton, the JMenuItem, and the item in the toolbar. If you need to disable the
option, you just need to call setEnabled(false) on the Action object only once and all options will be
disabled. In such situations, the use of an Action object makes your programming life easier.

Let’s see it in action. Let’s create an ExitAction class that is inherited from the AbstractAction class. Its
actionPerformed() method simply exits the application. You set some properties in its constructor using its
putValue() method, as shown:

public class ExitAction extends AbstractAction {
 public ExitAction(String action) {
 super(action);

 // Set tooltip text for the toolbar
 this.putValue(SHORT_DESCRIPTION, "Exit the application");

Figure 2-23. A JToolBar with three JButtons placed in the north region of a JFrame

Figure 2-24. A JToolBar floating in a separate window

Chapter 2 ■ Swing ComponentS

157

 // Set a mnemonic key
 this.putValue(MNEMONIC_KEY, KeyEvent.VK_E);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
}

If you want to add an Exit menu item, a JButton, and a toolbar button, you can do so by first creating an
object of the ExitAction class and using it to create all your option items, as shown:

ExitAction exitAction = new ExitAction("Exit");
JButton exitButton = new JButton(ExitAction);
JMenuItem exitMenuItem = new JMenuItem(exitAction);

JButton exitToolBarButton = new JButton(exitAction);
exitToolBarButton.setMargin(new Insets(0,0,0,0));

Now you can add the exitButton to your JFrame, the exitMenuItem to your menu, and the
exitToolBarButton to your toolbar. They all behave the same way because they are sharing the same
exitAction object. If you want to disable the exit option in all three places, you can do so by calling
exitAction.setEnabled(false) only once.

JTable
Swing lets you display and edit data in a tabular form using the JTable component. A JTable displays data
using rows and columns. You can set the labels for column headers. You can also sort the table’s data at
runtime. Working with a JTable can be as simple as writing a few lines of code, or it can be as complex as
writing a few hundred lines of code. A JTable is a complex and powerful Swing component that it deserves a
chapter by itself. This section explains the basics of working with a JTable and provides you with some hints
about its powerful features. A JTable uses many other classes and interfaces, which are in the javax.swing.
table package. The JTable class itself is in the javax.swing package.

Let’s start with the simplest JTable example. You can create a JTable by using its no-args constructor.

JTable table = new JTable();

Well, that was easy. However, what happens to its columns, rows, and data? All you got is an empty table
with no visual components. You will fix these problems in a minute.

A JTable does not store data. It only displays data. It uses a model that stores the data, the number
of columns, and the number of rows. An instance of the TableModel interface represents the model for a
JTable. The DefaultTableModel class is an implementation of the TableModel interface. When you use the
default constructor of the JTable class, Java sets an instance of the DefaultTableModel class as its model.
If you want to add or remove columns/rows, you must work with its model. You can get the reference of the
model of a JTable using its getModel() method. Let’s add two rows and three columns to the table.

Chapter 2 ■ Swing ComponentS

158

// Get the reference of the model of the table
DefaultTableModel tableModel = (DefaultTableModel)table.getModel();

// Set the number of rows to 2
tableModel.setRowCount(2);

// Set the number of columns to 3
tableModel.setColumnCount(3);

Let’s set the value for a cell in the table. You can use the setValueAt(Object data, int row, int
column) method of the table’s model or the table to set a value in its cell. You will set “John Jacobs” as the
value in the first row and the first column. Note that the first row and the column start at 0.

// Set the value at (0, 0) in the table's model
tableModel.setValueAt("John Jacobs", 0, 0);

// Set the value at (0, 0) in the table
// Works the same as setting the value using the table's model
table.setValueAt("John Jacobs", 0, 0);

If you add the table to a container, it will look as shown in Figure 2-25.

Figure 2-25. A JTable with two rows and three columns with default column header labels

Make sure that you add the table inside a JScrollPane. Note that you get two rows and three columns.
The labels for the column headers are set as A, B, and C. You can double-click any cell to start editing the
value in the cell. To get the value contained in a cell, you can use the getValueAt(int row, int column)
method of the table’s model or the JTable. It returns an Object. You can also add more columns or rows
to the JTable by using the addColumn() and addRow() methods of the DefaultTableModel class. You can
use the removeRow(int row) method of its model class to remove a row from the model and thus from the
JTable.

You can set custom labels for column headers using the model’s setColumnIdentifiers() method as
follows:

// Store the column headers in an array
Object[] columnHeaderLabels = new Object[]{"Name", "DOB", "Gender"};

// Set the column headers for the table using its model
tableModel.setColumnIdentifiers(columnHeaderLabels);

Chapter 2 ■ Swing ComponentS

159

With the custom column headers, the table looks as shown in Figure 2-26.

Figure 2-26. A JTable with two rows, three columns, and custom column header labels

You must add a JTable to a JScrollPane if you want the column headers to be visible all the times.
If you do not add it to a JScrollPane, the column headers will not be visible when the number of rows
exceeds the height available for the component. You can get the column headers component using JTable’s
getTableHeader() method and display it yourself (e.g., in the north region of a BorderLayout if the JTable is
in the center region). You can select a row by clicking on the row. By default, a JTable lets you select multiple
rows. You can use the getSelectedRow()method of a JTable to get the first selected row number, and the
getselectedRows() method to get the row numbers of all selected rows. The getSelectedRowCount()
method returns the selected row count.

You started with the simplest JTable. It was not, however, an easy experience working with the so-called
simplest JTable, but now you know the basics of working with a JTable.

Let’s repeat the example by creating the JTable using another constructor. The JTable class has another
constructor that accepts the number of rows and columns as arguments. You can create a JTable with two
rows and three columns as shown:

// Create a JTable with 2 rows and 3 columns
JTable table = new JTable(2, 3);

If you want to set the value for the first row and the first column to “John Jacobs”, you do not need to use
the table’s model. You can use the setValueAt() method of the JTable to do the same.

table.setValueAt("John Jacobs", 0, 0);

This one was a little easier than the previous one. However, you will still get the default column header’s
labels set to A, B, and C. Two other constructors for the JTable let you set the number of rows and columns,
and data in one go. They differ only in argument types: one lets you use an array of Object and another lets
you use a Vector object. They are declared as follows:

•	 JTable(Object[][] rowData, Object[] columnNames)

•	 JTable(Vector rowData, Vector columnNames)

If you use a two-dimensional array of Object to set the row data, the number of the first dimension of
the array decides the number of rows. If you use a Vector, the number of elements in the Vector decides the
number of rows in the table. Each element in the Vector should be a Vector object that contains the data for
a row. Here is how you construct a JTable using a two-dimensional array of Object. Figure 2-27 shows the
table displaying all the data set in the code.

// Prepare the column headers
Object[] columnNames = {"ID", "Name", "Gender" } ;

Chapter 2 ■ Swing ComponentS

160

// Create a two-dimensional array to contain the table's data
Object[][] rowData = new Object[][] {
 {new Integer(100), "John Jacobs", "Male" },
 {new Integer(101), "Barbara Gentry", "Female"}
};

// Create a JTable with the data and the column headers
JTable table = new JTable(rowData, columnNames);

Figure 2-27. A JTable with two rows, three columns, and data

So far, your table’s data were hard-coded. The JTable treated all data as String and all cells in the table
were editable. For example, you set the values for the ID column as integers and they were still displayed as
left-justified text. A number should be right-justified in a cell. If you want to customize a JTable, you need to
use your own model for the table. Recall that the TableModel interface defines the model for a JTable. Here
is the declaration of the TableModel interface:

public interface TableModel
 public int getRowCount();
 public int getColumnCount();
 public String getColumnName(int columnIndex);
 public Class<?> getColumnClass(int columnIndex);
 public boolean isCellEditable(int rowIndex, int columnIndex);
 public Object getValueAt(int rowIndex, int columnIndex);
 public void setValueAt(Object aValue, int rowIndex, int columnIndex);
 public void addTableModelListener(TableModelListener l);
 public void removeTableModelListener(TableModelListener l);
}

The AbstractTableModel class implements the TableModel interface. It provides an empty
implementation for the methods of the TableModel interface. It does not mention the way data should
be stored. If you want to implement your own table model, you need to inherit your class from the
AbstractTableModel class. If you implement at least the following three methods in your custom table
model class, you will get a read-only table model:

•	 public int getRowCount();

•	 public int getColumnCount();

•	 public Object getValueAt(int row, int column);

The DefaultTableModel class inherits from the AbstractTableModel class. It provides a default
implementation for all methods in the TableModel interface. It uses a Vector of Vectors to store the
table’s data.

Chapter 2 ■ Swing ComponentS

161

You have greater control over workings of a JTable if you use your own table model. Listing 2-10
implements a simple table model using an array of arrays to store data.

Listing 2-10. Implementing a Simple Table Model

// SimpleTableModel.java
package com.jdojo.swing.component;

import javax.swing.table.AbstractTableModel;

public class SimpleTableModel extends AbstractTableModel {
 private final Object[][] data = {};
 private final String[] columnNames = {"ID", "Name", "Gender"};
 private final Class[] columnClass = {Integer.class, String.class, String.class};
 private final Object[][] rowData = new Object[][]{
 {100, "John Jacobs", "Male"},
 {101, "Barbara Gentry", "Female"}
 };

 public SimpleTableModel() {
 }

 @Override
 public int getRowCount() {
 return rowData.length;
 }

 @Override
 public int getColumnCount() {
 return columnNames.length;
 }

 @Override
 public String getColumnName(int columnIndex) {
 return columnNames[columnIndex];
 }

 @Override
 public Class getColumnClass(int columnIndex) {
 return columnClass[columnIndex];
 }

 @Override
 public boolean isCellEditable(int rowIndex, int columnIndex) {
 boolean isEditable = true;
 if (columnIndex == 0) {
 isEditable = false; // Make the ID column non-editable
 }
 return isEditable;
 }

Chapter 2 ■ Swing ComponentS

162

 @Override
 public Object getValueAt(int rowIndex, int columnIndex) {
 return rowData[rowIndex][columnIndex];
 }

 @Override
 public void setValueAt(Object aValue, int rowIndex, int columnIndex) {
 rowData[rowIndex][columnIndex] = aValue;
 }
}

In the getColumnClass() method, you specify the class of the column’s data; the JTable will use this
information to display the column’s data appropriately. For example, it will display numbers in a column as
right-justified. If you specify the type Boolean for a column, the JTable will use a JCheckBox in each cell of
that column to display the Boolean value. Note that you have made the ID column non-editable by returning
false from the isEditable() method for the columnIndex of 0. In the example, you have again hard-coded
the table’s data. However, you can read data from a database, a data file, network, or any other data source.
The following snippet of code uses the custom model to create a JTable:

// Use the SimpleTableModel as the model for the table
JTable table = new JTable(new SimpleTableModel());

Note that your table model does not allow adding and deleting rows/columns. If you want these
extended functionalities, you are better off inheriting the model class from the DefaultTableModel class and
customizing the behavior you want to change.

You can have data sorting capability added to your JTable by calling its method setAutoCreateRow
Sorter(true). You can sort data in a column by clicking the column’s header. After you call this method,
a JTable will display an up/down arrow as part of a column header to indicate that a column is sorted in
ascending or descending order. You can also use a row filter that will hide rows in a JTable based on some
criteria, as shown:

// Set a row sorter for the table
TableRowSorter sorter = new TableRowSorter(table.getModel());
table.setRowSorter(sorter);

// Set an ID filter for the table
RowFilter<SimpleTableModel, Integer> IDFilter = new RowFilter<SimpleTableModel, Integer> ()
{
 @Override
 public boolean include(Entry<? extends SimpleTableModel, ? extends Integer> entry) {
 SimpleTableModel model = entry.getModel();
 int rowIndex = entry.getIdentifier().intValue();
 Integer ID = (Integer) model.getValueAt(rowIndex, 0);
 if (ID.intValue() <= 100) {
 return false; // Do not show rows with an ID <= 100
 }
 return true;
 }
};

sorter.setRowFilter(IDFilter);

Chapter 2 ■ Swing ComponentS

163

This snippet of code sets a filter for a JTable, which is named table, so that rows with IDs less than or
equal to 100 are not shown. The RowFilter is an abstract class; you must override its include() method to
specify your filter criteria. It also has several static methods that return RowFilter objects of different kinds
that you can use directly with a RowSorter object. The following are some examples of creating row filters:

// Create a filter that will show only rows that starts
// with "John" in the second column (column index = 1)
RowFilter nameFilter = RowFilter.regexFilter("^John*", 1);

// Create a filter that will show only rows that has a
// "Female" value in its third column (column index = 2)
RowFilter genderFilter = RowFilter.regexFilter("^Female$", 2);

// Create a filter that will show only rows that has 3rd,
// 5th and 7th columns values starting with "A"
RowFilter anyFilter1 = RowFilter.regexFilter("^A*", 3, 5, 7);

// Create a filter that will show only rows that has any
// column whose value starts with "A"
RowFilter anyFilter2 = RowFilter.regexFilter("^A*");

You can add a TableModelListener to a TableModel to listen for any changes that are made to the
table’s model.

 ■ Tip a JTable has many features that cannot be described in this section because of space limitation. it
also lets you set a custom cell rendered to display a value in a cell. For example, you can display radio buttons
in a cell that users can choose from instead of letting them edit plain text values.

JTree
A JTree is used to display hierarchical data in a tree-like structure, as shown in Figure 2-28. You can think of
a JTree as displaying a real tree upside down.

Chapter 2 ■ Swing ComponentS

164

Each item in a JTree is called a node. In the figure, Departments, Sales, John, etc. are nodes. A node
is further categorized as a branch node or a leaf node. If a node can have other nodes underneath, which
are called its children, it is called a branch node. If a node does not have children, it is called a leaf node.
Departments, Sales, and Information Technology are examples of branch nodes, whereas John, Elaine,
and Aarav are examples of leaf nodes. There is always a special branch in a real-world tree called the root.
Similarly, a JTree always has a special branch node that is called the root node. Your JTree has a root node
called Departments. In a JTree, you have the ability to make the root node visible or invisible by using its
setRootVisible(boolean visibility) method.

A branch node is called a parent node for its children. Note that a child node can also be a branch node.
Sales, Information Technology, and Advertising are child nodes of the Departments node. The Sales node
has two children: John and Elaine. Both John and Elaine have the same parent node, which is the Sales node.

Nodes at the same level are called siblings. In other words, nodes that have the same parent node are
called siblings. Sales, Information Technology, and Advertising are siblings; John and Elaine are siblings;
Tejas and Aarav are siblings. Two terms, ancestor and descendant, are used frequently in the context of
nodes. Nodes that are the parent of the parent of the parent and so on are all called ancestors. That is, nodes
starting from grandpa and up are all ancestor nodes. Nodes starting from grandchild and down are all called
descendants. For example, the Departments node is an ancestor of the Elaine node, and the Elaine node is a
descendant of the Departments node.

You have learned enough terms related to a JTree. It’s time to see a JTree in action. Classes related to
JTree are the in javax.swing and javax.swing.tree packages. A JTree is composed of nodes. An instance
of the TreeNode interface represents a node. The TreeNode interface declares methods that give you basic
information about a node, such as its node type (branch or leaf), its parent node, its children nodes, etc.

MutableTreeNode is an interface that extends the TreeNode interface. It declares additional methods
that allow you to change a node by inserting/removing child nodes or by changing the node object. The
DefaultMutableTreeNode class is an implementation of the MutableTreeNode interface.

Figure 2-28. A JTree showing departments and a list of employees in the departments

Chapter 2 ■ Swing ComponentS

165

Before you start creating a node, you need to understand that a node is a visual representation (usually
one line of text) of a Java object. In other words, a node wraps an object and usually displays a one-line
text representation of that object. The object that a node represents is called the user object of that node.
Therefore, before you build a node, you must have an object that your node will represent. Don’t worry
about creating a new class to build a node. You can just use a String to build your nodes. The following
snippet of code creates some nodes that can be used in a JTree:

// Create a Departments node
DefaultMutableTreeNode root = new DefaultMutableTreeNode("Departments");

// Create a Sales node
DefaultMutableTreeNode sales = new DefaultMutableTreeNode("Sales");

// Create a John node
DefaultMutableTreeNode john = new DefaultMutableTreeNode("John");

// Create a customer node, assuming you have a Customer class.
// In this case, the node will wrap a Customer object
Customer cust101 = new Customer(101, "Joe");
DefaultMutableTreeNode c101Node = new DefaultMutableTreeNode(cust101);

// If you want to get the user object that a node wraps, you would
// use the getUserObject() method of the DefaultMutableTreeNode class
Customer c101Back = (Customer)c101Node.getUserObject();

Once you have a node, it is easy to add children to it using the add() or insert() method. The add()
method appends the node to the end; the insert() method lets you specify the position of the new node.
For example, to add a Sales node as a child node to the Departments root node you write

root.add(sales);

To add John as a child node to sales, you write

sales.add(john);

Once you have your nodes ready, it is easy to put them in a JTree. You need to create a JTree by
specifying its root node.

JTree tree = new JTree(root);

Other constructors for the JTree class let you create a JTree in different ways. The no-args constructor
is not very useful unless you are learning JTree. It creates a JTree with some nodes added to it, which are
good in terms of saving you the hassle of adding nodes if you want to experiment with a JTree. You can also
create a JTree by passing an array of Object or a Vector of Object to its constructors as the child nodes for
the root of the JTree. A root will be added to the new JTree before adding the passed in objects as its child
nodes. For example,

// Create a JTree. It will create a default root node called Root
// and it will add two, "One" and "Two", child nodes for Root.
// The Root node is not displayed by default.
JTree tree = new JTree(new Object[]{"One", "Two"});

Chapter 2 ■ Swing ComponentS

166

Once you get your JTree component created, it is time to display it in a Swing container. Typically, you
add a JTree to a JScrollPane, so it will have scrolling capability.

myContainer.add(new JScrollPane(tree));

How do you access or navigate through JTree nodes? There are two ways to access a node in a JTree:
using a row number and using a tree path.

A JTree consists of nodes. How does a JTree display nodes? Recall that a node is an instance of the
TreeNode class and it wraps an object of any type. Therefore, you may say that a node is a wrapper for an
object. By default, a JTree calls the toString() method of the node object to get the text for the node to be
displayed. If your node wraps an object whose toString() method does not return a meaningful string to
be displayed in a JTree node, you can supply a custom string for that node by creating a custom JTree and
overriding its convertValueToText() method. In the examples, you have wrapped a String object inside a
node and the toString() method of a String object returns the string itself. Suppose you want to create a
node for Customer objects. Make sure to override the toString() method of the Customer class and return a
meaningful string to display in the Customer nodes such as customer name and ID.

If you look at JTree nodes from top to bottom, each node is displayed in a separate horizontal row.
The very first node (the root node, if the root node is visible) is row number zero. The second one is at row
number 1, and so on. In Figure 2-28, the row numbers for Departments, Sales, John, Elaine, and Information
Technology are 0, 1, 2, 3, and 4, respectively. Note that a row number is assigned to a node only if it is
displayed. A node may not be displayed when its parent is collapsed. For example, the Advertising node
has some child nodes that are not displayed and they do not have a row number assigned to them because
Advertising node, which is their parent node, is collapsed. The getRowCount() method of a JTree returns
the number of viewable nodes. Note that the number of viewable nodes changes as you expand and collapse
nodes in a JTree.

An object of the TreePath class represents a node uniquely in a JTree. Its structure is similar to the path
used to represent a file in a file-system. A file path represents a file uniquely by specifying its path starting
from the root folder such as /Departments/Sales/John represents a file named John, which is under a Sales
folder, which is under a Departments folder, which is under the root. A TreePath object encapsulates the
same kind of information to represent a node in a JTree. It consists of an ordered array of nodes starting
from the root. For example, if you need to construct a TreePath object for the node John in the example, you
can do it as follows:

Object[] path = new Object[] {root, sales, john};
TreePath johnNodePath = new TreePath(path);

The getPath() method of the TreePath class returns the Object array and the
getLastPathComponent() method returns the last element of the array, which is the reference to the node,
which the TreePath object represents the path to. Typically, you will not construct a TreePath object when
you work with a JTree. Rather, a TreePath object will be available to you in the JTree events. If you work
with a JTree, each element of the array object that represents a TreePath object is an instance of TreeNode.
If you are using the default tree model, the TreePath will consist of an array of DefaultMutableTreeNode
objects. Having a TreePath to a node, you can get to the object that the node wraps as follows:

// Suppose path is an instance of the TreePath class
// and it represents a node
DefaultMutableTreeNode node = (DefaultMutableTreeNode)path.getLastPathComponent();
Object myObject = node.getUserObject();

A JTree provides two methods called getRowForPath() and getPathForRow() to convert a row number
to a TreePath and vice versa. You will work with a TreePath when you learn about the JTree events shortly.

Chapter 2 ■ Swing ComponentS

167

If you are not writing the code for an event of a JTree, you will not have a TreePath for a node (unless
you stored the node reference itself, which is not required). In such cases, you can always start from the root
node and keep navigating down the tree. A model for a JTree is an instance of the TreeModel class, which
has a getRoot() method. Once you get the handle of the root node, you can use the children() method of
the TreeNode class that returns an enumeration of all child nodes of a TreeNode. The following snippet of
code defines a method navigateTree() that traverses all tree nodes, if you pass it the reference to the root
node:

public void navigateTree(TreeNode node) {
 if (node.isLeaf()) {
 System.out.println("Got a leaf node: " + node);
 return;
 } else {
 System.out.println("Got a branch node: " + node);
 Enumeration e = node.children();

 while(e.hasMoreElements()) {
 TreeNode n = (TreeNode)e.nextElement();
 navigateTree(n); // Recursive method call
 }
 }
}

You can select a tree node by clicking it. A JTree uses a selection model to keep track of the selected
nodes. You need to interact with its selection model to select nodes or get information about the selected
nodes. The selection model is an instance of the TreeSelectionModel interface. A JTree allows the
user to select nodes in three different modes. They are represented by three constants defined in the
TreeSelectionModel interface:

•	 SINGLE_TREE_SELECTION: It allows users to select only one node at a time.

•	 CONTIGUOUS_TREE_SELECTION: It allows users to select any number of
contiguous nodes.

•	 DISCONTIGUOUS_TREE_SELECTION: It allows users to select any number of nodes
without any restrictions.

The following snippet of code demonstrates how to use some of the methods of the selection model
of a JTree:

// Get selection model for JTree
TreeSelectionModel selectionModel = tree.getSelectionModel();

// Set the selection mode to discontinuous
selectionModel.setSelectionMode(
 TreeSelectionModel.DISCONTIGUOUS_TREE_SELECTION);

// Get the selected number of nodes
int selectedCount = selectionModel.getSelectionCount();

// Get the TreePath of all selected nodes
TreePath[] selectedPaths = selectionModel.getSelectionPaths();

Chapter 2 ■ Swing ComponentS

168

You can add a TreeSelectionListener to a JTree, which will be notified when a node is selected or
deselected. The following snippet of code demonstrates how to add a TreeSelectionListener to a JTree:

// Create a JTree. Java will add some nodes
JTree tree = new JTree();

// Add selection listener to the JTree
tree.addTreeSelectionListener((TreeSelectionEvent event) -> {
 TreeSelectionModel selectionModel = tree.getSelectionModel();
 TreePath[] paths = event.getPaths();
 for (TreePath path : paths) {
 Object node = path.getLastPathComponent();
 if (selectionModel.isPathSelected(path)) {
 System.out.println("Selected: " + node);
 } else {
 // Node is deselected
 System.out.println("DeSelected: " + node);
 }
 }
});

You can expand a node by clicking the plus sign or by clicking the node itself. You can collapse a node
by clicking its minus sign or by clicking the node itself. A JTree triggers two events when a node expands or
collapses. It triggers a tree-will-expand event and a tree-expansion event in sequence. The tree-will-expand
event is triggered just before a node is expanded or collapsed. If you throw an ExpandVetoException from
this event, expansion (or collapse) is stopped. Otherwise, a tree-expansion event is triggered. The following
snippet of code demonstrates how to write code for these events:

// Add a TreeWillExpandListener
tree.addTreeWillExpandListener(new TreeWillExpandListener() {
 @Override
 public void treeWillExpand(TreeExpansionEvent event) throws ExpandVetoException {
 System.out.println("Will Expand: " + event.getPath());
 }

 @Override
 public void treeWillCollapse(TreeExpansionEvent event) throws ExpandVetoException {
 System.out.println("Will Collapse: " + event.getPath());
 }
});

// Add TreeExpansionListener
tree.addTreeExpansionListener(new TreeExpansionListener() {
 @Override
 public void treeExpanded(TreeExpansionEvent event) {
 System.out.println("Expanded: " + event.getPath());
 }

 @Override
 public void treeCollapsed(TreeExpansionEvent event) {
 System.out.println("Collapsed: " + event.getPath());
 }
});

Chapter 2 ■ Swing ComponentS

169

 ■ Tip a JTree is a powerful and complex Swing component. it lets you customize almost everything in it.
each node is displayed in a JLabel. the icons that are displayed are different for branch and leaf nodes. the
default icons depend on the look and feel. You can customize the default icons by creating your own tree cell
renderer. You can also add a TreeModelListener to a JTree, which will notify you of any changes in its model.
You can make a JTree editable by using its setEditable(true) method. You can edit a node’s labels by
double-clicking it.

JTabbedPane and JSplitPane
Sometimes, because of space limitations, it is not possible to display all pieces of information in a window.
You can group and separate pieces of information in a window using a JTabbedPane. Figure 2-29 shows a
JFrame that has a tabbed pane with two tabs titled General Information and Contacts to display the general
and contact information of a person.

Figure 2-29. A JTabbedPane with two tabs

A JTabbedPane component acts like a container for other Swing components, arranging them in a
tabbed fashion. It can display tabs using a title, an icon, or both. The user needs to click on a tab to view the
tab’s contents. The greatest advantage of using a JTabbedPane is space sharing. The contents of only one tab
in a JTabbedPane are visible at a time. Users can switch between tabs to view the contents of another tab.

A JTabbedPane also lets you specify where to display the tabs. You can specify the tabs to be placed at
the top, bottom, left, or right. Figure 2-29 displays the tabs at the top. If you have a JFrame named a frame,
the following snippet of code produces the frame shown in Figure 2-29. The code adds a JLabel to the both
tabs represented by two JPanels.

JPanel generalInfoPanel = new JPanel();
JPanel contactInfoPanel = new JPanel();
JTabbedPane tabbedPane = new JTabbedPane();
generalInfoPanel.add(new JLabel("General info components go here..."));
contactInfoPanel.add(new JLabel("Contact info components go here..."));

tabbedPane.addTab("General Information", generalInfoPanel);
tabbedPane.addTab("Contacts", contactInfoPanel);
frame.getContentPane().add(tabbedPane, BorderLayout.CENTER);

Chapter 2 ■ Swing ComponentS

170

The getTabCount() method returns the number of tabs in a JTabbedPane. Every tab inside a
JTabbedPane has an index. The first tab has an index of 0, the second tab has an index of 1, and so on. You
can get the component that represents a tab using its index.

// Get the reference of the component for the Contact tabs
JPanel contactsPanel = tabbedPane.getTabComponentAt(1);

A JSplitPane is a splitter that can be used to split space between two components. The splitter bar can
be displayed horizontally or vertically. When the available space is less than the space needed to display
the two components, the user can move the splitter bar up/down or left/right, so one component gets more
space than the other. If there is enough space, both components can be shown fully.

The JSplitPane class provides many constructors. You can create it using its default constructor and
add two components using its setXxxComponent(Component c), where Xxx could be Top, Bottom, Left, or
Right. It also lets you specify the way redrawing of components occurs when you change the position of
the splitter bar. It could be continuous or non-continuous. If it is continuous, components are redrawn as
you move the splitter bar. If it is non-continuous, the components are redrawn when you stop moving the
splitter bar.

The following snippet of code shows two instances of the JPanel class added to a JSplitPane, which in
turn is added to the content pane of a JFrame named frame. Figure 2-30 shows the resulting JFrame.

// Create two JPanels and a JSplitPane
JPanel generalInfoPanel = new JPanel();
JPanel contactInfoPanel = new JPanel();
JSplitPane splitPane = new JSplitPane();
generalInfoPanel.add(new JLabel("General info components go here..."));
contactInfoPanel.add(new JLabel("Contact info components go here..."));

// Add two JPanels to the JSplitPane and the JSplitPane
// to the content pane of the JFrame
splitPane.setLeftComponent(generalInfoPanel);
splitPane.setRightComponent(contactInfoPanel);
frame.getContentPane().add(splitPane, BorderLayout.CENTER);

Figure 2-30. Using a JSplitPane to split space between two components

Chapter 2 ■ Swing ComponentS

171

Custom Dialogs
A JDialog is a top-level Swing container. It is used as a temporary top-level container (or as a popup
window) to aid in the working of the main window to get the user’s attention. I am using the term window
loosely to mean a Swing top-level container. Suppose you have a JFrame in which you have to display
information about a person. You may not have enough room in the JFrame to display all details about a
person. In this case, you can only display the basic personal minimum information on a JFrame and provide
a button labeled “Person Details”. When the user clicks this button, you can open a JDialog that displays
detailed information about that person. This is an example of using a JDialog to display information to
users. Another example of using a dialog window is to let the user choose a file from a file system. You can
display a dialog to the user that would let him navigate through the file system and let him choose a file. You
can also use a JDialog in other occasions as listed:

•	 When you want to confirm an action from the user: This is called a confirmation
dialog. For example, when the user selects a person record in a window and tries to
delete the person record, you display a confirmation message of “Are you sure you
want to delete this person?” The dialog box displays two buttons labeled Yes and No’
to indicate the user’s choice.

•	 When you want some input from the user: This is referred to as an input dialog. For
example, when focus moves to a date field, you may display a calendar in a JDialog
and want the user to select a date. An input dialog can be as simple as entering/
selecting one value or entering multiple values, such as a person’s details.

•	 When you want to display some message to the user: This is called a message dialog.
For example, when a user saves some information to a database, you want to inform
the user with a message that indicates the status of the database transaction.

Creating a dialog window is very simple: just create a new class that inherits from the JDialog class.
You can add any number of Swing components to your custom JDialog as you have been adding to a JFrame.
A JDialog makes it a little easier to add components to it. You do not need to get the reference to its content
pane to set its layout manager and add components. Rather, you can invoke the setLayout() and add()
methods on the JDialog itself. These methods route the calls to its content pane. By default, a JDialog uses
a BorderLayout as the layout manager.

Listing 2-11 lists a custom JDialog that displays current date and time in a JLabel and an OK JButton.
When the user clicks the JButton, the JDialog is closed.

Listing 2-11. A Custom JDialog That Displays Current Date and Time

// DateTimeDialog.java
package com.jdojo.swing.component;

import java.awt.BorderLayout;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JLabel;

public class DateTimeDialog extends JDialog {
 JLabel dateTimeLabel = new JLabel("Datetime placeholder");
 JButton okButton = new JButton("OK");

Chapter 2 ■ Swing ComponentS

172

 public DateTimeDialog() {
 initFrame();
 }

 private void initFrame() {
 // Release all resources when JDialog is closed
 this.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);

 this.setTitle("Current Date and Time");
 this.setModal(true);

 String currentDateTimeString = getCurrentDateTimeString();
 dateTimeLabel.setText(currentDateTimeString);

 // There is no need to add components to the content pane.
 // You can directly add them to the JDialog.
 this.add(dateTimeLabel, BorderLayout.NORTH);
 this.add(okButton, BorderLayout.SOUTH);

 // Add an action listener to the OK button
 okButton.addActionListener(e -> DateTimeDialog.this.dispose());
 }

 private String getCurrentDateTimeString() {
 LocalDateTime ldt = LocalDateTime.now();
 DateTimeFormatter formatter
 = DateTimeFormatter.ofPattern("EEEE MMMM dd, yyyy hh:mm:ss a");
 String dateString = ldt.format(formatter);
 return dateString;
 }
}

The DateTimeDialog class is a simple example of a custom JDialog. To use it in your application, you
need to create an instance of this JDialog, pack it, and make it visible, as follows:

DateTimeDialog dateTimeDialog = new DateTimeDialog();
dateTimeDialog.pack();
dateTimeDialog.setVisible(true);

If you are displaying a JDialog from another top-level container, say a JFrame or another JDialog, you
may want to display it in the center of the top-level container. Sometimes you may want to display it in the
center of the screen. You can place a JDialog in the center of a top-level container or a screen by using its
setLocationRelativeTo(Component c) method. If you pass null as its argument, the JDialog is centered
on the screen. Otherwise, it will be centered within the component that you pass as the argument.

// Center the JDialog within a frame, assuming that myFrame exists
dateTimeDialog.setLocationRelativeTo(myFrame);

// Place the JDialog in the center of screen
dateTimeDialog.setLocationRelativeTo(null);

Chapter 2 ■ Swing ComponentS

173

You can create a JDialog with an owner, which could be another JDialog, a JFrame, or a JWindow. By
specifying an owner for a JDialog, you are creating a parent-child relationship. When the owner (or the
parent) of a JDialog is closed, the JDialog is also closed. When the owner is minimized or maximized, the
JDialog is also minimized or maximized. A JDialog with an owner is always displayed on top of its owner.
You can specify an owner of a JDialog in its constructors. When you create a JDialog using its no-args
constructor, a hidden Frame is created as its owner. Note that it is a java.awt.Frame, not javax.swing.JFrame.
The JFrame class inherits from the Frame class. You can also create a JDialog with null as its owner, and in
that case, it does not have an owner.

By default, a JDialog is resizable. If you do not want users to resize your JDialog, you can do so by
calling its setResizable(false) method.

Based on focus behavior of a JDialog, it can be categorized as

•	 Modal

•	 Modeless

When a modal JDialog is displayed, it blocks other displayed windows in the application. In other
words, if a modal JDialog is displayed, you must close it before you can work with any other windows in that
application. To make a JDialog modal, you can use its setModal(true) method. Some of the constructors of
the JDialog class also let you specify whether the JDialog should be modal or modeless.

A modeless JDialog does not block any other displayed windows in the application. You can switch
focus between other windows and the instances of modeless JDialog. By default, a JDialog is modeless.

You can also set the scope of modality for a modal JDialog. A JDialog can have one of the four types of
modalities. They are defined by the four constants in the java.awt.Dialog.ModalityType enum:

•	 MODELESS

•	 DOCUMENT_MODAL

•	 APPLICATION_MODAL

•	 TOOLKIT_MODAL

You can specify the modality type of a JDialog in its constructor or by using its setModalityType()
method.

The modality type of MODELESS means that the JDialog will not block any windows.
The modality type of DOCUMENT_MODAL means that the JDialog will block any windows in its parent

hierarchy (its owner, owner of owner and so on). It will not block any window in its child hierarchy (its
child, child of child, and so on). Suppose you have three windows displayed: frame is a JFrame; dialog1 is
a JDialog whose owner is frame; dialog2 is another JDialog whose owner is dialog1. If you specify the
modality type of DOCUMENT_MODAL for dialog1, you can work with dialog2, but not with frame. If dialog2 has
a modality type of MODELESS, you can work with both dialog1 and dialog2, because dialog2 will not block
any windows.

The modality type of APPLICATION_MODAL means that the JDialog will block any windows in that Java
application, except those in its child hierarchy.

The modality type of TOOLKIT_MODAL means that the JDialog will block any windows run from the same
toolkit, except those in its child hierarchy. In a Java application, it is the same as APPLICATION_MODAL. It is
useful when you use it in applets or applications started using Java Web Start. You can think of a browser
as an application, and multiple applets as top-level windows. All applets are loaded by the same toolkit.
If you display a JDialog with its modality type as TOOLKIT_MODAL in one applet, it will block inputs to any
other applets in the same browser. You must grant “toolkitModality” AWTPermission for the applet to use a
TOOLKIT_MODAL modality. The same behavior goes with multiple applications started with Java Web Start.

Listing 2-12 contains a program to experiment with modality types of JDialog. Use different values
for the dialog1Modality and dialog2Modality variables and see how it affects blocking input in other
windows.

Chapter 2 ■ Swing ComponentS

174

Listing 2-12. Experimenting with Modality Types of JDialog

// JDialogModalityTest.java
package com.jdojo.swing.component;

import javax.swing.JButton;
import javax.swing.JDialog;
import javax.swing.JFrame;
import java.awt.Dialog.ModalityType;

public class JDialogModalityTest {
 public static void main(String[] args) {
 JFrame frame = new JFrame("My JFrame");
 frame.setBounds(0, 0, 400, 400);
 frame.setVisible(true);

 final ModalityType dialog1Modality = ModalityType.DOCUMENT_MODAL;
 final ModalityType dialog2Modality = ModalityType.DOCUMENT_MODAL;
 final JDialog dailog1 = new JDialog(frame, "JDialog 1");

 JButton openBtn = new JButton("Open JDialog 2");
 openBtn.addActionListener(e -> {
 JDialog d2 = new JDialog(dailog1, "JDialog 2");
 d2.setBounds(200, 200, 200, 200);
 d2.setModalityType(dialog2Modality);
 d2.setVisible(true);
 });

 dailog1.add(openBtn);
 dailog1.setBounds(20, 20, 200, 200);
 dailog1.setModalityType(dialog1Modality);
 dailog1.setVisible(true);
 }
}

A JDialog is used frequently in a Swing application, for example, to display an error message to users.
It is time consuming to create a custom JDialog every time you need a dialog window. The Swing designers
realized this. They gave us the JOptionPane class that makes our life easier when using the frequently used
JDialog types. I discuss JOptionPane in the next section.

Standard Dialogs
The JOptionPane class makes it easy for you to create and show standard modal dialogs. It contains many
static methods to create different kinds of JDialog, fill them with details, and show them as a modal
JDialog. When a JDialog is closed, the method returns a value to indicate the user’s action on the JDialog.
Note that the JOptionPane class is inherited from the JComponent class. The JOptionPane class is not related
to the JDialog class in any way, except that it is used as a factory to create standard dialogs. It also contains
methods that return a JDialog object, which you can customize and use in your application. You can display
the following four kinds of standard dialogs:

•	 Message dialog

•	 Confirmation dialog

Chapter 2 ■ Swing ComponentS

175

•	 Input dialog

•	 Option dialog

The static methods of the JOptionPane class to display a standard JDialog has name like showXxxDialog().
The Xxx can be replaced with Message, Confirm, Input, and Option. You also have another version of the
same method as showInternalXxxDialog(), which uses a JInternalFrame to display the dialog details
instead of a JDialog. All four types of standard dialogs accept different types of arguments and return
different types of values. Table 2-17 shows the list of arguments of these methods and their descriptions.

Table 2-17. List of Standard Argument Types and Their Values Used with JOptionPane

Argument Name Argument Type Description

parentComponent Component The JDialog is centered on the specified parent
component. The top-level container that contains this
component becomes the owner of the displayed JDialog.
If it is null, the JDialog is centered on the screen.

message Object Typically, it is a string that needs to be displayed as a
message in the dialog box. However, you can pass any
object. If you pass a Swing component, it is simply
displayed in the dialog box. If you pass an Icon, it is
displayed in a JLabel. If you pass any other object, the
toString() method is called on that object and the
returned string is displayed. You can also pass an array of
objects (typically an array of strings) and each element of
the array will be displayed vertically one after another.

messageType Int It denotes the type of the message you want to display.
Depending on the type of message, a suitable icon is
displayed in the dialog box. The available message types
are defined by the following constants in the JOptionPane
class: ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_
MESSAGE, QUESTION_MESSAGE, PLAIN_MESSAGE.

The PLAIN_MESSAGE type does not display any icon.
Another argument, which is of the Icon type, lets you
specify your own icon to be displayed in the dialog box.

optionType Int It denotes the buttons that need to be displayed in the
dialog box. The following is the list of constants defined in
the JOptionPane class that you can use to get the standard
buttons in a dialog box: DEFAULT_OPTION, YES_NO_OPTION,
YES_NO_CANCEL_OPTION, OK_CANCEL_OPTION

The DEFAULT_OPTION displays an OK button. Other
options display a set of buttons, as their names suggest.
You can customize the number of buttons and their
text by supplying the options arguments to the
showOptionDialog() method.

(continued)

Chapter 2 ■ Swing ComponentS

176

Argument Name Argument Type Description

options Object[] This argument lets you customize the set of buttons that are
displayed in a dialog box. If you pass a Component object
in the array, that component is displayed in the row of
buttons. If you specify an Icon object, the icon is displayed
in a JButton. For any other types of objects that you pass,
a JButton is displayed and the text of the JButton is the
string returned from the toString() method of that object.
Typically, you pass an array of strings as this argument to
display a custom set of buttons in the dialog box.

title String It is the text that is displayed as the title of the dialog box.
A default title is supplied if you do not pass this argument.

initialValue Object This argument is used in input dialogs. It denotes the initial
value that is displayed in the input dialog.

Table 2-17. (continued)

Typically, when the user closes a dialog box, you want to check what button the user used to close the
dialog box. There is an exception, though, when the dialog box has only one button, say an OK button. In
such a case, either the method you use to display the dialog box does not return a value, or you simply ignore
the returned value. Here is the list of constants that you can use to check for equality with the retuned value:

•	 OK_OPTION

•	 YES_OPTION

•	 NO_OPTION

•	 CANCEL_OPTION

•	 CLOSED_OPTION

The CLOSED_OPTION indicates that the user closed the dialog box using the close (X) menu button on the
title bar or using other means such as by pressing Ctrl+F4 keys on the keyboard on the Windows platform.
Other constants denote the normal button usage on the dialog box; for example, OK_OPTION denotes that the
user clicked the OK button on the dialog box to close it.

JOptionPane also lets you customize the labels for the buttons that it shows. You are not limited to the
standard set of buttons either. That is, you can display any number of buttons in the dialog box. In such
cases, the JOptionPane’s method used to display the dialog box will return 0 for the first button click, 1 for
the second button click, 2 for the third button click, and so on. You will see an example of this type, when the
showOptionDialog() method of the JOptionPane class is discussed shortly.

You can show a message dialog by using one of the showMessageDialog() static methods of the
JOptionPane class. A message dialog always shows some kind of information to the user with one button,
usually the OK button. The method does not return any value because all the user can do is click the OK
button to close the dialog box. Signatures of the showMessageDialog() methods are as shown:

•	 showMessageDialog(Component parentComponent, Object message)

•	 showMessageDialog(Component parentComponent, Object message, String
title, int messageType)

•	 showMessageDialog(Component parentComponent, Object message, String
title, int messageType, Icon icon)

Chapter 2 ■ Swing ComponentS

177

The following snippet of code shows a message dialog, as shown in Figure 2-31.

// Show an information message dialog
JOptionPane.showMessageDialog(null, "JOptionPane is cool!", "FYI",
 JOptionPane.INFORMATION_MESSAGE);

Figure 2-31. An information message dialog using the JOptionPane.showMessageDialog() method

You can display a confirmation dialog box by using the showConfirmDialog() method. When you use
this method, you are interested in knowing the user’s response, which is indicated by the return value of the
method. The following snippet of code displays a confirmation dialog, as shown in Figure 2-32, and handles
the user’s response:

// Show a confirmation dialog box
int response = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to save the changes?",
 "Confirm Save Changes",
 JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);

switch (response) {
 case JOptionPane.YES_OPTION:
 System.out.println("You chose yes");
 break;
 case JOptionPane.NO_OPTION:
 System.out.println("You chose no");
 break;
 case JOptionPane.CANCEL_OPTION:
 System.out.println("You chose cancel");
 break;
 case JOptionPane.CLOSED_OPTION:
 System.out.println("You closed the dialog box.");
 break;
 default:
 System.out.println("I do not know what you did ");
}

Chapter 2 ■ Swing ComponentS

178

You can ask the user for an input using the showInputDialog() method. You can specify an initial
value for the user’s input. If you want the user to select a value from a list, you can pass an object array that
contains the list. The UI will display the list in a suitable component such as a JComboBox or a JList. The
following snippet of code displays an input dialog, as shown in Figure 2-33.

// Ask the user to enter some text about JOptionPane
String response = JOptionPane.showInputDialog("Please enter your opinion about input
dialog.");

if (response == null) {
 System.out.println("You have cancelled the input dialog.");
} else {
 System.out.println("You entered: " + response);
}

Figure 2-32. A confirmation dialog box using the JOptionPane.showConfirmDialog() method

Figure 2-33. A simple input dialog

The version of the showInputDialog() method that you have used returns a String, which is the text
the user enters in the input field. If the user cancels the input dialog, it returns null.

The following snippet of code displays an input dialog with a list of choices. The user may select one
of the choices from the list. The dialog box is shown in Figure 2-34 This version of the showInputDialog()
method returns an object, not a string.

// Show an input dialog that shows the user three options: "Cool!", "Sucks", "Don't know".
// The default selected value is "Don't know".
JComponent parentComponent = null;

Chapter 2 ■ Swing ComponentS

179

Figure 2-34. An input dialog with a list of choices

Object message = "Please select your opinion about JOptionPane";
String title = "JOptionPane Input Dialog";
int messageType = JOptionPane.INFORMATION_MESSAGE;
Icon icon = null;
Object[] selectionValues = new String[] {"Cool!", "Sucks", "Don't know"};
Object initialSelectionValue = selectionValues[2];
Object response = JOptionPane.showInputDialog(parentComponent, message,
 title, messageType, icon, selectionValues, initialSelectionValue);

if (response == null) {
 System.out.println("You have cancelled the input dialog.");
} else {
 System.out.println("You entered: " + response);
}

Finally, you can customize the option buttons using the showOptionDialog() method that is declared
as follows:

int showOptionDialog(Component parentComponent, Object message, String title, int optionType,
 int messageType, Icon icon, Object[] options, Object initialValue)

The options parameter specifies the user’s options. If you pass components in the options parameter,
the components are displayed as options. If you pass any other objects such as strings, a button is displayed
for each element in the options array.

The following snippet of code shows how to display custom buttons in a dialog box. It asks the user his
opinion about a JOptionPane. The resulting dialog box is shown in Figure 2-35.

JComponent parentComponent = null;
Object message = "How is JOptionPane?";
String title = "JOptionPane Option Dialog";
int messageType = JOptionPane.INFORMATION_MESSAGE;
Icon icon = null;
Object[] options = new String[] {"Cool!", "Sucks", "Don't know" };
Object initialOption = options[2];
int response = JOptionPane.showOptionDialog(null, message, title,
 JOptionPane.DEFAULT_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 icon, options, initialOption);

Chapter 2 ■ Swing ComponentS

180

switch(response) {
 case 0:
 case 1:
 case 2:
 System.out.println("You selected:" + options[response]);
 break;
 case JOptionPane.CLOSED_OPTION:
 System.out.println("You closed the dialog box.");
 break;
 default:
 System.out.println("I don't know what you did.");
}

Figure 2-35. Customizing the Option buttons using the JOptionPane.showOptionDialog() method

By default, none of the dialog boxes displayed in this section are resizable. Let’s customize them so that
they are resizable. You can customize the dialog box displayed by the static methods of the JOptionPane by
using the createDialog() methods of JOptionPane and performing a sequence of steps.

•	 Create an object of JOptionPane.

•	 Optionally, customize the properties of JOptionPane using its methods.

•	 Use the createDialog() method to get the reference of the dialog box.

•	 Customize the dialog box.

•	 Display the dialog box using its setVisible(true) method.

The following snippet of code displays the custom resizable dialog box shown in Figure 2-36.

// Show a custom resizable dialog box using
JOptionPane pane = new JOptionPane("JOptionPane is cool!", JOptionPane.INFORMATION_MESSAGE);
String dialogTitle = "Resizable Custom Dialog Using JOptionPane";
JDialog dialog = pane.createDialog(dialogTitle);
dialog.setResizable(true);
dialog.setVisible(true);

Chapter 2 ■ Swing ComponentS

181

Figure 2-36. A custom dialog box using the JOptionPane.createDialog() method

File and Color Choosers
Swing has two built-in JDialogs that make it easier to select a file/directory from the file system or a color
graphically. A JFileChooser lets the user select a file from the file system. It provides non-static methods,
unlike those you have seen in a JOptionPane, which create and show a file chooser component in a JDialog.

A JColorChooser is a Swing component that lets you choose a color graphically in a JDialog. It provides
a static method, as you have seen in a JOptionPane, which creates and shows a color chooser component in
a JDialog.

 ■ Tip the JFileChooser class provides non-static methods to create and show JDialogs, whereas the
JColorChooser class provides a static method for the same purpose. the implication of having a static or a
non-static method is that a non-static method lets you customize the JDialog whereas a static method lets
you customize the JDialog only through its arguments. it means that you can customize the JDialog being
displayed by a JFileChooser, but not the JColorChooser. another difference is that you must create an
object of the JFileChooser class to use it. it is preferred to reuse the same JFileChooser object because
it remembers the last visited directory, so when you reuse it, it navigates you to the last visited directory by
default.

JFileChooser
Here are the steps you need to perform to display a file chooser in a JDialog.

•	 Create an object of the JFileChooser class.

•	 Optionally, customize its properties using its methods. You can customize properties
such as should it let the user choose only files, only directories, or both; should it let
the user select multiple files; apply a file filter criteria to show files based on your
criteria, etc.

•	 Use one of the three non-static methods—showOpenDialog(), showSaveDialog(), or
showDialog()—to display it in a JDialog.

Chapter 2 ■ Swing ComponentS

182

•	 Check for the return value, which is an int, from the method call in the previous
step. If it returns JFileChooser.APPROVE_OPTION, the user made a selection.
The other two possible return values are JFileChooser.CANCEL_OPTION and
JFileChooser.ERROR_OPTION, which indicate that either user cancelled the
dialog box or some kind of error occurred. To get the selected file, call the
getSelectedFile() or getSelectedFiles() method, which returns a File object
and a File array, respectively. Note that a JFileChooser component only lets you
select a file from a file system. It does not save or read a file. You can do whatever you
like with the file reference returned from it.

•	 You can reuse the file chooser object. It remembers the last visited folder.

By default, a JFileChooser starts displaying files from the user’s default directory. You can specify the
initial directory in its constructor or using its setCurrentDirectory() method.

// Create a file chooser with the default initial directory
JFileChooser fileChooser = new JFileChooser();

// Create a file chooser with an initial directory of C:\java9.
// You can specify a directory path according to your operating system syntax.
// C:\java9 is using Windows file path syntax.
JFileChooser fileChooser = new JFileChooser("C:\\java9");

By default, a file chooser only allows files to be selected. Let’s customize it so you can select a file or a
directory. It should also allow multiple selections. The following snippet of code does this customization:

// Let the user select files and directories
fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);

// Allow multiple selection
fileChooser.setMultiSelectionEnabled(true);

Let’s display an open file chooser dialog box and check if the user selected a file. If the user makes a
selection, print the file path on the standard output. The following snippet of code displays the dialog box
shown in Figure 2-37.

// Display an open file chooser
int returnValue = fileChooser.showOpenDialog(null);

if(returnValue == JFileChooser.APPROVE_OPTION) {
 File selectedFile = fileChooser.getSelectedFile();
 System.out.println("You selected: " + selectedFile);
}

Chapter 2 ■ Swing ComponentS

183

Figure 2-37. An open file chooser dialog box using a JFileChooser

All the three methods of the JFileChooser class accept a Component argument. It is used as the owner
for the JDialog it displays and for centering the dialog box. Pass null as its parent component to center it on
the screen.

Note that, in Figure 2-37, there are two buttons. One is labeled Open and another Cancel. The Open
button is called the approve button. The title of the dialog box is Open. When you use the showSaveDialog()
method of JFileChooser, you get the same dialog box, except that the text Open for the button and the title
are replaced with the text Save. You can customize the dialog box title and the approve button text before
displaying it as follows:

// Change the dialog's title
fileChooser.setDialogTitle("Open a picture file");

// Change the button's text
fileChooser.setApproveButtonText("Open File");

The third method, showDialog(), lets you specify the approve button text and dialog title as shown:

// Open a file chooser with Attach as its title and approve button's text
int returnValue = fileChooser.showDialog(null, "Attach");
if (returnValue == JFileChooser.APPROVE_OPTION) {
 File selectedFile = fileChooser.getSelectedFile();
 System.out.println("Attaching file: " + selectedFile);
}

Chapter 2 ■ Swing ComponentS

184

Note that setting the approve button’s text does not change the return value of the method. You still need
to check if it returned a JFileChooser.APPROVE_OPTION so you can proceed with getting the selected file.

 ■ Tip the default text for the approve button, when you use the showOpenDialog() and showSaveDialog()
methods, depends on the look and feel. on windows, they are called open and Save, respectively.

A JFileChooser lets you set a file filter. A file filter is a set of criteria that it applies before it shows a file
in the dialog box. A file filter is an object of the FileFilter class, which is in the javax.swing.filechooser
package. The FileFilter class is an abstract class. To create a file filter, you need to create a class inheriting
it from the FileFilter class and override the accept() and getDescription() methods. The accept()
method is called with a file reference when the file chooser wants to show a file. If the accept() method
returns true, the file is shown. Otherwise, the file is not shown. The following snippet of code creates and
sets a file filter to only show either a directory or a file with a doc extension. Keep in mind that user needs to
navigate to the file system and you must show the directories.

// Create a file filter to show only a directory or .doc files
FileFilter filter = new FileFilter() {
 @Override
 public boolean accept(File f) {
 if (f.isDirectory()) {
 return true;
 }

 String fileName = f.getName().toLowerCase();
 if (fileName.endsWith(".doc")) {
 return true;
 }

 return false; // Reject any other files
 }

 @Override
 public String getDescription() {
 return "Word Document";
 }
};

// Set the file filter
fileChooser.setFileFilter(filter);

int returnValue = fileChooser.showDialog(null, "Attach");
if (returnValue == JFileChooser.APPROVE_OPTION) {
 // Process the file
}

Chapter 2 ■ Swing ComponentS

185

Setting a file filter based on a file extension is so common that there is a direct support for it through
the FileNameExtensionFilter class that inherits from the FileFilter class. Its constructor accepts the
file extensions and its description. The second argument is a variable length argument. Note that a file
extension is the part of the file name after the last dot. If a file name does not have a dot in its name, it does
not have an extension. After you create an object of the FileNameExtensionFilter class, you need to call
the addChoosableFileFilter() method of the file chooser to set a filter. The following snippet of code adds
"java" and "jav" as file name extension filters.

FileNameExtensionFilter extFilter =
 new FileNameExtensionFilter("Java Source File", "java", "jav");
fileChooser.addChoosableFileFilter(extFilter);

You can add multiple file name extension filters to a file chooser. They are shown in a file chooser drop-
down list as file types. If you want to restrict users to selecting only the files that you have set as the file filter,
you need to remove the one file filter that lets the user select any files, which is called “accept all files filter”. It
is displayed as "All Files(*.*)" as file type on Windows.

// Disable "accept all files filter"
fileChooser.setAcceptAllFileFilterUsed(false);

You can check if “accept all files filter” is enabled by using the isAcceptAllFileFilterUsed() method,
which returns true if a file chooser is using this filter. You can get the reference of “accept all files filter” using
the getAcceptAllFileFilter() method. The following snippet of code sets the “accept all files filter” if it is
not already set.

if (!fileChooser.isAcceptAllFileFilterUsed()) {
 fileChooser.setAcceptAllFileFilterUsed(true);
}

 ■ Tip a JFileChooser has many features that you can use in your application. Sometimes you may want to
get the associated icon for a file type. You can get the associated icon for a file type by using the file chooser’s
getIcon(java.io.File file) method, which returns an Icon object. note that you can display an Icon object
using a JLabel component. it also provides a mechanism to listen for selection changes and other actions
performed by the user when it is shown in the dialog box.

JColorChooser
A JColorChooser lets you select a color using a dialog box. It is customizable. You can add more panels to
the default color chooser. You can also embed the color chooser component in a container. It provides ways
to listen to the user actions on the color chooser component. Its common use is very simple. You need to call
its showDialog() static method, which will return a java.awt.Color object that represents the color that the
user selects. Otherwise, it returns null. I cover the Color class later in this chapter.

The showDialog() method’s signature is as follows. It lets you specify the parent component and the
title for the dialog box. You can also set the initial color, which will be displayed in the dialog box.

•	 static Color showDialog(Component parentComponent, String title,
Color initialColor)

Chapter 2 ■ Swing ComponentS

186

The following snippet of code lets the user select a color using a JColorChooser and prints a message
on the standard output:

// Display a color chooser dialog
Color color = JColorChooser.showDialog(null, "Select a color", null);

// Check if user selected a color
if (color == null) {
 System.out.println("You cancelled or closed the color chooser");
} else {
 System.out.println("You selected color: " + color);
}

JWindow
Like a JFrame, a JWindow is another top-level container. It is as an undecorated JFrame. It does not have
features like a title bar, windows menu, etc. It is not a very commonly used top-level container. You can use it
as a splash window that displays once when the application is launched and then automatically disappears
after a few seconds. Refer to the API documentation of the java.awt.SplashScreen class for more details
on how to display a splash screen in a Java application. Like a JFrame, you can add Swing components to a
JWindow.

Working with Colors
An object of the java.awt.Color class represents a color. You can create a Color object using its RGB (Red,
Green, and Blue) components. RGB values can be specified as float or int values. As a float value, each
component in RGB ranges from 0.0 to 1.0. As an int value, each component in RGB ranges from 0 to 255.
There is another component called alpha that is associated with a color. The alpha value of a color defines
the transparency of the color. As a float, its value ranges from 0.0 to 1.0, and as an int, its value ranges from
0 to 255. The value of 0.0 or 0 for alpha indicates that a color is fully transparent, whereas the value of 1.0 or
255 indicates that it is fully opaque.

You can create a Color object as follows. Note the value of the RGB components in the constructor
Color(int red, int green, int blue).

// Create red color
Color red = new Color(255, 0, 0);

// Create green color
Color green = new Color(0, 255, 0);

// Create blue color
Color blue = new Color(0, 0, 255);

// Create white color
Color white = new Color(255, 255, 255);

// Create black color
Color black = new Color(0, 0, 0);

Chapter 2 ■ Swing ComponentS

187

The alpha component is implicitly set to 1.0 or 255, which means that if you do not specify the alpha
component for a color, the color is opaque. The following snippet of code creates a red transparent color by
specifying the alpha component as 0:

// Create a transparent red color. The last argument of 0 is the alpha value.
Color transparentRed = new Color(255, 0, 0, 0);

The Color class defines many color constants for commonly used colors. For example, you do not
need to create a red color. Rather, you can use Color.red or Color.RED constant. The Color.red constant
exists since Java 1.0. The uppercase version of the same constants Color.RED has been added in Java 1.4 to
follow the naming convention for constants (a constant’s name should be in uppercase). Similarly, you have
Color.black, Color.BLACK, Color.green, Color.GREEN, Color.darkGray, Color.DARK_GRAY, etc. If you have
a Color object, you can obtain its red, green, blue, and alpha components using its getRed(), getGreen(),
getBlue(), and getAlpha() methods, respectively.

There is another way to specify a color, and that is by using HSB (Hue, Saturation, and Brightness)
components. The Color class has two methods called RGBtoHSB() and HSBtoRGB() that let you convert from
the RGB model to the HSB model and vice versa.

A Color object is used with the setBackground(Color c) and setForeground(Color c) methods of
the Swing components. All Swing components inherit these methods from JComponent. These method calls
may be ignored by a look and feel. The background color is the color with which a component is painted,
whereas the foreground color is usually the color of the text displayed in the component. There is one
important thing, called transparency, to consider when you set the background color of a component. If a
component is transparent, it does not paint pixels in its bounds. Rather, it lets the container’s pixels show
through. In order for the background color to take effect, you must make the component opaque by calling
its setOpaque(true) method. The following code creates a JLabel and sets its background color to red and
foreground (or text) color to black:

JLabel testLabel = new JLabel("Color Test");

// First make the JLabel opaque. By default, a JLabel is transparent.
testLabel.setOpaque(true);
testLabel.setBackground(Color.RED);
testLabel.setForeground(Color.BLACK);

 ■ Tip the object of the Color class is immutable. it does not have any method that will let you set the color
component values after you create a Color object. this makes it possible to share Color objects.

Working with Borders
Swing gives you the ability to draw a border around the edges of components. There are many types of
borders:

•	 Bevel border

•	 Soft Bevel border

•	 Etched border

•	 Line border

•	 Titled border

Chapter 2 ■ Swing ComponentS

188

•	 Matte border

•	 Empty border

•	 Compound border

Figure 2-38 shows how the different kinds of borders appear using the Windows look and feel.

Figure 2-39. Creating a group box effect using a JPanel with a titled border

Figure 2-38. Different types of borders

Although you can set a border for any Swing component, the implementation of the Swing component
may ignore it. It is very common to use a titled border with a JPanel to give a grouping effect. Many GUI
tools have a group box GUI component to group the related components. Java does not have a group box
component. If you need a grouping effect, you need to place your related components inside a JPanel, and
set a titled border to it. Figure 2-39 shows a JPanel that has five address related fields, with a titled border
and a title set to Address.

Chapter 2 ■ Swing ComponentS

189

The following snippet of code creates different kinds of borders:

// Create bevel borders
Border bevelRaisedBorder = BorderFactory.createBevelBorder(BevelBorder.RAISED);
Border bevelLoweredBorder = BorderFactory.createBevelBorder(BevelBorder.LOWERED);

// Create soft bevel borders
Border softBevelRaisedBorder = BorderFactory.createSoftBevelBorder(BevelBorder.RAISED);
Border softBevelLoweredBorder = BorderFactory.createSoftBevelBorder(BevelBorder.LOWERED);

// Create etched borders
Border etchedRaisedBorder = BorderFactory.createEtchedBorder(EtchedBorder.RAISED);
Border etchedLoweredBorder = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);

// Create line borders
Border lineBorder = BorderFactory.createLineBorder(Color.BLACK);
Border lineThickerBorder = BorderFactory.createLineBorder(Color.BLACK, 3);

// Create titled borders
Border titledBorderAtTop = BorderFactory.createTitledBorder(etchedLoweredBorder,
 "Title text goes here",
 TitledBorder.CENTER,
 TitledBorder.TOP);

Setting a border for a Swing component is easy: you need to create a border object and use the
setBorder(Border b) method of the component. Border is an interface that is implemented by all classes
whose instances represent a specific kind of border. There is one class for each kind of border. You can also
create a custom border by inheriting a class from the AbstractBorder class. All border-related classes and
the Border interface are in the javax.swing.border package.

Border objects are designed to be shared. Although you can create a border object using the border
class directly, it is advisable to use the javax.swing.BorderFactory class to create a border so that the
border objects can be shared. The BorderFactory class takes care of caching and sharing of border objects.
You just need to use its createXxxBorder() method to create a specific type of border, where Xxx is a border
type. Table 2-18 lists the border classes for all border types.

Table 2-18. Available Border Classes

Type of Border Border Class

Bevel BevelBorder

Soft Bevel SoftBevelBorder

Etched EtchedBorder

Line LineBorder

Titled TitledBorder

Matte MatteBorder

Empty EmptyBorder

Compound CompoundBorder

Chapter 2 ■ Swing ComponentS

190

Border titledBorderAtBottom = BorderFactory.createTitledBorder(etchedLoweredBorder,
 "Title text goes here",
 TitledBorder.CENTER,
 TitledBorder.BOTTOM);

// Create a matte border
Border matteBorder = BorderFactory.createMatteBorder(1,3,5,7, Color.BLUE);

// Create an empty border
Border emptyBorder = BorderFactory.createEmptyBorder();

// Create compound borders
Border twoCompoundBorder = BorderFactory.createCompoundBorder(etchedRaisedBorder, lineBorder);
Border threeCompoundBorder = BorderFactory.createCompoundBorder(titledBorderAtTop,
 twoCompoundBorder);

You can set a border to a component as follows:

myComponent.setBorder(matteBorder);

A bevel border gives you a three-dimensional effect by using shadows and highlights to the inside and
outside edges of the border. You can have a raised or lowered effect. A soft bevel border is a bevel border
with softer corners.

An etched border gives you a carved effect. It comes in two flavors: raised and lowered.
A line border simply draws a line. You can specify the color and thickness of the line.
You can supply a title to any border type. The title of a border is text that can be displayed at a specified

position in the border, such as in the middle of the top/bottom border or above top/below bottom. You
can also specify the justification of the title text, its color, and font. Note that you must have another border
object to use a title border. A title border just lets you supply the title text to another kind of border.

A matte border lets you decorate a border with an icon. If you do not have an icon, you can specify the
border’s thickness.

An empty border, as the name implies, doesn’t display anything. Can you guess why you need an empty
border? A border adds spaces around a component. If you just want to add spaces around a component,
you can use an empty border. An empty border lets you specify the spacing to be used for all four sides
separately.

A compound border is a composite border that lets you combine any two kinds of borders into one
border object. There are no restrictions on the number of levels of nesting. You can combine three borders
by creating a compound border with the first two borders, and then combine the compound border with the
third border to create the final compound border.

Working with Fonts
A font is used to represent text visually such as on a computer screen, printed paper, or any other device. An
object of the java.awt.Font class represents a font in a Java program. You have been using the Font object
in almost every program without referring to the Font class directly. Java took care of displaying the text
in a specific font for you. For example, you have been using buttons, which display a label. To display the
button’s label, Java has been using a default font. You can specify a font for any text that you display in a Java
program using a Font object. Using a Font object in code is easy: create an object of the Font class, and use
the setFont(Font f) method of the component. Let’s define the term “font” and related terms before using
the Font class.

Chapter 2 ■ Swing ComponentS

191

In the computer’s memory, everything is a number represented in terms of 0s and 1s. So a character
is also represented by 0s and 1s in memory. How do you represent a character on a computer screen or a
piece of paper? A character is presented on a screen or a paper using a symbol. The shape of the symbol that
represents a character is called a glyph. You can think of a glyph as a graphic representation (or image) of a
character. The relationship between a character and a glyph is not always one-to-one.

A specific design of glyphs for a set of characters is called a typeface. Note that a typeface is the design
aspect of the visual representation of characters (glyphs) and it does not refer to a specific implementation
of glyphs. Table 2-19 lists some of the categories of typefaces with their descriptions and sample texts. The
sample text in the table may not show in the same typeface if this is viewed on a device (e.g., a Kindle) that
does not support all typefaces. Some names of typefaces are Times, Courier, Helvetica, Garamond, etc.

Table 2-19. Examples of Typefaces

Typeface Description Sample Text

Serif Glyphs have finishing strokes at the end of the line. Note the
difference in how the ending stroke of each character ends for
serif and sans serif. On Windows, it is called Roman. Example:
Times New Roman.

The quick brown fox…

Sans serif Unlike serif, glyphs have no ending strokes. Compare the text
sample for this category and for serif. You will find that glyphs
for sans serif are made up of plain lines. On Windows, it is
called Swiss. Example: Arial.

The quick brown fox…

Cursive It looks like handwritten text where subsequent glyphs in a
word are often joined. It is typically used in calligraphy. On
Windows, it is called Script. Example: Mistral AV.

The quick brown fox…

Fantasy It is a decorative typeface. On Windows, it is called Decorative.
Example: Impact.

The quick brown fox…

Monospace All glyphs that represent all characters are of the same width.
On Windows, it is called Modern. Typically, it is used in
computer programs.

The quick brown fox…

Apart from its shape design, the visual representation of a character has two other components: a style
and a size. The style refers to its characteristics such as bold (blackness or lightness), italic, and regular (or
roman). The size is measured in 10, 12, 14, etc. The height of a character is specified in points, where a point
is 1/72 of an inch. The width of a character is specified in a pitch. A pitch determines how many characters
can be shown in an inch. A typical value for a pitch ranges from 8 to 14.

Now let’s define the term “font.” A font is a set of glyphs in a specific typeface, style, and size to represent
a set of characters. You can have fonts that use the same typeface, but they are of different styles and sizes.
This collection of such fonts (the same typeface but different styles and sizes) is known as a font family. For
example, Times is a font family name that contains fonts like Times Roman, Times Bold, Times Bold Italic, etc.

A font may be categorized as a bitmapped font or a vector font (also known as an object-oriented font
or outline font) depending on the way it is stored and rendered. In a bitmapped font, each character is stored
in a bitmap form (representing every bit) of a particular style and size. When you need to render a character
on a screen or print it on a piece of paper, you need to locate the bitmap of the character of that style and size
and render it. In a vector font, a geometrical algorithm defines each character’s shape without referring to a
specific size. When a character needs to be rendered in a vector font in a specific size, the algorithm is applied
for that size. This is the reason a vector font is also known as a scalable font. TrueType and PostScript are the
font technologies that use vector fonts. All Java implementation are required to support a TrueType font.

Chapter 2 ■ Swing ComponentS

192

The number of fonts available on a computer may vary considerably. Your operating system may install
some fonts, you may add some fonts, or you may delete some fonts. Since Java was designed to work on
various operating systems, it lets you use a logical font family name of a font and it will figure out the best
physical (the real one) font for you. This way, you do not have to worry about the actual font names, and if
they will be available on all computers on which your programs will be executed. Java defines five logical
font family names and maps them to physical font family names depending on the computer it is running
on. The five logical font family names are as follows:

•	 Serif

•	 SansSerif

•	 Dialog

•	 DialogInput

•	 Monospace

You need to specify three elements when you create a font object: the logical family name, the style, and
the size. The following snippet of code creates some Font objects:

// Create serif, plain font of size 10
Font f1 = new Font(Font.SERIF, Font.PLAIN, 10);

// Create SansSerif, bold font of size 10
Font f2 = new Font(Font.SANS_SERIF, Font.BOLD, 10);

// Create dialog, bold font of size 15
Font f3 = new Font(Font.DIALOG, Font.BOLD, 15);

// Create dialog input, bold and italic font of size 15
Font f4 = new Font(Font.DIALOG_INPUT, Font.BOLD|Font.ITALIC, 15);

The Font class contains constants for the logical font family names. If you want to apply more than one
style to a font object, such as bold as well as italic, you need to use a bit mask union of Font.BOLD and Font.
ITALIC as in Font.BOLD|Font.ITALIC.

To set the font for a Swing component, you need to use its setFont() method of the component, like so:

JButton closeButton = new JButton("Close");
closeButton.setFont(f4);

The Font class has several methods that let you work with a font object. For example, you can use the
getFamily(), getStyle(), and getSize() methods to get the family name, style, and size of a font object,
respectively.

Validating Components
A component can be valid or invalid. The phrase “component” in this section also includes containers,
unless specified otherwise. You can use the isValid() method to check if a component is valid. The method
returns true if the component is valid. Otherwise, it returns false. A component is said to be valid if its size
and position have been computed and its children are also valid. If a component is invalid, it means that its
size and position need to be recomputed and it needs to be laid out again in its container.

Chapter 2 ■ Swing ComponentS

193

When you add/remove a component to/from a container, the container is marked invalid. Before the
container is made visible for the first time, the container is validated. The validation process of a container
computes the size and location of all children in its containment hierarchy. Consider the following the
snippet of code to show a frame:

MyFrame frame = new MyFrame("Test Frame");
frame.pack();
frame.setVisible(true);

The pack() method does two things:

•	 First, it computes the size and position of all children of the frame
(that is, validates the frame).

•	 Second, it resizes the frame, so its children just fit into it.

The setVisible() method in the code is smart enough not to validate the frame again because the
pack() method has already validated the frame. If you do not call the pack() method, before calling the
setVisible() method, the setVisible() method will validate the frame.

So, a component is valid before it is displayed for the first time. How does a component become invalid?
Adding/removing a component to/from a container makes a container invalid. Setting some properties such
as the size of a component will also make that component invalid. When a component becomes invalid, its
invalidity is propagated up the containment hierarchy. You can also invalidate a component or container
by calling its invalidate() method. Note that calling the invalidate() method will make the component
invalid, and it propagates the invalidity up the containment hierarchy. The reason it needs to mark all
containers up the containment hierarchy as invalid is that if a component is laid out again (by recomputing
its size/location), it will also affect the other component’s size/position. So, if a component is invalidated, all
components and containers up the containment hierarchy are also marked invalid.

What can you do to validate a component again? You need to use the validate() method of the component
or the container. Unlike the invalidate() method, the validate() method propagates down the containment
hierarchy and it validates all child components/containers of the component on which it is called. You may
need to call the repaint() method after you call the validate() method so that the screen is repainted.

You can also revalidate a component. Note that the revalidation option is only available for a
JComponent and it is not applicable to a container. You can revalidate a component by calling its
revalidate() method. It schedules a validate() method call on the parent container. Which parent
container of the component is validated? Is it the immediate parent, grandparent, or great-grandparent,
etc.? A container can be a validation root. You can test if a container is a validation root by using the
isValidateRoot() method. If this method returns true, the container is a validation root. When you
call the revalidate() method on a component, it keeps going up in the containment hierarchy until
it find a container that is a validation root. JRootPane and JScrollPane are validation roots. The call to
the validate() method for the validation root is scheduled on the event dispatching thread. If there are
multiple calls to revalidate(), they are all combined and a component is revalidated only once.

Painting Components and Drawing Shapes
The painting mechanism is central to any GUI. Do you know what it takes to show you a JFrame on the
screen? It is a very complex process. It is done through painting an image, which you see on the screen as a
JFrame. When you press a JButton inside a JFrame, the region occupied by that JButton is repainted using
different shades and colors to give you an impression that the button has been pressed. Most of the time,
Swing paints the appropriate region of the screen at the appropriate time. You may encounter situations
where it is necessary for you to repaint a region of your Swing component. For example, when you add or
remove a component from a Swing container after it is visible, you need to validate and repaint the container
so that the modified area on the screen is repainted properly.

Chapter 2 ■ Swing ComponentS

194

There is a manager for everything in Swing! You also have a repaint manager that is an instance of the
RepaintManager class. It provides the painting service. You can request to repaint a component by calling
the repaint() method on the component. The repaint() method is overloaded. You can also repaint only
a part of the component instead of the entire component. The calls to the repaint() method are queued to
the event dispatching thread. The repaint manager will repaint the component only once if many requests
for repainting are pending when it starts repainting the component.

How would you perform custom painting on a Swing component? Swing lets you perform custom
painting on a component using a callback mechanism. The JComponent class has a callback method called
paintComponent(Graphics g). The Graphics class is in the java.awt package. It is used to draw on a
component. Note that drawing can be realized on various devices such as on a computer screen, an off-
screen image, or a printer. To implement a custom painting for a component, override its paintComponent()
method. The paintComponent() method in the JComponent class takes care of painting the background of
the component. To make sure that the component’s background is painted properly, you need to invoke the
JComponent’s paintComponent() method from the paintComponent() method of your component. Typical
code for the paintComponent() method is as follows:

import java.awt.Graphics;

public class YourCustomSwingComponent extends ASwingComponent {
 @Override
 public void paintComponent(Graphics g) {
 // Paint the background
 super.paintComponent(g);

 // Your custom painting code goes here
 }
}

The paintComponent() method of a component is called whenever repainting is needed or when the
program calls the repaint() method.

When you call the repaint() method on a Swing component, the repaint manager may paint more
than just the component that you requested to paint. There are many things to consider before a component
is painted. When painting a component, the background of a component and its overlapping area with other
components are the two most important things to consider. If a component is not opaque, the component’s
container must be painted before this component is painted. This is necessary so you do not see through the
component’s garbage background. If a component overlaps another component, at least the overlapping
area must be painted with a consideration that shows the proper color and shape for the overlapping area.
The painting of the overlapping area will include painting of all overlapped components.

A Graphics object has many methods to draw geometrical shapes and strings. You can draw different
shapes such as rectangles, ovals, arcs, etc. A Graphics object has many drawing properties, such as a font, a
color, a coordinate system (called translation), a clip (defines the area for drawing), a component on which
to draw, etc. A Graphics object in the paintComponent() method argument has many properties already set.
For example,

•	 The font is set to the font of the component.

•	 The color is set to the foreground color of the component.

•	 The translation is set to the upper-left corner of the component. The upper-left
corner of the component represents the origin, that is, coordinate (0, 0).

•	 The clip is set to the area of the component that needs to be painted.

Chapter 2 ■ Swing ComponentS

195

You can change these properties of the Graphics object inside the paintComponent() method. However,
you need to be careful if you want to change the translation or clip. You should create a copy of the Graphics
object and use the copy for drawing instead of changing the original Graphics object’s properties. You can
use the create() method of the Graphics class to create a copy of a Graphics object. Make sure that you call
the dispose() method on the copy of the Graphics object to release the system resources that it used up.
A typical logic to copy and use the Graphics objects is as shown:

public void paintComponent(Graphics g) {
 // Create a copy of the passed in Graphics object
 Graphics gCopy = g.create();

 // Change the properties of gCopy and use it for drawing here

 // Dispose the copy of the Graphics object
 gCopy.dispose();
}

There are few things to note when you use a Graphics object for a component that is passed in to the
paintComponent() method.

•	 It uses a Cartesian coordinate system with its origin at the upper-left corner of the
component.

•	 The x-axis extends to the right and y-axis extends down, as shown in Figure 2-40.

Figure 2-40. The coordinate system used by a graphics object inside the paintComponent() method of a
component. It shows the coordinates of four corners of a 600X200 JPanel.

•	 When you draw using a Graphics object, your drawings may extend outside the
boundary of the component. However, any drawing that is outside of the clip area
set in a Graphics object by the repaint manager will be ignored. In fact, the repaint
manager will use only the clip area of the painted component to show it on the screen
after the paintComponent() method returns. This is the reason why you should not
change the clip property of the Graphics object inside a paintComponent() method.
The clip property is set to the area of the component that needs to be painted.

•	 The translation property of a Graphics object is used to set up a coordinate system
for drawing. The Graphics object that is passed in to the paintComponent()
method already has the translation property set up, so the upper-left corner of the
component represents the origin (0,0) of the coordinate system. If you change the
translation property of the Graphics object inside the paintComponent() method,
you better know what you are trying to do.

•	 The drawing is performed using the current color and font of the Graphics object.

Chapter 2 ■ Swing ComponentS

196

There are numerous methods in the Graphics class to let you draw different kinds of shapes, such as a
round rectangle, an arc, a polygon, etc. Table 2-20 lists a few of those methods. For the complete list of the
methods, refer to the API documentation of the Graphics class.

Table 2-20. Methods of the Graphics Class

Method Description

void drawLine(int x1, int y1,
int x2, int y2)

Draws a straight line from point (x1, y1) to point (x2, y2).

void drawRect(int x, int y,
int width, int height)

Draws a rectangle whose upper-left corner’s coordinate is (x, y).
The specified width and height are the width and height of the
rectangle, respectively.

void fillRect(int x, int y,
int width, int height)

It is the same as drawRect() method with two differences. It fills
the area with the current color of the Graphics object. Its width
and height are one pixel less than the specified width and height.

void drawOval(int x, int y,
int width, int height)

Draws an oval that fits into a rectangle defined with point (x, y)
as its upper-left corner and the specified width and height. If you
specify the same width and height, it will draw a circle.

void fillOval(int x, int y,
int width, int height)

It draws an oval and fills the area with the current color.

void drawstring(String str,
int x, int y)

It draws the specified string str. The baseline of the leftmost
character is at point (x, y).

Typically, you use a JPanel as a canvas for custom drawing. Listing 2-13 contains the code that shows a
class called DrawingCanvas, which is inherited from the JPanel class. In its constructor, it sets its preferred
size. It overrides the paintComponent() method to draw some custom shapes and strings. Figure 2-41 shows
the screen when a DrawingCanvas class is run.

Listing 2-13. A Custom JPanel Used as a Canvas for Drawing

// DrawingCanvas.java
package com.jdojo.swing.component;

import javax.swing.JPanel;
import java.awt.Graphics;
import java.awt.Dimension;
import java.awt.Graphics2D;
import java.awt.BasicStroke;
import javax.swing.JFrame;

public class DrawingCanvas extends JPanel {
 public DrawingCanvas() {
 this.setPreferredSize(new Dimension(600, 75));
 }

Chapter 2 ■ Swing ComponentS

197

 @Override
 public void paintComponent(Graphics g) {
 // Paint its background
 super.paintComponent(g);

 // Draw a line
 g.drawLine(10, 10, 50, 50);

 // Draw a rectangle
 g.drawRect(80, 10, 40, 20);

 // Draw an oval
 g.drawOval(140, 10, 40, 20);

 // Fill an oval
 g.fillOval(200, 10, 40, 20);

 // Draw a circle
 g.drawOval(250, 10, 40, 40);

 // Draw an arc
 g.drawArc(300, 10, 50, 50, 60, 120);

 // Draw a string
 g.drawString("Hello Swing!", 350, 30);

 // Draw a thicker rectangle using Graphics2D
 Graphics2D g2d = (Graphics2D)g;
 g2d.setStroke(new BasicStroke(4));
 g2d.drawRect(450, 10, 50, 50);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Sample Drawings Using a Graphics Object");
 frame.getContentPane().add(new DrawingCanvas());
 frame.pack();
 frame.setVisible(true);
 }
}

Figure 2-41. Drawing shapes on a custom JPanel using a graphics object

Chapter 2 ■ Swing ComponentS

198

At runtime, you get an instance of Graphics2D class passed in to the paintComponent() method. The
Graphics2D class inherits from the Graphics class and it has a very powerful API to draw geometrical shapes.
For example, when you use a Graphics object, it draws shapes with a stroke (line width) of 1.0. If you use
Graphics2D, you can use a custom stroke. The following snippet of code in the paintComponent() method
of your DrawingCanvas class uses a stroke of 4.0 to draw a rectangle. To use the Graphics2D API inside the
paintComponent() method, cast the passed in Graphics object to Graphics2D as shown:

Graphics2D g2d = (Graphics2D)g;
g2d.setStroke(new BasicStroke(4));
g2d.drawRect(450, 10, 50, 50);

The JComponent class has a getGraphics() method that returns a Graphics object for the component. If
you need to draw on a component outside its paintComponent() method, you can use this method to get the
Graphics object for the component to use it for drawing.

Immediate Painting
Swing takes care of repainting the regions of components that are visible at appropriate time. You can also
request a repainting of a component by calling its repaint() method. The call to the repaint() method
is asynchronous. That is, it is not carried out immediately. It is queued on the event dispatching thread
and it will be carried out sometime in future. Sometimes a situation may warrant immediate painting. Use
the paintImmediately() method of the component to carry out the painting immediately. The method is
overloaded. The two versions are declared as follows:

•	 void paintImmediately(int x, int y, int w, int h)

•	 void paintImmediately(Rectangle r)

 ■ Tip it is more efficient to call the repaint() method if you need to paint more frequently or in
a loop. multiple calls to the repaint() method are coalesced into one call, whereas the calls to the
paintImmediately() method are carried out individually.

Double Buffering
Different techniques can be used to paint a component on the screen. If a component is painted directly on
the screen, it is known as an on-screen painting. If a component is painted using an off-screen buffer and
that buffer is copied on to the screen in one step, it is called double buffering. There is another technique to
paint a component that is called page flipping. Page flipping uses the computer’s graphics card’s capability
to be used a video pointer, which is the address of the video contents, to display a video. Similar to double
buffering, you draw the content to be displayed on an off-screen buffer. When you are done drawing onto an
off-screen buffer, you change the video pointer of the graphics card to this off-screen buffer, and the graphics
card will take care of displaying the images on the screen. Unlike double buffering, page flipping does not
copy the contents from an off-screen buffer to an on-screen buffer. Rather, it redirects the graphics card
to the new buffer. Double buffering and page flipping provide a better user experience by avoiding screen
flickering when components are being painted.

Chapter 2 ■ Swing ComponentS

199

Swing uses double buffering to paint all components. It lets you disable double buffering for a
component. There is a catch when you disable the double buffering. Sometimes, disabling double buffering
may not really do anything. If a container is being painted, Swing checks if the double buffering is enabled
for the container. If the double buffering is enabled for the container, all its child components will use double
buffering. Therefore, it does not help too simply disable double buffering on a component. If you want to
disable double buffering, you may just want to disable it at the top-most level of the containment hierarchy
that is the JRootPane. The repaint manager also lets you enable/disable double buffering globally for an
application, as shown:

RepaintManager currentManager = RepaintManager.currentManager(component);
currentManager.setDoubleBufferingEnabled(false);

When double buffering is enabled, Swing will create an off-screen image and pass the graphics of that
off-screen image to the paintComponent() method of the JComponent. When you draw anything using a
Graphics object in the paintComponent() method, essentially you are drawing on the off-screen image.
Finally, Swing will copy the off-screen image to the screen.

Double buffering also lets you create an off-screen image in your program. You can draw to that
off-screen image and use that image wherever you want it in your application. You need to use the
createImage() method of a component to create an off-screen image. The following code creates a custom
JPanel called OffScreenImagePanel. In its paintComponent() method, it creates an off-screen image,
fills the image with the color red, and uses that image to draw on to the JPanel. This is a trivial example.
However, it demonstrates the steps that you need to perform to use an off-screen image in an application.

public class OffScreenImagePanel extends JPanel{
 public OffScreenImagePanel() {
 this.setPreferredSize(new Dimension(200, 200));
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 // Create an off-screen image and fill a rectangle with red
 int w = this.getWidth();
 int h = this.getHeight();
 Image offScreenImage = this.createImage(w, h);
 Graphics imageGraphics = offScreenImage.getGraphics();
 imageGraphics.setColor(Color.RED);
 imageGraphics.fillRect(0, 0, w, h);

 // Draw the offscreen image on the JPanel
 g.drawImage(offScreenImage, 0, 0, null);
 }
}

Chapter 2 ■ Swing ComponentS

200

JFrame Revisited
You have been using JFrames in this chapter in almost every program you have written. In this section,
I discuss some important events and properties of the JFrame.

You can set the state of a JFrame programmatically using the setExtendedState(int state) method.
The state is specified using constants defined in the java.awt.Frame class from which the JFrame class is
inherited.

// Display the JFrame maximized
frame.setExtendedState(JFrame.MAXIMIZED_BOTH);

Usually, you would change the state of a JFrame using the state buttons or state menu provided in its
title bar’s corners. Table 2-21 lists the constants that can be used to change the state of a JFrame.

Table 2-21. Constants That Define States of a JFrame

JFrame State Constants Description

NORMAL JFrame is displayed in normal size.

ICONIFIED JFrame is displayed in minimized state.

MAXIMIZED_HORIZ JFrame is displayed maximized horizontally, but in normal size vertically.

MAXIMIZED_VERT JFrame is displayed maximized vertically, but in normal size horizontally.

MAXIMIZED_BOTH JFrame is displayed maximized horizontally as well as vertically.

Sometimes you may want to use a default button in your JFrame or JDialog. A default button is an
instance of the JButton class, which is activated when the user presses a key on the keyboard. A key that
activates the default button is defined by the look and feel. Typically, the key to activate the default button
is the Enter key. You can set a default button for a JRootPane, which is present in a JFrame, JDialog,
JWindow, JApplet, and JInternalFrame. Usually, you set the OK button as a default button on a JDialog. If a
JRootPane has a default button set, pressing the Enter key will activate that button, and if you have an action-
performed event handler added to that button, your code will be executed.

// Create a JButton
JButton okButton = new JButton("OK");

// Add event handler to okButton here...

// Set okButton as the default button
frame.getRootPane().setDefaultButton(okButton);

You can add a window listener to a JFrame or any other top-level Swing window that will notify you of
the seven kinds of changes in a window’s state. The following snippet of code adds a window listener to a
JFrame named frame. If you are interested in listening for only a few window state changes, you can use the
WindowAdapter class instead of the WindowListener interface. The WindowAdapter class provides an empty
implementation of all the seven methods in the WindowListener interface.

Chapter 2 ■ Swing ComponentS

201

frame.addWindowListener(new WindowListener() {
 @Override
 public void windowOpened(WindowEvent e) {
 System.out.println("JFrame has been made visible first time");
 }

 @Override
 public void windowClosing(WindowEvent e) {
 System.out.println("JFrame is closing.");
 }

 @Override
 public void windowClosed(WindowEvent e) {
 System.out.println("JFrame is closed.");
 }

 @Override
 public void windowIconified(WindowEvent e) {
 System.out.println("JFrame is minimized.");
 }

 @Override
 public void windowDeiconified(WindowEvent e) {
 System.out.println("JFrame is restored.");
 }

 @Override
 public void windowActivated(WindowEvent e) {
 System.out.println("JFrame is activated.");
 }

 @Override
 public void windowDeactivated(WindowEvent e) {
 System.out.println("JFrame is deactivated.");
 }
});

// Use the WindowAdapter class to intercept only the window closing event
frame.addWindowListener(new WindowAdapter() {
 @Override
 public void windowClosing(WindowEvent e) {
 System.out.println("JFrame is closing.");
 }
});

When you are done with a window (JFrame, JDialog, or JWindow), you should call its dispose()
method, which will make it invisible and release the resources to the operating system. Note that the
dispose() method does not destroy or garbage collect the window object. As long as you hold the window’s
reference and it is reachable, Java would not destroy your window and you can again display it calling its
setVisible(true) method.

Chapter 2 ■ Swing ComponentS

202

Summary
Swing provides a huge set of components to develop GUI applications. Most of the Swing components are
lightweight components that redraw using Java code without having using native peers. The JComponent
class is the base class for all Swing components. A component that can contain other components is called a
container. Swing provides two types of containers: top-level containers and non top-level containers. A top-
level container is not contained within another container and it can be displayed directly on the desktop. An
instance of the JFrame class represents a top-level container.

An object of the JButton class represents a button. A button is also known as a push button or a
command button. The user presses or clicks a JButton to perform an action. A button can display text, an
icon, or both.

An object of the JPanel class represents a container that can contain other components. Typically, a
JPanel is used to group related components together. A JPanel is a non top-level container.

An object of the JLabel class represents a label component that displays text, an icon, or both. Typically,
the text in a JLabel is describes another component.

Swing provides several text components that let you display and edit different types of text. An object of
the JTextField class is used to work with one line plain text. An object of the JTextArea is used to work with
multiline plain text. An object of the JPasswordField is used to work with one line text in which the actual
characters in the text are replaced with echo characters. An object of the JFormattedTextField lets you work
with one line plain text where you can specify the format for the text such as displaying a date in mm/dd/
yyyy format. An object of the JEditorPane lets you work with styled text such as in HTML and RTF formats.
An object of the JTextPane lets you work with styled documents with embedded images and components.
You can add an input verifier to a text component to validate the text entered by the user. An instance of the
InputVerifier class acts as an input verifier. You can set an input verifier for a text component using the
setInputVerifier() method of the JComponent class.

Swing provides many components that let you select one or more items from a list of items. Such
components are objects of the JToggleButton, JCheckBox, JRadioButton, JComboBox, and JList classes.
A ToggleButton can be in depressed or undepressed state and it represents a yes/no choice. A JCheckBox
can be used to represent a yes/no choice. Sometimes a group of JCheckBoxes is used to let the user select
zero or more options. A group of JRadioButton is used to present users a set of mutually exclusive options.
A ComboBox is used to provide the user with a mutually exclusive set of choices where the user, optionally,
can enter a new choice value. A ComboBox takes less space on the screen as compared to other choices,
providing components because it folds all its choices and the user has to open the list of choices before he
can make a selection. A JList lets the user select zero or multiple choices from a list of choices. All choices
in a JList are visible to the users.

A JSpinner component combines the benefits of a JFormattedTextField and an editable JComboBox.
It lets you set a list of choices as you set in a JComboBox, and at the same time, you can also apply a format to
the displayed value. It shows only one value at a time from the list of choices. It lets you enter a new value.

A JScrollBar is used to provide scrolling capability for viewing a component that is bigger in size
than the available space. A JScrollBar can be placed vertically or horizontally. The scrolling is performed
by dragging a knob along the track of the JScrollBar. You need to write the logic to provide the scrolling
capability using the JScrollBar component.

A ScrollPane is a container that is used to wrap a component that is bigger in size than the available
space. The ScrollPane provides automatic scrolling capabilities in horizontal and vertical directions.

A JProgressBar is used to display the progress of a task. It can have a horizontal or vertical orientation.
It has three values associated with it: the current value, the minimum value, and the maximum value. If the
progress of a task is not known, the JProgressBar is said to be in an indeterminate state.

A JSlider lets you select a value graphically from a set of values between two integers by sliding a knob
along a track.

Chapter 2 ■ Swing ComponentS

203

A JSeparator is a handy component when you want to add a separator between two components or
two groups of components. Typically, a JSeparator is used in a menu to separate groups of related menu
items. Typically, it appears as a horizontal or vertical solid line.

A menu component is used to provide a list of actions to the user in a compact form. An object
the JMenuBar class represents a menu bar. An object of the JMenu, JMenuItem, JCheckBoxMenuItem, and
JRadioButtonMenuItem class represent a menu item.

A toolbar is a group of small buttons that provides commonly used actions to the user in a JFrame.
Typically, you provide a toolbar along with a menu.

A JTable is used to display and edit data in the tabular form. It presents the data in the form of rows and
columns. Each column has a column header. Rows and columns are references using indexes starting at 0.

A JTree is used to display hierarchical data in a tree-like structure. Each item in a JTree is called a node.
A node that has children is called a branch node. A node that has no children is called a leaf node. A branch
node is called the parent node for its child nodes. The first node in the JTree that has no parent is called the
root node.

A JTabbedPane component acts like a container for other Swing components, arranging them in a
tabbed fashion. It can display tabs using a title, an icon, or both. Contents of only one tab are visible at a
time. A JTabbedPane lets you share the space between multiple tabs.

A JSplitPane is a splitter that can be used to split space between two components. The splitter bar can
be displayed horizontally or vertically. When the available space is less than the space needed to display
the two components, the user can move the splitter bar up/down or left/right so one component gets more
space than the other. If there is enough space, both components can be shown fully.

A JDialog is a top-level Swing container. It is used as a temporary top-level container (or as a popup
window) to aid in the working with the main window to get the user’s attention or user’s input. The
JOptionPane class provides many static methods to show different types of dialogs to the user using an
instance of the JDialog class.

A JFileChooser lets the user select a file/directory from the file system using a built-in dialog.
A JColorChooser lets the user choose a color graphically using a built-in dialog.

A JWindow is an undecorated top-level container. It is not a commonly used top-level container, except
as a splash window that is displayed once when the application is launched. It automatically disappears after
a few seconds.

Swing lets you set the background and foreground colors of a component. An object of the java.awt.
Color class represents a color. You can specify the color using the red, green, blue, and alpha components
or using the hue, saturation, and brightness components. The Color class is immutable. It provides several
constants that represent commonly used colors, for example, Color.RED and Color.BLUE constants
represent the red and blue colors.

In Swing, you can draw a border around components. A border is represented by an instance of the
Border interface. Different types of borders exist: bevel border, soft bevel border, etched border, line border,
titled border, matte border, empty border, and compound border. The BorderFactory class provides factory
methods to create all types of borders.

Swing lets you set the font for text displayed in components. An object of the java.awt.Font class
represents a font in a Java program.

A component can be valid or invalid. The isValid() method of the component returns true if the
component is invalid. An invalid component indicates that its position and size need to be recomputed and
it needs to be laid out again. A component is valid before it is made visible the first time. Adding/removing
components and changing properties that may change component’s position, size, or both may make the
component invalid. Calling the validate() method makes the component valid again.

Swing lets you draw many types of shapes (circles, rectangles, lines, polygons, etc.) using the Graphics
object. Typically, you use a JPanel as a canvas for drawing shapes.

Swing provides two ways to repaint components: asynchronously and synchronously. Calling the
repaint() method paints the component asynchronously. Calling the paintImmediately() method paints
the component immediately.

Chapter 2 ■ Swing ComponentS

204

Painting components can be performed on-screen or off-screen. The on-screen painting may result in
flickers. The painting can be performed off-screen using a buffer and the buffer can be copied in one shot
on-screen to avoid flickering. Such an off-screen painting is called double buffering and it provides a better
user experience by providing smooth painting on the screen.

QUESTIONS AND EXERCISES

1. what is the superclass of all Swing components?

2. what class in Swing represents a button? what are the advantages of creating
buttons in Swing using an Action object?

3. Describe a few uses of the JPanel Swing component.

4. what Swing component will you use to display an image?

5. Create a login form that lets users enter a user iD and a password. the form should
have two buttons labeled Login in and Cancel. when the Log in button is clicked,
a dialog box should be displayed to let the users know about the login status. the
valid user iD and password are jdk9 and letmein, respectively. the application
should exit when the Cancel button is clicked.

6. Create a plain text editor like notepad on windows. the user should be able to load
the contents of a text file in the editor, modify the contents, and save the changes to
the file. Use menus, toolbars, JTextArea, and other Swing components to develop
this editor.

7. what Swing component would you use to display htmL pages in your application?

8. what Swing component would you use to let users edit styled documents in rtF format?

9. Swing provides the following components to let users select zero or more items
from a list of items: JToggleButton, JCheckBox, JRadioButton, JComboBox, and
JList. which of these components are suitable to present multiple choice items
such as hobbies? which one of these components will you use if you have a list of
50 states and want to enable users to select only one?

10. when do you need to use a JScrollPane component?

11. Suppose you have to let the user select an integer between 1 and 10. which Swing
component will you use, JSpinner or JSlider, provided you do not have a space
constraint?

12. when do you use a JFileChooser component?

13. what is the fully qualified name of the class that represents a color in Swing
applications?

14. what is double buffering?

15. Suppose that you are developing a JFrame that will let the users enter and save
some data. the data must be saved before the JFrame is closed. what event will
you capture to write this logic?

205© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_3

CHAPTER 3

Advanced Swing

In this chapter, you will learn:

•	 How to use labels in Swing components in HTML format

•	 About the threading model in Swing and how the event dispatch thread works

•	 How to execute a long-running task off the event dispatch thread

•	 How to use pluggable look and feel in Swing

•	 How to perform drag and drop between Swing components

•	 How to create a multiple document interface (MDI) application

•	 How to use the Toolkit class to make a beep and know the screen details

•	 How to decorate Swing components using JLayer

•	 How to create translucent windows

•	 How to create shaped windows

All example programs in this chapter are a member of a jdojo.swing.advanced module, as declared in
Listing 3-1.

Listing 3-1. The Declaration of a jdojo.swing.advanced Module

// module-info.java
module jdojo.swing.advanced {
 requires java.desktop;

 exports com.jdojo.swing.advanced;
}

Swing and AWT APIs are defined in the java.desktop module. Your module that uses Swing needs to
read the java.desktop module as the jdojo.swing.advanced module does.

https://doi.org/10.1007/978-1-4842-3546-1_3

Chapter 3 ■ advanCed Swing

206

Using HTML in Swing Components
Usually, you display text on a component using one font and color, and in one line. If you want to display
text on a component using different fonts and colors or in multiple lines, you can do so using an HTML
string as the text for the component. Swing components have built-in support for displaying HTML text as
their labels. You can use an HTML-formatted string as a label for a JButton, JMenuItem, JLabel, JToolTip,
JTabbedPane, JTree, etc. using an HTML string, which should start and end with the <html> and </html>
tags, respectively. For example, if you want to display the text “Close Window” on a JButton as its label
(Close in boldface font and Window in plain font), you can do so as follows:

JButton b1 = new JButton("<html>Close Window</html>");

Most of the time, placing an HTML string inside <html> and </html> tags will work fine. However, if
a line in an HTML string starts with a slash (/), it may not display correctly. For example, <html>/Close
Window</html> will display nothing and <html>/Close Window Problem</html> will display
only Problem. To avoid this kind of problem, you can always place your HTML-formatted string inside the
<body> HTML tag as in <html><body>/Close Window</body></html> and it will display as /Close Window.
How can you display a string that contains HTML tags as a label? Swing lets you disable the default HTML
interpretation using the html.disable component’s client property. The following snippet of code disables
the HTML property for a JButton and uses HTML tags in its label:

JButton b3 = new JButton();
b3.putClientProperty("html.disable", Boolean.TRUE);
b3.setText("<html><body>HTML is disabled</body></html>");

You must set the text for the component after you disable the html.disable client property. The
following snippet of code shows some examples of using HTML formatted string as text for a JButton.
The buttons are shown in Figure 3-1 when the code was run on Windows XP.

JButton b1 = new JButton();
JButton b2 = new JButton();
JButton b3 = new JButton();
b1.setText("<html><body>Close Window</body></html>");
b2.setText("<html><body>Line 1
Line 2</body></html>");

// Disable HTML text display for b3
b3.putClientProperty("html.disable", Boolean.TRUE);
b3.setText("<html><body>HTML is disabled</body></html>");

Figure 3-1. Using an HTML-formatted string as text for Swing component labels

Chapter 3 ■ advanCed Swing

207

Threading Model in Swing
Most classes in Swing are not thread-safe. They were designed to work with only one thread. It does not
mean that you cannot use multiple threads in a Swing application. All it means is that you must understand
Swing’s thread model to write a thread-safe Swing application.

Swing’s thread-safety rule is very simple. It states that once a Swing component has been realized, you
must modify or access that component’s state on the event dispatch thread. A component is considered to
be realized if it has been painted or it is ready to be painted. A top-level container in Swing is realized when
you call its pack(), setVisible(true), or show() method for the first time. When a top-level container is
realized, all of its children are also realized.

What is the event dispatch thread? It is a thread automatically created by the JVM when it detects that
it is working with a Swing application. The JVM uses this thread to execute the Swing component’s event
handlers. Suppose you have a JButton with an action listener. When you click the JButton, the code in the
actionPerformed() method, which is the JButton’s clicked event handler code, is executed by the event
dispatch thread. You have used a JButton in examples in previous chapters. You never paid attention to the
thread that executed the actionPerformed() method of its action listener. Typically, you need not concern
yourself about the threading issue in simple Swing applications like the ones you have been using. Now
that you know an event dispatch thread exists in every Swing application, let’s unravel the mystery of how it
works. You use the following two helper classes used in a Swing application to deal with its threading model:

•	 SwingUtilities

•	 SwingWorker

How do you know that your code is executing in the event dispatch thread? It is very simple to
know whether your code is executing in the event dispatch thread or not, by using the static method
isEventDispatchThread() of the SwingUtilities class. It returns true if your code is executing in the event
dispatch thread. Otherwise, it returns false. For debugging purposes, you can write the following statement
anywhere in your Java code. If it prints true, it means your code was executed in the event dispatch thread.

System.out.println(SwingUtilities.isEventDispatchThread());

Consider the program shown in Listing 3-2.

Listing 3-2. A Bad Swing Application

// BadSwingApp.java
package com.jdojo.swing.advanced;

import javax.swing.SwingUtilities;
import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.JComboBox;

public class BadSwingApp extends JFrame {
 JComboBox<String> combo = new JComboBox<>();

 public BadSwingApp(String title) {
 super(title);
 initFrame();
 }

Chapter 3 ■ advanCed Swing

208

 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 contentPane.add(combo, BorderLayout.NORTH);

 // Add an ItemEvent listener to the combobox
 combo.addItemListener(e ->
 System.out.println("isEventDispatchThread(): " +
 SwingUtilities.isEventDispatchThread()));

 combo.addItem("First");
 combo.addItem("Second");
 combo.addItem("Third");
 }

 public static void main(String[] args) {
 BadSwingApp badSwingApp = new BadSwingApp("A bad Swing App");
 badSwingApp.pack();
 badSwingApp.setVisible(true);
 }
}

The program is a simple Swing application, but it contains a potential bug. It displays a JComboBox in
a JFrame. In the initFrame() method, it adds an item listener to the JComboBox. Then it adds three items
to the JComboBox. The item listener simply prints a message showing whether it is executed by the event
dispatch thread. As usual, you run the application by creating the frame, packing it, and making it visible.
The application prints the following text to the standard output:

isEventDispatchThread(): false

Did I not say that it is the job of the event dispatch thread to execute events of all Swing components?
Let’s not lose hope, so select another item from the combo box such as "Second" or "Third" when the
application is running. You would see the following message printed to the standard output:

isEventDispatchThread(): true

The first time, the item listener event for the combo box is executed on a non-event-dispatch thread,
and from the second time onward, it is executed on the event dispatch thread. To know why this is
happening in this small application, you need to know when the event dispatch thread is created, and
when it starts handling events. The event dispatch thread waits for the events that are generated from the
user’s interaction with the GUI. Once the GUI is created, all the users’ interactions with it are automatically
handled by the event dispatch thread. In this case, the “main” thread created the BadSwingApp frame in the
main() method. The item event was triggered when the code added the first item to the JComboBox even
before GUI was created and shown. Since the “main” thread ran the creation of the BadSwingApp frame, the
main thread also handled the item event. There are two problems with this program.

It is not a good practice to add event handlers to a component first, and then do something that
fires that event handler before the GUI is shown. Make it a rule of thumb to add all event handlers to a
component at the end of the GUI-building code. You can fix this problem by just moving the addItem() calls
before the addItemListener() call in the initFrame() method.

Chapter 3 ■ advanCed Swing

209

You need to run all GUI code—from GUI building to making it visible—on the event dispatch thread.
This is also a simple thing to do. You need to use the invokeLater(Runnable r) static method of the
SwingUtilities class. The method takes a Runnable as its argument. It schedules the Runnable to run on the
event dispatch thread. Here is the correct way to start a Swing application. You have not followed this way of
starting your Swing application in any examples in the previous chapters. You always created and showed
your frames in the main() method, which used the main thread to build and show the GUI. I did not follow
the correct way of building and showing the GUI, because my focus was to demonstrate the topic that I was
discussing. This is the right time for you to learn how to start your Swing applications correctly.

// Correct way to start a Swing application
SwingUtilities.invokeLater(() -> {
 BadSwingApp badSwingApp = new BadSwingApp("A bad Swing App");
 badSwingApp.pack();
 badSwingApp.setVisible(true);
});

If you replace the existing code inside the main() method of Listing 3-2 with this code, the application
will print isEventDispatchThread(): true when it is run, because the invokeLater() method of the
SwingUtilities class will schedule the GUI-building code to run on the event dispatch thread. Once you
start your application this way, it guarantees that all event handlers for your application will be executed on
the event dispatch thread. The call to the SwingUtilities.invokeLater(Runnable r) method will start the
event dispatch thread if it is not already started.

The SwingUtilities.invokeLater() method returns immediately and the run() method of its
Runnable argument is executed asynchronously. That is, its run() method’s execution is queued to the event
dispatch thread for later execution.

There is another important static method called invokeAndWait(Runnable r) in the SwingUtilities
class. This method is executed synchronously and it does not return until the run() method of its
Runnable argument has finished executing on the event dispatch thread. This method may throw an
InterruptedException or InvocationTargetException.

 ■ Tip the SwingUtilities.invokeAndWait(Runnable r) method should not be called from the event
dispatch thread because the thread that executes this method call waits until the run() method has finished. if
you execute this method from the event dispatch thread, it will be queued to the event dispatch thread and the
same thread (the event dispatch thread) will be waiting. executing this method call in the event dispatch thread
generates a runtime error.

Sometimes you may want to use the invokeAndWait() method of the SwingUtilities class to start a
Swing application instead of the invokeLater() method. For example, the following snippet of code starts a
Swing application and prints a message on the console that the application has started:

try {
 SwingUtilities.invokeAndWait(() -> {
 JFrame frame = new JFrame();
 frame.pack();
 frame.setVisible(true);
 });

Chapter 3 ■ advanCed Swing

210

 System.out.println("Swing application is running...");

 /* Perform some non-Swing related work here... */

} catch (Exception e) {
 e.printStackTrace();
}

Sometimes you may have to perform a time-consuming task in a Swing application. If you perform
the time-consuming task on the event dispatch thread, your application will become unresponsive, which
users are not going to like. You should perform long tasks in a separate thread other than the event dispatch
thread. Note that it is likely that when the task is finished, you will want to update the GUI or display
a result in a component, which is part of your GUI. This will require you to access Swing components
from a non-event dispatch thread. You can use the invokeLater() and invokeAndWait() methods of the
SwingUtilities class to update the Swing component from your separate thread. However, Swing provides
a SwingWorker class, which makes it easy to work with multiple threads in a Swing application. It takes care
of starting a new thread and executing some pieces of code in a new background thread and some pieces
of code in the event dispatch thread. You need to know which methods in the SwingWorker class will be
executed in the new thread and the event dispatch thread.

The SwingWorker<T,V> class is declared abstract. The type parameter T is the result type produced
by this class and the type parameter V is the intermediate result type. You must create your custom class
inheriting from it. It contains a few methods of interest where you would write your custom code:

•	 doInBackground(): This is the method where you write the code to perform a time-
consuming task. It is executed in a separate worker thread. If you want to publish
intermediate results, you can call the publish() method of the SwingWorker class
from this method, which in turn will call its process() method. Note that you are not
supposed to access any Swing component in this method, as this method does not
execute on the event dispatch thread.

•	 process(): This method is called as a result of a publish() method call. This
method executes on the event dispatch thread, and you are free to access any Swing
component in this method. A call to the process() method may be the result of
many calls to the publish() method. Here are the method signatures for these two
methods:

protected final void publish(V... chunks)
protected void process(List<V> chunks)

The publish() method accepts a varargs argument. The process() method
passes all arguments to the publish() method packed in a List. If more than
one call to the publish() method is combined, the process() method gets all
those arguments in its List argument.

•	 done(): When the doInBackground() method finishes, normally or abnormally,
the done() method is called on the event dispatch thread. You can access Swing
components in this method. By default, this method does nothing.

•	 execute(): You call this method when you want to start executing your task in a
separate thread. This method schedules the SwingWorker object to be executed on a
worker thread.

Chapter 3 ■ advanCed Swing

211

•	 get(): This method returns the result of the task as returned from the
doInBackground() method. If the SwingWorker object has not finished executing the
doInBackground() method, the call to this method blocks until the result is ready. It
is not suggested to call this method on the event dispatch thread, as it will block all
events until it returns.

•	 cancel(boolean mayInterruptIfRunning): This method cancels the task if it is still
running. If the task has not been started, the task never runs. Make sure to check
for the cancelled state and for any interruptions in the doInBackground() method
and exit the method accordingly. Otherwise, your process will not respond to the
cancel() call.

•	 isCancelled(): It returns true if the process has been cancelled. Otherwise, it
returns false.

•	 isDone(): It returns true if the task has completed. A task may complete normally,
by throwing an exception, or by cancellation. Otherwise, it returns false.

 ■ Tip it is important to note that a SwingWorker object is of a use-and-throw kind. that is, you cannot use it
more than once. Calling its execute() method more than once does not do anything.

Let’s start discussing a simple use of the SwingWorker class. Suppose you want to perform a time-
consuming task that computes a number, say an integer, in a separate thread. You want to retrieve the result
of the processing by polling. That is, you will periodically check if the process has finished processing. Here
is a simple use of the SwingWorker class:

// First, create a custom SwingWorker class, say MySwingWorker.
public class MySwingWorker extends SwingWorker<Integer, Integer> {
 @Override
 protected Integer doInBackground() throws Exception {
 int result = -1;

 // Write code to perform the task

 return result;
 }
}

// Create an object of your SwingWorker class and execute the task
MySwingWorker mySW = new MySwingWorker();
mySW.execute();

// Keep checking for the result periodically. You need to wrap the
// get() call inside a try-catch to handle any exceptions.
if (mySW.isDone()) {
 int result = mySW.get();
}

Chapter 3 ■ advanCed Swing

212

Listing 3-3 and Listing 3-4 demonstrate how the SwingWorker class works. When you run the code in
Listing 3-4, it displays a frame, shown in Figure 3-2. You can start the task by clicking the Start button. You
can cancel the task anytime by clicking the Cancel button. The intermediate result is displayed in a JLabel.
The SwingWorkerProcessor class is simple. It accepts a SwingWorkerFrame, a counter, and a time interval.
It computes the sum of 1 to the number to the counter. It sleeps for the specified time interval after it adds
a number to the result. It displays the intermediate iteration and the final result using the process() and
done() methods.

Listing 3-3. A Custom SwingWorker Class

// SwingWorkerProcessor.java
package com.jdojo.swing.advanced;

import javax.swing.SwingWorker;
import java.util.List;

public class SwingWorkerProcessor extends SwingWorker<Integer, Integer> {
 private final SwingWorkerFrame frame;
 private int iteration;
 private int intervalInMillis;

 public SwingWorkerProcessor(SwingWorkerFrame frame, int iteration,
 int intervalInMillis) {
 this.frame = frame;
 this.iteration = iteration;

 if (this.iteration <= 0) {
 this.iteration = 10;
 }

 this.intervalInMillis = intervalInMillis;

 if (this.intervalInMillis <= 0) {
 this.intervalInMillis = 1000;
 }
 }

 @Override
 protected Integer doInBackground() throws Exception {
 int sum = 0;
 for (int counter = 1; counter <= iteration; counter++) {
 sum = sum + counter;

 // Publish the result to the GUI
 this.publish(counter);

 // Make sure it listens to an interruption and exits this
 // method by throwing an appropriate exception
 if (Thread.interrupted()) {
 throw new InterruptedException();
 }

Chapter 3 ■ advanCed Swing

213

 // Make sure the loop exits, when the task is cancelled
 if (this.isCancelled()) {
 break;
 }

 Thread.sleep(intervalInMillis);
 }

 return sum;
 }

 @Override
 protected void process(List<Integer> data) {
 for (int counter : data) {
 frame.updateStatus(counter, iteration);
 }
 }

 @Override
 public void done() {
 frame.doneProcessing();
 }
}

Listing 3-4. A Swing Application to Demonstrate How a SwingWorker Class Works

// SwingWorkerFrame.java
package com.jdojo.swing.advanced;

import javax.swing.JFrame;
import java.awt.Container;
import javax.swing.JLabel;
import javax.swing.JButton;
import java.awt.BorderLayout;
import java.util.concurrent.ExecutionException;
import javax.swing.SwingUtilities;

public class SwingWorkerFrame extends JFrame {
 String startMessage = "Please click the start button...";
 JLabel statusLabel = new JLabel(startMessage);
 JButton startButton = new JButton("Start");
 JButton cancelButton = new JButton("Cancel");
 SwingWorkerProcessor processor;

 public SwingWorkerFrame(String title) {
 super(title);
 initFrame();
 }

Chapter 3 ■ advanCed Swing

214

 private void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();
 cancelButton.setEnabled(false);

 contentPane.add(statusLabel, BorderLayout.NORTH);
 contentPane.add(startButton, BorderLayout.WEST);
 contentPane.add(cancelButton, BorderLayout.EAST);

 startButton.addActionListener(e -> startProcessing());
 cancelButton.addActionListener(e -> cancelProcessing());
 }

 public void setButtonStatus(boolean canStart) {
 if (canStart) {
 startButton.setEnabled(true);
 cancelButton.setEnabled(false);
 } else {
 startButton.setEnabled(false);
 cancelButton.setEnabled(true);
 }
 }

 public void startProcessing() {
 setButtonStatus(false);
 processor = new SwingWorkerProcessor(this, 10, 1000);
 processor.execute();
 }

 public void cancelProcessing() {
 // Cancel the processing
 processor.cancel(true);
 setButtonStatus(true);
 }

 public void updateStatus(int counter, int total) {
 String msg = "Processing " + counter + " of " + total;
 statusLabel.setText(msg);
 }

 public void doneProcessing() {
 if (processor.isCancelled()) {
 statusLabel.setText("Process cancelled ...");
 } else {
 try {
 // Get the result of processing
 int sum = processor.get();
 statusLabel.setText("Process completed. Sum is " + sum);
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }

Chapter 3 ■ advanCed Swing

215

 }
 setButtonStatus(true);
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 SwingWorkerFrame frame = new SwingWorkerFrame("SwingWorker Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}

Figure 3-2. Demonstrating the use of the SwingWorker class

Pluggable Look and Feel
Swing supports pluggable look and feel (L&F). You can change the L&F for a Swing application using the
setLookAndFeel(String lafClassName) static method of the UIManager class. The method throws checked
exceptions. The lafClassName argument of the method is the fully qualified name of the class providing the
L&F. The following snippet of code sets the L&F for Windows using a generic catch block to handle all types
of exceptions:

String windowsLAF= "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";
try {
 UIManager.setLookAndFeel(windowsLAF);
} catch (Exception e) {
 e.printStackTrace();
}

An instance of the javax.swing.LookAndFeel class represents a look and feel. JDK 9 has added a
createLookAndFeel() static method to the UIManager class that creates a LookAndFeel from a look and feel
name. The method is declared as follows:

LookAndFeel createLookAndFeel(String name) throws UnsupportedLookAndFeelException

Using the createLookAndFeel() method, you can avoid using the class name of the L&F as you did in
the previous snippet of code. The following snippet of code sets the Windows L&F using the name of the L&F
as “Windows”. The next listing will show you how to get the names of all installed L&F.

try {
 UIManager.setLookAndFeel(UIManager.createLookAndFeel("Windows"));
} catch (Exception e) {
 e.printStackTrace();
}

Chapter 3 ■ advanCed Swing

216

Typically, you set the L&F before you start a Swing application. If you change the L&F after the GUI has
been shown, you will need to update the GUI using the updateComponentTreeUI(container) method of
the SwingUtilities class. Changing the L&F may force changes in the component’s size and you may want
to pack your container using the pack() method again. You may end up writing the following three lines of
code when you change the L&F of an application after the GUI has been shown:

// Assuming that frame is a reference to a JFrame object and
// windowsLAF contains the L&F class name for Windows L&F,
// set the new L&F, update the GUI, and pack the frame.
UIManager.setLookAndFeel(windowsLAF);
SwingUtilities.updateComponentTreeUI(frame);
frame.pack();

The following two methods of the UIManager class return the class names for the default Java L&F and
the system L&F:

•	 String getCrossPlatformLookAndFeelClassName()

•	 String getSystemLookAndFeelClassName()

The system L&F gives the Swing components an L&F of the native system and it will differ from system
to system. If you want your application to look the same as the native L&F, you can achieve that by using the
following piece of code without worrying about the actual name of the class representing the system L&F on
the machine your application will run:

// Set the system (or native) L&F
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

It is not always necessary to set the L&F for your Swing application. Swing will use the default Java
L&F on its own when you start the application. If the call to UIManager.setLookAndFeel() fails, your Swing
application will use the current L&F, which is the default Java L&F if it is the first time you tried to set a new
L&F. Although it is possible to create your own L&F, it is not easy to do so. However, Java 5.0 added the Synth
L&F to facilitate the creation of a skinnable L&F. Synth is not covered in this book. You can get started on
Synth at https://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/synth.html.

You can use the UIManager class to list all installed L&Fs on your computer that you can use in your
Swing application. The program in Listing 3-5 lists all available L&Fs on your machine. The output was
obtained when the program was run on Windows; you may get a different output.

Listing 3-5. Knowing the Installed L&F on Your Machine

// InstalledLookAndFeel.java
package com.jdojo.swing.advanced;

import javax.swing.UIManager;
import javax.swing.UIManager.LookAndFeelInfo;

public class InstalledLookAndFeel {
 public static void main(String[] args) {
 // Get the list of installed L&F
 LookAndFeelInfo[] lafList = UIManager.getInstalledLookAndFeels();

https://docs.oracle.com/javase/tutorial/uiswing/lookandfeel/synth.html

Chapter 3 ■ advanCed Swing

217

 // Print the names and class names of all installed L&F
 for (LookAndFeelInfo lafInfo : lafList) {
 String name = lafInfo.getName();
 String className = lafInfo.getClassName();
 System.out.println("Name: " + name + ", Class Name: " + className);
 }
 }
}

Name: Metal, Class Name: javax.swing.plaf.metal.MetalLookAndFeel

Name: Nimbus, Class Name: javax.swing.plaf.nimbus.NimbusLookAndFeel

Name: CDE/Motif, Class Name: com.sun.java.swing.plaf.motif.MotifLookAndFeel

Name: Windows, Class Name: com.sun.java.swing.plaf.windows.WindowsLookAndFeel

Name: Windows Classic, Class Name: com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel

Listing 3-6 builds a JFrame that lets you experiment with the installed L&F for the current platform. By
default, the current L&F is selected. Select a different L&F from the list and the application’s L&F is changed
accordingly. You will get a different list of L&Fs on different platforms. Figure 3-3 and Figure 3-4 show the
frame when the application was run on Windows and Linux, respectively.

Listing 3-6. Experimenting with Installed Look and Feels on the Current Platform

// InstalledLAF.java
package com.jdojo.swing.advanced;

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.event.ItemEvent;
import java.util.Map;
import java.util.TreeMap;
import javax.swing.AbstractButton;
import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.ButtonGroup;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JRadioButton;
import javax.swing.JTextField;
import javax.swing.LookAndFeel;
import javax.swing.SwingUtilities;
import javax.swing.UIManager;
import javax.swing.UIManager.LookAndFeelInfo;
import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;

Chapter 3 ■ advanCed Swing

218

public class InstalledLAF extends JFrame {
 JLabel nameLbl = new JLabel("Name:");
 JTextField nameFld = new JTextField(20);
 JButton saveBtn = new JButton("Save");
 JTextField lafClassNameFld = new JTextField();
 ButtonGroup radioGroup = new ButtonGroup();
 static final Map<String, String> installedLAF = new TreeMap<>();

 static {
 for (LookAndFeelInfo lafInfo : UIManager.getInstalledLookAndFeels()) {
 installedLAF.put(lafInfo.getName(), lafInfo.getClassName());
 }
 }

 public InstalledLAF(String title) {
 super(title);
 initFrame();
 }

 private void initFrame() {
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Container contentPane = this.getContentPane();

 // Get the current look and feel
 LookAndFeel currentLAF = UIManager.getLookAndFeel();
 String currentLafName = currentLAF.getName();
 String currentLafClassName = currentLAF.getClass().getName();

 lafClassNameFld.setText(currentLafClassName);
 lafClassNameFld.setEditable(false);

 // Build the panels
 JPanel topPanel = buildTopPanel();
 JPanel leftPanel = buildLeftPanel(currentLafName);
 JPanel rightPanel = buildRightPanel();
 contentPane.add(topPanel, BorderLayout.NORTH);
 contentPane.add(leftPanel, BorderLayout.WEST);
 contentPane.add(rightPanel, BorderLayout.CENTER);
 }

 private void setLAF(String lafClassName) {
 try {
 UIManager.setLookAndFeel(lafClassName);
 SwingUtilities.updateComponentTreeUI(this);
 this.pack();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Chapter 3 ■ advanCed Swing

219

 private JPanel buildTopPanel() {
 JPanel panel = new JPanel();
 panel.add(lafClassNameFld);
 panel.setBorder(getBorder("L&F Class Name"));
 return panel;
 }

 private JPanel buildLeftPanel(String currentLafName) {
 JPanel panel = new JPanel();
 panel.setBorder(getBorder("L&F Name"));
 Box vBox = Box.createVerticalBox();

 // Add a radio button for each installed L&F
 for (String lafName : installedLAF.keySet()) {
 JRadioButton radioBtn = new JRadioButton(lafName);
 if (lafName.equals(currentLafName)) {
 radioBtn.setSelected(true);
 }

 radioBtn.addItemListener(this::changeLAF);
 vBox.add(radioBtn);
 radioGroup.add(radioBtn);
 }

 panel.add(vBox);
 return panel;
 }

 private JPanel buildRightPanel() {
 JPanel panel = new JPanel();
 panel.setBorder(getBorder("Swing Components"));

 Box hBox = Box.createHorizontalBox();
 hBox.add(nameLbl);
 hBox.add(nameFld);
 hBox.add(saveBtn);
 panel.add(hBox);

 return panel;
 }

 private void changeLAF(ItemEvent e) {
 if (e.getSource() instanceof AbstractButton) {
 AbstractButton btn = (AbstractButton) e.getSource();
 String lafName = btn.getText();
 String lafClassName = installedLAF.get(lafName);
 this.lafClassNameFld.setText(lafClassName);
 this.setLAF(lafClassName);
 }
 }

Chapter 3 ■ advanCed Swing

220

 private Border getBorder(String title) {
 Border etched = BorderFactory.createEtchedBorder(EtchedBorder.LOWERED);
 Border titledBorder = BorderFactory.createTitledBorder(etched, title);
 return titledBorder;
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 InstalledLAF lafApp = new InstalledLAF("Swing L&F");
 lafApp.pack();
 lafApp.setVisible(true);
 });
 }
}

Figure 3-3. The InstalledLAF frame on Windows

Chapter 3 ■ advanCed Swing

221

Drag and Drop
Drag and drop (DnD) is a way to transfer data in an application. You can also transfer data using a clipboard
with cut, copy, and paste actions.

DnD lets you transfer data by dragging a component and dropping it onto another component. The
component that is dragged is called the drag source; it supplies the data to be transferred. The component
onto which the drag source is dropped is called the drop target; it is the receiver of the data. It is the
responsibility of the drop target to accept the drop action and import the data supplied by the drag source.
The data transfer is accomplished using a Transferable. Transferable is an interface in the java.awt.
datatransfer package, which is in the java.datatransfer module. The java.desktop module reads the
java.datatransfer module transitively, so if your module reads the java.desktop module, your module
will also automatically read the java.datatransfer module. The DnD mechanism is shown in Figure 3-5.

Figure 3-5. The data transfer mechanism used in DnD

Figure 3-4. The InstalledLAF frame on Linux

The Transferable interface contains the following three methods:

•	 DataFlavor[] getTransferDataFlavors()

•	 boolean isDataFlavorSupported(DataFlavor flavor)

•	 Object getTransferData(DataFlavor flavor) throws
UnsupportedFlavorException, IOException

Chapter 3 ■ advanCed Swing

222

Before you learn the three methods of the Transferable interface, you need to know why you need
a Transferable object to transfer data using DnD. Why does the drag target not get the data directly
from the drag source? You can transfer data using DnD within the same Java application, between two
Java applications, from a native application to a Java application, and from a Java application to a native
application. The scope of a data transfer is very wide, and it supports the transfer of a wide variety of data.
The Transferable interface provides a mechanism to pack the data and its type in an object. The receiver
can query this object about the data type it holds and import the data if it fits the receiver’s requirements. An
object of the DataFlavor class encapsulates the details about the data. I do not discuss the DataFlavor class
in detail. It contains several constants to define the type of data; for example, DataFlavor.stringFlavor
represents Java’s Unicode string class. The first two methods of the Transferable interface give details about
the data. The third one returns the data itself as an Object. The drop target will use the getTransferData()
method to get the data supplied by the drag source.

Using DnD in Swing is easy. Most of the time, you need to write only one line of code to start using DnD.
All you need is to enable the dragging on the component, like so:

// Enable DnD for myComponent
myComponent.setDragEnabled(true);

After that, you can start using DnD on myComponent. Using DnD is UI-dependent. On a Windows
platform, you need to press the left mouse button on the drag source to start the drag action. To keep
dragging the drag source, you need to move the mouse while holding the left mouse button down. Releasing
the left mouse button while the mouse pointer is on a drop target performs the drop action. Throughout the
DnD process, the user receives visual feedbacks.

All text components (JFileChooser, JColorChooser, JList, JTree, and JTable) have built-in drag
support for DnD. All text components and JColorChooser have built-in drop support for DnD. For example,
suppose you have a JTextField named nameFld and a JTextArea named descTxtArea. To start using DnD
between them, you need to write the following two lines of code:

nameFld.setDragEnabled(true);
descTxtArea.setDragEnabled(true);

You can select text in the JTextField, drag it, and drop it onto the JTextArea. The selected text in the
JTextField is transferred to the JTextArea. You can also drag text from the JTextArea to the JTextField.

How is the data transferred from one text component to another? Does it get copied or moved? The
answer depends on the drag source and the user’s action. A drag source declares the actions it supports. The
user’s action determines what action took place. For example, on the Windows platform, simple dragging
indicates a MOVE action whereas dragging with the Ctrl key down indicates a COPY action, and dragging with
the Ctrl+Shift keys down indicates a LINK action. Actions are represented by the constants declared in the
TransferHandler class:

•	 TransferHandler.COPY

•	 TransferHandler.MOVE

•	 TransferHandler.COPY_OR_MOVE

•	 TransferHandler.LINK

•	 TransferHandler.NONE

The drop action is not built-in for the JList, JTable, and JTree components. The reason is that the
user’s intention cannot be predicted when a drag source is dropped onto these components. You will need to
write code to get the drop action in place for these components. Note that they have built-in support for the
drag action. DnD provides you with appropriate information about the drop location on these components.

Chapter 3 ■ advanCed Swing

223

These components let you specify the drop mode using their setDropMode(DropMode dm) method. A drop
mode determines how the drop location is tracked during a DnD operation. Drop modes are represented by
constants in the java.swing.DropMode enum, as listed in Table 3-1.

Table 3-1. DropMode Enum Constants for JList, JTree, and JTable

DropMode Enum Constant Using Component Description

ON JList
JTree
JTable

The drop location is tracked using the index of
existing items.

INSERT JList
JTree
JTable

The drop location is tracked as the position where
the data will be inserted.

INSERT_COLS JTable The drop location is tracked in terms of the column
index where the new columns will be inserted.

INSERT_ROWS JTable The drop location is tracked in terms of the row
index where the new rows will be inserted.

ON_OR_INSERT JList
JTree
JTable

Tracks drop location as both ON and INSERT.

ON_OR_INSERT_ROWS
ON_OR_INSERT_COLS

JTable Tracks ON or INSERT with respect to row or column.

USE_SELECTION JList
JTree
JTable

It works the same as ON. It is the default drop
mode. If you drag onto a component that is already
selected, this mode changes the selection to the
item on which the mouse cursor is being dragged.
However, the ON drop mode keeps the user’s
selection intact and selects the item temporarily
on which a mouse cursor is dragged. ON is a better
choice for the user’s experience. This option is only
provided for backward compatibility.

Let’s write some code to use DnD with a JList. You need to do the following:

•	 Create a new class inheriting from the javax.swing.TransferHandler class.

•	 Override some of the methods in the new class to handle the data transfer.

•	 Use the JList’s setTransferHandler() method to set an instance of your transfer
handler class.

Listing 3-7 contains the code for a custom TransferHandler for a JList.

Chapter 3 ■ advanCed Swing

224

Listing 3-7. A Custom TransferHandler for a JList

// ListTransferHandler.java
package com.jdojo.swing.advanced;

import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.StringSelection;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
import java.io.IOException;
import javax.swing.DefaultListModel;
import javax.swing.JComponent;
import javax.swing.JList;
import javax.swing.TransferHandler;

public class ListTransferHandler extends TransferHandler {
 @Override
 public int getSourceActions(JComponent c) {
 return TransferHandler.COPY_OR_MOVE;
 }

 @Override
 protected Transferable createTransferable(JComponent source) {
 // Suppress the unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> sourceList = (JList<String>) source;

 String data = sourceList.getSelectedValue();

 // Uses only the first selected item in the list
 Transferable t = new StringSelection(data);
 return t;
 }

 @Override
 protected void exportDone(JComponent source, Transferable data, int action) {
 // Suppress the unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> sourceList = (JList<String>) source;

 String movedItem = sourceList.getSelectedValue();

 if (action == TransferHandler.MOVE) {
 // Remove the moved item
 DefaultListModel<String> listModel
 = (DefaultListModel<String>) sourceList.getModel();
 listModel.removeElement(movedItem);
 }
 }

Chapter 3 ■ advanCed Swing

225

 @Override
 public boolean canImport(TransferHandler.TransferSupport support) {
 // We only support drop, not copy-paste
 if (!support.isDrop()) {
 return false;
 }

 return support.isDataFlavorSupported(DataFlavor.stringFlavor);
 }

 @Override
 public boolean importData(TransferHandler.TransferSupport support) {
 // This is necessary to handle paste
 if (!this.canImport(support)) {
 return false;
 }

 // Get the data
 Transferable t = support.getTransferable();
 String data = null;
 try {
 data = (String) t.getTransferData(DataFlavor.stringFlavor);
 if (data == null) {
 return false;
 }
 } catch (UnsupportedFlavorException | IOException e) {
 e.printStackTrace();
 return false;
 }

 // Get the drop location for the JList
 JList.DropLocation dropLocation = (JList.DropLocation) support.getDropLocation();

 int dropIndex = dropLocation.getIndex();

 // Suppress the unchecked cast warning
 @SuppressWarnings("unchecked")
 JList<String> targetList = (JList<String>) support.getComponent();

 DefaultListModel<String> listModel
 = (DefaultListModel<String>) targetList.getModel();

 if (dropLocation.isInsert()) {
 listModel.add(dropIndex, data);
 } else {
 listModel.set(dropIndex, data);
 }

 return true;
 }
}

Chapter 3 ■ advanCed Swing

226

If you want to support the drop action for only a JList, you only need to override two methods—
canImport() and importData()—in your transfer handler class. The canImport() method returns true if
the drop target wants to transfer the data. Otherwise, it returns false. In your code, you are making sure
that this operation is a drop operation and that the drag source supplies a string data. Note that if you set a
custom TransferHandler object to a component, the same TransferHandler object will also be used for cut-
copy-paste operations. Your code supports only a drop operation. The importData() method reads the data
from a Transferable object and inserts or replaces the item in the JList based on the user’s action.

The default TransferHandler for the JList handles the drag action and supplies the data. However,
once you set your own TransferHandler, you lose the default feature, and you are responsible for adding
that feature to your TransferHandler. If you want to support a drag action, you need to write custom
code for the createTransferable() and getSourceActions() methods. The first method packs the data
into a Transferable object and the second one returns the kind of actions supported by the drag source.
StringSelection is an implementation of the Transferable interface to transfer Java strings.

If your drag source supports a MOVE action, you are supposed to provide code that will remove the item
after the move action. You get a placeholder to write cleanup code in the exportDone() method, as shown in
Listing 3-7.

Listing 3-8 contains the code that displays a JTextField and two JLists, which lets you demonstrate
DnD for a JList. Figure 3-6 shows the JFrame you get when you run the program in Listing 3-8. You can use
DnD among any of the three components: the JTextField and two JLists. There is one bug in the code. If
you drag an item in the JList and drop it in the same JList, nothing happens. It is left as an exercise for you
to figure out this bug and fix it. I will give you a hint: try removing the element before adding it to the same
List in the importData() method of the ListTransferHandler class. Also, this custom code supports only
a single selection in the JList. You can customize the code in the ListTransferHandler class to handle
multiple selections in the JList.

Listing 3-8. Using DnD to Transfer Data Between Swing Components

// DragAndDropApp.java
package com.jdojo.swing.advanced;

import java.awt.BorderLayout;
import java.awt.Container;
import javax.swing.Box;
import javax.swing.DefaultListModel;
import javax.swing.DropMode;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JScrollPane;
import javax.swing.JTextField;
import javax.swing.ListSelectionModel;
import javax.swing.SwingUtilities;

public class DragAndDropApp extends JFrame {
 private JLabel newLabel = new JLabel("New:");
 private JTextField newTextField = new JTextField(10);
 private JLabel sourceLabel = new JLabel("Source");
 private JLabel destLabel = new JLabel("Destination");
 private JList<String> sourceList = new JList<>(new DefaultListModel<>());
 private JList<String> destList = new JList<>(new DefaultListModel<>());

Chapter 3 ■ advanCed Swing

227

 public DragAndDropApp(String title) {
 super(title);
 populateList();
 initFrame();
 }

 private void initFrame() {
 Container contentPane = this.getContentPane();

 Box nameBox = Box.createHorizontalBox();
 nameBox.add(newLabel);
 nameBox.add(newTextField);

 Box sourceBox = Box.createVerticalBox();
 sourceBox.add(sourceLabel);
 sourceBox.add(new JScrollPane(sourceList));

 Box destBox = Box.createVerticalBox();
 destBox.add(destLabel);
 destBox.add(new JScrollPane(destList));

 Box listBox = Box.createHorizontalBox();
 listBox.add(sourceBox);
 listBox.add(destBox);

 Box allBox = Box.createVerticalBox();
 allBox.add(nameBox);
 allBox.add(listBox);

 contentPane.add(allBox, BorderLayout.CENTER);

 // Our lists support only single selection
 sourceList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 destList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // Enable Drag and Drop for components
 newTextField.setDragEnabled(true);
 sourceList.setDragEnabled(true);
 destList.setDragEnabled(true);

 // Set the drop mode to Insert
 sourceList.setDropMode(DropMode.INSERT);
 destList.setDropMode(DropMode.INSERT);

 // Set the transfer handler
 sourceList.setTransferHandler(new ListTransferHandler());
 destList.setTransferHandler(new ListTransferHandler());
 }

Chapter 3 ■ advanCed Swing

228

 public void populateList() {
 DefaultListModel<String> sourceModel
 = (DefaultListModel<String>) sourceList.getModel();

 DefaultListModel<String> destModel
 = (DefaultListModel<String>) destList.getModel();
 for (int i = 0; i < 5; i++) {
 sourceModel.add(i, "Source Item " + i);
 destModel.add(i, "Destination Item " + i);
 }
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 DragAndDropApp frame = new DragAndDropApp("Drag and Drop Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}

Figure 3-6. A JFrame with a few Swing components supporting DnD

Chapter 3 ■ advanCed Swing

229

Multiple Document Interface Application
Broadly speaking, there are three types of applications based on how windows are organized within an
application to present information to users. They are

•	 Single Document Interface (SDI)

•	 Multiple Document Interface (MDI)

•	 Tabbed Document Interface (TDI)

In an SDI application, only one window is opened at any time. In an MDI application, one main window
(also the called parent window) is opened, and multiple child windows are open within the main window. In
a TDI application, one window is opened, which has multiple windows open as tabs. Microsoft Notepad is
an example of an SDI application, Microsoft Word 97 is an example of an MDI application (newer versions of
Microsoft Word are SDI), and Google Chrome browser is an example of a TDI application.

You can use Swing to develop SDI, MDI, and TDI applications. In an MDI application, you can open
multiple frames that will be instances of the JInternalFrame class. You can organize multiple internal
frames in many ways. For example, you can maximize and minimize them; you can view them side by side in
a tiled fashion, or you can view them in a cascaded form. The following are four classes you will be working
with in an MDI application:

•	 JInternalFrame

•	 JDesktopPane

•	 DesktopManager

•	 JFrame

An instance of the JInternalFrame class acts as a child window that is always displayed inside the
area of its parent window. For the most part, working with it is the same as working with a JFrame. You add
Swing components to its content pane, pack them using the pack() method, and make it visible using the
setVisible(true) method. If you want to listen to window events such as activated, deactivated, etc., you
need to add an InternalFrameListener to the JInternalFrame instead of a WindowListener, which is used
for a JFrame. You can set various properties in its constructor or using setter methods. The following snippet
of code shows how to use an instance of the JInternalFrame class:

String title = "A Child Window";
Boolean resizable = true;
Boolean closable = true;
Boolean maximizable = true;
Boolean iconifiable = true;
JInternalFrame iFrame =
 new JInternalFrame(title, resizable, closable, maximizable, iconifiable);

// Add components to the iFrame using iFrame.add(...)

// Pack the frame and make it visible
iFrame.pack();
iFrame.setVisible(true);

Chapter 3 ■ advanCed Swing

230

An instance of the JDesktopPane class is used as a container (not as a top-level container) for all child
windows that are instances of the JInternalFrame class. It uses a null layout manager. You add it to a
JFrame. You would like to store the reference to the desktop pane as an instance variable to the JFrame, so
that you can get to it to work with child windows later.

// Create a desktop pane
JDesktopPane desktopPane = new JDesktopPane();

// Add all JInternalFrames to the desktopPane
desktopPane.add(iFrame);

You can get all JInternalFrames that are added to a JDesktopPane using its getAllFrames() method.

// Get the list of child windows
JInternalFrame[] frames = desktopPane.getAllFrames();

A JDesktopPane uses an instance of the DesktopManager interface to manage all internal frames.
The DefaultDesktopManager class is an implementation of the DesktopManager interface. If you want
to customize the way a desktop manager manages the internal frames, you need to create your own
class inheriting from DefaultDesktopManager. You can set your custom desktop manager using the
setDesktopManager() method of JDesktopPane. The desktop manager has many useful methods. For
example, if you want to close an internal frame programmatically, you can use its closeFrame() method.
The user can also close an internal frame using the context menu that is provided if you make it closable. You
can get the reference of the desktop manager using the desktop pane’s getDesktopManager() method.

// Close the internal frame named frame1
desktopPane.getDesktopManager().closeFrame(frame1);

The JFrame class is used as a top-level container and it acts as the parent window of JInternalFrames.
It contains an instance of JDesktopPane. Note that the pack() method of JFrame will not do any good in an
MDI application because its only child, the desktop pane, uses a null layout manager. You must set its size
explicitly. Typically, you display the JFrame maximized.

Listing 3-9 demonstrates how to develop an MDI application. Swing does not provide ways to organize
your internal frames as tiled or cascaded windows, which is normal in any Windows-based MDI application.
You can build the tiled and cascaded features into your Swing MDI application by applying simple logic to
organize your internal frames and providing menu items to use them. Figure 3-7 shows the screen that is
displayed when you run the program in Listing 3-9.

Listing 3-9. Developing an MDI Application Using Swing

// MDIApp.java
package com.jdojo.swing.advanced;

import java.awt.BorderLayout;
import java.awt.Dimension;
import javax.swing.JDesktopPane;
import javax.swing.JFrame;
import javax.swing.JInternalFrame;
import javax.swing.JLabel;
import javax.swing.SwingUtilities;
import javax.swing.UIManager;

Chapter 3 ■ advanCed Swing

231

public class MDIApp extends JFrame {
 private final JDesktopPane desktopPane = new JDesktopPane();

 public MDIApp(String title) {
 super(title);
 initFrame();
 }

 public void initFrame() {
 JInternalFrame frame1 = new JInternalFrame("Frame 1", true, true, true, true);

 JInternalFrame frame2
 = new JInternalFrame("Frame 2", true, true, true, true);

 JLabel label1 = new JLabel("Frame 1 contents...");
 frame1.getContentPane().add(label1);
 frame1.pack();
 frame1.setVisible(true);

 JLabel label2 = new JLabel("Frame 2 contents...");
 frame2.getContentPane().add(label2);
 frame2.pack();
 frame2.setVisible(true);

 // Default location is (0,0) for a JInternalFrame.
 // Set the location of frame2, so that both frames are visible
 int x2 = frame1.getX() + frame1.getWidth() + 10;
 int y2 = frame1.getY();
 frame2.setLocation(x2, y2);

 // Add both internal frames to the desktop pane
 desktopPane.add(frame1);
 desktopPane.add(frame2);

 // Finally add the desktop pane to the JFrame
 this.add(desktopPane, BorderLayout.CENTER);

 // Need to set minimum size for the JFrame
 this.setMinimumSize(new Dimension(300, 300));
 }

 public static void main(String[] args) {
 try {
 // Set the system look and feel
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 } catch (Exception e) {
 e.printStackTrace();
 }

Chapter 3 ■ advanCed Swing

232

 SwingUtilities.invokeLater(() -> {
 MDIApp frame = new MDIApp("MDI Frame");
 frame.pack();
 frame.setVisible(true);
 frame.setExtendedState(frame.MAXIMIZED_BOTH);
 });
 }
}

Figure 3-7. An MDI application in Swing run on Windows

When you work with an MDI application, you need to use the showInternalXxxDialog() methods of
JOptionPane instead of the showXxxDialog() methods. For example, in an MDI application, you use the
JOptionPane.showInternalMessageDialog() method instead of JOptionPane.showMessageDialog(). The
showInternalXxxDialog() version displays the dialog box, so they are always displayed within the top-
level container, whereas the showXxxDialog() version displays a dialog box that can be dragged outside the
boundary of the top-level container of the MDI application.

 ■ Tip it is important to decide upfront whether you want to develop an Sdi, Mdi, or tdi application. Changing
from one type to another is not an easy task.

The Toolkit Class
Java needs to communicate with the native system to provide most of the basic GUI functionalities. It uses
a specific class on each platform to achieve that. The java.awt.Toolkit is an abstract class. Java uses a
subclass of the Toolkit class on each platform to communicate with the native toolkit system. The Toolkit
class provides a static getDefaultToolkit() factory method to get the toolkit object used on a particular
platform. The Toolkit class contains useful methods to let you work with screen size and resolution, get
access to the system clipboard, to make a beeping sound, etc. Table 3-2 lists a few of the methods of the
Toolkit class. The table contains methods that throw a HeadlessException. A HeadlessException is thrown
when code that is dependent on a keyboard, display, or mouse is called in an environment that does not
support a keyboard, display, or mouse.

Chapter 3 ■ advanCed Swing

233

The following snippet of code shows some examples of how to use the Toolkit class:

// Copy the selected text from a JTextArea named dataTextArea to the system clipboard.
// If there is no text selection, beep and display a message.
Toolkit toolkit = Toolkit.getDefaultToolkit();
String data = dataTextArea.getSelectedText();
if (data == null || data.equals("")) {
 toolkit.beep();
 JOptionPane.showMessageDialog(null, "Please select the text to copy.");
} else {
 Clipboard clipboard = toolkit.getSystemClipboard();

 // Pack data as a string in a Transferable object
 Transferable transferableData = new StringSelection(data);
 clipboard.setContents(transferableData, null);
}

// Paste text from the system clipboard to a TextArea, named dataTextArea.
// If there is no text in the system clipboard, beep and display a message.
Toolkit toolkit = Toolkit.getDefaultToolkit();
Clipboard clipboard = toolkit.getSystemClipboard();
Transferable data = clipboard.getContents(null);
if (data != null && data.isDataFlavorSupported(DataFlavor.stringFlavor)) {
 try {
 String text = (String)data.getTransferData(DataFlavor.stringFlavor);
 dataTextArea.replaceSelection(text);
 } catch (Exception e) {
 e.printStackTrace();
 }
} else {
 toolkit.beep();
 JOptionPane.showMessageDialog(null, "No text in the system clipboard to paste");
}

Table 3-2. A Few Useful Methods of the java.awt.Toolkit Class

Method of Toolkit Class Description

abstract void beep() Makes a beeping sound. It is useful in alerting the user
when a severe error occurs in the application.

static Toolkit getDefaultToolkit() Returns the current Toolkit instance used in the
application.

abstract int getScreenResolution()
throws HeadlessException

Returns the screen resolution in terms of dots per inch.

abstract Dimension getScreenSize()
throws HeadlessException

Returns a Dimension object that contains the width and
the height of the screen in pixels.

abstract Clipboard getSystemClipboard()
throws HeadlessException

Returns an instance of the Clipboard class that represents
a system clipboard.

Chapter 3 ■ advanCed Swing

234

// Set the size of a JFrame to the size of the screen. Note that you can also use the
// frame.setExtendedState(JFrame.MAXIMIZED_BOTH) method to use full screen area for a Jframe.
JFrame frame = new JFrame("My Frame");
frame.setSize(Toolkit.getDefaultToolkit().getScreenSize());

Decorating Components Using JLayer
The JLayer class represents a Swing component. It is used to decorate another component, which is called
the target component. It lets you perform custom painting over the component it decorates. It can also
receive notifications of all events that are generated within its border. In other words, a JLayer lets you
perform custom processing based on events occurring in the component it decorates.

When you work with the JLayer class, you also need to work with the LayerUI<V extends Component>
class. A JLayer delegates its work to a LayerUI for custom painting and event handling. To do anything
meaningful with a JLayer, you need to create a subclass of the LayerUI class and override its appropriate
methods to write your code. The following steps are needed to use a JLayer in a Swing application.

•	 Create a subclass of the LayerUI class. Override its various methods to implement
the custom processing for the component. The LayerUI class takes a type parameter,
which is the type of the component it will work with.

•	 Create an object of the LayerUI subclass.

•	 Create a Swing component (target component) that you want to decorate with a
JLayer, such as a JTextField, a JPanel, etc.

•	 Create an object of the JLayer class, passing the target component and the object of
the LayerUI subclass to its constructor.

•	 Add the JLayer object to your container, not the target component.

Let’s see a JLayer in action. Suppose you want to use a JLayer to draw a blue rectangular border around
a JTextField component. Your first step is to create a subclass of the LayerUI. Listing 3-10 contains the code
for a BlueBorderUI class that inherits from the LayerUI class. It overrides the paint() method of the LayerUI
class.

Listing 3-10. A Subclass of the LayerUI Class to Draw a Blue Border Around the Layer

// BlueBorderUI.java
package com.jdojo.swing.advanced;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import javax.swing.JComponent;
import javax.swing.JTextField;
import javax.swing.plaf.LayerUI;

public class BlueBorderUI extends LayerUI<JTextField> {
 @Override
 public void paint(Graphics g, JComponent layer) {
 // Let the superclass paint the component first
 super.paint(g, layer);

Chapter 3 ■ advanCed Swing

235

 // Create a copy of the Graphics object
 Graphics gTemp = (Graphics2D) g.create();

 // Get the dimension of the layer
 int width = layer.getWidth();
 int height = layer.getHeight();

 // Draw a blue rectangle that is custom your border
 gTemp.setColor(Color.BLUE);
 gTemp.drawRect(0, 0, width, height);

 // Destroy the copy of the Graphics object
 gTemp.dispose();
 }
}

The paint() method of the LayerUI is called whenever the target component needs to be painted. The
method of the LayerUI class receives two arguments. The first argument is the reference of the Graphics
object that you can use to draw on the component. The second argument is the reference of the JLayer
object, not the target component. You can get the reference of the target component, the component the
JLayer is decorating, using the second argument. You can cast the second argument to a JLayer type and
use the getView() method of the JLayer class, which returns the reference of the target component. The
logic inside the paint() method is simple. It creates a copy of its Graphics argument and draws a blue
rectangle around the component. The passed-in Graphics object to this method is set up for painting this
component. Copying the passed-in Graphics object is advised because making changes to the passed-in
Graphics object may result in unexpected results.

Now you are ready to use the BlueBorderUI with a JLayer to draw a blue border around a JTextField.
The following snippet of code shows the logic:

// Create a JTextField as usual
JTextField firstName = new JTextField(10);

// Create an object of the BlueBorderUI
LayerUI<JTextField> ui = new BlueBorderUI();

// Create a JLayer object by wrapping the JTextField and BlueBorderUI
JLayer<JTextField> layer = new JLayer(firstName, ui);

// Add the layer object to a container, say the content pane of a frame.
// Note that you add the layer and not the component to a container.
contentPane.add(layer)

The target component and LayerUI may be passed to a JLayer when you create it. If you do not know
the target component and/or the LayerUI for a JLayer, you may pass them later using the setView() and
setUI() methods of the JLayer class. The getView() and getUI() methods of the JLayer class let you get
the reference of the current target component and the LayerUI for a JLayer, respectively.

Listing 3-11 demonstrates how to use a JLayer to draw a border around two JTextField components.
The code is simple and self-explanatory. When you run this program, it will display two JTextField
components with blue borders in a JFrame.

Chapter 3 ■ advanCed Swing

236

Listing 3-11. Decorating JTextField Components Using JLayer

// JLayerBlueBorderFrame.java
package com.jdojo.swing.advanced;

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JLayer;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;
import javax.swing.plaf.LayerUI;

public class JLayerBlueBorderFrame extends JFrame {
 private JLabel firstNameLabel = new JLabel("First Name:");
 private JLabel lastNameLabel = new JLabel("Last Name:");
 private JTextField firstName = new JTextField(10);
 private JTextField lastName = new JTextField(10);

 public JLayerBlueBorderFrame(String title) {
 super(title);
 initFrame();
 }

 public void initFrame() {
 this.setLayout(new FlowLayout());
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create an object of the LayerUI subclass - BlueBorderUI
 LayerUI<JTextField> ui = new BlueBorderUI();

 // Wrap the LayerUI and two JTextFields in two JLayers.
 // Note that a LayerUI object can be shared by multiple JLayers
 JLayer<JTextField> layer1 = new JLayer<>(firstName, ui);
 JLayer<JTextField> layer2 = new JLayer<>(lastName, ui);

 this.add(firstNameLabel);
 this.add(layer1); // Add layer1 and not firstName to the frame

 this.add(lastNameLabel);
 this.add(layer2); // Add layer2 and not lastName to the frame
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JLayerBlueBorderFrame frame = new JLayerBlueBorderFrame("JLayer Test Frame");
 frame.pack();
 frame.setVisible(true);
 });
 }
}

Chapter 3 ■ advanCed Swing

237

Let’s look at an example of how to handle events of a target component using a JLayer. A JLayer
delegates the event processing task to the associated LayerUI. You need to perform the following steps to
handle events in a LayerUI subclass.

•	 Register for the events that a JLayer will process.

•	 Write the event handler code in an appropriate method of the LayerUI subclass.

You need to call the setLayerEventMask(long layerEventMask) method of the JLayer class to register
for all events that a JLayer is interested in. The layerEventMask parameter of this method must be a bitmask
of the AWTEvent constants. For example, if a JLayer named layer is interested in key and focus events, you
call this method as shown:

int layerEventMask = AWTEvent.KEY_EVENT_MASK | AWTEvent.FOCUS_EVENT_MASK;
layer.setLayerEventMask(layerEventMask);

Typically, a JLayer registers for events in the installUI() method of the LayerUI subclass. You need
to override the installUI() method of the LayerUI class in your subclass. You need to set the event mask
for the JLayer to zero when the UI is uninstalled. This is accomplished in the uninstallUI() method. The
following snippet of code shows a JLayer registering for a focus event and resetting its event mask:

public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 public void installUI(JComponent c) {
 super.installUI(c);
 JLayer layer = (JLayer)c;

 // Register for the focus event
 layer.setLayerEventMask(AWTEvent.FOCUS_EVENT_MASK);
 }

 @Override
 public void uninstallUI(JComponent c) {
 super.uninstallUI(c);
 JLayer layer = (JLayer)c;

 // Reset the event mask
 layer.setLayerEventMask(0);
 }

 // Other code goes here
}

When a registered event is delivered to the JLayer, the eventDispatched(AWTEvent event, JLayer
layer) method of the associated LayerUI is called. You may be tempted to override this method in your
LayerUI subclass to handle all registered events. Technically, you are correct in overriding this method to
handle events. However, there is a better way to provide the event handling code in a LayerUI subclass. The
eventDispatched() method of the LayerUI class calls an appropriately named method when it receives an
event. Those methods are declared as

protected void processXxxEvent(XxxEvent e, JLayer layer)

Chapter 3 ■ advanCed Swing

238

Here, Xxx is the name of the registered event. The following snippet of code shows examples of the event
type and the declaration of the method that is called when the JLayer receives that kind of event:

public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 protected void processFocusEvent(FocusEvent e, JLayer layer) {
 // Process the focus event here
 }

 @Override
 protected void processKeyEvent(KeyEvent e, JLayer layer) {
 // Process the key event here
 }

 @Override
 protected void processMouseEvent(MouseEvent e, JLayer layer) {
 // Process the mouse event here
 }

 // Other code goes here...
}

That is all you need to do to process events in a JLayer. Let’s improve the previous example. This time,
the JLayer will draw a border around a JTextField whose color will depend on whether the JTextField has
focus. When it has focus, a red border is drawn. When it loses focus, a blue border is drawn.

Listing 3-12 contains the code for a SmartBorderUI class, which inherits from LayerUI. Its paint()
method draws a red or blue border depending on whether the target component has focus. Its installUI()
method registers for the focus event. The unInstallUI() method deregisters for the focus event by setting
the event mask to zero. Its processFocusEvent() method handles the focus event. Note that this method is
called when a focus event occurs on the target component. It calls the repaint() method, which in turn will
call the paint() method, which paints the border according to the focus state of the component.

Listing 3-12. A Subclass of LayerUI for Decorating JTextField Based on Focus

// SmartBorderUI.java
package com.jdojo.swing.advanced;

import java.awt.AWTEvent;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.FocusEvent;
import javax.swing.JComponent;
import javax.swing.JLayer;
import javax.swing.JTextField;
import javax.swing.plaf.LayerUI;

public class SmartBorderUI extends LayerUI<JTextField> {
 @Override
 public void paint(Graphics g, JComponent layer) {
 // Let the superclass paint the component first
 super.paint(g, layer);

Chapter 3 ■ advanCed Swing

239

 Graphics gTemp = (Graphics2D) g.create();
 int width = layer.getWidth();
 int height = layer.getHeight();

 // Suppress the unchecked warning
 @SuppressWarnings("unchecked")
 JLayer<JTextField> myLayer = (JLayer<JTextField>) layer;

 JTextField field = (JTextField) myLayer.getView();

 // When in focus, draw a red rectangle. Otherwise, draw a blue rectangle
 Color bColor;
 if (field.hasFocus()) {
 bColor = Color.RED;
 } else {
 bColor = Color.BLUE;
 }

 gTemp.setColor(bColor);
 gTemp.drawRect(0, 0, width, height);
 gTemp.dispose();
 }

 @Override
 public void installUI(JComponent c) {
 // Let the superclass do its job
 super.installUI(c);

 // Set the event mask for the layer stating that it is interested
 // in listening to the focus event for its target
 JLayer layer = (JLayer) c;
 layer.setLayerEventMask(AWTEvent.FOCUS_EVENT_MASK);
 }

 @Override
 public void uninstallUI(JComponent c) {
 // Let the superclass do its job
 super.uninstallUI(c);

 JLayer layer = (JLayer) c;

 // Set the event mask back to zero
 layer.setLayerEventMask(0);
 }

 @Override
 protected void processFocusEvent(FocusEvent e, JLayer layer) {
 layer.repaint();
 }
}

Chapter 3 ■ advanCed Swing

240

Listing 3-13. contains the code that uses the SmartBorderUI class with a JLayer. When you run this
program, it will display a JFrame with two JTextField components. Changing focus between the JTextField
components will change their border colors.

Listing 3-13. Decorating JTextField Components Using JLayer Based on Focus

// JLayerSmartBorderFrame.java
package com.jdojo.swing.advanced;

import java.awt.FlowLayout;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JLayer;
import javax.swing.JTextField;
import javax.swing.SwingUtilities;
import javax.swing.plaf.LayerUI;

public class JLayerSmartBorderFrame extends JFrame {
 private JLabel firstNameLabel = new JLabel("First Name:");
 private JLabel lastNameLabel = new JLabel("Last Name:");
 private JTextField firstName = new JTextField(10);
 private JTextField lastName = new JTextField(10);

 public JLayerSmartBorderFrame(String title) {
 super(title);
 initFrame();
 }

 public void initFrame() {
 this.setLayout(new FlowLayout());
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create an object of LayerUI subclass - SmartBorderUI
 LayerUI<JTextField> ui = new SmartBorderUI();

 // Wrap the LayerUI and two JTextFields in two JLayers
 JLayer<JTextField> layer1 = new JLayer<>(firstName, ui);
 JLayer<JTextField> layer2 = new JLayer<>(lastName, ui);

 this.add(firstNameLabel);
 this.add(layer1); // Add layer1, not firstName to the frame

 this.add(lastNameLabel);
 this.add(layer2); // Add layer2, not lastName to the frame
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 JLayerSmartBorderFrame frame
 = new JLayerSmartBorderFrame("JLayer Test Frame");

Chapter 3 ■ advanCed Swing

241

 frame.pack();
 frame.setVisible(true);
 });
 }
}

Translucent Windows
Before discussing translucent windows in Swing, let’s define three terms:

•	 Transparent

•	 Translucent

•	 Opaque

If something is transparent, you can see through it; clear water is transparent. If something is opaque,
you cannot see through it; a concrete wall is opaque. If something is translucent, you can see through
it, but not clearly. If something is translucent, it partially allows light to pass through; a plastic curtain
is translucent. The terms “transparent” and “opaque” describe two opposite states, whereas the term
“translucent” describes a state between transparent and opaque.

You can define the degree of translucency of a window such as a JFrame. A 90% translucent window
is 10% opaque. The degree of translucency of a window can be defined using the alpha value of the color
component for a pixel. You can define the alpha value of a color using the constructors of the Color class:

•	 Color(int red, int green, int blue, int alpha)

•	 Color(float red, float green, float blue, float alpha)

The value for the alpha argument is specified between 0 and 255, when the color components are
specified in terms of int values. For the float type arguments, its value is between 0.0 and 1.0. The alpha
value of 0 or 0.0 means transparent (100% translucent and 0% opaque). The alpha value of 255 or 1.0 means
opaque (0% translucent and not transparent at all).

Three forms of translucency in a window are supported. They are represented by the following three
constants of the WindowTranslucency enum:

•	 PERPIXEL_TRANSPARENT: In this form of translucency, a pixel in a window is either
opaque or transparent. That is, the alpha value for a pixel is either 0.0 or 1.0.

•	 TRANSLUCENT: In this form of translucency, all pixels in a window have the same
translucency, which can be defined by an alpha value between 0.0 and 1.0.

•	 PERPIXEL_TRANSLUCENT: In this form of translucency, each pixel in a window can
have its own alpha value between 0.0 and 1.0. It lets you define the translucency in a
window on a per-pixel basis.

Not all platforms support all the three forms of translucency. You must check for the supported
forms of translucency in your program before using them. Otherwise, your code may throw an
UnsupportedOperationException. The isWindowTranslucencySupported() method of the GraphicsDevice
class lets you check the forms of translucency that are supported on a platform. Listing 3-14 demonstrates
how to check for translucency support on a platform. The code in this listing is short and self-explanatory.
I have omitted checking in subsequent examples to keep the code shorter.

Chapter 3 ■ advanCed Swing

242

Listing 3-14. Checking for the Translucency Support on a Platform

// TranslucencySupport.java
package com.jdojo.swing.advanced;

import java.awt.GraphicsDevice;
import java.awt.GraphicsEnvironment;
import static java.awt.GraphicsDevice.WindowTranslucency.*;

public class TranslucencySupport {
 public static void main(String[] args) {
 GraphicsEnvironment graphicsEnv = GraphicsEnvironment.getLocalGraphicsEnvironment();

 GraphicsDevice graphicsDevice = graphicsEnv.getDefaultScreenDevice();

 // Print the translucency supported by the platform
 boolean isSupported
 = graphicsDevice.isWindowTranslucencySupported(PERPIXEL_TRANSPARENT);
 System.out.println("PERPIXEL_TRANSPARENT supported: " + isSupported);

 isSupported = graphicsDevice.isWindowTranslucencySupported(TRANSLUCENT);
 System.out.println("TRANSLUCENT supported: " + isSupported);

 isSupported = graphicsDevice.isWindowTranslucencySupported(PERPIXEL_TRANSLUCENT);
 System.out.println("PERPIXEL_TRANSLUCENT supported: " + isSupported);
 }
}

Let’s see a uniform translucent JFrame in action. You can set the translucency of a JFrame using the
setOpacity(float opacity) method. The value for the specified opacity must be between 0.0f and 1.0f.
Before you call this method on a window, the following three conditions must be met:

•	 The platform must support the TRANSLUCENT translucency.

•	 The window must be undecorated. You can make a JFrame or JDialog undecorated
by calling the setUndecorated(true) method on them.

•	 The window must not be in full-screen mode. You can put a window in full-screen mode
using the setFullScreenWindow(Window w) method of the GraphicsDevice class.

If all conditions are not met, setting the opacity of a window other than 1.0f throws an
IllegalComponentStateException.

Listing 3-15 demonstrates how to use a uniform translucent JFrame. The following two statements in
the initFrame() method in the listing is of interest to get a translucent JFrame:

// Make sure the frame is undecorated
this.setUndecorated(true);

// Set 40% opacity. That is, 60% translucency.
this.setOpacity(0.40f);

The first statement makes sure that the frame is undecorated, and the second one sets the translucency
of the frame in terms of opacity.

Chapter 3 ■ advanCed Swing

243

When you run this program, you can see the contents on your screen through the JFrame display area. A
Close button is added to the frame to close it.

Listing 3-15. Using a Uniform Translucent JFrame

// UniformTranslucentFrame.java
package com.jdojo.swing.advanced;

import java.awt.BorderLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class UniformTranslucentFrame extends JFrame {
 private JButton closeButton = new JButton("Close");

 public UniformTranslucentFrame(String title) {
 super(title);
 initFrame();
 }

 public void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Make sure the frame is undecorated
 this.setUndecorated(true);

 // Set 40% opacity. That is, 60% translucency.
 this.setOpacity(0.40f);

 // Set its size
 this.setSize(200, 200);

 // Center it on the screen
 this.setLocationRelativeTo(null);

 // Add a button to close the window
 this.add(closeButton, BorderLayout.SOUTH);

 // Exit the application when the close button is clicked
 closeButton.addActionListener(e -> System.exit(0));
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 UniformTranslucentFrame frame
 = new UniformTranslucentFrame("Translucent Frame");
 frame.setVisible(true);
 });
 }
}

Chapter 3 ■ advanCed Swing

244

Let’s see a per-pixel translucent JFrame in action. You will create a gradient effect inside a JPanel by
setting the alpha value for its background color different for different pixels in its display area. You can
get a per-pixel translucency in different ways. The easiest way to see it in action is to use a JPanel with a
background color and set the alpha component to a desired translucency. The following snippet of code
illustrates this:

// Create a frame and set its properties
JFrame frame = new JFrame();
frame.setUndecorated(true);
frame.setBounds(0, 0, 200, 200);

// Set the background color of the frame to all zero, so that the per-pixel translucency works
frame.setBackground(new Color(0, 0, 0, 0));

// Create a blue JPanel with 128 alpha component
JPanel panel = new JPanel();
int alpha = 128;
Color bgColor = new Color(0, 0, 255, alpha);
panel.setBackground(bgColor);

// Add the JPanel to the frame and display it
frame.add(panel);
frame.setVisible(true);

Two things are different in the code. First, it sets the background color of the frame with all color
components set to 0 to achieve the per-pixel translucency. Second, it sets the background color of the
JPanel, which has an alpha component, to 128. You can add another JPanel with a different alpha
component for its background color to the JFrame. This will give you two areas on the JFrame whose pixels
use different translucency.

You can achieve a fancier result if you use an object of the GradientPaint class to paint your JPanel.
A GradientPaint object fills a Shape with a linear gradient pattern. It requires you to specify two points,
p1 and p2, and colors for each point, c1 and c2. The color on the connecting line between p1 and p2 will
proportionally change from c1 to c2.

Listing 3-16 contains the code for a custom JPanel that uses a GradientPaint object to paint its area.
The background color for the JPanel is specified in its constructor. It has overridden the paintComponent()
to provide the custom painting effect. The gradient color pattern is provided by Graphics2D. The method
checks if it has a Graphics2D object. The starting point, p1, is the upper-left corner of the JPanel. The color
for the starting point, c1, is the same as the one passed in the constructor. It uses 255 as its alpha component.
The second point, p2, is the upper-right corner of the JPanel, with the same color that uses a zero alpha
component. This will give the JPanel a gradient effect from opaque at the left edge to gradually turning
transparent at the right edge. You can experiment by changing the two points and the alpha component
values for them to get a different gradient pattern. It sets the GradientPaint object as the Paint object for
the Graphics2D object and calls the fillRect() method to paint the area of the JPanel.

Chapter 3 ■ advanCed Swing

245

Listing 3-16. A Custom JPanel with a Gradient Color Effect Using the Per-Pixel Translucency

// TranslucentJPanel.java
package com.jdojo.swing.advanced;

import java.awt.Color;
import java.awt.GradientPaint;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Paint;
import javax.swing.JPanel;

public class TranslucentJPanel extends JPanel {
 private int red = 240;
 private int green = 240;
 private int blue = 240;

 public TranslucentJPanel(Color bgColor) {
 this.red = bgColor.getRed();
 this.green = bgColor.getGreen();
 this.blue = bgColor.getBlue();
 }

 @Override
 protected void paintComponent(Graphics g) {
 if (g instanceof Graphics2D) {
 int width = this.getWidth();
 int height = this.getHeight();
 float startPointX = 0.0f;
 float startPointY = 0.0f;
 float endPointX = width;
 float endPointY = 0.0f;
 Color startColor = new Color(red, green, blue, 255);
 Color endColor = new Color(red, green, blue, 0);

 // Create a GradientPaint object
 Paint paint = new GradientPaint(startPointX, startPointY,
 startColor,
 endPointX, endPointY,
 endColor);

 Graphics2D g2D = (Graphics2D) g;
 g2D.setPaint(paint);
 g2D.fillRect(0, 0, width, height);
 }
 }
}

Chapter 3 ■ advanCed Swing

246

Listing 3-17 contains the code to see the per-pixel translucency in a JFrame in action. It adds three
instances of the TranslucentJPanel class with the background colors of red, green, and blue. A Close button
is added to close the frame.

Listing 3-17. Using Per-Pixel Translucency in a JFrame

// PerPixelTranslucentFrame.java
package com.jdojo.swing.advanced;

import java.awt.Color;
import java.awt.GridLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class PerPixelTranslucentFrame extends JFrame {
 private JButton closeButton = new JButton("Close");

 public PerPixelTranslucentFrame(String title) {
 super(title);
 initFrame();
 }

 public void initFrame() {
 this.setDefaultCloseOperation(EXIT_ON_CLOSE);

 // Make sure the frame is undecorated
 this.setUndecorated(true);

 // Set the background color with all components as zero,
 // so per-pixel translucency is used
 this.setBackground(new Color(0, 0, 0, 0));

 // Set its size
 this.setSize(200, 200);

 // Center it on the screen
 this.setLocationRelativeTo(null);

 this.getContentPane().setLayout(new GridLayout(0, 1));

 // Create and add three JPanel with different color gradients
 this.add(new TranslucentJPanel(Color.RED));
 this.add(new TranslucentJPanel(Color.GREEN));
 this.add(new TranslucentJPanel(Color.BLUE));

 // Add a button to close the window
 this.add(closeButton);
 closeButton.addActionListener(e -> System.exit(0));
 }

Chapter 3 ■ advanCed Swing

247

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 PerPixelTranslucentFrame frame
 = new PerPixelTranslucentFrame("Per-Pixel Translucent Frame");
 frame.setVisible(true);
 });
 }
}

Figure 3-8 shows the JFrame when the program is run. Notice the gradient effect in the frame. Each
panel is more translucent as you move from left to right. The text shown the figure is not part of the JFrame.
The text was displayed in the background when the JFrame was displayed. You can see through the
translucent part of the JFrame.

Figure 3-8. A JFrame using per-pixel translucency

Shaped Window
Swing lets you create a custom shaped window such as a round shaped JFrame, an oval shaped JDialog,
etc. You can give a window a custom shape by using the setShape(Shape s) method of the Window class.
The shape of the window is limited only by your imagination. You can create a shape by combining multiple
shapes using the classes in the java.awt.geom package. The following snippet of code creates a shape that
contains an ellipse placed above a rectangle. At the end, it sets the custom shape to a JFrame.

// Create a shape with an ellipse over a rectangle
Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);

// Combine an ellipse and a rectangle into a Path2D object to get a new shape
Path2D path = new Path2D.Double();
path.append(rect, true);
path.append(ellipse, true);

Chapter 3 ■ advanCed Swing

248

// Create a JFrame
JFrame frame = new JFrame("A Custom Shaped JFrame");

// Set the custom shape to the JFrame
Frame.setShape(path);

A Window owns a rectangular area on the screen. If you give a custom shape to a window, some of its
parts may be cut off. The part of a shaped window that does not belong to the custom shape is not visible
and not clickable. Figure 3-9 shows a custom shaped window with an ellipse placed above a rectangle. The
window contains a Close button. The areas around the four corners of the ellipse are not visible and not
clickable.

Figure 3-9. A custom shaped window with an ellipse placed above a rectangle

The following three criteria must be met to use a shaped window:

•	 The platform must support PERPIXEL_TRANSPARENT translucency.

•	 The window must be undecorated. You can make a JFrame or JDialog undecorated
by calling the setUndecorated(true) method on them.

•	 The window must not be in full-screen mode. You can put a window in full-screen
mode using the setFullScreenWindow(Window w) method of the GraphicsDevice
class.

Listing 3-18 contains the code that displays a shaped JFrame that was shown in Figure 3-9.

Chapter 3 ■ advanCed Swing

249

Listing 3-18. Using a Custom Shaped JFrame

// ShapedFrame.java
package com.jdojo.swing.advanced;

import java.awt.BorderLayout;
import java.awt.geom.Path2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.SwingUtilities;

public class ShapedFrame extends JFrame {
 private JButton closeButton = new JButton("Close");

 public ShapedFrame() {
 initFrame();
 }

 public void initFrame() {
 // Make sure the frame is undecorated
 this.setUndecorated(true);

 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
 this.setSize(200, 200);

 // Create a shape with an ellipse placed over a rectangle
 Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
 Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);

 // Combine the ellipse and rectangle into a Path2D object and
 // set it as the shape for the JFrame
 Path2D path = new Path2D.Double();
 path.append(rect, true);
 path.append(ellipse, true);
 this.setShape(path);

 // Add a Close button to close the frame
 this.add(closeButton, BorderLayout.SOUTH);
 closeButton.addActionListener(e -> System.exit(0));
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(() -> {
 // Display the custom shaped frame
 ShapedFrame frame = new ShapedFrame();
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 });
 }
}

Chapter 3 ■ advanCed Swing

250

The following part of the code inside the initFrame() method in this listing is of interest:

// Make sure the frame is undecorated
this.setUndecorated(true);

// Create a shape with an ellipse placed over a rectangle
Ellipse2D.Double ellipse = new Ellipse2D.Double(0, 0, 200, 100);
Rectangle2D.Double rect = new Rectangle2D.Double(0, 100, 200, 200);

// Combine the ellipse and rectangle into a Path2D object and
// set it as the shape for the JFrame
Path2D path = new Path2D.Double();
path.append(rect, true);
path.append(ellipse, true);
this.setShape(path);

The first statement makes sure that the JFrame is undecorated. Two shapes, an ellipse and a rectangle,
are created. Their coordinates and size are set to place the ellipse over the rectangle. A Path2D.Double
object is used to connect the ellipse and rectangle together into a custom Shape object. Path2D is an abstract
class in the java.awt.geom package. It declares two static inner classes, Path2D.Double and Path2D.
Float, to store the coordinates of a shape in double precision and single precision floating-point numbers,
respectively. Shape is an interface declared in the java.awt package. The Path2D class implements the Shape
interface. Note that the setShape() method in the Window class takes a Shape as an argument. The append()
method of the Path2D class appends the geometry of the specified Shape object to the path. The second
argument to the append() method is an indicator whether you want to connect two shapes using a line
segment. If it is true, a call to the moveTo() method is translated to the lineTo() method. In this case, the
value of true for this argument is of no significance. Please explore the classes in the java.awt.geom package
to learn more about the many interesting shapes that you can use in your Java application.

Summary
Swing components have built-in support for displaying HTML text as labels. You can use an HTML-
formatted string as a label for a JButton, JMenuItem, JLabel, JToolTip, JTabbedPane, JTree, etc. using an
HTML string, which should start and end with the <html> and </html> tags, respectively. If you do not want
Swing to interpret text enclosed in HTML tags as HTML for a component, you can disable the feature by
calling the putClientProperty("html.disable", Boolean.TRUE) method on the component.

Swing components are not thread-safe. You are supposed to update the component’s states from a
single thread called an event dispatch thread. All event handlers for components are executed in the event
dispatch thread. Swing creates the event dispatch thread automatically. Swing provides a utility class called
SwingUtilities to work with the event dispatch thread; its invokeLater(Runnable r) method schedules
the specified Runnable to be executed on the event dispatch thread. It is safe to build the Swing GUI and
show it on the event dispatch thread. The isEventDispatchThread() of the SwingUtilities class returns
true if this method is executed by the event dispatch thread.

Running long-running tasks on the event dispatch thread will make your GUI unresponsive. Swing
provides a SwingWorker class to execute long-running tasks on worker threads that are threads other than
the event dispatch thread. The SwingWorker class provides features to publish the results of the task on the
event dispatch thread that can update the Swing components safely.

Swing provides pluggable L&Fs. It ships with some predefined L&Fs. You can use the UIManager.
setLookAndFeel() method to set a new L&F for your application.

Chapter 3 ■ advanCed Swing

251

Drag and drop (DnD) is a way to transfer data between components in an application. Swing supports
DnD between Swing components and between Swing components and native components. Using DnD, you
can copy, move, and link data between two components.

Using Swing, you can develop a multiple document interface (MDI) application that consists of multiple
frames managed by a desktop manager. Frames in an MDI application can be arranged in different ways; for
example, they can be arranged in layers, they can be cascaded, they can be placed side by side, etc.

Swing provides an instance of the Toolkit class to communicate with the native system. The class
contains many useful methods such as for making a beep sound, knowing the screen resolution and size, etc.

Swing lets you have translucent windows. Translucency can be defined to be the same for all pixels in
the window or on a per-pixel basis.

In Swing, you are not limited to having only rectangular windows. It lets you create shaped windows.
A shaped window can be of any shape, such as circular, oval, or any custom shape.

QUESTIONS AND EXERCISES

1. Create a JButton with a Close label. the label should be formatted in italics and
boldface font using htML.

2. Create a JButton with a <html>Use the tag for bold</html> label.
note that the label contains htML tags and the tags should be displayed as shown
in the label.

3. how do you check if your code is running in the event dispatch thread?

4. Compare and contrast the use of the invokeLater() and invokeAndWait()
methods of the SwingUtilities class.

5. what Swing utility class do you need to use when you want to run a long-running
task in non-event dispatch thread and publish the result of the task in a Swing
application?

6. how do you set the system (or native) look and feel for a Swing application?

7. what is drag and drop (dnd)? Create an application with a JTextArea. the user
should be able to drag and drop text from any other application such as an internet
browser into the JTextArea and the dragged text should be inserted into the
JTextArea.

8. what are Sdi, Mdi, and tdi applications? give an example of each kind.

9. when do you use instances of the JInternalFrame and JDesktopPane classes?

10. what is the role of a DesktopManager in a Swing application?

11. what kind of functionalities are provided by instances of the java.awt.Toolkit
class?

12. write a program using the Toolkit class that prints the screen size to the
standard output.

13. when do you use a JLayer in your Swing application?

253© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_4

CHAPTER 4

Network Programming

In this chapter, you will learn:

•	 What network programming is

•	 What the network protocol suite is

•	 What an IP address is and what the different IP addressing schemes are

•	 Special IP addresses and their uses

•	 What port numbers are and how they are used

•	 Using TCP and UDP client and server sockets for communication between remote
computers

•	 The definitions of URI, URL, and URN and how to represent them in Java programs

•	 How to use non-blocking sockets

•	 How to use asynchronous socket channels

•	 Datagram-oriented socket channels and multicast datagram channels

All example programs in this chapter are members of a jdojo.net module, as declared in Listing 4-1.

Listing 4-1. The Declaration of a jdojo.net Module

// module-info.java
module jdojo.net {
 exports com.jdojo.net;
}

The first few sections in this chapter are intended to give a quick overview of basics related to network
technologies for those readers who do not have a computer science background. If you understand terms
like IP address, port number, and network protocol suites, you may skip these sections and start reading
from the “Socket API and Client-Server Paradigm” section.

What Is Network Programming?
A network is a group of two or more computers or other types of electronic devices such as printers that are
linked together with a goal to share information. Each device linked to a network is called a node. A computer
that is linked to a network is called a host. Network programming in Java involves writing Java programs that
facilitate the exchange of information between processes running on different computers on the network.

https://doi.org/10.1007/978-1-4842-3546-1_4

Chapter 4 ■ Network programmiNg

254

Java makes it easy to write network programs. Sending a message to a process running on another computer
is as simple as writing data to a local file system. Similarly, receiving a message that was sent from a process
running in another computer is as simple as reading data from a local file system. Most of the programs in this
chapter involve reading and writing data over the network, and they are similar to file I/O. Refer to Chapters 7
through Chapter 10 in the book Beginning Java 9 Language Features for more details on file I/O. You learn about a
few new classes in this chapter that facilitate the communication between two computers on a network.

You do not need to have advanced level knowledge of networking technologies to understand or write
Java programs in this chapter. This chapter covers high-level details of a few things that are involved in
network communication.

A network can be categorized based on different criteria. Based on the geographical area that a network
is spread over, it is categorized as follows:

•	 Local Area Network (LAN): It covers a small area such as a building or a block of
buildings.

•	 Campus Area Network (CAN): It covers a campus such as a university campus,
interconnecting multiple LANs within that campus.

•	 Metropolitan Area Network (MAN): It covers more geographical area than a LAN.
Usually, it covers a city.

•	 Wide Area Network (WAN): It covers a larger geographical area such as a region of a
country or multiple regions in different countries in the world.

When two or more networks are connected using routers (also known as gateways), it is called
internetworking, and the resulting combined network is called an internetwork, in short, internet (note the
lowercase i in internet). The global internetwork, which encompasses all networks in the world connected
together, is referred to as the Internet (note the uppercase I in Internet).

Based on the topology (the arrangement of nodes in a network), a network may be categorized as star,
tree, ring, bus, hybrid, etc.

Based on the technology a network uses to transmit the data, it can be categorized as Ethernet,
LocalTalk, Fiber Distributed Data Interface (FDDI), Token Ring, Asynchronous Transfer Mode (ATM), etc.

I do not cover any details about the different kinds of networks. Refer to any standard textbook on
networks to learn more about networks and network technologies in detail.

Communication between two processes on a computer is simple and it is achieved using interprocess
communication as defined by the operating system. It is a very tedious task when two processes running
on two different computers on an internet need to communicate. You need to consider many aspects of the
communication before the such two processes may start communicating. Some of the points that you need
to consider are as follows:

•	 The two computers may be using different technologies such as different operating
systems, different hardware, etc.

•	 They may be on two different networks that use different network technologies.

•	 They may be separated by many other networks, which may be using different
technologies. That is, two computers are not on two networks that are
interconnected directly. You need to consider not just two networks, but all networks
that the data from one computer must pass to reach another computer.

•	 They may be a few miles apart or on other sides of the globe. How do you transmit the
information efficiently without worrying about the distance between the two computers?

•	 One computer may not understand the information sent by the other computer.

•	 The information sent over a network may be duplicated, delayed, or lost. How should
the receiver and the sender handle these abnormal situations?

http://dx.doi.org/10.1007/978-1-4842-3546-1_7
http://dx.doi.org/10.1007/978-1-4842-3546-1_10

Chapter 4 ■ Network programmiNg

255

Simply put, two computers on a network communicate using messages (sequences of 0s and 1s).
There must be well-defined rules to handle the previously mentioned issues (and many more). The set of
rules to handle a specific task is known as a protocol. Many types of tasks are involved in handling network
communication. There is a protocol defined to handle each specific task. There is a stack of protocols (also
called protocol suite) that are used together to handle a network communication.

Network Protocol Suite
Modern networks are called packet switching networks because they transmit data in chunks called packets.
Each packet is transmitted independent of other packets. This makes it easy to transmit the packets from
the same computer to the same destination using different routes. However, it may become a problem if
a computer sends two packets to a remote computer and the second packet arrives before the first one.
For this reason, each packet also has a packet number along with its destination address. There are rules
to rearrange the out-of-order arrival of the packets at the destination computer. The following discussion
attempts to explain some of the mechanisms that are used to handle packets in a network communication.

Figure 4-1 shows a layered protocol suite called the Internet Reference Model or TCP/IP Layering Model.
This is the most widely used protocol suite. Each layer in the model performs a well-defined task. The main
advantage of having a layered protocol model is that any layer can be changed without affecting others. A
new protocol can be added to any layer without changing other layers.

Figure 4-1. The Internet protocol suite showing its five protocol layers

Each layer knows about only the layer immediately above and below it. Each layer has two interfaces—
one for the layer above it and one for the layer below it. For example, the transport layer has interfaces to the
application layer and internet layer. That is, the transport layer knows how to communicate only with the
application layer and the internet layer. It knows nothing about the network interface layer or the physical layer.

A user application such as a Java program uses the application layer to communicate to a remote
application. The user application has to specify the protocol that it wants to use to communicate with
the remote application. A protocol in an application layer defines the rules for formatting messages and
associating the meaning to the information contained in the messages such as the message type, describing
whether it is a request or a response, etc. After the application layer formats the message, it hands over the
message to the transport layer. The examples of protocols in an application layer are Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), Gopher, Telecommunication Network (Telnet), Simple Mail
Transfer Protocol (SMTP), and Network News Transfer Protocol (NNTP).

The transport layer protocol handles the ways messages are transported from one application on
one computer to another application on the remote computer. It controls the data flow, error handling
during data transmission, and connections between two applications. For example, a user application

Chapter 4 ■ Network programmiNg

256

may hand over a very large chunk of data to the transport layer to transmit to a remote application. The
remote computer may not be able to handle that large amount of data at once. It is the responsibility of the
transport layer to pass a suitable amount of data at a time to the remote computer, so the remote application
can handle the data according to its capacity. The data passed to the remote computer over a network may
be lost on its way due to various reasons. It is the responsibility of the transport layer to retransmit the lost
data. Note that the application layer passes data to be transmitted to the transport layer only once. It is
the transport layer (not the application layer) that keeps track of the delivered and the lost data during a
transmission. There may be multiple applications running, all of which use different protocols and exchange
information with different remote applications. It is the responsibility of the transport layer to hand over
messages sent to a remote application correctly. For example, you may be browsing the Internet using the
HTTP protocol from one remote web server and downloading a file using the FTP protocol from another
FTP server. Your computer is receiving messages from two remote computers and they are meant for two
different applications running on your computer—one web browser to receive HTTP data and one FTP
application to receive FTP data. It is the responsibility of the transport layer to pass the incoming data to the
appropriate application. You can see how different layers of the protocol suite play different roles in data
transmission over the network. Depending on the transport layer protocol being used, the transport layer
adds relevant information to the message and passes it to the next layer, which is the internet layer. The
examples of protocols used in the transport layer are Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Stream Control Transmission Protocol (SCTP).

The internet layer accepts the messages from the transport layer and prepares a packet suitable for
sending over the internet. It includes the Internet Protocol (IP). The packet prepared by the IP is also known
as an IP datagram. It consists of a header and a data area, apart from other pieces of information. The header
contains the sender’s IP address, destination IP address, time to live (TTL, which an integer), a header
checksum, and many other pieces of information specified in the protocol. The IP prepares the message
into datagrams, which are ready to be transmitted over the internet. The TTL in the IP datagram header
specifies how long, in terms of the number of routers, an IP datagram can keep traveling before it needs to
be discarded. Its size is one byte and its value could be between 1 and 255. When an IP datagram reaches a
router in its route to the destination, the router decrements the TTL value by 1. If the decremented value is
zero, the router discards the datagram and sends an error message back to the sender using Internet Control
Message Protocol (ICMP). If the TTL value is still a positive number, the router forwards the datagram to the
next router. The IP uses an address scheme, which assigns a unique address to each computer. The address
is called an IP address. I discuss the IP addressing scheme in detail in the next section. The internet layer
hands over the IP datagram to the next layer, which is the network interface layer. The examples of protocols
in an internet layer are Internet Protocol (IP), Internet Control Message Protocol (ICMP), Internet Group
Management Protocol (IGMP), and Internet Protocol Security (IPsec).

The network interface layer prepares a packet to be transmitted on the network. The packet is called
a frame. The network interface layer sits just on top of the physical layer, which involves the hardware.
Note that the IP layer uses the IP address to identify the destination on a network. An IP address is a virtual
address, which is completely maintained in software. The hardware is unaware of the IP address and it does
not know how to transmit a frame using an IP address. The hardware must be given the hardware address,
also called Media Access Control (MAC) address, of the destination that it needs to transmit the frame to.
This layer resolves the destination hardware address from the IP address and places it in the frame header. It
hands over the frame to the physical layer. The examples of protocols in a network interface layer are Open
Shortest Path First (OSPF), Point-to-Point Protocol (PPP), Point-to-Point Tunneling Protocol (PPTP), and
Layer 2 Tunneling Protocol (L2TP).

The physical layer consists of the hardware. It is responsible for converting the bits of information into
signals and transmitting the signal over the wire.

Chapter 4 ■ Network programmiNg

257

 ■ Tip Packet is a generic term that is used to mean an independent chunk of data in network programming.
each layer of protocol also uses a specific term to mean the packet it deals with. For example, a packet is called
a segment in the tCp layer; it is called a datagram in the ip layer; it is called a frame in the network interface
and physical layers. each layer adds a header (sometimes also a trailer) to the packet it receives from the
layer before it, while preparing the packet to be transmitted over the network. each layer performs the reverse
action when it receives a packet from the layer below it. it removes the header from the packet; performs some
actions, if needed; and hands over the packet to the layer above it.

When a packet sent by an application reaches the remote computer, it has to pass through the same
layer of protocols in the reverse order. Each layer will remove its header, perform some actions, and pass
the packet to the layer immediately above it. Finally, the packet reaches the remote application in the
same format it started from the application on the sender’s computer. Figure 4-2 shows the transmission of
packets from the sender and the receiver computer. P1, P2, P3, and P4 are the packets in different formats of
the same data. A protocol layer at a destination receives the same packet from the layer immediately below
it, which the same protocol layer had passed to the layer immediately below it on the sender’s computer.

Figure 4-2. Transmission of packets through the protocol layers on the sender’s and receiver’s computers

Chapter 4 ■ Network programmiNg

258

IP Addressing Scheme
IP uses a unique address, called an IP address, to route an IP datagram to the destination. An IP address
uniquely identifies a connection between a computer and a router. Normally, it is understood that an IP
address identifies a computer. However, it should be emphasized that it identifies a connection between
a computer and a router, not just a computer. A router is also assigned an IP address. A computer can be
connected to multiple networks using multiple routers and each connection between the computer and the
router will have a unique IP address. In such cases, the computer will be assigned multiple IP addresses and
the computer is known as multi-homed. Multi-homing increases the availability of the network connection
to a computer. If one network connection fails, the computer can use other available network connections.

An IP address contains two parts—a network identifier (I call it a prefix) and a host identifier (I call it a suffix).
The prefix identifies a network on the Internet uniquely; the suffix identifies a host uniquely within that network. It
is possible for two hosts to have IP addresses with the same suffix as long as they have a different prefix.

There are two versions of Internet Protocol—IPv4 (or simply IP) and IPv6, where v4 and v6 stand for
version 4 and version 6. IPv6 is also known as Internet Protocol next generation (IPng). Note that there is
no IPv5. When IP was in its full swing of popularity, it was at version 4. Before IPng was assigned a version
number 6, version 5 was already assigned to another protocol called Internet Stream Protocol (ST).

Both IPv4 and IPv6 use an IP address to identify a host on a network. However, the addressing schemes in the
two versions differ significantly. The next two sections explain the addressing schemes used by IPv4 and IPv6.

Since an IP address must be unique, its assignment is controlled by an organization called Internet
Assigned Numbers Authority (IANA). IANA assigns a unique address to each network that belongs to an
organization. The organization uses the network address and a unique number to form a unique IP address
for each host on the network. IANA divides the IP address allocations to five Regional Internet Registry
(RIR) organizations, which allocate IP addresses in specific regions as listed in Table 4-1. You can find more
information on how to get a network address in your area from IANA at www.iana.com.

Table 4-1. Regional Internet Registries for Allocating Network IP Addresses

Regional Internet Registry Organization Name Regions Covered

African Network Information Centre (AfriNIC) Africa Region

Asia-Pacific Network Information Centre (APNIC) Asia/Pacific Region

American Registry for Internet Numbers (ARIN) North America Region

Latin American and Caribbean Internet Address
Registry (LACNIC)

Latin America and some Caribbean Islands

Réseaux IP Européens Network Coordination Centre
(RIPE NCC)

Europe, the Middle East, and Central Asia

Figure 4-3. IPv4 addressing scheme

IPv4 Addressing Scheme
IPv4 (or simply IP) uses a 32-bit number to represent an IP address. An IP address contains two parts—a
prefix and a suffix. The prefix identifies a network and the suffix identifies a host on the network, as shown in
Figure 4-3.

http://www.iana.com/

Chapter 4 ■ Network programmiNg

259

It is not easy for humans to remember a 32-bit number in binary format. IPv4 allows you to work with
an alternate form using four decimal numbers. Each decimal number is in the range from 0 to 255. Programs
take care of converting decimal numbers into a 32-bit binary number that will be used by the computer.
The decimal number format of IPv4 is called dotted decimal format because a dot is used to separate two
decimal numbers. Each decimal number represents the value contained in 8 bits of the 32-bit number. For
example, an IPv4 address of 11000000101010000000000111100111 in the binary format can be represented
as 192.168.1.231 in the dotted decimal format. The process of converting binary IPv4 to its decimal
equivalent is shown in Figure 4-4. In 192.168.1.231, the part 192.168.1 identifies the network address
(the prefix) and the part 231 (the suffix) identifies the host on that network.

Figure 4-4. Parts of an IPv4 address in binary and decimal formats

How do you know that 192.168.1 represents a prefix in an IPv4 address 192.168.1.231? A rule governs
the value of a prefix and a suffix in an IPv4. I discuss how to identify a prefix and suffix in an IPv4 later in this
section, when I discuss the class type of a network.

How does an IPv4 address divide its 32 bits between a prefix and a suffix? IPv4 address space is divided
in five categories called network classes, named A, B, C, D, and E. A class type defines how many bits of the 32
bits will be used to represent the network address part of an IP address. The leading bit (or bits) in the prefix
defines the class of the IP address. This is also known as a self-identifying or classful IP address because you
can tell which class it belongs to by looking at the IP address.

Table 4-2 lists the five network classes and their characteristics in IPv4. The leading bits in an IP address
identify the class of the network. For example, if an IP address looks like 0XXX, where XXX is the last 31 bits
of the 32 bits, it belongs to the class A network; if an IP address looks like 110XXX, where XXX is the last 29
bits of 32 bits, it belongs to the class C network. There can be only 128 networks of class A type and each
network can have 16777214 hosts. The number of hosts that a class A network can have is very big and it is
very unlikely that a network will have that many hosts. In a class C type of network, the maximum number of
hosts that a network can have is limited to 254.

Table 4-2. Five Classes of IPv4 in the Classful Addressing Scheme

Network
Class

Prefix Suffix Leading Bit(s)
in Prefix

Number of
Networks

Number of Hosts
per Network

A 8 bits 24 bits 0 128 16777214

B 16 bits 16 bits 10 16384 65534

C 24 bits 8 bits 110 2097152 254

D Not Defined Not defined 1110 Not defined Not defined

E Not Defined Not defined 1111 Not defined Not defined

Chapter 4 ■ Network programmiNg

260

What happens if an organization is assigned a network address from class C and it has only 10 hosts to
attach to the network? The remaining slots in the IP addresses in that network remain unused. Recall that
the host (or suffix) part in an IP address must be unique within the network (the prefix part). On the other
hand, if an organization needs to connect 300 computers to a network, it needs to get two class C network
addresses because getting a class B network address, which can accommodate 65534 hosts, will again waste
a great many IP addresses.

Note that if the number of bits allocated for a suffix is N, the number of hosts that can be used is 2N - 2.
Two bits patterns—all 0s and all 1s—cannot be used for a host address. They are used for special purposes.
This is the reason a class C network can have a maximum of 254 hosts and not 256. Class D addresses are
used as multicast addresses. Class E addresses are reserved.

The fast growth of the Internet and the large number of IP addresses not being used prompted for a new
addressing scheme. This scheme is simply based on one criterion—one should be able to use an arbitrary
boundary between the prefix and suffix parts of an IP address, instead of predefined boundaries at 8, 16, and
24 bits. This will keep the unused addresses at a minimum. For example, if an organization needs a network
number for a network with only 20 hosts, that organization can use only a 27-bit prefix and a 5-bit suffix.

Two terminologies called subnetting and supernetting are used to describe the situations when some
bits from the suffix are used for the prefix and some bits from the prefix are used as the suffix. When bits
from the suffix are used as the prefix, essentially, it creates more network addresses at the cost of host
addresses. The extra network addresses are called subnets. Subnetting is achieved by using a number called
a subnet mask or an address mask. A subnet mask is a 32-bit number that is used to compute the network
address from an IP address. Using a subnet mask eliminates the restriction that the class of a network must
predefine the network number part of the IP address. A logical AND is performed on the IP address and
the subnet mask to compute the network number. In this scheme of addressing, an IP address is always
specified with its subnet mask. A forward slash and subnet mask follows an IP address. For example,
140.10.11.9/255.255.0.0 denotes an IP address of 140.10.11.9 with a subnet mask 255.255.0.0.
It is possible to use any subnet mask whose four decimal parts ranges from 0 to 255. In this example,
140.10.11.9 is a class B address. A class B address uses 16 bits for the prefix and 16 bits for the suffix. Let’s
take 6 bits off the suffix and add it to the prefix. Now, the prefix is 22 bits and the suffix is only 10 bits. By
doing this, you have created additional network numbers at the cost of host numbers. To describe an IP
address in this scheme of subnetting, you need to use a subnet mask of 255.255.252.0. If you write an
IP address using this subnet mask as 140.10.11.9/255.255.252.0, the network address is computed as
140.10.8.0, like so:

IP Address: 10001100 00001010 00001011 00001001
Subnet Mask: 11111111 11111111 11111100 00000000
--
Logical AND: 10001100 00001010 00001000 00000000
 (140) (10) (8) (0)

Classless Inter-Domain Routing (CIDR) is another IPv4 addressing scheme in which an IPv4 address is
specified as four dotted decimal numbers along with another decimal number separated by a forward slash
such as 192.168.1.231/24, where the last number 24 denotes the prefix-length (or number of bits used for
a network number) in the 32-bit IPv4 address. Note that the CIDR addressing scheme lets you define the
prefix/suffix boundary at any bits in 32-bit IPv4. By moving the bits from the prefix to the suffix, you can
combine multiple networks and increase the number of hosts per network. This is called supernetting. You
can create supernets as well as subnets using CIDR notation.

Some IP addresses in an IPv4 addressing scheme are reserved for broadcast and multicast IP addresses.
I discuss broadcasting and multicasting later in this chapter.

Chapter 4 ■ Network programmiNg

261

IPv6 Addressing Scheme
IPv6 is a new version of IP and it is the successor for IPv4. The address space in IPv4 was running out of
addresses in the fast growing Internet world. IPv6 is aimed at providing enough address space, so that every
computer in the world may get a unique IP address in the decades to come. Here are some of the main
features of IPv6:

•	 IPv6 uses a 128-bit number for an IP address instead of a 32-bit number used in IPv4.

•	 It has different header formats for IP packets than IPv4. IPv4 has only one header per
datagram, whereas IPv6 has one base header followed by multiple variable-length
extension headers per datagram.

•	 IPv6 supports datagrams of a bigger size than IPv4.

•	 In IPv4, the routers performed an IP packet fragmentation. In IPv6, the sender host is
supposed to perform a packet fragmentation rather than the routers. This means that
the host that uses IPv6 must know in advance the path of the maximum transmission
unit (MTU) that is the minimum of the maximum packet size allowed by all networks
to the destination host. The IP datagram’s fragmentation occurs when it has to enter
a network that has a lower size transmission capacity than the network the datagram
is leaving. In IPv4, the fragmentation is performed by the router, which detects a
lower transmission capacity network in the route. Since IPv6 allows only the host to
perform the fragmentation, the host must discover the minimum size datagram that
can be routed through all possible routes from the source to the destination host.

•	 IPv6 supports specifying routing information for the datagrams in the headers so
that routers can use it to route the datagrams through a specific route. This feature is
helpful in delivering time-critical information.

•	 IPv6 is extensible. Any number of extension headers can be added to an IPv6
datagram, which can be interpreted in a new way.

IPv6 uses a 128-bit IP address. It uses an easy-to-understand notation to represent an IP address in a
textual form. The 128 bits are divided into 8 fields of 16 bits each. Each field is written in hexadecimal form
and separated by a colon. The following are some examples of IPv6 addresses:

•	 F6DC:0:0:4015:0:BA98:C0A8:1E7

•	 F6DC:0:0:7678:0:0:0:A21D

•	 F6DC:0:0:0:0:0:0:A21D

•	 0:0:0:0:0:0:0:1

It is common to have many fields in an IPv6 address with zero values, especially for all IPv4 addresses.
The IPv6 address notation lets you compress contiguous fields of zero values by using two consecutive
colons. You can use two colons to suppress contiguous zero value fields only once in an address. The
previous IPv6 address may be rewritten using the zero-compression technique:

•	 F6DC::4015:0:BA98:C0A8:1E7

•	 F6DC:0:0:7678::A21D

•	 F6DC::A21D

•	 ::1

Chapter 4 ■ Network programmiNg

262

Note that we could suppress only one of the two sets of contiguous zero fields in the second address,
F6DC:0:0:7678::A21D. Rewriting it as F6DC::7678::A21D would be invalid because it uses two colons more
than once. You can use two colons to suppress contiguous zero fields, which may occur in the beginning,
middle, or end of the address string. If an address contains all zeros in it, you can represent it simply as ::.

You can also mix hexadecimal and decimal formats in an IPv6 address. The notation is useful when
you have an IPv4 address and want to write it in IPv6 format. You can write the first six 16-bit fields using
a hexadecimal notation as described previously and use dotted decimal notation for IPv4 for the last two
16-bit fields. The mixed notation takes the form X:X:X:X:X:X:D.D.D.D, where an X is a hexadecimal number
and a D is a decimal number. You can rewrite the previous IPv6 addresses using this notation as follows:

•	 F6DC::4015:0:BA98:192.168.1.231

•	 F6DC:0:0:7678::0.0.162.29

•	 F6DC::0.0.162.29

•	 ::0.0.0.1

Unlike IPv4, IPv6 does not assign IP addresses based on network classes. Like IPv4, it uses CIDR
addresses, so that the boundary between the prefix and suffix in an IP address can be specified at any arbitrary
bit. For example, ::1 can be represented in CIDR notation as ::1/128, where 128 is the prefix length.

 ■ Tip an ipv6 address should be enclosed in brackets ([]) when it is used inside a literal string as part of
a UrL. this rule does not apply to ipv4. For example, if you are accessing a web server on a loopback address
using ipv4 address, you can use a UrL like http://127.0.0.1/index.html. in an ipv6 address notation, you
need to use a UrL like http://[::1]/index.html. make sure your browser supports ipv6 address notation in
its UrLs before using it.

Special IP Addresses
Some IP addresses are used for special purposes. Some of such IP addresses are as follows:

•	 Loopback IP address

•	 Unicast IP address

•	 Multicast IP address

•	 Anycast IP address

•	 Broadcast IP address

•	 Unspecified IP address

The following sections describe the use of these special IP addresses in detail.

Loopback IP Address
You need at least two computers connected via a network to test or run a network program. Sometimes it
may not be feasible or desirable to set up a network when you want to test your network program during
the development phase of your project. The designers of IP realized this need. There is a provision in the
IP addressing scheme to treat an IP address as a loopback address to facilitate testing of network programs

http://127.0.0.1/index.html

Chapter 4 ■ Network programmiNg

263

using only one computer. When the Internet layer in the protocol suite detects a loopback IP address as the
destination for an IP datagram, it does not pass over the packet to the protocol layer below it (that is network
interface layer). Rather, it turns around (or loops back, hence the name loopback address) and routes the
packet back to the transport layer on the same computer. The transport layer will deliver the packet to the
destination process on the same host as it would have done had the packet come from a remote host. A
loopback IP address makes testing of a network program using one computer possible. Figure 4-5 depicts the
way an Internet packet, which is addressed to a loopback IP address, is processed by the IP. The packet never
leaves the source computer. It is intercepted by the internet layer and routed back to the same computer it
started from.

Figure 4-5. An Internet packet that has a loopback IP address as its destination is routed back to the same
computer from the Internet protocol in the internet layer

Loopback IP addresses are reserved addresses and the IP is required not to forward a packet with a
loopback IP address as its destination address to the network interface layer.

In an IPv4 addressing scheme, 127.X.X.X block is reserved for loopback addresses, where X is a decimal
number between 0 and 255. Typically, 127.0.0.1 is used as a loopback address in IPv4. However, you are
not limited to using only 127.0.0.1 as the only loopback address. If you wish, you can also use 127.0.0.2 or
127.3.5.11 as a valid loopback address. Typically, the name localhost is mapped to a loopback address of
127.0.0.1 on a computer.

In an IPv6 addressing scheme, there is only one loopback address, which is sufficient to perform any
local testing for a network program. It is 0:0:0:0:0:0:0:1 or simply ::1.

Unicast IP Address
Unicast is one-to-one communication between two computers on a network in which an IP packet is
delivered to a single remote host. A unicast IP address identifies a unique host on a network. IPv4 and IPv6
support unicast IP addresses.

Chapter 4 ■ Network programmiNg

264

Multicast IP Address
Multicast is a one-to-many communication where one computer sends an IP packet that is delivered to
multiple remote computers. Multicasting lets you implement the concept of group interaction such as audio
or video conferencing, where one computer sends information to all computers in the group. The benefit
of using multicasting in place of multiple unicasts is that the sender sends only one copy of the packet.
One copy of the packet travels along the network as long it can. If receivers of the packet are on multiple
networks, a copy of the packet is made when needed, and each copy of the packet is routed independently.
Finally, each receiver is delivered an individual copy of the packet. Multicasting is an efficient way of
communication between group members as it reduces network traffic.

An IP packet has only one destination IP address. How is an IP packet delivered to multiple hosts using
multicasting? IP contains some addresses in its address space as multicast addresses. If a packet is addressed
to a multicast address, the packet will be delivered to multiple hosts. The concept of multicast packet
delivery is the same as a group membership for an activity. When a group is formed, the group is given a
group ID. Any information addressed to that group ID is delivered to all group members. In a multicast
communication, a multicast IP address (similar to a group ID) is used. Multicast packets are addressed to
that multicast address. Each interested host registers its IP address with the local router that it is interested
in communication made on that multicast address. The registration process between a host and the local
router is accomplished using an Internet Group Management Protocol (IGMP). When the router receives
a packet with a multicast address, it delivers a copy of the packet to each host registered with it for that
multicast address. A receiver may choose to leave the multicast group any time by informing the router.

A multicast packet may travel through many routers before it finds its way to the receiver hosts. All
receivers of a multicast packet may not be on the same network. There are many protocols, such as Distance
Vector Multicast Routing Protocol (DVMRP), that deal with routing of multicast packets.

Both IPv4 and IPv6 support multicast addressing. In IPv4, Class D network addresses are used for
multicasting. That is, the four highest order bits are 1110 in a multicast address in IPv4. In IPv6, a multicast
address has the first 8 bits set to 1. That is, a multicast address in IPv6 always starts with FF. For example,
FF0X:0:0:0:0:0:2:0000 is a multicast address in IPv6.

Anycast IP Address
Anycast is a one-to-one-from-a-group communication where one computer sends a packet to a group of
computers, but the packet is delivered to exactly one computer in the group. IPv4 does not support anycasting.
IPv6 supports anycasting. In anycasting, the same address is assigned to multiple computers. When a router
receives a packet, which is addressed to an anycast address, it delivers the packet to the nearest computer.
Anycasting is useful when a service has been replicated at many hosts and you want to provide the service
at the nearest host to the client. Sometimes, anycast addressing is also called cluster addressing. An anycast
address is used from the unicast address space. You cannot distinguish a unicast address from an anycast
address by looking at their bit arrangements. When the same unicast address is assigned to multiple hosts, it
is treated as an anycast address. Note that the router must know about the hosts that are assigned an anycast
address, so that it can deliver the packets addressed to that anycast address to one of the nearest hosts.

Broadcast IP Address
Broadcast is a one-to-all communication where one computer sends a packet and that packet is delivered
to all computers on the network. IPv4 assigns some addresses as broadcast addresses. When all 32 bits are
set to 1, it forms a broadcast address and the packet is delivered to all hosts on the local subnet. When all
bits in the host address are set to 1 and a network address is specified, it forms a broadcast address for the
specified network number. For example, 255.255.255.255 is a broadcast address for a local subnet and
192.168.1.255 is a broadcast address for a network 192.168.1.0. IPv6 does not have a broadcast address.
You need to use a multicast address as the broadcast address in IPv6.

Chapter 4 ■ Network programmiNg

265

Unspecified IP Address
0.0.0.0 in IPv4 and :: in IPv6 (note that :: denotes 128-bit IPv6 address with all bits set to zero) are known
as unspecified addresses. A host uses this address as a source address to indicate that it does not have an IP
address yet, such as during the boot up process when it is not assigned an IP address yet.

Port Numbers
A port number is a 16-bit unsigned integer ranging from 0 to 65535. Sometimes a port number is also
referred to simply as a port. A computer runs many processes, which communicate with other processes
running on remote computers. When the transport layer receives an incoming packet from the Internet
layer, it needs to know which process (running in the application layer) on that computer should this
packet be delivered to. A port number is a logical number that is used by the transport layer to recognize a
destination process for a packet on a computer.

Each incoming packet to the transport layer has a protocol; for example, the TCP protocol handler in
the transport layer handles a TCP packet and the UDP protocol handler in the transport layer handles a
UDP packet.

In the application layer, a process uses a separate protocol of each communication channel it wants
to communicate on with a remote process. A process uses a unique port number for each communication
channel it opens for a specific protocol and registers that port number with the specific protocol module in
the transport layer. Therefore, a port number must be unique for a specific protocol. For example, process P1
can use a port number 1988 for a TCP protocol and another called process P2 can use the same port number
1988 on the same computer for a UDP protocol. A process on a host uses the protocol and the port number
of the remote process to send data to the remote process.

How does a process on a computer start communicating with a remote process? For example, when
you visit Yahoo’s website, you simply enter http://www.yahoo.com as the web page address. In this web
page address, http indicates the application layer protocol, which uses TCP as a transport layer protocol
and www.yahoo.com is the machine name, which is resolved to an IP address using a Domain Name System
(DNS). The machine identified by www.yahoo.com may be running many processes, which may use the http
protocol. Which process on www.yahoo.com does your web browser connect to? Since many people use
Yahoo’s website, it needs to run its http service at a well-known port, so that everyone can use that port to
connect to it. Typically, the http web server runs at port 80. You can use http://www.yahoo.com:80, which
is the same as using http://www.yahoo.com. It is not always necessary to run the http web server at port
80. If you do not run your http web server at port 80, people who want to use your http service must know
the port you are using. IANA is responsible for recommending which port numbers to use for well-known
services. IANA divides the port numbers into three ranges:

•	 Well-known ports: 0 -1023

•	 Registered ports: 1024 - 49151

•	 Dynamic and/or private ports: 49152 - 65535

Well-known port numbers are used by most commonly used services provided globally such as
HTTP, FTP, etc. Table 4-3 lists some of the well-known ports that are used for well-known application layer
protocols. Generally, you need administrative privileges to use a well-known port on a computer.

http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/
http://www.yahoo.com/

Chapter 4 ■ Network programmiNg

266

An organization (or a user) can register a port number with IANA in the registered ports range to be
used by an application. For example, 1099 (TCP/UDP) port has been registered for the RMI Registry (RMI
stands for Remote Method Invocation).

Any application can use a port number from dynamic/private port number range.

Socket API and Client-Server Paradigm
I have not yet started discussing Java classes that make network communication possible in a Java program.
In this section, I cover sockets and the client-server paradigm that is used in a network communication
between two remote hosts.

I covered briefly the different lower layers of protocols and their responsibilities in the previous
sections. It is time to move up in the protocol stack and discuss the interaction between the application
layer and the transport layer. How does an application use these protocols to communicate with a remote
application? Operating systems provide an application program interface (API) called a socket, which lets
two remote applications communicate, taking advantage of lower level protocols in the protocol stack. A
socket is not another layer of protocol. It is an interface between the transport layer and the application layer.
It provides a standard way of communication between the two layers, which in turn provides a standard way
of communication between two remote applications. There are two kinds of sockets:

•	 A connection-oriented socket

•	 A connectionless socket

A connection-oriented socket is also called a stream socket. A connectionless socket is also called a
datagram socket. Note that the data is always sent one datagram at a time from one host to another on the
Internet using IP datagrams.

Transmission Control Protocol (TCP), which is used in a transport layer, is one of the most widely used
protocols to provide connection-oriented sockets. The application hands over data to a TCP socket and the
TCP takes care of streaming the data to the destination host. The TCP takes care of all issues like ordering,
fragmentation, assembly, lost data detection, duplicates data transmission, etc., on both sides of the
communication, which gives the impression to the applications that data is flowing like a continuous stream
of bytes from the source application to the destination application. No physical connection at the hardware
level exists between two hosts that use TCP sockets. It is all implemented in software. Sometimes it is also
called a virtual connection. The combination of two sockets uniquely defines a connection.

Table 4-3. Partial List of Well-Known Ports Used for Some Application Layer Protocols

Application Layer Protocol Port Number

echo 7

FTP 21

Telnet 23

SMTP 25

HTTP 80

HTTPS 443

POP3 110

NNTP 119

Chapter 4 ■ Network programmiNg

267

In a connection-oriented socket communication, the client and the server create a socket at their ends,
establish a connection, and exchange information. TCP takes care of the errors that may occur during data
transmission. TCP is also known as a reliable transport level protocol because it guarantees the delivery
of the data. If it could not deliver the data for some reasons, it will inform the sender application about the
error conditions. After it sends the data, it waits for an acknowledgment from the receiver to make sure that
the data reached the destination. However, the reliability that TCP offers comes at a price. The overhead
as compared to a connectionless protocol is much more significant, and it is slower. TCP makes sure that a
sender sends the amount of data to the receiver, which can be handled by the receiver’s buffer size. It also
handles traffic congestion over the network. It slows down the data transmission when it detects traffic
congestion. Java supports TCP sockets.

User Datagram Protocol (UDP), which is used in a transport layer, is the most widely used protocol that
provides a connectionless socket. It is unreliable, but much faster. It lets you send limited sized data—one
packet at a time, which is different from TCP, which lets you send data as a stream of any size, handling the
details of segmenting them in appropriate size of packets. Data delivery is not guaranteed when you send
data using UDP. However, it is still used in many applications and it works very well. The sender sends a
UDP packet to a destination and forgets about it. If receiver gets it, it gets it. Otherwise, there is no way to
know—for the receiver—that there was a UDP packet sent to it. You can compare the communication used
in TCP and UDP to the communication used in a telephone and mailing a letter. A telephone conversation
is reliable and it offers acknowledgment between two parties that are communicating. When you mail a
letter, you do not know when the addressee receives it, or if he received it at all. There is another important
difference between UDP and TCP. UDP does not guarantee the ordering of data. That is, if you send five
packets to a destination using UDP, those five packets may arrive in any order. However, TCP guarantees that
packets will be delivered in the order they were sent. Java supports UDP sockets.

Which protocol should you use: TCP or UDP? It depends on how the application will be used. If data
integrity is of utmost significance, you should use TCP. If speed is prioritized over lower data integrity, you
should use UDP. For example, a file transfer application should use TCP, whereas a video conferencing
application should use UDP. If you lose video data of a few pixels, it does not matter much to the video
conference. It can continue. However, if you lose a few bytes of data when a file is being transferred, that file
may not be usable at all.

How do two remote applications start communicating? Which application initiates the communication?
How does an application know that a remote application is interested in communicating with it? Have you
ever dialed a customer service number of a company to talk to a customer service representative? If you
have talked to a company’s customer service representative, you already have experienced two remote
applications communicate. I refer to the mechanism of using a company’s customer service to explain
remote communication in this section. You and a company’s representative are at two remote locations. You
need a service and the company provides that service. In other words, you are the client and the company
is a service provider (or a server). You do not know when you will need a service from the company. The
company provides a customer service phone number, so you can contact the company. There is one more
thing the company does. What is it that the company must do to provide you a service? Can you guess? It
waits for your calls at the phone number that it gave you. The communication has to happen between you
and the company, and the company has already taken one step forward in that communication by passively
waiting for your call. As soon as you dial the company’s number, a connection is established and you
exchange information with the company’s representative. Both of you hang up, at the end, to discontinue
the communication. The network communication using sockets is similar to the communication that
happens between you and the company’s representative. If you understand this example of communication,
understanding sockets is easy.

Two remote applications use a pair of sockets to communicate. You need two endpoints for any
communication to occur. A socket is a communication endpoint on each side of the communication
channel. Communication over a pair of sockets follows a typical client-server communication paradigm.
One application creates a socket and passively waits to be contacted by another remote application. The
application that waits for a remote application to contact it is called a server application or simply a server.

Chapter 4 ■ Network programmiNg

268

Another application creates a socket and initiates the communication with the waiting server application.
This is called a client application or simply a client. Many other steps must be performed before a client and
a server can exchange information. For example, a server must advertise the location and other details about
itself so a client may contact it.

A socket passes through different states. Each state marks an event. It is the state of the socket that
tells you what a socket can do and what it cannot do. Generally, a socket’s lifecycle is described by eight
primitives listed in Table 4-4.

Table 4-4. Typical Socket Primitives and Their Descriptions

Primitives Description

Socket Creates a socket, which is used by an application to serve as a communication
endpoint.

Bind Associates a local address to the socket. The local address includes an IP
address and a port number. The port number must be a number between 0 and
65535. It should be unique for the protocol being used for the socket on the
computer. For example, if a TCP socket uses port 12456, a UDP socket can also
use the same port number 12456.

Listen Defines the size of its wait queue for a client request. It is performed only by a
connection-oriented server socket.

Accept Waits for a client request to arrive. It is performed only by a connection-
oriented server socket.

Connect Attempts to establish a connection to a server socket, which is waiting on an
accept primitive. It is performed by a connection-oriented client socket.

Send/Sendto Sends data. Usually send indicates a send operation on a connection-oriented
socket and Sendto indicates a send operation on a connectionless socket.

Receive/ReceiveFrom Receives data. They are counterparts of Send and Sendto.

Close Closes a connection

The following sections elaborate each socket primitive.

The Socket Primitive
A server creates a socket by specifying what kind of socket it is: a stream socket or a datagram socket.

The Bind Primitive
The bind primitive associates the socket to a local IP address and a port number. Note that a host can have
multiple IP addresses. A socket can be bound to one of the IP addresses of the host or all of them. Binding
a socket to all available IP addresses for the host is also known as binding to a wildcard address. Binding
reserves the port number for this socket. No other socket can use that port number for communication. The
bound port will be used by the transport protocol (TCP as well as UDP) to route the data intended for this
socket. I explain more about transferring data between the transport layer and a socket little later in this
section. For now, it is sufficient to understand that, in binding, the socket tells the transport layer that here
is my IP address and port number, and if you get any data addressed to this address, please pass that data to
me. The IP address and the port number to which a socket is bound are called the local address and the local
port for the socket, respectively.

Chapter 4 ■ Network programmiNg

269

The Listen Primitive
A server informs the operating system to place the socket in a passive mode so it waits for the incoming
client requests. At this point, the server is not yet ready to accept any client request. A server also specifies
a wait queue size for the socket. When a client contacts the server at this socket, the client request is placed
in that queue. Initially, the queue is empty. If a client contacts the server at this socket and the wait queue is
full, the client’s request is rejected.

The Accept Primitive
A server informs the operating system that this socket is ready to accept client requests. This step is not
performed if the server is using a socket using a connectionless transport protocol such as UDP. This step is
performed for TCP server sockets. When a socket sends an accept message to the operating system, it blocks
until it receives a client request for a new connection.

The Connect Primitive
Only a connection-oriented client socket performs this step. This is the most important phase in a socket
communication. The client socket sends a request to the server socket to establish a connection. The server
socket has issued accept and has been waiting for a client request to arrive. The client socket sends the IP
address and the port number of the server socket. Recall that a server socket binds an IP address and a port
number before it starts listening and accepting connections from outside. Along with its request, a client
socket also sends its own IP address and the port number to which it is already bound.

An important question arises at this point. How does the transport layer such as TCP know that the
packet (in the form of a request for a connection) that came from a client has to be handed over to the server
socket? During the binding phase, a socket specifies its local IP address and a local port number as well
as a remote IP address and a remote port number. If the server socket wants to accept a connection only
from a specific remote host IP address and port number, it can do so. Usually, the server socket will accept
a connection from any client and it will specify an unspecified IP address and a zero port number as its
remote address. A server socket passes five pieces of information—a local IP address, a local port number, a
remote IP address, and a remote port number, and a buffer—to the transport layer. The transport layer stores
them for future use in a special structure called a Transmission Control Block (TCB). When a packet from
outside arrives at the transport layer, it looks up its TCB based on the four pieces of information contained
in the incoming packet, <source IP address, source port number, destination IP address, destination port
number>. Recall that the client sends the source and destination addresses in each TCP packet to the server.
The transport layer attempts to find a buffer that is associated with the source and destination addresses.
If it finds a buffer, it transfers the incoming data to the buffer and notifies the socket that there is some
information for it in the buffer. If the server socket is accepting requests from any client (all zeroes in the
remote address), the data from any client will be routed to its buffer.

Once a server socket detects a request from a client, it creates a new socket with the remote client’s
address information. The new socket is bound using a <local IP address, local port number (the same as
server socket’s port number), remote IP address, and remote port number> and a new buffer is created
and bound to this combined addresses. In fact, two buffers are created for a socket: one for the incoming
data and one for the outgoing data. At this point, a server socket lets the new socket communicate with the
client socket that requested a connection. The server socket itself can close itself (accepting no more client
requests for a connection) or it can start waiting again to accept another client request for a connection.

After a connection is established between two sockets (a client and a server), they can exchange
information. A TCP connection supports full duplex connection. That is, data can be sent or received in both
directions simultaneously.

Chapter 4 ■ Network programmiNg

270

A client socket knows its local IP address, local port number, remote IP address, and remote port number
before it attempts to connect to a server. At the client end, the creation of a TCB follows similar rules.

Once the client and server sockets are in place, two sockets (the client socket and the server socket
dedicated to the client) define a connection.

A server socket acts like a receptionist sitting at the front desk in an office (server). A client comes in and
talks to the receptionist first. A connection request comes from a client to the server and contacts the server
socket first. The receptionist hands over the client to another staff. At this point, the job of the receptionist
is over with that client. She continues her work of waiting to welcome another client coming to the office.
Meanwhile, the first client can continue talking to another staff as long as he needs. Similarly, the server
socket creates a new socket and assigns that new socket to the client for further communication. As soon
as the server socket assigns a new socket to the client, its job is over with that client. It will wait for another
incoming request for connection from another client. Note that apart from many other details, a socket has
five important pieces of information associated with it: a protocol, a local IP address, a local port number, a
remote IP address, and a remote port number.

The Send/Sendto Primitive
It is the stage when a socket sends data.

The Receive/ReceiveFrom Primitive
It is the stage when a socket receives data.

The Close Primitive
It is time to say goodbye. Finally, the server and client sockets close the connection.

Subsequent sections discuss Java classes that support different kinds of sockets to facilitate network
programming. Java classes that are related to network programming are in the java.net, javax.net, and
javax.net.ssl packages.

Representing a Machine Address
Internet protocol uses the IP addresses of machines to deliver packets. Using IP addresses in a program
is not always easy because of its numeric format. You may be able to memorize and use IPv4 addresses
because they are only four decimal numbers in length. Memorizing and using IPv6 addresses is a little more
difficult because they are eight numbers in a hexadecimal format. Every computer also has a name such as
www.yahoo.com. Using a computer name in your program makes your life much easier. Java provides classes
that let you use a computer name or an IP address in a Java program. If you use a computer name, Java takes
care of resolving the computer name to its IP address using a domain name system (DNS).

An object of the InetAddress class represents an IP address. It has two subclasses, Inet4Address and
Inet6Address, which represent IPv4 and IPv6 addresses, respectively. The InetAddress class does not have
a public constructor. It provides the following factory methods to create its object. They are as follows—all of
them throw a checked UnknownHostException:

•	 static InetAddress[] getAllByName(String host)

•	 static InetAddress getByAddress(byte[] addr)

•	 static InetAddress getByAddress(String host, byte[] addr)

http://www.yahoo.com/

Chapter 4 ■ Network programmiNg

271

•	 static InetAddress getByName(String host)

•	 static InetAddress getLocalHost()

•	 static InetAddress getLoopbackAddress()

The host argument refers to a computer name or an IP address in the standard format. The addr
argument refers to the parts of an IP address as a byte array. If you specify an IPv4 address, addr must be a
4-element byte array. For IPv6 addresses, it should be a 16-element byte array. The InetAddress class takes
care of resolving the host name to an IP address using DNS.

Sometimes a host may have multiple IP addresses. The getAllByName() method returns all addresses
as an array of InetAddress objects.

Typically, you create an object of the InetAddress class using one of these factory methods and pass
that object to other methods during a socket creation and connection. The following snippet of code
demonstrates some of its uses. You will need to handle exceptions when you use the InetAddress class or its
subclasses.

// Get the IP address of the yahoo web server
InetAddress yahooAddress = InetAddress.getByName("www.yahoo.com");

// Get the loopback IP address
InetAddress loopbackAddress = InetAddress.getByName(null);

/* Get the address of the local host. Typically, a name "localhost" is
 mapped to a loopback address. Here, we are trying to get the IP address
 of the local computer where this code executes and not the loopback address.
*/
InetAddress myComputerIPAddress = InetAddress.getLocalHost();

The following snippet of code shows how to print the computer name and IP address of the computer
on which the code is executed:

try {
 InetAddress addr = InetAddress.getLocalHost();
 System.out.println("My computer name: " + addr.getHostName());
 System.out.println("My computer IP address: " + addr.getHostAddress());
} catch (UnknownHostException e) {
 e.printStackTrace();
}

Listing 4-2 demonstrates the use of the InetAddress class and some of its methods. You may get a
different output when you run the program.

Listing 4-2. Demonstrating the Use of the InetAddress Class

// InetAddressTest.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetAddress;

Chapter 4 ■ Network programmiNg

272

public class InetAddressTest {
 public static void main(String[] args) {
 // Print www.yahoo.com address details
 printAddressDetails("www.yahoo.com");

 // Print the loopback address details
 printAddressDetails(null);

 // Print the loopback address details using IPv6 format
 printAddressDetails("::1");
 }

 public static void printAddressDetails(String host) {
 System.out.println("Host name: " + host);

 try {
 InetAddress addr = InetAddress.getByName(host);
 System.out.println("Host IP Address: " + addr.getHostAddress());
 System.out.println("Canonical Host Name: " + addr.getCanonicalHostName());

 int timeOutinMillis = 10000;
 System.out.println("isReachable(): " + addr.isReachable(timeOutinMillis));
 System.out.println("isLoopbackAddress(): " + addr.isLoopbackAddress());
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 System.out.println("-------------------------------\n");
 }
 }
}

Host name: www.yahoo.com
Host IP Address: 98.138.252.39
Canonical Host Name: media-router-fp2.prod.media.vip.ne1.yahoo.com
isReachable(): true
isLoopbackAddress(): false

Host name: null
Host IP Address: 127.0.0.1
Canonical Host Name: 127.0.0.1
isReachable(): true
isLoopbackAddress(): true

Host name: ::1
Host IP Address: 0:0:0:0:0:0:0:1
Canonical Host Name: 0:0:0:0:0:0:0:1
isReachable(): true
isLoopbackAddress(): true

Chapter 4 ■ Network programmiNg

273

Representing a Socket Address
A socket address contains two parts, an IP address and a port number. An object of the InetSocketAddress
class represents a socket address. You can use the following constructors to create an object of the
InetSocketAddress class:

•	 InetSocketAddress(InetAddress addr, int port)

•	 InetSocketAddress(int port)

•	 InetSocketAddress(String hostname, int port)

All constructors will attempt to resolve a host name to an IP address. If a host name could not be
resolved, the socket address will be flagged as unresolved, which you can test using the isUnresolved()
method. If you do not want this class to resolve the address when creating its object, you can use the
following factory method to create the socket address:

static InetSocketAddress createUnresolved(String host, int port)

The getAddress() method of the InetSocketAddress class returns an InetAddress. If a host name is
not resolved, the getAddress() method returns null. If you use an unresolved InetSocketAddress object
with a socket, an attempt is made to resolve the host name during the bind process.

Listing 4-3 shows how to create resolved and unresolved InetSocketAddress objects. You may get a
different output when you run the program.

Listing 4-3. Creating an InetSocketAddress Object

// InetSocketAddressTest.java
package com.jdojo.net;

import java.net.InetSocketAddress;

public class InetSocketAddressTest {
 public static void main(String[] args) {
 InetSocketAddress addr1 = new InetSocketAddress("::1", 12889);
 printSocketAddress(addr1);

 InetSocketAddress addr2 = InetSocketAddress.createUnresolved("::1", 12881);
 printSocketAddress(addr2);
 }

 public static void printSocketAddress(InetSocketAddress sAddr) {
 System.out.println("Socket Address: " + sAddr.getAddress());
 System.out.println("Socket Host Name: " + sAddr.getHostName());
 System.out.println("Socket Port: " + sAddr.getPort());
 System.out.println("isUnresolved(): " + sAddr.isUnresolved());
 System.out.println();
 }
}

Chapter 4 ■ Network programmiNg

274

Socket Address: /0:0:0:0:0:0:0:1
Socket Host Name: 0:0:0:0:0:0:0:1
Socket Port: 12889
isUnresolved(): false

Socket Address: null
Socket Host Name: ::1
Socket Port: 12881
isUnresolved(): true

Creating a TCP Server Socket
An object of the ServerSocket class represents a TCP server socket. A ServerSocket object is used to accept
a connection request from a remote client. The ServerSocket class provides many constructors. You can use
the no-args constructor to create an unbound server socket and use its bind() method to bind it to a local
port and a local IP address. The following snippet of code shows you how to create a server socket:

// Create an unbound server socket
ServerSocket serverSocket = new ServerSocket();

// Create a socket address object
InetSocketAddress endPoint = new InetSocketAddress("localhost", 12900);

// Set the wait queue size to 100
int waitQueueSize = 100;

// Bind the server socket to localhost at port 12900 with a wait queue size of 100
serverSocket.bind(endPoint, waitQueueSize);

There is no separate listen() method in the ServerSocket class that corresponds to the listen socket
primitive. Its bind() method takes care of specifying the waiting queue size for the socket.

You can combine the create, bind, and listen operations in one step by using any of the following
constructors of the ServerSocket class. The default value for the wait queue size is 50. The default value for a
local IP address is the wildcard address, which means all IP addresses of the server machine.

•	 ServerSocket(int port)

•	 ServerSocket(int port, int waitQueueSize)

•	 ServerSocket(int port, int waitQueueSize, InetAddress bindAddr)

You can combine the socket creation and bind steps into one statement as shown:

// Create a server socket at port 12900, with 100 as the wait queue size
// at the localhost loopback address
ServerSocket serverSocket = new ServerSocket(12900, 100, InetAddress.
getByName("localhost"));

Chapter 4 ■ Network programmiNg

275

Once a server socket is created and bound, it is ready to accept incoming connection requests from
remote clients. To accept a remote connection request, you need to call the accept() method on the server
socket. The accept() method call blocks until a request from a remote client arrives in its wait queue. When
the server socket receives a request for a connection, it reads the remote IP address and the remote port
number from the request and creates a new active socket. The reference of the newly created active socket is
returned from the from the accept() method. An object of the Socket class represents the new active socket.
The accept() method returns a new active socket because it is not a passive socket like a server socket,
which waits for a remote request. It is an active socket because it is created for an active communication with
the remote client. Sometimes this active socket is also called a connection socket because it handles the data
transmission on a connection.

// Wait for a new remote connection request
Socket activeSocket = serverSocket.accept();

Once the server socket returns from the accept() method call, the number of sockets in the server
application increases by one. You have one passive server socket and one more active socket. The new active
socket is the endpoint at the server for the new client connection. At this point, you need to handle the
communication with the client using the new active socket.

Now you are ready to read and write data on the connection represented by the new socket. A Java TCP
socket provides a full duplex connection. It lets you read data from the connection as well as write data to
the connection. The Socket class contains two methods called getInputStream() and getOutputStream()
for this purpose. The getInputStream() method returns an InputStream object that you can use to read
data from the connection. The getOutputStream() method returns an OutputStream object that you can
use to write data to the connection. You use InputStream and OutputStream objects as if you are reading
from and writing to a file on a local file system. I assume that you are familiar with Java I/O. If you are not
familiar with Java I/O, refer to Chapter 7 in the book Beginning Java 9 Language Features before you proceed
in this section. However, you can still read about the UDP socket in the section later in this chapter. When
you are done with reading/writing data on the connection, you close the InputStream/OutputStream, and
finally close the socket. The following snippet of code reads a message from a client and echoes the message
to the client. Note that the server and the client must agree on the format of the message before they start
communicating. The following snippet of code assumes that the client sends one line of text at a time:

// Create a buffered reader and a buffered writer from the socket's input and
// output streams, so that we can read/write one line at a time
BufferedReader br = new BufferedReader(new InputStreamReader(activeSocket.
getInputStream()));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(activeSocket.
getOutputStream()));

You can use br and bw the same way you will use them to read from a file or write to a file. An attempt to
read from an input stream blocks until data becomes available on the connection.

// Read one line of text from the connection
String inMsg = br.readLine();

// Write some text to the output buffer
bw.write("Hello from server");
bw.flush();

http://dx.doi.org/10.1007/978-1-4842-3546-1_7

Chapter 4 ■ Network programmiNg

276

At the end, close the connection using the socket’s close() method. Closing the socket also closes its
input and output streams. In fact, you can close one of the three (the input stream, the output stream, or the
socket) and the other two will be closed automatically. An attempt to read/write on a closed socket throws
a java.net.SocketException. You can check if a socket is closed by using its isClosed() method, which
returns true if the socket is closed.

// Close the socket
activeSocket.close();

 ■ Tip once you close a socket, you cannot reuse it. You must create a new socket and bind it before using
the new socket.

A server handles two kinds of work: accepting new connection requests and responding to already
connected clients. If responding to a client takes a very small amount of time, you can use the strategy as shown:

ServerSocket serverSocket = create a server socket here;
while(true) {
 Socket activeSocket = serverSocket.accept();

 // Handle the client request on activeSocket here
}

This strategy handles one client at a time. It is suitable only if the number of concurrent incoming
connections is very low and a client’s request takes a very small amount of time to respond. If a client request
takes a significant amount of time to respond, all other clients will have to wait before they can be served.

Another strategy to work with multiple client requests is to handle each client’s request in a separate thread
so the server can serve multiple clients at the same time. The following pseudocode outlines this strategy:

ServerSocket serverSocket = create a server socket here;
while(true) {
 Socket activeSocket = serverSocket.accept();
 Runnable runnable = () -> {
 // Handle the client request on the activeSocket here
 };
 new Thread(runnable).start(); // start a new thread
}

This strategy seems to work fine until you have too many threads that are created for concurrent client
connections. Another strategy that works well in most of the situations is to have a thread pool to serve all
client connections. If all threads in the pool are busy serving clients, the request should wait until a thread
becomes free to serve it.

Listing 4-4 contains the complete code for an echo server. It creates a new thread to handle each client
request. You can run the echo server program now. However, it is not going to do much as you do not have a
client program to connect to it. You will see it in action after you learn how to create the TCP client socket in
the next section.

Chapter 4 ■ Network programmiNg

277

Listing 4-4. An Echo Server Based on TCP Sockets

// TCPEchoServer.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;

public class TCPEchoServer {
 public static void main(String[] args) {
 try {
 // Create a Server socket
 ServerSocket serverSocket
 = new ServerSocket(12900, 100, InetAddress.getByName("localhost"));
 System.out.println("Server started at: " + serverSocket);

 // Keep accepting client connections in an infinite loop
 while (true) {
 System.out.println("Waiting for a connection...");

 // Accept a connection
 final Socket activeSocket = serverSocket.accept();

 System.out.println("Received a connection from " + activeSocket);

 // Create a new thread to handle the new connection
 Runnable runnable = () -> handleClientRequest(activeSocket);

 new Thread(runnable).start(); // start a new thread
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void handleClientRequest(Socket socket) {
 BufferedReader socketReader = null;
 BufferedWriter socketWriter = null;

 try {
 // Create a buffered reader and writer for the socket
 socketReader
 = new BufferedReader(new InputStreamReader(socket.getInputStream()));
 socketWriter
 = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));

Chapter 4 ■ Network programmiNg

278

 String inMsg = null;
 while ((inMsg = socketReader.readLine()) != null) {
 System.out.println("Received from client: " + inMsg);

 // Echo the received message to the client
 String outMsg = inMsg;
 socketWriter.write(outMsg);
 socketWriter.write("\n");
 socketWriter.flush();
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 try {
 socket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

Creating a TCP Client Socket
An object of the Socket class represents a TCP client socket. You have already seen how an object of the
Socket class works with a TCP server socket. For a server socket, you got an object of the Socket class as
the return value from the server socket’s accept() method. For a client socket, you will have to perform
three steps: create, bind, and connect. The Socket class provides many constructors that let you specify the
remote IP address and port number. These constructors bind the socket to a local host and an available port
number. The following snippet of code shows how to create a TCP client socket:

// Create a client socket, which is bound to the localhost at any available port
// connected to remote IP 192.168.1.2 at port 3456
Socket socket = new Socket("192.168.1.2", 3456);

// Create an unbound client socket. bind it, and connect it.
Socket socket = new Socket();
socket.bind(new InetSocketAddress("localhost", 14101));
socket.connect(new InetSocketAddress("localhost", 12900));

Once you get a connected Socket, you can use its input and output streams using the
getInputStream() and getOutputStream() methods, respectively. You can read/write on the connection
the same way you would read/write from/to a file using the input and output streams.

Listing 4-5 contains the complete code for an echo client application. It receives input from the user,
sends the input to the echo server as listed in Listing 4-4, and prints the server’s response on the standard
output. Both applications, the echo server and the echo client, must agree on the format of the messages
that they will be exchanging. They exchange one line of text at a time. It is important to note that you
must append a new line with every message that is sent across the connection because you are using the
readLine() method of the BufferedReader class, which returns only when it encounters a new line. The
client application must use the same IP address and port number where the server socket is accepting the
connection.

Chapter 4 ■ Network programmiNg

279

Listing 4-5. An Echo Client Based on TCP Sockets

// TCPEchoClient.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.Socket;

public class TCPEchoClient {
 public static void main(String[] args) {
 Socket socket = null;
 BufferedReader socketReader = null;
 BufferedWriter socketWriter = null;
 try {
 // Create a socket that will connect to localhost at port 12900.
 // Note that the server must also be running at localhost and 12900.
 socket = new Socket("localhost", 12900);

 System.out.println("Started client socket at "
 + socket.getLocalSocketAddress());

 // Create a buffered reader and writer using the socket's
 // input and output streams
 socketReader
 = new BufferedReader(new InputStreamReader(socket.getInputStream()));
 socketWriter
 = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));

 // Create a buffered reader for user's input
 BufferedReader consoleReader
 = new BufferedReader(new InputStreamReader(System.in));

 String promptMsg = "Please enter a message (Bye to quit):";
 String outMsg = null;

 System.out.print(promptMsg);
 while ((outMsg = consoleReader.readLine()) != null) {
 if (outMsg.equalsIgnoreCase("bye")) {
 break;
 }

 // Add a new line to the message to the server,
 // because the server reads one line at a time.
 socketWriter.write(outMsg);
 socketWriter.write("\n");
 socketWriter.flush();

Chapter 4 ■ Network programmiNg

280

 // Read and display the message from the server
 String inMsg = socketReader.readLine();
 System.out.println("Server: " + inMsg);

 System.out.println(); // Print a blank line
 System.out.print(promptMsg);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 // Finally close the socket
 if (socket != null) {
 try {
 socket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Putting a TCP Server and Clients Together
Figure 4-6 shows the setup in which three clients are connected to a server. Two Socket objects, one at each
end, represent a connection. The ServerSocket object in the server keeps waiting for incoming connection
requests from a client.

Figure 4-6. A client-server setup using ServerSocket and socket objects

Chapter 4 ■ Network programmiNg

281

Listing 4-4 and Listing 4-5 list the complete program for a TCP echo server and client application. You
need to run the TCPEchoServer class first, and then the TCPEchoClient class. The server application waits
for the client application to connect. The client application prompts the user to enter a text message on the
console. Once the user enters a text message and presses the Enter key, the client application sends that text
to the server. The server responds back with the same message. Both applications print the details about the
conversation to the standard output. The following are the outputs for an echo server and an echo client.
You can run multiple instances of the TCPEchoClient application. The server application handles each client
connection in a separate thread.

The following is a sample output for the server application:

Server started at: ServerSocket[addr=localhost/127.0.0.1,port=0,localport=12900]
Waiting for a connection ...
Received a connection from Socket[addr=/127.0.0.1,port=1698,localport=12900]
Waiting for a connection ...
Received from client: Hello

The following is a sample output for the client application:

Started client socket at /127.0.0.1:53498
Please enter a message (Bye to quit):Hello
Server: Hello

Please enter a message (Bye to quit):Bye

Working with UDP Sockets
A socket based on UDP is connectionless and is based on datagrams, as opposed to a TCP socket, which
is connection-oriented and is based on streams. The effect of being a connectionless socket is that the two
sockets (client and server) do not establish a connection before they communicate. Recall that TCP has a
server socket whose sole function was to listen for a connection request from remote clients. Because UDP
is a connectionless protocol, there will not be a server socket when you work with UDP. In TCP sockets, the
impression of having a stream-oriented data transmission between the client and server was produced by
TCP in the transport layer because of its connection-oriented features. TCP maintained the state of the data
being transmitted on each side of the connection. The implication of UDP being a connectionless protocol
is that each side (client and server) sends or receives a chunk of data without any prior knowledge of
communication between them. In a communication using UDP, each chunk of data that is sent to the same
destination is independent of the previously sent data. The chunk of data that is sent using UDP is called
a datagram or a UDP packet. Each UDP packet contains data, destination IP address, and destination port
number. UDP is an unreliable protocol because it does not guarantee the delivery and the order of delivery
of packets to the intended recipient.

 ■ Tip although UDp is a connectionless protocol, you can build a connection-oriented communication using
UDp in your application. You will need to write the logic that will handle the lost packets, out of order packet
delivery, and many more things. tCp provides all these features at transport layer and your application does not
have to worry about them.

Chapter 4 ■ Network programmiNg

282

Writing an application using UDP sockets is easier than writing an application using TCP sockets. You
have to deal with only two classes:

•	 DatagramPacket

•	 DatagramSocket

An object of the DatagramPacket class represents a UDP datagram that is the unit of data transmission
over a UDP socket. An object of the DatagramSocket class represents a UDP socket that is used to send or
receive a datagram packet. Here are the steps you need to perform to work with UDP sockets:

•	 Create an object of the DatagramSocket class and bind it to a local IP address and a
local port number.

•	 Create an object of the DatagramPacket class to hold the destination address and the
data to be transmitted.

•	 Use the send(DatagramPacket packet) method of the DatagramSocket class
to send the datagram packet to its destination. On the receiving end, use the
receive(DatagramPacket packet) method to read the datagram packet.

You can use one of the constructors to create an object of the DatagramSocket class. All of them will
create the socket and bind it to a local IP address and a local port number. Note that a UDP socket does not
have a remote IP address and a remote port number because it is never connected to a remote socket. It can
receive/send a datagram packet from/to any UDP socket.

// Create a UDP Socket bound to a port number 15900 at localhost
DatagramSocket udpSocket = new DatagramSocket(15900, "localhost");

The DatagramSocket class provides a bind() method, which lets you bind the socket to a local IP
address and a local port number. Typically, you do not need to use this method because you specify the
socket address to which it needs to be bound in its constructor, as you just did.

A DatagramPacket contains three things: a destination IP address, a destination port number, and
the data. The constructors for the DatagramPacket class fall into two categories. Constructors in one of the
categories let you create a DatagramPacket object to receive a packet. They require only the buffer size,
offset, and length of data in that buffer. Constructors in the other category let you create a DatagramPacket
object to send a packet. They require you to specify the destination address along with the data. If you have
created a DatagramPacket without specifying the destination address, you can set the destination address
afterwards using the setAddress() and setPort() methods.

Constructors of the DatagramPacket class to create a packet to receive data are as follows:

•	 DatagramPacket(byte[] buffer, int length)

•	 DatagramPacket(byte[] buffer, int offset, int length)

Constructors of the DatagramPacket class to create a packet to send data are as follows:

•	 DatagramPacket(byte[] buffer, int length, InetAddress address, int port)

•	 DatagramPacket(byte[] buffer, int offset, int length, InetAddress
address, int port)

•	 DatagramPacket(byte[] buffer, int length, SocketAddress address)

•	 DatagramPacket(byte[] buffer, int offset, int length, SocketAddress
address)

Chapter 4 ■ Network programmiNg

283

The following snippet of code demonstrates some of the ways to create a datagram packet:

// Create a packet to receive 1024 bytes of data
byte[] data = new byte[1024];
DatagramPacket packet = new DatagramPacket(data, data.length);

// Create a packet that a has buffer size of 1024, but it will receive data
// starting at offset 8 (offset zero means the first element in the array)
// and it will receive only 32 bytes of data.
byte[] data2 = new byte[1024];
DatagramPacket packet2 = new DatagramPacket(data2, 8, 32);

// Create a packet to send 1024 bytes of data that has a destination
// address of "localhost" and port 15900. Will need to populate data3
// array before sending the packet.
byte[] data3 = new byte[1024];
DatagramPacket packet3 = new DatagramPacket(data3, 1024,
 InetAddress.getByName("localhost"), 15900);

// Create a packet to send 1024 bytes of data that has a destination address of
// "localhost" and port 15900. Will need to populate data4 array before sending
// the packet. The code sets the destination address by calling methods on the
// packet instead of specifying it in its constructor.
byte[] data4 = new byte[1024];
DatagramPacket packet4 = new DatagramPacket(data4, 1024);
packet4.setAddress(InetAddress.getByName("localhost"));
packet4.setPort(15900);

It is very important to understand that data in the packet always has offset and length specified.
You need to use those two pieces of information while reading the data from a packet. Suppose that a
receivedPacket object reference represents a DatagramPacket that you have received from a remote UDP
socket. The getData() method of the DatagramPacket class returns the buffer (a byte array) of the packet.
A packet can have a bigger buffer than the size of the received data from a remote client. In such cases, you
must use the offset and the length to read the data from the buffer that was received without touching the
garbage data in the buffer. If a packet’s buffer size is smaller than the size of the data received, the extra bytes
are silently ignored. You should use the code similar to the following to read data that a socket receives. The
point is that you should use data in the receiving buffer starting from its specified offset and as many bytes
as indicated by its length property.

// Get the packet's buffer, offset, and length
byte[] dataBuffer = receivedPacket.getData();
int offset = receivedPacket.getOffset();
int length = receivedPacket.getLength();

// Copy the received data using offset and length to receivedData array,
// which will hold all good data
byte[] receivedData = new byte[length];
System.arraycopy(dataBuffer, offset, receivedData, 0, length);

Creating a UDP socket (client as well as server) is as simple as creating an object of the DatagramSocket
class. You can use its send() method to send a packet. You can use the receive() method to receive a packet
from a remote socket. The receive() method blocks until a packet arrives. You supply an empty datagram

Chapter 4 ■ Network programmiNg

284

packet to the receive() method. The socket populates it with information that it receives from the remote
socket. If the supplied datagram packet has a smaller data buffer size than that of the received datagram
packet, the received data is truncated silently to fit into the supplied datagram packet. If the supplied
datagram packet has a bigger data buffer size than that of the received one, the socket will copy the received
data to the supplied data buffer in its segment indicated by its offset and length properties without
touching the other parts of the buffer. Note that the available data buffer size is not the size of the byte array.
Rather, it is defined by the length property. For example, suppose you have a datagram packet with a byte
array of 32 elements with an offset of 2 and a data buffer length of 8. If you pass this datagram packet to the
receive() method, the maximum of 8 bytes of received data will be copied. The data will be copied from the
third element in the buffer to the eleventh element as indicated by the offset 2 and the length 8, respectively.

// Create a UDP socket bound to a port number 15900 at localhost
DatagramSocket socket = new DatagramSocket(15900, InetAddress.getByName("localhost"));

// Send a packet assuming that you have a datagram packet in p
socket.send(p);

// Receive a packet
DatagramPacket p2 = new DatagramPacket(new byte[1024], 1024);
socket.receive(p2);

Creating a UDP Echo Server
Creating an echo server using UDP is very easy. It takes only four lines of real code. Use the following steps to
create an UDP echo server:

•	 Create a DatagramSocket object to represent a UDP socket.

•	 Create a DatagramPacket object to receive the packet from a remote client.

•	 Call the receive() method of the socket to wait for a packet to arrive.

•	 Call the send() method of the socket passing the same packet that you received.
When a UDP packet is received by a server, it contains the sender’s address. You do
not need to change anything in the packet to echo back the same message to the
sender of the packet. When you prepare a datagram packet for sending, you need to
set a destination address. When the packet arrives at its destination, it contains its
sender’s address. This is useful in case the receiver wants to respond to the sender of
the datagram packet.

The following snippet of code shows you how to write a UDP echo server:

DatagramSocket socket = new DatagramSocket(15900);
DatagramPacket packet = new DatagramPacket(new byte[1024], 1024);
while(true) {
 // Receive the packet
 socket.receive(packet);

 // Send back the same packet to the sender
 socket.send(packet);
}

Chapter 4 ■ Network programmiNg

285

Listing 4-6 contains the expanded version of the same code for a UDP echo server. It contains the same
basic logic as shown previously. Additionally, it contains the code to handle errors and print the packet’s
details on the standard output.

Listing 4-6. An Echo Server Based on UDP Sockets

// UDPEchoServer.java
package com.jdojo.net;

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;

public class UDPEchoServer {
 public static void main(String[] args) {
 final int LOCAL_PORT = 15900;
 final String SERVER_NAME = "localhost";

 try {
 DatagramSocket udpSocket
 = new DatagramSocket(LOCAL_PORT, InetAddress.getByName(SERVER_NAME));

 System.out.println("Created UDP server socket at "
 + udpSocket.getLocalSocketAddress() + "...");

 // Wait for a message in a loop and echo the same message to the sender
 while (true) {
 System.out.println("Waiting for a UDP packet" + " to arrive...");

 // Prepare a packet to hold the received data
 DatagramPacket packet = new DatagramPacket(new byte[1024], 1024);

 // Receive a packet
 udpSocket.receive(packet);

 // Print the packet details
 displayPacketDetails(packet);

 // Echo the same packet to the sender
 udpSocket.send(packet);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public static void displayPacketDetails(DatagramPacket packet) {
 // Get the message
 byte[] msgBuffer = packet.getData();
 int length = packet.getLength();
 int offset = packet.getOffset();

Chapter 4 ■ Network programmiNg

286

 int remotePort = packet.getPort();
 InetAddress remoteAddr = packet.getAddress();
 String msg = new String(msgBuffer, offset, length);

 System.out.println("Received a packet:[IP Address="
 + remoteAddr + ", port=" + remotePort
 + ", message=" + msg + "]");
 }
}

Listing 4-7 contains the program for the client application that uses a UDP socket to send/receive
messages to/from the UDP echo server. Note that the client and server exchange one line of text at a time.

Listing 4-7. An Echo Client Based on UDP Sockets

// UDPEchoClient.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class UDPEchoClient {
 public static void main(String[] args) {
 DatagramSocket udpSocket = null;
 BufferedReader br = null;
 try {
 // Create a UDP socket at localhost using an available port
 udpSocket = new DatagramSocket();

 String msg = null;

 // Create a buffered reader to get an input from a user
 br = new BufferedReader(new InputStreamReader(System.in));

 String promptMsg = "Please enter a message (Bye to quit):";
 System.out.print(promptMsg);

 while ((msg = br.readLine()) != null) {
 if (msg.equalsIgnoreCase("bye")) {
 break;
 }

 // Prepare a packet to send to the server
 DatagramPacket packet = UDPEchoClient.getPacket(msg);

 // Send the packet to the server
 udpSocket.send(packet);

 // Wait for a packet from the server
 udpSocket.receive(packet);

Chapter 4 ■ Network programmiNg

287

 // Display the packet details received from the server
 displayPacketDetails(packet);

 System.out.print(promptMsg);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 // Close the socket
 if (udpSocket != null) {
 udpSocket.close();
 }
 }
 }

 public static void displayPacketDetails(DatagramPacket packet) {
 byte[] msgBuffer = packet.getData();
 int length = packet.getLength();
 int offset = packet.getOffset();
 int remotePort = packet.getPort();
 InetAddress remoteAddr = packet.getAddress();
 String msg = new String(msgBuffer, offset, length);
 System.out.println("[Server at IP Address=" + remoteAddr
 + ", port=" + remotePort + "]: " + msg);

 // Add a line break
 System.out.println();
 }

 public static DatagramPacket getPacket(String msg) throws UnknownHostException {
 // We will send and accept a message of 1024 bytes in length.
 // Longer messages will be truncated
 final int PACKET_MAX_LENGTH = 1024;
 byte[] msgBuffer = msg.getBytes();

 int length = msgBuffer.length;
 if (length > PACKET_MAX_LENGTH) {
 length = PACKET_MAX_LENGTH;
 }

 DatagramPacket packet = new DatagramPacket(msgBuffer, length);

 // Set the destination address and the port number
 int serverPort = 15900;
 final String SERVER_NAME = "localhost";
 InetAddress serverIPAddress = InetAddress.getByName(SERVER_NAME);
 packet.setAddress(serverIPAddress);
 packet.setPort(serverPort);

 return packet;
 }
}

Chapter 4 ■ Network programmiNg

288

To test the UDP echo application, you need to run the UDPEchoServer and UDPEchoClient classes. You
need to run the server first. The client application will prompt you to enter a message. Enter a text message
and press the Enter key to send that message to the server. The server will echo the same message. Both
applications display the messages being exchanged on the standard output. They also display the packet
details, such as the sender’s IP address and port number. The server application uses port number 15900
and the client application uses any available UDP port on the computer. If you get an error, it means that
port number 15900 is in use, so you need to change the port number in the server program and use the new
port number in the client program to address the packet. The server is designed to handle multiple clients
at a time. You can run multiple instances of the UDPEchoClient class. Note that the server runs in an infinite
loop and you must stop the server application manually.

The following is a sample log on the server console:

Created UDP server socket at /127.0.0.1:15900...
Waiting for a UDP packet to arrive...
Received a packet:[IP Address=/127.0.0.1, port=61119, message=Hello]
Waiting for a UDP packet to arrive...
Received a packet:[IP Address=/127.0.0.1, port=61119, message=Nice talking to you]
Waiting for a UDP packet to arrive...

The following is a sample log on the client console:

Please enter a message (Bye to quit):Hello
[Server at IP Address=localhost/127.0.0.1, port=15900]: Hello

Please enter a message (Bye to quit):Nice talking to you
[Server at IP Address=localhost/127.0.0.1, port=15900]: Nice talking to you

Please enter a message (Bye to quit):Bye

A Connected UDP Socket
UDP sockets do not support an end-to-end connection like the TCP sockets. The DatagramSocket class
contains a connect() method. This method allows an application to restrict sending and receiving of UDP
packets to a specific IP address at a specific port number. Consider the following snippet of code:

InetAddress localIPAddress = InetAddress.getByName("192.168.11.101");
int localPort = 15900;
DatagramSocket socket = new DatagramSocket(localPort, localIPAddress);

// Connect the socket to a remote address
InetAddress remoteIPAddress = InetAddress.getByName("192.168.12.115");
int remotePort = 17901;
socket.connect(remoteIPAddress, remotePort);

The socket is bound to the local IP address 192.168.11.101 and local UDP port number 15900. It
is connected to a remote IP address of 192.168.12.115 and a remote UDP port number 17901. It means
that the socket object can be used to send/receive a datagram packet only to/from another UDP socket
running at an IP address of 192.168.12.115 at the port number 17901. After you have called the connect()

Chapter 4 ■ Network programmiNg

289

method on a UDP socket, you do not need to set the destination IP address and the port number for the
outgoing datagram packets. The socket will add the destination IP address and port number that were used
in the connect() method’s call to all outgoing packets. If you do supply a destination address with a packet
before you send it, the socket will make sure the destination address supplied in the packet is the same
as the remote address used in the connect() method call. Otherwise, the send() method will throw an
IllegalArgumentException.

Using the connect() method of a UDP socket has two advantages:

•	 It sets the destination address for the outgoing packets every time you send a packet.

•	 It restricts the socket to communicate only to the remote host whose IP address was
used in the connect() method’s call.

Now you understand that UDP sockets are connectionless and you do not have a real connection using
a UDP socket. The connect() method in the DatagramSocket class does not provide any kind of connection
for UDP sockets. Rather, it is useful for restricting the communication to a specific remote UDP socket.

UDP Multicast Sockets
Java supports UDP multicast sockets that can receive datagram packets sent to a multicast IP address.
An object of the MulticastSocket class represents a multicast socket. Working with a MulticastSocket
socket is similar to working with a DatagramSocket with one difference—a multicast socket is based
on a group membership. After you have created and bound a multicast socket, you need to call its
joinGroup(InetAddress multiCastIPAddress) method to make this socket a member of the multicast
group defined by the specified multicast IP address, multiCastIpAddress. Once it becomes a member of
a multicast group, any datagram packet sent to that group will be delivered to this socket. There can be
multiple members in a multicast group. A multicast socket can be a member of multiple multicast groups.
If a member decides not to receive a multicast packet from a group, it can leave the group by calling the
leaveGroup(InetAddress multiCastIPAddress) method.

In IPv4, any IP address in the range 224.0.0.0 to 239.255.255.255 can be used as a multicast
address to send a datagram packet. The IP address 224.0.0.0 is reserved and you should not use it in your
application. A multicast IP address cannot be used as a source address for a datagram packet, which implies
that you cannot bind a socket to a multicast address.

A socket itself does not have to be a member of a multicast group to send a datagram packet to a
multicast address.

Java 7 added the IP multicast capability to the DatagramChannel class. Refer to the “Multicasting Using
Datagram Channels” section later in this chapter on how to use a datagram channel for IP multicasting. Note
that the DatagramChannel class was added in Java 1.4, which did not have the IP multicast capability.

Listing 4-8 contains a program that creates a multicast socket that receives datagram packets addressed
to the 230.1.1.1 multicast IP address.

Listing 4-8. A UDP Multicast Socket That Receives UDP Multicast Messages

// UDPMultiCastReceiver.java
package com.jdojo.net;

import java.io.IOException;
import java.net.DatagramPacket;
import java.net.InetAddress;
import java.net.MulticastSocket;

Chapter 4 ■ Network programmiNg

290

public class UDPMultiCastReceiver {
 public static void main(String[] args) {
 int mcPort = 18777;
 String mcIPStr = "230.1.1.1";
 MulticastSocket mcSocket = null;
 InetAddress mcIPAddress = null;
 try {
 mcIPAddress = InetAddress.getByName(mcIPStr);
 mcSocket = new MulticastSocket(mcPort);
 System.out.println("Multicast Receiver running at:"
 + mcSocket.getLocalSocketAddress());

 // Join the group
 mcSocket.joinGroup(mcIPAddress);

 DatagramPacket packet = new DatagramPacket(new byte[1024], 1024);

 while (true) {
 System.out.println("Waiting for a multicast message...");
 mcSocket.receive(packet);
 String msg = new String(packet.getData(),
 packet.getOffset(),
 packet.getLength());
 System.out.println("[Multicast Receiver] Received:" + msg);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (mcSocket != null) {
 try {
 mcSocket.leaveGroup(mcIPAddress);
 mcSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Listing 4-9 contains a program that sends a message to the same multicast address. Note that you can
run multiple instances of the UDPMulticastReceiver class and all of them will become a member of the
same multicast group. When you run the UDPMulticastSender class, it will send a message to the group, and
all members in the group will receive a copy of the same message. The UDPMulticastSender class uses a
DatagramSocket, not a MulticastSocket, to send a multicast message.

Chapter 4 ■ Network programmiNg

291

Listing 4-9. A UDP Datagram Socket, a Multicast Sender Application

// UDPMultiCastSender.java
package com.jdojo.net;

import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;

public class UDPMultiCastSender {
 public static void main(String[] args) {
 int mcPort = 18777;
 String mcIPStr = "230.1.1.1";
 DatagramSocket udpSocket = null;

 try {
 // Create a datagram socket
 udpSocket = new DatagramSocket();

 // Prepare a message
 InetAddress mcIPAddress = InetAddress.getByName(mcIPStr);

 byte[] msg = "Hello multicast socket".getBytes();
 DatagramPacket packet = new DatagramPacket(msg, msg.length);
 packet.setAddress(mcIPAddress);
 packet.setPort(mcPort);
 udpSocket.send(packet);

 System.out.println("Sent a multicast message.");
 System.out.println("Exiting application");
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (udpSocket != null) {
 try {
 udpSocket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

To see multicast in action, run one or more instances of the UDPMulticastReceiver class followed by one
instance of the UDPMulticastSender class. The following is a sample output when the UDPMulticastReceiver
class is run. Note that the program receives a multicast message when the UDPMulticastSender is run.

Multicast Receiver running at:0.0.0.0/0.0.0.0:18777
Waiting for a multicast message...
[Multicast Receiver] Received:Hello multicast socket
Waiting for a multicast message...

Chapter 4 ■ Network programmiNg

292

The following is a sample output when the UDPMulticastSender class is run:

Sent a multicast message.
Exiting application

URI, URL, and URN
A Uniform Resource Identifier (URI) is a sequence of characters that identifies a resource. The Request
for Comments (RFC) 3986 defines the generic syntax for a URI. The full text of this RFC is available at
http://www.ietf.org/rfc/rfc3986.txt. A resource identifier can identify a resource by a location,
a name, or both. This section gives an overview of the URI. If you are interested in details about the URI,
you are advised to read RFC3986.

A URI that uses a location to identify a resource is called Uniform Resource Locator (URL). For example,
http://www.yahoo.com/index.html represents a URL that identifies a document named index.html at
the host www.yahoo.com. Another example of a URL is mailto:ksharan@jdojo.com in which the mailto
protocol instructs the application that interprets it to open up an email application to send an email to the
email address specified in the URL. In this case, the URL is not locating any resources. Rather, it is identifying
the details of an email. You can also set the subject and the body parts of an email using the mailto
protocol. Therefore, a URL does not always imply a location of a resource. Sometimes the resource may be
abstract, as in the case of the mailto protocol. Once you locate a resource using a URL, you can perform
some operations, such as retrieve, update, or delete, on the resource. The details of how the operations
are performed depend on the scheme being used in the URL. A URL just identifies the parts of a resource
location and scheme to locate it, not the details of any operations that can be performed on the resource.

A URI that uses a name to identify a resource is called a Uniform Resource Name (URN). For example,
URN:ISBN:978-1-4302-6661-7 represents a URN, which identifies a book using International Standard Book
Numbers (ISBN) namespace.

URL and URN are subsets of URI. Therefore, the discussion about URI applies to both URL and URN.
The detailed syntax of a URI depends on the scheme it uses. In this section, I cover a generic syntax of the
URI, which is typically a URL. The next section explores the Java classes that are used to represent URIs and
URLs in Java programs.

A URI can be absolute or relative. A relative URI is always interpreted in the context of another absolute
URI, which is called the base URI. In other words, you must have an absolute URI to make a relative URI
meaningful. An absolute URI has the following generic format:

<scheme>:<scheme-specific-part>

The <scheme-specific-part> depends on the <scheme>. For example, an http scheme uses one
format, and a mailto scheme uses another format. Another generic form of a URI is as follows. Typically, but
not necessarily, it represents a URL.

<scheme>://<authority><path>?<query>#<fragment>

Here, <scheme> indicates a method to access a resource. It is the protocol name such as http, ftp, etc.
We all use the term “protocol” for what is termed a “scheme” in the URI specification. If the term “scheme”
throws you off, you can read it as “protocol” whenever it appears in this section. The <scheme> and <path>
parts are required in a URI. All other parts are optional. The <path> part may be an empty string.

The <authority> part indicates the server name (or IP address) or a scheme-specific registry. If the
<authority> part represents a server name, it may be written in the form of <userinfo>@host:port. If a
<authority> is present in a URI, it begins with two forward slashes; it is an optional part. For example, a URL that
identifies a file in a local file system on a machine uses the file scheme as file:///c:/documents/welcome.doc.

http://www.ietf.org/rfc/rfc3986.txt
http://www.yahoo.com/index.html
http://www.yahoo.com/

Chapter 4 ■ Network programmiNg

293

The URI syntax uses a hierarchical syntax in its <path> part, which locates the resource on the server.
Multiple parts of the <path> are separated by a forward slash (/).

The <query> part indicates that the resource is obtained by executing the specified query. It consists of
name-value pairs separated by an ampersand (&). The name and value are separated by an equals sign (=).
For example, id=123&rate=5.5 is a query, which has two parts, id and rate. The value for id is 123 and the
value for rate is 5.5.

The <fragment> part identifies a secondary resource, typically a subset of the primary resource
identified by another part of the URI.

The following is an example of a URI, which is also broken into parts:

URI: http://www.jdojo.com/java/intro.html?id=123#conclusion
Scheme: http
Authority: www.jdojo.com
Path: /java/intro.html
Query: id=123
Fragment: conclusion

The URI represents a URL that refers to a document named intro.html on the www.jdojo.com server.
The scheme http indicates that the document can be retrieved using the http protocol. The query id=123
indicates that the document is obtained by executing this query. The fragment part conclusion can be
interpreted differently by different applications that use the document. In case of an HTML document, the
fragment part is interpreted by the web browser as the part of the main document.

Not all parts of a URI are mandatory. Which parts are mandatory and which parts are optional depend
on the scheme that is used. One of the goals of using a URI to identify a resource was to make it universally
readable. For this reason, there is a well-defined set of characters that can be used to represent a URI. URI
syntax uses some reserved characters that have special meaning and they can only be used in specific
parts of a URI. In other parts, the reserved characters need to be escaped. A character is escaped by using
a percent character followed by its ASCII value in a hexadecimal format. For example, ASCII value of space
is 32 in decimal format, and it is 20 in hexadecimal format. If you want to use a space character in a URI,
you must use %20, which is the escaped form for a space. Since the percent sign is used as part of an escape
character, you must use %25 to represent a % character in a URI (25 is the hexadecimal value for number 37
in decimal. The ASCII value for % is 37 in decimal). For example, if you want to use a value of 5.2% in a query,
the following is an invalid URI:

http://www.jdojo.com/details?rate=5.2%

To make it a valid URI, you need to escape the percent sign character as %25 as shown:

http://www.jdojo.com/details?rate=5.2%25

It is important to understand the usage of a relative URI. A relative URI is always interpreted in the
context of an absolute URI, which is called the base URI. An absolute URI starts with a scheme. A relative
URI inherits some parts of its base URI. Let’s consider a URI that refers to an HTML document as shown:

http://www.jdojo.com/java/intro.html

The document referred to in the URI is intro.html. Its path is /java/intro.html. Suppose two
documents named brief_intro.html and detailed_intro.html reside (physically or logically) in the same
path hierarchy as intro.html. The following are the absolute URIs for all three documents:

•	 http://www.jdojo.com/java/intro.html

•	 http://www.jdojo.com/java/brief_intro.html

•	 http://www.jdojo.com/java/detailed_intro.html

http://www.jdojo.com/
http://www.jdojo.com/details?rate=5.2%
http://www.jdojo.com/details?rate=5.2%
http://www.jdojo.com/java/intro.html
http://www.jdojo.com/java/intro.html
http://www.jdojo.com/java/brief_intro.html
http://www.jdojo.com/java/detailed_intro.html

Chapter 4 ■ Network programmiNg

294

If you are already in the intro.html context, it will be easier to refer to the other two documents using
their names instead of their absolute URI. What does it mean by being in the intro.html context? When you
use the http://www.jdojo.com/java/intro.html URI to identify a resource, it has three parts: a scheme
(http), a server name (www.jdojo.com), and a document path (/java/intro.html). The path indicates
that the document is under the java path hierarchy, which in turn is at the root of the path hierarchy. All
details—scheme, server name, path details, excluding the document name itself (intro.html)—make up the
context for the intro.html document. If you look at the URI for the other two documents listed previously,
you will notice that all details about them are the same as for intro.html. In other words, you can state that
the context for the other two documents is the same as for intro.html. In this case, with an absolute URI
of the intro.html document as base URI, the relative URIs for the other two documents are their names:
brief_intro.html and detailed_intro.html. It can be listed as follows:

•	 Base URI: http://www.jdojo.com/java/intro.html

•	 Relative URI: brief_intro.html

•	 Relative URI: detailed_intro.html

In the list, the two relative URIs inherit the scheme, server name, and path hierarchy from the base URI.
It is to be emphasized that a relative URI never makes sense without specifying its base URI.

When a relative URI has to be used, it must be resolved to its equivalent absolute URI. The URI
specification lays down rules to resolve a relative URI. I discuss some of the most commonly used forms of
relative URIs and their resolutions. There are two special characters used to define the <path> part of a URI.
They are a dot and two dots. A dot means the current path hierarchy. Two dots mean one up in the path
hierarchy. You must have seen these two sets of characters being used in a file system to mean the current
directory and parent directory. You can think of their meanings in a URI the same way, but a URI does not
assume any directory hierarchy. In a URI, a path is considered as hierarchical, and it is not tied to a file
system hierarchical structure at all. However, in practice, when you work with web-based applications, URLs
are usually mapped to a file system hierarchical structure. In the normalized form of a URI, dots are replaced
appropriately. For example, s://sn/a/./b is normalized to s://sn/a/b, and s://sn/a/../b is normalized
to s://sn/b. The non-normalized and normalized forms refer to the same URL. The normalized form has
extra characters removed. By just looking at two URIs, you cannot say that they are referring to the same
resource or not. You must normalize them before you compare them for equality. During the comparison
process, scheme, server name, and hexadecimal digits are considered case-insensitive. Here are some rules
to resolve a relative URI:

•	 If a URI starts with a scheme, it is considered an absolute URI.

•	 If a relative URI starts with an authority, it inherits scheme from its base URI.

•	 If a relative URI is an empty string, it is the same as the base URI.

•	 If a relative URI has a fragment part only, the resolved URI uses the new fragment.
If a base URI had a fragment, it is replaced with the fragment of the relative URI.
Otherwise, the fragment of the relative URI is added to the base URI.

•	 A relative URI’s path does not start with a forward slash (/). If the base URI has
a path, remove the last component of the path in the base URI and append the
relative URI. Note that the last component of the path may be an empty string, as in
http://www.abc.com/.

•	 If a relative URL starts with a path, which in turn starts with a forward slash (/), the
base URI’s path is replaced with the relative URI’s path.

http://www.jdojo.com/java/intro.html
http://www.jdojo.com/
http://www.jdojo.com/java/intro.html
http://www.abc.com/

Chapter 4 ■ Network programmiNg

295

Table 4-5 contains examples of using these rules. The examples in the table conform to the rules
followed in Java URI and URL classes. Java rules deviate slightly in a few cases from the rules set in the URI
specification.

Table 4-5. Examples of How a Relative URI Is Resolved to an Absolute URI Using a Base URI

Base URI Relative URI Resolved Relative URI Description of the Relative URI

h://sn/a/b/c http://sn2/foo h://sn2/foo It is an absolute URI.

h://sn/a/b/c //sn2/h/k h://sn2/h/k It starts with an authority

h://sn/a/b/c h://sn/a/b/c It is an empty string.

h://sn/a/b/c #k h://sn/a/b/c#k It contains a fragment only.

h://sn/a/b/c#a #k h://sn/a/b/c#k It contains a fragment only.

h://sn/a/b/ foo h://sn/a/b/foo The path does not start with a /.

h://sn/a/b/c foo h://sn/a/b/foo The path does not start with a /.

h://sn/a/b/c?d=3 foo h://sn/a/b/foo The path does not start with a /.

h://sn/ foo h://sn/foo The path does not start with a /.

h://sn foo h://sn/foo The path does not start with a /.

h://sn/a/b/ /foo h://sn/foo The path starts with a /.

h://sn/a/b/c /foo h://sn/foo The path starts with a /.

h://sn/a/b/c?d=3 /foo h://sn/foo The path starts with a /.

h://sn/ /foo h://sn/foo The path starts with a /.

h://sn /foo h://sn/foo The path starts with a /.

 ■ Tip You can also use a host name or ip address as an authority in a Uri. ipv4 can be used in its dotted
decimal format such as http://192.168.10.178/docs/toc.html. ipv6 must be enclosed in brackets such as
http://[1283::8:800:200C:A43A]/docs/toc.html.

URI and URL as Java Objects
Java represents URIs and a URLs as objects. It provides the following four classes that you can use to work
with URIs and URLs as objects in a Java program:

•	 java.net.URI

•	 java.net.URL

•	 java.net.URLEncoder

•	 java.net.URLDecoder

An object of the URI class represents a URI. An object of the URL class represents a URL. URLEncoder and
URLDecoder are utility classes that help encode and decode URI strings. I cover other Java classes in the next
sections that are used to retrieve the resource identified by a URL.

http://192.168.10.178/docs/toc.html

Chapter 4 ■ Network programmiNg

296

The URI class has many constructors, which let you create a URI object from combinations of parts
(scheme, authority, path, query, and fragment) of a URI. All constructors throw a checked exception,
URISyntaxException if strings, which you use to construct a URI object, may not be in conformity with the
URI specification.

// Create a URI object
URI baseURI = new URI("http://www.yahoo.com");

// Create a URI with relative URI string and resolve it using baseURI
URI relativeURI = new URI("welcome.html");
URI resolvedRelativeURI = baseURI.resolve(relativeURI);

Listing 4-10 demonstrates how to use the URI class in a Java program.

Listing 4-10. A Sample Class That Demonstrates the Use of the java.net.URI Class

// URITest.java
package com.jdojo.net;

import java.net.URI;
import java.net.URISyntaxException;

public class URITest {
 public static void main(String[] args) {
 String baseURIStr = "http://www.jdojo.com/javaintro.html?"
 + "id=25&rate=5.5%25#foo";
 String relativeURIStr = "../sports/welcome.html";

 try {
 URI baseURI = new URI(baseURIStr);
 URI relativeURI = new URI(relativeURIStr);

 // Resolve the relative URI with respect to the base URI
 URI resolvedURI = baseURI.resolve(relativeURI);

 printURIDetails(baseURI);
 printURIDetails(relativeURI);
 printURIDetails(resolvedURI);
 } catch (URISyntaxException e) {
 e.printStackTrace();
 }
 }

 public static void printURIDetails(URI uri) {
 System.out.println("URI:" + uri);
 System.out.println("Normalized:" + uri.normalize());
 String parts = "[Scheme=" + uri.getScheme()
 + ", Authority=" + uri.getAuthority()
 + ", Path=" + uri.getPath()
 + ", Query:" + uri.getQuery()
 + ", Fragment:" + uri.getFragment() + "]";

Chapter 4 ■ Network programmiNg

297

 System.out.println(parts);
 System.out.println();
 }
}

URI:http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
Normalized:http://www.jdojo.com/javaintro.html?id=25&rate=5.5%25#foo
[Scheme=http, Authority=www.jdojo.com, Path=/javaintro.html, Query:id=25&rate=5.5%,
Fragment:foo]

URI:../sports/welcome.html
Normalized:../sports/welcome.html
[Scheme=null, Authority=null, Path=../sports/welcome.html, Query:null, Fragment:null]

URI:http://www.jdojo.com/../sports/welcome.html
Normalized:http://www.jdojo.com/../sports/welcome.html
[Scheme=http, Authority=www.jdojo.com, Path=/../sports/welcome.html, Query:null,
Fragment:null]

You can also get a URL object from a URI object using its toURL() method as shown:

URL baseURL = baseURI.toURL();

You can also create a URI object using the create(String str) static method of the URI class. The
create() method does not throw a checked exception. It throws a runtime exception. Therefore, its use will
not force you to handle the exception. You should use this method only when you know that a URI string is
well-formed.

URI uri2 = URI.create("http://www.yahoo.com");

An instance of the java.net.URL class represents a URL in a Java program. Although every URL is also a
URI, Java does not inherit the URL class from the URI class. Java uses the term protocol to refer to the scheme
part in the URI specification. You can create a URL object by providing a string that has all URL’s parts
concatenated, or by providing the parts separately. If strings that you supply to create a URL object are not
valid, the constructors of the URL class will throw a MalformedURLException checked exception.

Listing 4-11 demonstrates how to create a URL object. The URL class lets you create an absolute URL from
a relative URL and a base URL using one of its constructors.

Listing 4-11. A Sample Class That Demonstrates the Use of the java.net.URL Class

// URLTest.java
package com.jdojo.net;

import java.net.URL;

public class URLTest {
 public static void main(String[] args) {
 String baseURLStr = "http://www.ietf.org/rfc/rfc3986.txt";
 String relativeURLStr = "rfc2732.txt";

Chapter 4 ■ Network programmiNg

298

 try {
 URL baseURL = new URL(baseURLStr);
 URL resolvedRelativeURL = new URL(baseURL, relativeURLStr);
 System.out.println("Base URL:" + baseURL);
 System.out.println("Relative URL String:" + relativeURLStr);
 System.out.println("Resolved Relative URL:" + resolvedRelativeURL);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Base URL:http://www.ietf.org/rfc/rfc3986.txt
Relative URL String:rfc2732.txt
Resolved Relative URL:http://www.ietf.org/rfc/rfc2732.txt

Typically, you create a URL object to retrieve the resource identified by the URL. Note that you can create
an object of the URL class as long as the URL is well formed textually and the protocol to handle the URL is
available. The successful creation of a URL object in a Java program does not guarantee the existence of the
resource at the server specified in the URL. The URL class provides methods that you can use in conjunction
with other classes to retrieve the resource identified by the URL.

The URL class makes sure that it can handle the protocol specified in the URL string. For example, it
will not let you create a URL object with a string as ppp://www.sss.com/ unless you develop and supply it a
protocol handler for a protocol named ppp. I cover how to retrieve the resource identified by a URL in the
next section.

Sometimes you do not know the parts of the URL string in advance. You get the parts of the URL at
runtime as input from other parts of the program or from the user. In such cases, you will need to encode the
parts of the URL before you can use them to create a URL object. Sometimes you get a string in encoded form
and you want it to be decoded. An encoded string will have all the restricted characters properly escaped.

The URLEncoder and URLDecoder classes are used to encode and decode strings, respectively. The
URLEncoder.encode(String source, String encoding) static method is used to encode a source string
using the specified encoding. The URLDecoder.decode(String source, String encoding) static method
is used to decode a source string using a specified encoding. The following snippet of code shows how to
encode/decode strings. Typically, you encode/decode the value part of name-value pairs in the query part of
a URL. Note that you should never attempt to encode the entire URL string. Otherwise, it will encode some
of the reserved characters such a forward slash and the resulting URL string will be invalid.

String source = "this is a test for 2.5% and &" ;
String encoded = URLEncoder.encode(source, "utf-8");
String decoded = URLDecoder.decode(encoded, "utf-8");
System.out.println("Source: " + source);
System.out.println("Encoded: " + encoded);
System.out.println("Decoded: " + decoded);

Source: this is a test for 2.5% and &
Encoded: this+is+a+test+for+2.5%25+and+%26
Decoded: this is a test for 2.5% and &

http://www.sss.com/

Chapter 4 ■ Network programmiNg

299

Accessing the Contents of a URL
A URL has a protocol that is used to communicate with the remote application that hosts the URL’s contents.
For example, the URL http://www.yahoo.com/index.html uses the http protocol. In a URL, you specify
a protocol that is used by the application layer in the protocol suite. When you need to access the URL’s
contents, the computer will use some kind of protocols from lower layers in the protocol suite (transport,
Internet layers, etc.) to communicate with the remote host. The http application layer protocol uses TCP/IP
protocols in lower layers. In a distributed application, it is very frequent that you need to retrieve (or read)
the resource (could be text, html content, image files, audio/video files or any other kind of information)
identified by a URL. Although it is possible to open a socket every time you need to read the contents of URL,
it is time consuming and cumbersome for programmers. After all, programmers need some way to be more
productive than writing repetitive code for what seems to be a routine job. Java designers realized this need
and they have provided a very easy (yes, it is very easy) way to read/write data from/to a URL. This section
explores some of the ways, from very simple to quite complex, to read/write data from/to a URL.

As the data passes from one layer to another in the protocol suite, each layer adds a header to the data.
Since a URL uses a protocol in the application layer, it also contains its own header. The format of the header
depends on the protocol being used. When the http request is send to a remote host, the application layer in
the source host adds the http header to the data. The remote host has an application layer that handles the
http protocol and it uses the header information to interpret the contents. In summary, a URL data will have
two parts: a header part and a content part. The URL class along with some other classes let you read/write
both header and content parts of a URL. I start with the simplest case of reading the contents of a URL.

Before you read/write from/to a URL, you need to have a working URL that you can access. You can
read content of any URL that is publicly available on the Internet. For this discussion, I use a website at
http://www.httpbin.org/ that provides several URLs for testing purposes. This website provides several
endpoints for testing purposes. Visit this website for the complete list of endpoints. Table 4-6 contains two
of such endpoints that you will use in the examples in this section.

Table 4-6. Useful Endpoints at www.httpbin.org Used in the Examples

URL Description

http://www.httpbin.org/get Accepts an HTTP GET request and returns the parameters passed to
this URL in JSON format. If you pass a year parameter with a value of
1969 to this endpoint, your URL would look as follows:

http://www.httpbin.org/get?year=1069

http://www.httpbin.org/post Accepts an HTTP POST request and returns the same POST data passed
to this URL in JSON format.

The URL class lets you read the contents (not header) of a URL by just writing two lines of code as shown:

URL url = new URL("your URL string goes here");
InputStream ins = url.openStream();

Listing 4-12 contains the complete program that reads the contents of the URL http://httpbin.
org/get?year=1969. The output shows that the server returned the passed GET parameter (year=1969) in
the args object. If you want to use the POST method to send a request to a URL, you will need to use the
URLConnection class, which I explain next. I have formatted the output for better readability.

http://www.yahoo.com/index.html
http://www.httpbin.org/
http://www.httpbin.org/
http://www.httpbin.org/get?year=1069
http://www.httpbin.org/post
http://httpbin.org/get?year=1969
http://httpbin.org/get?year=1969

Chapter 4 ■ Network programmiNg

300

Listing 4-12. A Simple URL Contents Reader Program

// SimpleURLContentReader.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URL;

public class SimpleURLContentReader {
 public static void main(String[] args) {
 String urlStr = "http://httpbin.org/get?year=1969";
 String content = getURLContent(urlStr);
 System.out.println(content);
 }

 public static String getURLContent(String urlStr) {
 BufferedReader br = null;
 try {
 URL url = new URL(urlStr);

 // Get the input stream wrapped into a BufferedReader
 br = new BufferedReader(new InputStreamReader(url.openStream()));

 StringBuilder sb = new StringBuilder();
 String msg = null;
 while ((msg = br.readLine()) != null) {
 sb.append(msg);
 sb.append("\n"); // Append a new line
 }

 return sb.toString();

 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 // If we get here it means there was an error
 return null;
 }

}

Chapter 4 ■ Network programmiNg

301

{
 "args": {
 "year": "1969"
 },
 "headers": {
 "Accept": "text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2",
 "Connection": "close",
 "Host": "httpbin.org",
 "User-Agent": "Java/9"
 },
 "origin": "50.58.251.82",
 "url": "http://httpbin.org/get?year=1969"
}

Once you get the input stream, you can use it for reading the content of the URL. Another way of
reading the content of a URL is by using the getContent() method of the URL class. Since getContent() can
return any kind of content, its return type is the Object type. You will need to check what kind of object it
returns before you use the contents of the object. For example, it may return an InputStream object, and
in that case, you will need to read data from the input stream. The following are the two versions of the
getContent() method:

•	 final Object getContent() throws IOException

•	 final Object getContent(Class[] classes) throws IOException

The second version of the method lets you pass an array of class type. It will attempt to convert the
content object to one of the classes you pass to it in the specified order. If the content object does not match
any of the types, it will return null. You will still need to write if statements to know what type of object was
returned from the getContent() method, as shown:

URL baseURL = new URL ("your url string goes here");
Class[] c = new Class[] {String.class, BufferedReader.class, InputStream.class};

Object content = baseURL.getContent(c);
if (content == null) {
 // Contents are not of any of the three kinds
} else if (content instanceof String) {
 // You got a string
} else if (content instanceof BufferedReader) {
 // You got a reader
} else if (content instanceof InputStream) {
 // You got an input stream
}

If you read the contents of a URL using the openStream() or getContent() method, the URL class
handles many of the complexities of using sockets internally. The downside of this approach is that you do
not have any control over the connection settings. You cannot write data to the URL using this approach.
Also, you do not have access to the header information for the protocol used in a URL. Don’t despair; Java
provides another class named URLConnection that lets you do these in a simple and concise manner.

Chapter 4 ■ Network programmiNg

302

URLConnection is an abstract class and you cannot create its object directly. You need to use the
openConnection() method of the URL object to get a URLConnection object. The URL class will handle the
creation of an URLConnection object, which will be appropriate to handle the data for the protocol used in the
URL. The following snippet of code shows how to use an URLConnection object to read and write data to a URL:

URL url = new URL("your URL string goes here");

// Get a connection object
URLConnection connection = url.openConnection();

// Indicate that you will be writing to the connection
connection.setDoOutput(true);

// Get output/input streams to write/read data
OutputStream ous = connection.getOutputStream();
InputStream ins = connection.getInputStream(); // Caution. Read below

The openConnection() method of the URL class returns a URLConnection object, which is not
connected to the URL source yet. You must set all connection-related parameters to this object before
it is connected. For example, if you want to write data to the URL, you must call the setDoOutput(true)
method on the connection object before it is connected. A URLConnection object gets connected when
you call its connect() method. However, it is connected implicitly when you call its methods that require a
connection. For example, writing data to a URL and reading the URL’s data or header fields will connect the
URLConnection object automatically, if it is not already connected.

Here are a few things you must follow if you want to avoid problems when you work with an
URLConnection to read and write data to a URL:

•	 When you are only reading data from a URL, you can get the input stream using
its getInputStream() method. Use the input stream to read data. It will use a
GET method for the request to the remote host. That is, if you are passing some
parameters to the URL, you must do so by adding the query part to the URL.

•	 If you are writing as well as reading data from a URL, you must call the
setDoOutput(true) before you connect. You must finish writing the data to the
URL before you start reading the data. Writing data to a URL will change the request
method to POST. You cannot even get the input stream before you finish writing
data to the URL. In fact, the getInputStream() method sends a request to the
remote host. Your intention is to send the data to the remote host and read the
response from the remote host. This one gets as tricky as it can. Here is a little more
explanation, using a snippet of code, assuming that connection is an URLConnection
object:

// Incorrect – 1. Get input and output streams
// you must get the output stream first
InputStream ins = connection.getInputStream();
OutputStream ous = connection.getOutputStream();

// Incorrect – 2. Get output and input streams
// you must get the output stream and finish writing
// before you should get the input stream
OutputStream ous = connection.getOutputStream();
InputStream ins = connection.getInputStream();

Chapter 4 ■ Network programmiNg

303

// Correct. Get output stream and get done with it.
// And, then get the input stream and read data.
OutputStream ous = connection.getOutputStream();

// Write logic to write data using ous object here. Make sure
// you are done writing data before you call the
// getInputStream() method as shown below
InputStream ins = connection.getInputStream();

// Write logic to read data

•	 Using the getInputStream() method and reading header fields, using any method
such as getHeaderField(String headerName), have the same effect. The URL’s
server supplies both header and content. An URLConnection must send the request
to get them.

Listing 4-13 contains the complete code that writes/reads data to/from the http://www.httpbin/post URL.

Listing 4-13. A URL Reader/Writer Class That Writes/Reads Data to/from a URL

// URLConnectionReaderWriter.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.net.URL;
import java.net.URLConnection;
import java.net.URLEncoder;
import java.util.Map;

public class URLConnectionReaderWriter {
 public static String getURLContent(String urlStr, String input) {
 BufferedReader br = null;
 BufferedWriter bw = null;

 try {
 URL url = new URL(urlStr);

 URLConnection connection = url.openConnection();

 // Must call setDoOutput(true) to indicate that you will write
 // to the connection. By default, it is false.
 // By default, setDoInput() is set to true.
 connection.setDoOutput(true);

http://www.httpbin/post

Chapter 4 ■ Network programmiNg

304

 // Now, connect to the remote object
 connection.connect();

 // Write data to the URL first before reading the response
 OutputStream ous = connection.getOutputStream();
 bw = new BufferedWriter(new OutputStreamWriter(ous));
 bw.write(input);
 bw.flush();
 bw.close();

 // Must be placed after writing the data. Otherwise, it will
 // result in error, because if write is performed, read
 // must be performed after the write.
 printRequestHeaders(connection);

 InputStream ins = connection.getInputStream();

 // Wrap the input stream into a reader
 br = new BufferedReader(new InputStreamReader(ins));

 StringBuilder sb = new StringBuilder();
 String msg = null;
 while ((msg = br.readLine()) != null) {
 sb.append(msg);
 sb.append("\n"); // Append a new line
 }

 return sb.toString();

 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

 // If we arrive here it means there was an error
 return null;
 }

 public static void printRequestHeaders(URLConnection connection) {
 Map headers = connection.getHeaderFields();
 System.out.println("Request Headers are:");
 System.out.println(headers);
 System.out.println();
 }

Chapter 4 ■ Network programmiNg

305

 public static void main(String[] args) {
 // Change the URL to point to the echo_params.jsp page
 // on your web server
 String urlStr = "http://www.httpbin.org/post";
 String query = null;
 try {
 // Encode the query. We need to encode only the value
 // of the name parameter. Other names and values are fine
 query = "id=789&name=" + URLEncoder.encode("John & Co.", "utf-8");

 // Get the content and display it on the console
 String content = getURLContent(urlStr, query);

 System.out.println("Returned data from the server is:");
 System.out.println(content);
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 }
}

Request Headers are:

{null=[HTTP/1.1 200 OK], X-Processed-Time=[0.000935077667236], Server=[meinheld/0.6.1],
Access-Control-Allow-Origin=[*], Access-Control-Allow-Credentials=[true], Connection=[keep-
alive], Content-Length=[462], Date=[Wed, 03 Jan 2018 19:37:10 GMT], Via=[1.1 vegur],
X-Powered-By=[Flask], Content-Type=[application/json]}
Returned data from the server is:
{
 "args": {},
 "data": "",
 "files": {},
 "form": {
 "id": "789",
 "name": "John & Co."
 },
 "headers": {
 "Accept": "text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2",
 "Connection": "close",
 "Content-Length": "24",
 "Content-Type": "application/x-www-form-urlencoded",
 "Host": "www.httpbin.org",
 "User-Agent": "Java/9"
 },
 "json": null,
 "origin": "50.58.251.82",
 "url": "http://www.httpbin.org/post"
}

Chapter 4 ■ Network programmiNg

306

This time, you are using the POST method to send data to the URL. Note that the data that you send has
been encoded using the URLEncoder class. You needed to encode only the value of the name field, which is
"John & Co." because the ampersand in the value will conflict with the name-value pair separator in the
query string. The program has plenty of comments to warn you of any dangers if you change the sequence of
any statements.

The program prints information about all headers that are returned in a java.util.Map object. The
URLConnection class provides several ways to get the header field’s values. For commonly used headers,
it provides a direct method. For example, the methods called getContentLength(), getContentType(),
and getContentEncoding() return the value of the header fields that indicate length, type, and encoding
of the URL’s contents, respectively. If you know the header field name or its index, you can use the
getHeaderField(String headerName) or getHeaderField(int headerIndex) method to get its value.
The getHeaderFields() method returns a Map object whose keys represent the header field names and the
values represent the header field values. Use caution when reading a header field because it has the same
effect on the URLConnection object as reading the contents. If you wish to write data to a URL, you must first
write the data before you can read the header fields.

Java lets you read the contents of a JAR file using the jar protocol. Suppose you have a JAR file called
myclasses.jar, which has a class file whose path is myfolder/Abc.class. You can get a JarURLConnection
from a URL and use its methods to access the JAR file data. Note that you can only read JAR file contents
from a URL. You cannot write to a JAR file URL. The following snippet of code shows how to get a
JarURLConnection object. You will need to use its methods to get the JAR specific data.

String str = "jar:http://www.abc.com/myclasses.jar!/myfolder/Abc.class";
URL url = new URL(str);
JarURLConnection connection = (JarURLConnection) url.openConnection();

// Use the connection object to access any jar related data.

 ■ Tip You have read many words of caution in this section about using a URLConnection object. here is one
more: a URLConnection object must be used for only one request. it works on the concept of obtain-use-and-
throw. if you wish to write or read data from a UrL multiple times, you must call the UrL’s openConnection()
each time separately.

Non-Blocking Socket Programming
In previous sections, I explained TCP and UDP sockets. The connect(), accept(), read(), and write()
methods of the Socket and ServerSocket classes block until the operation is complete. For example, a client
socket’s thread is blocked if it calls the read() method to read data from a server until the data is available.
Would it not be nice if you could call the read() method on a client socket and start doing something
else until the data from the server arrives? When data is available from the server, the client socket will
be notified, which will read the data at an appropriate time. Another big issue that you face with socket
programming is the scalability of a server application. In previous sections, I suggested that you would need
to create a new thread to handle each client connection or you would have a pool of threads to handle all
client connections. Both ways, you will be creating and maintaining a bunch of threads in your program.
Wouldn’t it be nice if you didn’t have to deal with threads in a server program to handle multiple clients?
Non-blocking socket channels offer all of these nice features. As always, a good feature has a price tag
associated with it; so too with the non-blocking socket channel. It has a bit of a learning curve. You are used
to programming where things happen sequentially. With non-blocking socket channels, you will need to

Chapter 4 ■ Network programmiNg

307

change your mindset about the way you think about performing things in a program. Changing your mindset
takes time. Your program will be performing multiple things that will not be performed sequentially. If you
are learning Java for the first time, you can skip this section and revisit it later when you gain some more
experience in writing complex Java programs.

It is assumed that you have a good understanding of socket programming using ServerSocket and
Socket classes. It is further assumed that you have a basic understanding of New Input/Output in Java using
buffers and channels. This section uses some classes that are contained in java.nio, java.nio.channels,
and java.nio.charset packages.

Let’s start by comparing classes that are involved in blocking and non-blocking socket communications.
Table 4-7 lists the main classes that are used in blocking and non-blocking socket applications.

Table 4-7. Comparison of Classes Involved in Blocking and Non-Blocking Socket Programming

Classes Used in Blocking Socket-Based
Communication

Classes Used in Non-Blocking Socket-Based
Communication

ServerSocket ServerSocketChannel
The ServerSocket class still exists behind the scenes.

Socket SocketChannel
The Socket class still exists behind the scenes.

InputStream
OutputStream

No corresponding classes exist. A SocketChannel is used
to read/write data.

No corresponding class exists. Selector

No corresponding class exists. SelectionKey

You will work with a ServerSocketChannel object primarily to accept a new connection request in a
server instead of using a ServerSocket. The ServerSocket has not disappeared. It is still at play behind the
scenes. If you need the reference of the ServerSocket object being used internally, you can get it by using
the socket() method of the ServerSocketChannel object. You can think of a ServerSocketChannel object as
a wrapper for a ServerSocket object.

You will work with a SocketChannel to communicate between a client and a server instead of a Socket.
A Socket object is still at play behind the scenes. You can get the reference of the Socket object using the
socket() method of the SocketChannel class. You can think of a SocketChannel object as a wrapper for a
Socket object.

Before I start discussing the mechanism that is used by the non-blocking sockets to give you a more
efficient and scalable application interface, it would be helpful to look at a real-world example. Let’s discuss
the way orders are placed and served in a fast food restaurant. Suppose the restaurant expects the maximum
ten customers and the minimum of zero customers at any time. A customer comes to the restaurant, places
his order, and is served the food. How many servers should that restaurant employ? In the best case, it may
employ only one server that can handle receiving orders from all customers and serving their food. In the
worst case, it can have ten servers—one server reserved for one customer. In the latter case, if there are only
three customers in the restaurant, seven servers will be idle.

Let’s take the middle path in the restaurant management. Let’s have a few servers in the kitchen to cook
and one server at the counter to receive orders. A customer comes, places an order with the server at the
counter, the customer gets an order id, the customer leaves the counter, the server at the counter passes on the
order to one of the servers in the kitchen, and the server starts taking an order from the next customer. At this
point, the customer is free to do something else while his order is being prepared. The server at the counter
is dealing with other customers. Servers in the kitchen are busy preparing the food according to the orders
placed. No one is waiting for anyone. As soon as the food item in an order is ready, the server at the counter
receives it from the server in the kitchen and calls the order number so the customer who placed that order will

Chapter 4 ■ Network programmiNg

308

pick up his food. A customer may get his food in multiple installments. He can eat the food that he has been
served while the remaining items in his order are being prepared in the kitchen. This architecture is the most
efficient architecture you can have in a restaurant. It keeps everyone busy most of the time and makes efficient
use of the resources. This is the approach that non-blocking socket channels follow.

Another approach would be that the customer comes in, places his order, waits until his order is
complete and he is served, and then the next customer places his order and so on. This is the approach that
blocking sockets follow. If you understand the approach taken by the fast food restaurant for the efficient use
of resources, you can understand the non-blocking socket channels easily. I compare the people used in the
restaurant example with objects used in non-blocking sockets in the following discussion.

Let’s first discuss the situation on the server side. The server side is your restaurant. The person at the
counter, who interfaces with all customers, is called a selector. A selector is an object of the Selector class.
Its sole job is to interact with the outside world. It sits between remote clients interacting with the server
and the things inside the server. A remote client never interacts with objects working inside the server,
as a customer in the restaurant never interacts directly with servers in the kitchen. Figure 4-7 shows the
architecture of non-blocking socket channels communication. It shows where the selector fits into the
architecture.

Figure 4-7. Architecture of non-blocking client-server sockets

You cannot create a selector object directly using its constructor. You need to call its open() static
method to get a selector object as shown:

// Get a selector object
Selector selector = Selector.open();

A ServerSocketChannel is used to listen for a new connection request from clients. Again, you cannot create
a new ServerSocketChannel object using its constructor. You need to call its open() static method as shown:

// Get a server socket channel
ServerSocketChannel ssChannel = ServerSocketChannel.open();

By default, a server socket channel or a socket channel is a blocking channel. You need to configure it to
make it a non-blocking channel as shown:

// Configure the server socket channel to be non-blocking
ssChannel.configureBlocking(false);

Chapter 4 ■ Network programmiNg

309

Your server socket channel needs to be bound to a local IP address and a local port number, so a remote
client may contact it for new connections. You bind a server socket channel using its bind() method. The
bind() method has been added to the ServerSocketChannel and the SocketChannel in Java 7. Prior to Java 7,
you need to call the bind() method on the socket that is associated with the channels.

InetAddress hostIPAddress = InetAddress.getByName("localhost");
int port = 19000;

// Prior to Java 7
ssChannel.socket().bind(new InetSocketAddress(hostIPAddress, port));

// Java 7 and later
ssChannel.bind(new InetSocketAddress(hostIPAddress, port));

The most important step is taken now. The server socket has to register itself with the selector showing
interest in some kind of operation. It is like a pizza maker in a restaurant letting the server at the counter
know that he is ready to make pizza for customers and he needs to be notified when an order for pizza is
placed. There are four kinds of operations for which you can register a channel with the selector. They are
defined as integer constants in the SelectionKey class listed in Table 4-8.

Table 4-8. Operations Recognized by the Selector

Operation
Type

Value
(Constants in
SelectionKey Class)

Who Can Register for
This Operation

Description

Connect OP_CONNECT SocketChannel
at client

Selector will notify about the connect
operation progress.

Accept OP_ACCEPT ServerSocketChannel
at server

Selector will notify when a client request
for a new connection arrives.

Read OP_READ SocketChannel
at client and server

Selector will notify when the channel is
ready to read some data.

Write OP_WRITE SocketChannel
at client and server

Selector will notify when channel is ready
to write some data.

A ServerSocketChannel only listens for accepting a new client connection request, and therefore, it can
register for only one operation as shown:

// Register the server socket channel with the selector for accept operation
ssChannel.register(selector, SelectionKey.OP_ACCEPT);

The register() method of ServerSocketChannel returns an object of type SelectionKey. You can
think of this object as a registration certificate with the selector. You can store this key object in a variable if
you need to use it later. The example ignores it. The selector has a copy of your key (registration details) and
it will use it in the future to notify you of any operation for which your channel is ready.

At this point, your selector is ready to intercept an incoming request for a client connection and pass
it on to the server socket channel. Suppose a client attempts to connect to the server socket channel at
this time. How does interaction between the selector and the server socket channel take place? When the

Chapter 4 ■ Network programmiNg

310

selector detects that there is a registered key with it, which is ready for an operation, it places that key (an
object of the SelectionKey class) in a separate group called the ready set. A java.util.Set object represents
a ready set. You can determine the number of keys in a ready state by calling the select() method of a
Selector object.

// Get the key count in the ready set
int readyCount = selector.select();

Once you get at least one ready key in the ready set, you need to get the key and look at the details. You
can get all ready keys from the ready set as shown:

// Get the set of ready keys
Set readySet = selector.selectedKeys();

Note that you register a key for one or more operations. You need to look at the key details for
its readiness for a particular operation. If a key is ready for accepting a new connection request, its
isAcceptable() method will return true. If a key is ready for a connection operation, its isConnectable()
method will return true. If a key is ready for read and write operations, its isReadable() and isWritable()
methods will return true. You may observe that there is a method to check for the readiness for each
operation type. When you are processing a ready set, you will also need to remove the key from the ready
set. Here is some typical code that processes the ready set in a server application. An infinite loop is typical
on a server application because you need to keep looking for the next ready set once you are done with the
current ready set.

while(true) {
 // Get the count of keys in the ready set. If ready key count is
 // greater than zero, process each key in the ready set.
}

The following snippet of code shows the typical logic that you can use to process all keys in a ready set:

SelectionKey key = null;
Iterator iterator = readySet.iterator();

while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey)iterator.next();

 // Remove the key from ready set
 iterator.remove();

 // Process the key according to the operation
 if (key.isAcceptable()) {
 // Process new connection
 }

 if (key.isReadable()) {
 // Read from the channel
 }

Chapter 4 ■ Network programmiNg

311

 if (key.isWritable()) {
 // Write to the channel
 }
}

How do you accept a connection request from a remote client on a server socket channel? The logic
is similar to accepting a remote connection request using a ServerSocket object. A SelectionKey object
has a reference to the ServerSocketChannel that registered it. You can get to the ServerSocketChannel
object of a SelectionKey object using its channel() method. You need to call the accept() method on the
ServerSocketChannel object to accept a new connection request. The accept() method returns an object
of the SocketChannel class that is used to communicate (read and write) with a remote client. You need to
configure the new SocketChannel object to be a non-blocking socket channel. The most important point
that you need to understand is that the new SocketChannel object must register itself for read, write, or both
operations with the selector to start reading/writing data on the connection channel. The following snippet
of code shows the logic to accept a remote connection request:

ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
SocketChannel sChannel = (SocketChannel)ssChannel.accept();
sChannel.configureBlocking(false);

// Register only for read. Your message is small and you write it back
// to the client as soon as you read it.
sChannel.register(key.selector(), SelectionKey.OP_READ);

If you wish to register the socket channel with a selector for a read and a write, you can do so as shown:

// Register for read and write
sChannel.register(key.selector(), SelectionKey.OP_READ | SelectionKey.OP_WRITE);

Once your socket channel is registered with the selector, it will be notified through the selector’s ready
set when it receives any data from the remote client or when you can write data to the remote client on its
channel.

If data becomes available on a socket channel, the key.isReadable() will return true for this socket
channel. A typical read operation looks as follows. You must have a basic understanding of Java NIO
(New Input/Output) to read data using channels and buffers.

SocketChannel sChannel = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
int bytesCount = sChannel.read(buffer);
String msg = "";

if (bytesCount > 0) {
 buffer.flip();
 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 msg = charBuffer.toString();
 System.out.println("Received Message: " + msg);
}

Chapter 4 ■ Network programmiNg

312

If you can write to a channel, the selector will place the associated key in its ready set whose
isWritable() method will return true. Again, you need to understand Java NIO to use the ByteBuffer
object to write data on a channel.

SocketChannel sChannel = (SocketChannel)key.channel();
String msg = "message to be sent to remote client goes here";
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
sChannel.write(buffer);

What happens on a client side is easy to understand. You start with getting a selector object, and you get
a SocketChannel object by calling the SocketChannel.open() method. At this point, you need to configure
the socket channel to be non-blocking before you connect to the server. Now you are ready to register
your socket channel with the selector. Typically, you register with the selector for connect, read, and write
operations. Processing the ready set of the selector is done the same way you processed the ready set of the
selector in the server application. The code for reading and writing to the channel is similar to the server side
code. The following snippet of code shows the typical logic used in a client application:

InetAddress serverIPAddress = InetAddress.getByName("localhost");
int port = 19000;
InetSocketAddress serverAddress = new InetSocketAddress(serverIPAddress, port);

// Get a selector
Selector selector = Selector.open();

// Create and configure a client socket channel
SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);

// Connect to the server
channel.connect(serverAddress);

// Register the channel for connect, read and write operations
int operations = SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.OP_WRITE;
channel.register(selector, operations);

// Process the ready set of the selector here

When you get a connect operation on a client side SocketChannel, it may mean either a successful or
failed connection. You can call the finishConnect() method on the SocketChannel object to finish the
connection process. If the connection has failed, the finishConnect() call will throw an IOException.
Typically, you handle a connect operation as follows:

if (key.isConnectable()) {
 try {
 // Call to finishConnect() is in a loop as it is non-blocking for your channel
 while(channel.isConnectionPending()) {
 channel.finishConnect();
 }

Chapter 4 ■ Network programmiNg

313

 } catch (IOException e) {
 // Cancel the channel's registration with the selector
 key.cancel();
 e.printStackTrace();
 }
}

It is time to build an echo client application and an echo server application using these channels.
Listing 4-14 and Listing 4-15 contain the complete code for a non-blocking socket channel for an echo server
and an echo client, respectively.

You need to run the NonBlockingEchoServer class first, and then one or more instances of the
NonBlockingEchoClient class. They work similar to your other two echo client-server programs. Note
that, this time, you may not see the messages from the server just after you enter a message in the client
application. The client application sends a message to the server and it does not wait for the message to
be echoed back. Rather, it processes the server message when the socket channel receives the notification
from the selector. Therefore, it is possible to get the two messages echoed back from the server at one time.
Exception handling has been left out in these examples to keep the code simple and readable.

Listing 4-14. A Non-Blocking Socket Channel Echo Server Program

// NonBlockingEchoServer.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Iterator;
import java.util.Set;

public class NonBlockingEchoServer {
 public static void main(String[] args) throws Exception {
 InetAddress hostIPAddress = InetAddress.getByName("localhost");
 int port = 19000;

 // Get a selector
 Selector selector = Selector.open();

 // Get a server socket channel
 ServerSocketChannel ssChannel = ServerSocketChannel.open();

 // Make the server socket channel non-blocking and bind it to an address
 ssChannel.configureBlocking(false);
 ssChannel.socket().bind(new InetSocketAddress(hostIPAddress, port));

Chapter 4 ■ Network programmiNg

314

 // Register a socket server channel with the selector for accept operation,
 // so that it can be notified when a new connection request arrives
 ssChannel.register(selector, SelectionKey.OP_ACCEPT);

 // Now we will keep waiting in a loop for any kind of request that arrives
 // to the server - connection, read, or write request. If a connection request
 // comes in, we will accept the request and register a new socket channel with
 // the selector for read and write operations. If read or write requests come
 // in, we will forward that request to the registered channel.
 while (true) {
 if (selector.select() <= 0) {
 continue;
 }
 processReadySet(selector.selectedKeys());
 }
 }

 public static void processReadySet(Set readySet) throws Exception {
 SelectionKey key = null;
 Iterator iterator = null;
 iterator = readySet.iterator();

 while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey) iterator.next();

 // Remove the key from the ready key set
 iterator.remove();

 // Process the key according to the operation it is ready for
 if (key.isAcceptable()) {
 processAccept(key);
 }

 if (key.isReadable()) {
 String msg = processRead(key);
 if (msg.length() > 0) {
 echoMsg(key, msg);
 }
 }
 }
 }

 public static void processAccept(SelectionKey key) throws IOException {
 // This method call indicates that we got a new connection request. Accept
 // the connection request and register the new socket channel with the selector,
 // so that client can communicate on a new channel
 ServerSocketChannel ssChannel = (ServerSocketChannel)key.channel();
 SocketChannel sChannel = (SocketChannel) ssChannel.accept();
 sChannel.configureBlocking(false);

Chapter 4 ■ Network programmiNg

315

 // Register only for read. Our message is small and we write it
 // back to the client as soon as we read it
 sChannel.register(key.selector(), SelectionKey.OP_READ);
 }

 public static String processRead(SelectionKey key) throws Exception {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 int bytesCount = sChannel.read(buffer);
 String msg = "";

 if (bytesCount > 0) {
 buffer.flip();
 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 msg = charBuffer.toString();
 System.out.println("Received Message: " + msg);
 }

 return msg;
 }

 public static void echoMsg(SelectionKey key, String msg) throws IOException {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 sChannel.write(buffer);
 }
}

Listing 4-15. A Non-Blocking Socket Channel Echo Client Program

// NonBlockingEchoClient.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.util.Iterator;
import java.util.Set;

Chapter 4 ■ Network programmiNg

316

public class NonBlockingEchoClient {
 private static BufferedReader userInputReader = null;

 public static void main(String[] args) throws Exception {
 InetAddress serverIPAddress = InetAddress.getByName("localhost");
 int port = 19000;
 InetSocketAddress serverAddress = new InetSocketAddress(serverIPAddress, port);

 // Get a selector
 Selector selector = Selector.open();

 // Create and configure a client socket channelHello
 try (SocketChannel channel = SocketChannel.open()) {
 channel.configureBlocking(false);
 channel.connect(serverAddress);

 // Register the channel for connect, read and write operations
 int operations
 = SelectionKey.OP_CONNECT | SelectionKey.OP_READ | SelectionKey.OP_WRITE;
 channel.register(selector, operations);

 userInputReader = new BufferedReader(new InputStreamReader(System.in));
 while (true) {
 if (selector.select() > 0) {
 boolean doneStatus = processReadySet(selector.selectedKeys());
 if (doneStatus) {
 break;
 }
 }
 }
 }
 }

 public static boolean processReadySet(Set readySet) throws Exception {
 SelectionKey key = null;
 Iterator iterator = null;
 iterator = readySet.iterator();
 while (iterator.hasNext()) {
 // Get the next ready selection key object
 key = (SelectionKey) iterator.next();

 // Remove the key from the ready key set
 iterator.remove();

 if (key.isConnectable()) {
 boolean connected = processConnect(key);
 if (!connected) {
 return true; // Exit
 }
 }

Chapter 4 ■ Network programmiNg

317

 if (key.isReadable()) {
 String msg = processRead(key);
 System.out.println("[Server]: " + msg);
 }

 if (key.isWritable()) {
 String msg = getUserInput();
 if (msg.equalsIgnoreCase("bye")) {
 return true; // Exit
 }
 processWrite(key, msg);
 }

 }

 return false; // Not done yet
 }

 public static boolean processConnect(SelectionKey key) {
 SocketChannel channel = (SocketChannel) key.channel();

 try {
 // Call the finishConnect() in a loop as it is non-blocking for your channel
 while (channel.isConnectionPending()) {
 channel.finishConnect();
 }
 } catch (IOException e) {
 // Cancel the channel's registration with the selector
 key.cancel();
 e.printStackTrace();
 return false;
 }

 return true;
 }

 public static String processRead(SelectionKey key) throws Exception {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.allocate(1024);
 sChannel.read(buffer);
 buffer.flip();
 Charset charset = Charset.forName("UTF-8");
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(buffer);
 String msg = charBuffer.toString();
 return msg;
 }

Chapter 4 ■ Network programmiNg

318

 public static void processWrite(SelectionKey key, String msg) throws IOException {
 SocketChannel sChannel = (SocketChannel) key.channel();
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 sChannel.write(buffer);
 }

 public static String getUserInput() throws IOException {
 String promptMsg = "Please enter a message(Bye to quit): ";
 System.out.print(promptMsg);
 String userMsg = userInputReader.readLine();
 return userMsg;
 }
}

Socket Security Permissions
You can control the access for a Java program to use sockets using an instance of the java.net.SocketPermission
class. The generic format used to grant a socket permission in a Java policy file is as follows:

grant {
 permission java.net.SocketPermission "target", "actions";
};

The target is of the form <host name>:<port range>. The possible values of actions are accept,
connect, listen, and resolve.

The listen action is meaningful only when “localhost” is used as the host name. The resolve action
refers to DNS lookup and it is implied if any of the other three actions is present.

A host name could be either a DNS name or an IP address. You can use an asterisk (*) as a wildcard
character in the DNS host name. If an asterisk is used, it must be used as the leftmost character in the
DNS name. If the host name consists only of an asterisk, it refers to any host. The “localhost” for the host
name refers to the local machine. You can indicate the port range for the host name in different formats, as
described in Table 4-9. Here, N1 and N2 indicate port numbers (0 to 65535) and it is assumed that N1 is less
than N2. Table 4-9 lists the format used for indicating the port range.

Table 4-9. The <port range> Format for java.net.SocketPermission Security Settings

Port Range Value Description

N1 Only one port number—N1

N1-N2 Port numbers from N1 to N2

N1- Port numbers from N1 and greater

-N1 Port numbers from N1 and less

The following are examples of using a java.net.SocketPermission in a Java policy file:

// Grant to all codebase
grant {
 // Permission to connect with 192.168.10.123 at port 5000
 permission java.net.SocketPermission "192.168.10.123:5000", "connect";

Chapter 4 ■ Network programmiNg

319

 // Connect permission to any host at port 80
 permission java.net.SocketPermission "*:80", "connect";

 // All socket permissions to on port >= 1024 on the localhost
 permission java.net.SocketPermission "localhost:1024-", "listen, accept, connect";
};

Asynchronous Socket Channels
Java 7 added support for asynchronous socket operations such as connect, read, and write. The
asynchronous socket operations are performed using the following two socket channel classes:

•	 java.nio.channels.AsynchronousServerSocketChannel

•	 java.nio.channels.AsynchronousSocketChannel

An AsynchronousServerSocketChannel serves as a server socket that listens for new incoming client
connections. Once it accepts a new client connection, the interaction between the client and the server is
handled by an AsynchronousSocketChannel at both ends. Asynchronous socket channels are set up very
similar to the synchronous sockets. The main difference between the two setups is that the request for an
asynchronous socket operation returns immediately and the requestor is notified when the operation is
completed, whereas in a synchronous socket operation the request for a socket operation blocks until it is
complete. Because of the asynchronous nature of the operations with the asynchronous socket channels, the
code to handle the completion or failure of a socket operation is a bit complex.

In an asynchronous socket channel, you request an operation using one of the methods of the
asynchronous socket channel classes. The method returns immediately. You receive a notification about the
completion or failure of the operation later. The methods that allow you to request asynchronous operations
are overloaded. One version returns a Future object that lets you check the status of the requested
operation. For details on using a Future object, refer to Chapter 6 in the book Beginning Java Language
Features (ISBN: 978-1-4302-6658-7). Another version of those methods lets you pass a CompletionHandler.
When the requested operation completes successfully, the completed() method of the CompletionHandler
is called. When the requested operation fails, the failed() method of the CompletionHandler is called.
The following snippet of code demonstrates both approaches of handling the completion/failure of a
requested asynchronous socket operation. It shows how a server socket channel accepts a client connection
asynchronously.

/* Using a Future Object */
// Get a server socket channel instance
AsynchronousServerSocketChannel server = get a server instance...;

// Bind the socket to a host and a port
server.bind(your_host, your_port);

// Start accepting a new client connection. Note that the accept()
// method returns immediately by returning a Future object
Future<AsynchronousSocketChannel> result = server.accept();

// Wait for the new client connection by calling the get() method of
// the Future object. Alternatively, you can poll the Future object
// periodically using its isDone() method
AsynchronousSocketChannel newClient = result.get();

http://dx.doi.org/10.1007/978-1-4842-3546-1_6

Chapter 4 ■ Network programmiNg

320

// Handle the newClient here and call the server.accept() again to
// accept another client connection

/* Using a CompletionHandler Object */
// Get a server socket channel instance
AsynchronousServerSocketChannel server = get a server instance...;

// Bind the socket to a host and a port
server.bind(your_host, your_port);

// Start accepting a new client connection. The accept() method returns immediately.
// The completed() or failed() method of the ConnectionHandler will be called upon
// completion or failure of the requested operation
YourAnyClass attach = ...; // Get an attachment
server.accept(attach, new ConnectionHandler());

This version of the accept() method accepts an object of any class as an attachment. It could be a null
reference. The attachment is passed to the completed() and failed() methods of the completion handler,
which is an object of ConnectionHandler in this case. The ConnectionHandler class may look as follows.

private static class ConnectionHandler
 implements CompletionHandler<AsynchronousSocketChannel, YourAnyClass> {
 @Override
 public void completed(AsynchronousSocketChannel client, YourAnyClass attach) {
 // Handle the new client connection here and again start
 // accepting a new client connection
 }

 @Override
 public void failed(Throwable e, YourAnyClass attach) {
 // Handle the failure here
 }
}

In this section, I cover the following three steps in detail. During the discussion, I build an application
that consists of an echo server and a client. Clients will send messages to the server asynchronously and the
server will echo back the message to the client asynchronously. It is assumed that you are familiar working
with buffers and channels.

•	 Setting up an asynchronous server socket channel

•	 Setting up an asynchronous client socket channel

•	 Putting the asynchronous server and client socket channels in action

Setting Up an Asynchronous Server Socket Channel
An instance of the AsynchronousServerSocketChannel class is used as an asynchronous server socket
channel to listen to the new incoming client connections. Once a connection to a client is established,
an instance of the AsynchronousSocketChannel class is used to communicate with the client. The
static open() method of the AsynchronousServerSocketChannel class returns an object of the
AsynchronousServerSocketChannel class, which is not yet bound.

Chapter 4 ■ Network programmiNg

321

// Create an asynchronous server socket channel object
AsynchronousServerSocketChannel server = AsynchronousServerSocketChannel.open();

// Bind the server to the localhost and the port 8989
String host = "localhost";
int port = 8989;
InetSocketAddress sAddr = new InetSocketAddress(host, port);
server.bind(sAddr);

At this point, your server socket channel can be used to accept a new client connection by calling its
accept() method as follows. The code uses two classes, Attachment and ConnectionHandler, which are
described later.

// Prepare the attachment
Attachment attach = new Attachment();
attach.server = server;

// Accept new connections
server.accept(attach, new ConnectionHandler());

Typically, a server application runs indefinitely. You can make the server application run forever by
waiting on the main thread in the main() method as follows:

try {
 // Wait indefinitely until someone interrupts the main thread
 Thread.currentThread().join();
} catch (InterruptedException e) {
 e.printStackTrace();
}

You will use the completion handler mechanism to handle the completion/failure notification for the
server socket channel. An object of the following Attachment class will be used to serve as an attachment to
the completion handler. An attachment object is used to pass the context for the server socket that may be
used inside the completed() and failed() methods of the completion handler.

class Attachment {
 AsynchronousServerSocketChannel server;
 AsynchronousSocketChannel client;
 ByteBuffer buffer;
 SocketAddress clientAddr;
 boolean isRead;
}

You need a CompletionHandler implementation to handle the completion of an accept() call. Let’s call
your class as ConnectionHandler as shown:

private static class ConnectionHandler
 implements CompletionHandler<AsynchronousSocketChannel, Attachment> {
 @Override
 public void completed(AsynchronousSocketChannel client, Attachment attach) {
 try {
 // Get the client address
 SocketAddress clientAddr = client.getRemoteAddress();

Chapter 4 ■ Network programmiNg

322

 System.out.format("Accepted a connection from %s%n", clientAddr);

 // Accept another connection
 attach.server.accept(attach, this);

 // Handle the client connection by invoking an asyn read
 Attachment newAttach = new Attachment();
 newAttach.server = attach.server;
 newAttach.client = client;
 newAttach.buffer = ByteBuffer.allocate(2048);
 newAttach.isRead = true;
 newAttach.clientAddr = clientAddr;

 // Create a new completion handler for reading to and writing from the new client
 ReadWriteHandler readWriteHandler = new ReadWriteHandler();

 // Read from the client
 client.read(newAttach.buffer, newAttach, readWriteHandler);
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.println("Failed to accept a connection.");
 e.printStackTrace();
 }
}

The ConnectionHandler class is simple. In its failed() method, it prints the exception stack trace. In
its completed() method, it prints a message that a new client connection has been established and starts
listening for another new client connection by calling the accept() method on the server socket again. Note
the reuse of the attachment in another accept() method call inside the completed() method. It uses the
same CompletionHandler object again. Note that the attach.server.accept(attach, this) method call
uses the keyword this to refer to the same instance of the completion handler. At the end, it prepares a new
instance of the Attachment class, which wraps the details of handling (reading and writing) the new client
connection, and calls the read() method on the client socket to read from the client. Note that the read()
method uses another completion handler, which is an instance of the ReadWriteHandler class. The code for
the ReadWriteHandler is as follows:

private static class ReadWriteHandler implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 if (result == -1) {
 try {
 attach.client.close();

Chapter 4 ■ Network programmiNg

323

 System.out.format("Stopped listening to the client %s%n", attach.clientAddr);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return;
 }

 if (attach.isRead) {
 // A read to the client was completed

 // Get the buffer ready to read from it
 attach.buffer.flip();

 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 Charset cs = Charset.forName("UTF-8");
 String msg = new String(bytes, cs);

 // Print the message from the client
 System.out.format("Client at %s says: %s%n", attach.clientAddr, msg);

 // Let us echo back the same message to the client
 attach.isRead = false; // It is a write

 // Prepare the buffer to be read again
 attach.buffer.rewind();

 // Write to the client again
 attach.client.write(attach.buffer, attach, this);
 } else {
 // A write to the client was completed. Perform another read from the client.
 attach.isRead = true;

 // Prepare the buffer to be filled in
 attach.buffer.clear();

 // Perform a read from the client
 attach.client.read(attach.buffer, attach, this);
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }
}

The first argument called result of the completed() method is the number of bytes that is read from or
written to the client. Its value of -1 indicates the end-of-stream, and in that case, the client socket is closed.
If a read operation was completed, it displays the read text on the standard output and writes back the same
text to the client. If a write operation to a client was completed, it performs a read on the same client.

Chapter 4 ■ Network programmiNg

324

Listing 4-16 contains the complete code for your asynchronous server socket channel. It uses three
inner classes: one for the attachment, one for the connection completion handler, and one for the read/write
completion handler. The AsyncEchoServerSocket class can be run now. However, it will not do any work as
it needs a client to connect to it to echo back messages that are sent from the client. You will develop your
asynchronous client socket channel in the next section, and then, in the subsequent section, you will test
both server and client socket channels together.

Listing 4-16. A Server Application That Uses Asynchronous Server Socket Channel

// AsyncEchoServerSocket.java
package com.jdojo.net;

import java.io.IOException;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.net.InetSocketAddress;
import java.nio.channels.CompletionHandler;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.AsynchronousServerSocketChannel;

public class AsyncEchoServerSocket {
 private static class Attachment {
 AsynchronousServerSocketChannel server;
 AsynchronousSocketChannel client;
 ByteBuffer buffer;
 SocketAddress clientAddr;
 boolean isRead;
 }

 private static class ConnectionHandler implements
 CompletionHandler<AsynchronousSocketChannel, Attachment> {
 @Override
 public void completed(AsynchronousSocketChannel client, Attachment attach) {
 try {
 // Get the client address
 SocketAddress clientAddr = client.getRemoteAddress();
 System.out.format("Accepted a connection from %s%n", clientAddr);

 // Accept another connection
 attach.server.accept(attach, this);

 // Handle the client connection by using an asyn read
 ReadWriteHandler rwHandler = new ReadWriteHandler();
 Attachment newAttach = new Attachment();
 newAttach.server = attach.server;
 newAttach.client = client;
 newAttach.buffer = ByteBuffer.allocate(2048);
 newAttach.isRead = true;
 newAttach.clientAddr = clientAddr;

Chapter 4 ■ Network programmiNg

325

 client.read(newAttach.buffer, newAttach, rwHandler);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 System.out.println("Failed to accept a connection.");
 e.printStackTrace();
 }
 }

 private static class ReadWriteHandler
 implements CompletionHandler<Integer, Attachment> {
 @Override
 public void completed(Integer result, Attachment attach) {
 if (result == -1) {
 try {
 attach.client.close();
 System.out.format(
 "Stopped listening to the client %s%n",
 attach.clientAddr);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return;
 }

 if (attach.isRead) {
 // A read to the client was completed.

 // Get the buffer ready to read from it
 attach.buffer.flip();

 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 Charset cs = Charset.forName("UTF-8");
 String msg = new String(bytes, cs);

 // Print the message from the client
 System.out.format("Client at %s says: %s%n", attach.clientAddr, msg);

 // Let us echo back the same message to the client
 attach.isRead = false; // It is a write

 // Prepare the buffer to be read again
 attach.buffer.rewind();

Chapter 4 ■ Network programmiNg

326

 // Write to the client
 attach.client.write(attach.buffer, attach, this);
 } else {
 // A write to the client was completed. Perform another read.
 attach.isRead = true;

 // Prepare the buffer to be filled in
 attach.buffer.clear();

 // Perform a read from the client
 attach.client.read(attach.buffer, attach, this);
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 try (AsynchronousServerSocketChannel server
 = AsynchronousServerSocketChannel.open()) {
 // Bind the server to the localhost and the port 8989
 String host = "localhost";
 int port = 8989;
 InetSocketAddress sAddr
 = new InetSocketAddress(host, port);
 server.bind(sAddr);

 // Display a message that server is ready
 System.out.format("Server is listening at %s%n", sAddr);

 // Prepare the attachment
 Attachment attach = new Attachment();
 attach.server = server;

 // Accept new connections
 server.accept(attach, new ConnectionHandler());
 try {
 // Wait until the main thread is interrupted
 Thread.currentThread().join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 4 ■ Network programmiNg

327

Setting Up an Asynchronous Client Socket Channel
An instance of the AsynchronousSocketChannel class is used as an asynchronous client socket channel in
a client application. The static open() method of the AsynchronousSocketChannel class returns an open
channel of the AsynchronousSocketChannel type that is not yet connected to a server socket channel. The
channel’s connect() method is used to connect to a server socket channel. The following snippet of code
shows how to create an asynchronous client socket channel and connect it to a server socket channel. It uses
a Future object to handle the completion of the connection to the server.

// Create an asynchronous socket channel
AsynchronousSocketChannel channel = AsynchronousSocketChannel.open();

// Connect the channel to the server
String serverName = "localhost";
int serverPort = 8989;
SocketAddress serverAddr = new InetSocketAddress(serverName, serverPort);
Future<Void> result = channel.connect(serverAddr);
System.out.println("Connecting to the server...");

// Wait for the connection to complete
result.get();

// Connection to the server is complete now
System.out.println("Connected to the server...");

Once the client socket channel is connected to a server, you can start reading from the server and
writing to the server using the channel’s read() and write() methods asynchronously. Both methods let
you handle the completion of the operation using a Future object or a CompletionHandler object. You will
use an Attachment class as shown to pass the context to the completion handler:

class Attachment {
 AsynchronousSocketChannel channel;
 ByteBuffer buffer;
 Thread mainThread;
 boolean isRead;
}

In the Attachment class, the channel instance variable holds the reference to the client channel. The
buffer instance variable holds the reference to the data buffer. You will use the same data buffer for reading
and writing. The mainThread instance variable holds the reference to the main thread of the application.
When the client channel is done, you can interrupt the waiting main thread, so the client application
terminates. The isRead instance variable indicates if the operation is a read or a write. If it is true, it means it
is a read operation. Otherwise, it is a write operation.

Listing 4-17 contains the complete code for an asynchronous client socket channel. It uses two inner
classes called Attachment and ReadWriteHandler. An instance of the Attachment class is used as an
attachment to the read() and write() asynchronous operations. An instance of the ReadWriteHandler
class is used as a completion handler for the read() and write() operations. Its getTextFromUser()
method prompts the user to enter a message on the standard input and returns the user-entered message.
The completed() method of the completion handler checks if it is a read or a write operation. If it is a read
operation, it prints the text that was read from the server on the standard output. It prompts the user for
another message. If the user enters Bye, it terminates the application by interrupting the waiting main
thread. Note that the channel is closed automatically when the program exits the try block because it is
opened inside a try-with-resources block in the main() method.

Chapter 4 ■ Network programmiNg

328

Listing 4-17. An Asynchronous Client Socket Channel

// AsyncEchoClientSocket.java
package com.jdojo.net;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.concurrent.Future;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.ExecutionException;
import java.nio.channels.AsynchronousSocketChannel;

public class AsyncEchoClientSocket {
 private static class Attachment {
 AsynchronousSocketChannel channel;
 ByteBuffer buffer;
 Thread mainThread;
 boolean isRead;
 }

 private static class ReadWriteHandler implements CompletionHandler<Integer, Attachment>
{
 @Override
 public void completed(Integer result, Attachment attach) {
 if (attach.isRead) {
 attach.buffer.flip();

 // Get the text read from the server
 Charset cs = Charset.forName("UTF-8");

 int limits = attach.buffer.limit();
 byte bytes[] = new byte[limits];
 attach.buffer.get(bytes, 0, limits);
 String msg = new String(bytes, cs);

 // A read from the server was completed
 System.out.format("Server Responded: %s%n", msg);

 // Prompt the user for another message
 msg = this.getTextFromUser();
 if (msg.equalsIgnoreCase("bye")) {
 // Interrupt the main thread, so the program terminates
 attach.mainThread.interrupt();
 return;
 }

Chapter 4 ■ Network programmiNg

329

 // Prepare buffer to be filled in again
 attach.buffer.clear();
 byte[] data = msg.getBytes(cs);
 attach.buffer.put(data);

 // Prepared buffer to be read
 attach.buffer.flip();

 attach.isRead = false; // It is a write

 // Write to the server
 attach.channel.write(attach.buffer, attach, this);
 } else {
 // A write to the server was completed. Perform another
 // read from the server
 attach.isRead = true;

 // Prepare the buffer to be filled in
 attach.buffer.clear();

 // Read from the server
 attach.channel.read(attach.buffer, attach, this);
 }
 }

 @Override
 public void failed(Throwable e, Attachment attach) {
 e.printStackTrace();
 }

 private String getTextFromUser() {
 System.out.print("Please enter a message (Bye to quit):");
 String msg = null;

 BufferedReader consoleReader
 = new BufferedReader(new InputStreamReader(System.in));
 try {
 msg = consoleReader.readLine();
 } catch (IOException e) {
 e.printStackTrace();
 }

 return msg;
 }
 }

Chapter 4 ■ Network programmiNg

330

 public static void main(String[] args) {
 // Use a try-with-resources to open a channel
 try (AsynchronousSocketChannel channel = AsynchronousSocketChannel.open()) {
 // Connect the client to the server
 String serverName = "localhost";
 int serverPort = 8989;
 SocketAddress serverAddr = new InetSocketAddress(serverName, serverPort);

 Future<Void> result = channel.connect(serverAddr);
 System.out.println("Connecting to the server...");

 // Wait for the connection to complete
 result.get();

 // Connection to the server is complete now
 System.out.println("Connected to the server...");

 // Start reading from and writing to the server
 Attachment attach = new Attachment();
 attach.channel = channel;
 attach.buffer = ByteBuffer.allocate(2048);
 attach.isRead = false;
 attach.mainThread = Thread.currentThread();

 // Place the "Hello" message in the buffer
 Charset cs = Charset.forName("UTF-8");
 String msg = "Hello";
 byte[] data = msg.getBytes(cs);
 attach.buffer.put(data);
 attach.buffer.flip();

 // Write to the server
 ReadWriteHandler readWriteHandler = new ReadWriteHandler();
 channel.write(attach.buffer, attach, readWriteHandler);

 // Let this thread wait for ever on its own death until interrupted
 attach.mainThread.join();
 } catch (ExecutionException | IOException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 System.out.println("Disconnected from the server.");
 }
 }
}

Putting the Server and the Client Together
At this point, your asynchronous server and client programs are ready. You need to use the following steps to
run the server and the client.

Chapter 4 ■ Network programmiNg

331

Running the Server Application
Run the AsyncEchoServerSocket class as listed in Listing 4-16. You should get a message on the standard
output as follows:

Server is listening at localhost/127.0.0.1:8989

If you get this message, you need to proceed to the next step. If you do not get this message, it is most
likely that the port 8989 is being used by another process. In such a case, you should get the following error
message:

java.net.BindException: Address already in use: bind

If you get the "Address already in use" error message, you need to change the port value in the
AsyncEchoServerSocket class from 8989 to some other value and retry running the AsyncEchoServerSocket
class. If you change the port number in the server program, you must also change the port number in the
client program to match the server port number. The server socket channel listens at a port and the client
must connect to the same port on which the server is listening.

Running the Client Applications
Before proceeding with this step, make sure that you were able to perform the previous step successfully.
Run one or more instances of the AsyncEchoClientSocket class that is listed in Listing 4-17. You should
get the following message on the standard output if the client application was able to connect to the server
successfully:

Connecting to the server...
Connected to the server...
Server Responded: Hello
Please enter a message (Bye to quit):

You might receive the following error message when you attempt to run the AsyncEchoClientSocket class:

Connecting to the server...
java.util.concurrent.ExecutionException: java.io.IOException: The remote system refused
the network connection.

Typically, this error message indicates one of the following problems:

•	 The server is not running. If this is the case, make sure that server is running.

•	 The client is attempting to connect to the server on a different host and port than the
host and the port on which the server is listening. If this is the case, make sure that
the server and the client are using the same host names (or IP addresses) and the
port numbers.

You need to stop the server program manually such as by pressing Ctrl+C keys on the command prompt
on Windows.

Chapter 4 ■ Network programmiNg

332

Datagram-Oriented Socket Channels
An instance of the java.nio.channels.DatagramChannel class represents a datagram channel. By default, it
is blocking. You can configure it to be non-blocking by using the configureBlocking(false) method.

To create a DatagramChannel, you need to invoke one of its open() static methods. If you want to use
it for IP multicasting, you need to specify the address type (or protocol family) of the multicast group as an
argument to its open() method. The open() method creates a DatagramChannel, which is not connected.
If you want your datagram channel to send and receive datagrams only to a specific remote host, you need
to use its connect() method to connect the channel to that specific host. A datagram channel that is not
connected may send datagrams to and receive datagrams from any remote host. The following sections
outline the steps that are typically needed to send/receive datagrams using a datagram channel.

Creating the Datagram Channel
You can create a datagram channel using the open() method of the DatagramChannel class. The following
snippet of code shows three different ways to create a datagram channel:

// Create a new datagram channel to send/receive datagram
DatagramChannel channel = DatagramChannel.open();

// Create a datagram channel to receive datagrams from a multicast group
// that uses IPv4 address type
DatagramChannel ipv4MulticastChannel = DatagramChannel.open(StandardProtocolFamily.INET);

// Create a datagram channel to receive datagrams from a multicast group
// that uses IPv6 address type
DatagramChannel iPv6MulticastChannel = DatagramChannel.open(StandardProtocolFamily.INET6);

Setting the Channel Options
You can set the channel options using the setOption() method of the DatagramChannel class. Some options
must be set before binding the channel to a specific address, whereas some can be set after the binding.
The setOption() method was added to the DatagramChannel class in Java 7. If you are using a prior Java
version, you will need to use the socket() method to get the DatagramSocket reference and use one of the
methods of the DatagramSocket class to set the channel options. The following snippet of code shows how
to set the channel options. The socket options are defined as constants in the StandardSocketOptions class.
Refer to the Javadoc for the StandardSocketOptions class for the complete list of socket options, which
are supported by all types of sockets. Table 4-10 contains the list of socket options with their descriptions
supported by a DatagramChannel.

 ■ Tip JDk9 has added three methods, setOption(), getOption() and supportedOptions(), to the
Socket, ServerSocket, and DatagramSocket classes. these methods let you set the socket option, query the
value of a socket option, and get a set of supported socket options by a socket. refer to the Javadoc for these
classes for more details on how to use these methods.

Chapter 4 ■ Network programmiNg

333

To bind multiple sockets to the same socket address, you need to set the SO_REUSEADDR option for the
socket as follows:

// In Java 7 and later
channel.setOption(StandardSocketOptions.SO_REUSEADDR, true)

// Prior to Java 7
DatagramSocket socket = channel.socket();
socket.setReuseAddress(true);

Table 4-10. Standard Socket Options

Socket Option Name Description

SO_SNDBUF The size of the socket send buffer in bytes. Its value is of Integer type.

SO_RCVBUF The size of the socket receive buffer in bytes. Its value is of Integer type.

SO_REUSEADDR For datagram sockets, it allows multiple programs to bind to the same address. Its
value is of Boolean type. This option should be enabled for IP multicasting using
the datagram channels.

SO_BROADCAST Allows transmission of broadcast datagrams. Its value is of type Boolean.

IP_TOS The Type of Service (ToS) octet in the Internet Protocol (IP) header. Its value is of
the Integer type.

IP_MULTICAST_IF The network interface for Internet Protocol (IP) multicast datagrams. Its value is a
reference of NetworkInterface type.

IP_MULTICAST_TTL The time-to-live for Internet Protocol (IP) multicast datagrams. Its value is of type
Integer in the range of 0 to 255.

IP_MULTICAST_LOOP Loopback for Internet Protocol (IP) multicast datagrams. Its value is of type
Boolean.

Binding the Datagram Channel
Bind the datagram channel to a specific local address and port using the bind() method of the
DatagramChannel class. If you use null as the bind address, this method will bind the socket to an available
address automatically. The bind() method was added to the DatagramChannel class in Java 7. If you are
using a prior Java version, you can bind a datagram channel using its underlying socket. The following
snippet of code shows how to bind a datagram channel:

/* In Java 7 and later */
// Bind the channel to any available address automatically
channel.bind(null);

// Bind the channel to "localhost" and port 8989
InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
channel.bind(sAddr);

/* Prior to Java 7 */
// Get the socket reference
DatagramSocket socket = channel.socket();

Chapter 4 ■ Network programmiNg

334

// Bind the channel to any available address automatically
socket.bind(null);

// Bind the channel to "localhost" and port 8989
InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
socket.bind(sAddr);

Sending Datagrams
To send a datagram to a remote host, use the send() method of the DatagramChannel class. The method
accepts a ByteBuffer and a remote SocketAddress. If you call the send() method on an unbound datagram
channel, the send() method binds the channel automatically to an available address.

// Prepare a message to send
String msg = "Hello";
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());

// Pack the remote address and port into an object
InetSocketAddress serverAddress = new InetSocketAddress("localhost", 8989);

// Send the message to the remote host
channel.send(buffer, serverAddress);

The receive() method of the DatagramChannel class lets a datagram channel receive a datagram from
a remote host. This method requires you to provide a ByteBuffer to receive the data. The received data is
copied to the specified ByteBuffer at its current position. If the ByteBuffer has less space available than the
received data, the extra data is discarded silently. The receive() method returns the address of the remote
host. If the datagram channel is in a non-blocking mode, the receive() method returns immediately by
returning null. Otherwise, it waits until it receives a datagram.

// Prepare a ByteBufer to receive data
ByteBuffer buffer = ByteBuffer.allocate(1024);

// Wait to receive data from a remote host
SocketAddress remoteAddress = channel.receive(buffer);

Close the Channel
Finally, close the datagram channel using its close() method.

// Close the channel
channel.close();

Listing 4-18 contains a program that acts as an echo server. Listing 4-19 has a program that acts as a
client. The echo server waits for a message from a remote client. It echoes the message that it receives from
the remote client. You need to start the echo server program before starting the client program. You can run
multiple client programs simultaneously. A sample output is shown for both client and server programs.

Chapter 4 ■ Network programmiNg

335

Listing 4-18. An Echo Server Based on the Datagram Channel

// DGCEchoServer.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;

public class DGCEchoServer {
 public static void main(String[] args) {

 // Create a datagram channel and bind it to localhost at port 8989
 try (DatagramChannel server = DatagramChannel.open()) {
 InetSocketAddress sAddr = new InetSocketAddress("localhost", 8989);
 server.bind(sAddr);

 ByteBuffer buffer = ByteBuffer.allocate(1024);

 // Wait in an infinite loop for a client to send data
 while (true) {
 System.out.println("Waiting for a message from"
 + " a remote host at " + sAddr);

 // Wait for a client to send a message
 SocketAddress remoteAddr = server.receive(buffer);

 // Prepare the buffer to read the message
 buffer.flip();

 // Convert the buffer data into a String
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String msg = new String(bytes);

 System.out.println("Client at " + remoteAddr + " says: " + msg);

 // Reuse the buffer to echo the message to the client
 buffer.rewind();

 // Send the message back to the client
 server.send(buffer, remoteAddr);

 // Prepare the buffer to receive the next message
 buffer.clear();
 }

Chapter 4 ■ Network programmiNg

336

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Waiting for a message from a remote host at localhost/127.0.0.1:8989
Client at /127.0.0.1:62644 says: Hello
Waiting for a message from a remote host at localhost/127.0.0.1:8989

Listing 4-19. A Client Program Based on the Datagram Channel

// DGCEchoClient.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;

public class DGCEchoClient {
 public static void main(String[] args) {
 // Create a new datagram channel
 try (DatagramChannel client = DatagramChannel.open()) {
 // Bind the client to any available local address and port
 client.bind(null);

 // Prepare a message for the server
 String msg = "Hello";
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
 InetSocketAddress serverAddress = new InetSocketAddress("localhost", 8989);

 // Send the message to the server
 client.send(buffer, serverAddress);

 // Reuse the buffer to receive a response from the server
 buffer.clear();

 // Wait for the server to respond
 client.receive(buffer);

 // Prepare the buffer to read the message
 buffer.flip();

 // Convert the buffer into a string
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String response = new String(bytes);

Chapter 4 ■ Network programmiNg

337

 // Print the server message on the standard output
 System.out.println("Server responded: " + response);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Server responded: Hello

Multicasting Using Datagram Channels
Java 7 added support for IP multicasting to a datagram channel. A datagram channel that is interested in
receiving multicast datagrams joins a multicast group. The datagrams that are sent to a multicast group are
delivered to all its members. The following sections outline the steps that are typically needed to set up a
client application that is interested in receiving a multicast datagram.

Creating the Datagram Channel
Create a datagram channel to use a specific multicast address type as follows. In your application, you will be
using IPv4 or IPv6, not both.

// Need to use INET protocol family for an IPv4 addressing scheme
DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET);

// Need to use INET6 protocol family for an IPv6 addressing scheme
DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET6);

Setting the Channel Options
Set the options for the client channel using the setOption() method as shown:

// Let other sockets reuse the same address
client.setOption(StandardSocketOptions.SO_REUSEADDR, true);

Binding the Channel
Bind the client channel to a local address and a port as shown:

int MULTICAST_PORT = 8989;
client.bind(new InetSocketAddress(MULTICAST_PORT));

Chapter 4 ■ Network programmiNg

338

Setting the Multicast Network Interface
Set the socket option IP_MULTICAST_IF that specifies the network interface on which the client channel will
join the multicast group.

// Get the reference of a network interface named "eth1"
NetworkInterface interf = NetworkInterface.getByName("eth1");

// Set the IP_MULTICAST_IF option
client.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);

Listing 4-20 contains the complete program that prints the names of all network interfaces available on
your machine. It also prints whether a network interface supports multicast and whether it is up. You may
get a different output when you run the code on your machine. You will need to use the name of one of the
available network interfaces that supports multicast and that network interface should be up. For example,
as shown in the output, the network interface named eth2 is up and support multicast on my machine, so I
used eth2 as the network interface for working with multicast messages.

Listing 4-20. Listing the Available Network Interface on a Machine

// ListNetworkInterfaces.java
package com.jdojo.net;

import java.net.NetworkInterface;
import java.net.SocketException;
import java.util.Enumeration;

public class ListNetworkInterfaces {
 public static void main(String[] args) {
 try {
 Enumeration<NetworkInterface> e = NetworkInterface.getNetworkInterfaces();
 while (e.hasMoreElements()) {
 NetworkInterface nif = e.nextElement();
 System.out.println("Name: " + nif.getName()
 + ", Supports Multicast: " + nif.supportsMulticast()
 + ", isUp(): " + nif.isUp());
 }
 } catch (SocketException ex) {
 ex.printStackTrace();
 }

 }
}

Name: lo, Supports Multicast: true, isUp(): true
Name: eth0, Supports Multicast: true, isUp(): false
Name: net0, Supports Multicast: true, isUp(): false
Name: wlan0, Supports Multicast: true, isUp(): false
Name: net1, Supports Multicast: true, isUp(): false
Name: wlan1, Supports Multicast: true, isUp(): false
Name: wlan2, Supports Multicast: true, isUp(): false

Chapter 4 ■ Network programmiNg

339

Name: eth1, Supports Multicast: true, isUp(): false
Name: wlan3, Supports Multicast: true, isUp(): false
Name: wlan4, Supports Multicast: true, isUp(): false
Name: eth2, Supports Multicast: true, isUp(): true
Name: eth3, Supports Multicast: true, isUp(): false
Name: eth4, Supports Multicast: true, isUp(): false
Name: eth5, Supports Multicast: true, isUp(): false
Name: eth6, Supports Multicast: true, isUp(): false
Name: wlan5, Supports Multicast: true, isUp(): false
Name: wlan6, Supports Multicast: true, isUp(): false
Name: wlan7, Supports Multicast: true, isUp(): false
Name: wlan8, Supports Multicast: true, isUp(): false
Name: wlan9, Supports Multicast: true, isUp(): false
Name: wlan10, Supports Multicast: true, isUp(): false
Name: wlan11, Supports Multicast: true, isUp(): false
Name: wlan12, Supports Multicast: true, isUp(): false
Name: wlan13, Supports Multicast: true, isUp(): false
Name: wlan14, Supports Multicast: true, isUp(): false
Name: wlan15, Supports Multicast: true, isUp(): false
Name: wlan16, Supports Multicast: true, isUp(): false
Name: wlan17, Supports Multicast: true, isUp(): false

Joining the Multicast Group
Now it is time to join the multicast group using the join() method as follows. Note that you must use a
multicast IP address for the group.

String MULTICAST_IP = "239.1.1.1";

// Join the multicast group on interf interface
InetAddress group = InetAddress.getByName(MULTICAST_IP);
MembershipKey key = client.join(group, interf);

The join() method returns an object of the MembershipKey class that represents the membership of the
datagram channel with the multicast group. If a datagram channel is not interested in receiving multicast
datagrams anymore, it can use the drop() method of the key to drop its membership from the multicast
group.

 ■ Tip a datagram channel may decide to receive multicast datagrams only from selective sources. You can
use the block(InetAddress source) method of the MembershipKey class to block a multicast datagram from
the specified source address. its unblock(InetAddress source) lets you unblock a previously blocked source
address.

Chapter 4 ■ Network programmiNg

340

Receiving a Message
At this point, receiving datagrams that are addressed to the multicast group is just a matter of calling the
receive() method on the channel as shown:

// Prepare a buffer to receive the message from the multicast group
ByteBuffer buffer = ByteBuffer.allocate(1048);

// Wait to receive a message from the multicast group
client.receive(buffer);

After you are done with the channel, you can drop its membership from the group as shown:

// We are no longer interested in receiving multicast message from the group.
// So, we need to drop the channel's membership from the group
key.drop();

Closing the Channel
Finally, you need to close the channel using its close() method as shown:

// Close the channel
client.close();

To send a message to a multicast group, you do not need to be a member of that multicast group. You
can send a datagram to a multicast group using the send() method of the DatagramChannel class.

Listing 4-21 contains a class with three constants that are used in the subsequent two classes to build
the multicast application. The constants contain the multicast IP address, multicast port number, and
multicast network interface name that will be used in the subsequent example. Make sure that the value
eth1 for the MULTICAST_INTERFACE_NAME constant is the network interface name on your machine that
supports multicast and it is up. You can get the list of all network interfaces on your machine by running the
program in Listing 4-20.

Listing 4-21. A DatagramChannel-Based Multicast Client Program

// DGCMulticastUtil.java
package com.jdojo.net;

public class DGCMulticastUtil {
 public static final String MULTICAST_IP = "239.1.1.1";
 public static final int MULTICAST_PORT = 8989;

 /* You need to change the following network interface name "eth2"
 to the network interface name that supports multicast and is up
 on your machine. Please run the ListNetworkInterfaces class to
 get the list of all available network interface on your machine.
 */
 public static final String MULTICAST_INTERFACE_NAME = "eth2";
}

Chapter 4 ■ Network programmiNg

341

Listing 4-22 contains a program that joins a multicast group as a member. It waits for a message from
a multicast group to arrive, prints the message, and quits. Listing 4-23 contains a program that sends a
message to the multicast group. You can run multiple instances of the DGCMulticastClient class and then
run the DGCMulticastServer class. All client instances should receive and print the same message on the
standard output.

Listing 4-22. A DatagramChannel-Based Multicast Client Program

// DGCMulticastClient.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;

public class DGCMulticastClient {
 public static void main(String[] args) {
 MembershipKey key = null;

 // Create, configure and bind the client datagram channel
 try (DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET)) {
 // Get the reference of a network interface
 NetworkInterface interf
 = NetworkInterface.getByName(DGCMulticastUtil.MULTICAST_INTERFACE_NAME);

 client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 client.bind(new InetSocketAddress(DGCMulticastUtil.MULTICAST_PORT));
 client.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);

 // Join the multicast group on the interf interface
 InetAddress group = InetAddress.getByName(DGCMulticastUtil.MULTICAST_IP);
 key = client.join(group, interf);

 // Print some useful messages for the user
 System.out.println("Joined the multicast group:" + key);
 System.out.println("Waiting for a message from the"
 + " multicast group....");

 // Prepare a data buffer to receive a message from the multicast group
 ByteBuffer buffer = ByteBuffer.allocate(1048);

 // Wait to receive a message from the multicast group
 client.receive(buffer);

Chapter 4 ■ Network programmiNg

342

 // Convert the message in the ByteBuffer into a string
 buffer.flip();
 int limits = buffer.limit();
 byte bytes[] = new byte[limits];
 buffer.get(bytes, 0, limits);
 String msg = new String(bytes);

 System.out.format("Multicast Message:%s%n", msg);
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 // Drop the membership from the multicast group
 if (key != null) {
 key.drop();
 }
 }
 }
}

Joined the multicast group:<239.1.1.1,eth3>
Waiting for a message from the multicast group....
Multicast Message:Hello from multicast!

Listing 4-23. A DatagramChannel-Based Multicast Program That Sends a Message to a Multicast Group

// DGCMulticastServer.java
package com.jdojo.net;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;

public class DGCMulticastServer {
 public static void main(String[] args) {
 // Get a datagram channel object to act as a server
 try (DatagramChannel server = DatagramChannel.open()) {
 // Bind the server to any available local address
 server.bind(null);

 // Set the network interface for outgoing multicast data
 NetworkInterface interf
 = NetworkInterface.getByName(DGCMulticastUtil.MULTICAST_INTERFACE_NAME);

 server.setOption(StandardSocketOptions.IP_MULTICAST_IF, interf);

 // Prepare a message to send to the multicast group
 String msg = "Hello from multicast!";
 ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());

Chapter 4 ■ Network programmiNg

343

 // Get the multicast group reference to send data to
 InetSocketAddress group = new InetSocketAddress(DGCMulticastUtil.MULTICAST_IP,
 DGCMulticastUtil.MULTICAST_PORT);

 // Send the message to the multicast group
 server.send(buffer, group);

 System.out.println("Sent the multicast message: " + msg);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Sent the multicast message: Hello from multicast!

Further Reading
Network programming in Java is a vast topic. There are a few books written especially on this topic. This
chapter covers only the basics of the network programming support that is available in Java. Java also
supports secured socket communications using a Secured Socket Layer (SSL) protocol. The classes for
secured socket communication programming are in the javax.net.ssl package. This chapter does not
cover SSL sockets. I have not covered many of the options for sockets that you can use in your Java programs.
If you want to do advanced level network programming in Java, it is recommended that you read a book that
devotes itself solely to network programming in Java after you finish this chapter.

Summary
A network is a group of two or more computers or other types of electronic devices such as printers, linked
together with a goal to share information. Each device linked to a network is called a node. A computer that
is linked to a network is called a host. Network programming in Java involves writing Java programs that
facilitate exchange of information between processes running on different computers on the network.

The communication between two remote hosts is performed by a layered protocol suite called the
Internet Reference Model or TCP/IP Layering Model. The protocol suite consists of five layers named
application, transport, internet, network interface, and physical. A user application such as a Java program
uses the application layer to communicate to a remote application. The transport layer protocol handles the
ways messages are transported from one application on one computer to another application on a remote
computer. The internet layer accepts the messages from the transport layer and prepares a packet suitable
for sending over the internet. It includes the Internet Protocol (IP). The packet prepared by IP is also known
as an IP datagram and it consists of a header and a data area, apart from other pieces of information. The
network interface layer prepares a packet to be transmitted on the network. The packet is called a frame.
The network interface layer sits on top of the physical layer, which involves the hardware. The physical layer
consists of the hardware. It is responsible for converting the bits of information into signals and transmitting
the signal over the wire.

An IP address uniquely identifies a connection between a computer and a router. There are two versions
of Internet Protocol—IPv4 (or simply IP) and IPv6, where v4 and v6 stand for version 4 and version 6. IPv6 is
also known as Internet Protocol next generation (IPng). An object of the InetAddress class represents an IP
address in Java programs. The InetAddress class has two subclasses, Inet4Address and Inet6Address, which
represent IPv4 and IPv6 addresses, respectively.

Chapter 4 ■ Network programmiNg

344

A port number is a 16-bit unsigned integer ranging from 0 to 65535 that is used to uniquely identify a
process for a specific protocol.

An object of the InetSocketAddress class represents a socket address that combines an IP address and
a port number.

An object of the ServerSocket class represents a TCP server socket for accepting connections
from remote hosts. An object of the Socket class represents a server/client socket. The client and server
applications exchange information using objects of the Socket class. The Socket class provides the
getInputStream() and getOutputStream() methods to obtain the input and output streams of the socket,
respectively. The input stream of the socket is used to read the data from the socket and the output stream of
the socket is used to write data to the socket.

An object of the DatagramPacket class represents a UDP datagram that is the unit of data transmission
over a UDP socket. An object of the DatagramSocket class represents a UDP server/client socket.

A Uniform Resource Identifier (URI) is a sequence of characters that identifies a resource. A URI that
uses a location to identify a resource is called Uniform Resource Locator (URL). A URI that uses a name to
identify a resource is called a Uniform Resource Name (URN). URL and URN are subsets of URI. An object
of the java.net.URI class represents a URI in Java. An object of the java.net.URL class represents a URL in
Java. Java provides classes to access the contents identified by a URL.

Java supports non-blocking socket channels using the ServerSocketChannel, SocketChannel,
Selector, and SelectionKey classes in the java.nio.channels package.

Java also supports asynchronous socket channels through the AsynchronousServerSocketChannel and
AsynchronousSocketChannel classes in the java.nio.channels package.

Java supports datagram-oriented socket channel through the DatagramChannel class. IP multicasting is
also supported on datagram channels.

QUESTIONS AND EXERCISES

1. what is network programming in Java?

2. what are the network types: LaN, CaN, maN, and waN?

3. what is a network protocol?

4. what is an ip address? Can a computer have more than one ip address?

5. how many bytes are used to represent an ip address in ipv4 and ipv6? Describe
the textual format of representing ip addresses in ipv4 and ipv6 formats.

6. You have an ip address of 0.0.0.0, which is in ipv4 format. how will you rewrite
this ip address in ipv6 format?

7. Describe the use of the following address types: loopback ip address, unicast
ip address, multicast ip address, anycast ip address, broadcast ip address, and
unspecified ip address.

8. what is a port number and why is it used?

9. what is a socket? what is the difference between a connection-oriented socket and
a connectionless socket? give an example of a protocol that supports these types
of sockets.

10. what does an instance of the InetAddress class represent? write a program
that prints the computer name and the ip address of the computer on which the
program is executed.

Chapter 4 ■ Network programmiNg

345

11. what does an instance of the InetSocketAddress class represent?

12. what do the instances of the ServerSocket and Socket classes represent?

13. what do the instances of the DatagramSocket and DatagramPacket classes
represent?

14. UDp sockets do not support an end-to-end connection like the tCp sockets. the
DatagramSocket class, which represents UDp sockets, contains a connect()
method. what is the purpose of this connect() method?

15. what do the instances of the MulticastSocket class represent? Does a socket
have to be a member of a multicast group to send a datagram packet to a multicast
address?

16. what are Uri, UrL, and UrN? how do you represent them in a Java program?

347© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_5

CHAPTER 5

JDBC API

In this chapter, you will learn:

•	 What JDBC API is

•	 The types of JDBC drivers

•	 A brief overview of Apache Derby database

•	 How to connect to a database using a JDBC driver

•	 What transaction isolation levels are

•	 JDBC-data-types-to-Java-data-types mapping

•	 How to execute SQL statements in Java programs and process the results

•	 How to use rowsets, batch updates, and large objects (LOBs)

•	 How to retrieve SQL warnings and enable JDBC tracing

All example programs in this chapter are members of a jdojo.jdbc module, as declared in Listing 5-1.

Listing 5-1. The Declaration of a jdojo.jdbc Module

// module-info.java
module jdojo.jdbc {
 requires java.sql.rowset;

 exports com.jdojo.jdbc;
}

JDBC related Java classes and interfaces for the JDBC API are in the java.sql and java.sql.rowset
modules. Most of them are in the java.sql module. The javax.sql.RowSet interface is in the java.sql
module. Other interfaces defining specific types of RowSet such as JdbcRowSet, CachedRowSet, etc., are in the
java.sql.rowset module. The java.sql.rowset module reads the java.sql module transitively. Therefore,
if your module needs to use types from the java.sql and java.sql.rowset modules, your module can just
read the java.sql.rowset module. In examples, I use types from both modules, so the jdojo.jdbc module
reads only the java.sql.rowset module. If your module uses types from only the java.sql module, your
module should read only the java.sql module.

From JDK9, you do not need to refer to a JDBC driver class in your code. JDBC drivers are loaded
automatically as service providers. To use a JDBC driver, all you need to do is place the driver's modular JAR
or JAR on the module path at runtime. The service provider mechanism in JDK9 will load and register the
JDBC driver for you automatically.

https://doi.org/10.1007/978-1-4842-3546-1_5

Chapter 5 ■ JDBC apI

348

I use Apache Derby database in examples. You will need to place the JDBC driver for the Apache Derby
or your database such as Oracle on the module path. I used derby.jar, which contains the JDBC driver for
the Apache Derby database, as an automatic module by placing it on the module path. The derby.jar file is
supplied with the source code of this book in the Java9APIsAndModules\jdbc_driver directory.

What Is the JDBC API?
The JDBC API provides a standard database-independent interface to interact with any tabular data source.
Most of the time, it is used to interact with a relational database management system (RDBMs). However,
using the JDBC API, it is possible to interact with any tabular data source, such as an Excel spreadsheet, a flat
file, etc. Typically, you use the JDBC API to connect to a database, query the data, and update the data. It also
lets you execute SQL stored procedures in a database using a database-independent syntax.

The main purpose of using a database is to manage business data. Every database provides developers
with the following three things to manage data:

•	 A standard SQL syntax

•	 An extension to the standard SQL syntax called a proprietary SQL syntax

•	 A proprietary programming language

For example, Oracle databases use PL/SQL as a programming language that you can use to write stored
procedures, functions, and triggers. Microsoft SQL Server uses Transact-SQL (T-SQL) as the programming
language to write stored procedures, functions, and triggers. If you want to process a set of rows in a
database, you need to know the syntax and logic to process cursors in a specific database-dependent
language. Using the JDBC API relieves you of the pain of learning a different syntax to process a cursor in
different databases. It requires you to write a query (a SELECT statement) using a standard SQL syntax. It
provides Java APIs to process the result set of that query in a database-independent manner.

Using the JDBC API to access data in a database hides the implementation differences that exist in
different types of databases. It achieves database transparency by defining most of its API using interfaces
and letting the database vendors (or any third-party vendors) provide the implementations for those
interfaces. The collection of the implementation classes that is supplied by a vendor to interact with a
specific database is called a JDBC driver. There are different kinds of JDBC drivers that exist for different
databases (or for the same database). They differ in the way they are implemented. Some JDBC drivers
are written in pure Java. For purely Java-implemented JDBC drivers, you just need to include the vendor-
supplied classes in your application module path or CLASSPATH. Some JDBC drivers need a proprietary
software installation on the client machine to interact with a database. The next section discusses the JDBC
driver types.

System Requirements
This chapter is all about interacting with databases using Java programs. You must have access to a database
such as an Oracle database, Microsoft SQL Server, Sybase database, DB2, MySQL, Apache Derby, etc. You
will also need to have a JDBC driver for your database. Some JDBC drivers do not need special installation.
Rather, you can use them by placing the supplied JDBC driver files (usually a JAR file) in the module path
or CLASSPATH of your application. If you do not have access to a database and the required JDBC driver, you
will not be able to run the examples listed in this chapter. All major database vendors make the JDBC driver
available for download from their official websites for free. Whenever necessary, this chapter provides the
syntax and the script to create database objects and routines in the few DBMSs—MySQL, Apache Derby,
Oracle Database, DB2, Microsoft SQL Server, and Sybase Adaptive Server Anywhere. If you are using a DBMS
to run the JDBC programs in this chapter, other than the ones listed here, you need to refer to your DBMS
documentation for the syntax to create database objects.

Chapter 5 ■ JDBC apI

349

Types of JDBC Drivers
You can use three types of JDBC drivers in your Java programs. Figure 5-1 shows the architecture of those
JDBC drivers. This section describes those types of JDBC drivers in brief.

Figure 5-1. The architecture of JDBC drivers

 ■ Note prior to Java 8, the JDBC apI provided one more type of JDBC driver called the JDBC-ODBC bridge.
this driver was removed in Java 8.

JDBC Native API Driver
The JDBC-Native API driver uses a DBMS-specific native library to perform all database operations.
It translates JDBC calls into DBMS-specific calls, and the DBMS native library communicates with the
database. You must install DBMS-specific client software to use this type of driver. This type of driver is
platform-dependent.

JDBC-Net Driver
The JDBC-Net driver is written in pure Java. It needs a server to work with a database. The driver translates
the JDBC calls into a network protocol and passes the calls to the server. The server translates the network
calls to DBMS-specific calls. The JDBC driver running at the client machine is unaware of the technology (or
DBMS driver types) that the server will use to perform the database activities. The server can use different
types of database drivers to connect to different databases and it will be transparent to the client. It is a
platform-independent driver. The client machine needs to include only the Java classes required to use the
driver. There is no additional installation needed on the client machine.

Chapter 5 ■ JDBC apI

350

JDBC Driver
The JDBC driver is also known as a direct-to-database pure Java driver. It is written in pure Java. It converts
the JDBC calls into DBMS-specific calls and sends the calls directly to the database. It is the easiest driver
type to be used in your application. All you need to do is include the driver JAR or modular JAR files with
your application. All major DBMS vendors supply this type of JDBC driver.

At the time of this writing, I did not find any JDBC drivers that have been converted to Java 9 modules.
You can use the JDBC driver JAR as an automatic module and let your module read the automatic module.
You will need to place the JDBC JAR on the module path.

A Brief Overview of Apache Derby
You will need access to a relational database to run the example in this chapter. If you do not have access
to a database, you can use Apache Derby (simply Derby), which is an open source relational database.
Subsequent sections explain how to download, install, and use Derby.

 ■ Tip JDK7 and JDK8 used to ship a copy of the Derby database named as Java DB. the Derby files were
copied to the JDK_HOME\db directory. JDK9 has discontinued shipping Java DB. If you have installed JDK9 and
want to use Derby, you need to download and install the Derby database.

Derby is a relational database management system that is based on the Java programming language and
SQL. In the following sections, I discuss the minimum required information to get you started with Derby,
such as how to start, stop, and run SQL commands.

Downloading Derby
You can download Derby from https://db.apache.org/derby/derby_downloads.html. Download version
10.14.1.0 or higher. Four types of distributions are available for download: bin, lib, lib-debug, and src.
Download the bin distribution, which includes the documentation. The download file is available as ZIP or
TAR file. Choose the file type to download according to your operating system, for example, choose ZIP file
for Windows and TAR for UNIX-like operating systems.

Installing Derby
Installing Derby is as simple as extracting the downloaded file into a directory of your choice. I have
extracted the file into C:\ on Windows. I have a directory called C:\apache\derby where all Derby database
files are stored and refer to this directory as DERBY_HOME in subsequent discussions.

Derby Installation Files
The Derby installation directory is mainly organized as follows:

C:\apache\derby (DERBY_HOME)
 -bin
 -doc
 -javadoc
 -lib

https://db.apache.org/derby/derby_downloads.html

Chapter 5 ■ JDBC apI

351

The bin subdirectory contains many command files to work with the Derby database. For example,
the startNetworkServer.bat file is used to start the network Derby database server on Windows and
startNetworkServer is used to start the network Derby database server on UNIX; you can use the ij.
bat command on Windows and the ij command on UNIX to start the ij tool, which is an interactive SQL
command-line tool to work with Derby database.

The doc directory contains the documentation for the database in HTML and PDF formats. For
example, you can use the docs\pdf\getstart\getstartderby.pdf file to learn the basics of Derby. The
javadoc directory contains the Javadocs for the classes for JDBC driver and database tools.

The lib subdirectory contains all JAR files that are used to work with the Derby database.

Configuring Derby
Typically, you do not need to configure Derby. If you come across any errors in starting up the database or
running SQL commands from the command line, you need to set the following environment variables:

•	 Set the DERBY_HOME environment variable to the directory where the Derby database
files are copied.

•	 Set the JAVA_HOME environment variable to the JDK_HOME directory.

•	 Include the JDK_HOME\bin directory in the PATH environment variable.

When you work with Derby server and client applications, you need to include some Derby libraries in
the module path. All libraries are JAR files located in the DERBY_HOME\lib directory. Table 5-1 contains the
list of those libraries.

Table 5-1. Libraries Used in Derby Server and Client Applications

Library Name Description

derby.jar Contains the Derby database engine code. It is used for Derby running in
embedded mode. For Derby running in server mode, it is needed on the server.

derbytools.jar Required for running all Derby tools such as ij and dblook.

derbyrun.jar An executable JAR file used to start Derby tools. Including this file in the CLASSPATH
also includes derby.jar, derbyclient.jar, derbytools.jar, derbynet.jar files in
the CLASSPATH.

derbynet.jar Contains the Derby Network Server code. It is required to start the Derby Network
Server.

derbyclient.jar Contains the Derby Network Client JDBC driver. It is required for a Java application
to connect to a Derby server over a network.

Running the Derby Server
Derby can run in two modes:

•	 Embedded mode

•	 Server mode

Chapter 5 ■ JDBC apI

352

In embedded mode, Derby is started for a single user Java application inside the same JVM, which runs
the Java application. The Java application starts and stops the Derby database. This is the most suitable
mode for learning the database programming using JDBC API. You will not need to perform any setup to
use Derby in this mode. I explain how to use this mode in detail later. All examples in this chapter use Derby
running in this mode unless specified otherwise.

In server mode, Derby can be used by multiple users concurrently over the network. The Derby runs in
a separate JVM. Applications running in separate JVMs may connect to Derby running in this mode.

You can use command prompts or NetBeans IDE for Derby administration. The following sections
explain both.

Using Command Prompts
Use the following command to start Derby in server mode:

C:\apache\derby\bin>startNetworkServer

Sat Jan 06 13:31:44 CST 2018 : Security manager installed using the Basic server security
policy.
Sat Jan 06 13:31:44 CST 2018 : Apache Derby Network Server - 10.14.1.0 - (1808820) started
and ready to accept connections on port 1527

You may get an AccessControlException in starting the server. The error message may read as follows:

java.security.AccessControlException: access denied ("java.net.SocketPermission"
"localhost:1527" "listen,resolve")

To resolve the AccessControlException, you can start the server with no security manager installed
using the -noSecurityManager option as follows:

C:\apache\derby\bin>startNetworkServer -noSecurityManager

Sat Jan 06 13:32:40 CST 2018 : Apache Derby Network Server - 10.14.1.0 - (1808820) started
and ready to accept connections on port 1527

You can also resolve the AccessControlException by granting the listen and resolve access to the
host and port on which the server is starting in the JRE_HOME\lib\security\java.policy file. The following
entry in the java.policy file grants the required access:

grant {
 permission java.net.SocketPermission "localhost:1527", "listen";
};

By default, in server mode, Derby starts at localhost (or the loopback IP address) and at port 1527. If you
want to access Derby from other computers, you need to configure some properties on the command line or
in the properties file. The easiest way to configure the Derby properties is to set them on the command line.
The following command starts the Derby server that listens at myhost at port number 1537:

c:\apache\derby\bin>startNetworkServer -h myhost -p 1537

Chapter 5 ■ JDBC apI

353

You can also use the java command to start the Derby server. The following command starts the Derby
server, additionally setting the CLASSPATH and the derby.system.home property:

C:\apache\derby\bin>java --class-path C:\apache\derby\lib\derbynet.jar
-Dderby.system.home=C:\Java9APIsAndModules org.apache.derby.drda.NetworkServerControl
start -h localhost

You can set the Derby properties in a text file named derby.properties located in a directory specified
by the derby.system.home property. You can specify the derby.system.home property when you start the
Derby server. If the derby.system.home property is not specified, it defaults to the current working directory.
When you create a new Derby database, the database will be created in the directory specified in the derby.
system.home directory. If you want to connect to an existing database using the database name, the database
needs to exist as a subdirectory inside derby.system.home. Derby also lets you specify the database to
connect using platform-dependent full file path.

If you have extracted the source code for this book in the C:\Java9APIsAndModules directory, you
can set the derby.system.home as the C:\Java9APIsAndModules directory where the Derby database
file for examples in this book will be stored. I included a Derby database named beginningJavaDB in the
Java9APIsAndModules directory in the source code. If you choose to work with a Derby database in a
different directory, you can do so by just specifying a different value for the derby.system.home property.

Set the derby.drda.host property to the host name or the IP address on which you want to start the
Derby in server mode. If you set this property to 0.0.0.0, Derby listens on all network interfaces. Set the
derby.drda.portNumber property to listen to a port different from the default port 1527. Listing 5-2 shows
the contents of the derby.properties file setting a custom host and port number.

Listing 5-2. The Contents of a Sample derby.properties File

Contents of the derby.properties file
Set the IP address 192.168.1.1 as the host
derby.drda.host=192.168.1.1

Set 1528 as the port number
derby.drda.portNumber=1528

Use the following command to stop the Apache Derby running in server mode. Note that you will need
to run this command using a separate command prompt.

c:\apache\derby\bin> stopNetworkServer

Sat Jan 06 13:52:28 CST 2018 : Apache Derby Network Server - 10.14.1.0 - (1808820)
shutdown

 ■ Tip the Derby database server can have several databases. a database in Derby is portable. Files for each
database are stored in a separate directory. Moving a Derby database is as simple as moving the directory for
that database. the directory is named the same as the database name. By default, all database directories are
stored in the directory specified in the derby.system.home property.

Chapter 5 ■ JDBC apI

354

After you start the Derby server, you can connect to it and execute SQL commands, using the ij
command-line tool. The ij tool is located in the DERBY_HOME\bin directory. Assuming that the Derby server
is running at localhost at port 1527, the following commands start the ij tool, connect to a Derby database
named beginningJavaDB, and exit the ij tool. The user ID and password for the database will be app and app.

C:\Java9APIsAndModules>C:\apache\derby\bin\ij
ij version 10.14
ij> connect 'jdbc:derby://localhost:1527/beginningJavaDB;create=true;user=app;password=app;
ij> exit;
C:\Java9APIsAndModules>

You specify a connection URL to connect to a database. The create=true attribute in the URL specifies
that Derby needs to create a database named beginningJavaDB if it already does not exist. Where will Derby
look for the database named beginningJavaDB? Derby looks for a sub-directory named beginningJavaDB
under the directory specified by the derby.system.home property when you started the Derby server.
You had specified C:\Java9APIsAndModules as the derby.system.home property. So, Derby will look for
a directory called C:\Java9APIsAndModules\beginningJavaDB where the files for the beginningJavaDB
database are stored. If a database named beginningJavaDB does not exist at C:\Java9APIsAndModules,
Derby will create a new database for you. If you do not specify the derby.system.home property, the current
directory is the default value for the derby.system.home property. In the previous connection URL, you
could also specify the full path of the database as follows:

C:\Java9APIsAndModules> C:\apache\derby\bin\ij
ij version 10.14
ij> connect 'jdbc:derby://localhost:1527/C:/Java9APIsAndModules/db/beginningJavaDB;create=tr
ue;user=app;password=app';
ij> exit;
C:\Java9APIsAndModules>

You do not need to start the Derby server if you want to work with a Derby database in embedded mode.
The following command sets the derby.system.home property and starts the ij tool. Note that the command
was entered on one line. After starting the ij tool, I connected to the beginningJavaDB database in embedded
mode. Make sure to stop the Derby database, if it is running, before you run the following command:

C:\apache\derby\bin>java --class-path c:\apache\derby\lib\derbyrun.jar -Dderby.system.
home=C:\Java9APIsAndModules org.apache.derby.tools.ij
ij version 10.14
ij> connect 'jdbc:derby:beginningJavaDB';
ij> exit;

C:\apache\derby\bin>

You can also connect to your Derby database in embedded mode using the ij command without
setting the derby.system.home property. In this case, the current directory will serve as the derby.system.
home. The previous sequence of commands can be rerun as follows. Note that I changed my current directory
from C:\apache\derby to C:\Java9APISAndMoudles, where my Derby database is stored.

C:\Java9APIsAndModules>C:\apache\derby\bin\ij
ij version 10.14
ij> connect 'jdbc:derby:beginningJavaDB;create=true;user=app;password=app';
ij> exit;
C:\Java9APIsAndModules>

Chapter 5 ■ JDBC apI

355

Now you know how to create and connect to a Derby database. If you want to run any SQLs in the Derby
database, you need to run your SQLs on the ij tool.

Creating a Database Table
The primary goal of using the JDBC API is to manipulate data contained in tables in a database. You may
manipulate data in tables using the SQL statements SELECT, INSERT, UPDATE, and DELETE, which use table
names directly. Sometimes you may not refer to the table names in your JDBC calls directly. Rather, you may
execute a stored procedure using the JDBC API, and the stored procedure uses table names. One way or the
other, you end up using tables when you work with JDBC. Most of the time in this chapter, you will work with
one table. You will name your table person. You may create more tables along the way when you need to
work on specific types of database processing using JDBC. It is assumed that you have created a table named
person in the database of your choice. The table description is shown in Table 5-2.

Table 5-2. Generic Description of a Database Table Named Person

Column Name Data Type Length Null Value Allowed Comments

person_id integer No Primary Key

first_name string 20 No

last_name string 20 No

gender string 1 No

dob date Yes

income double Yes

The data types of columns shown in this table are generic. You will need to use data types specific to
your DBMS. For example, for the first_name column, you can use the data type of varchar2(20) in the
Oracle database and varchar(20) in the SQL Server database. Similarly, for the person_id column, you can
use a data type of number(8, 0) in the Oracle database and int in the SQL Server database.

Every DBMS provides a tool, either character-based, graphical, or both, that lets you work with database
objects such as tables, stored procedures, functions, etc. For example, you can use the Oracle SQL*PLUS tool
for Oracle DBMS from Oracle, the SQL Server Management Studio tool for SQL Server DBMS from Microsoft,
the Interactive SQL tool for Adaptive Server Anywhere (ASA) from Sybase, etc.

The following sections show the database scripts to create the person table in different databases. You
will need to consult the documentation for your database on how to run the script to create the person table.

 ■ Note all database scripts such as to create tables and stored procedures are available under the
dbscripts\<DBMS-Name> directory with the source code for this book where <DBMS-Name> is the name of the
DBMS such as Oracle, DB2 etc.

Chapter 5 ■ JDBC apI

356

Oracle Database

create table person (
 person_id number(8,0) not null,
 first_name varchar2(20) not null,
 last_name varchar2(20) not null,
 gender char(1) not null,
 dob date,
 income number(10,2),
 constraint pk_person primary key(person_id)
);

Adaptive Server Anywhere Database

create table person (
 person_id integer not null default null,
 first_name varchar(20) not null default null,
 last_name varchar(20) not null default null,
 gender char(1) not null default null,
 dob date null default null,
 income double null default null,
 primary key (person_id)
);

SQL Server Database

create table person (
 person_id int NOT NULL,
 first_name varchar(20) NOT NULL,
 last_name varchar(20) NOT NULL,
 gender char(1) NOT NULL,
 dob datetime NULL,
 income decimal(10,2) NULL,
 constraint pk_person primary key (person_id)
);

DB2 Database

create table person (
 person_id integer not null,
 first_name varchar(20) not null,
 last_name varchar(20) not null,
 gender character (1) not null,
 dob date,
 income double,
 constraint pk_person_id primary key (person_id)
);

Chapter 5 ■ JDBC apI

357

MySQL Database

create table person (
 person_id integer not null primary key,
 first_name varchar(20) not null,
 last_name varchar(20) not null,
 gender char(1) not null,
 dob datetime null,
 income double null
);

Apache Derby Database

create table person (
 person_id integer not null,
 first_name varchar(20) not null,
 last_name varchar(20) not null,
 gender char(1) not null,
 dob date,
 income double,
 primary key(person_id)
);

You can run the program shown later in Listing 5-6 to create the person table in Apache Derby. To create
the person table in another database, you may have to change the CREATE TABLE syntax in the program.

Connecting to a Database
Here are the steps that you need to follow to connect to a database in your Java program.

•	 Obtain the JDBC driver and add it to the module path when you run your Java
programs.

•	 In JDK8 or before, register the JDBC driver with the DriverManager. From JDK9, you
do not need to perform this step. If you placed the modular JAR or JAR for your JDBC
driver on the module path, the service provider mechanism in JDK9 will load and
register the JDBC driver automatically for you.

•	 Construct a connection URL.

•	 Use the getConnection() static method of DriverManager to establish a connection.

The following sections describe these steps in detail.

Obtaining the JDBC Driver
You need to have the JDBC driver for your database before you can connect to the database using JDBC. You
can get a JDBC driver from the vendor of your database. For example, if you are using the Oracle DBMS, you
can download the JDBC driver from its official website at www.oracle.com. All database vendors that support
JDBC will let you download the JDBC driver for their DBMS from their official websites for free. Typically, a
JDBC driver is bundled in one or more JAR/ZIP files.

http://www.oracle.com/

Chapter 5 ■ JDBC apI

358

If you are using Apache Derby, the JDBC drivers were copied on your machine when you installed the
Derby. You do not need to download any additional JDBC drivers for using the Derby database. The JDBC
driver JARs for Derby can be found in the DERBY_HOME\lib directory. Refer to Table 5-1 for more details on
which JAR you will need to use Derby.

Setting Up the Module Path
If you are using a JDBC driver, you need to place the JAR files for your JDBC driver in the module path when
you run your Java programs. If you are using vendor-specific JDBC classes in your code, you will need to
place the JDBC driver's JAR files on the module path also at compile-time.

If you are using Derby, refer to Table 5-1 for the JAR file that you will need to use in your case. To run
all examples in this chapter that use Derby in embedded mode, you will need the derby.jar file in the
module path. The derby.jar file is the JDBC driver needed to use the Derby in embedded mode. If you are
connecting to Derby over a network, you will need to include the derbyclient.jar file in the module path.

Registering a JDBC Driver
This step was needed in JDK8 and before. If you are using JDK9 in module mode, you do not need to perform
this step. If you are using JDK9 in legacy mode—by placing all application JARs on the CLASSPATH—you will
need to perform this step.

You need to register the JDBC driver, which you want to use to connect to a database. A JDBC driver is
registered with the java.sql.DriverManager class.

What is a JDBC driver? Technically, a JDBC driver is a class that implements the java.sql.Driver
interface. DBMS vendors supply the JDBC driver class along with any other classes the driver might use. You
must know the name of the JDBC driver class before you can register it with the DriverManager. If you do not
know the name of the driver class, refer to the documentation of the JDBC driver for your DBMS.

In the next section, I list the driver class names for some DBMSs. The name may vary depending on the
version of DBMS or the supplier of the driver class. Sometimes different vendors supply the drivers for the
same DBMS. Different vendors will use different driver class names and different connection URL formats to
connect to the same DBMS.

Why do you need to register a JDBC driver with the DriverManager? Java does not know how to connect
to a database. It depends on the JDBC driver to connect to a database. Think of a JDBC driver as a Java class
whose object will be used by the DriverManager to connect to a database. The question is, "How does the
DriverManager know about the JDBC driver you want to use to connect to a database?" Of course, it has no
way to know about the JDBC driver by itself. Therefore, registering a driver with the DriverManager is simply
telling the DriverManager about your JDBC driver class name. By registering a JDBC driver, you are telling
the DriverManager that if you ask the DriverManager to establish a connection to a database, it needs to
try using this driver. Can you register multiple JDBC drivers with the DriverManager? Yes. You can register
multiple JDBC drivers. When you need to establish a connection to a database, you must pass a connection
URL to the DriverManager. The DriverManager passes the connection URL to all registered drivers one by
one, and asks them to connect to the database using information that you supply in the connection URL.
If a driver recognizes the connection URL, it connects to the database and returns the connection to the
DriverManager. An instance of the java.sql.Connection interface represents a database connection in a
Java program. If none of the registered drivers recognize a connection URL, the DriverManager will throw a
SQLException stating that it could not find a suitable driver.

There are three ways to register a JDBC driver with the DriverManager:

•	 By setting the jdbc.drivers system property

•	 By loading the driver class into the JVM

•	 By using the registerDriver() method of the DriverManager class

Chapter 5 ■ JDBC apI

359

Setting the jdbc.drivers System Property
You can register a JDBC driver class name using the jdbc.drivers system property. You can set this property
in your computer globally; you can pass this property on the command line when you run your application,
or you can set this property in your application using the System.setProperty() method. A colon separates
each driver to be registered. Here are some examples:

// Register Sybase and Oracle drivers in the Java code
String drivers = "com.sybase.jdbc2.jdbc.SybDriver:oracle.jdbc.driver.OracleDriver";
System.setProperty("jdbc.drivers", drivers);

// Pass driver names to be registered as command-line arguments.
// The following command is entered in one line.
java -Djdbc.drivers=com.sybase.jdbc2.jdbc.SybDriver:oracle.jdbc.driver.OracleDriver com.
jdojo.jdbc.Test

Loading the Driver Class
You can create an object of the driver class. When the driver class is loaded in the JVM, it registers itself with
the DriverManager. For a class to be loaded, you can use a Class.forName("driver class name") method
or create an object of the class as follows:

// Register the Oracle JDBC driver
new oracle.jdbc.driver.OracleDriver();

// Register the Oracle JDBC driver using the Class.forName() method.
// Exception handling has been omitted.
Class.forName("oracle.jdbc.driver.OracleDriver")

// Register the Apache Derby embedded driver
new org.apache.derby.jdbc.EmbeddedDriver();

// Register the Apache Derby network client driver
new org.apache.derby.jdbc.ClientDriver();

You do not need to keep the reference of the driver object because the goal is to load the driver class in
the JVM. When the driver's class is loaded in the JVM, the static initializer of the driver's class is executed in
which the driver class registers itself with the DriverManager.

Using the registerDriver() Method
You can call the registerDriver(java.sql.Driver driver) static method of the DriverManager class with
an object of a JDBC driver class to register the JDBC driver.

// Register the Oracle JDBC driver with DriverManager
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Register the Apache Derby embedded driver
DriverManager.registerDriver(new org.apache.derby.jdbc.EmbeddedDriver());

// Register the Apache Derby network client driver
DriverManager.registerDriver(new org.apache.derby.jdbc.ClientDriver());

Chapter 5 ■ JDBC apI

360

You can follow one of these three methods to register a JDBC driver. The first way offers more flexibility.
It lets you change the JDBC driver without changing your Java code. You can also specify a connection URL
(discussed next) using a system property or as a command-line argument. This way, not only can you use a
different JDBC driver, but you can use a different DBMS without modifying the Java code.

Constructing a Connection URL
A database connection is established using a connection URL. The format of a connection URL is dependent
upon the DMBS and a JDBC driver. There are three parts of a connection URL; a colon separates two parts.
The syntax to define the connection URL is as follows:

<protocol>:<sub-protocol>:<data-source-details>

The <protocol> part is always set to jdbc. The <sub-protocol> part is vendor-specific. The <data-
source-details> part is DBMS specific that is used to locate the database. In some cases, you can also
specify some connection properties in this last part of the URL. The following is an example of a connection
URL that uses Oracle's thin JDBC driver to connect to an Oracle DBMS:

jdbc:oracle:thin:@localhost:1521:chanda

As always, the protocol part is jdbc. The sub-protocol part is oracle:thin, which identifies the Oracle
Corporation as the vendor, and the type of the driver it will use, which is thin. The data source details part
is @localhost:1521:chanda. It has three subparts. The @localhost identifies the server name, which is
localhost in this case. You could use an IP address or a machine name of your Oracle database server
instead. Then, it contains the port number at which Oracle’s Transport Network Substrate (TNS) listener
is running. The last part is an Oracle's instance name, which is chanda in this example. The following is
another example of a connection URL that identifies a database in a Derby server:

jdbc:derby://192.168.1.3:1527/beginningJavaDB;create=true

As always, the protocol part is jdbc. The subprotocol part is derby, which identifies the Derby DBMS.
The 192.168.1.3:1527 part the machine’s IP address and the port number where Derby server is running.
The database name is beginningJavaDB. The last part, create=true, is the connection property that
indicates that if a database named beginningJavaDB does not exist, create a new database with this name.

The following sections describe the formats for a connection URL for some DBMSs. You need to visit
the official website of a vendor to download a specific JDBC driver. You can also get the detailed information
about using the JDBC drivers at the vendor's website.

Oracle Database

DBMS: Oracle 10g
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC Driver (thin - Pure Java)
URL Format: jdbc:oracle:thin:@<server>:<port>:<instance>
URL Example: jdbc:oracle:thin:@localhost:1521:chanda
Driver Class: oracle.jdbc.driver.OracleDriver

Chapter 5 ■ JDBC apI

361

It is implemented 100% in Java. If you are using a thin Oracle driver, you do not need to install any
Oracle-specific configuration software. If you are using JDBC to connect to an Oracle database in an applet,
this is the driver you should use:

DBMS: Oracle 10g
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC-Native Driver (OCI - Oracle Call Interface)
URL Format: jdbc:oracle:oci:@<tns-alias>
URL Example: jdbc:oracle:oci:@orcl
Driver Class: oracle.jdbc.driver.OracleDriver

You need to install the Oracle client software to use the OCI driver. The JDBC driver converts the
standard JDBC calls to OCI calls, which are sent to the database. The <tns-alias> part of the URL comes
from an entry in the tnsnames.ora file. A typical TNS alias entry in a tnsnames.ora file looks as follows:

ORCL =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = HYE6754)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

The Oracle JDBC driver also lets you specify the entire text for a TNS alias as the part of the JDBC
connection URL as shown:

String dbURL="jdbc:oracle:oci:@(DESCRIPTION =" +
 "(ADDRESS = (PROTOCOL = TCP)(HOST = HYE6754)(PORT = 1521))" +
 "(CONNECT_DATA =(SERVER = DEDICATED)(SERVICE_NAME = orcl)))";

Adaptive Server Anywhere Database

DBMS: Adaptive Server Anywhere 9.0
Driver Type: JDBC Driver (Pure Java)
Vendor: Sybase Inc.
Web Site: http://www.sybase.com
URL Format: jdbc:sybase:Tds:<server>:<port>
URL Example: jdbc:sybase:Tds:localhost:2638
Driver Class: com.sybase.jdbc2.jdbc.SybDriver

SQL Server Database
You can use either of the following two JDBC drivers to connect to a SQL Server database:

// Driver #1
DBMS: SQL Server
Vendor: Microsoft Corporation
Web Site: http://www.microsoft.com

Chapter 5 ■ JDBC apI

362

Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:SQLserver://<server>:<port>
URL Example: jdbc:SQLserver://HYE6754:1433;Database=chanda
Driver Class: com.microsoft.SQLserver.jdbc.SQLServerDriver

// Driver #2
DBMS: SQL Server
Vendor: SourceForge Inc.
Web Site: http://www.sourceforge.net
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:jtds:<server_type>://<server>:<port>/<database>;<props>
URL Example: jdbc:jtds:sqlserver://HYE6754:1433/chanda
Driver Class: net.sourceforge.jtds.jdbc.Driver

When you use the driver #2, you can specify sqlserver or sybase as <server_type> to connect to SQL
Server or Sybase DBMS, respectively. <props> is a comma-separated list of property=value pairs, where
property is the name of the database property and value is its value. For example, if you want to specify the
user and password as part of the URL, you can use <props> as user=myuserid;password=mysecretpassword.

The parts of the URL, <port>, <database>, and <props>, are optional. If you do not specify them, their
default values will be used. The default value for <port> is 1433 for SQL Server and 7100 for Sybase.

MySQL Database

DBMS: MySQL Server 5.0
Vendor: Oracle Corporation
Web Site: http://www.oracle.com
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:mySQL://<server>:<port>/<database>?<props>
URL Example: jdbc:mySQL://HYE6754:3306/chanda
Driver Class: com.mySQL.jdbc.Driver

Most parts in the connection URL are optional for MySQL databases. For example, you can use the
shortest connection URL for MySQL as jdbc:mySQL://, and all other parts will be assumed as their default
values. The default value for <server> and <port> are localhost and 3306. You can supply a comma-
separated list of <server>:<port> values to be used as failover servers. If you do not supply the value for
<database>, you can either call the setCatalog("catalog name") method on the Connection object after
establishing the connection, or supply the catalog name as part of all your queries. You have specified
chanda as your database in the example URL. The <props> is an ampersand (&)-separated list of name=value
pairs. For example, you can pass the user ID and password with the connection URL as follows. It uses app as
the user ID and app as the password.

jdbc:mySQL://localhost:3306/chanda?user=app&password=app.

DB2 Database

DBMS: DB2
Vendor: IBM
Web Site: http://www.ibm.com
Driver Type: JDBC Driver (Pure Java)

Chapter 5 ■ JDBC apI

363

URL Format: jdbc:db2://<server>:<port>/<database>?<props>
URL Example: jdbc:db2://localhost:50000/chandaDB
Driver Class: com.ibm.db2.jcc.DB2Driver

You can use jdbc:db2: or jdbc:db2j:net: as the initial part of the URL. If the URL starts with
jdbc:db2:, it indicates that the connection is to a server in the DB2 UDB family. If the URL starts with
jdbc:db2j:net:, it indicates that that the connection is to a remote IBM(R) Cloudscape(TM) server. The
<props> part in the URL is a comma-separated list of name=value pairs of properties for the database
connection. For example, the following URL specifies the user and password properties as admin and
secret, respectively:

jdbc:db2://localhost:5021/chandaDB:user=admin;password=secret;

Visit IBM's official website for more details about the properties that you can set in the JDBC connection
URL.

Apache Derby Database

DBMS: Apache Derby
Web Site: http://db.apache.org/derby/
Driver Type: JDBC Driver (Pure Java)
URL Format: jdbc:derby://<server>:<port>/<database>;<props>
URL Example: jdbc:derby://localhost:1527/beginningJavaDB;create=true
Driver Class: org.apache.derby.jdbc.ClientDriver

The default user name and password are app and app, respectively. The property create=true is
specified to create an empty database, if it does not exist. There are other types of JDBC drivers for Apache
Derby. The client driver lets you connect to it when the Apache Derby is running as a server and your
application accesses it as a client. You can also start the Apache Derby in the same JVM your application is
running, and your application and Apache Derby will run in the same process. When Apache Derby runs in
the same process as your application, you can use the embedded JDBC driver to access the database.

Loading the JDBC driver for the embedded Apache Derby starts the Apache Derby database. The
following is an example of the connection URL to start the Apache Derby in embedded mode and connect to
a database named beginningJavaDB:

jdbc:derby:beginningJavaDB

Recall that an Apache Derby database has a directory with the same name as the database name. How
will the JDBC driver find the beginningJavaDB directory using this connection URL? It will use the directory
specified by the derby.system.home property. If the property is not specified, it will use the current directory.
The following Java command starts a Java application by specifying the derby.system.home property:

java -Dderby.system.home=C:\myDatabases com.jdojo.jdbc.MyApp

If you use the database name inside the MyApp class, it will be searched in the C:\myDatabases directory.
You can also specify the full path of the database directory in the connection URL. The following

connection URL specifies the full path of the database on Windows:

jdbc:derby:C:/myDatabases/beginningJavaDB

In the database full path, you can use a forward slash as the path separator on Windows as well as UNIX.

Chapter 5 ■ JDBC apI

364

If your database directory is in the CLASSPATH, you can construct a connection URL using the classpath
sub-protocol as follows:

jdbc:derby:classpath:beginningJavaDB

The connection URL will look for a beginningJavaDB directory in the CLASSPATH. If your database in the
test directory under a directory in the CLASSPATH, you can construct the connection URL as follows:

jdbc:derby:classpath:test/beginningJavaDB

Apache Derby is very flexible in letting you specify the connection URL. It also lets you access a read-
only database from a JAR/ZIP file. The following connection URL looks for the beginningJavaDB database
under the test directory in the C:\myDatabases.jar file:

jdbc:derby:jar:(C:/myDatabases.jar)test/beginningJavaDB

Establishing the Database Connection
It is time to connect to the database. You need to use the getConnection() static method of the
DriverManager class to establish a connection to a database. It returns an instance of the java.sql.
Connection interface, which represents the database connection. The getConnection() method takes a
connection URL, a user ID, a password, and any number of name-value pairs using a java.util.Properties
object. The getConnection() method is overloaded:

•	 Connection getConnection(String url) throws SQLException

•	 Connection getConnection(String url, Properties info) throws
SQLException

•	 Connection getConnection(String url, String user, String password)
throws SQLException

You will find it annoying that you need to handle the java.sql.SQLException exception for almost
every operation with a database using a JDBC driver. It is a checked exception and the compiler will force
you to handle it either by placing your code in a try-catch block or by using a throws clause. Even though
you write only one line of code, you will end up using a try-catch block. You will create a utility class with
some static methods for a one-liner code that will handle the exceptions for you. Whenever you need to use
that one-liner code functionality, you will use the utility class methods instead of using the JDBC methods
directly. This approach will avoid bloated code in the examples in this chapter.

The following snippet of code establishes a connection to a database named beginningJavaDB in Derby
running in embedded mode:

// Register the JDBC driver - not needed in JDK9 module mode
Driver derbyEmbeddedDriver = new org.apache.derby.jdbc.EmbeddedDriver();
DriverManager.registerDriver(derbyEmbeddedDriver);

// Prepare the connection URL
String dbURL = "jdbc:derby:beginningJavaDB;create=true;user=app;password=app";

Connection conn = null;

Chapter 5 ■ JDBC apI

365

try {
 conn = DriverManager.getConnection(dbURL, "app", "app");
 System.out.println("Connected to database successfully");

 // Perform database activities here...
} catch(SQLException e) {
 e.printStackTrace();
} finally {
 if (conn != null) {
 try {
 // Close the connection
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

The Connection interface inherits from the java.lang.AutoCloseable interface. That means you can
also use a try-with-resource block to obtain a Connection that will be automatically closed when the
control exits the try block. You can rewrite the previous snippet of code using a try-with-resources block
as follows:

// Register the JDBC driver - not needed in JDK9 module mode
Driver derbyEmbeddedDriver = new org.apache.derby.jdbc.EmbeddedDriver();
DriverManager.registerDriver(derbyEmbeddedDriver);

// Prepare the connection URL
String dbURL = "jdbc:derby:beginningJavaDB;create=true";

try (Connection conn = DriverManager.getConnection(dbURL, "app", "app")) {
 System.out.println("Connected to database successfully");

 // Perform database activities here...
} catch (SQLException e) {
 e.printStackTrace();
}

If you need to connect to any other database, you will need to change two things: the JDBC driver that
you register and the connection URL. Both the driver and the connection URL are DBMS-specific. Note the
use of a try-catch-finally block in the code. When you are done with a database connection, you need
to close it by using the close() method of the Connection object. The close() method of the Connection
object throws a SQLException, which forces you to use another try-catch block. In a typical Java program,
you will not close a connection just after connecting to a database. You will use the Connection object to
perform some database activities, and then, you close the connection.

Listing 5-3 contains the code for a JDBCUtil class, which you will use throughout this chapter to work
with database connections. All of its methods are static and they are used to establish and close a database
connection, close a Statement, close a ResultSet, commit a transaction, roll back a transaction, etc. I
discuss the Statement and ResultSet objects later in this chapter. Note that the JDBCUtil class uses app and
app as the user ID and password to connect to the embedded Derby database. If you want to connect using
different user ID and password, you will need to change them in the getConnection() method.

Chapter 5 ■ JDBC apI

366

Listing 5-3. A Utility Class That Will Be Used to Work with a Database

// JDBCUtil.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class JDBCUtil {
 public static Connection getConnection() throws SQLException {
 // The URL is specific to the JDBC driver and the database you want to connect
 String dbURL = "jdbc:derby:beginningJavaDB;create=true";

 // Set the user id and password
 String userId = "app";
 String password = "app";

 // Get a connection
 Connection conn = DriverManager.getConnection(dbURL, userId, password);

 // Set the auto-commit off
 conn.setAutoCommit(false);

 return conn;
 }

 public static void closeConnection(Connection conn) {
 try {
 if (conn != null) {
 conn.close();
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static void closeStatement(Statement stmt) {
 try {
 if (stmt != null) {
 stmt.close();
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static void closeResultSet(ResultSet rs) {
 try {

Chapter 5 ■ JDBC apI

367

 if (rs != null) {
 rs.close();
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static void commit(Connection conn) {
 try {
 if (conn != null) {
 conn.commit();
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static void rollback(Connection conn) {
 try {
 if (conn != null) {
 conn.rollback();
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 System.out.println("Connected to the database.");
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Connected to the database.

To connect to a database, you will use the JDBCUtil.getConnection() method. To close a
connection, you will use the JDBCUtil.closeConnection() method. The getConnection() method uses
a Apache Derby-specific JDBC driver class and connection URL format. You must change the code in the
getConnection() method, which will be specific to the DBMS that you want to connect to. It is important
that you must be able to run the JDBCUtil class and make sure that you are able to connect to a DBMS
successfully, before you can run other examples in this chapter.

Chapter 5 ■ JDBC apI

368

One of the most common mistakes that beginners make is not including the JDBC driver's Java classes
(usually a JAR/ZIP file) in the module path. Make sure that you have your JDBC driver-related JARs included
in the module path and use a requires statement in your module declaration to declare a dependence to
the JDBC driver module, which will be used as an automatic module. For example, include the derby.jar
file in the module path to use the Apache Derby embedded JDBC driver. The following command run the
JDBCUtil class. The command assumes that you have extracted the source code for this book in the C:\
Java9APIsAndModules directory, which is also your current directory. The command is entered on one line.
I have shown it in multiple lines for readability.

C:\Java9APIsAndModules>java --module-path dist\jdojo.jdbc.jar;jdbc_driver\derby.jar
--module jdojo.jdbc/com.jdojo.jdbc.JDBCUtil

Connected to the database.

If you are connecting to a database other than Derby, the value of the --module-path option in the
previous command will use the path for the JDBC JAR file for your database, not for the derby.jar file.

Establishing a database connection could be very frustrating for beginners. The program in Listing 5-4 prints
the details about all JDBC drivers that are automatically loaded in module mode in JDK9. JDK9 has added a
static drivers() method in the DriverManager class that returns Stream<Driver> currently loaded. I had placed
the derby.jar on the module path when I ran the PrintJDBCDrivers class. The derby.jar JAR was used as an
automatic module by the runtime, which you see derby as the derived module name in the output. If you do not
see your JDBC driver in the output, try placing the driver's JAR on the module path and rerunning this class.

Listing 5-4. The Loaded JDBC Driver’s Details

// PrintJDBCDrivers.java
package com.jdojo.jdbc;

import java.sql.Driver;
import java.sql.DriverManager;

public class PrintJDBCDrivers {
 public static void main(String[] args) {
 System.out.println("List of loaded JDBC drivers:");
 DriverManager.drivers()
 .forEach(PrintJDBCDrivers::print);
 }

 public static void print(Driver driver) {
 String className = driver.getClass().getName();
 String moduleName = driver.getClass().getModule().getName();
 int majorVersion = driver.getMajorVersion();
 int minorVersion = driver.getMinorVersion();
 boolean jdbcCompliant = driver.jdbcCompliant();

 System.out.println("Driver Class Name: " + className);
 System.out.println("Driver Module Name: " + moduleName);
 System.out.println("Driver Major Version: " + majorVersion);
 System.out.println("Driver Minor Version: " + minorVersion);
 System.out.println("Driver jdbcCompliant: " + jdbcCompliant);

Chapter 5 ■ JDBC apI

369

 System.out.println("--");
 }
}

List of loaded JDBC drivers:
Driver Class Name: org.apache.derby.jdbc.AutoloadedDriver
Driver Module Name: derby
Driver Major Version: 10
Driver Minor Version: 14
Driver jdbcCompliant: true
--

Setting the Auto-Commit Mode
When you connect to a database, the auto-commit property for the Connection object is set to true by
default. If a connection is in the auto-commit mode, a SQL statement is committed automatically after
its successful execution. If a connection is not in the auto-commit mode, you must call the commit() or
rollback() method of the Connection object to commit or roll back a transaction. Typically, you disable the
auto-commit mode for a connection in a JDBC application, so the logic in your application controls the final
outcome of the transaction. To disable the auto-commit mode, you need to call the setAutoCommit(false)
on the Connection object after a connection has been established. If a connection URL allows you to set the
auto-commit mode, you can also specify it as part of the connection URL. You set the auto-commit mode of
your connection in the JDBCUtil.getConnection() method to false after you get a Connection object.

// Get a connection
Connection conn = DriverManager.getConnection(dbURL, userId, password);

// Set the auto-commit off
conn.setAutoCommit(false);

If you have enabled the auto-commit mode for your connection, you cannot use its commit() and
rollback() methods. Calling the commit() and rollback() methods on a Connection object, which has
enabled the auto-commit mode, throws a SQLException. JDBC also lets you use savepoints in a transaction, so
that you can apply a partial rollback to a transaction. I have an example of using savepoints later in this chapter.

If the setAutoCommit() method is called to change the auto-commit mode of a connection in the
middle of a transaction, the transaction is committed at that time. Typically, you would set the auto-commit
mode of a connection just after connecting to the database.

Committing and Rolling Back Transactions
If the auto-commit mode is disabled for a connection, you can use the commit() or rollback() method
to commit or roll back a transaction. Typical pseudocode in a JDBC application that performs a database
transaction is as shown:

Connection conn = get a connection;

// Disable auto-commit mode
conn.setAutoCommit(false);

Chapter 5 ■ JDBC apI

370

// Perform database transaction activities here

IF transaction is successful THEN
 // Commit the transaction
 conn.commit();
ELSE
 // Rollback the transaction
 conn.rollback();
END IF

conn.close(); // Close the connection

The error handling code is not shown. Typically, a try-catch or try-catch-finally block replaces the
IF statement.

Transaction Isolation Level
In a multi-user database, you will often come across the following two terms:

•	 Data concurrency

•	 Data consistency

Data concurrency refers to the ability of multiple users to use the same data concurrently. Data
consistency refers to the accuracy of the data that is maintained when multiple users are manipulating the
data concurrently. As the data concurrency increases (i.e., more users work on the same data), care must
be taken to maintain a desired level of data consistency. A database maintains data consistency using locks
and by isolating one transaction from another. How much a transaction is isolated from another transaction
depends on the desired level of data consistency. Let’s look at three phenomena where data consistency may
be compromised in a multi-user environment where multiple concurrent transactions are supported.

Dirty Read
In a dirty read, a transaction reads uncommitted data from another transaction. Consider the following
sequence of steps, which results in inconsistent data because of a dirty read:

•	 Transaction A inserts a new row in a table and it has not committed it yet.

•	 Transaction B reads the uncommitted row inserted by the transaction A.

•	 Transaction A rolls back the changes.

•	 At this point, transaction B is left with data for a row that does not exist.

Non-Repeatable Read
In a non-repeatable read, when a transaction re-reads the data, it finds that the data has been modified
by another transaction that has been already committed. Consider the following sequence of steps, which
results in inconsistent data because of a non-repeatable read:

•	 Transaction A reads a row.

•	 Transaction B modifies or deletes the same row and commits the changes.

•	 Transaction A re-reads the same row and finds that the row has been modified or deleted.

Chapter 5 ■ JDBC apI

371

Phantom Read
In a phantom read, when a transaction re-executes the same query, it finds more data that satisfies the
query. Consider the following sequence of steps, which results in inconsistent data, because of a phantom
read:

•	 Transaction A executes a query (say Q) and finds X number of rows matching the
query.

•	 Transaction B inserts some rows that satisfy the query Q criteria and commits.

•	 Transaction A re-executes the same query (Q) and finds Y number of rows (Y > X)
matching the query.

Note that the difference between a non-repeatable read and a phantom read is that the former finds
that the rows have changed between reads and the latter finds that there are more rows matching the same
query.

The ANSI SQL-92 standard defines four transaction isolation levels in terms of the previously described
three situations for data consistency. Each isolation level defines what kinds of data inconsistencies are
allowed, or not allowed. The four transaction isolation levels are as follows:

•	 Read uncommitted

•	 Read committed

•	 Repeatable read

•	 Serializable

Table 5-3 shows the four isolation levels and the three permitted situations. It is up to the DBMS to
decide how they implement these isolation levels. A DBMS may offer additional isolation levels. A DBMS
may implement the same isolation level a little differently. Consult your DBMS documentation for more
details about the isolation levels that your DBMS supports.

Table 5-3. Four Isolation Levels Defined by ANSI SQL-92

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

Read Uncommitted Permitted Permitted Permitted

Read Committed Not Permitted Permitted Permitted

Repeatable Read Not Permitted Not Permitted Permitted

Serializable Not Permitted Not Permitted Not Permitted

Java defines the following four constants in the Connection interface that correspond to the four
isolation levels defined by the ANSI SQL-92 standard:

•	 TRANSACTION_READ_UNCOMMITTED

•	 TRANSACTION_READ_COMMITTED

•	 TRANSACTION_REPEATABLE_READ

•	 TRANSACTION_SERIALIZABLE

Chapter 5 ■ JDBC apI

372

You can set the isolation level of a transaction for a database connection using the
setTransactionIsolation(int level) method of the Connection interface.

// Get a Connection object
Connection conn = get a connection object...;

// Set the transaction isolation level to read committed
conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);

You can use the getTransactionIsolation() method of the Connection interface to get the current
setting for the transaction isolation level for the connection. The default transaction isolation level is JDBC
driver-dependent. You can also use the following three methods of the DatabaseMetaData interface to get
more insight about the transaction isolation levels supported by a DBMS. The method names are self-
explanatory.

•	 int getDefaultTransactionIsolation() throws SQLException

•	 boolean supportsTransactions() throws SQLException

•	 boolean supportsTransactionIsolationLevel(int level) throws SQLException

The Connection interface defines a TRANSACTION_NONE constant to indicate that a JDBC driver
does not support transactions and it is not a JDBC-compliant driver. This constant is not used with the
setTransactionIsolation() method. The getTransactionIsolation() method may return this constant.
You can change the transaction isolation for a Connection object any time. However, the effect of changing
the transaction isolation of a connection is JDBC driver-dependent if it is changed when a transaction is in
progress.

JDBC-Types-to-Java-Types Mapping
The JDBC API allows you to access and manipulate data in a Java environment whereas the data is
eventually stored in a database. The database uses its own data types, whereas Java uses its own. Table 5-4
lists the mappings between JDBC data types and Java data types.

Table 5-4. Data Types Mapping Between JDBC and Java

JDBC Type Java Type

ARRAY java.sql.Array

BIGINT long

BINARY byte[]

BIT boolean

BLOB java.sql.Blob

BOOLEAN boolean

CHAR String

CLOB java.sql.Clob

DATALINK java.net.URL

DATE java.sql.Date

DATE java.time.LocalDate

(continued)

Chapter 5 ■ JDBC apI

373

Table 5-4. (continued)

JDBC Type Java Type

DECIMAL java.math.BigDecimal

DISTINCT Mapping of underlying type

DOUBLE double

FLOAT double

INTEGER int

JAVA_OBJECT underlying Java class

LONGNVARCHAR String

LONGVARBINARY byte[]

LONGVARCHAR String

NCHAR String

NCLOB java.sql.NClob

NUMERIC java.math.BigDecimal

NVARCHAR String

NULL NULL SQL value

REAL float

REF java.sql.Ref

REF_CURSOR Java.sql.ResultSet

ROWID java.sql.RowId

SMALLINT short

SQLXML java.sql.SQLXML

STRUCT java.sql.Struct

TIME java.sql.Time

TIME java.time.LocalTime

TIME_WITH_TIMEZONE java.time.OffsetTime

TIMESTAMP java.sql.Timestamp

TIMESTAMP_WITH_TIMEZONE java.time.OffsetDateTime

TINYINT byte

VARBINARY byte[]

VARCHAR String

Java 8 added the JDBC types named REF_CURSOR, TIME_WITH_TIMEZONE, and TIMESTAMP_WITH_TIMEZONE.
Prior to Java 8, you could work with date, time, and timestamp JDBC types using the Date, Time, and
Timestamp classes in the java.sql package. In Java 8, the date- and time-related JDBC types have also been
mapped to the new date and time classes in the java.time package. For example, you can use a java.sql.
Date or a java.time.LocalDate object for the DATE JDBC type. If you are using the date- and time-related
objects from the java.time package for a JDBC DATE type, you need to use them as objects and use methods

Chapter 5 ■ JDBC apI

374

like getObject() and setObject() to get and set their values. Several methods have been added in the Date,
Time, and Timestamp classes in the java.sql package to facilitate conversion between SQL dates/times and
new dates/times in the java.time package.

All values listed in the JDBC Type column in the table are defined as constants in the Types class. Java
8 added a new enum type called JDBCType that contains constants with the same name as the constants in
the Types class. The JDBCType enum inherits from the SQLType interface that was also added in Java 8. When
a data type is expected in a method's argument, you will see the argument's type as int in old methods and
you will need to pass one of the constants in the Type class. Java 8 has overloaded some these methods to use
the JDBCType enum instead. Whenever possible, use the constants in the JDBCType enum for the data types
for type safety.

If you have to refer to a JDBC type in your Java code, you need to use the corresponding constant from
the Types class. For example, suppose you need to set a null value for a parameter in a PreparedStatement.
The parameter type is of int type. The PreparedStatement interface provides a setNull() method as
follows:

void setNull(int parameterIndex, int sqlType) throws SQLException

The second parameter to the setNull() method accepts sqlType, which is the JDBC data type
and is defined by the constants in the java.sql.Types class. Suppose the index of the parameter in the
PreparedStatement is 2. You will call the setNull() method as shown:

myPreparedStmt.setNull(2, java.sql.Types.INTEGER);

This table also tells you about the type of the Java variables you need to use to read data from a
database. Suppose a column is declared varchar(20) in a database table. Table 5-4 maps the JDBC VARCHAR
data type to the Java String type. It means that you need to use a String reference type variable in your Java
program to hold the value of a VARCHAR type in the database. Suppose you are reading the value of a first_
name column from a database table using a ResultSet, which is declared as varchar(20). Your code would
be similar to the following:

String firstName = myResultSet.getString("first_name");

The mapping shown in this table is used throughout this chapter when you get, set, or update values
that cross a JDBC-JAVA boundary. You will be using three sets of methods while working with data in JDBC
programs: getXxx(), setXxx(), and updateXxx(), where Xxx indicates a data type such as int, String, Date,
etc. These methods are found in many interfaces that are used in this chapter such as PreparedStatement,
ResultSet, etc.

A getXxx() method is used to read data from a JDBC environment to a Java program. A setXxx()
method is used to set a value in a Java program that will finally be passed to a JDBC environment. An
updateXxx() method is used to update a data element that was retrieved from a JDBC environment and
the updated value will be passed again to a JDBC environment. For example, you use getInt(), setInt(),
and updateInt() to read, set, and update a value that is of type INTEGER in a database and is represented as
a value of the int data type in Java code. You can use the getObject(), setObject(), and updateObject()
methods to work with all data types provided the supplied arguments to the method are assignment
compatible with the actual data types. Wherever possible, an implicit data type conversion is performed
internally by the JDBC API. For example, if a JDBC type maps to a short type in Java, you can use the
getShort() method to read its value. If you use the getInt() method to read a short value, the short value
is implicitly converted to int. Another example of this is to read a JDBC INTEGER value using a getString()
method. Suppose you want to read the value of an INTEGER type column, person_id, from a result set. You

Chapter 5 ■ JDBC apI

375

can use either of the following two statements. The JDBC driver will perform implicit conversion from int to
String in the second statement.

int personIdInt = myResultSet.getInt("person_id");
String personIdStr = myResultSet.getString("person_id");

Knowing About the Database
The same database feature may be supported differently, or not supported at all, by different DBMSs.
Sometimes a JDBC driver may implement a wrapper around the feature supported by the underlying DBMS.
An instance of the DatabaseMetaData interface gives you detailed information about the features supported
by a DBMS through the JDBC driver. The vendor of the JDBC driver supplies the implementation class for
the DatabaseMetaData interface. You can get a DatabaseMetaData instance using the getMetaData() method
of the Connection object as shown:

// Get a Connection
Connection conn = JDBCUtil.getConnection();

// Get a DatabaseMetaData instance
DatabaseMetaData dbmd = conn.getMetaData();

Listing 5-5 contains the complete code that prints some pieces of information about the database you
are connected to. The output shows the database information about the Derby database, supported features,
and JDBC driver. You may get a different output.

Listing 5-5. Using a DatabaseMetaData Object to Know About a DBMS

// DatabaseMetaDataTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.DatabaseMetaData;

public class DatabaseMetaDataTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Get DatabaseMetaData object
 DatabaseMetaData dbmd = conn.getMetaData();

 System.out.println("About the database...");

 String dbName = dbmd.getDatabaseProductName();
 String dbVersion = dbmd.getDatabaseProductVersion();
 String dbURL = dbmd.getURL();
 System.out.println("Database Name: " + dbName);
 System.out.println("Database Version: " + dbVersion);
 System.out.println("Database URL: " + dbURL);

Chapter 5 ■ JDBC apI

376

 System.out.printf("%nAbout the JDBC driver...%n");
 String driverName = dbmd.getDriverName();
 String driverVersion = dbmd.getDriverVersion();
 System.out.println("Driver Name: " + driverName);
 System.out.println("Driver Version: " + driverVersion);

 System.out.printf("%nAbout the JDBC driver supported features...%n");
 boolean ansi92BiEntry = dbmd.supportsANSI92EntryLevelSQL();
 boolean ansi92Intermediate = dbmd.supportsANSI92IntermediateSQL();
 boolean ansi92Full = dbmd.supportsANSI92FullSQL();
 boolean supportsBatchUpdates = dbmd.supportsBatchUpdates();
 System.out.println("Supports Entry Level ANSI92 SQL: " + ansi92BiEntry);
 System.out.println("Supports Intermediate Level ANSI92 SQL: " +

ansi92Intermediate);
 System.out.println("Supports Full Level ANSI92 SQL: " + ansi92Full);
 System.out.println("Supports batch updates: " + supportsBatchUpdates);
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

About the database...
Database Name: Apache Derby
Database Version: 10.14.1.0 - (1808820)
Database URL: jdbc:derby:db/beginningJavaDB

About the JDBC driver...
Driver Name: Apache Derby Embedded JDBC Driver
Driver Version: 10.14.1.0 - (1808820)

About the JDBC driver supported features...
Supports Entry Level ANSI92 SQL: true
Supports Intermediate Level ANSI92 SQL: false
Supports Full Level ANSI92 SQL: false
Supports batch updates: true

The DatabaseMetaData interface has many methods to get information about the database. Refer to the
API documentation on this interface for more details. Typically, a tool uses this interface to present the user
with features supported by a DBMS. If you are working on a JDBC project that may use different DBMS and
JDBC drivers, you will need to use a DatabaseMetaData instance, so you can inform the user at runtime what
features your application will support based on the JDBC driver and the DBMS they use.

Chapter 5 ■ JDBC apI

377

Executing SQL Statements
You can execute different types of SQL statements using a JDBC driver. Based on the type of work that a SQL
statement performs in a DBMS, it can be categorized as follows:

•	 A Data Definition Language (DDL) Statement: Examples of DDL statements are
CREATE TABLE, ALTER TABLE, etc.

•	 A Data Manipulation Language (DML) Statement: Examples of DML statements
are SELECT, INSERT, UPDATE, DELETE, etc.

•	 A Data Control Language (DCL) Statement: Examples of DCL statements are GRANT
and REVOKE.

•	 A Transaction Control Language (TCL) Statement: Example of TCL statements are
COMMIT, ROLLBACK, SAVEPOINT, etc.

You can execute DDL, DML, and DCL statements using different types of JDBC statement objects. An
instance of the Statement interface represents a SQL statement in a Java program. You can execute TCL
statements using the methods of a Connection object. Java uses three different interfaces to represent SQL
statements in different formats:

•	 Statement

•	 PreparedStatement

•	 CallableStatement

The PreparedStatement interface inherits from the Statement interface and the CallableStatement
interface inherits from the PreparedStatement interface. You need not worry about the implementation
details of these interfaces at all. The vendor of the JDBC driver will supply the implementation classes for
these interfaces. You just need to know which method to call on a Connection object to get a specific type of
the Statement object.

If you have a SQL statement in the form of a string, you can use a Statement object to execute it. The
SQL statement may or may not return a result set. Typically, a SELECT statement returns a result set with zero
or more records. The SQL statements in the string format are compiled each time they are executed.

You can use a PreparedStatement if you want to precompile a SQL statement once and execute it
multiple times. It lets you specify a SQL statement in the form of a string that uses placeholders. You need
to supply the values of the placeholders before you execute the statement. Using a PreparedStatement is
preferred over using a Statement for the following three reasons:

•	 The SQL statement in a string form may be subject to hacker attacks using a SQL
injection technique. Consider a trivial example of a SQL injection as shown in the
following code for a getSQL() method:

public String getSQL(String personID) {
 String SQL = "select * from person where person_id = " + personId;
 return SQL;
}

•	 The method accepts a personId and returns a SELECT statement. If this method
is called as getSQL("101"), you do not have any problems. You will get a SQL
statement as shown:

select * from person where person_id = 101

Chapter 5 ■ JDBC apI

378

This query will return a maximum of one record from the database assuming that
person_id is the primary key for the person table.

However, if this method is called getSQL("101 or 1 = 1"), it will return a
SELECT statement as follows:

select * from person where person_id = 101 or 1 = 1

This statement is dangerous to execute in a production database. It will return all
records from the person table to the client, which may pose a security risk. It may
also degrade the performance of the database server and/or application server,
which may result in a denial of service for other users.

A PreparedStatement constructs a SQL in a string format using placeholders.
This SELECT statement will be written as follows:

String pSQL = "select * from person where person_id = ?";

Note the use of the question mark in the statement. A question mark is used as a
placeholder. Its value is supplied later using a method of the PreparedStatement.
Using a PreparedStatement eliminates the threat of a SQL injection.

•	 The PreparedStatement improves the performance of your JDBC application by
compiling a statement once and executing it multiple times.

•	 A PreparedStatement lets you use Java data types to supply values in a SQL
statement instead of using strings. For example, say you want to write a query to get
person records whose birth date is later than January 1, 1970. You may write a query
as follows:

select * from person where dob > '1970-01-01'

However, this query will not execute properly in all databases. It assumes that a
date literal can be specified in the yyyy-mm-dd format. Different databases use
different formats for a date string literal. If you use a PreparedStatement, you can
rewrite this query as shown:

select * from person where dob > ?

You can use a java.sql.Date object to specify the value for the dob criterion and
the JDBC driver will take care of converting it into a DBMS-specific value of the
date data type.

You can use a CallableStatement object to execute a database-stored procedure or function in a
database. The stored procedure may return result sets.

Let’s look at the three types of Statement objects one at a time in subsequent sections.

Results of Executing a SQL Statement
When you execute a SQL statement, the DBMS may return zero or more results. The results may include
update count, which is the number of records affected in the database, or result sets (a group of records).

When you execute a SELECT statement, it returns a result set. When you execute an UPDATE or DELETE
statement, it returns an update count, which is the number of records affected in the database by the SQL.

Chapter 5 ■ JDBC apI

379

When you execute a stored procedure, it may return multiple update counts as well as multiple result
sets. When there is a possibility of mixed results of update counts and result sets being returned from a SQL
execution, it becomes trickier to process the results. A JDBC driver will let you get to the results in the order
they were returned from the database. Refer to the "Handling Multiple Results from a Statement" section
later in this chapter for a complete discussion and examples of how to process multiple result sets and
update counts.

Using the Statement Interface
You can use a Statement to execute any kind of SQL statement, provided the SQL statement is supported
by the JDBC driver and the DBMS. Typically, you use one of its three methods called execute(),
executeUpdate(), and executeQuery(), to execute a SQL statement. These methods are overloaded. The
following is a list of one of their versions that accepts a SQL statement as a string:

•	 boolean execute(String SQL) throws SQLException

•	 int executeUpdate(String SQL) throws SQLException

•	 ResultSet executeQuery(String SQL) throws SQLException

Before I discuss which one the three methods of a Statement object to use in the code, here are the
steps to execute a SQL statement using a Statement object:

•	 Get a Connection object.

Connection conn = JDBCUtil.getConnection();

•	 Create a Statement object using the createStatement() method of the Connection
object.

Statement stmt = conn.createStatement();

•	 Execute one or more SQL statements by calling one of the three methods of the
Statement object.

// Increase everyone's income by 10%
String sql = "update person set income = income * 1.1";
int rowsUpdated = stmt.executeUpdate(sql);

// Execute other SQL statements using stmt

•	 Close the Statement object to release the resources.

stmt.close();

•	 Commit the transaction.

conn.commit();

Chapter 5 ■ JDBC apI

380

The execute() method in the Statement interface is a general-purpose method that you can use to
execute any types of SQL statements. Typically, it is used to execute a SQL statement that does not return
a result set, such as a DDL statement like CREATE TABLE. The returned value from the execute() method
indicates the status of the returned result set. If the first result is a ResultSet object, it returns true. It returns
false if the first result is an update count or no result is returned from the DBMS.

The executeUpdate() method is used to execute a SQL statement that updates the data in the database
such as INSERT, UPDATE, and DELETE statements. It returns the number of rows affected in the database by
the execution of the statement. You may use this method to execute other kinds of SQL statements, such as
a CREATE TABLE statement, which do not return anything. The method returns zero when the SQL statement
does not return anything. You should not use this method to execute a SELECT statement.

 ■ Tip Java 8 added a executeLargeUpdate() method that works the same as the executeUpdate()
method, except that it returns a long instead of an int. Use this method when you expect the update count to
exceed Integer.MAX_VALUE.

The executeQuery() method is especially designed to execute a SQL statement that produces one and
only one result set. It is best suited for executing a SELECT statement. Although you can execute a stored
procedure, which produces a result set, using this method of the Statement interface, you should instead use
the specially designed CallableStatement interface's execute() method to execute a stored procedure.

A Statement object executes a SQL statement stored in a string. Databases have their own data
types. How do you pass everything in a string format? Sometimes you may need to use some objects in a
SQL statement that may not be expressed in a string format such as a binary large object. You can use a
PreparedStatement to have more control over preparing a SQL statement, which cannot be expressed in a
string format.

Most commonly, you will encounter problems in expressing date, time, and timestamp values in a
string format. Suppose you want to increase the income of all persons by 20% whose date of birth is greater
than January 25, 1970. Your update statement may look like the one shown:

String sql = "update person " +
 "set income = income * 1.2 " +
 "where dob > '1970-01-25'";

Not all DBMSs will recognize '1970-01-25' as a date. JDBC defines escape sequences for the date, time,
and timestamp data types. It is of the form

{<type> '<value>'}

Table 5-5 lists the format and examples for date, time, and timestamp escape sequences that you need
to use in your SQL strings.

Chapter 5 ■ JDBC apI

381

A JDBC driver will convert the escape sequences in a SQL statement in a correct format for the
database. You can rewrite the previous update statement using a date escape sequence as follows:

String sql = "update person " +
 "set income = income * 1.2 " +
 "where dob > {d '1970-01-25'}";

Most of the examples in this chapter use the person table in the database. It is assumed that you have
created the person table in the database you are using. The generic definition of the person table is shown in
Table 5-2. If you have not created the table yet, you can run the program in Listing 5-6. The program uses the
CREATE TABLE syntax for the Derby database. If you are using a DBMS other than Derby, change the syntax
before running the program. It prints the following message when the person table is created successfully:

Person table created.

If the person table already exists, the program prints the following error message for Apache Derby:

Table/View 'PERSON' already exists in Schema 'APP'.

The error message may be different for the DBMS other than Derby, but it will convey the same
meaning that the person table already exists in the database.

Listing 5-6. Creating the Person Table in the Database

// CreatePersonTable.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

Table 5-5. JDBC Escape Sequences for Date, Time, and Timestamp Data Types

Data Type <type> <value> Format Example

Date d yyyy-mm-dd {d '1970-01-25'}

Time t hh:mm:ss {t '01:09:50'}

Timestamp ts yyyy-mm-dd hh:mm:ss.f... {ts '1970-01-25 01:09:50'}

The (.f...) part in a timestamp format is the fractional part of a second, which is optional.
yyyy – Four digits year
mm - Two digits month
dd – Two digits date
hh – Hour
mm – Minute
ss – Second
f – Fractional part of second

Chapter 5 ■ JDBC apI

382

public class CreatePersonTable {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Create a SQL string
 String SQL = "create table person ("
 + "person_id integer not null, "
 + "first_name varchar(20) not null, "
 + "last_name varchar(20) not null, "
 + "gender char(1) not null, "
 + "dob date, "
 + "income double,"
 + "primary key(person_id))";

 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 } finally {
 JDBCUtil.closeStatement(stmt);
 }

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Person table created.");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Listing 5-7 contains the complete code that inserts three records in the person table. Note that it uses
utility methods of the JDBCUtil class (see Listing 5-3) to perform some of the activities such as getting a
Connection object, closing a Statement object, committing/rolling back a transaction, etc. If you run the
program in Listing 5-7 more than once, it will print an error message stating that you are trying to insert a
duplicate key in the person table because you have defined the person_id as the primary key in the table,
and every time you run the program, it inserts the same set of person_id values.

Listing 5-7. Executing a SQL INSERT Statement Using a Statement Object

// InsertPersonTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

Chapter 5 ■ JDBC apI

383

public class InsertPersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Insert 3 person records
 insertPerson(conn, 101, "John", "Jacobs", "M", "{d '1970-01-01'}", 60000);
 insertPerson(conn, 102, "Donna", "Duncan", "F", "{d '1960-01-01'}", 70000);
 insertPerson(conn, 103, "Buddy", "Rice", "M", "{d '1975-01-01'}", 45000);

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Inserted persons successfully.");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void insertPerson(Connection conn, int personId,
 String firstName, String lastName, String gender, String dob,
 double income) throws SQLException {

 // Create a SQL string
 String SQL = "insert into person "
 + "(person_id, first_name, last_name,"
 + " gender, dob, income) "
 + "values "
 + "(" + personId + ", "
 + "'" + firstName + "'" + ", "
 + "'" + lastName + "'" + ", "
 + "'" + gender + "'" + ", "
 + dob + ", "
 + income + ")";

 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

All database strings are enclosed in single quotes. In Listing 5-7, you have enclosed all strings such as
first and last names in single quotes inside the insertPerson() method. Intentionally, I used simple first
and last names for persons such as John, Donna, and Jacobs. Try inserting a name such as Bill O'Reilly.

Chapter 5 ■ JDBC apI

384

Note that the last name (O'Reilly) contains a single quote. When a string contains a single quote, you
need to pass two consecutive single quotes to the database. Passing a name containing single quotes to the
insertPerson() method will fail because of this. Java 9 added the following four default methods to the
Statement interface to deal with this:

•	 String enquoteLiteral(String val) throws SQLException

•	 String enquoteNCharLiteral(String val) throws SQLException

•	 String enquoteIdentifier(String identifier, boolean alwaysQuote) throws
SQLException

•	 boolean isSimpleIdentifier(String identifier) throws SQLException

The enquoteLiteral() method returns its argument enclosed in single quotes and by replacing a
single quote in the argument by two single quotes. For example, if you want to send the last name O'Reilly
to the database, you will need to 'O''Reilly' in your insert statement. You can achieve this by using the
enquoteLiteral() method like so:

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();

// Enquote the last name to send it to the database
String lastName = "O'Reilly";
String dbLastName = stmt.enquoteLiteral(lastName);

System.out.println("lastName: " + lastName);
System.out.println("dbLastName: " + dbLastName);

// More code goes here...

lastName: O'Reilly
dbLastName: 'O''Reilly'

The enquoteNCharLiteral() method returns a string representing a National Character Set Literal
enclosed in single quotes and prefixed with an uppercase letter N. For example, for the argument O'Reilly,
it will return N'O''Reilly'.

Databases also use identifiers, which are names given to database objects. The isSimpleIdentifier()
method lets you test whether a given string is a simple database identifier. The enquoteIdentifier()
method lets you enclose a given identifier in double quotes. Refer to the Javadoc for the Statement interface
for more details on these methods.

You can execute any other SQL statements such as an UPDATE or DELETE statement using a Statement
object. Listing 5-8 and Listing 5-9 demonstrate how to execute UPDATE and DELETE statements using a
Statement object.

Listing 5-8. Executing a SQL UPDATE Statement Using a Statement Object

// UpdatePersonTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

Chapter 5 ■ JDBC apI

385

public class UpdatePersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Give everyone a 5% raise
 giveRaise(conn, 5.0);

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Updated person records successfully.");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void giveRaise(Connection conn, double percentRaise) throws SQLException {
 String SQL = "update person set income = income + income * " + (percentRaise / 100);
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 int updatedCount = stmt.executeUpdate(SQL);

 // Print how many records were updated
 System.out.println("Gave raise to " + updatedCount + " person(s).");
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Listing 5-9. Executing a SQL DELETE Statement Using a Statement Object

// DeletePersonTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

public class DeletePersonTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Delete the person with person_id = 101
 deletePerson(conn, 101);

Chapter 5 ■ JDBC apI

386

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void deletePerson(Connection conn, int personId) throws SQLException {
 String SQL = "delete from person where person_id = " + personId;
 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 int deletedCount = stmt.executeUpdate(SQL);

 // Print how many persons were deleted
 System.out.println("Deleted " + deletedCount + " person(s).");
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Using the PreparedStatement Interface
The PreparedStatement interface inherits from the Statement interface. A PreparedStatement is preferred
over a Statement to execute a SQL statement. The former precompiles the SQL statement provided DBMS
supports a SQL statement pre-compilation. It reuses the precompiled SQL statement if the statement is
executed multiple times. It lets you prepare a SQL statement, which is in a string format, using placeholders
for input parameters.

A question mark in a SQL string is a placeholder for an input parameter whose value will be supplied
before the statement is executed. Suppose you want to use a PreparedStatement to insert a record in the
person table. Your SQL statement in a string format would be as follows:

String sql = "insert into person " +
 "(person_id, first_name, last_name, gender, dob, income) " +
 "values " +
 "(?, ?, ?, ?, ?, ?)";

In this example, each of the six question marks is a placeholder for a value. The first question mark is a
placeholder for person_id, the second one for first_name, and so on. Each placeholder has an index. The
first placeholder in a SQL string is given an index of 1, the second placeholder an index of 2, and so on. Note
that the index of the placeholder starts at 1, not 0.

You can create a PreparedStatement using the prepareStatement() method of the Connection object.
The prepareStatement() method is overloaded. In its simplest form, it accepts a SQL string as follows:

String sql = "your sql statement goes here";
Connection conn = JDBCUtil.getConnection();

Chapter 5 ■ JDBC apI

387

// Obtain a PreparedStatement for the sql
PreparedStatement pstmt = conn.prepareStatement(sql);

The next step is to supply the values for the placeholders one-by-one using a setXxx() method of
the PreparedStatement interface, where Xxx is the data type of the placeholder. The setXxx() method
accepts two parameters: the first one is the index of the placeholder and the second one is the value for the
placeholder. The second argument for the setXxx() method must be compatible with Xxx, which is the data
type of the placeholder. If you want to set the values for the six placeholders for the INSERT statement to
insert a record in the person table, you do it as follows:

pstmt.setInt(1, 301); // person_id
pstmt.setString(2, "Tom"); // first name
pstmt.setString(3, "Baker"); // last name
pstmt.setString(4, "M"); // gender

/* Set dob as January 25, 1970. This time, you have a lot more control
 on the data type. You need to use the java.sql.Date data type to set
 the dob. You can use the valueOf() static method to get a java.sql.Date
 object from a date in a string format
*/
java.sql.Date dob = java.sql.Date.valueOf("1970-01-25");

pstmt.setDate(5, dob); // dob
pstmt.setDouble(6, 45900); // income

Now it is time to send the SQL statement with the values for the placeholders to the database. You
execute a SQL statement in a PreparedStatement using one of its execute(), executeUpdate(), and
executeQuery() methods. These methods take no arguments. Recall that the Statement interface has the
same methods, which take SQL strings as their arguments. The PreparedStatement interface has added three
methods with the same name, which take no arguments, because it gets its SQL string when it is created.

// Execute the INSERT statement in pstmt
pstmt.executeUpdate();

How do you reuse a PreparedStatement? Simply repopulate the placeholder values and call one of
its execute() methods again. When you invoke the setXxx() method on a PreparedStatement again, its
previously set value for the specified placeholder is overwritten with the new value. A PreparedStatement keeps
holding the set values for its placeholder even after it is executed. Therefore, if you want to set the same value
for a placeholder for multiple executions, you need to set the value for that placeholder only once. If you want
to clear the values of all placeholders, you can use the clearParameters() method of the PreparedStatement.
The following snippet of code sets the values for all six placeholders again and executes the statement:

// Set new values for placeholder
pstmt.setInt(1, 401); // person_id
pstmt.setString(2, "Pam"); // first name
pstmt.setString(3, "Baker"); // last name
pstmt.setString(4, "F"); // gender
pstmt.setDate(5, java.sql.Date.valueOf("1970-01-25")); // dob
pstmt.setDouble(6, 25900); // income

// Execute the INSERT statement in pstmt to insert another row
pstmt.executeUpdate();

Chapter 5 ■ JDBC apI

388

When you are done with executing the statement in a PreparedStatement object, you need to close it
using its close() method.

// Close the PreparedStatement
pstmt.close();

Listing 5-10 demonstrates how to use a PreparedStatement object to execute an INSERT SQL statement.
Note that this example reuses the PreparedStatement to insert two records in the person table.

Listing 5-10. Using a PreparedStatement Object to Execute an INSERT Statement

// PreparedStatementTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.Date;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.sql.Types;

public class PreparedStatementTest {
 public static void main(String[] args) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {
 conn = JDBCUtil.getConnection();
 pstmt = getInsertSQL(conn);

 // Need to get dob in java.sql.Date object
 Date dob = Date.valueOf("1970-01-01");

 // Insert two person records
 insertPerson(pstmt, 401, "Sara", "Jain", "F", dob, 0.0);
 insertPerson(pstmt, 501, "Su", "Chi", "F", null, 10000.0);

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Updated person records successfully.");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeStatement(pstmt);
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void insertPerson(PreparedStatement pstmt,
 int personId, String firstName, String lastName,
 String gender, Date dob, double income) throws SQLException {
 // Set all the input parameters

Chapter 5 ■ JDBC apI

389

 pstmt.setInt(1, personId);
 pstmt.setString(2, firstName);
 pstmt.setString(3, lastName);
 pstmt.setString(4, gender);

 // Set the dob value properly if it is null
 if (dob == null) {
 pstmt.setNull(5, Types.DATE);
 } else {
 pstmt.setDate(5, dob);
 }

 pstmt.setDouble(6, income);

 // Execute the statement
 pstmt.executeUpdate();
 }

 public static PreparedStatement getInsertSQL(Connection conn) throws SQLException {
 String SQL = "insert into person "
 + "(person_id, first_name, last_name, gender, dob, income) "
 + "values "
 + "(?, ?, ?, ?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(SQL);
 return pstmt;
 }
}

 ■ Tip You do not need to enclose string values in single quotes and replace a single quote with two single
quotes before sending those values to the database. the setXxx() methods of the PreparedStatement takes
care of this for you. recall that you had to do this while you were working with strings using a Statement.

CallableStatement Interface
The CallableStatement interface inherits from the PreparedStatement interface. A CallableStatement
is used to call a SQL stored procedure or a function in a database. You can also call a stored procedure or a
function using the Statement object. However, using a CallableStatement is the preferred way.

The JDBC API makes it possible to call SQL stored procedures and functions using a standard syntax.
To execute a stored procedure, a different DBMS may use a different syntax. If you are using the JDBC API to
call a stored procedure, you need to learn only one standard way to execute stored procedures in all DBMSs.
The JDBC specification defines an escape sequence for stored procedures/functions to execute them in a
database.

To find out if your DBMS supports stored procedures, you can call the supportsStoredProcedures()
method of the DatabaseMetaData object. It returns true if the DBMS supports stored procedures; otherwise,
it returns false. A JDBC driver may let you call a DBMS function using the same syntax. To know if you can
call a DBMS function using the same syntax, use the supportsStoredFunctionsUsingCallSyntax() method
of a DatabaseMetaData object. If it returns true, you can use the same syntax to call a database function.
From here on, I use the phrase "stored procedure" to mean both database stored procedures and functions.

Chapter 5 ■ JDBC apI

390

The general syntax for calling a stored procedure is as follows:

{? = call <procedure_name>(param1, param2, param3, ...)}

The call to a stored procedure is placed within braces ({}). The first question mark is a placeholder for
the return value from the stored procedure. The placeholder for the return value is followed by = call. If the
stored procedure does not return a value, the ? = part is omitted. <procedure_name> is the name of a stored
procedure. If the stored procedure accepts parameters, the list of parameters is enclosed in parentheses
after the procedure name. If a stored procedure does not accept any parameters, the opening parenthesis,
parameter lists, and closing parenthesis after <procedure_name> are omitted. Table 5-6 lists some examples
using the general syntax for calling stored procedures.

Table 5-6. Examples of Using Stored Procedure Escape Syntax for Calling Database Stored Procedures

Stored Procedure Description Syntax to Call the Stored Procedure

Accepts no parameters.
Returns no value.

{call <procedure_name>}

Accepts two IN parameters.
Returns no value.

{call <procedure_name>(?, ?)}

Accepts two IN and one OUT parameters.
Returns no value.

{call <procedure_name>(?, ?, ?)}

Accepts no parameters.
Returns a value.

{? = call <procedure_name>}

Accepts two IN parameters.
Returns a value.

{? = call <procedure_name>(?, ?)}

Accepts two IN and one OUT parameters.
Returns a value.

{? = call <procedure_name>(?, ?, ?)}

Each question mark, which is a placeholder for the return value and parameters, has an index. The
first question mark from the left has an index of 1, the second from the left has an index of 2, and so on. A
stored procedure may accept different type of parameters: IN, OUT, and INOUT. You can use placeholders
(question marks) for all types of parameters. You cannot distinguish the type of parameters by just looking
at a SQL string that uses placeholders. It is up to you to know which placeholder is of type IN, OUT, or INOUT
parameter, and treat them accordingly. The next three sections will describe how to treat IN, OUT and INOUT
parameter types in a CallableStatement.

Using IN Parameters
An IN parameter type means that the caller has to pass a value for that parameter when it calls the
stored procedure. Before executing a CallableStatement, you must call one of the setXxx() methods
to set the value for all IN type parameters. Otherwise, you will get an error when you try to execute a
CallableStatement with some IN parameters not set.

Chapter 5 ■ JDBC apI

391

Suppose there are two IN parameters in a SQL statement and their placeholders are at index 1 and index 2.
The IN parameter at index 1 is of int type and at index 2 is of double type. Your code logic would resemble the
code shown:

CallableStatement cstmt = prepare the call...;

// Set the value of the IN parameter at index 1
cstmt.setInt(1, 101);

// Set the value of the IN parameter at index 2
cstmt.setDouble(2, 22.56);

// Execute the statement here

Using OUT Parameters
An OUT parameter type means that the caller has to pass a placeholder to the stored procedure for
that parameter and the stored procedure will set the value, which the caller can read after the stored
procedure has finished executing. Before executing a CallableStatement, you must register an
OUT parameter by calling the registerOutParameter(int placeholderIndex, int sqlType) or
the registerOutParameter(int parameterIndex, java.sql.SQLType sqlType) method of the
CallableStatement. After executing the stored procedure, you need to use one of the getXxx() methods to
read the value of the OUT parameter.

Suppose there is an OUT parameter in a SQL statement that is at index 2 and it is of type double. Here is
how you would register it and read its value:

CallableStatement cstmt = prepare the call...;

// Register the OUT parameter at index 2
cstmt.registerOutParameter(2, java.sql.Types.DOUBLE);

// Execute the statement here

// Read the value of the OUT parameter
double outParamValue = cstmt.getDouble(2);

Using INOUT Parameters
An INOUT parameter works as a combination of IN and OUT parameter types. The caller can pass a value
to the stored procedure using an INOUT parameter type. The stored procedure changes the value of
the INOUT parameter during its execution and the caller can read the value set by the stored procedure
after the stored procedure has finished executing. You must register the INOUT parameter using the
registerOutParameter(int placeholderIndex, int sqlType) or the registerOutParameter(int
parameterIndex, java.sql.SQLType sqlType) method of the CallableStatement interface before
executing the stored procedure. You need to use one of the setXxx() methods of the CallableStatement
to set the value for an INOUT parameter. After a stored procedure has executed, you need to use one of the
getXxx() methods of the CallableStatement to read the value passed back from the stored procedure.

Chapter 5 ■ JDBC apI

392

Suppose there is an INOUT parameter in a SQL statement that is at index 1 and it is of type double. Here
is how you would register it, pass a value in it, and read its value:

CallableStatement cstmt = prepare the call...;

// Register the INOUT parameter at index 1
cstmt.registerOutParameter(1, java.sql.Types.DOUBLE);

// Set a value of 55.78 for the INOUT parameter
cstmt.setDouble(1, 55.78);

// Execute the statement here

// Read the value of the INOUT parameter
double inOutParamValue = cstmt.getDouble(1);

Return Parameter Is OUT Parameter Type
If a stored procedure returns a value and you want to capture the returned value, its placeholder (the first
question mark) must be registered as an OUT parameter using the registerOutParameter() method of the
CallableStatement interface. If a return value placeholder is present in the call syntax, it is always the first
OUT parameter and you need to use 1 as its index in the registerOutParameter() and getXxx() methods

Executing a CallableStatement
Before you execute a stored procedure, you need to prepare a CallableStatement by calling the
prepareCall() method of the Connection object. The prepareCall() method accepts a SQL string as a
parameter. The following snippet of code shows how to prepare a CallableStatement:

Connection conn = JDBCUtil.getConnection();
String SQL = "{call myProcedure}";
CallableStatement cstmt = conn.prepareCall(SQL);

The CallableStatement interface does not add any new methods to execute a SQL statement. To
execute the SQL statement, you need to call one of the following three methods with no parameters. All three
methods are inherited from the PreparedStatement interface.

•	 execute()

•	 executeUpdate()

•	 executeQuery()

The method you need to use to execute a SQL statement in a CallableStatement object depends on
what is returned from the execution of the stored procedure.

•	 If it returns mixed results (result sets and update counts), use the execute() method.

•	 If it returns an update count, use the executeUpdate() method.

•	 If it returns a ResultSet, use the executeQuery() method.

Let’s look at some examples of calling a stored procedure with different types of parameters and with/
without a return value.

Chapter 5 ■ JDBC apI

393

Example #1

Stored Procedure: process_salary
Comments: It accepts no parameters and returns no value.

Connection conn = JDBCUtil.getConnection();
String sql = "{call process_salary}";
CallableStatement cstmt = conn.prepareCall(sql);
cstmt.execute();

Example #2

Stored Procedure: give_raise(integer person_id IN, double raise IN)
Comments: It accepts two IN parameters and does not return any value.

Connection conn = JDBCUtil.getConnection();
String sql = "{call give_raise(?, ?)}";
CallableStatement cstmt = conn.prepareCall(sql);

// Set the value for person_id parameter at index 1
cstmt.setInt(1, 101);

// Set the value for raise parameter at index 2
cstmt.setDouble(2, 4.5);

// Execute the stored procedure
cstmt.execute();

Example #3

Stored Procedure: get_employee_count(integer dept_id IN) RETURNS integer
Comments: It accepts an IN parameter and returns an integer value.

Connection conn = JDBCUtil.getConnection();
String sql = "{? = call get_employee_count(?)}";
CallableStatement cstmt = conn.prepareCall(sql);

// Register the first placeholder - the return value as an OUT parameter
cstmt.registerOutParameter(1, java.sql.Types.INTEGER);

// Set the value for dept_id parameter at index 2
cstmt.setInt(2, 1001);

// Execute the stored procedure
cstmt.execute();

// Read the returned value - our first OUT parameter has an index of 1
int employeeCount = cstmt.getInt(1);

System.out.println("Employee Count is " + employeeCount);

Chapter 5 ■ JDBC apI

394

Example #4

Stored Procedure: give_raise(person_id int IN, raise double IN, old_income double OUT, new_
income double OUT)

Comments: It accepts two IN parameters and two OUT parameters.

Connection conn = JDBCUtil.getConnection();
String sql = "{call give_raise(?, ?, ?, ?)}";

CallableStatement cstmt = conn.prepareCall(sql);

// Register the OUT parameters: old_income(index 3), new_income(index 4)
cstmt.registerOutParameter(3, Types.DOUBLE);
cstmt.registerOutParameter(4, Types.DOUBLE);

// Set values for person_id at index 1 and for raise at index 2
cstmt.setInt(1, 1001);
cstmt.setDouble(2, 4.5);

// Execute the stored procedure
cstmt.execute();

// Read the values of the OUT parameters old_income(index 3)
// and new_income (index 4)
double oldIncome = cstmt.getDouble(3);
double newIncome = cstmt.getDouble(4);
System.out.println("Old Income:" + oldIncome);
System.out.println("New Income:" + newIncome);

 ■ Tip You can pass the value for an IN parameter using a literal value or a placeholder. If you use a
placeholder for an IN parameter, you need to use the setXxx() method to set its value before executing
the stored procedure. It is preferred to use a placeholder for an IN parameter and use a setXxx() to set its
value. For example, suppose a stored procedure, process_person(integer person_id IN), accepts an IN
type parameter. You can prepare the call syntax as "{call process_person(1001)}" or "{call process_
person(?)}". In the latter case, you need to use the setInt(1, 1001) method to set the value for the person_
id parameter.

Let’s discuss an example in which you create a stored procedure in a database and call it using a
CallableStatement in a Java program. You create a stored procedure named give_raise. It accepts two IN
parameters called person_id and raise. It accepts two OUT parameters to pass back the old and new values
of the income for a person_id. If the person's income is null, it sets the income to 20000. If a person is not
found, it passes back null in both OUT parameters.

The following are the SQL scripts for the give_raise procedure for some DBMSs. You need to run the
script for your DBMS before you can run the program in Listing 5-12. If you do not find a script for the DBMS
you are using, you can easily write the code for your DBMS by looking at the code in the following sections
for any DBMS whose syntax looks familiar to you. You will see an example of a stored procedure that
generates a result set later in this chapter.

Chapter 5 ■ JDBC apI

395

Adaptive Server Anywhere Database

create procedure give_raise(IN @person_id integer, IN @raise double,
 OUT @old_income double, OUT @new_income double)
begin
 select @old_income = null, @new_income = null;

 if exists(select null from person where person_id = @person_id) then
 select income into @old_income
 from person
 where person_id = @person_id;

 if @old_income is null then
 select 20000.00 into @new_income;
 else
 select @old_income * (1 + @raise/100) into @new_income;
 end if;

 update person
 set income = @new_income
 where person_id = @person_id;
 end if;
end;

MySQL Database

DELIMITER $$

DROP PROCEDURE IF EXISTS give_raise $$

CREATE PROCEDURE give_raise(in person_id_param int, in raise double,
 out old_income double, out new_income double)
BEGIN

set old_income = null, new_income = null;

if exists(select null from person where person_id=person_id_param) then
 select income into old_income
 from person
 where person_id = person_id_param;

 if old_income is null then
 select 20000.00 into new_income;
 else
 select old_income * (1 + raise/100) into new_income;
 end if;

Chapter 5 ■ JDBC apI

396

 update person
 set income = new_income
 where person_id = person_id_param;
end if;

END $$

DELIMITER ;

Oracle Database

create or replace procedure give_raise(person_id_param number,
 raise_param number,
 old_income out number,
 new_income out number)
is
 person_count number;
begin
 old_income := null;
 new_income := null;

 select count(*)
 into person_count
 from person
 where person_id = person_id_param;

 if person_count = 1 then
 select income into old_income
 from person
 where person_id = person_id_param;

 if old_income is null then
 new_income := 20000.00;
 else
 new_income := old_income * (1 + raise_param/100) ;
 end if;
 update person
 set income = new_income
 where person_id = person_id_param;
 end if;

end give_raise;

SQL Server Database

-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES

Chapter 5 ■ JDBC apI

397

 WHERE SPECIFIC_SCHEMA = N'dbo'
 AND SPECIFIC_NAME = N'give_raise'
)
 DROP PROCEDURE dbo.give_raise
GO

CREATE PROCEDURE dbo.give_raise
 @person_id int,
 @raise decimal(5, 2),
 @old_income decimal(10, 2) OUTPUT,
 @new_income decimal(10, 2) OUTPUT
AS
BEGIN
 SET NOCOUNT OFF

 SELECT @old_income = null, @new_income = null;

 IF EXISTS (SELECT null FROM person WHERE person_id = @person_id)
 BEGIN
 SELECT @old_income = income
 FROM person
 WHERE person_id = @person_id;

 IF @old_income is null
 SELECT @new_income = 20000.00;
 ELSE
 SELECT @new_income = @old_income * (1 + @raise/100);

 update person
 set income = @new_income
 WHERE person_id = @person_id;
 END;
END;
GO

DB2 Database

create procedure give_raise(IN person_id_param int,
 IN raise_param double,
 OUT old_income double,
 OUT new_income double)
language sql
begin

 declare person_count int;

 set old_income = null;
 set new_income = null;

Chapter 5 ■ JDBC apI

398

 select count(*) into person_count
 from person
 where person_id = person_id_param;

 if person_count = 1 then
 select income into old_income
 from person
 where person_id = person_id_param;

 if old_income is null then
 set new_income = 20000.00;
 else
 set new_income = old_income * (1 + raise_param/100) ;
 end if;

 update person
 set income = new_income
 where person_id = person_id_param;
 end if;
end
@

Note: @ is used as statement terminator in this syntax to create the stored procedure.

Derby Database
Derby lets you write stored procedure using the Java programing language. You can use a static method of a
class as a stored procedure in Derby. To get the reference of the database connection that executes the stored
procedure, you pass jdbc:default:connection as the connection URL to the DriverManager. Listing 5-11
contains the code for the JavaDBGiveRaiseSp class whose giveRaise() static method will be used as a stored
procedure. You will need to do some setup work, which is described next, before you can use this method as
a stored procedure. For now, just compile the class and include it in the module path.

Listing 5-11. The Java Code for the give_raise Stored Procedure in Apache Derby

// JavaDBGiveRaiseSp.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

public class JavaDBGiveRaiseSp {
 public static void giveRaise(int personId, double raise,
 double[] oldIncomeOut, double[] newIncomeOut) throws SQLException {
 double oldIncome = 0.0;
 double newIncome = 0.0;

Chapter 5 ■ JDBC apI

399

 // Must use the following URL to get the reference of the
 // Connection object in whose context this method is called.
 String dbURL = "jdbc:default:connection";
 Connection conn = DriverManager.getConnection(dbURL);

 String sql = "select income from person where person_id = ?";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, personId);

 ResultSet rs = pstmt.executeQuery();
 if (!rs.next()) {
 return;
 }

 oldIncome = rs.getDouble("income");
 if (rs.wasNull()) {
 newIncome = 20000.00;
 } else {
 newIncome = oldIncome * (1 + raise / 100);
 }

 String updateSql = "update person "
 + "set income = ? "
 + "where person_id = ?";

 PreparedStatement updateStmt = conn.prepareStatement(updateSql);
 updateStmt.setDouble(1, newIncome);
 updateStmt.setInt(2, personId);
 updateStmt.executeUpdate();

 // Close the statement
 updateStmt.close();

 oldIncomeOut[0] = oldIncome;
 newIncomeOut[0] = newIncome;
 }
}

After you have written the Java code for the stored procedure, you need to create the stored procedure
in your Derby database. Use the following command to create the give_raise stored procedure:

--Command to create a stored procedure
CREATE PROCEDURE give_raise(IN person_id integer, IN raise double, OUT old_income Double,
OUT new_income Double)
PARAMETER STYLE JAVA
LANGUAGE JAVA
MODIFIES SQL DATA
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGiveRaiseSp.giveRaise';

Chapter 5 ■ JDBC apI

400

You can execute the command using the ij command-line tool. Refer to the “A Brief Overview of
Apache Derby” section earlier in this chapter for more details on how to execute SQL commands in Derby.
The following sequence of commands shows you how to create this procedure using the ij tool in the
schema named APP:

C:\Java9APIsAndModules>ij
ij version 10.14
ij> connect 'jdbc:derby:beginningJavaDB;user=app;password=app';
ij> CREATE PROCEDURE give_raise(IN person_id integer, IN raise double, OUT old_income
Double, OUT new_income Double)
PARAMETER STYLE JAVA
LANGUAGE JAVA
MODIFIES SQL DATA
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGiveRaiseSp.giveRaise';
0 rows inserted/updated/deleted
ij> exit;
C:\Java9APIsAndModules>

To get the give_raise stored procedure working in Derby, you need to install the JavaDBGiveRaiseSp
class into the database after bundling it into a JAR file. Refer to the Derby documentation on how to install
a Java JAR into the database. Another way (and the easier way) of making the Java stored procedure code
available to the Derby is to include the class in the user's CLASSPATH or the module path of your application.
You do not need to perform this step if you are running the examples in this chapter using the NetBeans IDE
or if you have jdojo.jdbc.jar included in your module path. The JavaDBGiveRaiseSp class is included in
the NetBeans project, and therefore, the class is already in the module path when the examples are run from
inside the NetBeans IDE.

Listing 5-12 shows the complete code to execute the stored procedure give_raise. You can run the
CallableStatementTest class by using different values for person_id and raise in its main() method.

Listing 5-12. Using a CallableStatement Statement to Call a Stored Procedure

// CallableStatementTest.java
package com.jdojo.jdbc;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Types;

public class CallableStatementTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Give a 5% raise to person_id 101
 giveRaise(conn, 102, 5.0);

 // Give a 5% raise to dummy person_id
 giveRaise(conn, -100, 5.0);

Chapter 5 ■ JDBC apI

401

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void giveRaise(Connection conn, int personId, double raise)
 throws SQLException {

 String SQL = "{call give_raise(?, ?, ?, ?)}";
 CallableStatement cstmt = null;
 try {
 // Prepare the call
 cstmt = conn.prepareCall(SQL);

 // Set the IN parameters
 cstmt.setInt(1, personId);
 cstmt.setDouble(2, raise);

 // Register the OUT parameters
 cstmt.registerOutParameter(3, Types.DOUBLE);
 cstmt.registerOutParameter(4, Types.DOUBLE);

 // Execute the stored procedure
 int updatedCount = cstmt.executeUpdate();

 // Read the OUT parameters values
 double oldIncome = cstmt.getDouble(3);
 boolean oldIncomeisNull = cstmt.wasNull();

 double newIncome = cstmt.getDouble(4);
 boolean newIncomeisNull = cstmt.wasNull();

 // Display the results
 System.out.println("Updated Record: " + updatedCount);

 System.out.println("Old Income: " + oldIncome + ", New Income: " + newIncome);

 System.out.println("Old Income was null: " + oldIncomeisNull + ",
New Income is null: " + newIncomeisNull);

 } finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}

Chapter 5 ■ JDBC apI

402

Processing Result Sets
A set of rows obtained by executing a SQL SELECT statement in a database is known as a result set. JDBC lets
you execute a SELECT statement in the database and process the returned result set in the Java program using
an instance of the ResultSet interface. The following sections discuss different ways of processing result sets
using the JDBC API.

What Is a ResultSet?
When you execute a query (a SELECT statement) in a database, it returns the matching records in the
form of a result set. You can consider a result set as a data arranged in rows and columns. The SELECT
statement determines the number of rows and columns that is contained in the result set. A Statement (or
PreparedStatement or CallableStatement) returns the result of a query as a ResultSet object. I am using
two phrases here: "result set" and "ResultSet." By "result set," I mean the data in the form of rows and
columns, and by "ResultSet," I mean an instance of a class that implements the ResultSet interface that
lets you access and manipulate that data. A ResultSet also contains information about the properties of
the columns in the result set such as the data types of the columns, names of the columns, etc.

A ResultSet maintains a cursor, which points to a row in the result set. It works like a cursor in database
programs. You can scroll the cursor to a specific row in the result set to access or manipulate the column
values for that row. The cursor can point to only one row at a time. The row to which it points at a point in
time is called the current row. There are different ways to move the cursor of a ResultSet to a row in the
result set. I discuss all different ways to move the cursor shortly.

The following three properties of a ResultSet need to be discussed before you can look at an example:

•	 Scrollability

•	 Concurrency

•	 Holdability

Scrollability determines the ability of the ResultSet to scroll through the rows. By default, a
ResultSet is scrollable only in the forward direction. When you have a forward-only scrollable ResultSet,
you can move the cursor starting from the first row to the last row. Once you move to the last row, you cannot
reuse the ResultSet because you cannot scroll back in a forward-only scrollable ResultSet. You can also
create a ResultSet that can scroll in the forward as well as the backward direction. I call this ResultSet a
bidirectional scrollable ResultSet. A bidirectional scrollable ResultSet has another property called update
sensitivity. It determines whether the changes in the underlying database will be reflected in the result
set while you are scrolling through its rows. A scroll sensitive ResultSet shows you changes made in the
database, whereas a scroll insensitive one would not show you the changes made in the database after you
have opened the ResultSet. The following three constants in the ResultSet interface are used to specify the
scrollability of a ResultSet:

•	 TYPE_FORWARD_ONLY: Allows a ResultSet to scroll only in the forward direction.

•	 TYPE_SCROLL_SENSITIVE: Allows a ResultSet to scroll in the forward and backward
directions. It makes the changes in the underlying database made by other
transactions or statements in the same transaction visible to the ResultSet. This
type of ResultSet is aware of the changes made to its data by other means.

•	 TYPE_SCROLL_INSENSITIVE: Allows a ResultSet to scroll in the forward and
backward directions. It does not make the changes in the underlying database made
by other transactions or statements in the same transaction visible to the ResultSet
while scrolling. This type of ResultSet determines its data set when it is open and

Chapter 5 ■ JDBC apI

403

the data set does not change if it is updated through any other means except through
this ResultSet itself. If you want to get up-to-date data, you must re-execute the
query.

Concurrency refers to the ability of a ResultSet to update data. By default, a ResultSet is read-only and
it does not let you update its data. If you want to update data in a database through a ResultSet, you need to
request an updatable result set from the JDBC driver. The following two constants in the ResultSet interface
are used to specify the concurrency of a ResultSet:

•	 CONCUR_READ_ONLY: Makes a result set read-only.

•	 CONCUR_UPDATABLE: Makes a result set updatable.

Holdability refers to the state of a ResultSet after a transaction that it is associated with has been
committed. A ResultSet may be closed or kept open when the transaction is committed. The default value
of the holdability of a ResultSet is dependent on the JDBC driver. It is specified using one of the following
two constants defined in the ResultSet interface:

•	 HOLD_CURSORS_OVER_COMMIT: Keeps the ResultSet open after the transaction is
committed.

•	 CLOSE_CURSORS_AT_COMMIT: Closes the ResultSet after the transaction is committed.

You need to verify your JDBC driver's documentation for support for these properties before using
them. You can get information about the supported properties by a JDBC driver of a ResultSet using the
following three methods of the DatabaseMetaData interface. Recall that you can get a DatabaseMetaData
object using the getMetaData() method of a Connection object.

•	 supportsResultSetType()

•	 supportsResultSetConcurrency()

•	 supportsResultSetHoldability()

Listing 5-13 demonstrates how to use these methods to check for these ResultSet properties. The calls
to these methods are placed inside a try-catch block to catch a Throwable, because some JDBC drivers
throw a runtime exception when they do not support a feature. The output is for the Derby DBMS. You may
get a different output when you are connected to a different DBMS.

Listing 5-13. Checking for Properties of a ResultSet Supported by a JDBC Driver

// SupportedResultSetProperties.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import static java.sql.ResultSet.CLOSE_CURSORS_AT_COMMIT;
import static java.sql.ResultSet.CONCUR_READ_ONLY;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.HOLD_CURSORS_OVER_COMMIT;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;
import static java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;
import static java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;
import java.sql.SQLException;

Chapter 5 ■ JDBC apI

404

public class SupportedResultSetProperties {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 DatabaseMetaData dbmd = conn.getMetaData();

 System.out.println("Supported result set scrollability.");
 printScrollabilityInfo(dbmd);

 System.out.println();
 System.out.println("Supported result set concurrency.");
 printConcurrencyInfo(dbmd);

 System.out.println();
 System.out.println("Supported result set holdability.");
 printHoldabilityInfo(dbmd);
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void printScrollabilityInfo(DatabaseMetaData dbmd) {
 try {
 boolean forwardOnly = dbmd.supportsResultSetType(TYPE_FORWARD_ONLY);
 boolean scrollSensitive = dbmd.supportsResultSetType(TYPE_SCROLL_SENSITIVE);
 boolean scrollInsensitive = dbmd.supportsResultSetType(TYPE_SCROLL_INSENSITIVE);

 System.out.println("Forward-Only: " + forwardOnly);
 System.out.println("Scroll-Sensitive: " + scrollSensitive);
 System.out.println("Scroll-Insensitive: " + scrollInsensitive);
 } catch (SQLException e) {
 System.out.println("Could not get scrollability information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }

 public static void printConcurrencyInfo(DatabaseMetaData dbmd) {
 try {
 boolean forwardOnlyReadOnly
 = dbmd.supportsResultSetConcurrency(TYPE_FORWARD_ONLY,
 CONCUR_READ_ONLY);

 boolean forwardOnlyUpdatable
 = dbmd.supportsResultSetConcurrency(TYPE_FORWARD_ONLY,
 CONCUR_UPDATABLE);

 boolean scrollSensitiveReadOnly
 = dbmd.supportsResultSetConcurrency(

Chapter 5 ■ JDBC apI

405

 TYPE_SCROLL_SENSITIVE,
 CONCUR_READ_ONLY);

 boolean scrollSensitiveUpdatable
 = dbmd.supportsResultSetConcurrency(
 TYPE_SCROLL_SENSITIVE,
 CONCUR_UPDATABLE);

 boolean scrollInsensitiveReadOnly
 = dbmd.supportsResultSetConcurrency(TYPE_SCROLL_INSENSITIVE,
 CONCUR_READ_ONLY);

 boolean scrollInsensitiveUpdatable
 = dbmd.supportsResultSetConcurrency(TYPE_SCROLL_INSENSITIVE,
 CONCUR_UPDATABLE);

 System.out.println("Scroll Forward-Only and Concurrency Read-Only: "
 + forwardOnlyReadOnly);

 System.out.println("Scroll Forward-Only and Concurrency Updatable: "
 + forwardOnlyUpdatable);

 System.out.println("Scroll Sensitive and Concurrency Read-Only: "
 + scrollSensitiveReadOnly);

 System.out.println("Scroll Sensitive and Concurrency Updatable: "
 + scrollSensitiveUpdatable);

 System.out.println("Scroll Insensitive and Concurrency Read-Only: "
 + scrollInsensitiveReadOnly);

 System.out.println("Scroll Insensitive and "
 + "Concurrency Updatable: "
 + scrollInsensitiveUpdatable);
 } catch (SQLException e) {
 System.out.println("Could not get concurrency information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }

 public static void printHoldabilityInfo(DatabaseMetaData dbmd) {
 try {
 boolean holdOverCommit
 = dbmd.supportsResultSetHoldability(HOLD_CURSORS_OVER_COMMIT);

 boolean closeAtCommit
 = dbmd.supportsResultSetHoldability(CLOSE_CURSORS_AT_COMMIT);

 System.out.println("Hold Over Commit: " + holdOverCommit);
 System.out.println("Close At Commit: " + closeAtCommit);
 } catch (SQLException e) {

Chapter 5 ■ JDBC apI

406

 System.out.println("Could not get concurrency information.");
 System.out.println("Error Message:" + e.getMessage());
 }
 }
}

Supported result set scrollability.
Forward-Only: true
Scroll-Sensitive: false
Scroll-Insensitive: true

Supported result set concurrency.
Scroll Forward-Only and Concurrency Read-Only: true
Scroll Forward-Only and Concurrency Updatable: true
Scroll Sensitive and Concurrency Read-Only: false
Scroll Sensitive and Concurrency Updatable: false
Scroll Insensitive and Concurrency Read-Only: true
Scroll Insensitive and Concurrency Updatable: true

Supported result set holdability.
Hold Over Commit: true
Close At Commit: true

Getting a ResultSet
You can get a result set from a database using a Statement, a PreparedStatement, or a CallableStatement.
In simple cases, you call executeQuery() method of a Statement or a PreparedStatement object with a
SELECT statement that will return a ResultSet. Here is a typical way to get a forward-only scrollable result set:

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
String sql = "select person_id, first_name, last_name, dob, income from person";

// Execute the query to get the result set
ResultSet rs = stmt.executeQuery(sql);

/* Process the result set using the rs variable... */

The returned ResultSet from the executeQuery() method is already open, and it is ready to be looped
through to get the associated data. In the beginning, the cursor points before the first row in the result set.
You must move the cursor to a valid row before you can access the column's values for that row. The next()
method of the ResultSet is used to move the cursor to the next row. When the next() method is called for
the first time, it moves the cursor to the first row in the result set.

It is very important to consider the return value of the next() method. It returns a boolean value. It
returns true if the cursor is positioned to a valid row. Otherwise, it returns false. If you call the next()
method on an empty ResultSet for the first time, it will return false, because there is no valid row to move
to. If the current row is the last row in the result set, calling the next() method will position the cursor after

Chapter 5 ■ JDBC apI

407

the last row and the next() method will return false. A typical snippet of code for processing a forward-only
scrollable ResultSet object is as follows:

ResultSet rs = get a result set object;

// Move the cursor to the next row by calling the next() method
while(rs.next()) {
 // Process the current row in rs here
}
// Done with the ResultSet

When a cursor is positioned after the last row in a forward-only scrollable ResultSet, you cannot do
anything with the ResultSet, except close it using its close() method. A forward-only scrollable object is
like a create-use-and-throw item. You cannot reopen a ResultSet either. To iterate through the result set
data again, you must re-execute the query and obtain a new ResultSet. However, things are different for a
bidirectional scrollable ResultSet, which lets you iterate through the rows as many times as you want. You
will look at a bidirectional scrollable ResultSet object shortly.

After the program exits the while loop, the cursor points to the row after the last row in the result set.
What is the row after the last row and the row before the first row? They are just two imaginary rows. They do
not exist in reality. These two positions of the cursor of a ResultSet let you make decisions when you want
to loop through the result set multiple times or when you get a ResultSet object as an argument in your
method. When you do not create the ResultSet, you must know the cursor position correctly to process the
rows in a specific order. The following four methods of the ResultSet interface let you know if the cursor is
before the first row, on the first row, on the last row, or after the last row.

•	 boolean isBeforeFirst() throws SQLException

•	 boolean isFirst() throws SQLException

•	 boolean isLast() throws SQLException

•	 boolean isAfterLast() throws SQLException

The method names are self-explanatory. Support for these methods is optional for a forward-only
scrollable ResultSet. Typically, you do not need to use these methods for a forward-only scrollable
ResultSet.

A ResultSet object lets you read the value of a column from its current row using one of its getXxx()
method, where Xxx is the data type of the column. There is one getXxx() method for each Xxx data type
supported by JDBC. For example, to read an int, double, String, Object, and Blob value from a column, you
can use the getInt(), getDouble(), getString(), getObject(), and getBlob() methods of the ResultSet
interface, respectively. You must specify the index or name of the column in the getXxx() method whose
value you want to read. The getXxx() methods are overloaded. One version accepts an int parameter,
which lets you use the column index and another version accepts a String parameter, which lets you use the
column label. If the column label is not specified in the query, you can specify the column name. The first
column in the result set has an index of 1. Suppose you have the ResultSet of the following query:

select person_id as "Person ID", first_name, last_name from person

In the ResultSet, the person_id column has a column index of 1, the first_name column has a
column index of 2, and the last_name column has a column index of 3. You have specified Person ID as
the column label for the person_id column. You have not specified the column labels for the first_name
and last_name columns. To get the value of the person_id column, you need to use either getInt(1) or
getInt("PERSON ID"). To get the value of the first_name column, you need to use either getString(2) or
getString("first_name").

Chapter 5 ■ JDBC apI

408

 ■ Tip Using a column label or name in the getXxx() methods is case-insensitive. that is, you can use
getInt("person id") or getInt("PERSON ID") to get the value of a person_id column. I use the term
“column name” in this chapter to refer to the column label or name.

The following snippet of code shows you how to read column's values of the current row in a result set:

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
String sql = "select person_id, first_name, last_name, dob, income from person";
ResultSet rs = stmt.executeQuery(sql);

// Move the cursor to the next row one by one
while(rs.next()) {
 // Process the current row in rs
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");
 java.sql.Date dob = rs.getDate("dob");
 double income = rs.getDouble("income");

 // Do something with column values
}

You can rewrite the code inside the while loop using the column indexes as follows:

while(rs.next()) {
 // Process the current row in rs
 int personId = rs.getInt(1);
 String firstName = rs.getString(2);
 String lastName = rs.getString(3);
 java.sql.Date dob = rs.getDate(4);
 double income = rs.getDouble(5);

 // Do something with column values
}

It is a matter of personal preference whether to use a column index or a column name in a getXxx()
method of the ResultSet. Sometimes you may not know the name of the columns in advance, such as
when the user passes you a query to execute, and you have to use the data from the result set. When you do
not know the column names, you should use the column indexes. You can get the names of columns in a
ResultSet using the ResultSetMetaData object. Refer to the "ResultSetMetaData" section for more details.

In a ResultSet, when a column has a null value, the getXxx() method returns the default value for the
Xxx data type. For example, for numeric data types (int, double, byte, etc.), the getXxx() method returns
zero when the column has a null value. The reason behind returning the default value for the data type
instead of returning a null is that a primitive data type cannot have a null value in Java. A getXxx() method
returns false for the boolean data type when the column has a null value. The getXxx() returns null if Xxx
is a reference type. If you want to know whether the column value, which you read using a getXxx() method,
is null, you need to call the wasNull() method immediately after calling the getXxx() method. If the
wasNull() method returns true, the column value is null in the result set. If the wasNull() method returns

Chapter 5 ■ JDBC apI

409

false, the column value is not null in the result set. Note that the wasNull() method does not accept
any parameter and it returns null value status of the last read column using a getXxx() method. Here is a
snippet of code to demonstrate the null value check for a column:

ResultSet rs = get a result set object;
java.sql.Date dob = rs.getDate("dob");

if (rs.wasNull()) {
 System.out.println("DOB is null");
} else {
 System.out.println("DOB is " + dob);
}

The getDate() method of the ResultSet object returns a java.sql.Date object. The toString()
method of the java.sql.Date class returns a string in a yyyy-mm-dd format. If you need the date value
converted to any other format, you need to work with an object of the java.text.SimpleDateFormat class
to format your date value. The getTime() and getTimestamp() methods of a ResultSet return a java.
sql.Time object and a java.sql.Timestamp object, respectively. The toString() method of the java.sql.
Time class returns a string in an hh:mm:ss format. The toString() method of the java.sql.Timestamp class
returns a string in a yyyy-mm-dd hh:mm:ss.fffffffff format.

Let’s look at a complete example of processing a ResultSet using a Statement and a
PreparedStatement object. Listing 5-14 demonstrates how to execute a query in a database and process the
results.

Listing 5-14. Getting and Processing a ResultSet Using a Statement and a PreparedStatement

// QueryPersonTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.util.Date;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.text.SimpleDateFormat;
import static java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;
import static java.sql.ResultSet.CONCUR_UPDATABLE;

public class QueryPersonTest {
 // Will be used to format dates
 private static final SimpleDateFormat sdf = new SimpleDateFormat("MM/dd/yyyy");

 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 System.out.println("Using Statement Object...");
 useStatement(conn, 101);
 useStatement(conn, 102);

Chapter 5 ■ JDBC apI

410

 System.out.println("Using PreparedStatement Object...");
 usePreparedStatement(conn, 101);
 usePreparedStatement(conn, 102);

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void useStatement(Connection conn,int personId) throws SQLException {
 String SQL = "select person_id, first_name, last_name, "
 + " gender, dob, income from person "
 + " where person_id = " + personId;

 Statement stmt = null;
 ResultSet rs = null;
 try {
 stmt = conn.createStatement(TYPE_SCROLL_SENSITIVE, CONCUR_UPDATABLE);
 rs = stmt.executeQuery(SQL);
 printResultSet(rs);
 } finally {
 // Closing the Statement closes the associated ResultSet
 JDBCUtil.closeStatement(stmt);
 }
 }

 public static void usePreparedStatement(Connection conn, int personId) throws
SQLException {

 String SQL = "select person_id, first_name, last_name, "
 + " gender, dob, income from person "
 + " where person_id = ?";

 PreparedStatement pstmt = null;
 ResultSet rs = null;
 try {
 pstmt = conn.prepareStatement(SQL);

 // Set the IN parameter for person_id
 pstmt.setInt(1, personId);

 // Execute the query
 rs = pstmt.executeQuery();
 printResultSet(rs);
 } finally {

Chapter 5 ■ JDBC apI

411

 // Closing the Statement closes the ResultSet
 JDBCUtil.closeStatement(pstmt);
 }
 }

 public static void printResultSet(ResultSet rs) throws SQLException {
 while (rs.next()) {
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");
 String gender = rs.getString("gender");
 Date dob = rs.getDate("dob");
 boolean isDobNull = rs.wasNull();

 double income = rs.getDouble("income");
 boolean isIncomeNull = rs.wasNull();

 // Format the dob in MM/dd/YYYY format
 String formattedDob = null;
 if (!isDobNull) {
 formattedDob = formatDate(dob);
 }

 System.out.print("Person ID:" + personId);
 System.out.print(", First Name:" + firstName);
 System.out.print(", Last Name:" + lastName);
 System.out.print(", Gender:" + gender);

 if (isDobNull) {
 System.out.print(", DOB:null");
 } else {
 System.out.print(", DOB:" + formattedDob);
 }

 if (isIncomeNull) {
 System.out.println(", Income:null");
 } else {
 System.out.println(", Income:" + income);
 }
 }
 }

 public static String formatDate(Date dt) {
 if (dt == null) {
 return "";
 }

 String formattedDate = sdf.format(dt);
 return formattedDate;
 }
}

Chapter 5 ■ JDBC apI

412

The useStatement() method accepts a Connection object and a person id as parameters. It uses a
Statement to retrieve the person details in a ResultSet. It calls the printResultSet() method to print all
rows in the ResultSet. Your ResultSet will have a maximum of one row, because person_id is a primary
key in your person table, and you are using it in the WHERE clause of the query. Look at the details of how the
cursor is moved in a while loop, and each column's value is read using an appropriate getXxx() method in
the printResultSet() method. The value for the dob column is formatted in the mm/dd/yyyy format before
printing it.

The usePreparedStatement() method uses a PreparedStatement object to execute the query. Note
that you must use a setXxx() method on a PreparedStatement to set the input parameter for the query. The
code uses pstmt.setInt(1, personId) to set the person ID value in the WHERE clause of the query.

The main() method calls both methods to print the details of the same person id. In this example, you
are not benefiting from pre-compilation of the PreparedStatement, because you are calling this method
separately for each person id. If you want to execute the same PreparedStatement with different inputs
multiple times, you store the reference of the PreparedStatement in your program and reuse it. The intent
of this example is to show you how to use a PreparedStatement to process a query, and I tried to keep the
program logic as simple as possible.

Getting the Number of Rows in a ResultSet
How would you know the number of rows in a ResultSet? The simple answer is that a ResultSet does not
know how many rows it contains. There is no method in the ResultSet interface that returns the number of
rows in the result set.

The ResultSet interface contains a getRow() method that returns the current row number in the
ResultSet. It returns zero if there is no current row, such as when the cursor is before the first row or after
the last row. The support for the getRow() method is optional in a forward-only scrollable ResultSet. You
can say that the getRow() method is of no help in determining the number of rows in a ResultSet object.
You will need to apply some custom logic to get the number of rows in a result set. The following are some of
the methods you can use to get the number of rows in a result set. None of them are without disadvantages.

Scrolling Through All Rows
This method applies a logic that loops through all rows using the next() method after getting the ResultSet.
It maintains a counter variable, which is incremented by one for each loop-iteration. After exiting the loop,
the counter variable contains the number of rows in the ResultSet. The following snippet of code shows this
logic:

ResultSet rs = get a result set object;

// Initialize rowCount to 0
int rowCount = 0;

while(rs.next()) {
 // Increment rowCount by 1
 rowCount++;

 // Process the result set data for the current row
}

// Now, the rowCount variable contains the number of rows in rs
System.out.println("Row Count: " + rowCount);

Chapter 5 ■ JDBC apI

413

If you need the number of rows in a result set before you process its rows, this logic will force you to
get the result set twice: once for getting the number of rows and once for processing the rows. Between the
time when you get the first result set and when you get the second result set, the data in the database might
change, which will make the row count from the first execution invalid. This method is foolproof only if you
need the number of rows in the result set after you have looped through all the rows.

Executing a Separate Query
This method executes a separate query to get the number of rows in a result set. Suppose you want to know
the number of rows returned in a result set by executing a query, as shown:

select person_id, first_name, last_name, gender, dob, income
 from person
 where dob > {d '1970-01-25'}

To get the number of rows returned by this query, you may execute a query as follows:

select count(*)
 from person
 where dob > {d '1970-01-25'}

The value for the first column of the first row in the result set will give you the number of rows returned
from your main query. However, this method suffers from the same drawback that rows in the database may
change between the executions of the two queries.

Using a Bidirectional Scrollable ResultSet
In this method, you need to create a ResultSet object that can scroll in both directions, forward and
backward. You can specify the scrollable property of a ResultSet when you create a Statement object.
Refer to the next section for more details on creating a scrollable ResultSet object that can scroll in both
directions. Make sure that your JDBC driver supports a ResultSet that can scroll in both directions. After
you get the ResultSet, call its last() method to move its cursor to the last row in the result set. Call the
getRow() method when the cursor is at the last row. The getRow() method will return the row number of the
last row, which will be the number of rows in the result set. If you want to process the result set after getting
the number of rows, you can call its beforeFirst() method to scroll the cursor before the first row and start
a while loop to process the rows in the result set again.

A JDBC driver may not support a ResultSet that can scroll in both directions. In such cases, it may
return a forward-only scrollable ResultSet. After getting a ResultSet, it is very important to check if it
supports bidirectional scrolling before you call the last() method on it. A forward-only ResultSet will
throw a SQLException if you call the last() method. You can get the scrollable property of a ResultSet
object by calling its getType() method. Listing 5-15 demonstrates this approach to get the number of rows
in a result set.

Listing 5-15. Getting the Number of Rows in a Bidirectional Scrollable ResultSet

// ResultSetRowCountTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;

Chapter 5 ■ JDBC apI

414

import java.sql.Statement;
import static java.sql.ResultSet.CONCUR_READ_ONLY;
import static java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;

public class ResultSetRowCountTest {
 public static void main(String[] args) {
 Connection conn = null;
 Statement stmt = null;

 try {
 // Get a Connection
 conn = JDBCUtil.getConnection();

 // Request a bi-directional scrollable ResultSet
 stmt = conn.createStatement(TYPE_SCROLL_INSENSITIVE,
 CONCUR_READ_ONLY);
 String SQL = "select person_id, first_name, last_name, dob, "
 + "income from person";

 // Execute the query
 ResultSet rs = stmt.executeQuery(SQL);

 // Make sure you got a bi-directional ResultSet
 int cursorType = rs.getType();
 if (cursorType == ResultSet.TYPE_FORWARD_ONLY) {
 System.out.println("JDBC driver returned a forward - only cursor.");
 } else {
 // Move the cursor to the last row
 rs.last();

 // Get the last row number, which is the row count
 int rowCount = rs.getRow();
 System.out.println("Row Count: " + rowCount);

 // Place the cursor before the first row to
 // process all rows again
 rs.beforeFirst();
 }

 // Process the result set
 while (rs.next()) {
 System.out.println("Person ID: " + rs.getInt(1));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 JDBCUtil.closeStatement(stmt);
 JDBCUtil.commit(conn);
 JDBCUtil.closeConnection(conn);
 }
 }
}

Chapter 5 ■ JDBC apI

415

Bidirectional Scrollable ResultSets
You can request a JDBC driver for a bidirectional scrollable ResultSet by specifying the scrollability property
when you create a Statement, prepare a PreparedStatement, or prepare a CallableStatement using
different methods of a Connection. The following is the list of methods of the Connection interface that
implicitly or explicitly let you specify the scrollability property of a ResultSet object. The throws clause from
the methods declarations has been excluded. They all throw a SQLException.

•	 Statement createStatement()

•	 Statement createStatement(int scrollability, int concurrency)

•	 Statement createStatement(int scrollability, int concurrency, int
holdability)

•	 PreparedStatement prepareStatement(String SQL)

•	 PreparedStatement prepareStatement(String SQL, int scrollability, int
concurrency)

•	 PreparedStatement prepareStatement(String SQL, int scrollability, int
concurrency, int holdability)

•	 CallableStatement prepareCall(String SQL)

•	 CallableStatement prepareCall(String SQL, int scrollability, int
concurrency)

•	 CallableStatement prepareCall(String SQL, int scrollability, int
concurrency, int holdability)

Not all JDBC drivers support all three types of scrollability for a result set. However, all drivers
will support at least the forward-only result set. The default value of the scrollability of a ResultSet is
TYPE_FORWARD_ONLY. When you specify a result set's scrollability in one of these methods and if the JDBC
driver does not support that type of scrollability, the driver will not generate an error. Rather, it will return
a result set with the scrollability type that closely matches the requested scrollability type. If you specify a
scrollability of a ResultSet other than forward-only, it is good practice to check the scrollability type of the
returned ResultSet using the getType() method. The following snippet of code shows how to test for the
scrollability property of a ResultSet:

Connection conn = JDBCUtil.getConnection();

// Request a bi-directional change insensitive ResultSet
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

String SQL = "your select statement goes here";

// Get a result set
ResultSet rs = stmt.executeQuery(SQL);

// Let’s see what type of result set the JDBC driver returned
int cursorType = rs.getType();

if (cursorType == ResultSet.TYPE_FORWARD_ONLY) {
 System.out.println("ResultSet is TYPE_FORWARD_ONLY");
} else if (cursorType == ResultSet.TYPE_SCROLL_SENSITIVE) {

Chapter 5 ■ JDBC apI

416

 System.out.println("ResultSet is TYPE_SCROLL_SENSITIVE");
} else if (cursorType == ResultSet.TYPE_SCROLL_INSENSITIVE) {
 System.out.println("ResultSet is TYPE_SCROLL_INSENSITIVE");
}

The default value for the concurrency of a ResultSet is read-only, as indicated by the constant
ResultSet.CONCUR_READ_ONLY. You can only read data from a ResultSet that has read-only concurrency.
If you want to update data using a ResultSet such as change a column's value, insert new rows, or delete
existing rows, you must have a ResultSet whose concurrency is ResultSet.CONCUR_UPDATABLE. Not all JDBC
drivers support the updatable concurrency. You may request a JDBC driver that you want a ResultSet with
an updatable concurrency. If a JDBC driver does not support it, it will return a read-only ResultSet. You can
check for the concurrency of a ResultSet object as follows:

Connection conn = JDBCUtil.getConnection();

// Request a bidirectional change insensitive ResultSet with concurrency as CONCUR_UPDATABLE
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

String SQL = "your select statement goes here";

// Get a result set
ResultSet rs = stmt.executeQuery(SQL);

// Let's see what type of concurrency the JDBC driver returned
int concurrency = rs.getConcurrency();

if (concurrency == ResultSet.CONCUR_READ_ONLY) {
 System.out.println("ResultSet is CONCUR_READ_ONLY");
} else if (concurrency == ResultSet.CONCUR_UPDATABLE) {
 System.out.println("ResultSet is CONCUR_UPDATABLE");
}

The JDBC driver determines the default value for the holdability of a ResultSet. Different JDBC
drivers have different default values for this property. You can check for the holdability of a ResultSet using
the getHoldability() method of the ResultSet. You can also use the getHoldability() method of the
Connection to get this property of a ResultSet object. Here is how you check the holdability of a ResultSet:

Connection conn = JDBCUtil.getConnection();

// Request a bidirectional change insensitive ResultSet with concurrency
// as CONCUR_UPDATABLE and holdability of HOLD_CURSORS_OVER_COMMIT
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE,
 ResultSet.HOLD_CURSORS_OVER_COMMIT);

String SQL = "your select statement goes here";

// Get a result set
ResultSet rs = stmt.executeQuery(SQL);

Chapter 5 ■ JDBC apI

417

// Let's see what type of holdability the JDBC driver returned
int holdability = conn.getHoldability(); // Java 1.4 and later
//int holdability = rs.getHoldability(); // Java 6 and later

if (holdability == ResultSet.HOLD_CURSORS_OVER_COMMIT) {
 System.out.println("ResultSet is HOLD_CURSORS_OVER_COMMIT");
} else if (holdability == ResultSet.CLOSE_CURSORS_AT_COMMIT) {
 System.out.println("ResultSet is CLOSE_CURSORS_AT_COMMIT");
}

 ■ Tip the getType(), getConcurrency(), and getHoldability() methods throw a SQLException that you
will have to handle in your code.

Scrolling Through Rows of a ResultSet
There are many methods in the ResultSet interface that let you move the cursor position to a row in the
result set. There are two sets of rows that a cursor may point to. One set of rows consists of two imaginary
rows–one before the first row and one after the last row. Another set of rows consists of the rows that match
the query. Table 5-7 shows the rows and column structure of a ResultSet. The cursor in a ResultSet is
positioned before the first row when it is created as shown by a > in the table.

Table 5-7. Rows and Column Structures of a ResultSet

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Before First Row > An imaginary row

Row 1 101 John Jacobs M 01/01/1970 45000.00

Row 2 102 Donna Duncan F 01/01/1960 35000.00

Row 3 102 Buddy Rice M 01/01/1965 25000.00

After Last Row An imaginary row

The table shows three rows in the result set with data that match the query criteria. Note that a ResultSet
does not retrieve all rows for a query at once. The number of rows a ResultSet will retrieve from the database
is JDBC driver-dependent. It may choose to retrieve one row at a time from a database. You can give a hint
to the JDBC driver using the setFetchSize(int fetchSize) method of the ResultSet to fetch a specified
number of rows from the database whenever more rows are needed. When does a ResultSet need to fetch
more rows from the database? A ResultSet needs to fetch more rows if you position its cursor to a row that is
not in its cache. For example, calling the next() method of a ResultSet may trigger a fetch from the database.
Suppose a ResultSet fetches 10 records at a time. If you call the next() method the first time, it will fetch
and cache 10 records and, for nine subsequent calls to its next() method, it will give you rows from its cache.
Fetching and caching rows for a ResultSet is dependent on a JDBC driver and the underlying DBMS.

You can use the getRow() method of the ResultSet to get the row number of the row at which the
cursor is currently positioned. If the cursor is positioned before the first row or after the last row, the
getRow() method returns zero.

Chapter 5 ■ JDBC apI

418

If you have a ResultSet object that has its scrollability set to forward-only, you can only use its next()
method to move the cursor, which moves its cursor one row in the forward direction. Once the cursor is
positioned after the last row, calling the next() method has no effect. The next() method returns true if it is
positioned to a row that was returned from the query. Otherwise, it returns false.

If a ResultSet has a bidirectional scrollability, you have many methods to change its cursor position.
The next() method can also be used in this type of ResultSet to move the cursor one row forward from its
current position. All cursor movement methods can be put into two categories:

•	 Relative cursor movement methods

•	 Absolute cursor movement methods

The relative cursor movement methods move the cursor in the forward or backward direction relative to
the current position of the cursor. You have two types of methods in this category: one that moves the cursor
one row forward or backward from the current position, and one that moves the cursor forward or backward
a specified number of rows. An example of this type of cursor movement is moving the cursor to the next/
previous row from the current position. Table 5-8 lists relative cursor movement methods whose categories
are shown as Relative.

The absolute cursor movement methods move the cursor to a specific row irrespective of the current
cursor position. You have two types of methods in this category: one that accepts a row number to move the
cursor to that row such as the row number 8 and another that moves the cursor to a known position such as
to the last row. Examples of this type of cursor movement are moving the cursor to the eighth row, the first
row, the last row, before the first row, or after the last row, etc. Table 5-8 lists the absolute cursor movement
methods whose categories are shown as Absolute. All methods in the table throw a SQLException.

 ■ Tip You can only use the next() method to move the cursor in a forward-only scrollable ResultSet.
Using any other methods on a forward-only scrollable ResultSet will throw an exception. all cursor movement
methods can be used with a bidirectional scrollable ResultSet. Use the last() method with caution. this
method call will force the JDBC driver to retrieve all rows from the database. If a DBMS does not support a
bidirectional scrollable cursor, a JDBC driver will have to cache all rows on the client. For a very large result set,
it may affect the performance of the application adversely.

Table 5-8. The Cursor Movement Methods of the ResultSet Interface

Method Category Description

boolean next() Relative Moves the cursor one row forward from its current position. It
returns true if the cursor is positioned to a valid row in the result
set. It returns false if the cursor is positioned after the last row. It
may throw an exception or return false if you call it when cursor
is already positioned after the last row. This behavior is JDBC
driver-dependent.

boolean previous() Relative It is the counterpart of the next() method. It moves the cursor
one row backward from its current position. It returns true if
the cursor is positioned to a valid row in the result set. It returns
false if the cursor is positioned before the first row.

(continued)

Chapter 5 ■ JDBC apI

419

Table 5-8. (continued)

Method Category Description

boolean relative
(int rows)

Relative Moves the cursor forward or backward by the specified number
of rows from its current position. A positive value for rows such
as relative(5) moves the cursor forward. A negative value for
rows such as relative(-5) moves the cursor backward. Calling
relative(0) has no effect. Calling relative(1) and relative(-1)
has the same effect as calling next() and previous(), respectively.

If the number of specified rows to move is beyond the range of
rows (including before the first row and after the last row), the
cursor will be positioned before the first row or after the last row
depending on the direction of the specified movement.

It returns true if the cursor is positioned to a valid row.
Otherwise, it returns false.

Some JDBC drivers throw a SQLException when you call this
method and the cursor is not positioned to a valid row, for
example, when it is positioned before the first or after the last
row. Some JDBC drivers just return false in such cases.

boolean first() Absolute Moves the cursor to the first row in the result set. It returns true
if the cursor is positioned to the first row. It returns false if the
result set is empty.

boolean last() Absolute Moves the cursor to the last row in the result set. It returns true
if the cursor is positioned to the last row. It returns false if the
result set is empty.

void beforeFirst() Absolute Positions the cursor before the first row. Calling this method has
no effect on an empty result set.

void afterLast() Absolute Positions the cursor after the last row. Calling this method has no
effect on an empty result set.

boolean absolute
(int row)

Absolute Moves the cursor to the specified row number. It accepts a positive
as well as a negative row number. If a positive row number is
specified, the row is counted from the beginning. If a negative row
number is specified, the row number is counted from the end.

Suppose there are 10 rows in a result set. Calling absolute(1) will
position the cursor to the first row. Calling absolute(2) will position
the cursor to the second row. Calling absolute(-1) will position the
cursor to the first row from the end, which would be the last row.
Calling absolute(-2) will position the cursor to the second-last row.
Calling absolute(8) and absolute(-3) will have the same effect
as positioning the cursor on the eighth row in a 10-row result set.
Calling absolute(0) positions the cursor before the first row.

It returns true if the cursor is positioned to a valid row.
Otherwise, it returns false.

Any attempt to move the cursor beyond the valid row range will
position the cursor either before the first row or after the last row
depending on the direction of the movement.

Calling absolute(1) is the same as calling first(). Calling
absolute(-1) is the same as calling last().

Chapter 5 ■ JDBC apI

420

Knowing the Cursor Position in a ResultSet
The five methods in the ResultSet let you know where the cursor is currently positioned. Four methods
return a boolean value of true if cursor is at the specific position. These methods are isBeforeFirst(),
isFirst(), isLast(), and isAfterLast(). The method names are self-explanatory. They return false if
they are called on an empty result set. The fifth method, called getRow(), returns the current row number as
an int. It returns 0 If the cursor is positioned before the first row, after the last row, or result set is empty.

Closing a ResultSet
You can close a ResultSet by calling its close() method. Calling the close() method on an already closed
ResultSet has no effect.

ResultSet rs = get a result set object;

// Process the rs object...

// Close the result set
rs.close();

Closing a ResultSet frees the resources associated with it. A ResultSet can also be closed implicitly in
the following situations:

•	 When a Statement that produces a ResultSet is closed, the ResultSet is
automatically closed.

•	 When a Statement is re-executed, its previously opened ResultSet is closed.

•	 If a Statement produces multiple result sets, retrieving the next result set closes the
previously retrieved ResultSet.

•	 If it is a forward-only scrollable ResultSet, a JDBC driver may choose to close it
when its next() method returns false as the part of optimization. Once the next()
method returns false for a forward-only scrollable ResultSet, you cannot do
anything with that ResultSet anyway.

You cannot perform any activities on a closed ResultSet, except calling its close() or isClosed()
method. Calling any other methods will throw a SQLException. However, all is not lost when a ResultSet
object is closed. You can still get to the following pieces of information on a closed ResultSet:

•	 If you have accessed a Blob, Clob, NClob, or SQLXML object from a result set when it
was open, those objects are still valid after the ResultSet has been closed. They are
valid at least until the duration of the transaction.

•	 If you have a ResultSetMetaData object from a ResultSet when it was open, you can
still use it to get metadata information about the result set. The following snippet of
code shows the correct and incorrect sequence of statements:

ResultSet rs = get a result set object;
ResultSetMetaData rsmd = rs.getMetaData();
rs.close(); // rs is closed

Chapter 5 ■ JDBC apI

421

// You can still use rsmd object to get info about rs
System.out.println("Column Count:" + rsmd.getColumnCount());

// Can use only isClosed() and close() method on rs because it is closed.
ResultSetMetaData rsmd = rs.getMetaData(); // An error

Making Changes to a ResultSet
You can use a ResultSet to perform insert, update, and delete operations on database tables. The
concurrency for the ResultSet object must be ResultSet.CONCUR_UPDATABLE in order to perform updates
on the ResultSet. Inserting a new row and updating an existing row in a ResultSet is a two-step process,
whereas deleting a row is a one-step process. In the two-step process, you need to make changes in the
ResultSet first and then call one of its methods to send changes to the database. In the one-step process,
changes to the ResultSet are propagated to the database automatically.

Inserting a Row Using a ResultSet
So far, you are aware of only two imaginary rows in a result set. They were rows before the first row and
after the last row. However, there is one more imaginary row that exists in a ResultSet and that is called an
insert row. You can think of this row as an empty new row, which acts as a staging area for a new row that
you want to insert. You can position the cursor to the insert row using the moveToInsertRow() method of
a ResultSet. When the cursor moves to the insert row, it remembers its previous position. You can call the
moveToCurrentRow() method to move the cursor from the insert row back to the previously current row. So,
the first step in inserting a new row is to move the cursor to the insert row.

// Move the cursor to an insert row to add a new row
rs.moveToInsertRow();

At this point, a new row has been inserted in the staging area and all columns have undefined values.
Calling a getXxx() method to read column values may throw an exception at this point. Once the cursor
is positioned at the insert-row, you need to set the values for all the columns (at least for non-nullable
columns) using one of the updateXxx() methods of the ResultSet, where Xxx is the data type of the column.
The first argument to an updateXxx() method is either the column index or the column name, and the
second argument is the column value. If you want to insert a new row in the person table using a ResultSet,
your updateXxx() method call will look as follows:

// Leave dob and income unset to use null values for them
rs.updateInt("person_id", 501);
rs.updateString("first_name", "Richard");
rs.updateString("last_name", "Castillo");
rs.updateString("gender", "M");

Once you update the value for a column, you can use a getXxx() method to retrieve the new values
from the ResultSet.

You are not done yet with the new row. You must send the changes to the database before your new
row becomes part of the ResultSet. You can send the newly inserted row to the database by calling the
insertRow() method of the ResultSet interface as shown:

// Send changes to the database
rs.insertRow();

Chapter 5 ■ JDBC apI

422

The call to the insertRow() method may or may not make the inserted row a permanent row in the
database. If the auto-commit mode is enabled for the Connection, the insertRow() call will also commit
your transaction. In that case, the new row becomes part of the database permanently. If the auto-commit
mode is disabled for the Connection, you can make the insert permanent by committing the transaction,
or cancel the insert by rolling back the transaction. Note that committing or rolling back a transaction will
commit or roll back all pending activities, not only the newly inserted row.

Once you have sent your inserted row to the database, you can move to the previously current row by
calling the moveToCurrentRow() method. Moving to another row before calling the insertRow() method
after calling the moveToInsertRow() method discards the new row.

Listing 5-16 demonstrates how to use a ResultSet to insert a new row. After getting a ResultSet in
the addRow() method, it checks if it is updatable. If the ResultSet is not updatable, it prints a message to
indicate that and does not do anything. In the end, it prints all rows in the result set. The printed records
also include the new row. Note that you do not update the values for dob and income columns for new rows
and the JDBC driver will use null values for them when it inserts a new row in the person table. If you run
the program more than once in the same database, an error message is printed because the program will
attempt to insert a person record with the same person_id again causing a duplicate row in the table.

Listing 5-16. Inserting a New Row Using a ResultSet

// ResultSetInsert.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;

public class ResultSetInsert {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Add a new row
 addRow(conn);

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void addRow(Connection conn) throws SQLException {
 String SQL = "select person_id, first_name, "
 + "last_name, gender, dob, income "
 + "from person";

Chapter 5 ■ JDBC apI

423

 Statement stmt = null;
 try {
 stmt = conn.createStatement(TYPE_FORWARD_ONLY,
 CONCUR_UPDATABLE);

 // Get the result set
 ResultSet rs = stmt.executeQuery(SQL);

 // Make sure your resultset is updatable
 int concurrency = rs.getConcurrency();

 if (concurrency != ResultSet.CONCUR_UPDATABLE) {
 System.out.println("The JDBC driver does not "
 + "support updatable result sets.");
 return;
 }

 // First insert a new row to the ResultSet
 rs.moveToInsertRow();
 rs.updateInt("person_id", 501);
 rs.updateString("first_name", "Richard");
 rs.updateString("last_name", "Castillo");
 rs.updateString("gender", "M");

 // Send the new row to the database
 rs.insertRow();

 // Move back to the current row
 rs.moveToCurrentRow();

 // Print all rows in the result set
 while (rs.next()) {
 System.out.print("Person ID: " + rs.getInt("person_id")
 + ", First Name: " + rs.getString("first_name")
 + ", Last Name: " + rs.getString("last_name"));
 System.out.println();
 }
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Updating a Row Using a ResultSet
Here are the steps involved in updating an existing row in a ResultSet.

•	 Move the cursor to a valid row in the result set. Note that you can update data only
for an existing row. It is obvious that the cursor should not be positioned before the
first row or after the last row if you want to update the data in a row.

•	 Call the updateXxx() method for a column to update the column's value.

Chapter 5 ■ JDBC apI

424

•	 If you do not want to go ahead with the changes made using updateXxx() method
calls, you need to call the cancelRowUpdates() method of the ResultSet to cancel
the changes.

•	 When you are done updating all the column's values for the current row, call the
updateRow() method to send the changes to the database. If the auto-commit mode
is enabled for the Connection, changes will be committed. Otherwise, you need to
commit the changes to the database.

•	 If you move the cursor to a different row before calling the updateRow(), all your
changes made using the updateXxx() method calls will be discarded.

•	 There is another way to lose your updates to columns in a row. If you call the
refreshRow() method after calling updateXxx(), but before calling updateRow(),
your changes will be lost because the JDBC driver will refresh the row's data from the
database.

Listing 5-17 demonstrates how to update a row using a ResultSet. It increases the income of every
person with non-null income by 10%. If a person's income is null, it updates the income to 10000.00.

Listing 5-17. Updating Data Using a ResultSet

// ResultSetUpdate.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.ResultSet;
import static java.sql.ResultSet.CONCUR_UPDATABLE;
import static java.sql.ResultSet.TYPE_FORWARD_ONLY;
import java.sql.SQLException;
import java.sql.Statement;

public class ResultSetUpdate {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Give everyone a 10% raise
 giveRaise(conn, 10.0);

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 e.printStackTrace();
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

Chapter 5 ■ JDBC apI

425

 public static void giveRaise(Connection conn, double raise) throws SQLException {
 String SQL = "select person_id, first_name, last_name, "
 + "income from person";

 Statement stmt = null;

 try {
 stmt = conn.createStatement(TYPE_FORWARD_ONLY, CONCUR_UPDATABLE);

 // Get the result set
 ResultSet rs = stmt.executeQuery(SQL);

 // Make sure our resultset is updatable
 int concurrency = rs.getConcurrency();

 if (concurrency != CONCUR_UPDATABLE) {
 System.out.println("The JDBC driver does not "
 + "support updatable result sets.");
 return;
 }

 // Give everyone a raise
 while (rs.next()) {
 double oldIncome = rs.getDouble("income");
 double newIncome = 0.0;
 boolean incomeWasNull = rs.wasNull();

 if (incomeWasNull) {
 // null income starts at 10000.00
 newIncome = 10000.00;
 } else {
 // Increase the income
 newIncome = oldIncome + oldIncome * (raise / 100.0);
 }

 // Update the income column with the new value
 rs.updateDouble("income", newIncome);

 // Print the details about the changes
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");
 String lastName = rs.getString("last_name");

 System.out.println(firstName + " " + lastName
 + " (person id=" + personId
 + ") income changed from "
 + (incomeWasNull? "null" : String.valueOf(oldIncome))
 + " to " + newIncome);

 // Send the changes to the database
 rs.updateRow();

Chapter 5 ■ JDBC apI

426

 }
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Deleting a Row Using a ResultSet
Deleting a row from a ResultSet is easier than updating and inserting a row. Here are the steps to delete a
row.

•	 Position the cursor at a valid row.

•	 Call the deleteRow() method of the ResultSet to delete the current row.

The deleteRow() method deletes the row from the ResultSet and, at the same time, it deletes the row
from the database. There is no way to cancel the delete operation except by rolling back the transaction. If
the auto-commit mode is enabled on the Connection, deleteRow() will permanently delete the row from the
database. Typical code for deleting a row from a ResultSet object is as follows:

ResultSet rs = get an updatable result set object;

// Scroll to the row you want to delete, say the first row
rs.next();

// Delete the current row
rs.delete(); // Row is deleted from the result set and the database

// Commit or roll back changes depending on your processing logic

Handling Multiple Results from a Statement
Sometimes executing a SQL statement may return multiple results. Typically, you get multiple results by
executing a stored procedure. The results include the update counts and result sets. For example, if you
execute a stored procedure that updates some records and returns a result set, you get two results. The first
one will be the update count and the second will be the result set. Some DBMSs let you suppress sending
back the update counts. For example, you can use SET NOCOUNT ON and SET NOCOUNT OFF options inside
your stored procedure in SQL Server DBMS to disable or enable the update count results. Consult your
DBMS documentation for the options that are available to suppress the update count results.

Use the execute() method of a Statement if it may return multiple results. You need to work with four
things to process multiple results. You may or may not know the order in which the results are returned.
The first thing you need to consider is the return value of the execute() method. You need to work with the
following three methods of the Statement to access all results:

•	 getMoreResults()

•	 getUpdateCount()

•	 getResultSet()

Chapter 5 ■ JDBC apI

427

The execute() method may generate many results or no results. You must read one result at a time. You
must first scroll to a result before you can read it. The execute() method scrolls to the first result, if there is
one. If the first result is a ResultSet, the execute() method returns true. If the first result is an update count
or there is no result, it returns false. You can retrieve a ResultSet's result by calling the getResultSet()
method of the Statement. You can retrieve an update count by calling the getUpdateCount() method of the
Statement.

You can scroll to the next result by calling the getMoreResults() method of a Statement. The
getMoreResults() method returns true if it scrolls to a ResultSet result. It returns false if it scrolls to an
update count result or there are no more results.

Aren't the rules to process multiple results confusing? So, what criteria determine that you do have
more results to process? It is a little tricky to tell. You will need to write a few lines of code to process multiple
results returned by executing a statement. The following snippet of code puts the logic together. It uses a
CallableStatement. You can also use a Statement or PreparedStatement. The following logic does not
depend on the order or the count of the multiple results:

Callable cstmt = get a callable statement object;
boolean hasResultSet = cstmt.execute();
int updateCount = cstmt.getUpdateCount();

while (hasResultSet || updateCount != -1) {
 if (hasResultSet) {
 // The cursor is pointing to a ResultSet
 ResultSet rs = cstmt.getResultSet();

 // Process the result set here
 System.out.println("Got a result set");
 } else {
 System.out.println("Got an update Count: " + updateCount);
 }

 // Move the cursor to the next result
 hasResultSet = cstmt.getMoreResults();

 // Get the new update count
 updateCount = cstmt.getUpdateCount();
}

// When we get to this point, all results have been processed.

 ■ Tip When you call the getMoreResults() method, the result set that was previously obtained by using the
getResultSet() method is closed. If you want to keep the previously accessed result set, you can use another
version of the getMoreResults() method that accepts an argument, which lets you specify what to do with the
open ResultSet objects. Closing the statement will close all result sets.

Chapter 5 ■ JDBC apI

428

Getting a Result Set from a Stored Procedure
I have covered a great deal of details on processing result sets that are produced by executing a SELECT
statement (see Listing 5-14). A stored procedure can also produce a result set. Producing a result set in a
stored procedure is easy in most of the databases. It is just a matter of writing a SELECT statement inside the
stored procedure. The following is an example of creating a stored procedure in Adaptive Server Anywhere
DBMS that returns a result set. The name of the stored procedure is get_person_details. It accepts one
parameter, which is of type integer and is the value for person_id. To return a result set, it simply selects
columns from the person table for the person_id that is passed in.

-- Adaptive Server Anywhere 9.0
create procedure get_person_details(@person_id integer)
as
begin
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = @person_id
end

Producing a result set inside a stored procedure in Oracle database is a little different. You need to work
with a REF CURSOR type in an Oracle database to produce a result set. First, you work with an example of
dealing with result sets produced by a stored procedure by a DBMS other than Oracle. Refer to your DBMS
and its JDBC documentation on how it supports producing a result set inside a stored procedure. At the end
of this section, you will see an example of producing a result set in a stored procedure using Oracle DBMS.

This section contains the database script to create a get_person_details stored procedure in some
DBMSs. If you are working with one of these DBMSs, you need to run the script for your DBMS before you
can run the examples in this section. If your DBMS is not listed, you can duplicate the logic and create a
get_person_details stored procedure in your DBMS, which produces a result set.

If your stored procedure produces only one result set, it is straightforward to process that result set.
Here are the steps to process one result set from a stored procedure:

•	 Construct the stored procedure call in a string format using the JDBC standard syntax.

String sql = "{call get_person_details(?)}";

•	 Prepare a CallableStatement using the SQL syntax created in the previous step.

CallableStatement cstmt = conn.prepareCall(sql);

•	 Set any IN parameters that need to be passed to the stored procedure. In your case,
you will pass a person_id to the stored procedure and you need to set a person_id as
the IN parameter.

cstmt.setInt(1, 101);

•	 Call the executeQuery() method of the CallableStatement object, which will return
the result set produced by the stored procedure as a ResultSet.

ResultSet rs = cstmt.executeQuery();

•	 Process the ResultSet object as usual by looping through its rows and using the
getXxx() methods to read the columns values.

Chapter 5 ■ JDBC apI

429

 ■ Tip If your stored procedure returns multiple result sets, you need to use the execute() method of
the CallableStatement interface instead of the executeQuery() method. refer to the "handling Multiple
results from a Statement" section for more details on how to handle multiple result sets produced by a stored
procedure.

The following are the database scripts for creating the get_person_details stored procedure in
different DBMSs.

MySQL Database

DELIMITER $$

DROP PROCEDURE IF EXISTS get_person_details $$

CREATE PROCEDURE get_person_details(in person_id_param int)
BEGIN
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
END $$

DELIMITER ;

Adaptive Server Anywhere Database

create procedure get_person_details(@person_id integer)
as
begin
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = @person_id
end

Oracle Database

CREATE OR REPLACE
PACKAGE JDBC_TEST_PKG
AS
 type person_cursor_type is ref cursor;
END JDBC_TEST_PKG;

create or replace PROCEDURE GET_PERSON_DETAILS
(person_id_param IN NUMBER,
 person_cursor OUT jdbc_test_pkg.person_cursor_type
)

Chapter 5 ■ JDBC apI

430

AS
BEGIN
 open person_cursor for
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
END GET_PERSON_DETAILS;

SQL Server Database

-- Drop stored procedure if it already exists
IF EXISTS (
 SELECT *
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE SPECIFIC_SCHEMA = N'dbo'
 AND SPECIFIC_NAME = N'get_person_details'
)
 DROP PROCEDURE dbo.get_person_details
GO

CREATE PROCEDURE dbo.get_person_details
 @person_id int
AS
BEGIN
 SELECT person_id, first_name, last_name, gender, dob, income
 FROM person
 WHERE person_id = @person_id;
END;
GO

DB2 Database

create procedure get_person_details(in person_id_param int)
result sets 1
language sql
begin
 declare c1 cursor with return for
 select person_id, first_name, last_name, gender, dob, income
 from person
 where person_id = person_id_param;
 open c1;
end
@

The @ sign is used as the statement terminator in this syntax.

Chapter 5 ■ JDBC apI

431

Apache Derby Database
For the Apache Derby database, you need to write the stored procedure as a method in a Java class, as shown
in Listing 5-18.

Listing 5-18. The Java Code for the get_person_details Stored Procedure in Apache Derby

// JavaDBGetPersonDetailsSp.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class JavaDBGetPersonDetailsSp {
 public static void getPersonDetails(int personId, ResultSet[] personDetailRs)
 throws SQLException {

 // Must use the following URL to get the reference of the
 // Connection object in whose context this method is called.
 String dbURL = "jdbc:default:connection";
 Connection conn = DriverManager.getConnection(dbURL);

 String sql = "select person_id, first_name, "
 + "last_name, gender, dob, income "
 + "from person "
 + "where person_id = ?";

 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, personId);
 ResultSet rs = pstmt.executeQuery();
 personDetailRs[0] = rs;

 /* Do not close pstmt or rs here. They are meant to be processed
 and closed by the caller of this stored procedure.
 */
 }
}

The command to create the get_person_details stored procedure in the Derby database is as follows.
For more details on working with stored procedures in Derby, refer to Listing 5-11 and the related steps in
the section containing this listing.

-- Command to create the stored procedure
CREATE PROCEDURE get_person_details(IN person_id integer)
PARAMETER STYLE JAVA
LANGUAGE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 1
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGetPersonDetailsSp.getPersonDetails';

Chapter 5 ■ JDBC apI

432

The following is a sequence of commands to create the get_person_details stored procedure in
Derby:

C:\Java9APIsAndModules>ij
ij version 10.14
ij> connect 'jdbc:derby:beginningJavaDB;user=app;password=app';
ij> CREATE PROCEDURE get_person_details(IN person_id integer)
PARAMETER STYLE JAVA
LANGUAGE JAVA
READS SQL DATA
DYNAMIC RESULT SETS 1
EXTERNAL NAME 'com.jdojo.jdbc.JavaDBGetPersonDetailsSp.getPersonDetails';
ij> exit;
C:\Java9APIsAndModules>

Listing 5-19 contains the complete code that executes a stored procedure and processes the result set
produced by the stored procedure. It uses the printResultSet() static method of the QueryPersonTest class
(see Listing 5-14) to print a person's details. This program is valid for a database that has native support for
a result set on the server side. Refer to the example later in this section to process a result set produced by a
stored procedure in an Oracle database.

Listing 5-19. Processing a ResultSet Produced by a Stored Procedure

// StoredProcedureResultSetTest.java
package com.jdojo.jdbc;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;

public class StoredProcedureResultSetTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Print details for person_id 101
 printPersonDetails(conn, 101);

 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void printPersonDetails(Connection conn, int personId)
 throws SQLException {
 String SQL = "{ call get_person_details(?) }";

Chapter 5 ■ JDBC apI

433

 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(SQL);

 // Set the IN parameters
 cstmt.setInt(1, personId);
 ResultSet rs = cstmt.executeQuery();

 // Process the result set
 QueryPersonTest.printResultSet(rs);
 } finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}

Now, it is time to work with an Oracle database only. Here are the steps that you need to use to process a
result set produced by a stored procedure in an Oracle database.

•	 Construct the stored procedure call in a string format using the JDBC standard
syntax. You will have an additional OUT parameter for an Oracle stored procedure.
In an Oracle database, the stored procedure will pass back the reference of a REF
CURSOR type in that OUT parameter. In your case, the first parameter is of the IN type
and it will be used to pass a person_id. The second parameter is an OUT parameter
of type oracle.jdbc.OracleTypes.CURSOR. Note that you must have the JAR file(s)
for the Oracle JDBC driver included in the CLASSPATH to use the oracle.jdbc.
OracleTypes.CURSOR interface.

String sql = "{call get_person_details(?, ?)}";

•	 Prepare a CallableStatement using the SQL syntax created in the previous step.

CallableStatement cstmt = conn.prepareCall(sql);

•	 Set any IN parameters that need to be passed to the stored procedure. In your case,
you will pass a person_id to the stored procedure and you need to set that person_id
as an IN parameter. Register the OUT parameter as oracle.jdbc.OracleTypes.
CURSOR type.

cstmt.setInt(1, 101);
cstmt.registerOutParameter(2, oracle.jdbc.OracleTypes.CURSOR);

•	 Call the execute() method of the CallableStatement object.

cstmt.execute();

•	 Get the ResultSet, which is passed back in the second OUT parameter using the
getObject() method and cast it as ResultSet.

ResultSet rs = (ResultSet)cstmt.getObject(2);

•	 Process the ResultSet as usual by looping through its rows and using its getXxx()
methods to read the column values.

Chapter 5 ■ JDBC apI

434

Listing 5-20 contains the complete code that executes the get_person_details stored procedure in an
Oracle database and processes the result set produced by the stored procedure. Make sure that you have the
JDBCUtil.getConnection() method (see Listing 5-3) that returns a connection to an Oracle database. You
must also compile the necessary package and procedure in the Oracle database as listed in this section for
Oracle before you can run the program in Listing 5-20. Note that you will need to uncomment the following
statement that appears inside the printPersonDetails() method:

//cstmt.registerOutParameter(2, oracle.jdbc.OracleTypes.CURSOR);

I have commented it so the entire class will compile. You will need to add the Oracle JDBC driver JAR
file in the module path and modify the declaration for the jdojo.jdbc module, so it can read the automatic
module defined by the Oracle JDBC JAR. Otherwise, the code will not compile, after uncommenting this
statement.

Listing 5-20. Processing a ResultSet from a Stored Procedure in an Oracle Database

// OracleStoredProcedureResultSetTest.java
package com.jdojo.jdbc;

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;

public class OracleStoredProcedureResultSetTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Print details for person_id 101
 printPersonDetails(conn, 101);

 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void printPersonDetails(Connection conn, int personId)
 throws SQLException {
 String sql = "{ call get_person_details(?, ?) }";
 CallableStatement cstmt = null;
 try {
 cstmt = conn.prepareCall(sql);

 // Set the IN parameters
 cstmt.setInt(1, personId);

Chapter 5 ■ JDBC apI

435

 /* Uncomment the following statement after you have
 the Oracle JDBC driver in module path.
 Register the second parameter as an OUT parameter
 which will return the REF CURSOR (the ResultSet)
 */
 //cstmt.registerOutParameter(2, oracle.jdbc.OracleTypes.CURSOR);

 // Execute the stored procedure
 cstmt.execute();

 // Get the result set from the OUT parameter
 ResultSet rs = (ResultSet) cstmt.getObject(2);

 // Process the result set
 QueryPersonTest.printResultSet(rs);
 } finally {
 JDBCUtil.closeStatement(cstmt);
 }
 }
}

Many databases support the REF CURSOR type. Java 8 has added direct support for REF CURSOR data type
in the JDBC API by adding the JDBCType.REF_CURSOR enum constant that represents REF CURSOR data type in
Java. Using this JDBC type, you will be able to work with the REF CURSOR type without using proprietary JDBC
classes in your Java program. For example, you will be able to register the OUT parameter of the REF CURSOR
database type in the printPersonDetails() method as follows:

cstmt.registerOutParameter(2, JDBCType.REF_CURSOR);

 ■ Note at the time of this writing, the JDBCType.REF_CURSOR type has not been implemented in the Oracle
JDBC driver. If you use this type to register a REF CURSOR database type, you will get a runtime error with an
error message that this data type has not been implemented yet. Use the supportsRefCursors() method of
the DatabaseMetaData interface, which was added in Java 8, to know if the database supports REF CURSOR.

ResultSetMetaData
A ResultSet contains the rows of data returned by executing a query and detailed information about
the columns. The information that it contains about the columns in the result set is called the result set
metadata. An instance of the ResultSetMetaData interface represents the result set metadata. You can get a
ResultSetMetaData by calling the getMetaData() method of the ResultSet.

ResultSet rs = get result set object;
ResultSetMetaData rsmd = rs.getMetaData();

A ResultSetMetaData contains a lot of information about all columns in a result set. All of the
methods, except getColumnCount(), in the ResultSetMetaData accept a column index in the result set as
an argument. It contains the table name, name, label, database data type, class name in Java, nullability,
precision, etc. of a column. It also contains the column count in the result set. Its getTableName() method

Chapter 5 ■ JDBC apI

436

returns the table name of a column; the getColumnName() method returns the column's name; the
getColumnLabel() method returns the column's label; the getColumnTypeName() method returns the
column type in database; and the getColumnClassName() method returns Java class used to represent the
data for the column. Its getColumnCount() method returns the number of columns in the result set.

The column label is a nice printable text that is used in a query after the column name. The following
query uses "Person ID" as the column label for the person_id column. The first_name column does not
have a specified label.

select person_id as "Person ID", first_name from person

The getColumnLabel(1) method call will return "Person ID", whereas getColumnName(1) will
return person_id if this query is used for a result set. If the column label is not specified in a query, the
getColumnLabel() method returns the column name.

Listing 5-21 demonstrates how to use a ResultSetMetaData object to know more about a result set. The
output is shown for Derby. You may get a different output when you use a different JDBC driver because
database-column-type-to-JDBC-column-type mapping depends on the JDBC driver.

Listing 5-21. Using a ResultSetMetaData Object to Get Information About a ResultSet

// ResultSetMetaDataTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

public class ResultSetMetaDataTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();
 String sql = "select person_id as \"Person ID\", "
 + "first_name as \"First Name\", "
 + "gender as Gender, "
 + "dob as \"Birth Date\", "
 + "income as Income "
 + "from person";

 // Print the result set metadata
 printMetaData(conn, sql);

 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

Chapter 5 ■ JDBC apI

437

 public static void printMetaData(Connection conn, String SQL)
 throws SQLException {
 Statement stmt = conn.createStatement();
 try {
 ResultSet rs = stmt.executeQuery(SQL);
 ResultSetMetaData rsmd = rs.getMetaData();
 int columnCount = rsmd.getColumnCount();
 System.out.println("Column Count:" + columnCount);

 for (int i = 1; i <= columnCount; i++) {
 System.out.println("Index:" + i
 + ", Name:" + rsmd.getColumnName(i)
 + ", Label:" + rsmd.getColumnLabel(i)
 + ", Type Name:" + rsmd.getColumnTypeName(i)
 + ", Class Name:" + rsmd.getColumnClassName(i));
 }
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }
}

Column Count:5
Index:1, Name:Person ID, Label:Person ID, Type Name:INTEGER, Class Name:java.lang.Integer
Index:2, Name:First Name, Label:First Name, Type Name:VARCHAR, Class Name:java.lang.String
Index:3, Name:GENDER, Label:GENDER, Type Name:CHAR, Class Name:java.lang.String
Index:4, Name:Birth Date, Label:Birth Date, Type Name:DATE, Class Name:java.sql.Date
Index:5, Name:INCOME, Label:INCOME, Type Name:DOUBLE, Class Name:java.lang.Double

If you have to write generic code to process any or an unknown result set, you will find the
ResultSetMetaData indispensable. For example, suppose you want to develop a Swing application that
will let the user enter in a query and you will display the query data in a JTable. To construct the JTable,
you must know the number of columns in the result set. You can use the getColumnCount() method of
a ResultSetMetaData to know the number of columns in a result set. You can use many other methods
available in this object to construct an appropriate JTable.

Using RowSets
An instance of the RowSet interface is a wrapper for a result set. The RowSet interface inherits from the
ResultSet interface. In simple terms, a RowSet is a Java object that contains a set of rows from a tabular data
source. The tabular data source could be a database, a flat file, a spreadsheet, etc. The RowSet interface is in
the javax.sql package. The following are the advantages of the RowSet over the ResultSet:

•	 A RowSet makes JDBC programming simpler. When you use a ResultSet, you
must deal with a Connection and a Statement at the same time. A RowSet hides the
complexities of using the Connection and the Statement from the developers. All
you have to work with is only one object, which is a RowSet.

•	 A ResultSet is not Serializable and therefore, it cannot be sent over the network or
saved to the disk for later use. A RowSet is Serializable.

Chapter 5 ■ JDBC apI

438

•	 A ResultSet is always connected to a data source. A RowSet does not need to be
connected to its data source all the time. It can connect to the database when needed
such as to retrieve/update data in the data source.

•	 A RowSet is by default scrollable and updatable.

•	 The two properties of a RowSet, serialization and connectionless-ness, makes it very
useful in a thin client environment such as a mobile device or a web application. A
thin client does not need to have a JDBC driver. It may get the data in a disconnected
RowSet from a middle tier. It may modify the data and send the modified RowSet to
the middle tier, which can connect to the data source and update the data. There is
also a RowSet type available for web usage that works with XML data.

•	 A ResultSet uses a database as its data source. You are not restricted to using only
a database as a data source with a RowSet. You can implement a RowSet to use any
tabular data source.

•	 A RowSet follows the JavaBeans model for properties setting and events notifications,
which makes it possible to develop a RowSet using a visual tool that supports the
JavaBeans development.

•	 A RowSet also supports filtering of data after the data has been retrieved. Filtering
of data is not possible in a ResultSet. You must use a WHERE clause in a query to filter
data in the database itself if you use a ResultSet.

•	 A RowSet makes it possible to join two or more data sets based on their column's
values after they have been retrieved from their data sources. One data set can be
retrieved from a database and another from a flat file. This is simply not possible
when you use a ResultSet. When you use a ResultSet, joining multiple data sets is
possible using SQL joins in the query that fills the ResultSet.

You also need to be aware of a few disadvantages of using a RowSet:

•	 A specific RowSet implementation may cache data in memory. You need to be careful
when using such type of RowSets. You should not fetch large volumes of data using
these RowSets. Otherwise, it may slow down the application.

•	 With cached data in a RowSet, there are more possibilities of data inconsistency
between the data in the RowSet and data in the data source, when changes are
applied to the data source.

The following interfaces in the javax.sql.rowset package define five types of rowsets:

•	 JdbcRowSet

•	 CachedRowSet

•	 WebRowSet

•	 FilteredRowSet

•	 JoinRowSet

Chapter 5 ■ JDBC apI

439

 ■ Note the javax.sql.RowSet interface is in the java.sql module. Other interfaces defining specific
type of RowSet such as JdbcRowSet, CachedRowSet, etc. are in the java.sql.rowset module. the java.sql.
rowset module reads the java.sql module transitively. therefore, if your module needs to use types from both
java.sql and java.sql.rowset modules, you module can just read the java.sql.rowset module.

Each type of rowset has features that are suitable for specific needs. All these rowset interfaces inherit,
directly or indirectly, from the RowSet interface. The RowSet interface is inherited from the ResultSet
interface. Therefore, all methods in the ResultSet interface are also available in all types of rowsets.
Figure 5-2 depicts a class diagram for rowset interfaces.

Figure 5-2. A class diagram for the interfaces defining rowsets

Who provides the implementation classes for the rowsets interfaces? Typically, database vendors are
supposed to provide implementation classes. They may provide them as part of their JDBC driver or as a
separate bundle. Third parties can also provide rowset implementation classes. As a developer, you can also
provide rowset implementations to suit specific needs.

Chapter 5 ■ JDBC apI

440

Creating a RowSet
An instance of the RowSetFactory interface lets you create different types of RowSets without caring about
the rowset implementation classes. To get a RowSetFactory, you need to use the newFactory() static method
of the RowSetProvider class. The RowSetFactory interface has five methods to create five types of rowsets.
Those methods are named as createXxxRowSet(), where Xxx can be Cached, Filtered, Jdbc, Join, and Web.
For example, you will use the createJdbcRowSet() method of a RowSetFactory to create a JdbcRowSet. The
following snippet of code shows how to create a JdbcRowSet:

import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
...

JdbcRowSet jdbcRs = null;
try {
 // Get the RowSetFactory implementation
 RowSetFactory rsFactory = RowSetProvider.newFactory();

 // Create a JdbcRowSet object
 jdbcRs = rsFactory.createJdbcRowSet();

 // Work with jdbcRs here
} catch (SQLException e) {
 e.printStackTrace();
} finally {
 if (jdbcRs != null) {
 try {
 // Close the RowSet
 jdbcRs.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

The newFactory() method of the RowSetProvider class searches for the implementation class for the
RowSetFactory interface as follows:

•	 It looks for the value of the javax.sql.rowset.RowSetFactory system property. You
can specify this property value on the command-line. The following command sets
this property value to the com.jdojo.MyRowSetFactoryImpl class when running the
com.jdojo.jdbc.Test class:

java -Djavax.sql.rowset.RowSetFactory=com.jdojo.MyRowSetFactoryImpl
--module-path dist --module jdojo.jdbc/com.jdojo.jdbc.Test

•	 The service provider API looks for a class name in all available JARs to the runtime
under META-INF/services/javax.sql.rowset.RowSetFactory.

•	 It looks for the platform's default implementation for the RowSetFactory interface.

Chapter 5 ■ JDBC apI

441

The RowSetProvider class has another static method called newFactory(String factoryClassName,
ClassLoader cl) that lets you specify the class name of the RowSetFactory implementation to use. This
method is useful when multiple RowSetFactory providers are available at runtime and you want to use a
specific one. Suppose you created a class called com.jdojo.jdbc.MyRowSetFactory that implements the
RowSetFactory interface. The following snippet of code shows how to use this version of the newFactory()
method to use your own implementation of the RowSetFactory class:

String factoryClassName = "com.jdojo.jdbc.MyRowSetFactory";

// Use null as the second argument to use the current Thread's context classLoader
RowSetFactory factory = RowSetProvider.newFactory(factoryClassName, null);

// Create a JdbcRowSet
JdbcRowSet jdbcRs = factory.createJdbcRowSet();

Setting RowSet Connection Properties
A RowSet is a JavaBeans component. You can set its properties at design time using a visual development
tool. You can also set its properties at runtime. Typically, a RowSet will need to connect to a data source to
retrieve and update data. You can set the database connection properties for a RowSet in terms of a JDBC
URL or a data source name. When you use a JDBC URL, the RowSet will use a JDBC driver to connect to the
database registered with the DriverManager class. You can set the JDBC connection properties for a RowSet
object as follows:

// Register the JDBC driver with the DriverManager here...

// Create a RowSet
RowSet rs = create a RowSet;

// Set the connection properties for the RowSet
rs.setUrl("jdbc:derby:beginningJavaDB");
rs.setUsername("app");
rs.setPassword("app");

You do not need to establish a connection to the database. The RowSet will take care of establishing
connection when it is needed.

Alternatively, you can set a data source name for the RowSet. It will look up the data source name using
a JNDI service to get a DataSource object for connecting to the database.

RowSet rs = create a RowSet;
rs.setDataSourceName("jdbc/myTestDB");

You need to set either a data source name or a JDBC URL. If you set both, the most recently set non-null
value will be used to connect to the database.

Not all RowSets connect to a database. For example, if you use a RowSet to send data over the network,
you do not need to set its connection properties. However, if a RowSet needs to interact with a database, you
must set these properties before you call any methods of that RowSet needing a database connection.

Chapter 5 ■ JDBC apI

442

Setting a Command for a RowSet
You learned in the previous section that you do not need to worry about a Connection to use a RowSet. The
benefits of using a RowSet do not stop there. When you work with a RowSet, you do not need to worry about
Statement, PreparedStatement, and CallableStatement either. However, you must specify a command
that will generate the result set for the RowSet. The command will be in a string in the form of a SQL SELECT
statement or a stored procedure call. You can use a question mark as a placeholder for any parameter
that you would like to pass to your command at runtime. To set a parameter value at runtime, you need
to use one of setXxx(int paramIndex, Xxx paramValue) methods of the RowSet interface. Working with
parameters in a command for a RowSet is the same as working with parameters for a PreparedStatement.
The following snippet of code contains some examples of setting a command for a RowSet object:

RowSet rs = create a RowSet;

/* Example 1 */
// Command to select all rows from the person table
String sqlCommand = "select person_id, first_name, last_name from person";

// Set the command to the RowSet object
rs.setCommand(sqlCommand);

/* Example 2 */
// Command to select rows from the person table with two parameters that
// will be the range of the income
String sqlCommand = "select person_id, first_name, last_name, income " +
 "from person " +
 "where income between ? and ?";

// Set the command to the RowSet object
rs.setCommand(sqlCommand);

// Set the range of income between 20000.0 and 30000.0
rs.setDouble(1, 20000.0);
rs.setDouble(2, 30000.0);

/* Example 3 */
// Command to execute a stored procedure that accepts two parameters that will be the
// range of the income. The getPersons() stored procedure produces a result set.
String sqlCommand = "{call getPersons(?, ?)}";

// Set the command to the RowSet object
rs.setCommand(sqlCommand);

// Set the range of income between 20000.0 and 30000.0
rs.setDouble(1, 20000.0);
rs.setDouble(2, 30000.0);

Chapter 5 ■ JDBC apI

443

Populating a RowSet with Data
A RowSet may be populated with data in many ways:

•	 By executing a command such as a SQL SELECT or a stored procedure

•	 By supplying it with a ResultSet in which it will read all its data from the supplied
ResultSet

•	 By reading XML data into it

•	 By using any other custom methods

If you want to populate a RowSet with data by executing its command, you need to call its execute()
method as shown:

// Execute its command to populate the RowSet
rs.execute();

After the execute() method is executed, the RowSet has the data in it and you need to scroll to a row to
read/update its column's value. Other methods of populating a RowSet depend on the type of the RowSet.
I discuss an example of each type shortly in the section that describes the specific types of RowSets.

Scrolling Through Rows of a RowSet
In simple terms, a RowSet is a wrapper for a ResultSet. It inherits all cursor movement methods from the
ResultSet interface. By default, all RowSets are bidirectional scrollable and updateable. However, check
the implementation documentation for your RowSet to see if it imposes any restrictions on scrollability or
updatability. The following snippet of code shows a typical while loop that is used to scroll through all rows
and read some column values from rows. It is the same as what you have been using to scroll through a
ResultSet object.

RowSet rs = create a RowSet;
...
while(rs.next()) {
 // Read values for person_id and first_name from the current row
 int personID = rs.getInt("person_id");
 String firstName = rs.getString("first_name");

 // Perform other processing here
}

Updating Data in a RowSet
Updating data in a RowSet is similar to updating data in a ResultSet. To update a column's value, you need
to move the cursor to a row, use one of the updateXxx() methods to set the new value for a column, and call
the updateRow() method of the RowSet to make the changes permanent in the RowSet.

To insert a new row, you need to move the cursor to the insert row by calling the moveToInsertRow()
method of the RowSet. You need to set values for columns in the insert row using one of updateXxx()
methods. Finally, you call the insertRow() method of the RowSet.

To delete a row, you need to move the cursor to the row you want to delete and call the deleteRow()
method of the RowSet.

Chapter 5 ■ JDBC apI

444

How and when the changes made to a RowSet object are propagated to the database depends on the
type of the RowSet. I discuss updating different types of RowSet in the next few sections.

 ■ Tip You can make a RowSet read-only by calling its setReadOnly(true) method.

The RowSetUtil Class
You need to use repetitive code in examples in using rowsets such as to supply database connection
properties, to get a RowSetFactory instance, and to print rows of a RowSet. Listing 5-22 contains the
complete code for a RowSetUtil class that you will use in this section. Its setConnectionParameters()
method and sets its connection parameters for the Derby JDBC driver. Its getRowSetFactory() method
returns a RowSetFactory instance. Its printPersonRecord() method prints records from a RowSet, assuming
that the RowSet contains at least person_id, first_name, and last_name columns from the person table.

Listing 5-22. A Utility Class to Help Work with a RowSet

// RowSetUtil.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;

public class RowSetUtil {
 public static void setConnectionParameters(RowSet rs) throws SQLException {
 // Set the rowset database connection properties
 String dbURL = "jdbc:derby:beginningJavaDB;create=true;";
 String userId = "app";
 String password = "app";
 rs.setUrl(dbURL);
 rs.setUsername(userId);
 rs.setPassword(password);
 }

 public static RowSetFactory getRowSetFactory() {
 try {
 RowSetFactory factory = RowSetProvider.newFactory();
 return factory;
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 // Print person id and name for each person record
 public static void printPersonRecord(RowSet rs) throws SQLException {
 while (rs.next()) {
 int personId = rs.getInt("person_id");
 String firstName = rs.getString("first_name");

Chapter 5 ■ JDBC apI

445

 String lastName = rs.getString("last_name");
 System.out.println("Row #" + rs.getRow() + ":"
 + " Person ID:" + personId
 + ", First Name:" + firstName
 + ", Last Name:" + lastName);
 }

 System.out.println();
 }
}

JdbcRowSet
A JdbcRowSet is also called a connected rowset because it always maintains a database connection. You
can think of a JdbcRowSet as a thin wrapper for a ResultSet. As a ResultSet always maintains a database
connection, so does a JdbcRowSet. It adds some methods that let you configure the connection behaviors.
You can use its setAutoCommit() method to enable or disable the auto-commit mode for the connection.
You can use its commit() and rollback() methods to commit or roll back changes made to its data.

A JDBC driver or underlying database may not support a bidirectional scrollable and updatable result
set. In such cases, a JdbcRowSet implementation may provide such features. Listing 5-23 uses a JdbcRowSet
to read records for all person_id in a specified range from the person table. Note that the code attempts
to print the number of rows retrieved by using the last() method of the RowSet. At the end, it uses the
printPersonRecord() method of the RowSetUtil class to print the records in the rowset.

Listing 5-23. Using a JdbcRowSet to Read Records from a Table

// JdbcRowSetTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;

public class JdbcRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (JdbcRowSet jdbcRs = factory.createJdbcRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(jdbcRs);

 // Set the command and input parameters
 String sqlCommand = "select person_id, first_name, "
 + "last_name from person "
 + "where person_id between ? and ?";

 jdbcRs.setCommand(sqlCommand);
 jdbcRs.setInt(1, 101);
 jdbcRs.setInt(2, 301);

Chapter 5 ■ JDBC apI

446

 // Retrieve the data
 jdbcRs.execute();

 // Scroll to the last row to get the row count. It may throw an
 // exception if the underlying JdbcRowSet implementation
 // does not support a bi-directional scrolling result set.
 try {
 jdbcRs.last();
 System.out.println("Row Count: " + jdbcRs.getRow());

 // Position the cursor before the first row
 jdbcRs.beforeFirst();
 } catch (SQLException e) {
 System.out.println("JdbcRowSet implementation"
 + " supports forward-only scrolling");
 }

 // Print the records in the rowset
 RowSetUtil.printPersonRecord(jdbcRs);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Updating data using a JdbcRowSet is similar to updating data using a ResultSet. Make sure that you set
the auto-commit mode for the rowset appropriately. In case of a JdbcRowSet, all methods will be used on a
JdbcRowSet object instead of a ResultSet.

Listing 5-24 contains the complete code that retrieves a person record and updates its income to
65000.00. Note that you must call the updateRow() method of the JdbcRowSet after updating the column's
value and before you scroll to another row. Otherwise, your changes will be lost as it is lost in the case of
updating data in a ResultSet. In case of a JdbcRowSet, you do not have a direct access to the Connection
object. You need to use JdbcRowSet object's commit() and rollback() methods to commit and roll back
changes to the database.

Listing 5-24. Updating Data in a JdbcRowSet

// JdbcRowSetUpdateTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.JdbcRowSet;
import javax.sql.rowset.RowSetFactory;

public class JdbcRowSetUpdateTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (JdbcRowSet jdbcRs = factory.createJdbcRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(jdbcRs);

Chapter 5 ■ JDBC apI

447

 // Set the auto-commit mode to false
 jdbcRs.setAutoCommit(false);

 // Set the command and input parameters
 String sqlCommand = "select person_id, first_name, "
 + "last_name, income from person "
 + "where person_id = ?";
 jdbcRs.setCommand(sqlCommand);
 jdbcRs.setInt(1, 101);

 // Retrieve the data
 jdbcRs.execute();

 // If a row is retrieved, update the first row's income column to 65000.00
 if (jdbcRs.next()) {
 int personId = jdbcRs.getInt("person_id");
 jdbcRs.updateDouble("income", 65000.00);
 jdbcRs.updateRow();

 // Commit the changes
 jdbcRs.commit();

 System.out.println("Income has been set to "
 + "65000.00 for person_id=" + personId);
 } else {
 System.out.println("No person record was found.");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

CachedRowSet
A CachedRowSet is also called a disconnected rowset because it is disconnected from a database when it does
not need a database connection. It keeps the database connection open only for the duration it needs to
interact with the database. Once it is done with the connection, it disconnects. For example, it connects to a
database when it needs to retrieve or update data.

It retrieves all data generated by the command and caches the data in memory. Care should be taken
not to retrieve a large volume of data in a CachedRowSet. Otherwise, it may degrade the performance of the
application. It provides a new feature called paging, which lets you deal with large volume of data in chunks.
You will see an example of paging in this section.

A CachedRowSet is always serializable, scrollable, and updatable. You can save it to a disk or send it over
the network. Not all CachedRowSets will need a connection to a data source. For example, you can retrieve
data in a CachedRowSet and send its copy to another application, which can read/update the data in the
CachedRowSet without needing a database connection. When the other application is done working with
the CachedRowSet, it can send the updated rowset to the server. The CachedRowSet does not need to have a

Chapter 5 ■ JDBC apI

448

database connection while it is being used in the other application. You can use one of the following four
methods to populate data in a CachedRowSet object:

•	 void execute() throws SQLException

•	 void execute(Connection conn) throws SQLException

•	 void populate(ResultSet data) throws SQLException

•	 void populate(ResultSet rs, int startRow) throws SQLException

If you have set the database connection properties for a CachedRowSet, you can use the execute()
method. It will connect to the database using the connection properties, which were already set, and execute
the command for the rowset to populate it with the data. Another version of the execute() method accepts a
Connection, which will be used to populate the CachedRowSet with the data. Use the populate() method to
populate a CachedRowSet with data from a ResultSet. Another version of the populate() method accepts a
starting row number from where it reads the rows from the ResultSet into the CachedRowSet.

You need to be aware of some restrictions when using the populate() method of the CachedRowSet.
This method uses a ResultSet, which supplies the data. Before you pass the ResultSet to this method,
you might move the cursor to a specific row. For example, suppose the cursor is on the tenth row in the
ResultSet when you pass it to the populate() method. What would happen when you call the first version
the populate() method? Would it try to read all rows in the ResultSet object or would it read the data from
the eleventh row? What would happen when you call the second version of the populate() method starting
at row 5 when the current row is 10? Java documentation for these methods in the CachedRowSet interface
does not provide any information for these situations. It is up to the implementation class to decide the
details. However, if you just retrieve the ResultSet object and pass it to either versions of the populate()
method, it will behave as expected.

You can obtain the number of rows in a CachedRowSet using its size() method. Note that for a
JdbcRowSet, you need to move the cursor to the last row and call its getRow() method to get the number
of rows in it. Since a CachedRowSet caches all its rows in memory, it can provide you a count of all rows any
time. Note that the size() method is not available for a JdbcRowSet.

// Get the row count in a CachedRowSet
int rowCount = myCachedRowSet.size();

Listing 5-25 demonstrates how to use a CachedRowSet to retrieve rows from a database. It is like using
a JdbcRowSet except that you are able to use its size() method to get the number of rows retrieved. A
CachedRowSet is always bidirectional scrollable.

Listing 5-25. Retrieving Data Using a CachedRowSet

// CachedRowSetTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;

public class CachedRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (CachedRowSet cachedRs = factory.createCachedRowSet()) {

Chapter 5 ■ JDBC apI

449

 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs);

 String sqlCommand = "select person_id, first_name, last_name "
 + "from person "
 + "where person_id between 101 and 501";

 cachedRs.setCommand(sqlCommand);
 cachedRs.execute();

 // Print the records in cached rowset
 System.out.println("Row Count: " + cachedRs.size());
 RowSetUtil.printPersonRecord(cachedRs);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

A CachedRowSet provides an additional feature called paging to let you retrieve rows generated by a
command in chunks. The chunk of rows that is retrieved at one time is called a page. You can think of a page
as a set of rows, where you decide the number of rows in the set. The maximum number of rows in a page
is called the page size. The CachedRowSet lets you set the page size by calling its setPageSize(int size)
method. Suppose a command for a CachedRowSet generates 500 rows. By calling its setPageSize(90), it
will retrieve a maximum of 90 rows at a time. When you call its execute() method, it will retrieve the first 90
rows. To retrieve the next 90 rows, you need to call its nextPage() method. When it has retrieved five pages
(450 rows), calling the nextPage() will retrieve the remaining 50 rows. It also provides a previousPage()
method to retrieve the previous page. You can use the nextPage() and previousPage() methods of a
CachedRowSet to retrieve and process a large result set in chunks. Both methods return true if there are more
pages to retrieve. Otherwise, they return false. Typically, you use a do-while loop and a while loop when
you use the paging feature. The outer do-while loop will scroll through pages and the inner while loop will
scroll through the rows in the current page. The following snippet of code shows the typical processing logic
for a CachedRowSet using paging:

CachedRowSet cachedRs = create and set properties for a cached rowset here;

// Set the page size to 90
cachedRs.setPagesize(90);

// Retrieves the first page
cachedRs.execute();

do {
 // Process each row in the page
 while(cachedRs.next()) {
 // Process a row here...
 }

 // Retrieve the next page of rows
} while (cachedRs.nextPage());

Chapter 5 ■ JDBC apI

450

Listing 5-26 contains the complete code to demonstrate the paging feature of a CachedRowSet. It
retrieves all records from the person table a page at a time using a page size of 2. Typically, you do not
retrieve all rows from a table in your program. The person table has only a few rows. I have done it only for
demonstration purposes to keep the code simpler and smaller.

Listing 5-26. Using the Paging Feature of a CachedRowSet

// CachedRowSetPagingTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;

public class CachedRowSetPagingTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (CachedRowSet cachedRs = factory.createCachedRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs);

 // Set the command and the page size
 String sqlCommand = "select person_id, first_name, last_name "
 + "from person";
 cachedRs.setCommand(sqlCommand);
 cachedRs.setPageSize(2); // page size is 2

 // Execute the command
 cachedRs.execute();

 int pageCounter = 1;

 // Retrieve and print person records one page at a time
 do {
 System.out.println("Page #" + pageCounter
 + " (Row Count=" + cachedRs.size() + ")");

 // Print the record in the current page
 RowSetUtil.printPersonRecord(cachedRs);

 // Increment the page count by 1
 pageCounter++;
 } while (cachedRs.nextPage());
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Chapter 5 ■ JDBC apI

451

You can update the data in a CachedRowSet and save the changes back to the database. The process
of saving changes to the database for a CachedRowSet is different from that of a JdbcRowSet. There are two
main reasons to keep the save process a little different for a CachedRowSet. First, it is disconnected from the
database and you do not want to connect to the database often. Second, the updated data may have conflicts
with the data stored in the database.

The process of inserting, updating, and deleting rows in a CachedRowSet is the same as in a JdbcRowSet.
After changing the values for the current row, you need to call the updateRow() method. Unlike a
JdbcRowSet, a CachedRowSet does not send the changes to the database when you call the updateRow()
method. You use the insertRow() and deleteRow() methods the same way as you do with a ResultSet or a
JdbcRowSet. These methods do not send changes to the database when used with a CachedRowSet.

After you make changes to a CachedRowSet, you can send changes to the database by calling its
acceptChanges() method that may commit the changes if you have set the commit-on-accept-change
value to true. You need to refer to the implementation details of the CachedRowSet on how it lets you set the
commit-on-accept-change value. If it is set to false, you need to use the commit() or rollback() method of
the CachedRowSet to commit or roll back changes.

A CachedRowSet has to deal with conflicts that may exist between the data in it and the data in the
database. For example, you might have retrieved a row from the database, changed the data, and kept the
changes in the CachedRowSet for a long time. When you are ready to save your changes, another user might
have changed the values for the same rows before you. A CachedRowSet uses a synchronization provider
object to synchronize the changes with the database. It uses another object, a synchronization resolver, to
resolve any conflicts that it detects during the synchronization process. When conflicts are detected during
the acceptChanges() method call, it throws a SyncProviderException. You can get the synchronization
resolver object that is an instance of the SyncResolver interface, using the getSyncResolver()
method of the SyncProviderException object. A SyncResolver object lets you navigate through all
conflicts and change the values in the rows with conflicts to new resolved values. You need to use the
setResolvedValue() method of a SyncResolver object to set the resolved value when a conflict is detected.

Listing 5-27 demonstrates how to update a CachedRowSet. It does not set a resolved value for a data
element when it detects a conflict. Rather, it just prints the details about the conflict.

Listing 5-27. Updating and Detecting Conflicts in a CachedRowSet

// CachedRowSetUpdateTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.spi.SyncProviderException;
import javax.sql.rowset.spi.SyncResolver;
import static javax.sql.rowset.spi.SyncResolver.DELETE_ROW_CONFLICT;
import static javax.sql.rowset.spi.SyncResolver.INSERT_ROW_CONFLICT;
import static javax.sql.rowset.spi.SyncResolver.UPDATE_ROW_CONFLICT;

public class CachedRowSetUpdateTest {
 public static void main(String[] args) throws SQLException {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();
 CachedRowSet cachedRs = factory.createCachedRowSet();

 try {
 // Set the connection parameters for the CachedRowSet
 RowSetUtil.setConnectionParameters(cachedRs);

Chapter 5 ■ JDBC apI

452

 String sqlCommand = "select person_id, first_name, last_name, "
 + "gender, dob, income "
 + "from person "
 + "where person_id between 101 and 301";

 cachedRs.setKeyColumns(new int[]{1});

 cachedRs.setCommand(sqlCommand);
 cachedRs.execute();

 // Print the records in the cached rowset
 System.out.println("Before Update");
 System.out.println("Row Count: " + cachedRs.size());
 RowSetUtil.printPersonRecord(cachedRs);

 // Update income to 23000.00 for the first row
 if (cachedRs.size() > 0) {
 updateRow(cachedRs, 1, 23000.00);
 }

 // Insert a new row
 insertNewRow(cachedRs);

 // Send changes to the database
 cachedRs.acceptChanges();

 System.out.println("After Update");
 System.out.println("Row Count: " + cachedRs.size());
 cachedRs.beforeFirst();
 RowSetUtil.printPersonRecord(cachedRs);
 } catch (SyncProviderException spe) {
 // When acceptChanges() detects some conflicts
 SyncResolver resolver = spe.getSyncResolver();

 // Print the details about the conflicts
 printConflicts(resolver, cachedRs);
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {
 if (cachedRs != null) {
 try {
 cachedRs.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
 }

 public static void insertNewRow(CachedRowSet cachedRs) throws SQLException {
 // Move cursor to the insert-row
 cachedRs.moveToInsertRow();

Chapter 5 ■ JDBC apI

453

 // Set the values for columns in the new row
 cachedRs.updateInt("person_id", 751);
 cachedRs.updateString("first_name", "Mason");
 cachedRs.updateString("last_name", "Baker");
 cachedRs.updateString("gender", "M");
 cachedRs.updateDate("dob", java.sql.Date.valueOf("2006-01-02"));
 cachedRs.updateDouble("income", 0.00);

 // Insert the new row in the rowset. It is not sent to the
 // database, until the acceptChanges() method is called
 cachedRs.insertRow();

 // Must move back to the current row
 cachedRs.moveToCurrentRow();
 }

 public static void updateRow(CachedRowSet cachedRs, int row, double newIncome)
 throws SQLException {
 // Set the values for columns in the new row
 cachedRs.absolute(row);
 cachedRs.updateDouble("income", newIncome);
 cachedRs.updateRow();
 }

 public static void printConflicts(SyncResolver resolver, CachedRowSet cachedRs) {
 try {
 while (resolver.nextConflict()) {
 int status = resolver.getStatus();
 String operation = "None";
 if (status == INSERT_ROW_CONFLICT) {
 operation = "insert";
 } else if (status == UPDATE_ROW_CONFLICT) {
 operation = "update";
 } else if (status == DELETE_ROW_CONFLICT) {
 operation = "delete";
 }

 // Get person_id from the database
 Object oldPersonId = resolver.getConflictValue("person_id");

 // Get person ID from the cached rowset
 int row = resolver.getRow();
 cachedRs.absolute(row);
 Object newPersonId = cachedRs.getObject("person_id");

 // Use setResolvedValue() method to set resolved value for a column
 // resolver.setResolvedValue(columnName,resolvedValue);
 System.out.println("Conflict detected in row #" + row
 + " during " + operation + " operation."
 + " person_id in database is " + oldPersonId
 + " and person_id in rowset is " + newPersonId);
 }

Chapter 5 ■ JDBC apI

454

 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

WebRowSet
The WebRowSet interface inherits from the CachedRowSet interface. It adds two more features to the
CachedRowSet:

•	 Reading data and metadata from an XML document

•	 Exporting data and metadata to an XML document

The two methods that it adds to provide XML support are readXML() and writeXML(). Both are
overloaded. They accept either a stream-based or a character-based source/sink. Use the readXML() method
to read XML data, properties, and metadata from a source (a java.io.InputStream or a java.io.Reader)
into a WebRowSet, and use the writeXML() method to write the data, properties, and metadata from a
WebRowSet object to a destination, which could be a java.io.OutputStream or a java.io.Writer. The
following snippet of code shows how to export the contents and properties of a WebRowSet to a string:

WebRowSet webRs = get a web rowset with data...;

// Create a StringWriter object to hold the exported XML
StringWriter sw = new StringWriter();

// Write the XML representation of webRs into sw
webRs.writeXml(sw);

// Get the String object from sw
String webRsXML = sw.toString();

At this point, the webRsXML contains the XML representation of the webRs object. You can pass it to
another module of your application, where you would be able to recreate the WebRowSet with the same data,
properties, and metadata. The following snippet of code shows how to import an XML document into a
WebRowSet:

// Create a StringReader object from an XML string
StringReader sr = new StringReader(webRsXML);

// Create an empty WebRowSet object
RowSetFactory factory = RowSetUtil.getRowSetFactory();
WebRowSet newWebRs = factory.createWebRowSet();

// Import (or read) the XML contents into the new, empty WebRowSet
newWebRs.readXml(sr);

At this point, webRs and newWebRs are in the same state. A WebRowSet makes it easy to export its contents
as XML and import an XML document into it. You can use these processes to get an XML document and to
send it to another application, which does not need to have JDBC connectivity to a database. When the other

Chapter 5 ■ JDBC apI

455

application is done making changes to the WebRowSet, it can export it as an XML document and pass it to
another application that has a JDBC connectivity to synchronize the changes with the database.

The exported XML from a WebRowSet contains three sets of information: properties, metadata, and data.
The properties refer to the properties that are set for the rowset. The metadata contains information about
columns in the rowset such as the column count, column name, column data type, etc. The data section in
the XML contains the original and changed data from the rowset.

Listing 5-28 demonstrates how to export a WebRowSet object as XML. You will find three elements in the
output for this listing: <properties>, <metadata>, and <data>. The program changes the last name of the
first row that was retrieved in the rowset. You may observe that the rowset keeps track of the changes that
are made in its data, as shown by the presence of an <updateRow> element for the first row. The output is
omitted because it is big.

Listing 5-28. Exporting State of a WebRowSet as an XML Document

// WebRowSetXMLTest.java
package com.jdojo.jdbc;

import java.io.StringWriter;
import java.sql.SQLException;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.WebRowSet;

public class WebRowSetXMLTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (WebRowSet webRs = factory.createWebRowSet()) {
 // Set the connection parameters for the WebRowSet
 RowSetUtil.setConnectionParameters(webRs);

 String sqlCommand = "select person_id, first_name, last_name "
 + "from person "
 + "where person_id between ? and ?";

 webRs.setCommand(sqlCommand);
 webRs.setInt(1, 101);
 webRs.setInt(2, 102);
 webRs.execute();

 // Change the last name for the first record
 if (webRs.first()) {
 webRs.updateString("last_name", "Who knows?");
 }

 // Get the XML representation of of the WebRowSet
 StringWriter sw = new StringWriter();
 webRs.writeXml(sw);
 String webRsXML = sw.toString();

Chapter 5 ■ JDBC apI

456

 // Print the exported XML from the WebRowSet
 System.out.println(webRsXML);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Who decides the format of the XML that a WebRowSet implementation should understand? If all
implementations of the WebRowSet use different XML formats, the XML exported from a WebRowSet using
one implementation cannot be imported into a WebRowSet object that uses another implementation.
To avoid this kind of portability issues, Oracle provides an XML schema for the format of the standard
WebRowSet XML. The schema is available at http://java.sun.com/xml/ns/jdbc/webrowset.xsd.
A standard WebRowSet implementation should use this schema to export and import a WebRowSet
implementation to ensure portability with other implementations.

FilteredRowSet
The FilteredRowSet interface inherits from the WebRowSet interface. It provides filtering capability to a
rowset on the client side. You can apply a filter to the rowset by using a WHERE clause in its SQL command,
which is executed in a database. A FilteredRowSet lets you filter the rows of a rowset after it has retrieved the
data from a database. You can think of a FilteredRowSet as a rowset that lets you view its rows based on a set
of criteria, which is called a filter. Setting a filter to a rowset does not delete the rows from the rowset. Rather,
it lets you access only those rows that meet the filter criteria. The filter also applies to inserting, updating, and
deleting the rows in the rowset. You can only read, insert, update, and delete rows that meet the filter criteria.
You can reset the filter any time you want to view all rows of a rowset. A filter is an object of a class that
implements the javax.sql.rowset.Predicate interface. The interface contains the following methods:

•	 boolean evaluate(RowSet rs)

•	 boolean evaluate(Object value, int colIndex) throws SQLException

•	 boolean evaluate(Object value, String colName) throws SQLException

If the evaluate() method returns true for a row, the row is visible. Otherwise, it is filtered out and you
cannot access it. All of the three versions of the evaluate() methods are called internally. The reference
implementation for the rowset by Oracle does not supply an implementation for the Predicate interface.
I discuss an implementation of the Predicate interface in this section.

The FilteredRowSet interface adds two methods, one to set a filter and one to get the filter:

•	 Predicate getFilter()

•	 void setFilter(Predicate filter) throws SQLException

The setFilter() method sets a filter to the rowset. Setting null as a filter resets (or removes) the filter
from a FilteredRowSet and makes all rows accessible. You can set a filter to a FilteredRowSet as follows:

// Create a FilteredRowSet
FilteredRowSet filteredRs = create a filtered row set;

// Set properties and retrieve data in the rowset

// Create a Filter
Predicate filter = create a filter object;

http://java.sun.com/xml/ns/jdbc/webrowset.xsd

Chapter 5 ■ JDBC apI

457

// Set the filter
filteredRs.setFilter(filter);

// Work with the filtered rowset here

// Remove the filter
filteredRs.setFilter(null);

Listing 5-29 contains the code that implements a range filter. It is based on a range of a numeric column.

Listing 5-29. An Implementation of the Predicate Interface

// RangeFilter.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.Predicate;

public class RangeFilter implements Predicate {
 private final int columnIndex;
 private final String columnName;
 private final double min;
 private final double max;

 public RangeFilter(int columnIndex, String columnName, double min, double max) {
 this.columnIndex = columnIndex;
 this.columnName = columnName;
 this.min = min;
 this.max = max;
 }

 @Override
 public boolean evaluate(RowSet rs) {
 // Make sure we have a good row number to evaluate
 try {
 if (rs.getRow() <= 0) {
 return false;
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

 boolean showRow = false;
 Object value = null;

 try {
 value = rs.getObject(columnName);
 if (value instanceof Number) {
 double num = ((Number) value).doubleValue();
 showRow = (num >= min && num <= max);
 }

Chapter 5 ■ JDBC apI

458

 } catch (SQLException e) {
 showRow = false;
 e.printStackTrace();
 throw new RuntimeException(e);
 }
 return showRow;
 }

 @Override
 public boolean evaluate(Object value, int columnIndex) {
 boolean showRow = false;
 if (columnIndex == this.columnIndex && value instanceof Number) {
 double num = ((Number) value).doubleValue();
 showRow = (num >= min && num <= max);
 }
 return showRow;
 }

 @Override
 public boolean evaluate(Object value, String columnName) {
 boolean showRow = false;
 if (this.columnName.equalsIgnoreCase(columnName) && value instanceof Number) {
 double num = ((Number) value).doubleValue();
 showRow = (num >= min && num <= max);
 }
 return showRow;
 }
}

Suppose person_id is the first column in your rowset and you want to see only rows that have person_
id between 101 and 501. You can set a filter for the rowset using an object of the RangeFilter class as
follows:

FilteredRowSet filteredRs = get a filtered row set...;
Predicate filter = new RangeFilter(1, "person_id", 101, 501);
filteredRs.setFilter(filter);

The RangeFilter class is a simple implementation of the Predicate interface. You need to have a little
more sophisticated implementation that can be used in a production environment. For example, you may
allow a filter criteria based on multiple columns.

Listing 5-30 demonstrates how to use a FilteredRowSet. The output of this program will depend on
the data in the person table. A FilteredRowSet is not an alternative to using a filter in a SQL SELECT (using
a WHERE clause). You should not retrieve a large number of rows in a FilteredRowSet and set a filter. It may
degrade your application performance. You should use it when you get a disconnected (or cached) rowset in
your program and you do not have control over its retrieval process. It is also useful if your FilteredRowSet
is not representing rows from a database table such as if you are retrieving data from a flat file.

Chapter 5 ■ JDBC apI

459

Listing 5-30. Using a FilteredRowSet

// FilteredRowSetTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.Predicate;
import javax.sql.rowset.FilteredRowSet;
import javax.sql.rowset.RowSetFactory;

public class FilteredRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (FilteredRowSet filteredRs = factory.createFilteredRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(filteredRs);

 // Prepare, set, and execute the command
 String sqlCommand = "select person_id, first_name, last_name from person";
 filteredRs.setCommand(sqlCommand);
 filteredRs.execute();

 // Print the retrieved records
 System.out.println("Before Filter - Row count: " + filteredRs.size());
 RowSetUtil.printPersonRecord(filteredRs);

 // Set a filter
 Predicate filter = new RangeFilter(1, "person_id", 101, 102);
 filteredRs.setFilter(filter);

 // Print the retrieved records
 System.out.println("After Filter - Row count: " + filteredRs.size());
 filteredRs.beforeFirst();
 RowSetUtil.printPersonRecord(filteredRs);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

JoinRowSet
The JoinRowSet interface inherits from the WebRowSet interface. It provides the ability to combine (or join)
two or more disconnected rowsets into one rowset. Rows from two or more tables are joined in a query using
a SQL JOIN. A JoinRowSet lets you have a SQL JOIN between two or more rowsets without using a SQL JOIN
in a query.

Chapter 5 ■ JDBC apI

460

Using a JoinRowSet is easy. You retrieve data in multiple rowsets: CachedRowSet, WebRowSet, or
FilteredRowSet. Create an empty JoinRowSet and add all rowsets to it by calling its addRowSet() method.
The first rowset that is added to the JoinRowSet becomes the reference rowset for establishing the joins
when more rowsets are added. You can specify the JOIN columns in a rowset individually or when you add a
rowset to a JoinRowSet.

There are five standard types of SQL JOIN:

•	 INNER_JOIN

•	 LEFT_OUTER_JOIN

•	 RIGHT_OUTER_JOIN

•	 FULL_JOIN

•	 CROSS_JOIN

A JoinRowSet lets you establish all of the previously mentioned SQL JOINs between rowsets. Except
for CROSS_JOIN, which gives you a Cartesian product of rows in the rowsets, all other joins are based on
matching columns in the joined rowsets. There are two ways to specify matching columns:

•	 If a rowset that is participating in the JOIN implements the Joinable interface, you
can use one of its setMatchColumn() methods to specify the JOIN columns. The
Joinable interface defines multiple versions of the setMatchColumn() method and
other methods to work with JOIN columns.

•	 You can set the JOIN columns when you add a rowset to a JoinRowSet using one of its
addRowSet() methods.

An implementation of the JoinRowSet interface may not support all five types of JOINs. You can use the
following five methods of the JoinRowSet interface to check if an implementation supports a specific SQL
JOIN type:

•	 boolean supportsInnerJoin()

•	 boolean supportsLeftOuterJoin()

•	 boolean supportsRightOuterJoin()

•	 boolean supportsFullJoin()

•	 boolean supportsCrossJoin()

You can specify a JOIN type in a JoinRowSet using its setJoinType() method, which accepts one of
the five JOIN constants: INNER_JOIN, LEFT_OUTER_JOIN, RIGHT_OUTER_JOIN, FULL_JOIN, and CROSS_JOIN. By
default, it uses INNER_JOIN, which is based on equality of matching columns.

You must have at least two rowsets to work with a JoinRowSet. It does not make sense to have a
JoinRowSet to hold rows from only one rowset. Its name, "Join" itself implies that it represents a JOIN
between at least two rowsets. The names or indexes of the columns in the joined rowsets do not have to be
the same. The data types of the join columns need not be the same. However, the data types must be such
that their values can be compared.

You have only been working with the person table in the previous examples. You can still work with only
one table to form a SQL JOIN based on person_id column. Your first rowset will select person_id and first_
name from the person table. The second rowset will select person_id and last_name from the person table.
You will join the two rowsets based on person_id using INNER_JOIN, which is the default for a JoinRowSet.
Listing 5-31 shows how to achieve this using a JoinRowSet.

Chapter 5 ■ JDBC apI

461

Listing 5-31. Establishing SQL JOINs Using a JoinRowSet

// JoinRowSetTest.java
package com.jdojo.jdbc;

import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.JoinRowSet;
import javax.sql.rowset.RowSetFactory;

public class JoinRowSetTest {
 public static void main(String[] args) {
 RowSetFactory factory = RowSetUtil.getRowSetFactory();

 // Use a try-with-resources block
 try (CachedRowSet cachedRs1 = factory.createCachedRowSet();
 CachedRowSet cachedRs2 = factory.createCachedRowSet();
 JoinRowSet joinRs = factory.createJoinRowSet()) {
 // Set the connection parameters
 RowSetUtil.setConnectionParameters(cachedRs1);
 RowSetUtil.setConnectionParameters(cachedRs2);

 String sqlCommand1 = "select person_id, first_name "
 + "from person "
 + "where person_id in (101, 102)";

 String sqlCommand2 = "select person_id, last_name "
 + "from person "
 + "where person_id in (101, 102, 103)";

 cachedRs1.setCommand(sqlCommand1);
 cachedRs2.setCommand(sqlCommand2);

 cachedRs1.execute();
 cachedRs2.execute();

 // Create a JoinRowSet for cachedRs1 and cachedRs2
 // joining them based on the person_id column
 joinRs.addRowSet(cachedRs1, "person_id");
 joinRs.addRowSet(cachedRs2, "person_id");

 System.out.println("Row Count: " + joinRs.size());
 RowSetUtil.printPersonRecord(joinRs);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

You can add only a non-empty rowset to a JoinRowSet. Adding an empty rowset to a JoinRowSet throws
a SQLException. The JoinRowSet can implement the SQL JOIN based on multiple columns. There is no
limit on the number of rowsets added to a JoinRowSet. However, care should be taken not to add too many

Chapter 5 ■ JDBC apI

462

rowsets with a large number of rows to a JoinRowSet. This may slow down the application because of the
processing needed to perform the JOIN operation on large number of rows.

The toCachedRowSet() method of the JoinRowSet returns a CachedRowSet that represents the rows
based on the JOIN established in the JoinRowSet. The returned CachedRowSet does not contain any changes
made to the data through the JoinRowSet. You can make modifications to the data in a JoinRowSet and
apply the changes back to the database, as you would do with a CachedRowSet. Make sure that you set the
required properties for the JoinRowSet before you call the acceptChanges() method. For example, you
will need to set its database connection properties, its command, etc., so it will have the required pieces of
information to apply the changes to the database.

Working with a Large Object (LOB)
The JDBC API supports working with large objects stored in a database. The type of a large object could be
one of the following.

•	 Binary Large Object (Blob)

•	 Character Large Object (Clob)

•	 National Character Large Object (NClob)

The data for LOB columns is usually not stored in a database table itself. The database stores the data
for a LOB at some other location. It stores a reference (or pointer) to the data location in the table. The
reference for a LOB stored in the table is also called a locator. Whether a LOB column's data is stored with
the table or at other location is determined by the DBMS based on some criteria. For example, a DBMS may
decide that if the size of a LOB is smaller than 10KB, it will store it in the table and if it grows bigger, it will
be stored at some other location and the table will store a locator instead. When you retrieve the data for a
column of a LOB type, usually a JDBC driver retrieves only the locator for the LOB. When you need the actual
data, you need to perform some more operations on the locator to fetch the data. Usually a locator for a LOB
has more information about the data than just being a pointer to the actual data, such as it knows the length
of the data.

A Blob is used to store binary data. A Clob is used to store character data. An NClob is used to store
Unicode character data. Consult your DBMS documentation about the data type name that it uses for Blob,
Clob, and NClob types of LOBs. Oracle DBMS has the same names as Blob, Clob, and NClob, as data types
that you can use to define columns in a table. The JDBC API lets you work with the Blob, Clob, and NClob
data types using the java.sql.Blob, java.sql.Clob, and java.sql.NClob interfaces, respectively.

You will work through an example of using Blob and Clob data types. The example will use a Derby
database. Derby supports Blob and NClob types for LOBs through its Blob and Clob database data types,
respectively

Let’s create a table named person_detail, which is used to store a person's picture as Blob and his text-
only resume in a Clob column. The following is the script to create the table in Derby:

create table person_detail (
 person_detail_id integer not null,
 person_id integer not null,
 picture blob,
 resume clob,
 primary key (person_detail_id),
 foreign key (person_id) references person(person_id)
);

Chapter 5 ■ JDBC apI

463

You can run the program in Listing 5-32 to create the person_detail table in Derby, assuming that the
JDBCUtil.getConnection() method is configured to return a Connection to a Derby database. If you are
using a DBMS other than Derby, change the CREATE TABLE script of the program in Listing 5-32 to match the
syntax of your database.

Listing 5-32. Create the person_detail Table in Apache Derby

// CreatePersonDetailTable.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

public class CreatePersonDetailTable {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Create a SQL string
 String SQL = "create table person_detail("
 + "person_detail_id integer not null, "
 + "person_id integer not null, "
 + "picture blob, "
 + "resume clob, "
 + "primary key (person_detail_id), "
 + "foreign key (person_id) references person(person_id))";

 Statement stmt = null;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate(SQL);
 } finally {
 JDBCUtil.closeStatement(stmt);
 }

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("The person_detail table created successfully.");
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Chapter 5 ■ JDBC apI

464

Retrieving LOB Data
You can retrieve Blob, Clob and NClob column's data from a result set using the getBlob(), getClob(), and
getNClob() methods of the ResultSet interface, respectively. These methods return an object of the java.
sql.Blob, java.sql.Clob, and java.sql.NClob interfaces, respectively. These interfaces include many
methods that let you query the LOB object and manipulate the data they represent. The following snippet of
code reads rows from the person_detail table for the person_detail_id equal to 1001:

Connection conn = JDBCUtil.getConnection();
String SQL = "select person_id, picture, resume " +
 "from person_detail " +
 "where person_detail_id = ?";

PreparedStatement pstmt = null;
pstmt = conn.prepareStatement(SQL);
pstmt.setInt(1, 1001);
ResultSet rs = pstmt.executeQuery();

while(rs.next()) {
 int personId = rs.getInt("person_id");
 Blob pictureBlob = rs.getBlob("picture");
 Clob resumeClob = rs.getClob("resume");
}

After you get a Blob or Clob object from the ResultSet, you will need to read the data. Blob and Clob
interfaces contain a length() method, which returns the number of bytes in a Blob object and the number
of characters in a Clob object. The NClob interface inherits from the Clob interface. The discussion for the
Clob interface also applies to the NClob interface. If you want to read a Blob's data in a byte array and the
Clob's data in a String object, here is how you do it. Note that the length() method of the Blob and Clob
interfaces returns a long.

// Read picture in a byte array
int pictureLength = (int) pictureBlob.length();
byte[] pictureData = pictureBlob.getBytes(1, pictureLength);

// Read resume in a string
int resumeLength = (int) resumeClob.length();
String resume = resumeClob.getSubString(1, resumeLength);

In the getBytes(int start, int length) method of the Blob interface, the first parameter is
the starting position of the byte in the Blob from where you want to start, and the second parameter is
the number of bytes you want to read. The position of the first byte in a Blob is 1, not 0. Similarly, the
getSubString(int start, int length) method of the Clob interface accepts the starting position of the
character in a Clob and the number of characters to return. The position of the first character in a Clob is 1,
not 0.

 ■ Tip Be careful when using the starting position in any context in JDBC programs. In the JDBC apI, indexes
start at 1, and in other parts of Java such as arrays, indexes start at 0.

Chapter 5 ■ JDBC apI

465

Most of the time, you will not read the Blob's and Clob's data in an array or a String object. They
may contain big amounts of data. The Blob and Clob interfaces let you read their data in chunks using an
InputStream and a Reader, respectively. Typically, you would read the data from Blob and Clob objects
and store them in a file on a disk. Here is how you do it. The Blob interface contains a getBinaryStream()
method, which returns an InputStream. You can use that InputStream to read data contained in the Blob.
Similarly, the Clob interface contains a getCharacterStream() method, which returns a Reader. You can use
that Reader to read characters contained in the Clob.

// Read picture data and save it to a file
String pictureFilePath = "c:\\mypicture.bmp";
FileOutputStream fos = new FileOutputStream(pictureFilePath);
InputStream in = pictureBlob.getBinaryStream();
int b = -1;

while((b = in.read()) != -1) {
 fos.write((byte)b);
}

fos.close();

// Read resume data and save it to a file
String resumeFilePath = "c:\\myresume.txt";
FileWriter fw = new FileWriter(resumeFilePath);
Reader reader = resumeClob.getCharacterStream();
int b = -1;
while((b = reader.read()) != -1) {
 fw.write((char)b);
}

fw.close();

Creating a LOB Data
In the previous section, you learned how to read LOB data from the database into a Java program. In this
section, you will learn how to create a LOB in a Java program and send the LOB data to the database to store
it in a table's column. The Connection interface contains three methods to create a LOB:

•	 Blob createBlob() throws SQLException

•	 Clob createClob() throws SQLException

•	 NClob createNClob() throws SQLException

You can use one of the methods to create an empty LOB of a specific type. For example, to store a
picture and resume in a database, you would create a Blob and a Clob as follows:

Connection conn = JDBCUtil.getConnection();
Blob pictureBlob = conn.createBlob();
Clob resumeClob = conn.createClob();

Chapter 5 ■ JDBC apI

466

Once you get the Blob and Clob, there are two ways to write data to them. You can write data to
a Blob using its setBytes() method, which accepts the position in the Blob where you want to write,
and the data in a byte array. You can also write data to a Blob using an OutputStream. You need to call
its setBinaryStream() method, which accepts the starting position for writing the data and returns an
OutputStream. You need to use that OutputStream to write data to the Blob. Here are the two method's
signatures:

•	 int setBytes(long pos, byte[] bytes) throws SQLException

•	 OutputStream setBinaryStream(long pos) throws SQLException

The following snippet of code shows how to write data to a Blob. It reads data from a file, which stores a
picture and writes all bytes to a Blob. The while loop reads one byte at a time from the file to keep the code
simple and readable. In real-world programs, you will read and write a bigger chunk of data at a time.

// Get the output stream of the Blob object to write the picture data to it.
int startPosition = 1; // start writing from beginning
OutputStream out = pictureBlob.setBinaryStream(startPosition);

// Get ready to read from a file
String picturePath = "picture.jpg";
FileInputStream fis = new FileInputStream(picturePath);

// Read from the file and write to the Blob object
int b = -1;
while ((b = fis.read()) != -1) {
 out.write(b);
}

fis.close();
out.close();

The Clob interface provides the following three methods to write data to a Clob object:

•	 int setString(long pos, String str) throws SQLException

•	 int setString(long pos, String str, int offset, int len) throws
SQLException

•	 Writer setCharacterStream(long pos) throws SQLException

The setString() method lets you write a String to it at a specified position. The second version of
the setString() method lets you specify the offset into the source string to start reading and the number
of characters to be read from the source string. The setCharacterStream() method returns a Writer,
which you can use to write data in Unicode characters to the Clob. The Clob interface also contains a
setAsciiStream() method, which returns an OutputStream that you can use to write the ASCII-encoded
characters.

The following snippet of code shows how to write data to a Clob. It reads data from a file, which stores a
resume in a text format and writes all characters to a Clob. The while loop reads one character at a time from
the file to keep the code simple and readable. In real-world programs, you will read and write a bigger chunk
of characters at a time.

// Get the Character output stream of the Clob object to write the resume data to it.
int startPosition = 1; // start writing from beginning
Writer writer = resumeClob.setCharacterStream(startPosition);

Chapter 5 ■ JDBC apI

467

// Get ready to read from a file
String resumePath = "resume.txt";
FileReader fr = new FileReader(resumePath);

// Read from the file and write to the Clob object
int b = -1;
while ((b = fr.read()) != -1) {
 writer.write(b);
}

fr.close();
writer.close();

Finally, it is time to write the LOB's data to a database. You can use the setBlob() and setClob()
methods of the PreparedStatement interface to set the Blob and Clob data as shown:

Connection conn = JDBCUtil.getConnection();
String sql = "insert into person_detail " +
 "(person_detail_id, person_id, picture, resume) " +
 "values " +
 "(?, ?, ?, ?)";

PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setInt(1, 1); // set person_detail_id
pstmt.setInt(2, 101); // Set person_id

Blob pictureBlob = conn.createBlob();

// Write data to pictureBlob object here

pstmt.setBlob(3, pictureBlob);

Clob resumeClob = conn.createClob();

// Write data to resumeClob object here

pstmt.setClob(4, resumeClob);

// Insert the record into the database
pstmt.executeUpdate();

The ResultSet interface also includes the updateBlob() and updateClob() methods, which you can
use to update Blob and Clob objects through a ResultSet. Blob and Clob objects may require a lot of
resources. Once you are done with them, you need to free the resources held by them by calling their free()
method.

 ■ Tip another way to set a Blob object's data in a PreparedStatement is to use its setBinaryStream()
and setObject() methods. another way to set Clob object's data in a PreparedStatement is to use its
setAsciiStream(), setCharacterStream(), or setObject() methods.

Chapter 5 ■ JDBC apI

468

Listing 5-33 contains the complete code that shows how to insert a record in a table that contains Blob
and Clob columns. It has been tested in Derby. It reads the data of a picture from a file named picture.
jpg and a resume from a file named resume.txt. A sample picture file and resume file are supplied with
the source for this book in the Java9APIsAndModules directory. Both files are assumed to be in the current
directory when you run the program. If the files do not exist, the program prints a message with their expected
full path. Change the file paths in the main() method if you want to use different files. The program inserts
a record in the person_detail table and retrieves the same data and saves it to the local disk in the current
directory. Running the program more than once will print an error message because it will try inserting a
duplicate record in the person_detail table. Person details will be retrieved every time you run the program.

Listing 5-33. Reading and Writing Blob and Clob Data Database Columns

// LOBTest.java
package com.jdojo.jdbc;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Writer;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.sql.Blob;
import java.sql.Clob;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class LOBTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 conn = JDBCUtil.getConnection();

 // Insert a record in the person_detail table. Files picture.jpg and resume.txt
 // are assumed to be in the working directory
 String inPicturePath = "picture.jpg";
 String inResumePath = "resume.txt";

 // Make sure that the files exist
 ensureFileExistence(inPicturePath);
 ensureFileExistence(inResumePath);

 try {
 // Insert a person_detail record
 insertPersonDetail(conn, 1, 101, inPicturePath, inResumePath);

Chapter 5 ■ JDBC apI

469

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Inserted person details successfully");
 } catch (SQLException e) {
 System.out.print("Inserting person details failed: ");
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }

 // These files will be created in the current directory
 String outPicturePath = "out_picture.jpg";
 String outResumePath = "out_resume.txt";

 try {
 // Read the person_detail record
 retrievePersonDetails(conn, 1, outPicturePath, outResumePath);

 // Commit the transaction
 JDBCUtil.commit(conn);

 System.out.println("Retrieved and saved person details successfully.");
 } catch (SQLException e) {
 System.out.print("Retrieving person details failed: ");
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void insertPersonDetail(Connection conn, int personDetailId,
 int personId, String pictureFilePath, String resumeFilePath) throws SQLException
{

 String SQL = "insert into person_detail "
 + "(person_detail_id, person_id, picture, resume) "
 + "values "
 + "(?, ?, ?, ?)";

 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 pstmt.setInt(1, personDetailId);
 pstmt.setInt(2, personId);

Chapter 5 ■ JDBC apI

470

 // Set the picture data
 if (pictureFilePath != null) {
 // We need to create a Blob object first
 Blob pictureBlob = conn.createBlob();
 readInPictureData(pictureBlob, pictureFilePath);
 pstmt.setBlob(3, pictureBlob);
 }

 // Set the resume data
 if (resumeFilePath != null) {
 // We need to create a Clob object first
 Clob resumeClob = conn.createClob();
 readInResumeData(resumeClob, resumeFilePath);
 pstmt.setClob(4, resumeClob);
 }

 pstmt.executeUpdate();
 } catch (IOException | SQLException e) {
 throw new SQLException(e);
 } finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }

 public static void retrievePersonDetails(Connection conn, int personDetailId,
 String picturePath, String resumePath) throws SQLException {

 String SQL = "select person_id, picture, resume "
 + "from person_detail "
 + "where person_detail_id = ?";

 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);
 pstmt.setInt(1, personDetailId);
 ResultSet rs = pstmt.executeQuery();

 while (rs.next()) {
 int personId = rs.getInt("person_id");
 Blob pictureBlob = rs.getBlob("picture");
 if (pictureBlob != null) {
 savePicture(pictureBlob, picturePath);
 pictureBlob.free();
 }

 Clob resumeClob = rs.getClob("resume");
 if (resumeClob != null) {
 saveResume(resumeClob, resumePath);
 resumeClob.free();
 }
 }

Chapter 5 ■ JDBC apI

471

 } catch (IOException | SQLException e) {
 throw new SQLException(e);
 } finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }

 public static void readInPictureData(Blob pictureBlob, String pictureFilePath)
 throws FileNotFoundException, IOException, SQLException {

 // Get the output stream of the Blob object to write the picture data to it.
 int startPosition = 1; // start writing from the beginning
 try (OutputStream out = pictureBlob.setBinaryStream(startPosition);
 FileInputStream fis = new FileInputStream(pictureFilePath)) {
 // Read from the file and write to the Blob object
 int b = -1;
 while ((b = fis.read()) != -1) {
 out.write(b);
 }
 }
 }

 public static void readInResumeData(Clob resumeClob,
 String resumeFilePath)
 throws FileNotFoundException, IOException, SQLException {

 // Get the character output stream of the Clob object
 // to write the resume data to it.
 int startPosition = 1; // start writing from the beginning
 try (Writer writer = resumeClob.setCharacterStream(startPosition)) {
 FileReader fr = new FileReader(resumeFilePath);

 // Read from the file and write to the Clob object
 int b = -1;
 while ((b = fr.read()) != -1) {
 writer.write(b);
 }
 fr.close();
 }
 }

 public static void savePicture(Blob pictureBlob, String filePath)
 throws SQLException, IOException {
 try (FileOutputStream fos = new FileOutputStream(filePath)) {
 InputStream in = pictureBlob.getBinaryStream();

 int b = -1;
 while ((b = in.read()) != -1) {
 fos.write((byte) b);
 }
 }
 }

Chapter 5 ■ JDBC apI

472

 public static void saveResume(Clob resumeClob, String filePath)
 throws SQLException, IOException {
 try (FileWriter fw = new FileWriter(filePath)) {
 Reader reader = resumeClob.getCharacterStream();

 int b = -1;
 while ((b = reader.read()) != -1) {
 fw.write((char) b);
 }
 }
 }

 public static void ensureFileExistence(String filePath) {
 Path path = Paths.get(filePath);
 if (!Files.exists(path)) {
 throw new RuntimeException("File " + path.toAbsolutePath() + " does not exist");
 }
 }
}

Batch Updates
You saw examples of using the Statement, PreparedStatement, and CallableStatement interfaces that let
you send one SQL command (or stored procedure call) at a time to the database. The JDBC API includes a
batch update feature that lets you send multiple update commands to a database in a batch (in one bundle)
for execution. A batch update greatly improves performance. The update commands that you can use in a
batch update are SQL INSERT, UPDATE, DELETE, and stored procedures. A command in a batch should not
produce a result set. Otherwise, the JDBC driver will throw a SQLException. A command should generate
an update count that will indicate the number of rows affected in the database by the execution of that
command.

If you are using a Statement to execute a batch of commands, you can have heterogeneous commands
in the same batch. For example, one command could be a SQL INSERT statement and another could be a
SQL UPDATE statement.

If you are using a PreparedStatement or CallableStatement to execute a batch of commands, you will
execute one command with a multiple set of input parameters. A CallableStatement used in a batch update
must return an update count and it should not produce a result set. Otherwise, the JDBC driver will throw a
SQLException.

 ■ Tip Batch update is an optional feature that may be provided by a JDBC driver. If a JDBC driver supports a
batch update, the supportsBatchUpdates() method of the DatabaseMetaData object will return true. You can
get the DatabaseMetaData object using the getMetaData() method of a Connection object. You should turn off
the auto-commit mode when executing batch updates, so you should be able to commit or roll back the entire
batch. If the auto-commit mode is turned on, the commit behavior depends on the JDBC driver implementation
when an error occurs executing one of the commands in the batch.

Chapter 5 ■ JDBC apI

473

How do you execute multiple commands in a batch? It is a multi-step process.

•	 Create a Statement, a PreparedStatement, or a CallableStatement by using an
appropriate method of a Connection. At this point, there is no difference between
executing one command and using a batch of commands.

•	 Use the addBatch() method to add a command to the batch. Each type of statement
object maintains a list of batch commands internally. The addBatch() method adds
a command to the internal list of batch commands. You need to call the addBatch()
method once for each command in the batch that you want to bundle together for
execution.

•	 If you want to clear the list of batch commands without executing them, you can call
the clearBatch() method of the Statement to do so.

•	 Use the executeBatch() method to send the batch of commands to the database for
execution in one go.

It is important to understand the behavior of the executeBatch() method of the Statement interface.
It returns an int[] if all commands in the batch are executed successfully. The array contains as many
elements as the number of commands in the batch. Each element in the array contains the update count
that is returned from the command. The order of the element in the array is the same as the order of
commands in the batch. Sometimes, a command in a batch may execute without an error, but the JDBC
driver was not able to get the update count value. In such a case, a value of Statement.SUCCESS_NO_INFO is
returned in the array.

Java 8 added an executeLargeBatch() method to the Statement interface that works the same as the
executeBatch method, except that it returns a long[] instead of an int[]. Use this method when you expect
the update counts of any commands in the batch to exceed Integer.MAX_VALUE.

A JDBC driver throws a BatchUpdateException if a command in the batch fails to execute successfully.
It is up to the JDBC driver whether it continues to execute the subsequent commands in the batch upon
failure or stops the batch execution upon the first failure. How do you know which command failed in
a batch? When a BatchUpdateException is thrown, you can use its getUpdateCounts(), which returns
an int[]. The update count array contains the update counts of the commands that were executed
in the batch. If a JDBC driver executes all commands in a batch irrespective of a failure, the returned
array will contain as many elements as the number of commands in the batch. If a command failed, its
corresponding value in the array will be Statement.EXECUTE_FAILED. If the getUpdateCounts() method of
the BatchUpdateException object returns a fewer number of elements than the number of commands in the
batch, it means that the JDBC driver stopped processing any commands after the first failure.

The following snippet of code shows how to use a Statement to execute a batch update:

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();

// Add batch update commands
stmt.addBatch("insert into t1...);
stmt.addBatch("insert into t2...);
stmt.addBatch("update t3 set...);
stmt.addBatch("delete from t4...);

// Execute the batch updates
int[] updateCount = null;

Chapter 5 ■ JDBC apI

474

try {
 updatedCount = stmt.executeBatch();
 System.out.println("Batch executed successfully.");
} catch (BatchUpdateException e) {
 System.out.println("Batch failed.");
}

The following snippet of code shows how to use a PreparedStatement to execute a batch update. The
logic will be the same if you use a CallableStatement, except for the construction of the SQL in the string
format. The addBatch() method in the PreparedStatement interface does not accept any parameter.

String sql = "delete from person where person_id = ?";

Connection conn = JDBCUtil.getConnection();
PreparedStatement pstmt = conn.prepareStatement(sql);

/* Add two commands to the batch */
// Command #1: Set the input parameter and add it to the batch.
pstmt.setInt(201);
pstmt.addBatch();

// Command #1: Set the input parameter and add it to the batch.
pstmt.setInt(301);
pstmt.addBatch();

// Execute the batch update
int[] updateCount = null;

try {
 updatedCount = pstmt.executeBatch();
 System.out.println("Batch executed successfully.");
} catch (BatchUpdateException e) {
 System.out.println("Batch failed.");
}

Listing 5-34 contains the complete code to demonstrate how to use a batch update. It also shows
how to handle the results of a batch update returned from the executeUpdate() method and from a
BatchUpdateException. The insertPersonStatement() and insertPersonPreparedStatement() methods
do the same work: the first one uses a Statement and the second one uses a PreparedStatement. In the
main() method, the call to the insertPersonPreparedStatement() method is commented. You need to use
one of these methods, but not both.

Listing 5-34. Using the Batch Update Feature of the JDBC API

// BatchUpdateTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.BatchUpdateException;
import java.sql.PreparedStatement;

Chapter 5 ■ JDBC apI

475

import java.sql.Types;
import java.sql.Date;

public class BatchUpdateTest {
 public static void main(String[] args) {
 Connection conn = null;

 try {
 conn = JDBCUtil.getConnection();

 // Prepare the data
 int[] personIds = {801, 901};
 String[] firstNames = {"Matt", "Greg"};
 String[] lastNames = {"Flower", "Rice"};
 String[] genders = {"M", "M"};
 String[] dobString = {"{d '1960-04-01'}", "{d '1962-03-01'}"};
 double[] incomes = {56778.00, 89776.00};

 // Use batch update using the Statement objects
 insertPersonStatement(conn, personIds, firstNames,
 lastNames, genders, dobString, incomes);

 // Use batch update using the PreparedStatement objects
 /*
 java.sql.Date[] dobDate = {Date.valueOf("1960-04-01"),
 Date.valueOf("1962-03-01") };
 insertPersonPreparedStatement(conn, personIds,
 firstNames,lastNames, genders, dobDate, incomes);
 */

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);
 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }

 public static void insertPersonStatement(Connection conn, int[] personId,
 String[] firstName, String[] lastName, String[] gender, String[] dob,
 double[] income) throws SQLException {

 int[] updatedCount = null;
 Statement stmt = null;

 try {
 stmt = conn.createStatement();
 for (int i = 0; i < personId.length; i++) {
 String SQL = "insert into person "

Chapter 5 ■ JDBC apI

476

 + "(person_id, first_name, last_name,"
 + " gender, dob, income) "
 + "values "
 + "(" + personId[i] + ", "
 + "'" + firstName[i] + "'" + ", "
 + "'" + lastName[i] + "'" + ", "
 + "'" + gender[i] + "'" + ", "
 + dob[i] + ", "
 + income[i] + ")";

 // Add insert command to the batch
 stmt.addBatch(SQL);
 }

 // Execute the batch
 updatedCount = stmt.executeBatch();
 System.out.println("Batch executed successfully.");
 printBatchResult(updatedCount);
 } catch (BatchUpdateException e) {
 // Let us see how many commands were successful
 updatedCount = e.getUpdateCounts();

 System.out.println("Batch failed.");
 int commandCount = personId.length;
 if (updatedCount.length == commandCount) {
 System.out.println("JDBC driver continues to execute all"
 + " commands in a batch after a failure.");
 } else {
 System.out.println("JDBC driver stops executing subsequent"
 + " commands in a batch after a failure.");
 }

 // Re-throw the exception
 throw e;
 } finally {
 JDBCUtil.closeStatement(stmt);
 }
 }

 public static void insertPersonPreparedStatement(Connection conn, int[] personId,
 String[] firstName, String[] lastName, String[] gender, java.sql.Date[] dob,
 double[] income) throws SQLException {

 int[] updatedCount = null;
 String SQL = "insert into person "
 + "(person_id, first_name, last_name, gender, dob,"
 + " income) "
 + " values "
 + "(?, ?, ?, ?, ?, ?)";

Chapter 5 ■ JDBC apI

477

 PreparedStatement pstmt = null;
 try {
 pstmt = conn.prepareStatement(SQL);

 for (int i = 0; i < personId.length; i++) {
 // Set input parameters
 pstmt.setInt(1, personId[i]);
 pstmt.setString(2, firstName[i]);
 pstmt.setString(3, lastName[i]);
 pstmt.setString(4, gender[i]);
 if (dob[i] == null) {
 pstmt.setNull(5, Types.DATE);
 } else {
 pstmt.setDate(5, dob[i]);
 }

 pstmt.setDouble(6, income[i]);

 // Add insert command with current input parameters
 pstmt.addBatch();
 }

 // Execute the batch
 updatedCount = pstmt.executeBatch();
 System.out.println("Batch executed successfully.");
 printBatchResult(updatedCount);
 } catch (BatchUpdateException e) {
 // Let us see how many commands were successful
 updatedCount = e.getUpdateCounts();
 System.out.println("Batch failed.");
 int commandCount = personId.length;
 if (updatedCount.length == commandCount) {
 System.out.println("JDBC driver continues to execute all"
 + "commands in a batch after a failure.");
 } else {
 System.out.println("JDBC driver stops executing subsequent"
 + "commands in a batch after a failure.");
 }

 // Re-throw the exception
 throw e;
 } finally {
 JDBCUtil.closeStatement(pstmt);
 }
 }

 public static void printBatchResult(int[] updateCount) {
 System.out.println("Batch Results...");
 for (int i = 0; i < updateCount.length; i++) {
 int value = updateCount[i];

Chapter 5 ■ JDBC apI

478

 if (value >= 0) {
 System.out.println("Command #" + (i + 1)
 + ": Success. Update Count=" + value);
 } else if (value >= Statement.SUCCESS_NO_INFO) {
 System.out.println("Command #" + (i + 1)
 + ": Success. Update Count=Unknown");
 } else if (value >= Statement.EXECUTE_FAILED) {
 System.out.println("Command #" + (i + 1) + ": Failed");
 }
 }
 }
}

Savepoints in a Transaction
A database transaction consists of one or more changes as a unit of work. A savepoint in a transaction is
like a marker that marks a point in a transaction so that, if needed, the transaction can be rolled back (or
undone) up to that point. Let’s take an example of inserting five records in the person table, like so:

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
stmt.execute("insert into person..."); // insert 1
stmt.execute("insert into person..."); // insert 2
stmt.execute("insert into person..."); // insert 3
stmt.execute("insert into person..."); // insert 4
stmt.execute("insert into person..."); // insert 5

At this point, you have only two choices: either you commit the transaction, which will insert all five
records in the person table, or you roll back the transaction, so that none of the five records will be inserted.
You can perform a commit or rollback as

conn.commit(); // Save all five records

or

conn.rollback(); // Do not save any of the five records

A savepoint will let you set a marker in between any of these two INSERT statements. An object of the
Savepoint interface represents a savepoint in a transaction. To mark a savepoint in a transaction, you
simply call the setSavepoint() method of the Connection. The setSavepoint() method is overloaded.
One version accepts no argument and another accepts a string, which is the name of the savepoint. The
setSavepoint() method returns a Savepoint object, which is your marker and you must keep it for future
use. Let’s rewrite the previous logic using a savepoint after every INSERT statement.

Connection conn = JDBCUtil.getConnection();
Statement stmt = conn.createStatement();
stmt.execute("insert into person..."); // insert 1
Savepoint sp1 = conn.setSavepoint(); // savepoint 1

Chapter 5 ■ JDBC apI

479

stmt.execute("insert into person..."); // insert 2
Savepoint sp2 = conn.setSavepoint(); // savepoint 2
stmt.execute("insert into person..."); // insert 3
Savepoint sp3 = conn.setSavepoint(); // savepoint 3
stmt.execute("insert into person..."); // insert 4
Savepoint sp4 = conn.setSavepoint(); // savepoint 4
stmt.execute("insert into person..."); // insert 5

At this point, you have finer control on the transaction if you want to undo any of these five inserts into
the person table. Now you can use another version of the rollback() method of the Connection, which
accepts a Savepoint object. If you want to undo all changes that were made after savepoint 4, you can do so
as follows:

// Rolls back insert 5 only
conn.rollback(sp4);

If you want to undo all changes that were made after savepoint 2, you can do so as follows:

// Rolls back inserts 3, 4, and 5
conn.rollback(sp2);

If you roll back up to savepoint 1, only the first insert will remain in the transaction. Can you change
your mind after you have rolled back to a savepoint? Suppose, after you call conn.rollback(sp2), you
realize that you have made a mistake and you wanted to roll back insert 4, and 5 only, and not insert 3. The
call to conn.rollback(sp2) will rollback three inserts: 3, 4, and 5. Do you have any choice to go back only
up to savepoint 3 after you have gone back to savepoint 2? No. You do not have any choice in such cases.
Once you roll back up to a savepoint (say, spx), all savepoints that were created after the savepoint spx are
released and you cannot refer to them again. If you refer to a released savepoint, the JDBC driver will throw a
SQLException. The following snippet of code will throw a SQLException:

conn.rollback(sp2); // Will release sp3, and sp4
conn.rollback(sp3); // Will throw an exception. sp3 is already released.

Note that when you roll back a transaction to a savepoint, that savepoint itself is not released. When you
call conn.rollback(sp2), savepoint sp2 remains valid. You can add more savepoints afterward and roll back
up to savepoint sp2 again.

You can also release a savepoint explicitly by calling the releaseSavepoint(Savepoint sp) method
of a Connection. Releasing a savepoint also releases all subsequent savepoints that were created after this
savepoint. For example, calling conn.releaseSavepoint(sp2) will release savepoints sp2, sp3, and sp4. All
savepoints in a transaction are released when the transaction is committed or rolled back entirely. A JDBC
driver will throw a SQLException if you use the savepoint that has been released by any of the previously
described means. Listing 5-35 shows how to use a savepoint in a transaction.

 ■ Tip You can check if a JDBC driver supports savepoints by using the supportsSavepoints() method of
the DatabaseMetaData object.

Chapter 5 ■ JDBC apI

480

Listing 5-35. Using Savepoints in a Transaction

// SavePointTest.java
package com.jdojo.jdbc;

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.Savepoint;

public class SavePointTest {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 // Connect to the database
 conn = JDBCUtil.getConnection();
 conn.setAutoCommit(false);

 // SQL Statement
 String SQL = "update person "
 + "set income = ? "
 + "where person_id = ?";

 PreparedStatement pstmt = conn.prepareStatement(SQL);
 pstmt.setDouble(1, 20000);
 pstmt.setInt(2, 101);
 pstmt.execute();

 // Set a savepoint
 Savepoint sp1 = conn.setSavepoint();

 // Change the income to 25000 and execute the SQL again
 pstmt.setDouble(1, 25000);
 pstmt.execute();

 // Set a savepoint
 Savepoint sp2 = conn.setSavepoint();

 // Perform some more database changes here. Roll back the
 // transaction to the savepoint sp1, so that income
 // for person_id 101 will remain set
 // to 20000 and not to 25000
 conn.rollback(sp1);

 // Commit the transaction
 JDBCUtil.commit(conn);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 JDBCUtil.rollback(conn);

Chapter 5 ■ JDBC apI

481

 } finally {
 JDBCUtil.closeConnection(conn);
 }
 }
}

Using a DataSource
You need a Connection to communicate with a database. So far, you have been obtaining a Connection using
the DriverManager class. You need to register the database driver with the DriverManager and specify the
details of the database connection properties. All these things have to be done in the Java code that resides
with the main application logic. If anything related to the database connectivity changes, you must change
your code that deals with establishing the database connection.

The JDBC API provides another way to obtain a Connection in a Java application. You can use the
javax.sql.DataSource interface to get a connection to a database. In this alternative way of working
with database connections, things are separated into two logical modules: connection management and
connection consumption.

•	 One module is responsible for configuring and deploying the DataSource objects
on a server that allows lookup using a Java Naming and Directory Interface (JNDI)
service. The configuration involves setting the properties for the DataSource object,
which it will use to establish a connection to the database, such as server name,
port number, network protocol, etc. The deployment involves storing the configured
DataSource object on a JNDI server by giving it a logical name. The deployment is
also known as binding, because a DataSource object is bound to a logical name.
Usually, a system administrator performs this step. The logical name that is given
to a DataSource object is announced to the developers who need to look up the
DataSource object. Typically, you use a DataSource in an application server, which
uses J2EE technology. The application server provides you with a GUI tool to
configure and deploy DataSource objects.

•	 The Java application, which needs a Connection, performs a lookup using the
JNDI API using the logical name of a DataSource. The lookup operation returns
an instance of the DataSource interface. You can get a Connection object from
a DataSource object using its getConnection() method. The getConnection()
method is overloaded. One version accepts no parameter and another version
accepts userId and password as parameters. The getConnection() method works
similar to the getConnection() method of the DriverManager class. A developer
performs this step.

Usually, you configure and deploy a DataSource on a server, which is available using a JNDI service.
The following is a sample snippet of code that you can use to configure and deploy a DataSource
programmatically. It creates a DataSource provided by the MYSQL JDBC driver.

import com.mySQL.jdbc.jdbc2.optional.MySQLDataSource;
import javax.naming.InitialContext;
import javax.naming.Context;
...
// Create a DataSource object
MySQLDataSource mds = new MySQLDataSource();
mds.setServerName("localhost");
mds.setPortNumber(3306);

Chapter 5 ■ JDBC apI

482

mds.setUser("app");
mds.setPassword("app");

// Get the initial context
Context ctx = new InitialContext();

// Bind (or register) the DataSource object under a logical name "jdbc/mydb"
ctx.bind("jdbc.mydb", mds);

The Java application that needs a connection to a database will perform a lookup using the logical name
of the DataSource that was given to it at the time of binding. Here is a typical snippet of Java code that you
need to write when you need a Connection object:

import javax.sql.DataSource;
import java.sql.Connection;
import javax.naming.InitialContext;
import javax.naming.Context;
...
// Get the initial context
Context ctx = new InitialContext();

// Perform a lookup for the DataSource using its logical name "jdbc/mydb"
DataSource ds = (DataSource)ctx.lookup("jdbc/mydb");

// Get a Connection object from the DataSource object
Connection conn = ds.getConnection();

// Perform other database related tasks...

// Close the connection
conn.close()

The JDBC API provides two other types of data source interfaces:

•	 javax.sql.ConnectionPoolDataSource

•	 javas.sql.XADataSource

The ConnectionPoolDataSource interface contains a getPooledConnection() method, which returns
an instance of the PooledConnection interface. The XADataSource interface contains a getXAConnection()
method, which returns an instance of the XAConnection interface.

An implementation of the ConnectionPoolDataSource interface provides the connection pooling
feature to improve the application's performance. The basic DataSource implementation connects when
a Connection object is obtained from it and disconnects from the database when the Connection object is
closed. A ConnectionPoolDataSource implementation maintains a pool of database connections. When a
database connection is needed, it gives a connection from its pool. When a database connection is closed,
it does not disconnect the Connection object from the database physically. Rather, it returns the connection
object to the pool for reuse. Establishing a database connection is a time-consuming process. By using a
connection pool in an application using a ConnectionPoolDataSource, you improve your application's
performance greatly. The connection pooling mechanism is also useful when the number of connections
you can establish to a database is limited. In such cases, you can maintain a pool of limited number of
connections and users will take turns using these connections.

Chapter 5 ■ JDBC apI

483

The implementation of the XADataSource interface provides support for distributed transactions,
which involve multiple databases. A transaction manager is used to manage a distributed transaction in
conjunction with a XADataSource object. Typically, a XADataSource also supports connection pooling.

JDK9 added several interfaces and methods to existing interfaces to support connection builders,
sharding keys, etc. to the JDBC API. It will take some time for the vendors of the JDBC driver to provide the
support for these new features. A summary of the new features in JDK9 are as follows:

•	 A new ConnectionBuilder interface lets you build a Connection. A
ConnectionBuilder is created from a DataSource object.

•	 New ShardingKey and ShardingKeyBuilder interfaces let you work with a sharded
database. Horizontal partitioning of a dataset across multiple independent databases
is called sharding. Each such database is called a shard. All shards together form
a logical database, which is called a sharded database (SDB). A sharding key is a
portioning key. An instance of the ShardingKey interface represents a sharing key.
You create a ShardingKey using a ShardingKeyBuilder. A ShardingKeyBuilder is
obtained from a DataSource using its createShardingKeyBuilder() method.

•	 You can set a ShardingKey to a Connection using the setShardingKey() method of
the Connection interface. The sharding key on a Connection determines the shard in
which the database operations are performed.

•	 You can use the supportsSharding() method of the DatabaseMetaData interface to
check whether your database supports sharding. The method returns true if your
database supports sharding; otherwise, it returns false.

•	 The Connection interface has received two new default methods named
beginRequest() and endRequest(). These methods are meant to be used by
connection polling managers, not by developers. These methods are hints to the
JDBC driver to indicate the beginning and end of an independent unit of work.

Retrieving SQL Warnings
Sometimes, a DBMS issues a SQL warning instead of throwing an exception. A SQL warning indicates
that the database interaction has been completed; however, everything was not right. The JDBC API lets
you retrieve SQL warnings signaled by a DBMS using a java.sql.SQLWarning object. The SQLWarning
class inherits from the SQLException class. A SQLWarning stores chains of SQL warnings. A SQL warning
may be issued on a Connection, a Statement (including PreparedStatement and CallableStatement),
or a ResultSet. You can retrieve the first warning object associated with any of these objects using their
getWarnings() methods. If there are no warnings reported on an object, the method returns null. Once
you call the getWarnings() method on these objects, their warnings are cleared. You can also clear their
warnings by calling their clearWarnings() method. Note that these objects must be open to access warnings
reported on them. Once you execute or re-execute a Statement, its warnings are reset. The following snippet
of code may be used to print warnings details reported on any object—Connection, Statement or ResultSet:

// Check for warnings.
// Here xxx is either a Connection, Statement or ResultSet object
SQLWarning warning = xxx.getWarnings();
while(warning != null) {
 int errorCode = warning.getErrorCode();
 String sqlState = warning.getSQLState();
 String warningMsg = warning.getMessage();

Chapter 5 ■ JDBC apI

484

 // Print the details
 System.out.println("Warning: " + warningMsg +
 "SQL State: " + sqlState +
 "Error Code:" + errorCode);

 // Get the next warning
 warning = warning.getNextWarning();
}

Enabling JDBC Trace
You can enable JDBC tracing that will log JDBC activities to a PrintWriter. You can use the
setLogWriter(PrintWriter out) static method of the DriverManager to set a log writer if you are
using the DriverManager to connect to a database. If you are using a DataSource, you can use its
setLogWriter(PrintWriter out) method to set a log writer. Setting null as a log writer disables the JDBC
tracing. The following snippet of code sets a log writer to a C:\jdbc.log file on Windows:

// Sets the log writer to a file c:\jdbc.log
PrintWriter pw = new PrintWriter("C:\\jdbc.log");
DriverManager.setLogWriter(pw);

When you call the setLogWriter() method of the DriverManager class with the Java security enabled,
Java checks for a java.sql.SQLPermission. You can grant this permission to an executing code in a security
policy file. The following is an example of an entry in a security policy file that grants a permission to execute
the setLogWriter() method on the DriverManager:

grant {
 permission java.sql.SQLPermission "setLog";
};

Summary
The JDBC API provides a standard database-independent interface to interact with any tabular data source,
including a relational database management system (RDBMS) such as Oracle, SQL Server, DB2, Apache
Derby, MySQL, etc. JDBC drivers facilitate connection to a database in Java programs. The JDK/JRE does
not include any JDBC drivers. JDBC drivers are supplied by the DBMS vendors. Classes and interfaces in the
JDBC API are in the java.sql and java.sql.rowset modules.

The DriverManager class facilitates registration of JDBC drivers to connect to different types of
databases. When passed in database connection properties such as the server location, protocol, database
names, user ID, password, etc., the DriverManager uses the registered JDBC drivers to connect to the
database and returns an instance of the Connection interface that represents a connection to the database.

You can use the getMetaData() method for a Connection to get a DatabaseMetaData. A
DatabaseMetaData contains information about the database such as the features are supported by the
database, all tables in the database, etc.

The JDBC API provides mappings between SQL types and Java types. JDBC drivers perform the
translation between the two types. This hides the differences in data type names and their internal
representations in different databases. For example, you can use a java.sql.Date object to represent a SQL

Chapter 5 ■ JDBC apI

485

date value in your Java program irrespective of the DBMS you are using. The JDBC driver will take care of
converting the value in the java.sql.Date to the DBMS-specific date value and vice versa.

A Statement is used to execute SQL statements in string forms from a Java program. The result set
returned by a SQL statement is made available in the Java program as an instance of the ResultSet interface.

A PreparedStatement is used to execute SQL statement with parameters. The SQL statement is pre-
compiled to provide a faster execution on repeated use of the same SQL statement with different parameters.
Using input parameters in the SQL statement as placeholders also prevents attacks from hackers who use
SQL injections.

A CallableStatement is used to call a SQL stored procedure or a function in a database. Different
DBMSs use different syntax to call stored procedures and functions. The JDBC API provides a DBMS-
independent syntax to call stored procedures and functions using a CallableStatement.

A ResultSet represents tabular data defined in terms of rows and columns. Typically, you get a
ResultSet by executing a SQL statement that returns a result set from the database. A ResultSet may scroll
only in the forward direction or in both forward and backward directions. All JDBC drivers will support at
least a forward-only ResultSet. A ResultSet may also be used to update data in the database.

A RowSet is a wrapper for a ResultSet. A RowSet hides the complexities that are involved in working
with a ResultSet. A JdbcRowSet, which is also known as a connected rowset, maintains a database
connection all the time. A CachedRowSet, which is also called a disconnected rowset, uses a database
connection only for the duration it is needed. A WebRowSet is a CachedRowSet that supports importing data
from an XML document and exporting its data to an XML document. A FilteredRowSet is a WebRowSet
that provides filtering capability at the client side. A JoinRowSet is a WebRowSet that provides the ability to
combine (or join) two or more disconnected rowsets into one rowset.

The JDBC provides support for working with database large objects, typically called, Blob, Clob, and
NClob.

For a better performance, you can send multiple SQL commands to the database in one shot
using the batch update feature of the JDBC API. Batch updates are supported through the Statement,
PreparedStatement, and CallableStatement interfaces. The addBatch() method of the Statement is used
to add a SQL command to the batch. The executeBatch() method sends all SQL commands in the batch to
the database for execution.

A database transaction consists of one or more changes as a unit of work. A savepoint in a transaction
is a marker that marks a point in a transaction so that, if needed, the transaction can be rolled back up to
the marked point. An instance of the Savepoint interface represents a savepoint. You can create a savepoint
in a transaction using the setSavepoint() method of a Connection. You can specify a savepoint in the
rollback() method of the Connection to roll back the transaction to the specified savepoint.

JDK9 added several new interfaces and new methods to existing interfaces to support connection
builders and sharding keys to the JDBC API. New ShardingKey and ShardingKeyBuilder interfaces let
you work with a sharded database. Horizontal partitioning of a dataset across multiple independent
databases is called sharding. Each such database is called a shard. All shards together form a logical
database, which is called a sharded database (SDB). A sharding key is a portioning key. An instance of the
ShardingKey interface represents a sharing key. You create a ShardingKey using a ShardingKeyBuilder.
A ShardingKeyBuilder is obtained from a DataSource using its createShardingKeyBuilder() method.
You can set a ShardingKey to a Connection using its setShardingKey() method. The sharding key on
a Connection determines the shard in which the database operations are performed. You can use the
supportsSharding() method of the DatabaseMetaData interface to check whether your database supports
sharding. The method returns true if your database supports sharding; otherwise, it returns false.

A DBMS may issue SQL warnings instead of throwing an exception. An instance of the SQLWarning class
represents a set of SQL warnings. SQL warnings are nested in one SQLWarning object. Use the getWarnings()
method of the Connection, Statement, and ResultSet to get SQL warnings associated with them. Use the
getNextWarning() method of the SQLWarning class to retrieve the next SQL warning from the set.

You can enable JDBC tracing that will log JDBC activities to a PrintWriter object. You can use the
setLogWriter(PrintWriter out) static method of the DriverManager to set a log writer.

Chapter 5 ■ JDBC apI

486

QUESTIONS AND EXERCISES

1. What is JDBC apI?

2. What is a JDBC driver?

3. What is the role of the DriverManager in a JDBC application? how do you load a
JDBC driver?

4. What does an instance of the Connection interface represent? List a few uses of a
Connection in a Java application.

5. Describe the syntax of a connection UrL used in establishing a JDBC connection.

6. What is the auto-commit mode of a Connection? how do you disable the auto-
commit mode of a Connection?

7. When do you use the DatabaseMetaData interface?

8. Write a snippet of code to check if a database supports stored procedure call using
the JDBC syntax. assume that conn is a variable that contains the reference to a
connection to the database.

9. Suppose you get a SQL statement as a string in your Java program. What object—a
Statement, a PreparedStatement, or a CallableStatement—would you use to
execute the SQL statement?

10. List at least two disadvantages of using a statement to execute SQL statements in
your Java programs.

11. When do you use a PreparedStatement? List a few advantages of using a
PreparedStatement.

12. When do you use a CallableStatement? List a few advantages of using a
CallableStatement.

13. Write a snippet of code twice–once using a Statement and once using a
PreparedStatement–that will update the dob column in a person table where the
person_id column's value is 101. the data type of the dob column is date. the dob
column should be set to January 12, 1968. Your code should work for all databases
that support date column, irrespective of the format they use to store date values.

14. Why do you use a CallableStatement?

15. What is a ResultSet? In brief, describe scrollability, concurrency, and holdability of
a ResultSet.

16. What does the getRow() method of a ResultSet return?

17. What is the return value of the next() method of a ResultSet? how do you
interpret the return value?

18. how do you determine that the value for a column returned in a ResultSet was
null?

Chapter 5 ■ JDBC apI

487

19. Describe the typical sequence of steps you need to perform to insert a record into a
table using a ResultSet.

20. how do you delete a record from a table using a ResultSet?

21. What is the use of a ResultSetMetaData?

22. What is a rowset? Describe the following rowsets in brief: JdbcRowSet,
CachedRowSet, WebRowSet, FilteredRowSet, and JoinRowSet.

23. Suppose you want to read a picture stored in a database in a Java program. What
Java type will you use to read the picture data?

24. What are savepoint, rollback, and commit in database parlance? how do you
perform these activities in a Java program using JDBC?

25. how do you enable SQL tracing in a JDBC application?

489© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_6

CHAPTER 6

Java Remote Method Invocation

In this chapter, you will learn:

•	 What Java Remote Method Invocation (RMI) is and the RMI architecture

•	 How to develop and package RMI server and client applications

•	 How to start the rmiregistry, RMI server, and client applications

•	 How to troubleshoot and debug RMI applications

•	 Dynamic class downloading in an RMI application

•	 Garbage collections of remote objects in RMI applications

An RMI application contains classes and interfaces that fall into three parts:

•	 Server part

•	 Client part

•	 Common part, which is present in both the client and server

You will package three parts of the example application in this chapter into three modules named
jdojo.rmi.common, jdojo.rmi.server, and jdojo.rmi.common. The declarations for these modules are
shown in Listing 6-1, Listing 6-2, and Listing 6-3.

Listing 6-1. The Declaration of a jdojo.rmi.common Module

// module-info.java
module jdojo.rmi.common {
 requires java.rmi;

 exports com.jdojo.rmi.common;
}

Listing 6-2. The Declaration of a jdojo.rmi.server Module

// module-info.java
module jdojo.rmi.server {
 requires java.rmi;
 requires jdojo.rmi.common;

 exports com.jdojo.rmi.server;
}

https://doi.org/10.1007/978-1-4842-3546-1_6

Chapter 6 ■ Java remote method InvoCatIon

490

Listing 6-3. The Declaration of a jdojo.rmi.client Module

// module-info.java
module jdojo.rmi.client {
 requires java.rmi;
 requires jdojo.rmi.common;

 exports com.jdojo.rmi.client;
}

The RMI related classes and interfaces are in the java.rmi module. Your module that contains RMI
programs needs to read the java.rmi module. The jdojo.rmi.common module contains types that will be
used by the server and client applications and this is the reason that the jdojo.rmi.server and jdojo.rmi.
client modules read the jdojo.rmi.common module.

What Is Java Remote Method Invocation?
Java supports a variety of application architectures that determine how and where the application code is
deployed and executed. In the simplest application architecture, all Java code resides on a single machine
and one JVM manages all Java objects and the interaction among them. This is an example of a standalone
application, where all that is needed is a machine that can launch a JVM. Java also supports a distributed
application architecture in which the application’s code and execution can be distributed among multiple
machines.

Java supports applets where Java classes are deployed on a web server. The Applet API has been
deprecated in JDK9 and most browsers have discontinued the support for Java plugin, which is needed
to run applets in browsers. The applet classes are downloaded to the client machine by the web browser
and executed inside a JVM that runs on the client machine. In the case of an applet, the Java code is still
executed inside one JVM. In Chapter 4, you learned network programming in Java that involves at least two
JVMs running on different machines that execute the Java code for the client and server sockets. Typically,
sockets are used to transfer data between two applications. In socket programming, it is possible for the
client program to send a message to the server program. The server program creates a Java object, invokes
a method on that object, and returns the result of the method invocation to the client program. Finally, the
client program reads the result using sockets. In such cases, the client is able to invoke a method on a Java
object that resides in a different JVM. This possibility opens up doors for new application architectures,
called distributed programming, in which an application may utilize multiple machines, running multiple
JVMs to process the business logic. Although it is possible to invoke a method on an object that resides in
a different JVM (possibly on a different machine too) using socket programming, it is not easy to code. To
achieve this, Java provides a separate mechanism called Java Remote Method Invocation (Java RMI).

Java RMI enables a Java application to invoke a method on a Java object in a remote JVM. I use the
term “remote object” to refer to a Java object that is created and managed by a JVM, other than the JVM that
manages the Java code that calls methods on that “remote object.” Typically, a remote object also implies that
it is managed by a JVM that runs on a machine other than the machine from which it is accessed. However, it
is not a requirement for a Java object to be a remote object that it should exist in a JVM on a different machine.
For learning purposes, you will use one machine to deploy the remote object in one JVM and launch another
application in a different JVM to access the remote object. RMI lets you treat the remote object as if it is a local
object. Internally, it uses sockets to handle access to the remote object and to invoke its methods.

An RMI application consists of two programs, a client and a server, that run in two different JVMs. The
server program creates Java objects and makes them accessible to the remote client programs to invoke
methods on those objects. The client program needs to know the location of the remote objects on the
server, so it can invoke methods on them. The server program creates a remote object and registers (or
binds) its reference to an RMI registry. An RMI registry is a name service that is used to bind a remote object

http://dx.doi.org/10.1007/978-1-4842-3546-1_4

Chapter 6 ■ Java remote method InvoCatIon

491

reference to a name, so a client can get the reference of the remote object using a name-based lookup in the
registry. An RMI registry runs in a separate process from the server program. It is supplied as a tool called
rmiregistry. When you install a JDK/JRE on your machine, it is copied in the bin subdirectory under the
JDK/JRE installation directory.

After the client program gets the remote reference of a remote object, it invokes methods using that
reference as if it were a reference to a local object. RMI technology takes care of the details of invoking
the methods on the remote reference in the server program running on a different JVM on a different
machine. In an RMI application, Java code is written in terms of interfaces. The server program contains
implementations for the interfaces. The client program uses interfaces along with the remote object
references to invoke methods on the remote object that exists in the server’s JVM. All Java library classes
supporting Java RMI are in the java.rmi package and its subpackages.

The RMI Architecture
Figure 6-1 shows the RMI architecture in a simplified form. A rectangular box in the figure represents a
component in an RMI application. An arrow line shows a message sent from one component to another in
the direction of the arrow. The ovals showing numbers from 1 to 11 represent the sequence of steps that take
place in a typical RMI application. I explain these steps in detail in this section.

Figure 6-1. The RMI architecture

Let’s assume that you have developed all Java classes and interfaces that are needed for an RMI
application. In this section, I walk you through all the steps that are involved when you run an RMI
application. You will develop the Java code that is needed for each step in the next few sections.

Chapter 6 ■ Java remote method InvoCatIon

492

The first step involved in an RMI application is to create a Java object in the server. The object will be
used as the remote object. There is an additional step that needs to be performed to make an ordinary Java
object a remote object. The step is known as exporting the remote object. When an ordinary Java object
is exported as a remote object, it becomes ready to receive/handle calls from remote clients. The export
process produces a remote object reference (also called a stub). The remote reference knows the details
about the exported object such as its location and methods that can be called remotely. This step is not
labeled in the figure. It happens inside the server program. When this step finishes, the remote object has
been created in the server and is ready to receive a remote method invocation.

The next step is performed by the server to register (or bind) the remote reference with an RMI registry.
The server chooses a unique name for each remote reference it registers with an RMI registry. A remote
client will need to use the same name to look up the remote reference in the RMI registry. This is labeled as
#1 in the figure. When this step finishes, the RMI registry has registered the remote object reference and a
client interested in invoking a method on the remote object may ask for its reference from the RMI registry.

 ■ Tip For security reasons, an rmI registry and the server must run on the same machine so that a server
can register the remote references with the rmI registry. If this restriction is not imposed, a hacker may register
his own harmful Java objects to your rmI registry from his machine.

This step involves interaction between a client and an RMI registry. Typically, a client and an RMI
registry run on two different machines. The client sends a lookup request to the RMI registry for a remote
reference. The client uses a name to look up the remote reference in the RMI registry. The name is the same
as the name used by the server to bind the remote reference in the RMI registry in step #1. The lookup step
is labeled as #2 in the figure. The RMI registry returns the remote reference (or stub) to the client labeled as
step #3 in the figure. If a remote reference is not bound in the RMI registry with the name used by the client
in the lookup request, the RMI registry throws a NotBoundException. If this step finishes successfully, the
client has received the remote reference (or stub) of the remote object.

In this step, the client invokes a method on the stub. It is shown as step #4 in the figure. At this point,
the stub connects to the server and transmits the information required to invoke the method on the remote
object, such as the name of the method, the method's arguments, etc. The stub knows about the server
location and the details about how to contact the remote object on the server. This step is labeled as step #5
in the figure. Many different layers at the network level are involved in transmitting information emanating
from stub to the server.

A skeleton is the server side counterpart of a stub on the client side. Its job is to receive the data sent
by the stub. This is shown as step #6 in the figure. After a skeleton receives the data, it reassembles the data
into a more meaningful format and invokes the method on the remote object, which is shown as step #7 in
the figure. Once the remote method call is over on the server, the skeleton receives the result of the method
call (step #8) and transmits the information back to the stub (step #9) through the network layers. The stub
receives the result of the remote method invocation (step #10), reassembles the result, and passes the result
to the client program (step #11).

The steps #4 through #11 may be repeated to call the same or different methods on the same remote
object. If a client wants to call a method on a different remote object, it will have to first perform steps #2 and
#3 before initiating a remote method call.

It is typical in an RMI application that a client contacts an RMI registry to get the stub of a remote object
in the beginning. If the client needs the stub of another remote object running in the server, it may get it by
calling a method on the stub that it already has. Note that a remote object’s method can also return a stub to
a remote client. This way, a remote client may perform a lookup in the RMI registry only once at startup. The
Java code that you write for an RMI application is no different from that of a non-RMI application, except for
looking up for a remote object reference in the RMI registry.

Chapter 6 ■ Java remote method InvoCatIon

493

Developing an RMI Application
This section walks you through the steps to write the Java code to develop an RMI application. You will
develop a remote utility RMI application that will let you perform three things: echo a message from the
server, get the current date and time from the server, and add two integers. The following steps are involved
in writing an RMI application:

•	 Writing a remote interface.

•	 Implementing the remote interface in a class. An object of this class serves as the
remote object.

•	 Writing a server program. It creates an object of the class that implements the remote
interface and registers it with the RMI registry.

•	 Writing a client program that accesses the remote object on the server.

Writing the Remote Interface
A remote interface is like any other Java interface whose methods are meant to be called from a remote client
running in a different JVM. It has four special requirements:

•	 It must extend the marker Remote interface.

•	 All methods in a remote interface must throw a RemoteException or an exception,
which is its superclass such as IOException or Exception. The RemoteException
is a checked exception. A remote method can also throw any number of other
application-specific exceptions.

•	 A remote method may accept the reference of a remote object as a parameter. It
may also return the reference of a remote object as its return value. If a method in
a remote interface accepts or returns a remote object reference, the parameter or
return type must be declared of the type Remote rather than of the type of the class
that implements the Remote interface.

•	 A remote interface may only use three data types in its method’s parameters or
return value. It could be a primitive type, a remote object, or a serializable non-
remote object. A remote object is passed by reference, whereas a non-remote
serializable object is passed by copy. An object is serializable if its class implements
the java.io.Serializable interface.

You will name your remote interface RemoteUtility. Listing 6-4 contains the code for the
RemoteUtility remote interface, which is a member of the jdojo.rmi.common module. It contains three
methods called echo(), getServerTime(), and add(), which provide your three intended functionalities.

Listing 6-4. A RemoteUtility Interface

// RemoteUtility.java
package com.jdojo.rmi.common;

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.time.ZonedDateTime;

public interface RemoteUtility extends Remote {

Chapter 6 ■ Java remote method InvoCatIon

494

 // Echoes a string message back to the client
 String echo(String msg) throws RemoteException;

 // Returns the current date and time to the client
 ZonedDateTime getServerTime() throws RemoteException;

 // Adds two integers and returns the result to the client
 int add(int n1, int n2) throws RemoteException;
}

Implementing the Remote Interface
This step involves creating a class that implements the remote interface. You will name the class
RemoteUtilityImpl. It will implement the RemoteUtility remote interface and will provide
implementations for three methods: echo(), getServerTime(), and add(). You can have any number of
other methods in this class. The only thing you must do is provide implementations for all methods defined
in the RemoteUtility remote interface. The remote client will be able to call only remote methods of this
class. If you define methods in this class other than those defined in the remote interface, those methods are
not available for remote method invocations. However, you can use the additional methods to implement
the remote methods. Listing 6-5 contains the code for the RemoteUtilityImpl class, which is a member of
the jdojo.rmi.server module.

Listing 6-5. An Implementation Class for the RemoteUtility Remote Interface

// RemoteUtilityImpl.java
package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;
import java.time.ZonedDateTime;

public class RemoteUtilityImpl implements RemoteUtility {
 public RemoteUtilityImpl() {
 }

 @Override
 public String echo(String msg) {
 return msg;
 }

 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }

 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }
}

Chapter 6 ■ Java remote method InvoCatIon

495

The remote object implementation class is very simple. It implements the RemoteUtility interface and
provides implementations for three methods of the interface. Note that these methods in the RemoteUtilityImpl
class do not declare that they throw a RemoteException. The requirement to declare that all remote methods
throw a RemoteException is for the remote interface, not the class implementing the remote interface.

There are two ways to write your implementation class for a remote interface. One way is to inherit it
from the java.rmi.server.UnicastRemoteObject class. Another way is to inherit it from no class or any
class other than the UnicastRemoteObject class. Listing 6-5 took the latter approach. It did not inherit the
RemoteUtilityImpl class from any class.

What difference does it make if the implementation class for a remote interface inherits from the
UnicastRemoteObject class or some other class? The implementation class of a remote interface is used to
create remote objects whose methods are invoked remotely. The object of this class must go through an export
process, which makes it suitable for a remote method invocation. The constructors for the UnicastRemoteObject
class export the object automatically for you. So, if your implementation class inherits from the
UnicastRemoteObject class, it will save you one step in the entire process later. Sometimes your implementation
class must inherit from another class and that will force you not to inherit it from the UnicastRemoteObject
class. One thing you need to note is that the constructors for the UnicastRemoteObject class throw a
RemoteException. If you inherit the remote object implementation class from the UnicastRemoteObject class,
the implementation class’s constructor must throw a RemoteException in its declaration.

Listing 6-6 rewrites RemoteUtilityImpl class by inheriting it from the UnicastRemoteObject class.
There are two new things in this implementation—it uses the extends clause in the class declaration and
it uses a throws clause in the constructor declaration. Everything else remains the same. I discuss the
difference in using the implementation of the RemoteUtilityImpl class shown in Listing 6-5 and Listing 6-6
when you write the server program later in this chapter.

Listing 6-6. Rewriting the RemoteUtilityImpl Class by Inheriting It from the UnicastRemoteObject Class

// RemoteUtilityImpl.java
package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.time.ZonedDateTime;

public class RemoteUtilityImpl extends UnicastRemoteObject implements RemoteUtility {
 // Must throw the RemoteException
 public RemoteUtilityImpl() throws RemoteException {
 }

 @Override
 public String echo(String msg) {
 return msg;
 }

 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }

Chapter 6 ■ Java remote method InvoCatIon

496

 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }
}

Writing the RMI Server Program
The responsibility of a server program is to create the remote object and make it accessible to remote clients.
A server program performs the following things:

•	 Installs the security manager.

•	 Creates and exports the remote object.

•	 Registers the remote object with the RMI registry application.

The subsequent sections discuss these steps in detail.

Installing the Security Manager
You need to make sure that the server code is running under a security manager. An RMI program cannot
download Java classes from remote locations if it is not running with a security manager. Without a
security manager, it can only use local Java classes. In both RMI servers and RMI clients, programs may
need to download class files from remote locations. You will look at examples of downloading Java classes
from remote locations shortly. When you run a Java program under a security manager, you must also
control access to the privileged resources through a Java policy file. The following snippet of code shows
how to install a security manager if it is not already installed. You can use an object of the java.lang.
SecurityManager class or java.rmi.RMISecurityManager class to install a security manager.

SecurityManager secManager = System.getSecurityManager();
if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
}

A security manager controls the access to privileged resources through a policy file. You will need to set
appropriate permissions to access the resources used in a Java RMI application. For this example, you will
give all permissions to all code. However, you should use a properly controlled policy file in a production
environment. The entry that you need to make in the policy file to grant all permissions is as follows:

grant {
 permission java.security.AllPermission;
};

Typically, a Java policy file resides in the user’s home directory on a computer and it is named .java.
policy. Note that the file name starts with a dot.

Chapter 6 ■ Java remote method InvoCatIon

497

Creating and Exporting the Remote Object
The next step the RMI server program performs is to create an object of the class that implements
the remote interface, which will serve as a remote object. In your case, you will create an object of the
RemoteUtilityImpl class:

RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();

You need to export the remote object, so remote clients can invoke its remote methods. If your
remote object class (RemoteUtility class in this case) inherits from the UnicastRemoteObject class,
you do not need to export it. It is exported automatically when you create it. If your remote object’s class
does not inherit from the UnicastRemoteObject class, you need to export it explicitly using one of the
exportObject() static methods of the UnicastRemoteObject class. When you export a remote object, you
can specify a port number where it can listen for a remote method invocation. By default, it listens at port 0,
which is an anonymous port. The following statement exports a remote object:

int port = 0;
RemoteUtility remoteUtilityStub =
 (RemoteUtility) UnicastRemoteObject.exportObject(remoteUtility, port);

The exportObject() method returns the reference of the exported remote object, which is also called
a stub or a remote reference. You need to keep the reference of the stub, so you can register it with an RMI
registry.

Registering the Remote Object
The final step that the server program performs is to register (or bind) the remote object reference with
an RMI registry using a name. An RMI registry is a separate application that provides a name service.
To register a remote reference with an RMI registry, you must first locate it. An RMI registry runs on a
machine at a specific port. By default, it runs on port 1099. Once you locate the registry, you need to call
its bind() method to bind the remote reference. You can also use its rebind() method, which will replace
an old binding if it already exists for the specified name. The name used is a String. You will use the name
MyRemoteUtility as the name for your remote reference. It is better to follow a naming convention for
binding a reference object in the RMI registry to avoid name collisions.

Registry registry = LocateRegistry.getRegistry("localhost", 1099);
String name = "MyRemoteUtility";
registry.rebind(name, remoteUtilityStub);

That is all needed to write a server program. Listing 6-7 contains the complete code for the RMI server,
which is a member of the jdojo.rmi.server module. It assumes that the RemoteUtilityImpl class does not
inherit from the UnicastRemoteObject class, as listed in Listing 6-5.

Listing 6-7. An RMI Remote Server Program

// RemoteServer.java
package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;
import java.rmi.RemoteException;
import java.rmi.registry.LocateRegistry;

Chapter 6 ■ Java remote method InvoCatIon

498

import java.rmi.registry.Registry;
import java.rmi.server.UnicastRemoteObject;

public class RemoteServer {
 public static void main(String[] args) {
 SecurityManager secManager = System.getSecurityManager();
 if (secManager == null) {
 System.setSecurityManager(new SecurityManager());
 }

 try {
 RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();

 // Export the object as a remote object
 int port = 0; // An anonymous port
 RemoteUtility remoteUtilityStub
 = (RemoteUtility) UnicastRemoteObject.exportObject(remoteUtility, port);

 // Locate the registry
 Registry registry = LocateRegistry.getRegistry("localhost", 1099);

 // Bind the exported remote reference in the registry
 String name = "MyRemoteUtility";
 registry.rebind(name, remoteUtilityStub);

 System.out.println("Remote server is ready...");
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}

If you use the implementation of the RemoteUtilityImpl class listed in Listing 6-6, you will need to
modify the code in Listing 6-7. The code in the try-catch block will change to the code as follows. All other
code will remain the same.

RemoteUtilityImpl remoteUtility = new RemoteUtilityImpl();

// No need to export the object

// Locate the registry
Registry registry = LocateRegistry.getRegistry("localhost", 1099);

// Bind the exported remote reference in the registry
String name = "MyRemoteUtility";
registry.rebind(name, remoteUtility);

System.out.println("Remote server is ready...");

You are not ready to start your server program yet. I discuss how to start an RMI application in the
sections that follow.

Chapter 6 ■ Java remote method InvoCatIon

499

For security reasons, you can bind a remote reference to an RMI registry only from the RMI server
program that is running on the same machine as the RMI registry. Otherwise, a hacker may be able to bind
any arbitrary and potentially harmful remote references to your RMI registry. By default, the getRegistry()
static method of the LocateRegistry class returns a stub for a registry that runs on the same machine at port
1099. You may just use the following code to locate a registry in the server program.

// Get a registry stub for a local machine at port 1099
Registry registry = LocateRegistry.getRegistry();

Note that the call to the LocateRegistry.getRegistry() method does not try to connect to a registry
application. It just returns a stub for the registry. It is the subsequent call on this stub, bind(), rebind(), or
any other method call that attempts to connect to the registry application.

Writing the RMI Client Program
The RMI client program calls the methods on remote objects, which exist on the remote server. The first
thing that a client program must do is to know the location of the remote object. It is the RMI server program
that creates and knows the location of the remote object. It is the responsibility of the server program to
publish the location details of the remote object so a client can locate it and use it. The server program
publishes the remote object’s location details by binding it with an RMI registry and gives it a name, which
is MyRemoteUtility in your case. The client program contacts the RMI registry and performs a name-based
lookup to get the remote reference. After getting the remote reference, the client program calls methods on the
remote reference, which are executed in the server. Typically, the RMI client program performs the following:

•	 It makes sure that it is running under a security manager.

	 SecurityManager secManager = System.getSecurityManager();
	 if (secManager == null) {
	 System.setSecurityManager(new SecurityManager());
	 }

•	 It locates the registry where the remote reference has been bound by the server. You
must know the machine name or IP address, and the port number at which the RMI
registry is running. In a real-world RMI program, you would not be using localhost
in the client program to locate the registry. Rather, an RMI registry will be running on
a separate machine. For this example, you will run all three programs—RMI registry,
server, and client—on the same machine.

	 // Locate the registry
	 Registry registry = LocateRegistry.getRegistry("localhost", 1099);

•	 It performs the lookup in the registry using the lookup() method of the Registry
interface. It passes the name of the bound remote reference to the lookup() method
and gets back the remote reference (or stub). Note that the lookup() method must
use the same name that was used to bind/rebind a remote reference by the server.
The lookup() method returns a Remote object. You must cast it to the type of your
remote interface. The following snippet of code casts the returned remote reference
from the lookup() method to the RemoteUtility interface type:

String name = "MyRemoteUtility";
RemoteUtility remoteUtilStub = (RemoteUtility) registry.lookup(name);

Chapter 6 ■ Java remote method InvoCatIon

500

•	 It calls methods on the remote reference (or stub). The client program treats the
remoteUtilStub reference as if it is a reference to a local object. Any method
call made on it is sent to the server for execution. All remote methods throw a
RemoteException. You must handle the RemoteException when you call any remote
method.

// Call the echo() method
String reply = remoteUtilStub.echo("Hello from the RMI client.");

Listing 6-8 contains the complete code for your client program, which is a member of the jdojo.
rmi.client module. Do not run this program yet. You will go through the step-by-step process in the next
few sections to run your RMI application. You may notice that writing RMI code is not complex. It is the
plumbing of different components in RMI that is complex.

Listing 6-8. An RMI Remote Client Program

// RemoteClient.java
package com.jdojo.rmi;

Separating the Server and Client Code
It is important that you separate the code for the server and client programs in an RMI application. The
server program needs to have the following three components:

•	 The remote interface

•	 The implementation class for the remote interface

•	 The server program

The client program needs to have the following two components.

•	 The remote interface

•	 The client program

You were prepared for this client-server code separation from the very beginning of this chapter. To
achieve this, you will deploy the jdojo.rmi.server and jdojo.rmi.common module to the server machine
and you will deploy jdojo.rmi.client and jdojo.rmi.common modules to the client machine. I refer to
these modular JARs as jdojo.rmi.server.jar, jdojo.rmi.client.jar, and jdojo.rmi.common.jar in
subsequent sections when you run the RMI application.

Generating Stub and Skeleton
RMI needs a stub class when a remote object is exported using the UnicastRemoteObject class. You can do
one of the following two things:

•	 You can use the UnicastRemoteObject class to inherit your remote interface
implementation class, which will export your remote object automatically.

•	 You can use the exportObject() method of the UnicastRemoteObject class to export
the remote object explicitly.

Chapter 6 ■ Java remote method InvoCatIon

501

In either case, when a remote object is exported, RMI needs a stub class. Prior to Java 5, you need to
perform one extra step to generate the stub class for your remote interface implementation class. It is done
by using an rmic command that is included in the bin subdirectory of your JDK installation directory. You
run this command, passing the fully qualified name of the remote interface implementation class as shown:

rmic com.jdojo.rmi.server.RemoteUtilityImpl

You may need to set the CLASSPATH environment variable appropriately so that rmic will be able to find
the class you specify as its argument. The previous command will generate the following two class files in the
same folder where the RemoteUtilityImpl.class file resides.

•	 RemoteUtilityImpl_Stub.class

•	 RemoteUtilityImpl_Skel.class

You need to include these two class files in the jdojo.rmi.server.jar file. Note that this step is needed
only if you are using Java version prior to Java 5. You also need to perform this step if you have a client
program that is running Java version prior to Java 5 and your server is running on Java 5 or later. If you are
interested in looking at the Java source code that is generated for these two class files, you can use the –keep
(or -keepgenerated) option with the rmic command, which will generate the Java source files for these
classes. The following command will generate four files—two .class files and two .java files.

rmic –keep com.jdojo.rmi.server.RemoteUtilityImpl

Running the RMI Application
You need to start all programs involved in an RMI application in the following specific sequence:

•	 Run the RMI registry.

•	 Run the RMI server program.

•	 Run the RMI client program.

Refer to the “Troubleshooting an RMI Application” section later in this chapter if you have any problem
in running any of the programs.

Your server and client programs use security managers. You must have your Java policy file properly
configured before you can run the RMI application successfully. You can grant all security permissions to an
RMI application for learning purposes. You can do so by creating a text file named rmi.policy (you can use
any other file name you want) and entering the following content, which grants all permissions to all code:

grant {
 permission java.security.AllPermission;
};

When you run the RMI client or server program, you need to set the rmi.policy file as your Java
security policy file using the java.security.policy JVM option. It is assumed that you have saved the rmi.
policy file in the C:\mypolicy folder on Windows.

java -Djava.security.policy=file:///C:/mypolicy/rmi.policy <other-options>

This approach of setting a Java policy file has a temporary effect. It should be used only for learning
purposes. You will need to set a fine-grained security in a production environment.

Chapter 6 ■ Java remote method InvoCatIon

502

Running the RMI Registry
The RMI registry application is supplied with the JDK/JRE installation. It is copied in the bin subfolder of the
respective installation main folder. On the Windows platform, it is the rmiregistry.exe executable file. You
can run the RMI registry by starting the rmiregistry application using a command prompt. It accepts a port
number on which it will run. By default, it runs on port 1099. The following command starts it at port 1099
using a command prompt on Windows:

C:\java9\bin> rmiregistry

The following command starts the RMI registry at port 8967:

C:\java9\bin> rmiregistry 8967

The rmiregistry application does not print any startup message on the prompt. Usually, it is started as
a background process.

Most likely, the command is not going to work on your machine. Using this command, you will be able
to start the rmiregistry successfully. However, you will get ClassNotFoundException when you run the RMI
server application in the next section. The rmiregistry application needs access to some of the classes (the
registered ones) used in the RMI server application. There are three ways to make the classes available to
rmiregistry:

•	 Set the CLASSPATH appropriately.

•	 Set the java.rmi.server.codebase JVM property to the URL that contains the
classes needed by the rmiregistry.

•	 Set the JVM property named java.rmi.server.useCodebaseOnly to false. From
JDK 7u21 (also in JDK 6u45 and JDK 5u45), this property is set to true by default.
Earlier it was set to false by default. If this property is set to false, the rmiregistry
can download the needed class files from the server.

The following command adds the JARs containing the server classes and common interfaces to the
CLASSPATH, before starting the rmiregistry:

C:\java9\bin> SET CLASSPATH= C:\Java9APIsAndModules\dist\jdojo.rmi.common.jar;C:\
Java9APIsAndModules\dist\jdojo.rmi.server.jar
C:\java9\bin> rmiregistry

Instead of setting the CLASSPATH to make classes available to the rmiregistry, you can also set the
java.rmi.server.codebase JVM property that is a space-separated list of URLs, as shown:

C:\java9\bin> rmiregistry -J-Djava.rmi.server.codebase=file:///C:/Java9APIsAndModules/dist/
jdojo.rmi.common.jar file:///C:/Java9APIsAndModules/dist/jdojo.rmi.server.jar

The following command resets the CLASSPATH and sets the java.rmi.server.useCodebaseOnly
property for the JVM to false so the rmiregistry will download any class files needed from the RMI server.
Your example will work using this command:

C:\java9\bin> SET CLASSPATH=
C:\java9\bin> rmiregistry -J-Djava.rmi.server.useCodebaseOnly=false

Chapter 6 ■ Java remote method InvoCatIon

503

Running the RMI Server
The RMI registry must be running before you can run the RMI server. Recall that the server runs under a
security manager that requires you to grant permissions to perform certain actions in a Java policy file. Make
sure that you have entered the required grants in a policy file. You can use the following command to run
the server program. The command text is entered in one line; it has been shown in multiple lines for clarity.
Each part in the command text should be separated by a space, not a new line. In the command, you will
need to change the path to the JAR and policy files that will reflect their paths on your machine.

C:\Java9APIsAndModules>java
--module-path dist\jdojo.rmi.common.jar;dist\jdojo.rmi.server.jar
-Djava.security.policy=file:///C:/mypolicy/rmi.policy
-Djava.rmi.server.codebase=file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar
--module jdojo.rmi.server/com.jdojo.rmi.server.RemoteServer

Remote server is ready...

You need to set a java.rmi.server.codebase property. This is used by an RMI registry and a client
program if they need to download class files that they do not have. The value of this property is a URL, which
can point to a local file system, a web server, a FTP server, or any other resource. The URL may point to a JAR
file, as it does in this case, or it can point to a directory. If it points to a directory, the URL must end with a
forward slash. The following command uses a folder as its codebase. If an RMI registry and a client need any
class files, they will attempt to download the class files from the URL file:///C:/myrmi/classes/.

java -Djava.rmi.server.codebase=file:///C:/myrmi/classes/ <other-options>

You can also set a java.rmi.server.codebase property to point to a web server, where you can store
your necessary class files as shown:

java -Djava.rmi.server.codebase=http://www.jdojo.com/rmi/classes/ <other-options>

If you store class files at multiple locations, you can specify all locations separated by a space as follows:

java -Djava.rmi.server.codebase="http://www.jdojo.com/rmi/classes/
 ftp://www.jdojo.com/rmi/some/classes/c.jar" <other-options>

It specifies one location as a directory and another as a JAR file. One uses the http protocol and
another ftp. The two values are separated by a space and they are on one line, not on two lines as shown. A
ClassNotFoundException may occur when you run the server or client program, which is most likely caused
by an incorrect setting for the java.rmi.server.codebase property, or by not setting this property at all.

Running an RMI Client Program
After the RMI registry and server applications are started successfully, it is time to start the RMI client
application. You can use the following command to run the client program:

C:\Java9APIsAndModules>java
--module-path dist\jdojo.rmi.common.jar;dist\jdojo.rmi.client.jar
-Djava.rmi.server.codebase=file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar
-Djava.security.policy=file:///C:/mypolicy/rmi.policy
--module jdojo.rmi.client/com.jdojo.rmi.client.RemoteClient

Chapter 6 ■ Java remote method InvoCatIon

504

Echo Message: Hello, Echo reply: Hello
Server Time: 2018-01-05T07:55:59.922783500-06:00[America/Chicago]
101 + 207 = 308

For this example, you do not have to include a java.rmi.server.codebase option when you run the
previous command. However, you will need to include this option if your client programs uses parameters in
remote methods and the class files for those parameter types are not available on the server. In that case, the
server will download those class files from the specified java.rmi.server.codebase option.

You should be able to see an output on the console when the client program runs successfully. You may
get a different output when you run the program because it prints the current date and time with the zone
information for the server machine running the server application.

Troubleshooting an RMI Application
It is very likely that you will get many errors before you will be able to run the RMI application the first time.
This section lists a few errors that you may receive. It will also list some possible causes for those errors and
some possible solutions. It is not possible to list all possible errors that you might get when you attempt to
run an RMI application. You should be able to figure out most of the errors by looking at the stack prints of
the errors.

java.rmi.StubNotFoundException
You get a StubNotFoundException when you try to run a server program. The exception stack trace will be
similar to the following:

java.rmi.StubNotFoundException: Stub class not found: com.jdojo.rmi.RemoteUtilityImpl_Stub;
nested exception is: java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtilityImpl_Stub
at sun.rmi.server.Util.createStub(Util.java:292)...

This exception could occur because of many reasons. Here are some of the reasons you could look for
and fix:

•	 You may be running the server program using a Java version prior to Java 5. You must
create the stub and skeleton using the rmic command and make them accessible
to the JVM when you run the server program. Refer to the “Generating Stub and
Skeleton” section for more details.

•	 You may get this error when you are exporting a remote object and not passing a port
number:

RemoteUtility remoteUtilityStub =

 (RemoteUtility)UnicastRemoteObject.exportObject(remoteUtility);

If you do not pass a port number to the exportObject() method of the
UnicastRemoteObject class to export a remote object, you must generate the
stub and skeleton using the rmic command first. Refer to the “Generating Stub
and Skeleton” section for more details. Another way to resolve this is to pass a
port number to the exportObject() method. The port number 0 (zero) means
an anonymous port.

Chapter 6 ■ Java remote method InvoCatIon

505

RemoteUtility remoteUtilityStub =
 (RemoteUtility)UnicastRemoteObject.exportObject(remoteUtility,0);

java.rmi.server.ExportException
You get an ExportException when you try to run the rmiregistry application or the server application. The
exception stack trace will be similar to the one shown if you get this exception when you attempt to run the
rmiregistry application.

java.rmi.server.ExportException:Port already in use: 1099; nested exception is:
 java.net.BindException: Address already in use: JVM_Bind...

It states that the port number 1099 (may be a different number in your case) is already in use. Maybe
you have already started the rmiregistry application at port 1099 (which is the default port number for an
rmiregistry application) or some other application is using the port 1099. You can do one of the following
two things to fix this problem:

•	 You can stop the application that is using the port 1099 and start the rmiregistry
application at port 1009.

•	 You can start the rmiregistry application at a port other than 1099.

If you get an ExportException when you run the server program, it is caused by the failure of the export
process of the remote object. There are many reasons for the export process to fail. The following exception
stack trace (partial trace is shown) is caused by exporting the same remote object twice:

java.rmi.server.ExportException: object already exported
 at sun.rmi.transport.ObjectTable.putTarget(ObjectTable.java:189)
 at sun.rmi.transport.Transport.exportObject(Transport.java:92)...

Check your server program and make sure that you are exporting your remote object only once. It is a
common mistake to inherit the remote object implementation class from the UnicastRemoteObject class and
use the exportObject() method of the UnicastRemoteObject class to export the remote object. When you
inherit the remote object’s implementation class from the UnicastRemoteObject class, the remote object, which
you create, is exported automatically. If you try to export it again using the exportObject() method, you will get
this exception. I have stressed this point a few times when discussing the remote interface implementation class.
When you are developing an RMI application, remember the saying, “To err is programmer, to punish, Java.”
Even a little mistake in the setup of an RMI program may take hours to detect and fix.

java.security.AccessControlException
You get this exception when your Java policy file does not have grant entries that are necessary to run the
RMI application. The following is the partial stack trace of an exception, which is caused when you attempt
to run the server program, and it attempts to bind a remote object to the RMI registry:

java.security.AccessControlException: access denied (java.net.SocketPermission
127.0.0.1:1099 connect,resolve)...

Communications among registry, server, and client are performed using sockets. You must grant
appropriate socket permission in the Java policy file for security, so that the three components of your RMI
application may be able to communicate. Most of the security-related exceptions can be fixed by granting
appropriate permissions in the Java policy file.

Chapter 6 ■ Java remote method InvoCatIon

506

java.lang.ClassNotFoundException
You get a ClassNotFoundException exception when a class file that is needed by Java runtime is not found.
You must have received this exception many times by now. Most of the time, you receive this exception when
the CLASSPATH is not appropriately set. In an RMI application, this exception may be the cause for another
exception. The following stack trace shows that the java.rmi.ServerException exception was thrown,
which has its cause in a ClassNotFoundException exception:

java.rmi.ServerException: RemoteException occurred in server thread; nested exception is:
 java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:
 java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtility
...
Caused by: java.lang.ClassNotFoundException: com.jdojo.rmi.RemoteUtility
 at java.net.URLClassLoader$1.run(URLClassLoader.java:220)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:209)

This type of exception is thrown when the java.rmi.server.codebase option is not set properly or not
set at all when you run the server or the client application.

This exception was thrown when the server program was started without using the java.rmi.server.
codebase option and the rmiregistry application was run without setting the CLASSPATH. When you try to
bind/rebind a remote reference with an rmiregistry application, the server application sends the remote
reference to the rmiregistry application. The rmiregistry application must load the class before it can
represent the remote reference as a Java object in its JVM. At this time, the rmiregistry will try to download
the required class files from the location that was specified at the server startup using the java.rmi.server.
codebase property.

If you get this exception when you run the client program, make sure you have set the java.rmi.
server.codebase property when you run the client program.

Please check the CLASSPATH and java.rmi.server.codebase property when you run the server and the
client program to avoid this exception.

You get a ClassNotFoundException when you run the client program because the server was not able to
find some class definitions that were required in unmarshalling the client call on the server side. The sample
partial stack trace of the exception is shown:

java.rmi.ServerException: RemoteException occurred in server thread; nested exception is:
java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is: java.lang.
ClassNotFoundException: com.jdojo.rmi.client.Square
 at sun.rmi.server.UnicastServerRef.dispatch(UnicastServerRef.java:336)
 at sun.rmi.transport.Transport$1.run(Transport.java:159)...

A remote method defined in a remote interface may accept a parameter, which may be of an interface or
a class type. The client may pass an object of a class that implements the interface or an object of a subclass
of type defined in the remote interface’s method signature. If the class definition does not exist on the server,
the server will attempt to download the class using the java.rmi.server.codebase property that was set in
the client application. You need to make sure the class for which you are getting this error (exception stack
trace shows com.jdojo.rmi.client.Square as the class name) is either in the CLASSPATH of the server JVM
or set the java.rmi.server.codebase property when you run the remote client, so that this class can be
downloaded by the sever.

Chapter 6 ■ Java remote method InvoCatIon

507

Debugging an RMI Application
You can turn on RMI logging for an RMI server application by setting the JVM property named java.rmi.
server.logCalls to true. By default, it is set to false. The following command launches your RemoteServer
application setting the java.rmi.server.logCalls property to true:

C:\Java9APIsAndModules>java
--module-path dist\jdojo.rmi.common.jar;dist\jdojo.rmi.server.jar
-Djava.rmi.server.logCalls=true
-Djava.security.policy=file:///C:/mypolicy/rmi.policy
-Djava.rmi.server.codebase=file:///C:/Java9APIsAndModules/dist/jdojo.rmi.common.jar
--module jdojo.rmi.server/com.jdojo.rmi.server.RemoteServer

When the java.rmi.server.logCalls property for the server JVM is set to true, all incoming calls to
the server and stack trace of any exceptions that are thrown during execution of an incoming call are logged
to the standard error.

The RMI runtime also lets you log the incoming calls in a server application to a file, irrespective of
the value set for the java.rmi.server.logCalls property for the server JVM. You can log all incoming call
details to a file using the setLog(OutputStream out) static method of java.rmi.server.RemoteServer
class. Typically, you set the file output stream for logging in the beginning of the server program code such
as the very first statement in the main() method of your com.jdojo.rmi.server.RemoteServer class. The
following snippet of code enables the calls logging in a remote server application to a C:\rmilogs\rmi.log
file. You can disable call logging by using null as the OutputStream in the setLog() method.

try {
 java.io.OutputStream os = new java.io.FileOutputStream("C:\\rmilogs\\rmi.log");
 java.rmi.server.RemoteServer.setLog(os);
} catch (FileNotFoundException e) {
 System.err.println("Could not enable incoming calls logging.");
 e.printStackTrace();
}

When a security manager is installed on the server, the running code, which enables logging to a
file, must have a java.util.logging.LoggingPermission with permission target as "control". The
following grant entry in the Java policy file will grant this permission. You will also have to grant the "write"
permission to the log file (C:\\rmilogs\\rmi.log in this example) in the Java policy file.

grant {
 permission java.io.FilePermission "c:\\rmilogs\\rmi.log", "write";
 permission java.util.logging.LoggingPermission "control";
};

If you want to get debugging information about an RMI client application, set a non-standard sun.rmi.
client.logCalls property to true when you launch the RMI client application. It will display the debugging
information on the standard error. Since this property is not the part of a public specification, it may be removed
in future releases. You need to refer to the RMI specification for more details on debugging options. You can find
the RMI specification at https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html.

If you still have problems compiling and running your RMI application, you can refer to the web page
at https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html. This web page provides
answers to several frequently asked questions while working with RMI applications.

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/faq.html

Chapter 6 ■ Java remote method InvoCatIon

508

Dynamic Class Downloading
The JVM loads the class definition before it can create an object of a class. It uses a class loader to load a class
at runtime. A class loader is an instance of the java.lang.ClassLoader class. A class loader must locate the
bytecodes for a class before it can load its definition into the JVM. A Java class loader is capable of loading
the bytecodes of a class from any location such as a local file system and a network. There could be multiple
class loaders in one JVM and they could be system or custom defined.

The JVM creates a class loader at startup, which is called a bootstrap class loader. The bootstrap class
loader is responsible for loading initial classes required for basic JVM functions. Class loaders are organized
in a tree-like structure based on a parent-child relationship. The bootstrap class loader has no parent. All
other class loaders have the bootstrap class loader as their direct or indirect parent. In a typical class loading
process, when a class loader is asked to load the bytecode for a class, it asks its parent to load the class, which
in turn asks its parent and so on, until the bootstrap class loader gets the request to load the class. If none of
the parent class loaders is able to load the class, the class loader that received the initial request to load the
class will attempt to load the class.

The RMI runtime uses a special RMI class loader that is responsible for loading the classes in an RMI
application. When an object is being passed around in an RMI application from one JVM to another, the
sending JVM has to serialize and marshal the object, and the receiving JVM has to deserialize and unmarshal
it. The sending JVM adds the value of the property java.rmi.server.codebase to the object’s serialized
stream. When the object stream is received at the other end, the receiving JVM must load the class definition
of the object using a class loader before it can convert the object stream into a Java object. The JVM instructs
the RMI class loader to load the class definition of the object, which it has received in a stream form. The
class loader attempts to load the class definition from its JVM CLASSPATH. If the class definition is not found
using the CLASSPATH, the class loader uses the value of the java.rmi.server.codebase property from the
object’s stream to load the class definition.

Note that the java.rmi.server.codebase property is set in one JVM and it is used to download the
class definition in another JVM. This property can be set when you run the RMI server or client program.
When one side (server or client) transmits an object to another side, which does not have the bytecode
to represent the class definition for the object being received, the sending side must have set the java.
rmi.server.codebase property at the time of sending the object, so that the receiving end can download
the class bytecode using this property. The value for the java.rmi.server.codebase property is a space-
separated list of URLs.

Downloading code from an RMI server to the client may be fine from a security point of view.
Sometimes it may not be considered safe to download code from a client to the server. By default,
downloading the classes from remote JVMs is disabled. RMI lets you enable/disable this feature by using
a java.rmi.server.useCodebaseOnly property. By default, it is set to true. If it is set to true, the JVM’s
class loader will load classes only from local CLASSPATH or locally set java.rmi.server.codebase property.
That is, if it is set to true, the class loader will not read the value of java.rmi.server.codebase from the
received object’s stream to download the class definition. Rather, it will look for the class definition in its
JVM CLASSPATH and use URLs that are set as the value of the java.rmi.server.codebase property for its
own JVM. That is, when the java.rmi.server.useCodebaseOnly property is set to true, the RMI class loader
ignores the value for the codebase that is sent from the sending JVM in an object’s stream. The property
name useCodebaseOnly seems to be a misnomer. It could have conveyed its meaning better had it been
named useLocallySetCodebaseOnly. Here is how you can set this property when you run the RMI server:

java –Djava.rmi.server.codebase="http://www.myurl.com/rmiclasses"
 -Djava.rmi.server.useCodebaseOnly=true
 <other-options>
 com.jdojo.rmi.RemoteServer

Chapter 6 ■ Java remote method InvoCatIon

509

 ■ Tip Starting in JdK 7u21 (also in JdK 6u45 and JdK 5u45), the default value for the java.rmi.server.
codebase property is set to true. Its default value used to be false. It means, by default, the application is not
allowed to download classes from other Jvms.

There are two implications of setting the java.rmi.server.useCodebaseOnly property to true:

•	 If the server needs a class as part of a remote call from a client, it will always look in
its CLASSPATH or it will use the value of java.rmi.server.codebase that you set for
the server program. In the previous example, all classes in the server must be found
in its CLASSPATH or at the URL http://www.myurl.com/rmiclasses.

•	 If a client needs to use a new class type in a remote method call, the new class type
must be known to the server in advance because the server will never use the client’s
instruction (set by using java.rmi.server.codebase property at the client side)
about the location from where to download the required new classes. This means
that you must make the new classes that will be used by a remote client available
in server’s CLASSPATH or at the URLs specified as the java.rmi.server.codebase
property for the server. This situation may arise when a remote method accepts an
interface type and the client sends an object of a class that implements that interface.
In this case, the server may not have the same definition of the new implementation
of the interface as the client.

The previous argument applies to running an RMI client application as well if you set the java.rmi.
server.useCodebaseOnly property to true for the JVM running the RMI client application. If this property
is set to true for the client application, you must make all required classes available to the client either by
placing them in its CLASSPATH or placing them at URLs and setting the URLs as the value for the java.rmi.
server.codebase property at the client side.

Garbage Collection of Remote Objects
In an RMI application, remote objects are created in the JVM on the server. The RMI registry and remote
clients keep references of the remote objects. Does a remote object ever get garbage collected? And, if it does
get garbage collected, when does it happen and how does it happen? Garbage collection of a local object
is easy. A local object is created and referenced in the same JVM. It is an easy task for a garbage collector to
determine that a local object is no longer referenced in the JVM.

In an RMI application, you need a garbage collector that can keep track of the references of a remote
object in remote JVMs. Suppose an RMI server creates a remote object of RemoteUtilityImpl class and
five clients get its remote reference. An RMI registry is also a client that gets the remote reference as
part of the bind/rebind process. When and how does the server garbage collect the lone object of the
RemoteUtilityImpl class, which is being referenced by five clients?

The JVM on the server, which has the remote object, and the five JVMs at five different clients must
interact, so the remote object in the server’s JVM can be garbage collected when it is no longer used by any
remote clients. Let’s ignore the local references of the remote object in the server JVM for this discussion.
The interaction between a remote client and an RMI server depends on many unreliable factors. For
example, the network may go down and a remote client may not be able to communicate with the server.
The second consideration is who initiates the interaction between the remote client and the server? Is it the
server that keeps asking a remote client if it has a live remote reference? Is it the remote client who keeps
telling the server that it still has a live remote reference? The responsibility of interaction between client
and server is shared by both. The remote client needs to update the server about the aliveness of its remote
references. If the server does not hear from any clients for a specific period of time, it takes a unilateral
decision to make the remote object a candidate for a future garbage collection.

http://www.myurl.com/rmiclasses

Chapter 6 ■ Java remote method InvoCatIon

510

The RMI garbage collector is based on reference count. A reference count has an associated lease. A
lease has a time period for which it is valid. When a remote client (including an RMI registry) gets a reference
to a remote object, it sends a message to the RMI runtime on the server requesting a lease for that remote
object reference. The server grants a lease for a specified time period to that client. The server increments
the reference count for that remote object by one and sends back the lease to the client. By default, an RMI
server grants a lease for 10 minutes for a remote object. Now, the following are some possibilities:

•	 The client may be done with the remote object reference within the time period for
which it had acquired the lease from the server.

•	 The client may want to renew the lease for another extended time period.

•	 The client crashes. The server does not receive any message from the client, and the
lease period for a remote reference that was acquired by the client expires.

Let’s look at each possibility. A client sends messages to the server on three different occasions. It
sends a message the very first time it receives a remote reference. It tells the server that it has a reference of
the remote object. The second time, it sends a message to the server when it wants to renew the lease for a
remote reference. The third time, it sends a message to the server when it is done with the remote reference.
In fact, when a remote reference is garbage collected in a client application, it sends a message to the server
that it is done with the remote object. Internally, there are only two types of messages that a remote client
sends to a server: dirty and clean. The dirty message is sent to get a lease and the clean message is sent to
remove/cancel the lease. These two messages are sent from a remote client to a server using the dirty()
and clean() methods of the java.rmi.dgc.DGC interface. As a developer, you do not have any control over
these messages (sending or receiving) except that you can customize the lease time period. The lease time
period controls the frequency of these messages sent to the server.

When a client is done with a remote object reference, it sends a message to the server that it is done with
it. The message is sent when the remote reference in the client’s JVM is garbage collected. Therefore, it is
important that you set the remote reference in the client program code to null as soon as you are done with
it. Otherwise, the server will keep holding on to the remote object, even if it is no longer used by the remote
client. You do not have any control on the timing of this message, which is sent from the remote client to the
server. All you can do to expedite this message sending is to set the remote object reference in the client code
to null, so the garage collector will attempt to garbage collect it and send a clean message to the server.

The RMI runtime keeps track of the leases for remote references in a remote client JVM. When a lease
is half-way through its expiration period, the remote client sends a lease renewal request to the server and
gets the lease renewed. When a lease for a remote client is renewed for a remote reference, the server keeps
track of the lease expiration time and it will not garbage collect the remote object. It is important that you
understand the importance of setting the lease period for a remote reference. If it is too small, a significant
amount of network bandwidth will be used for renewing the lease frequently. If it is too large, the server will
keep the remote object alive for a longer time in case a client is done with its remote reference and it does not
inform the server to cancel the lease. I discuss shortly how to set a lease period value in an RMI application.

If the server does not hear anything from a remote client about the lease of a remote reference that the
client had acquired, after the expiration of the lease period, it simply cancels the lease and decrements the
reference count for that remote object by one. This unilateral decision that is made by the server is important
to handle the cases of ill-behaved remote clients (not telling the server that it is done with a remote reference)
or any network/system hiccups that may prevent the remote client from communicating with the server.

When all clients are done with a remote reference of a remote object, its reference count in the server will
go down to zero. A remote client is considered done with a remote reference when either its lease is expired or
it has sent a clean message to the server. In this case, the RMI runtime will reference the remote object using a
weak reference, so if there is no local reference to the remote object, it may be garbage collected.

Chapter 6 ■ Java remote method InvoCatIon

511

By default, the lease period is set for 10 minutes. You can set the lease period using the java.rmi.
dgc.leaseValue property when you start the RMI server. The value for the lease period is specified in
milliseconds. The following command starts the server program with a lease period set to 5 minutes (300000
milliseconds). The command text is entered on one line with two parts separated by a space, not by a
newline as shown; I have used a newline to separate the parts of the command for clarity.

java -Djava.rmi.dgc.leaseValue=300000 <other-options>

Except for setting the lease time period, everything is handled by the RMI runtime. The RMI runtime
gives you one more piece of information about the garbage collection of a remote object. It can tell you when
the reference count of the remote object has gone down to zero. It is important to get this notification if a
remote object holds some resources that you would like to free when no remote client is referencing it. To
get this notification, you need to implement the java.rmi.server.Unreferenced interface in your remote
object implementation class. Its declaration is as follows:

public interface Unreferenced {
 void unreferenced()
|

The unreferenced() method is called when the remote reference count for a remote object becomes
zero. If you want to get a notification in your example for the RemoteUtility remote object, you need to
modify the declaration of the RemoteUtilityImpl class, as shown in Listing 6-9.

Listing 6-9. A Modified Version of the RemoteUtilityImpl Class That Implements the Unreferenced Interface

// RemoteUtilityImpl.java
package com.jdojo.rmi.server;

import com.jdojo.rmi.common.RemoteUtility;
import java.rmi.server.Unreferenced;
import java.time.ZonedDateTime;

public class RemoteUtilityImpl implements RemoteUtility, Unreferenced {
 public RemoteUtilityImpl() {
 }

 @Override
 public String echo(String msg) {
 return msg;
 }

 @Override
 public ZonedDateTime getServerTime() {
 return ZonedDateTime.now();
 }

 @Override
 public int add(int n1, int n2) {
 return n1 + n2;
 }

Chapter 6 ■ Java remote method InvoCatIon

512

 @Override
 public void unreferenced() {
 System.out.println("RemoteUtility unreferenced at: " + ZonedDateTime.now());
 }
}

You may notice that, this time, the RemoteUtilityImpl class implements the Unreferenced interface and
provides implementation for the unreferenced() method, which prints a message to the standard output
with the time when its reference count becomes zero. The unreferenced() method will be called by the RMI
runtime. To test that the unreferenced() method is called, you can start the RMI registry application, and
then start the RMI server application. The RMI registry will keep renewing the lease for the remote object.
As long as an RMI registry is running, you will never see the unreferenced() method being called. You need
to shut down the RMI registry application and wait for the remote object reference’s lease to expire or to be
cancelled by the RMI registry when you shut it down. After the RMI registry is shut down, you will see the
message on the standard output for the server program that will be printed by the unreferenced() method.

An RMI registry should be used just as a bootstrap means to start the remote client. Later on, the
remote client can receive a remote object’s reference as a method call to another remote object. If a remote
client receives a remote object reference by a remote method call on a remote object, that remote object’s
reference need not be registered with the RMI registry. In this case, after the last remote client is finished
with the remote reference, the server will garbage collect the remote object instead of keeping it in memory
when it is bound to an RMI registry.

Summary
Java Remote Method Invocation (RMI) allows a program running in one JVM to invoke methods on Java
objects running in another JVM. RMI provides an API to develop distributed applications using the Java
programming language.

An RMI application involves three applications running in three JVMs: the rmiregistry application, a
server application, and a client application. The rmiregistry application is shipped with the JDK. You are
responsible for developing the server and client applications. The server application creates Java objects
called remote objects and registers them with the rmiregistry for later name lookup by clients. The client
application looks up the remote object in the rmiregistry using a logical name and gets back a reference of
the remote object. The client application invokes methods on the remote object reference that is sent to the
server application for execution of the method on the remote object. The result of the method invocation is
sent back from the server application to the client application.

An RMI application must follow a few rules to develop the classes and interfaces involved in the remote
communication. You need to create an interface (called remote interface) that must inherit from the Remote
interface. All methods in the interface must include a throws clause that throws at least the RemoteException.
The class for the remote object must implement the remote interface. The server application creates an object
of the class implementing the remote interface, exports the object to give a status of a real remote object, and
registers it with the rmiregistry. The client application needs only the remote interface.

If any of the three applications needs classes that are not locally available, they can download
them dynamically at runtime. For a JVM to download classes dynamically, the java.rmi.server.
useCodebaseOnly property must be set to false. By default, it is set to true, which disables dynamic
downloading of the classes in a JVM. Along with a remote object reference, the JVM also receives the value
of a property named java.rmi.server.codebase, which is the URLs from where the JVM may download (if
permitted by its own java.rmi.server.useCodebaseOnly property setting) the classes needed to work with
the remote object reference.

Chapter 6 ■ Java remote method InvoCatIon

513

There are several components working together in an RMI application that make it hard to debug. You
can log all calls to the RMI server by running it with the JVM property java.rmi.server.logCalls set to
true. All calls to the server will be logged to a standard error. You can also log RMI server calls to a file.

RMI provides automatic garbage collection for remote objects running in the RMI server. The garbage
collection of remote objects is based on reference counts and leases. When the client application gets the
reference of the remote object, it also obtains a lease for the remote object from the server application. The lease
is valid for a period. The client application keeps renewing the lease periodically as long it keeps the remote
object reference. The server application keeps track of the reference count and the leases for the remote objects.
When the client application is done with the remote reference, it sends a message to the server application and
the server application reduces the reference count for the remote object by 1. When the reference count of the
remote object reduces to zero in the server application, the remote object is garbage collected.

QUESTIONS AND EXERCISES

1. What is Java remote method Invocation?

2. What is the fully qualified name of the interface that every remote interface must
extend?

3. What steps do you need to perform in your rmI server program after you create a
remote object, so the remote object is available for a client to use?

4. What is rmI registry and where is it located?

5. In an rmI application, can an rmI registry and rmI server be deployed to two
different machines? If your answer is no, explain why.

6. describe the typical sequence of steps an rmI client program needs to perform to
call a method on a remote object.

7. an rmI application involves three layers of applications: client, rmI registry, and
server. In what order must these applications be run?

8. What is the use of the rmic tool? do you need to use this tool for all rmI
applications you develop?

9. describe the use of the java.rmi.server.codebase command-line option while
running an rmI client and server application.

10. What is the effect of using the java.rmi.server.logCalls=true command-line
option while running an rmI server program?

11. how do you log remote calls in an rmI server application to a file?

12. What is the effect of using the java.rmi.server.useCodebaseOnly=true
command-line option while running an rmI application?

13. Briefly explain how remote objects are garbage collected.

14. describe the steps to get notified when a remote object is no longer being
referenced.

515© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_7

CHAPTER 7

Java Native Interface

In this chapter, you will learn:

•	 What the Java Native Interface (JNI) is

•	 How to write Java programs that use native methods

•	 How to write C++ programs to implement native methods

•	 How to create a shared library on Windows and Linux for the native implementation
of methods used in Java

•	 The data type mapping between Java types and JNI types

•	 How to work with Java strings and arrays in native code

•	 How to create Java objects, access fields, and methods of those objects in native code

•	 Exception handling in native code

•	 How to embed the JVM in native code

•	 How to handle thread synchronization using the JNI in native code

All example programs in this chapter are members of a jdojo.jni module, as declared in Listing 7-1.

Listing 7-1. The Declaration of a jdojo.jni Module

// module-info.java
module jdojo.jni {
 exports com.jdojo.jni;
}

What Is the Java Native Interface?
The Java Native Interface (JNI) is a programming interface that facilitates interaction between Java code
and code written in native languages such as C, C++, FORTRAN, etc. The JNI supports calling C and C++
functions directly from Java. If you need to use native code written in any other language such as FORTRAN,
you can use a C/C++ wrapper function to call it from Java. Interaction can take place both ways. Java code
can call native code and vice versa, as shown in Figure 7-1. You can access the JNI specification at https://
docs.oracle.com/javase/9/docs/specs/jni/.

https://doi.org/10.1007/978-1-4842-3546-1_7
https://docs.oracle.com/javase/9/docs/specs/jni/
https://docs.oracle.com/javase/9/docs/specs/jni/

Chapter 7 ■ Java Native iNterfaCe

516

Java calls native code using native methods. A native method in a Java context is a method that is declared
in Java and implemented in a native language such as C/C++. The native method implementation is compiled
into a shared library, which is loaded by the JVM. A shared library is called a dynamic link library (DLL) on
Windows, and a shared object (SO) on UNIX. Java methods and native methods are called the same way in
Java programs. A Java program is compiled into a platform-independent format called bytecode. Native code
is compiled into a platform-dependent format. Therefore, if a Java application uses native code, it is no longer
portable to other platforms unless you develop the same shared library on all platforms. Sometimes you may
access platform-specific features inside the native code, which is used from the Java application; in that case,
you should be aware that your Java application cannot be run on other platforms.

Why would someone use the JNI when Java provides a rich set of features through its class libraries? It
may be necessary to use the JNI to access native code in Java for the following reasons:

•	 If a Java application needs to implement some platform-specific features that are not
possible to implement using the Java APIs.

•	 You may already have legacy code written in native languages and you want to reuse
it in your Java application.

•	 You are developing a time-critical Java application where Java code does not perform
as fast as expected. You can move the time-critical section of your Java code to native
code.

You should consider using the JNI in a Java application as a last resort. You must explore all possibilities
of implementing the needed features using the Java APIs. Using the JNI also changes the skillset that is
required to develop an application. Either the developers who are working on Java application are trained
in the native language (C/C++) or new developers are brought into the team who know the native language.
Using native code in a Java application makes the application less stable and prone to security risks because
the native code is run outside the JVM.

I use C++ to implement native methods in this chapter. You can use the C language instead. All code
examples in C++ listed in this chapter can be moved to the C language with minor changes. I specify the
differences between C++ code and C code whenever you need to make changes in C++ code to convert it to C.

System Requirements
You need a C or C++ compiler that can create a shared library. You also need a JDK installed on your
computer to generate C/C++ header files. The native code referenced in this chapter has been developed
using the g++ compiler as the C++ compiler on the Windows platform. JDK9 was used to compile and run
the Java code. However, using g++ as the C++ compiler is not a requirement to run any examples. You can
use any other C/C++ compiler to create a shared library on your platform.

Figure 7-1. The JNI architecture

Chapter 7 ■ Java Native iNterfaCe

517

Getting Started with the JNI
Developing a Java application using the JNI involves the following steps:

•	 Writing the Java program

•	 Compiling the Java program

•	 Creating a C/C++ header file

•	 Writing a C/C++ program

•	 Creating a shared library

•	 Running the Java program

Subsequent sections discuss each step in detail.

Writing the Java Program
A Java program that uses the JNI differs from a Java-only program only in two aspects:

•	 Loading the shared library

•	 Declaring the native method

The shared library that contains the native method implementation must be loaded before
Java can call the native method. A shared library is loaded using the loadLibrary(String
libraryNameWithoutExtension) static method of the java.lang.System class as shown:

// Load a shared library named beginningjava
System.loadLibrary("beginningjava");

You can also load a shared library using the loadLibrary() method of the java.lang.Runtime class.
Internally, the loadLibrary() method of the System class calls the loadLibrary() method of the Runtime
class. The previous code can be rewritten as follows:

// Load the shared library
Runtime.getRuntime().loadLibrary("beginningjava");

Note that you need to pass a shared library name without any platform-specific prefix and file
extension to the loadLibrary() method. For example, if your shared library file name is beginningjava.
dll on Windows, libbeginningjava.so on UNIX, or libbeginningjava.dylib on Mac, you need to use
beginningjava as the shared library name. The loadLibrary() method will add a prefix and suffix to your
shared library name depending on the platform. This way, you do not need to change your Java code, which
loads the shared library if you intend to run the same Java code on different platforms.

The mapLibraryName(String libName) static method of the System class accepts the library name and
returns the mapped shared library name on the platform. Sometimes, you have everything correct in your
shared library, but the loadLibrary() method of the System class is not able to find the library. This happens
mainly when you give the shared library a wrong name. When the Java runtime adds a prefix and suffix to the
shared library name, it generates a different name than you have given to your shared library. When you get
an UnsatisfiedLinkError as shown, run the program in Listing 7-2 to know the correct shared library name
the Java runtime is expecting. The program's output will be different on different platforms.

Chapter 7 ■ Java Native iNterfaCe

518

java.lang.UnsatisfiedLinkError: no beginningjava in java.library.path
 at java.base/java.lang.ClassLoader.loadLibrary(ClassLoader.java:2541)
 at java.base/java.lang.Runtime.loadLibrary0(Runtime.java:873)
 at java.base/java.lang.System.loadLibrary(System.java:1857)
...

Listing 7-2. Knowing the Mapped Shared Library Name on a Platform

// MappedSharedLibraryName.java
package com.jdojo.jni;

public class LibraryNameMapper {
 public static void main(String[] args) {
 String libName = "beginningjava";
 String mappedName = System.mapLibraryName(libName);

 System.out.println("Shared Library Name: " + libName);
 System.out.println("Mapped Shared Library Name: " + mappedName);
 }
}

You can also load a shared library using the load() method of the System or Runtime class. The load()
method accepts the absolute path of the shared library with the file extension. If a beginningjava.dll file on
Windows platforms is in the C:\Java9APIsAndModules\jni directory, the call to the load() method will look
as follows:

// Load the shared library
System.load("C:\\Java9APIsAndModules\\jni\\beginningjava.dll");

Note that using the load() method forces you to use the absolute path and the file extension of the
shared library, which makes your Java code non-portable to other platforms. You will use the loadLibrary()
method of the System class to load a shared library in your examples in this chapter. The load() and
loadLibrary() methods throw a java.lang.UnsatisfiedLinkError if the specific library cannot be loaded.

How does the loadLibrary() method find the shared library file in the file system by just knowing the
library name? You have two ways to let the JVM know the location of your shared library:

•	 Include the directory that contains the shared library into the PATH environment
variable on Windows and LD_LIBRARY_PATH environment variable on UNIX.

•	 Specify the directory (or directories, separated by a semicolon on Windows and a
colon on UNIX) that contains the shared library using the java.library.path JVM
property as a command-line option. The following command assumes that the
beginningjava shared library is placed in the C:\Java9APIsAndModules\jni\lib
directory:

java -Djava.library.path=C:\Java9APIsAndModules\jni\lib <other-options>

A native method that is used in Java does not have a body written in Java because its implementation exists
in the native code. However, you need to declare the native method in Java before you can use it. It is declared
using the native keyword. A native method declaration in Java code ends with a semicolon. The following
snippet of code declares a native method named hello(), which accepts no parameters and returns void.

Chapter 7 ■ Java Native iNterfaCe

519

public class Test {
 // Declare a native method called hello()
 public native void hello();
}

Calling a native method in Java code is the same as calling any other Java methods:

Test test = new Test();
test.hello();

You can declare a native method to have public, private, protected, or package-level access. A native
method can be declared static or non-static. You can have as many native methods in a Java class as you want.

You cannot declare a native method as abstract. Native methods are also not allowed inside interfaces.
An abstract method means that the method’s implementation is missing and it will be implemented in Java,
whereas a native method means that the method’s implementation is missing and it is implemented in
native code. Declaring a method as native and abstract at the same time will make it unclear as to where to
look for the implementation of the method—in the Java code or in the native code. This is the reason why a
method declaration cannot use the combination of the two modifiers abstract and native.

The native keyword must be used only to declare methods. You cannot declare a field as native. The
following snippet of code declares two classes named WillCompile and WontCompile. The WillCompile class
contains valid uses of the native keyword, whereas the WontCompile class demonstrates the invalid uses of
the native keyword.

public class WillCompile {
 public native void m1();
 private native void m2();
 protected native void m3();
 native void m4();

 public static native void m5();

 public native int m6(String str);

 // A non-native method (Java-only method)
 public int add(int a, int b) {
 return a + b;
 }
}

// Sample of Illegal use of native keyword in a Java class
public class WontCompile {
 // A field cannot be native
 private native String name;

 // A method cannot be abstract as well as native
 public abstract native String getName();
}

Now you are ready to write Java code to call your first native method. You will name your native method
hello(). It does not accept any parameters and does not return any value. You will implement it in C++ later
and it will print a message, Hello JNI, to the standard output. Listing 7-3 contains the complete code for the
HelloJNI class.

Chapter 7 ■ Java Native iNterfaCe

520

Listing 7-3. A HelloJNI Class That Uses a Native Method Named hello()

// HelloJNI.java
package com.jdojo.jni;

public class HelloJNI {
 static {
 // Load the shared library using its name only
 System.loadLibrary("beginningjava");
 }

 // Declare the native method
 public native void hello();

 public static void main(String[] args) {
 // Create a HelloJNI object
 HelloJNI helloJNI = new HelloJNI();

 // Call the native method
 helloJNI.hello();
 }
}

The HelloJNI class performs three things:

•	 It loads a beginningjava shared library (beginningjava.dll on Windows and
libbeginningjava.so on UNIX-like OS) in the static initializer. Note that you do
not need to have the beginningjava shared library when you write and compile the
HelloJNI class. The shared library is required when you run the HelloJNI class.

static {
 System.loadLibrary("beginningjava ");
}

•	 It declares a native method named hello(), which will be implemented in C++ later.

public native void hello();

•	 The Java compiler will compile the HelloJNI class with the hello() native method
declaration without having the native code that implements the method. The
implementation of the method will be required when it is called at runtime.

•	 It creates an object of the HelloJNI class in the main() method and calls the hello()
method on the object.

HelloJNI helloJNI = new HelloJNI();
helloJNI.hello();

Chapter 7 ■ Java Native iNterfaCe

521

The code for the HelloJNI class is simple. There is nothing extraordinary that you have to do inside the
Java code to use a native method. You cannot run this class yet, because when you run it, it will look for a
beginningjava shared library with the native code for the hello() method, which you have not written yet.
If you try running this class now, you get the following error:

java.lang.UnsatisfiedLinkError: no beginningjava in java.library.path
 at java.base/java.lang.ClassLoader.loadLibrary(ClassLoader.java:2541)
 at java.base/java.lang.Runtime.loadLibrary0(Runtime.java:873)
 at java.base/java.lang.System.loadLibrary(System.java:1857)
 at jdojo.jni/com.jdojo.jni.HelloJNI.<clinit>(HelloJNI.java:7)

Compiling the Java Program
Compiling a Java program that uses native methods is the same as compiling any other Java programs. There
is no special setting that you need to apply when you compile the HelloJNI class. You can compile it using
the javac command, like so:

javac HelloJNI.java

This command will generate a HelloJNI.class file, which will contain the class definition of the
HelloJNI class, whose fully qualified name is com.jdojo.jni.HelloJNI. Make sure that you have the
HelloJNI.class file available because it is necessary to perform the next step.

Creating the C/C++ Header File
Before you start writing the code for a native method in C/C++, you need to generate a header file that will
contain the declaration of your method in C/C++. You will use this header file when you write the C/C++
code to implement your hello() native method. The method signatures for the hello() method in Java and
C/C++ differ significantly. You do not need to worry about the details about how to write the signature of a
method in C/C++, which will be used by the Java runtime. The Java compiler will take care of generating the
C/C++ signature for you.

The JDK contains a special tool called javah whose sole purpose is to create C/C++ header files for Java
native methods. JDK8 added an -h option to the Java compiler, the javac command-line tool, to generate the
header files. JDK9 has deprecated the javah tool for removal in a future release. I show you how to generate
the header files using the -h option of the javac compiler.

When you compile Java source code, you can use the -h option to generate C/C++ header files for
all native methods in the classes being compiled. You need to specify a directory path with the -h option
where the generated header files will be stored. The following command compiles the HelloJNI class and
generates a C/C++ header file for the hello() method in the class. The header file will be placed in the jni\
headers\jdojo.jni directory:

C:\Java9APIsAndModules>javac -h jni\headers\jdojo.jni -d build\modules\jdojo.jni src\jdojo.
jni\classes\com\jdojo\jni\HelloJNI.java

This command generates a header file named com_jdojo_jni_HelloJNI.h. By default, the generated
file name is based on the fully qualified name of the class. A dot in the class name is replaced with an
underscore. The contents of the com_jdojo_jni_HelloJNI.h file are shown in Listing 7-4.

Chapter 7 ■ Java Native iNterfaCe

522

Listing 7-4. Contents of the com_jdojo_jni_HelloJNI.h File

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_jdojo_jni_HelloJNI */

#ifndef _Included_com_jdojo_jni_HelloJNI
#define _Included_com_jdojo_jni_HelloJNI
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_jdojo_jni_HelloJNI
 * Method: hello
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

You do not need to worry about the details in the header file. You only need the method signature that
is generated for your native hello() method. The method signature void hello() in the Java code has been
translated into the following method signature for the C/C++ code:

JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello (JNIEnv *, jobject);

JNIEXPORT and JNICALL are two macros. The keyword void denotes that the native method does
not return any value. The javac command uses a rule to generate the name of the native method in the
header file. In this case, the method name is Java_com_jdojo_jni_HelloJNI_hello. I discuss the details of
the naming rules later. Although the method declaration of the hello() method in the Java code does not
accept any parameters, the native method declaration in the header file accepts two parameters. Take it as
a rule that all native method declarations in a native language will accept two additional parameters than
the number of parameters declared in the Java code. The additional parameters are added as the first and
second parameters for the method in the native language. The first parameter is a pointer to a JNIEnv type
object, which is a table of function pointers to facilitate interaction between the native environment and Java
environment. The second parameter is of type either jobject or jclass. If the native method is declared
non-static in the Java code, the second parameter is of type jobject, which is a reference to the Java object
on which the native method is called.

It is similar to the this reference that is available inside every non-static method in Java. Since the
native hello() method in Java has been declared non-static, the second parameter type is of type jobject. If
the native method is declared as static in Java, the second parameter will be of type jclass and it will be the
reference to the class object in the JVM on which the native method is called.

At the end of this step, you should have a header file named com_jdojo_jni_HelloJNI.h with the
contents shown as in Listing 7-4.

Chapter 7 ■ Java Native iNterfaCe

523

Writing the C/C++ Program
Listing 7-5 contains the C/C++ code that you need to write for the hello() native method. The source
code file for C++ is named hellojni.cpp. In this case, the code will be the same if you choose to use the C
language instead. Note that hello is the name of your native method in Java code, whereas in C/C++ it is
named Java_com_jdojo_jni_HelloJNI_hello.

Listing 7-5. A C/C++ Implementation for the hello() Native Method

// hellojni.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_HelloJNI.h"

JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello(JNIEnv *env, jobject obj) {
 printf("Hello JNI\n");
 return;
}

This program uses three C/C++ compiler preprocessor include directives to include three header files:
stdio.h, jni.h, and com_jdojo_jni_HelloJNI.h. It includes stdio.h to use the standard input/output
functionalities, jni.h to use the JNI-related functionalities, and com_jdojo_jni_HelloJNI.h to include
functionalities related to your hello() native method.

The jni.h file is copied to JDK_HOME\include directory when you install the JDK. For example, if
you installed the JDK in C:\java9, the jni.h file will be in the C:\java9\include directory. There is a
subdirectory that is created under the JDK_HOME\include directory. The subdirectory name is platform-
dependent. It is named win32 on Windows, linux on Linux, etc. You need to use the following two
directories as an include-path option when you compile the hellojni.cpp file on Windows. Use your
platform-specific directory for the second path in the following list:

•	 C:\java9\include

•	 C:\java9\include\win32

You can place the com_jdojo_jni_HelloJNI.h file in any directory on your machine. You will need to
include the directory that contains this file in the include path option when you compile the hellojni.cpp file.

The function signature is copied from the com_jdojo_jni_HelloJNI.h header file. I have named the two
parameters env and obj. It does not matter what name you use for these parameters in your code.

JNIEXPORT void JNICALL Java_com_jdojo_jni_HelloJNI_hello (JNIEnv *env, jobject obj)

You provided the implementation for the native method by adding two statements. The first statement
uses the printf() function to print a message, Hello JNI, on the standard output, and the second one
returns from the function, as shown:

printf("Hello JNI\n");
return;

Chapter 7 ■ Java Native iNterfaCe

524

Creating a Shared Library
In this section, you compile the hellojni.cpp file into a shared library named beginningjava. The shared
library will be a file named beginningjava.dll on Windows and beginningjava.so on a UNIX-like OS. Your
operating system may use a different file extension for a shared library. Many compilers are available that can
be used to create a shared library from C/C++ code. This section explains how to create a shared library on:

•	 Windows using a GNU C++ compiler named g++, known as a MinGW compiler
(Minimalist GNU for Windows)

•	 Fedora Linux using a GNU C++ compiler named g++

To create a shared library, you can use the C/C++ compiler on a command prompt or an IDE such as
Microsoft Visual Studio on Windows or NetBeans on Windows and Linux. Note that NetBeans does not ship
with a C/C++ compiler. You need to download a compiler such as MinGW or Cygwin to use the NetBeans
IDE to create a shared library.

Creating a Shared Library on Windows
The following sections describe how to install the MinGW C++ compiler called g++ on Windows and how to
use it via the command prompt to create the shared library named beginningjava.dll.

Installing MinGW C/C++ Compiler

Follow these steps to install the MinGW compiler:

 1. The 32-bit and 64-bit MinGW compilers are available at https://sourceforge.
net/projects/mingw/ and https://sourceforge.net/projects/mingw-w64/,
respectively. Install one of these compilers depending on your machine. When
you install the 64-bit compiler, make sure to select the architecture as x86_64 on
initial installation dialog.

 2. Assume that you have installed MinGW in the C:\MinGW directory. If you have
installed MinGW in another directory, replace this directory path with your
installation directory path in the following discussions in this section.

 3. Add the C:\MinGW\bin directory to the system PATH environment variable. If you
do not set the system PATH environment variable, you will be able to work with
MinGW by setting the PATH environment variable on the command prompt.

 4. Verify that the C:\MinGW\bin\g++.exe file exists on your machine. g++ is the C++
compiler and gcc is the C compiler used by MinGW. You will use C++ code in this
chapter and the g++ compiler to compiler the C++ code.

Using the g++ Command

You need to use the g++ command to create a shared library. You will need several types of files to create the
shared library:

•	 The C++ source file that contains the C++ code. In this case, it’s called hellojin.cpp,
as shown in Listing 7-5.

•	 The com_jdojo_jni_HelloJNI.h header file shown in Listing 7-4.

https://sourceforge.net/projects/mingw/
https://sourceforge.net/projects/mingw/
https://sourceforge.net/projects/mingw-w64/

Chapter 7 ■ Java Native iNterfaCe

525

•	 The JNI-related header files that are located in JDK_HOME\include and JDK_HOME\
include\win32 directories where JDK_HOME is the directory in which you have
installed the JDK.

You can pass several options to the g++ compiler. The following command shows the minimum options
needed to create your shared library:

g++ -Wl,--kill-at -shared –I<include-dir> -o <output-file> <source-files>

Here,

•	 The -Wl,<option> is used to pass options to the linker. The <option> is a comma-
separated list of linker options. In this command, you are passing the --kill-
at option to the linker to strip the stdcall suffixes (@nn) from symbols before
they are exported. If you do not specify this option, you will get a java.lang.
UnsatisfiedLinkError when you run the Java program that uses the shared library.

•	 The –shared option indicates that you want to create a shared library.

•	 The –I<include-dir> option is used to pass the directory that contains the header
files (.h files). You can repeat this option once for each directory.

•	 The –o <output-file> option specifies the output file name. In this case, you will
use the output file named beginningjava.dll.

•	 The <source-files> is a space-separated list of C++ source files.

To simplify the command syntax to generate the shared library, I assume that the following directories
and files exist on your machine:

•	 C:\Java9APIsAndModules\jni\src\hellojni.cpp

•	 C:\Java9APIsAndModules\jni\headers\jdojo.jni\com_jdojo_jni_HelloJNI.h

•	 C:\java9\include

•	 C:\java9\include\win32

The following command will generate the beginingjava.dll file in the C:\Java9APIsAndModules\jni\
lib directory. Each part of the command is shown in a separate line for clarity; you should enter the entire
command in one line.

C:\> g++ -Wl,--kill-at -shared
 -IC:/java9/include
 -IC:/java9/include/win32
 -IC:/Java9APIsAndModules/jni/headers/jdojo.jni
 -o C:/Java9APIsAndModules/jni/lib/beginningjava.dll
 C:/Java9APIsAndModules/jni/src/hellojni.cpp

Note the use of the forward slashes in file paths. With the g++ command on Windows, you can use
either a forward slash or a backslash as the path separator. Change the path in the command to match the
paths of these files and directories on your machine.

If you have not set the PATH environment variable to the C:\MinGW\bin directory, you may get the
following error when you run the g++ command:

'g++' is not recognized as an internal or external command,operable program or batch file

Chapter 7 ■ Java Native iNterfaCe

526

 ■ Note On Windows, if you want to use NetBeans iDe with MinGW, refer to the following link for the setup
instruction: https://netbeans.org/community/releases/80/cpp-setup-instructions.html.

Creating a Shared Library on Linux
The following sections describe how to install the GNU C++ compiler called g++ on Fedora Linux and how to
use it on a terminal to create the shared library named beginningjava.so.

Installing MinGW C/C++ Compiler

Installing the g++ compiler on Linux is easy. Running the following command on a terminal in Linux will
install the g++ compiler:

$ yum install gcc-c++

When you run the command, you may get the following message:

$ yum install gcc-c++
You need to be root to perform this command.
$

If you get this message, you need to log in as root to install the compiler. Use the su – command to log
in as root, enter the root password when prompted, and then run the yum command.

$ su –
Password: Enter Your Password Here
yum install gcc-c++

During the installation, the yum command will prompt you several times to confirm downloads of the
compiler setup files. You need to answer yes when you get those prompts. If the g++ compiler is already
installed on your machine, the yum command will print a message to that effect.

That's all it takes to install the g++ compiler on Linux.

Using the g++ Command

You need to use the g++ command to create a shared library. You need several types of files to create the
shared library:

•	 The C++ source file that contains the C++ code. In this case, it’s called hellojni.cpp,
as shown in Listing 7-5.

•	 The com_jdojo_jni_HelloJNI.h header file shown in Listing 7-4.

•	 The JNI-related header files that are located in JDK_HOME/include and JDK_HOME/
include/win32 directories where JDK_HOME is the directory in which you installed the
JDK.

https://netbeans.org/community/releases/80/cpp-setup-instructions.html

Chapter 7 ■ Java Native iNterfaCe

527

You can pass several options to the g++ compiler. The following command shows the minimum options
needed to create your shared library:

g++ -shared –I<include-dir> -o <output-file> -fPIC <source-files>

Here,

•	 The –shared option indicates that you want to create a shared library.

•	 The –I<include-dir> option is used to pass the directory that contains the header
files (.h files). You can repeat this option once for each directory.

•	 The –o <output-file> option specifies the output file name. In your case, you will
use the output file name of beginningjava.so.

•	 The -fPIC option generate position-independent code (PIC) suitable for use in a
shared library, if supported for the target machine.

•	 The <source-files> is a space-separated list of C++ source files.

To simplify the command syntax to generate the shared library, I assume that the following directories
and files exist on your machine:

•	 /home/ksharan/Java9APIsAndModules/jni/src/hellojni.cpp

•	 /home/ksharan/ Java9APIsAndModules/jni/headers/jdojo.jni/com_jdojo_jni_
HelloJNI.h

•	 /home/ksharan/java9/include

•	 /home/ksharan/java9/include/linux

The following command generates the beginingjava.so file in the /home/ksharan/slib directory. Each
part of the command is shown in a separate line for clarity; you should enter the entire command in one line.

$ g++ -shared
 -I/home/ksharan/java9/include
 -I/home/ksharan/java9/include/linux
 -I/home/ksharan/Java9APIsAndModules/jni/headers/jdojo.jni
 -o /home/ksharan/Java9APIsAndModules/jni/lib/libbeginningjava.so
 -fPIC
 /home/ksharan/Java9APIsAndModules/jni/src/hellojni.cpp

Change the path in the command to match the paths of these files and directories on your machine.

 ■ Note On Linux, if you want to use NetBeans iDe with the g++ compiler, refer to the following link for the
setup instruction: https://netbeans.org/community/releases/80/cpp-setup-instructions.html.

Running the Java Program
Before proceeding to run the Java class, make sure that you were able to create the shared library (the
beginningjava.dll file on Windows and beginningjava.so file on a UNIX-like OS). If you were not able to
create the shared library, you can use the shared libraries provided with the source code for this book. The
shared libraries are located in a directory named cplusplus.

https://netbeans.org/community/releases/80/cpp-setup-instructions.html

Chapter 7 ■ Java Native iNterfaCe

528

Now you are ready to run your HelloJNI Java class, as shown in Listing 7-3. Suppose you have placed
the beginningjava shared library file in the C:\myjni\lib directory. Run the HelloJNI class using the
following command on Windows:

C:\Java9APIsAndModules>java -Djava.library.path=jni\lib --module-path build\modules --module
jdojo.jni/com.jdojo.jni.HelloJNI

Hello JNI

The -Djava.library.path=jni\lib option instructs the JVM to look for shared libraries in the C:\
C:\Java9APIsAndModules\jni\lib directory. If the previous command runs successfully, it will print a
message, Hello JNI, on the standard output.

You can use the following command to run the HelloJNI class on Linux. The command is entered
on one line. I have shown it on several lines for clarity. The command assumes that the /home/ksharan/
Java9APIsAndModules/dist directory contains the modular JAR name (say jdojo.jni.jar) for the
jdojo.jni module and the /home/ksharan/Java9APIsAndModules/jni/lib directory contains the
libbeginningjava.so shared library.

[/home/ksharan/Java9APIsAndModules] $ java -Djava.library.path=./jni/lib
--module-path ./dist
--module jdojo.jni/com.jdojo.jni.HelloJNI

Hello JNI

Native Function Naming Rules
The compiler uses (with an -h option) a naming rule, which is based on name mangling, to generate native
method names in the C/C++ header files. The Java runtime uses the same rule to resolve the Java native
method name to the native function name in a shared library. The name mangling rule is used so that the
name generated for the native function is a valid C/C++ name without a name collision. You can think of
name mangling as simply replacing invalid characters with characters that make up a valid function name.
The native function name is generated based on the following parts, which are concatenated using an
underscore:

•	 The method name starts with the word Java.

•	 The mangled fully qualified name of the package of the Java class that contains
the native method's declaration. An underscore is used as a package/sub-package
separator.

•	 The native method name in Java.

•	 For an overloaded native method, two underscores followed by the mangled
method's signature

Java runtime uses two names for a native function—a short name and a long name. The short name
does not use two underscores followed by the mangled method's signature. The Java runtime searches the
shared library for the short name first. If it does not find a function with the short name, it searches with the
long name. The mangled name uses a conversion table shown in Table 7-1.

Chapter 7 ■ Java Native iNterfaCe

529

Characters such as a semicolon and beginning with a square bracket may occur as part of a method's
parameter signature that is used internally by Java. Table 7-2 shows a few examples of method declarations
in .Java code and the method signature used internally by Java.

If you declare a parameter of type java.lang.String, it is used internally as Ljava/lang/String;. To
know about the signature of a method that is used internally by Java, you need to use the javap command
with an –s option. The following command will print the method signatures for all methods in the com.
jdojo.jni.HelloJNI class. You can use a –private option to print signatures of all methods including the
private ones.

javap -s -private com.jdojo.jni.HelloJNI

If you are required to use a method signature of a Java method inside a JNI function in native code,
you should run the javap command to get the signatures instead of entering them by hand. You can learn
the rules used to make up the method signature that is used internally by Java. However, using the javap
command makes it easy to get this information. Let’s consider the declaration of some native methods in a
class Test, as shown in Listing 7-6.

Listing 7-6. A Test Class with Some Native Method Declarations

// Test.java
package com.jdojo.jni;

public class Test {
 private native void sayHello();
 private native void printMsg(String msg);
 private native int[] increment(int[] num, int incrementValue);
 private native double myMethod(int i, String s[], String ss);
 private native double myMethod(double i, String s[], String ss);
 private native double myMethod(short i, String s[], String ss);
}

Table 7-1. The Escape Sequence Used in the Name-Mangling Process

Original Character Substituted Character

Any non-ASCII Unicode character _0xxxx
Note that alphabets used in _oxxxx are all lowercase such as _0abcd

_ (an underscore) _1

; (a semicolon) _2

[(a beginning square bracket) _3

Table 7-2. Examples of Java Method's Declaration and Internally Used Method Signatures

Method Declaration Internally Used Method Signature

public static void javaPrintMsg(java.lang.String) (Ljava/lang/String;)V

public void javaCallBack() ()V

public static void main(java.lang.String[]) ([Ljava/lang/String;)V

Chapter 7 ■ Java Native iNterfaCe

530

If you compile the Test class with an -h option and run the command, you get a com_jdojo_jni_Test.h
header file with the contents shown in Listing 7-7.

Listing 7-7. The Header File Generated for the Class com.jdojo.jni.Test

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_jdojo_jni_Test */

#ifndef _Included_com_jdojo_jni_Test
#define _Included_com_jdojo_jni_Test
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_jdojo_jni_Test
 * Method: sayHello
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_Test_sayHello
 (JNIEnv *, jobject);

/*
 * Class: com_jdojo_jni_Test
 * Method: printMsg
 * Signature: (Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL Java_com_jdojo_jni_Test_printMsg
 (JNIEnv *, jobject, jstring);

/*
 * Class: com_jdojo_jni_Test
 * Method: increment
 * Signature: ([II)[I
 */
JNIEXPORT jintArray JNICALL Java_com_jdojo_jni_Test_increment
 (JNIEnv *, jobject, jintArray, jint);

/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (I[Ljava/lang/String;Ljava/lang/String;)D
 */
JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__I_3Ljava_lang_String_2Ljava_
lang_String_2
 (JNIEnv *, jobject, jint, jobjectArray, jstring);

/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (D[Ljava/lang/String;Ljava/lang/String;)D
 */

Chapter 7 ■ Java Native iNterfaCe

531

JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__D_3Ljava_lang_String_2Ljava_
lang_String_2
 (JNIEnv *, jobject, jdouble, jobjectArray, jstring);

/*
 * Class: com_jdojo_jni_Test
 * Method: myMethod
 * Signature: (S[Ljava/lang/String;Ljava/lang/String;)D
 */
JNIEXPORT jdouble JNICALL Java_com_jdojo_jni_Test_myMethod__S_3Ljava_lang_String_2Ljava_
lang_String_2
 (JNIEnv *, jobject, jshort, jobjectArray, jstring);

#ifdef __cplusplus
}
#endif
#endif

You can look at the native function names that are generated for different native method's declarations.
Do not worry about the data types used for the function's parameters. I cover data type mapping between
Java and native language in the next section.

Data Type Mapping
The JNI defines mapping between data types used in Java and native functions. Table 7-3 lists the mapping
for primitive data types between Java and native C/C++ language. Note that all you have to do is add a j in
front of the name of a primitive data type in Java to get the equivalent data type name in C/C++. JNI also
defines a data type named jsize, which is used to store the length, such as the length of an array or a string.

The JNI defines reference type equivalents for Java reference types. It is not possible to define a separate
type in the JNI for all reference types that can be created in Java. All Java reference types can be mapped
to the JNI reference type named jobject. You have some specialized JNI reference types that represent
commonly used reference types in Java; for example, the jstring in JNI represents java.lang.String in
Java. Table 7-4 lists the reference type mapping between Java and the JNI.

Table 7-3. The Mapping Between Java Primitive Data Types and JNI Native Data Types

Java Primitive Types Native Primitive Type Description

boolean jboolean Unsigned 8 bits

byte jbyte Signed 8 bits

char jchar Unsigned 16 bits

double jdouble 64 bits

float jfloat 32 bits

int jint Signed 32 bits

long jlong Signed 64 bits

short jshort Signed 16 bits

void void N/A

Chapter 7 ■ Java Native iNterfaCe

532

The JNI defines separate reference types to represent Java arrays. The type jarray is a generic array type
that represents any Java array type. There is a specialized array type for each type of array in Java. In JNI, an
array type is named like jxxxArray, where xxx could be object, boolean, byte, char, double, float, int,
long, and short. For example, jintArray in C/C++ represents an int array in Java. Note that all reference
type arrays in Java are represented by jobjectArray type in C/C++.

While working with C/C++ code using the JNI, you will come across another type called jvalue. It is a
union type defined in C/C++ as follows:

typedef union jvalue {
 jboolean z;
 jbyte b;
 jchar c;
 jshort s;
 jint i;
 jlong j;
 jfloat f;
 jdouble d;
 jobject l;
} jvalue

Note that the jvalue union type does not have an equivalent type in Java. Typically, the jvalue type is
defined as a parameter type in built-in functions that are part of the JNI API.

Using JNI Functions in C/C++
JNI functions let you access the JVM data structures and objects in native code. Sometimes they let you
convert the data in a particular format that is passed between Java and the native environments. All native
functions have their first parameter, which is always a pointer to JNIEnv, which in turn is a pointer to a table
of all JNI function pointers.

There are always two versions of functions that you can call on type JNIEnv: one for C and one for
C++. The C version of the function accepts a pointer to JNIEnv as the first parameter, and C++ will not have
that first parameter. The two versions of the same methods, C and C++, are called differently. The following
snippet of code shows the difference in calling a JNI function in C and C++, assuming FuncXxx is the function
name and env is a pointer to JNIEnv type:

// C style
(*env)->FuncXxx(env, <list-of-arguments>);

// C++ style
env->FuncXxx(<list-of-arguments>);

Table 7-4. The Reference Type Mapping Between Java and JNI

Java Reference Type JNI Type

Any Java object jobject

java.lang.String jstring

java.lang.Class jclass

java.lang.Throwable jthrowable

Chapter 7 ■ Java Native iNterfaCe

533

This chapter uses the C++ way of calling JNI functions. You can convert the code to C style easily by
using the previous snippet of code as reference.

As a concrete example, the following are the function signatures for the GetStringUTFChars() JNI
function that let you convert a Java string to a UTF-8 string format:

// C Version of the GetStringUTFChars() JNI function
const char * GetStringUTFChars(JNIEnv *env, jstring string, jboolean *isCopy);

// C++ Version of the GetStringUTFChars() JNI function
const char * GetStringUTFChars(jstring string, jboolean *isCopy);

If you want to call this function in C or C++, your code will look as follows:

// C Code
const char *utfMsg = (*env)->GetStringUTFChars(env, msg, iscopy);

// C++ Code
const char *utfMsg = env->GetStringUTFChars(msg, iscopy);

Working with Strings
Strings are represented differently in Java and C/C++. In Java, a string is represented as a sequence of 16-bit
Unicode characters, whereas in C/C++ a string is a pointer to a sequence of null-terminated characters. The
jstring reference type in the native code represents an instance of the java.lang.String class, which is a
sequence of 16-bit Unicode characters. The JNI has functions to convert a Java string to a native string and
vice versa. One set of string functions works with UTF-8 strings and the other set works with Unicode strings.
When Java passes a string to the native code, you must convert the string in native code to native format
(UTF-8 or Unicode) before using it. The same logic goes for returning a string from native code to Java. You
must convert the native string to an instance of jstring before it can be returned to Java.

Let’s start with an example in which you will pass a string from Java code to C/C++ code. The C/C++
code will convert the Java string to a native UTF-8 format and print it on the standard output using the
printf() function. The native methods’ declaration in Java would be as follows:

•	 public native void printMsg(String msg);

•	 public native String getMsg();

The printMsg() method accepts a Java string and its native function will print it on the standard output.
The getMsg() method returns a native string to Java and Java will print it on the standard output. Listing 7-8
contains the Java code that declares these two native methods. Note that the static initialize loads the shared
library named beginningjava that you had created in the previous section. This time, you need to include
the C++ code for the new native method in the shared library.

Listing 7-8. Passing Strings from Java to a Native Function and Vice Versa

// JNIStringTest.java
package com.jdojo.jni;

public class JNIStringTest {
 static {
 System.loadLibrary("beginningjava");
 }

Chapter 7 ■ Java Native iNterfaCe

534

 public native void printMsg(String msg);

 public native String getMsg();

 public static void main(String[] args) {
 JNIStringTest stringTest = new JNIStringTest();

 String javaMsg = "Hello from Java to JNI";
 stringTest.printMsg(javaMsg);

 String nativeMsg = stringTest.getMsg();
 System.out.println(nativeMsg);
 }
}

The following are the native function declarations for printMsg() and getMsg() in C/C++:

•	 JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIStringTest_printMsg(JNIEnv
*env, jobject obj, jstring msg);

•	 JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIStringTest_getMsg(JNIEnv
*env, jobject obj);

Note that the first two parameters in the native functions are of type JNIEnv and jobject. The
printMsg() function contains a third parameter of type jstring and its return type is void. The getMsg()
function contains only two standard parameters and it returns a jstring.

To convert a jstring to a UTF-8 native string, you need to use the GetStringUTFChars() JNI function
that you can access using a JNIEnv reference. The GetStringUTFChars() JNI function has two versions: one
for C and one for C++.

The GetStringUTFChars() function converts a Java string (in a jstring in C/C++ code) to a
UTF-8 format and returns a pointer to the converted UTF-8 string. If it fails, it returns NULL. The
GetStringUTFChars() function may have to make a copy of the original Java string object in memory for
converting it to UTF-8 format. The isCopy parameter to the functions, which is a pointer to a boolean
variable, can be used to check if this function had to copy the original Java string. If isCopy is not NULL, it is
set to JNI_TRUE if a copy of the Java string was made. Otherwise, it is set to JNI_FALSE. Once you are done
with the returned value of this function, you must call the ReleaseStringUTFChars() method to release the
memory. The C and C++ style signatures of this method are as follows:

// C Style
void ReleaseStringUTFChars(JNIEnv *env, jstring string, const char *utf);

// C++ Style
void ReleaseStringUTFChars(jstring string, const char *utf);

Listing 7-9 contains the implementations for the printMsg() and getMsg() native methods in C++. The
code is in the jnistringtest.cpp file in the source code for this book. The code for getMsg() is simple. It
uses the NewStringUTF() JNI function to get a Java string from the native string.

Listing 7-9. Contents of the jnistringtest.cpp File

// jnistringtest.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_JNIStringTest.h"

Chapter 7 ■ Java Native iNterfaCe

535

JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIStringTest_printMsg
(JNIEnv *env, jobject obj, jstring msg) {
 const char *utfMsg;
 jboolean *iscopy = NULL;

 // Get the UTF string
 utfMsg = env->GetStringUTFChars(msg, iscopy);
 if (utfMsg == NULL) {
 printf("Could not convert Java string to UTF-8 string.\n");
 return;
 }

 // Print the message on the standard output
 printf("%s\n", utfMsg);

 // Release the memory
 env->ReleaseStringUTFChars(msg, utfMsg);
}

JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIStringTest_getMsg
(JNIEnv *env, jobject obj) {
 const char *utfMsg = "Hello from JNI to Java";
 jstring javaString = env->NewStringUTF(utfMsg);
 return javaString;
}

Compile the JNIStringTest class with the -h option to generate the C++ header file, com_jdojo_jni_
JNIStringTest.h. You need to regenerate the beginningjava shared library for your platform to include the
function in the jnistringtest.cpp file. The Java9APIsAndModules\cplusplus\src directory contains all
C++ header files and C++ code. The directory contains a build_dll.bat file and a build_so.sh file. These
files will build the beginningjava shared library on Windows and Linux. You will need to verify the paths
used in these scripts before you run them. For subsequent examples, I assume that you recreate the shared
library for your platform before you run your Java program containing native methods.

Now you are ready to run the JNIStringTest class as listed in Listing 7-8. It will generate the following
output:

Hello from JNI to Java
Hello from Java to JNI

You can use the GetStringUTFLength(jstring string) JNI function to get the length of a jstring
in bytes to represent it in UTF-8 format. The JNI also has functions that let you work with Unicode native
strings. The Unicode string functions are named UTF string functions without the word "UTF". For example,
to get the length of a jstring in terms of Unicode characters, you have a GetStringLength() function
as opposed to the GetStringUTFLength() function. To construct a new Java String (a jstring) from
Unicode characters, you have a NewString() JNI function as opposed to the NewStringUTF() JNI function,
which creates a Java string from a UTF-8 native string. Sometimes you may need to convert a Java string in
jstring to a native encoding and vice versa. You can use the java.lang.String class, which has a rich set
of constructors and methods that let you convert string in one encoding to byte array and vice versa. I cover
how to access Java classes in the native code in a later section.

Chapter 7 ■ Java Native iNterfaCe

536

Working with Arrays
The JNI lets you pass an array of primitive or reference types from Java to native code and vice versa. You
cannot access or work with Java arrays directly in native code. You will need to use JNI functions to work
with Java arrays in native code. The JNI provides a different set of functions for primitive and reference
arrays. Some functions are common to both types. All array-related methods used in this section use the C++
version. Add JNIEnv *env as the first parameter to them to get the corresponding C version.

The GetArrayLength() method returns the length of an array of a primitive or reference type. Its
declaration is as follows:

jsize GetArrayLength(jarray array)

You can use the New<Xxx>Array() method to create an array of a primitive type, where <Xxx> is one of
the primitive types of Boolean, Byte, Char, Double, Float, Int, Long, or Short. You need to pass the length of
the primitive type array as a parameter to this method. It returns NULL if an array could not be created. The
following snippet of code creates an int array and a double array each of length 10:

jintArray iArray = env->NewIntArray(10);
jdoubleArray dArray = env->NewDoubleArray(10);

You can use Get<Xxx>ArrayElements() to get the contents of a primitive array, where <Xxx> is one of
the primitive types of Boolean, Byte, Char, Double, Float, Int, Long, or Short. It is declared as follows:

<RRR> *Get<Xxx>ArrayElements(<AAA> array, jboolean *isCopy)

Here, <RRR> is the JNI native data type such as jint or jdouble, and <AAA> is a JNI array type such as
jintArray, jdoubleArray, etc. The isCopy parameter indicates if the returned array elements are copies of
the original array. If isCopy is not NULL, it is set to JNI_TRUE if a copy of original array was made. It is set to
JNI_FALSE if a copy of original array was not made. You can also make changes to the array elements in the
native code that will be reflected to the original array. You need to release the elements, which you get using
this method after you are done with them. You need to use the Release<Xxx>ArrayElements() method to
release the array elements, which is declared as follows:

void Release<Xxx>ArrayElements(<AAA> array, <RRR> *elems, jint mode)

The last parameter named mode indicates how the buffer, which was used in native code for array
elements, is released. Its value can be 0, JNI_COMMIT, or JNI_ABORT. 0 means copy back the content and free
the elems buffer; JNI_COMMIT means copy back the content, but do not free the elems buffer; and JNI_ABORT
means free the buffer without copying back the possible changes. The following snippet of code accesses an
int Java array in native code and prints all of its element values on the standard output:

jintArray num = /* get a Java array... */;
const jsize count = env->GetArrayLength(num);
jboolean isCopy;
jint *intNum = env->GetIntArrayElements(num, &isCopy);

for (jsize i = 0; i < count; i++) {
 printf("%i\n", intNum[i]);
}

Chapter 7 ■ Java Native iNterfaCe

537

// Release the intNum buffer without copying back any changes made to the array elements
env->ReleaseIntArrayElements(num, intNum, JNI_ABORT);

Reference type Java arrays in the native code are treated differently. You can use the NewObjectArray()
function to create a new reference type array. The method is declared as follows:

jobjectArray NewObjectArray(jsize length, jclass elementClass, jobject initialElement)

Note that you need to use the array element's class type object to create a reference array. The last
parameter is the initial element with which all elements of the array will be initialized.

Unlike primitive type arrays, you do not need to get array elements for reference type arrays to access
them. You can access one element at a time using the GetObjectArrayElement() function. You can use the
SetObjectArrayElement() function to set the value of an array element of a reference type. These methods
are declared as follows:

•	 jobject GetObjectArrayElement(jobjectArray array, jsize index)

•	 void SetObjectArrayElement(jobjectArray array, jsize index, jobject
value)

Let’s look at examples of using arrays in a JNI application. Listing 7-10 contains the Java code that
declares three native methods using arrays.

Listing 7-10. An Example of Accessing and Manipulating Arrays in Native Code

// JNIArrayTest.java
package com.jdojo.jni;

import java.util.Arrays;

public class JNIArrayTest {
 static {
 System.loadLibrary("beginningjava");
 }

 // Three native method declarations
 public native int sum(int[] num);

 public native String concat(String[] str);

 public native int[] increment(int[] num, int incrementBy);

 public static void main(String[] args) {
 JNIArrayTest test = new JNIArrayTest();

 int[] num = {1, 2, 3, 4, 5};
 String[] str = {"One", "Two", "Three", "Four", "Five"};

 System.out.println("Original Number Array: " + Arrays.toString(num));

 System.out.println("Original String Array: " + Arrays.toString(str));

 int sum = 0;

Chapter 7 ■ Java Native iNterfaCe

538

 sum = test.sum(num);
 System.out.println("Sum: " + sum);

 String concatenatedStr = test.concat(str);
 System.out.println("Concatenated String: " + concatenatedStr);

 int increment = 5;
 int[] incrementedNum = test.increment(num, increment);
 System.out.println("Increment By: " + increment);
 System.out.println("Incremented Number Arrays: " + Arrays.toString(incrementedNum));
 }
}

The sum() native method accepts an int array and returns the sum of all its elements as int. Be
careful not to pass big numbers in the int array when you call the sum() method. Otherwise, the result may
overflow. The concat() native method accepts a String array. It concatenates all elements in the array and
returns a String object. The increment() native method accepts an int array and an int number. It returns
a new int array, which contains all elements of the original array that are incremented by the specified
number. The main() method contains the code to test the three native methods.

Listing 7-11 contains the C++ implementation of the three native methods in the jniarraytest.cpp file.
The concat() method's implementation assumes that the length of all elements in the String array will not
exceed 500 bytes. Refer to the previous section on how to include the C++ source file in the shared library.

Listing 7-11. Contents of the jniarraytest.cpp File with the C++ Implementation of the sum(), concat(), and
increment() Native Methods

// jniarraytest.cpp
#include <jni.h>
#include <cstring>
#include "com_jdojo_jni_JNIArrayTest.h"

JNIEXPORT jint JNICALL Java_com_jdojo_jni_JNIArrayTest_sum
(JNIEnv *env, jobject obj, jintArray num) {
 jint sum = 0;
 const jsize count = env->GetArrayLength(num);

 jboolean isCopy;
 jint *intNum = env->GetIntArrayElements(num, &isCopy);

 for (jsize i = 0; i < count; i++) {
 sum += intNum[i];
 }

 // Release the intNum buffer without copying back any changes made to the array elements
 env->ReleaseIntArrayElements(num, intNum, JNI_ABORT);

 return sum;
}

JNIEXPORT jstring JNICALL Java_com_jdojo_jni_JNIArrayTest_concat
(JNIEnv *env, jobject obj, jobjectArray strArray) {
 const int MAX_LENGTH = 500;

Chapter 7 ■ Java Native iNterfaCe

539

 char dest[MAX_LENGTH];

 for (int i = 0; i < MAX_LENGTH; i++) {
 dest[i] = (char)NULL;
 }

 const jsize count = env->GetArrayLength(strArray);

 for (jsize i = 0; i < count; i++) {
 // Get the string object from the array
 jstring strElement =
 (jstring) env->GetObjectArrayElement(strArray, i);
 const char *tempStr = env->GetStringUTFChars(strElement, NULL);

 if (tempStr == NULL) {
 printf("Could not convert Java string to UTF-8 string.\n");
 return NULL;
 }

 // Concatenate tempStr to dest
 strcat(dest, tempStr);

 // Release the memory used by tempStr
 env->ReleaseStringUTFChars(strElement, tempStr);

 // Delete the local reference of jstring
 env->DeleteLocalRef(strElement);
 }

 jstring returnStr = env->NewStringUTF(dest);
 return returnStr;
}

JNIEXPORT jintArray JNICALL Java_com_jdojo_jni_JNIArrayTest_increment
(JNIEnv *env, jobject obj, jintArray num, jint incrementBy) {

 const jsize count = env->GetArrayLength(num);

 jboolean isCopy;
 jint *intNum = env->GetIntArrayElements(num, &isCopy);

 jintArray modifiedNumArray = env->NewIntArray(count);
 jboolean isNewArrayCopy;
 jint *modifiedNumElements =
 env->GetIntArrayElements(modifiedNumArray, &isNewArrayCopy);

 for (jint i = 0; i < count; i++) {
 modifiedNumElements[i] = intNum[i] + incrementBy;
 }

Chapter 7 ■ Java Native iNterfaCe

540

 if (isCopy == JNI_TRUE) {
 env -> ReleaseIntArrayElements(num, intNum, JNI_COMMIT);
 }

 if (isNewArrayCopy == JNI_TRUE) {
 env -> ReleaseIntArrayElements(modifiedNumArray,
 modifiedNumElements,
 JNI_COMMIT);
 }

 return modifiedNumArray;
}

Generate the C++ header file for the native methods in the JNIArrayTest class by compiling it using the
-h option and regenerate the beginningjava shared library for your platform. Running the JNIArrayTest
class as shown in Listing 7-10 will produce the following output.

Original Number Array: [1, 2, 3, 4, 5]
Original String Array: [One, Two, Three, Four, Five]
Sum: 15
Concatenated String: OneTwoThreeFourFive
Increment By: 5
Incremented Number Arrays: [6, 7, 8, 9, 10]

Accessing Java Objects in Native Code
You can use Java objects in native code in different ways. You can

•	 Create Java objects in native code.

•	 Access Java objects and classes existing in the JVM from the native code.

•	 Access/modify fields of a Java object inside the native code.

•	 Invoke a Java instance and static methods of Java objects from the native code.

The following sections describe the steps needed to use Java objects in native code.

Getting a Class Reference
An instance of the jclass type represents a class object in native code. If you invoke a native function, which
is declared as static and native in a Java class, your native function always gets the reference of the class
object as the second parameter. Sometimes you may have a reference of a Java object in the jobject type
and you want to get its class object reference. You need to use the GetObjectClass() JNI function to get the
reference of the class object of a Java object as shown:

jobject obj = /* get the reference to a Java object... */;
jclass cls = env->GetObjectClass(obj);

Chapter 7 ■ Java Native iNterfaCe

541

Use the FindClass(JNIEnv *env, const char *className) JNI function to get the reference of a
class object using the class name. You need to use the fully qualified name of the class in the FindClass()
method by replacing a dot in the package name with a forward slash. If you are trying to get the reference of
a class object for an array, you need to use the array class signature. To get the reference of the class object
for the java.lang.String class, you need to use java/lang/String as the class name. To get the class object
reference for int[], you need to use [I as the class name. To know the correct signature for the class of an
array type, you can declare a field in a class of that array type and use the javap command with the –s and
–private options. The following snippet of code demonstrates how to get the reference of the class object for
some Java reference types:

jclass cls;

// Get the reference of the java.lang.String class object
cls = env->FindClass("java/lang/String");

// Get the reference of the int[] array class object
cls = env->FindClass("[I");

// Get the reference of the int[][] array class object
cls = env->FindClass("[[I");

// Get the reference of the String[] array class object. Note a semicolon in signature
cls = env->FindClass("[Ljava/lang/String;");

From JDK9, a class is a member of a module. You can use the GetModule() JNI function to get the
reference of the java.lang.Module object of a class. The function signature is as follows:

object GetModule(JNIEnv *env, jclass cls);

The function returns the java.lang.Module object for the module that the class is a member of. If the
class is not in a named module, the unnamed module of the class loader for the class is returned. If the
class represents an array type, then this function returns the Module object for the element type. If the class
represents a primitive type or void, the Module object for the java.base module is returned.

Accessing Fields and Methods of a Java Object/Class
Before you can access the fields of a Java object/class in native code, you must get the field ID. You need to
use the GetFieldID() JNI function to get the field ID of an instance field and the GetStaticFieldID() JNI
function to get the field ID for a static field. The signatures of these methods are as follows:

•	 jfieldID GetFieldID(jclass cls, const char *name, const char *sig)

•	 jfieldID GetStaticFieldID(jclass cls, const char *name, const char *sig)

The cls parameter is the reference of the class object, which defines the instance/static field. The name
parameter is the name of the field. The sig parameter is the signature of the field. You need to use the javap
command with the –s and –private options to get the signature of a field defined in a class.

Chapter 7 ■ Java Native iNterfaCe

542

You need to use a Get<Xxx>Field() JNI function to get the value of an instance field and a
GetStatic<Xxx>Field() JNI function to get the value of a static field, where <Xxx> is the type of field whose
value can be Boolean, Byte, Char, Double, Float, Int, Long, Short, or Object. The Set<Xxx>Field() and
SetStatic<Xxx>Field() JNI functions let you set the value of instance and static fields, respectively. The
declaration for these methods are as follows, where <RRR> is a native data type, for example, if <Xxx> is int,
<RRR> is jint:

•	 <RRR> Get<Xxx>Field(jobject obj, jfieldID fieldID)

•	 <RRR> GetStatic<Xxx>Field(jclass clazz, jfieldID fieldID)

•	 void Set<Xxx>Field(jobject obj, jfieldID fieldID, <RRR> value)

•	 void SetStatic<Xxx>Field(jclass clazz, jfieldID fieldID, <RRR> value)

Suppose obj is an instance of jobject (that is, a Java object reference) and cls is its class reference.
There are two fields, num and count, of type int in the class represented by cls. The num field is an instance
field and count field is a static field. The following snippet of code shows how to access these two fields in
native code and increment their values by 1:

// Get the field ID of num and count fields
jfieldID numFieldId = env->GetFieldID(cls, "num", "I");
jfieldID countFieldId = env->GetStaticFieldID(cls, "count", "I");

// Get the field values
jint numValue = env->GetIntField(obj, numFieldId);
jint countValue = env->GetStaticIntField(cls, countFieldId);

// Increment the values by 1 and set them back to the fields
numValue = numValue + 1;
countValue = countValue + 1;
env->SetIntField(obj, numFieldId, numValue);
env->SetStaticIntField(cls, countFieldId, countValue);

The steps to use a method of Java object/class in native code are similar to using their fields. You
need to get the method ID of a method before you can access the method. You can use GetMethodID()
and GetStaticMethodID() JNI functions to get the method ID for an instance method and a static method,
respectively. Their declarations are as follows:

•	 jmethodID GetMethodID(jclass clazz, const char *name, const char *sig)

•	 jmethodID GetStaticMethodID(jclass clazz, const char *name, const char
*sig)

The name of the method is its simple name, and its signature can be obtained using the javap command
with the –s and –private options. The following snippet of code shows how to get the method ID from a few
methods of a Java class assuming that cls represents the class object reference:

jmethodID methodID

// Method is "void objectCallBack()"
methodID = env->GetMethodID(cls, "objectCallBack", "()V");

// Method is "static void classCallBack()"
methodID = env->GetStaticMethodID(cls, "classCallBack", "()V");

Chapter 7 ■ Java Native iNterfaCe

543

// Method is "int getLength(String str)"
methodID = env->GetMethodID(cls, "getLength", "(Ljava/lang/String;)I");

// Method is "int[] increment(int[], int)"
methodID = env->GetMethodID(cls, "increment", "([II)[I");

Calling an instance or static method is easy. You need to use an object/class, the method ID, and
method arguments, if any, to call a method. You can use any of the following methods to call an instance
method of an object:

•	 <RRR> Call<Xxx>Method(jobject obj, jmethodID methodID, arg1, arg2...)

•	 <RRR> Call<Xxx>MethodA(jobject obj, jmethodID methodID, const jvalue
*args)

•	 <RRR> Call<Xxx>MethodV(jobject obj, jmethodID methodID, va_list args)

Here, <Xxx> in the method name is the return type of the method and it could be Boolean, Byte,
Char, Double, Float, Int, Long, Short, Object, or Void. The <RRR> is the return type of the method and it
could be jboolean, jbyte, jchar, jdouble, jfloat, jint, jlong, jshort, jobject, or void depending on
the corresponding <Xxx> value. The difference between Call<Xxx>Method(), Call<Xxx>MethodA(), and
Call<Xx>MethodV() is how you want to pass the arguments to the method. The Call<Xxx>Method() method
lets you pass arguments to a method as a comma-separated list. The Call<Xxx>MethodA() method lets you
pass arguments to a method as an array of jvalue type. The Call<Xxx>MethodV() method lets you pass
arguments to a method as va_list. The following snippet of code shows how to call an instance method
assuming that obj is a reference of jobject type and the method ID is methodID:

// Method is "void m1()"
env->CallVoidMethod(obj, methodID);

// Method is "void m2(int a)"
env->CallVoidMethod(obj, methodID, 109);

// Method is "int m2(double a)"
jint value = env->CallIntMethod(obj, methodID, 109.23);

Calling a static method is similar to calling an instance method. You need to use a class object reference
to call a static method. You need to use one of the following JNI functions to call a static method. Note that
the JNI function names, which are used to call static methods, contain the word Static.

•	 <RRR> CallStatic<Xxx>Method(jclass cls, jmethodID methodID, arg1,
arg2...)

•	 <RRR> CallStatic<Xxx>MethodA(jclass cls, jmethodID methodID, jvalue
*args)

•	 <RRR> CallStatic<Xxx>MethodV(jclass cls, jmethodID methodID, va_list
args)

The JNI lets you call an instance method on an object from any class in its class hierarchy. When you
use a Call<Xxx>Method() function, it uses the object's class to call the method. Consider the following class
hierarchy:

// A.java
package com.jdojo.jni;

Chapter 7 ■ Java Native iNterfaCe

544

public class A {
 public int m1() {
 return 1;
 }
}

// B.java
package com.jdojo.jni;

public class B extends A {
 @Override
 public int m1() {
 return 3;
 }
}

// C.java
package com.jdojo.jni;

public class C extends B {
 @Override
 public int m1() {
 return 3;
 }
}

Classes B and C override the m1() method. If you use CallIntMethod() to call the m1() method of an
object of class C, it will call m1() method in class C and it returns 3. The JNI lets you call the m1() method in
class A or class B using an object of class C. To call a method on an object from its superclass, you need to use
one of the following JNI methods:

•	 <RRR> CallNonvirtual<Xxx>Method(jobject obj, jclass cls, jmethodID
methodID, arg1, arg2...)

•	 <RRR> CallNonvirtual<Xxx>MethodA(jobject obj, jclass cls, jmethodID
methodID, const jvalue *args)

•	 <RRR> CallNonvirtual<Xxx>MethodV(jobject obj, jclass cls, jmethodID
methodID, va_list args)

You need to use the reference of the object and its class in these versions of the methods. The methodID
must be obtained using the class from which the method needs to be called. For example, the following snippet
of code calls the m1() method from class B on an object of class C. The code also creates an object of class C.

// Get the class references for B and C
jclass bCls = env->FindClass("com/jdojo/jni/B");
jclass cCls = env->FindClass("com/jdojo/jni/C");

// Get method ID for the constructor of class C
jmethodID cConstrctorID = env->GetMethodID(cCls, "<init>", "()V");

// Create an object of class C
jobject cObject = env->NewObject(cCls, cConstrctorID);

Chapter 7 ■ Java Native iNterfaCe

545

// Get the method ID for the m1() method in class B
jmethodID bMethodID = env->GetMethodID(bCls, "m1", "()I");

// Call the m1() method in class B using an object of class C
jint h = env->CallNonvirtualIntMethod(cObject, bCls, bMethodID);

// will print 2, which is returned from m1() in class B
printf("%i\n", h);

Let’s look at a complete example of accessing fields and methods of a Java object in native code.
Listing 7-12 contains the Java code in which a class named JNIJavaObjectAccessTest contains two fields
named num and count. It also contains two methods named objectCallBack() and classCallBack().
You will access the fields and methods in native code. It has a native method called callBack(). The
callBack() native method increments the num and count fields by 1 and calls the objectCallBack() and
classCallBack() methods. Before you can run the JNIJavaObjectAccessTest class, you need to generate
the com_jdojo_jni_JNIJavaObjectAccessTest.h C++ header file and the shared library including the
contents from the jnijavaobjectaccesstest.cpp file, as shown in Listing 7-13.

Listing 7-12. Accessing Fields and Methods of Java Objects/Classes from Native Code

// JNIJavaObjectAccessTest.java
package com.jdojo.jni;

public class JNIJavaObjectAccessTest {
 static {
 System.loadLibrary("beginningjava");
 }

 private int num = 10;
 private static int count = 1001;

 public void objectCallBack() {
 System.out.println("Inside objectCallBack() method.");
 }

 public static void classCallBack() {
 System.out.println("Inside classCallBack() method.");
 }

 public native void callBack();

 @Override
 public int hashCode() {
 return -9999;
 }

 public static void main(String[] args) {
 JNIJavaObjectAccessTest test = new JNIJavaObjectAccessTest();

 System.out.println("Before calling native method...");
 System.out.println("num = " + test.num);
 System.out.println("count = " + count);

Chapter 7 ■ Java Native iNterfaCe

546

 // Call native method
 test.callBack();

 System.out.println("After calling native method...");
 System.out.println("num = " + test.num);
 System.out.println("count = " + count);
 }
}

Before calling native method...
num = 10
count = 1001
Inside objectCallBack() method.
Inside classCallBack() method.
After calling native method...
num = 11
count = 1002

Listing 7-13. Contents of the the jnijavaobjectsaccesstest.cpp File That Contains the C++ Implementation of
the callBack() Native Methods Declared in JNIJavaObjectAccessTest Class

// jnijavaobjectaccesstest.cpp
#include <stdio.h>
#include <jni.h>
#include "com_jdojo_jni_JNIJavaObjectAccessTest.h"

JNIEXPORT void JNICALL Java_com_jdojo_jni_JNIJavaObjectAccessTest_callBack
(JNIEnv *env, jobject obj) {
 jclass cls;

 // Get the class reference for the object
 cls = env->GetObjectClass(obj);
 if (cls == NULL) {
 return;
 }

 // Access the fields
 jfieldID numFieldId = env->GetFieldID(cls, "num", "I");
 jfieldID countFieldId = env->GetStaticFieldID(cls, "count", "I");

 jint numValue = env->GetIntField(obj, numFieldId);
 jint countValue = env->GetStaticIntField(cls, countFieldId);

 numValue = numValue + 1;
 countValue = countValue + 1;

 env->SetIntField(obj, numFieldId, numValue);
 env->SetStaticIntField(cls, countFieldId, countValue);

Chapter 7 ■ Java Native iNterfaCe

547

 // Call the instance method
 jmethodID instanceMethodID = env->GetMethodID(cls, "objectCallBack", "()V");
 if (instanceMethodID != 0) {
 env->CallVoidMethod(obj, instanceMethodID);
 }

 // Call the static method
 jmethodID staticMethodID = env->GetStaticMethodID(cls, "classCallBack", "()V");
 if (staticMethodID != 0) {
 env->CallStaticVoidMethod(cls, staticMethodID);
 }

 return;
}

Creating Java Objects
The JNI lets you create Java objects in native code without invoking any constructor or by invoking a specific
constructor. You need to use the AllocObject() JNI function to allocate memory for a Java object without
invoking any of its constructors. Note that all instance fields will have their default values according to their
data types. Instance fields will not be initialized when you use AllocObject() JNI function and no instance
initializer will be invoked either. Here is the snippet of code to allocate memory for an object of a class in Java:

jclass cls = get the class reference;
jobject obj = env->AllocObject(cls);
if (obj == NULL) {
 // The object could not be created. Handle the error condition.
}

You can create a Java object by invoking a specific constructor of a Java class using one of the following
JNI functions. The functions differ only in how to pass the parameters for a constructor.

•	 jobject NewObject(jclass clazz, jmethodID methodID, arg1, arg2...)

•	 jobject NewObjectA(jclass clazz, jmethodID methodID, const jvalue *args)

•	 jobject NewObjectV(jclass clazz, jmethodID methodID, va_list args)

The methodID parameter is the method ID of the constructor that you want to invoke. There is a special
string that is used for a method name when you want to get the method ID for a constructor of a class. You
need to use <init> or $init$ as the method name for a constructor. Consider the code for a class named
IntWrapper, as shown in Listing 7-14.

Listing 7-14. A Sample Class to Demonstrate the Java Object Creation in Native Code

// IntWrapper.java
package com.jdojo.jni;

public class IntWrapper {
 private int value = -1;

 public IntWrapper() {
 }

Chapter 7 ■ Java Native iNterfaCe

548

 public IntWrapper(int value) {
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

You can get the reference of the IntWrapper class in native C++ code as shown:

jclass wrapperCls = env->FindClass("com/jdojo/jni/IntWrapper");

The following C++ code allocates memory for an IntWrapper object without invoking a constructor:

jobject wrapperObject = env->AllocObject(wrapperCls);

At this point, wrapperObject exists in memory and its instance field value still has the default value of 0. If
you call the getValue() method on wrapperObject at this point, it will return 0 and not –1, as you might expect.

You need to use the NewObject() JNI function if you want to create an object of a Java class by invoking
one of its constructors. The following snippet of code creates an object of the IntWrapper class by invoking its
no-args constructor. The signature for a constructor depends on the number and type of parameters it accepts.
For the no-args constructor, the signature is ()V. If a constructor accepts an int parameter, its signature would
be (I)V. You can get the signature of a constructor of a class by using the javap command with the –s option.
Use the –private option with javap if you also want to include the private member's signatures.

// Get the method ID for the default constructor of class IntWrapper
jmethodID mid = env->GetMethodID(wrapperCls, "<init>", "()V");

// Create an object of class IntWrapper using the default constructor
jobject wrapperObject = env->NewObject(wrapperCls, mid);

At this point, if you call the getValue() method on wrapperObject, it will return -1, which is the initial
value of the value instance field. When a constructor is called, all instance fields are initialized.

The following snippet of code calls the second version of the constructor of the IntWrapper class, which
accepts an int parameter. It passes 999 as the value for the parameter for the constructor IntWrapper(int
value).

// Get the method ID for the constructor for class IntWrapper
jmethodID wrapperConstrctorID = env->GetMethodID(wrapperCls, "<init>","(I)V");

// Create an object of class IntWrapper passing 999 to the constructor
jobject wrapperObject = env->NewObject(wrapperCls, wrapperConstrctorID, 999);

At this point, if you call the getValue() method on wrapperObject, it will return 999, which is set in its
constructor during its creation.

 ■ Tip the AllocObject() and NewObject() JNi functions can be used only to create objects of a non-array
reference type. You need to use the NewObjectArray() JNi function to create an array of a specific type.

Chapter 7 ■ Java Native iNterfaCe

549

Exception Handling
The JNI lets you handle exceptions in native code. Native code can detect and handle exceptions that are
thrown in the JVM as a result of calling a JNI function. Native code can also throw an exception that can be
propagated to Java code. The exception handling mechanism in the native code differs from that of the Java
code. When an exception is thrown in Java code, the control is transferred immediately to the nearest catch
block that can handle the exception. When an exception is thrown during native code execution, the native
code keeps executing and the exception remains pending until the control returns to the Java code. Once an
exception is pending, you should not execute any other JNI functions except the ones that free native resources.
There are two ways to detect if an exception has occurred as a result of a JNI function call in the native code:

•	 By checking for the special return value from the function

•	 By checking if an exception has occurred after the function returns

Some JNI functions return a special value if an exception occurs. For example, if you call the
FindClass() JNI function and the class is not found, any one of the four exceptions may be thrown:
ClassFormatError, ClassCircularityError, NoClassDefFoundError, or OutOfMemoryError. The
FindClass() JNI function returns NULL as a special value if any of the four exceptions is thrown. You should
check for NULL as a return value just after a call to the FindClass() JNI function and write code to handle the
exception. Typically, you return the control to the caller so that the caller can handle the exception as shown:

jclass cls = env->FindClass("abc/xyz/NonExistentClass");
if (cls == NULL) {
 /*
 * Here, free up any resources you had held and return. Exception is pending at
 * this time. It will be thrown when the control returns to the Java code.
 */
 return;
}

In some cases, it is not possible to return a special value from a JNI function to indicate that an
exception has occurred. Suppose you are accessing a Java array in native code and you have exceeded the
array's boundary. In this case, an exception of type ArrayIndexOutOfBoundsException is thrown by the
JVM. You may call a method of a Java object where an exception occurs. In such cases, you need to use either
ExceptionOccurred() or ExceptionCheck() JNI function immediately after such JNI function call to check if
an exception has occurred. These functions have the following signatures:

•	 jthrowable ExceptionOccurred()

•	 jboolean ExceptionCheck()

If an exception occurred during a function call, the ExceptionOccurred() function returns the
reference of that exception object. Otherwise, it returns NULL. If an exception occurred during the function
call, the ExceptionCheck() function returns JNI_TRUE. Otherwise, it returns JNI_FALSE. The following
snippet of code demonstrates how to use these functions. You only need to use one of the two functions, not
both at the same time.

// Using method ExceptionOccurred()

// Call a JNI function, which may throw an exception

jthrowable e = env->ExceptionOccurred();
if (e != NULL) {

Chapter 7 ■ Java Native iNterfaCe

550

 /*
 * Free up any resources that you had held and return. Exception is pending at this
 * time. It will be thrown when the control returns to the Java code.
 */
 return;
}

// Using method ExceptionCheck()

// Call a JNI function, which may throw an exception

jboolean gotException = env->ExceptionCheck();

if (gotException) {
 /*
 * Free up any resources that you had held and return. Exception is pending at
 * this time. It will be thrown when the control returns to the Java code.
 */
 return;
}

Once you have detected an exception that has occurred in native code, you have three options:

•	 Clear the exception and handle it in native code.

•	 Return the control to Java code and let the Java code handle the exception.

•	 Clear the exception, handle it in native code, and throw a new exception from native
code that Java code can handle.

The following sections explain the three ways of handling the exceptions.

Handle the Exception in Native Code
You can clear the exception and handle the exceptional condition in the native code. Use the
ExceptionClear() JNI function to clear a pending exception, as shown:

// Call a JNI function, which may throw an exception

jboolean gotException = env->ExceptionCheck();
if (gotException) {
 // Clear the exception
 env->ExceptionClear();

 // Write some code to take care of the exceptional condition
}

Once you clear the exception, that exception is not pending anymore.

Chapter 7 ■ Java Native iNterfaCe

551

Handling the Exception in Java Code
You can return the control to the caller by using a return statement and let the caller handle the exception as
shown:

// Call a JNI function, which may throw an exception

jboolean gotException = env->ExceptionCheck();
if (gotException) {
 /*
 * Free up any resources that you had held and return. Exception is pending
 * at this time. It will be thrown when the control returns to the caller.
 */
 return;
}

Throwing a New Exception from Native Code
You can handle the exception in the native code, clear the exception, and throw a new exception. Note that
throwing an exception from the native code does not transfer the control back to the Java code. You must
write code such as a return statement to transfer the control back to the Java code, so the exception you
throw is handled in Java. You can throw an exception in the native code using either of the following two JNI
functions. Both functions return zero on success and a negative integer on failure.

•	 jint Throw(jthrowable obj)

•	 jint ThrowNew(jclass clazz, const char *message)

The Throw() function accepts a jthrowable object. The ThrowNew() function accepts the exception's
class reference and a message. The following snippet of code shows how to throw a java.lang.Exception
using the ThrowNew() function:

if (someErrorConditionIsTrue) {
 jclass cls = env->FindClass("java/lang/Exception");

 // Check for exception here (omitted)
 env->ThrowNew(cls, "your error message goes here");
 return;
}

 ■ Tip if you want to print the stack trace of an exception in the native code, you can use the
ExceptionDescribe() JNi function. it prints an exception stack trace on the standard error. if you want to
raise a fatal error from the native code, you can use the FatalError(const char *msg) JNi function. the
FatalError() function does not return and the JvM will not recover from this error either. a native method
declared in Java code can also use a throws clause the same way as a Java non-native method can. the
following is a valid native method declaration inside a Java class:

public native int myMethod() throws Exception;

Chapter 7 ■ Java Native iNterfaCe

552

Creating an Instance of the JVM
So far, you have seen Java applications using native code. Now you are ready to see the reverse. That is, a
native application that uses Java code. Why would you use Java code from a native application? You may
want to use Java code from a native application for the following reasons:

•	 You may already have an application coded in Java and you want to use the existing
code.

•	 Java provides a rich set of class libraries. You may want to take advantage of Java class
libraries in your native application.

The part of the JNI API that lets you create and load a JVM in native code is known as the Invocation
API. The JNI lets you embed a JVM inside a native application. That is, you can create a JVM from a native
application and use Java classes as you use them in a Java application. It takes just a few lines of code to
create a JVM in native code. All you need to do is prepare the initial arguments that you want to pass to a
JVM and call the JNI_CreateJavaVM() Invocation API function to create the JVM.

The initial argument that is passed to a JVM is a JavaVMInitArgs structure that is defined as follows:

typedef struct JavaVMInitArgs {
 jint version;
 jint nOptions;
 JavaVMOption *options;
 jboolean ignoreUnrecognized;
} JavaVMInitArgs;

The version field indicates the JNI version and it must be set to at least JNI_VERSION_1_2. The JNI
version released with JDK9 is JNI_VERSION_9.The nOptions field is set to the number of options you want to
pass to the JVM. The options field is an array of a JavaVMOption structure, which is defined as follows:

typedef struct JavaVMOption {
 char *optionString;
 void *extraInfo;
} JavaVMOption;

If ignoreUnrecognized is set to JNI_TRUE, the JNI_CreateJavaVM() function will ignore the
unrecognized options. If it is set to JNI_FALSE, the JNI_CreateJavaVM() function will return JNI_ERR as soon
as it encounters an unrecognized option.

The optionString field in the JavaVMOption structure is a string that is the value for the option to a JVM
in the default platform encoding.

The extraInfo field is used for special kinds of JVM arguments. It represents a function hook for
redirecting a JVM message, a JVM exit hook, or a JVM abort hook. The type of hook the extraInfo field
represents depends on the value for the optionString field. If the optionString field has the value of
vfprintf, exit, or abort, the extraInfo field represents a JVM message redirection hook, a JVM exit hook,
or a JVM abort hook, respectively. Note that vfprintf hook redirects only the JVM message to the hook. It
does not redirect the System.out and System.err messages to the hook. If you have set a vsprintf hook
in native code and used one of the print()/println() methods of System.out/System.err in Java code,
those messages would not be redirected to your vfprintf hook. You need to use the setOut() and setErr()
methods of the System class to redirect System.out and System.err messages. The exit hook for a JVM is
called upon a normal termination of the JVM such as by calling the System.exit(int exitCode) method in
Java code. The abort hook for a JVM is called upon abnormal termination of the JVM.

Chapter 7 ■ Java Native iNterfaCe

553

The following snippet of code shows how to populate the extraInfo field with a different VM hook.
First, three functions are defined that will serve as the three types of hooks. Note that the functions must
have the same signatures as shown in the following snippet of code:

jint JNICALL jvmMsgRedirection_hook(FILE *stream, const char *format, va_list args) {
 // You can log the VM message here. Print the VM message to the standard output.
 return vfprintf(stdout, format, args);
}

void JNICALL jvmExit_hook(jint code) {
 // You can do some cleanup work here

 printf("VM exited with exit code %i\n", code);
}

void JNICALL jvmAbort_hook() {
 printf("VM was aborted\n");
}

JavaVMOption jvmOption[3];

// Add JVM hooks
options[0].optionString = "vfprintf";
options[0].extraInfo = jvmMsgRedirection_hook;

options[1].optionString = "exit";
options[1].extraInfo = jvmExit_hook;

options[2].optionString = "abort";
options[2].extraInfo = jvmAbort_hook;

The following snippet of code shows how to populate a JavaVMInitArgs structure with initial
arguments for the JVM. It sets only two arguments, java.class.path and java.library.path. You can set
more JVM arguments if you need to.

// Populate the JVM options in JavaVMOption structure
const jint MAX_OPTIONS = 2; // will pass two arguments to the JVM

JavaVMOption options[MAX_OPTIONS];

// Our first argument is java.class.path (CLASSPATH for JVM)
options[0].optionString = "-Djava.class.path=.;c:\\myjni\\classes";

// Our second argument is java.library.path (PATH to find a shared library)
options[1].optionString = "-Djava.library.path=c:\\myjni\\libs";

// Populate JavaVMInitArgs structure with options details
JavaVMInitArgs vm_args;
vm_args.version = JNI_VERSION_9;
vm_args.nOptions = MAX_OPTIONS;
vm_args.options = options;
vm_args.ignoreUnrecognized = true;

Chapter 7 ■ Java Native iNterfaCe

554

Once you have the JVM arguments ready in a JavaVMInitArgs structure, you are just one JNI function
call away from creating a JVM in your native code. The JNI_CreateJavaVM() JNI function accepts three
arguments. The first argument is a pointer to a JavaVM structure that represent the JVM. The second
argument is a pointer to a JNIEnv structure, which is the JNI interface. The third argument is the initial
argument to the JVM. The following snippet of code shows how to create a JVM in native code. You need to
check for any errors that the JNI_CreateJavaVM() function might return. It returns JNI_ERR if cannot create
a JVM.

JNIEnv *env;
JavaVM *jvm;
long status;
status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);

if (status == JNI_ERR) {
 printf("Could not create VM. Exiting application...\n");
 return 1;
}

Once you get the JNIEnv structure, you can use it to find a class, create an object of that class, and
execute any methods on that object. In fact, it lets you access the entire JVM using JNI. After you are done
using the JVM, you need to destroy it.

// Destroy JVM
jvm->DestroyJavaVM();

Listing 7-15 contains the code for a EmbeddedJVMJNI class with a printMsg() static method to print a
message to the standard output. Later, you will create a JVM in native code and call the printMsg() method.

Listing 7-15. An EmbeddedJVMJNI Java Class

// EmbeddedJVMJNI.java
package com.jdojo.jni;

public class EmbeddedJVMJNI {
 public static void printMsg(String msg) {
 System.out.println(msg);
 }
}

The C++ console application listed in Listing 7-16 creates a JVM and calls the printMsg() method of the
EmbeddedJVMJNI class. The book's source code contains the C++ code in createjvm.cpp file. The program
lets you specify the CLASSPATH as the command-line argument. If you do not specify the CLASSPATH, it uses
the current directory as the CLASSPATH.

Listing 7-16. Contents of the createjvm.cpp File That Creates a JVM in a Native Application

// createjvm.cpp
#include <jni.h>
#include <iostream>
#include <string>

int main(int argc, char **argv) {

Chapter 7 ■ Java Native iNterfaCe

555

 std::string classpath("");

 if (argc < 2) {
 std::cout << "You did not pass the classpath."
 << " Using the current directory as the classpath.\n";
 classpath = ".";
 } else {
 classpath = argv[1];
 }

 std::string classpathOption("-Djava.class.path=");

 classpathOption = classpathOption + classpath;

 // Pass the classpath as an argument to the JVM
 const jint MAX_OPTIONS = 1;
 JavaVMOption options[MAX_OPTIONS];
 options[0].optionString = (char *)(classpathOption.c_str());;

 // Prepare the JVM initial arguments
 JavaVMInitArgs vm_args;
 vm_args.version = JNI_VERSION_1_2;
 vm_args.nOptions = MAX_OPTIONS;
 vm_args.options = options;
 vm_args.ignoreUnrecognized = true;

 // Create the JVM
 JavaVM *jvm;
 JNIEnv *env;
 long status = JNI_CreateJavaVM(&jvm, (void**) &env, &vm_args);
 if (status == JNI_ERR) {
 std::cout << "Could not create VM. Exiting application...\n";
 return 1;
 }

 const char *className = "com/jdojo/jni/EmbeddedJVMJNI";
 jclass cls = env->FindClass(className);
 if (cls == NULL) {
 // Print exception stack trace and destroy the JVM
 env->ExceptionDescribe();
 jvm->DestroyJavaVM();
 return 1;
 }

 if (cls != NULL) {
 jmethodID mid = env->GetStaticMethodID(cls, "printMsg",
 "(Ljava/lang/String;)V");
 if (mid != NULL) {
 jstring m = env->NewStringUTF("Hello from C++...\n");
 env->CallStaticVoidMethod(cls, mid, m);
 if (env->ExceptionCheck()) {
 env->ExceptionDescribe();

Chapter 7 ■ Java Native iNterfaCe

556

 env->ExceptionClear();
 }
 }
 }

 // Destroy JVM
 jvm->DestroyJavaVM();
 return 0;
}

You will need to compile the createjvm.cpp file into an executable. When you compile this program,
you need to provide the path of the jvm.lib file, which is installed in the JAVA_HOME\lib directory on
Windows. Assuming that you have installed the JDK in C:\java9 on Windows, you can use the following
command to create the createjvm.exe file on Windows:

C:\Java9APIsAndModules\cplusplus\src> g++ -IC:/java9/include -IC:/java9/include/win32
-o createjvm
createjvm.cpp
C:/java9/lib/jvm.lib

The command is entered on one line, but it is shown here on multiple lines for readability. The first two
lines in the command are the same as when you created the shared libraries before. The –o option is used
to specify the executable output file name, which is createjvm in this case. The last option is the path of the
library called jvm.lib that needs to be statically linked.

The following command will create a createjvm executable file on Linux, assuming that you have
installed the JDK in the /home/ksharan/java9 directory:

[/home/ksharan/Java9APIsAndModules/cplusplus/src] $ g++ -I/home/ksharan/java9/include
-I/home/ksharan/java9/include/linux
-o createjvm
createjvm.cpp
/home/ksharan/java9/lib/server/libjvm.so

On Windows, when you run the createjvm.exe application, it will look for the jvm.dll shared library,
which is found in the JRE_HOME\bin\server directory. You need to include the directory that contains the
jvm.dll file in the PATH environment variable.

C:\Java9APIsAndModules\cplusplus\src> SET PATH=C:\java9\bin\server;%PATH%

C:\Java9APIsAndModules\cplusplus\src> createjvm C:\Java9APIsAndModules\dist\jdojo.jni.jar

Hello from C++...

When you run the createjvm.exe file, you may get the following error:

Exception in thread "main" java.lang.NoClassDefFoundError: com/jdojo/jni/EmbeddedJVMJNI
Caused by: java.lang.ClassNotFoundException: com.jdojo.jni.EmbeddedJVMJNI
...

Chapter 7 ■ Java Native iNterfaCe

557

The error indicates that the CLASSPATH was not set properly and the JVM was not able to find the
EmbeddedJVMJNI class. Using the previous command, the class is searched in the C:\Java9APIsAndModules\
dist\jdojo.jni.jar file. To fix this error, run the createjvm application with the correct argument for the
CLASSPATH.

On Linux, you need to set the LD_LIBRARY_PATH so that the libjvm.so file is located when the
createjvm application is run. You can set this as follows:

[/home/ksharan/Java9APIsAndModules/cplusplus/src] $ export LD_LIBRARY_PATH=/home/ksharan/
java9/lib/server

Now you are ready to run the createjvm application as shown:

[/home/ksharan/Java9APIsAndModules/cplusplus/src] $./createjvm /home/ksharan/
Java9APIsAndModules/dist/jdojo.jni.jar

Hello from C++...

The command will search for the com/jdojo/jni/EmbeddedJVMJNI.class in the /home/ksharan/
Java9APIsAndModules/dist/jdojo.jni.jar file.

Synchronization in Native Code
The JNI provides two functions called MonitorEnter()and MonitorExit() to synchronize access to native
code in a multithreaded environment. These functions are used in tandem and their use is equivalent to
using the synchronized keyword in Java code. These functions are declared as follows:

•	 jint MonitorEnter(jobject obj)

•	 jint MonitorExit(jobject obj)

Both functions return 0 (JNI_OK is defined as 0 in the jni.h header file) on success and a negative
number on failure. You must check their return values to handle the code synchronization properly. Here is
the sample Java code that uses synchronization:

Object someObject = get the reference of a java object;

// Other logic goes here

synchronized(someObject) {
 // Synchronized code goes here
}

The equivalent native code is as follows:

jobject someObject = get the reference of a java object;

// Other logic goes here

jint enterStatus = env->MonitorEnter(someObject);
if (enterStatus != JNI_OK) {

Chapter 7 ■ Java Native iNterfaCe

558

 // Handle the error condition here
}

// Synchronized code goes here

jint exitStatus = env->MonitorExit(someObject);
if (exitStatus != JNI_OK) {
 // Handle the error condition here
}

There are no equivalent JNI functions for Java wait() and notify() to aid in thread synchronization.
However, you can always invoke these two Java methods from native code.

Summary
The Java Native Interface (JNI) is a programming interface that facilitates interaction between Java programs
and programs written in native languages such as C, C++, FORTRAN, etc. The JNI makes it possible to use
a method in Java code and to implement that method in a native language such as C or C++. The JNI also
makes it possible to embed the JVM in a native application that can access the Java class libraries.

The method used in Java but implemented in a native language is called a native method, and it is
declared using the keyword native. The native method in Java does not have a body. Its body is represented
by a semicolon. The implementation of the native method is written in a native language and compiled into
a shared library. The shared library is made available to the Java runtime using the java.library.path JVM
option or they are located in the PATH environment variable.

The javah command is used to generate the required header file for the native language. It takes the
fully qualified class name of the class containing the native method as an argument.

The JNI defines mapping between data types used in Java and native code. For example, jboolean, jchar,
jint, etc. are the native equivalent of the boolean, char, int, etc. primitive data types in Java. The jclass,
jobject, and jstring types in native code are mapped to the Class, Object, and String classes in Java.

The JNI provides functions to facilitate the conversion between the Java and native representation of
strings. It also provides special functions to access the length of Java arrays and array elements.

The JNI also lets you create Java objects inside the native code. You can also access the fields and
methods of the Java objects inside the native code.

The Throwable type in Java is mapped to the type jthrowable in native code. The JNI lets you handle
exceptions in native code. Native code can detect and handle exceptions that are thrown in the JVM as
a result of calling a JNI function. Native code can also throw an exception that can be propagated to Java
code. When an exception is thrown during native code execution, the native code keeps executing and the
exception remains pending until the control returns to the Java code.

The JNI lets you embed the JVM in a native application giving full access to the rich Java class library to
them. The part of the JNI API that lets you create and load a JVM in native code is known as the Invocation API.
The JVM is created in native code using the JNI_CreateJavaVM() method of provided by the Invocation API.

In a multithreaded environment, it is possible to synchronize access to a critical section in native code
by using the two JNI functions called MonitorEnter() and MonitorExit(). These functions are used in
tandem and their use is equivalent to using the synchronized keyword in Java code.

Chapter 7 ■ Java Native iNterfaCe

559

QUESTIONS AND EXERCISES

1. What is JNi?

2. What is the difference in using the load() and loadLibrary() methods of the
System class to load a shared library?

3. What are the JNi equivalent data types for Java primitive types?

4. What are the JNi equivalent data types used to represent objects of the java.
lang.String, java.lang.Class, and java.lang.Throwable classes and any Java
classes?

5. Suppose you have the reference of an object in a variable named myObject in C++
native code. how do you get the reference of the class of this object using a JNi
function?

6. What JNi function do you use to get the reference of a Java class using the class
name?

7. What JNi function do you use to get the reference of the Module object of a Java
class?

8. What is the difference in using the AllocObject() and NewObject() JNi functions
to create an object of a Java class?

9. What is the invocation api.

10. Describe exception handling in JNi.

11. List the JNi functions that support thread synchronization in native code.

561© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_8

CHAPTER 8

Introduction to JavaFX

In this chapter, you will learn:

•	 What JavaFX is

•	 How to write simple JavaFX programs

•	 Properties, bindings, and observable collections in JavaFX

•	 Event handling

•	 Using layout panes, controls, 2D shapes, and drawing on a canvas

•	 Applying effects, transformations, and animations

•	 Using FXML to build UIs in JavaFX applications

•	 Printing nodes in JavaFX

JavaFX is a vast topic and it deserves a book by itself. This is an introductory chapter to show you the
features offered by JavaFX. None of these topics are covered comprehensively. All example programs in this
chapter are members of a jdojo.javafx module, as declared in Listing 8-1.

Listing 8-1. The Declaration of a jdojo.javafx Module

// module-info.java
module jdojo.javafx {
 requires javafx.controls;

 requires javafx.fxml;

 exports com.jdojo.javafx;
}

What Is JavaFX?
JavaFX is an open source Java-based GUI framework for developing rich client applications. It is comparable
to other frameworks on the market such as Apache Flex and Microsoft Silverlight. JavaFX is also the
successor of Swing in the arena of GUI development technology in the Java platform. The JavaFX library is

https://doi.org/10.1007/978-1-4842-3546-1_8

Chapter 8 ■ IntroduCtIon to JavaFX

562

available as a public Java API. JavaFX contains several features that make it a preferred choice for developing
rich client applications:

•	 JavaFX is written in Java, enabling you to take advantage of all Java features such as
multithreading, generics, lambda expressions, etc. You can use any Java editor of
your choice, such as NetBeans, to author, compile, run, debug, and package your
JavaFX application.

•	 JavaFX supports data binding through its libraries.

•	 JavaFX code can be written using any JVM-supported scripting languages such as
Visage, Groovy, Scala, Nashorn, etc.

•	 JavaFX offers two ways to build a UI: using Java code and using FXML. FXML is
an XML-based scriptable markup language to define a UI declaratively. You can
download the Scene Builder tool for Java 9 from http://gluonhq.com/products/
scene-builder.

•	 JavaFX provides a rich set of multimedia support such as playing back audios and
videos. It takes advantage of available codecs on the platform.

•	 JavaFX lets you embed web content in applications.

•	 JavaFX provides out-of-the-box support for applying effects and animations, which
are important for developing gaming applications. In JavaFX, you can achieve
sophisticated animations by writing just a few lines of code.

The JavaFX platform consists of the following components to take advantage of the Java native libraries
and the available hardware and software on the platform. The arrangement of those components is shown in
Figure 8-1.

•	 JavaFX Public API

•	 Quantum Toolkit

•	 Prism

•	 Glass Windowing Toolkit

•	 Media Engine

•	 Web Engine

Figure 8-1. Components making up the JavaFX platform

http://gluonhq.com/products/scene-builder
http://gluonhq.com/products/scene-builder

Chapter 8 ■ IntroduCtIon to JavaFX

563

The GUI in JavaFX is constructed as a scene graph. A scene graph is a collection of visual elements called
nodes that are arranged in a tree-like hierarchy. A scene graph is built using the public JavaFX API. Nodes in
a scene graph can handle user inputs and gestures. They can have effects, transformations, and states. Types
of nodes in a scene graph include simple user interface (UI) controls such as buttons, text fields, 2D and 3D
shapes, images, media (audios and videos), web content, charts, etc.

Prism is a hardware accelerated graphics pipeline used for rendering the scene graph. If hardware-
accelerated rendering is not available on the platform, Java 2D is used as the fallback rendering mechanism.
For example, before using Java 2D for rendering, JavaFX will try using DirectX on Windows and OpenGL on
Mac, Linux, and embedded platforms.

The Glass Windowing Toolkit provides graphics and windowing services such as windows and the timer
using the native operating system. The toolkit is also responsible for managing event queues. In JavaFX,
event queues are managed by a single, operating system level thread called JavaFX Application Thread. All
user input events are dispatched on the JavaFX Application Thread. JavaFX requires that a live scene graph
must be modified only on the JavaFX Application Thread.

Prism uses a separate thread, other than the JavaFX Application Thread, for rendering. It accelerates
the rendering process by rendering a frame while the next frame is being processed. When a scene
graph is modified, for example, by entering text in a text field, Prism needs to re-render the scene graph.
Synchronizing the scene graph with Prism is accomplished using an event called a pulse event. A pulse
event is queued on the JavaFX Application Thread when the scene graph is modified and it needs to be re-
rendered. A pulse event is an indication that the scene graph is not in sync with the rendering layer in Prism
and the latest frame at the Prism level should be rendered. Pulse events are throttled at 60 frames per second
maximum.

The media engine is responsible for providing media support in JavaFX, for example, playing back
audios and videos. It takes advantage of the available codecs on the platform. The media engine uses a
separate thread to process media frames and the JavaFX Application Thread to synchronize the frames with
the scene graph. The media engine is based on GStreamer, which is an open source multimedia framework.

The web engine is responsible for processing web content (HTML) embedded in the scene graph. Prism
is responsible for rendering the web content. The web engine is based on Webkit, which is an open source
web browser engine. It supports HTML5, Cascading Style Sheets (CSS), JavaScript, and Document Object
Model (DOM).

The Quantum toolkit is an abstraction over the low-level components such as Prism, Glass, Media
Engine, and Web Engine. It also facilitates coordination between low-level components.

History of JavaFX
JavaFX was originally developed by Chris Oliver at Seebeyond and it was called F3 (Form Follows Function).
F3 was a Java scripting language for easily developing GUI applications. It offered declarative syntax, static
typing, type inference, data binding, animation, 2D graphics, Swing components, etc. Seebeyond was bought
by Sun Microsystems, and F3 was named JavaFX in 2007. Oracle acquired Sun Microsystem in 2010. Oracle
open sourced JavaFX in 2013.

The first version of JavaFX was released in the fourth quarter of 2008. The current release for JavaFX is
version 9.0. The version number of JavaFX jumped from 2.2 to 8.0. From Java 8, the version numbers of Java SE
and JavaFX are the same. In the future, the major versions of Java SE and JavaFX will be released at the same
time and their versions will be kept in sync. For example, JavaFX 9 was released with Java SE 9, JavaFX 10 will
be released with Java SE 10, and so on.

Table 8-1 contains the list of releases of JavaFX. Starting with the release of Java SE 8, JavaFX is part of
the Java SE runtime and you do not need to perform any additional setup to compile and run your JavaFX
programs.

Chapter 8 ■ IntroduCtIon to JavaFX

564

System Requirements
To use the examples in this chapter, you need to have JDK9 installed. It is not necessary to have the NetBeans
IDE to compile and run the programs in this chapter. However, the NetBeans IDE has special features for
creating, running, and packaging JavaFX applications that makes developing JavaFX applications using
NetBeans easier. You can use any other IDE such as Eclipse, JDeveloper, IntelliJ IDEA, etc. or just use the
command prompt to compile and run JavaFX programs.

The JavaFX Modules
Along with JDK9, JavaFX APIs have also been modularized. Table 8-2 lists all JavaFX modules with brief
descriptions. The JavaFX module you need to read in your module depends on the features of the JavaFX you
need to use in your application.

Table 8-1. JavaFX Releases

Release Date Version Comments

Q4, 2008 JavaFX 1.0 It was the initial release of JavaFX. It used a declaration language
called JavaFX Script to write the JavaFX code.

Q1, 2009 JavaFX 1.1 Support for JavaFX Mobile was introduced.

Q2, 2009 JavaFX 1.2

Q2, 2010 JavaFX 1.3

Q3, 2010 JavaFX 1.3.1

Q4, 2011 JavaFX 2.0 Support for JavaFX script and JavaFX Mobile was dropped. It used the
Java programming language to write the JavaFX code.

Q2, 2012 JavaFX 2.1 Support for MacOS for desktop only was introduced.

Q3, 2012 JavaFX 2.2

Q1, 2014 JavaFX 8.0 JavaFX version jumped from 2.2 to 8.0. JavaFX and Java SE versions
will match from Java 8.

Q3, 2017 JavaFX 9.0 Released along with Java SE 9.

Chapter 8 ■ IntroduCtIon to JavaFX

565

JavaFX Source Code
Experienced developers sometimes prefer to look at the source code of the JavaFX library to learn how
things are implemented behind the scenes. Oracle provides the JavaFX source code. JDK9 copies the source
in the JDK_HOME\lib directory. The file name is src.zip. Unzip the file in a directory and use your favorite
Java editor to open the source code. The file contains the source for JDK and JavaFX.

JavaFX API Documentation
Starting with JDK9, the JavaFX API documentation is included in the API documentation of the JDK. You can
access the online API documentation of JDK9 at https://docs.oracle.com/javase/9/docs/api/overview-
summary.html.

Your First JavaFX Application
Your first JavaFX application will display the text Hello JavaFX in a window. You will take an incremental
step-by-step approach to developing your first JavaFX application by adding as few lines of code as possible
and learning what the code does and why it is needed. The next few sections walk you through these steps.

Creating the HelloJavaFX Class
A JavaFX application is a class that must inherit from the Application class. The Application class is in
the javafx.application package, which is in the javafx.graphics module. So, your module must read
the javafx.graphics module directly or indirectly using a transitive dependence. You will name your class
HelloFXApp and it will be stored in the com.jdojo.javafx package, which is in the jdojo.javafx module.
Note that Listing 8-1 contains the declaration for the jdojo.javafx module.

Table 8-2. JavaFX Modules

Module Name Description

javafx.base Defines the base APIs for the JavaFX UI toolkit, including APIs for bindings,
properties, collections, and events.

javafx.controls Defines the UI controls, charts, and skins that are available for the JavaFX UI toolkit.

javafx.fxml Defines the FXML APIs for the JavaFX UI toolkit.

javafx.graphics Defines the core scene graph APIs for the JavaFX UI toolkit such as layout
containers, application lifecycle, shapes, transformations, canvas, input, painting,
image handling, and effects. It also defines APIs for animation, CSS, concurrency,
geometry, printing, and windowing.

javafx. media Defines APIs for playback of media and audio content.

javafx.swing Defines APIs for the JavaFX/Swing interoperability, which allows mixing Swing and
JavaFX components in the same application.

javafx.web Defines APIs for the loading and displaying web contents.

https://docs.oracle.com/javase/9/docs/api/overview-summary.html
https://docs.oracle.com/javase/9/docs/api/overview-summary.html

Chapter 8 ■ IntroduCtIon to JavaFX

566

// HelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;

public class HelloFXApp extends Application {
 // Application logic goes here
}

The program includes a package declaration, an import statement, and the class declaration. There
is nothing like JavaFX in the code. It looks like any other Java code. However, you have fulfilled one
requirement of the JavaFX application by inheriting the HelloFXApp class from the Application class. The
HelloFXApp class will not compile at this point.

Overriding the start() Method
If you try compiling the HelloFXApp class, it will result in the following compile-time error:

HelloFXApp is not abstract and does not override abstract method start(Stage) in Application

The error message is stating that the Application class contains an abstract start(Stage stage)
method, which has not been overridden in the HelloFXApp class. As a Java developer, you know what to
do next: you either declare the HelloFXApp class as abstract or provide an implementation for the start()
method. You need to provide an implementation for the start() method in this class. The start() method
in the Application class is declared as follows:

public abstract void start(Stage stage) throws java.lang.Exception

The following is the revised code for your application:

// HelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // The logic for starting the application goes here
 }
}

In the revised code, you have incorporated two things:

•	 You have added one more import statement to import the Stage class from the
javafx.stage package.

•	 You have implemented the start() method. The throws clause for the method is
dropped, which is fine by the rules for overriding methods in Java.

Chapter 8 ■ IntroduCtIon to JavaFX

567

The start() method is the entry point for a JavaFX application. It is called by the JavaFX application
launcher. Notice that the start() method is passed an instance of the Stage class, which is known as the
primary stage of the application. You can create more stages as necessary in your application. However, the
primary stage is always created by the JavaFX runtime for you.

 ■ Tip every JavaFX application class must inherit from the Application class and provide the
implementation for the start(String stage) method.

Showing the Stage
Similar to a stage in the real world, a JavaFX stage displays a scene. A scene has visuals—such as text,
shapes, images, controls, animations, effects, etc.—with which the user may interact, as is the case with all
GUI-based applications.

In JavaFX, the primary stage is a container for a scene. The stage look and feel is different depending on
the environment your application is run in. You do not need to take any action based on the environment
because the JavaFX runtime takes care of all the details for you.

The primary stage created by the application launcher does not have a scene. You will create a scene for
your stage in the next section.

You must show the stage to see the visuals contained in its scene. Use the show() method to show the
stage. Optionally, you can set a title for the stage using the setTitle() method. The revised code for the
HelloFXApp class is as follows:

// HelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // Set a title for the stage
 stage.setTitle("Hello JavaFX Application");

 // Show the stage
 stage.show();
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

568

Launching the Application
You are ready to run your first JavaFX application. You can use one of the following two options to run a
JavaFX application:

•	 It is not necessary to have a main() method in the class to start a JavaFX application.
When you run a Java class that inherits from the Application class, the java
command launches the JavaFX application if the class being run does not contain
the main() method.

•	 Include a main() method in the JavaFX application class. Inside the main() method,
call the launch() static method of the Application class to launch the JavaFX
application. The launch() method takes a String array as an argument, which is the
parameters passed to the JavaFX application.

If you are using the first option, you do not need to write any additional code for the HelloFXApp class. If
you are using the second option, the revised code for the HelloFXApp class with the main() method will be as
shown in Listing 8-2.

Listing 8-2. A JavaFX Application Without a Scene

// HelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 public static void main(String[] args) {
 // Launch the JavaFX application
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello JavaFX Application");
 stage.show();
 }
}

The main() method calls the launch() method, which will do some setup work and call the start()
method of the HelloFXApp class. Your start() method sets the title for the primary stage and shows the
stage.

You must perform one more step before you are ready to run your first JavaFX application. To start your
application, JavaFX needs to access and instantiate an object of the HelloFXApp class, which happens inside
the javafx.graphics module. You must export the package that contains the starting class of your JavaFX
application to at least the javafx.graphics module. The HelloFXApp class is in the com.jdojo.javafx
package. Your module (jdojo.javafx) must export the com.jdojo.javafx package to at least the
javafx.graphics package.

Chapter 8 ■ IntroduCtIon to JavaFX

569

Suppose the declaration of the jdojo.javafx module is as follows, which does not export the
com.jdojo.javafx package to the javafx.graphics module:

module jdojo.javafx {
 requires javafx.graphics;
}

Let’s try to run the HelloFXApp class using the following command, which results in an error:

C:\Java9APIsAndModules>java --module-path dist --module jdojo.javafx/com.jdojo.javafx.
HelloFXApp

Exception in Application constructor
...
Caused by: java.lang.RuntimeException: Unable to construct Application instance: class
com.jdojo.javafx.HelloFXApp
...
Caused by: java.lang.IllegalAccessException: class com.sun.javafx.application.LauncherImpl
(in module javafx.graphics) cannot access class com.jdojo.javafx.HelloFXApp (in module
jdojo.javafx) because module jdojo.javafx does not export com.jdojo.javafx to module
javafx.graphics
...

You need to read through the error message to understand the cause. It states that the javafx.graphics
module is not able to access the HelloFXApp class because the jdojo.javafx module does not export
the com.jdojo.javafx package. To fix this error, you need to add one of the following statements in the
declaration of the jdojo.javafx module:

// Exports the com.jdojo.javafx package to the javafx.graphics module
exports com.jdojo.javafx to javafx.graphics;

// Exports the com.jdojo.javafx package to all other modules
exports com.jdojo.javafx;

The jdojo.javafx module exports the com.jdojo.javafx package to all other modules, as shown in
Listing 8-1. A window with a title bar, as shown in Figure 8-2, is displayed when you run the HellpFXApp class.

The main area of the window is empty. This is the content area in which the stage displays its scene.
Because you do not have a scene for your stage yet, you see an empty area. The title bar shows the title that
you have set in the start() method.

You can close the application using the Close menu option in the window title bar. Use Alt+F4 to close
the window on Windows. You can use any other option to close the window as provided by your platform.

Figure 8-2. A JavaFX stage without a scene

Chapter 8 ■ IntroduCtIon to JavaFX

570

 ■ Tip the launch() method of the Application class does not return until all windows are closed or the
application exits using the Platform.exit() method. the Platform class is in the javafx.application package.

You have not seen anything exciting in JavaFX yet. You need to wait for that until you create a scene in
the next section.

Adding the main() Method
As described in the previous section, the Java launcher (the java command) does not require a main() method
to launch a JavaFX application. If the class that you want to run inherits from the Application class, the java
command launches the JavaFX application by automatically calling the Application.launch() method for you.

If you are using NetBeans IDE to create the JavaFX project, you do not need to have a main() method
to launch your JavaFX application if you run the application by running the JavaFX project. However, the
NetBeans IDE requires you to have a main() method when you run the JavaFX application class as a file, for
example, by selecting the HelloFXApp file, right-clicking it, and selecting the Run File option from the menu.
Some IDEs still require the main() method to launch a JavaFX application. All examples in this chapter
include the main() method that will launch the JavaFX applications.

Adding a Scene to the Stage
An instance of the Scene class, which is in the javafx.scene package, represents a scene. A stage contains
one scene. A scene contains visual contents.

The contents of the scene are arranged in a tree-like hierarchy. At the top of the hierarchy is the root
node. The root node may contain child nodes, which in turn may contain their child nodes, and so on.
You must have a root node to create a scene. You will use a VBox as the root node. VBox stands for vertical
box, which arranges its child nodes vertically.

VBox root = new VBox();

 ■ Tip any node that inherits from the javafx.scene.Parent class can be used as the root node for a scene.
Several nodes, known as layout panes or containers—for example, VBox, HBox, Pane, FlowPane, GridPane,
TilePane, etc.—can be used as a root node. Group is a special container that groups its children together.

A node that can have children provides a getChildren() method that returns an ObservableList of
its children. To add a child node to a node, simply add the child node to the ObservableList. The following
snippet of code adds a Text node to a VBox:

// Create a VBox node
VBox root = new VBox();

// Create a Text node
Text msg = new Text("Hello JavaFX");

// Add the Text node to the VBox as a child node
root.getChildren().add(msg);

Chapter 8 ■ IntroduCtIon to JavaFX

571

The Scene class contains several constructors. You will use the one that lets you specify the root node
and the size of the scene. The following statement creates a scene with the VBox as the root node, 300px
width, and 50px height:

// Create a scene
Scene scene = new Scene(root, 300, 50);

You need to set the scene to the stage by calling the setScene() method of the Stage class.

// Set the scene to the stage
stage.setScene(scene);

That’s it. You have completed your first JavaFX program with a scene. Listing 8-3 contains the complete
program. The program displays a window, as shown in Figure 8-3.

Listing 8-3. A JavaFX Application with a Scene Having a Text Node

// HelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("Hello JavaFX");
 VBox root = new VBox();
 root.getChildren().add(msg);

 Scene scene = new Scene(root, 300, 50);
 stage.setScene(scene);
 stage.setTitle("Hello JavaFX Application");
 stage.show();
 }
}

Figure 8-3. A JavaFX application with scene having a Text node

Chapter 8 ■ IntroduCtIon to JavaFX

572

Improving Your First JavaFX Application
JavaFX is capable of doing much more than you have seen so far. Let’s enhance the first application and add
some more user interface elements such as buttons and text fields. This time, the user will be able to interact
with the application. Use an instance of the Button class to create a button as shown:

// Create a button with "Exit" text
Button exitBtn = new Button("Exit");

Classes for JavaFX controls are in the javafx.controls module. The javafx.controls module reads
the javafx.graphics module transitively, which in turn read the java.base module transitively. If your
module (in this chapter, the jdojo.javafx module) reads the javafx.controls module, your module does
not need to explicitly read the javafx.graphics and javafx.base modules.

When a button is clicked, an ActionEvent is fired. You can add an ActionEvent handler to handle
the event. Use the setOnAction() method to set an ActionEvent handler for the button. The following
statement sets an ActionEvent handler for the button. The handler terminates the application. You can use
a lambda expression or an anonymous class to set the ActionEvent handler. The following snippet of code
shows both approaches:

// Using a lambda expression
exitBtn.setOnAction(e -> Platform.exit());

// Using an anonymous class
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
...
exitBtn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 Platform.exit();
 }
});

The program in Listing 8-4 shows how to add more nodes to the scene. The program uses the
setStyle() method of the Label class to set the fill color of the Label to blue. I discuss using CSS in JavaFX
briefly later.

Listing 8-4. Interacting with Users in a JavaFX Application

// ImprovedHelloFXApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

Chapter 8 ■ IntroduCtIon to JavaFX

573

public class ImprovedHelloFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Enter your name:");
 TextField nameFld = new TextField();

 Label msg = new Label();
 msg.setStyle("-fx-text-fill: blue;");

 // Create buttons
 Button sayHelloBtn = new Button("Say Hello");
 Button exitBtn = new Button("Exit");

 // Add the event handler for the Say Hello button
 sayHelloBtn.setOnAction(e -> {
 String name = nameFld.getText();
 if (name.trim().length() > 0) {
 msg.setText("Hello " + name);
 } else {
 msg.setText("Hello there");
 }
 });

 // Add the event handler for the Exit button
 exitBtn.setOnAction(e -> Platform.exit());

 // Create the root node
 VBox root = new VBox();

 // Set the vertical spacing between children to 5px
 root.setSpacing(5);

 // Add children to the root node
 root.getChildren().addAll(nameLbl, nameFld, msg, sayHelloBtn, exitBtn);

 Scene scene = new Scene(root, 350, 150);
 stage.setScene(scene);
 stage.setTitle("Improved Hello JavaFX Application");
 stage.show();
 }
}

The improved HelloFX application displays a window, as shown in Figure 8-4. The window contains
two labels, a text field, and two buttons. A VBox is used as the root node for the scene. Enter a name in
the text field and click the Say Hello button to see a hello message. Clicking the Say Hello button without
entering a name displays the message Hello there. The application displays a message in a Label control.
Click the Exit button to exit the application.

Chapter 8 ■ IntroduCtIon to JavaFX

574

The Lifecycle of a JavaFX Application
JavaFX runtime creates several threads that are used to perform different tasks at different stages in the
application. This section is only interested in those threads that are used to call methods of the Application
class during its lifecycle. The JavaFX runtime creates, among other threads, two threads named

•	 JavaFX-Launcher

•	 JavaFX Application Thread

The launch() static method of the Application class creates these threads. During the lifetime of a
JavaFX application, the JavaFX runtime calls the following methods of the JavaFX application class in order:

•	 The no-args constructor

•	 The init() method

•	 The start() method

•	 The stop() method

The JavaFX runtime creates the instance of the specified application class on the JavaFX Application
Thread.

The JavaFX-Launcher thread calls the init() method of the application class. The init() method
implementation in the Application class is empty. You can override this method in your application class.
It is not allowed to create a Stage or a Scene on the JavaFX-Launcher thread. They must be created on the
JavaFX Application Thread. Therefore, you cannot create a Stage or a Scene inside the init() method.
Attempting to do so throws a runtime exception. It is fine to create UI controls, for example, buttons, shapes,
etc. in the init() method.

The JavaFX Application Thread calls the start(Stage stage) method of the application class. Note that
the start() method in the Application class is declared abstract, and you must override this method in
your application class.

At this point, the launch() method waits for the JavaFX application to finish.
When the application finishes, the JavaFX Application Thread calls the stop() method of the application

class. The default implementation of the stop() method is empty in the Application class. You will have to
override this method in your application class to perform your logic when your application stops.

Figure 8-4. A JavaFX application with two labels, a text field, and two buttons

Chapter 8 ■ IntroduCtIon to JavaFX

575

The program in Listing 8-5 illustrates the lifecycle of a JavaFX application. It displays a stage with an
Exit button. You will see the first three lines of the output when the stage is shown. You will need to close the
stage by clicking the Exit button to see the last line of the output.

Listing 8-5. The Lifecycle of a JavaFX Application

// FXLifeCycleApp.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

public class FXLifeCycleApp extends Application {
 public FXLifeCycleApp() {
 String name = Thread.currentThread().getName();
 System.out.println("FXLifeCycleApp() constructor: " + name);
 }

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() {
 String name = Thread.currentThread().getName();
 System.out.println("init() method: " + name);
 }

 @Override
 public void start(Stage stage) {
 String name = Thread.currentThread().getName();
 System.out.println("start() method: " + name);

 // Add an Exit button to the scene
 Button exitBtn = new Button("Exit");
 exitBtn.setOnAction(e -> Platform.exit());

 Scene scene = new Scene(new Group(exitBtn), 300, 100);
 stage.setScene(scene);
 stage.setTitle("JavaFX Application Lifecycle");
 stage.show();
 }

Chapter 8 ■ IntroduCtIon to JavaFX

576

 @Override
 public void stop() {
 String name = Thread.currentThread().getName();
 System.out.println("stop() method: " + name);
 }
}

FXLifeCycleApp() constructor: JavaFX Application Thread
init() method: JavaFX-Launcher
start() method: JavaFX Application Thread
stop() method: JavaFX Application Thread

Terminating a JavaFX Application
A JavaFX application may be terminated explicitly or implicitly. You can terminate a JavaFX application
explicitly by calling the exit() static method of the Platform class. When this method is called, after or
from within the start() method, the stop() method of the Application class is called, and then the JavaFX
Application Thread is terminated. At this point, if there are only daemon threads running, the JVM will exit.
If the Platform.exit() method is called from the constructor or the init() method of the Application
class, the stop() method of the Application class may not be called.

A JavaFX application may be terminated implicitly when the last window is closed. This behavior
can be turned on or turned off using the static setImplicitExit(boolean implicitExit) method of the
Platform class. Passing true to this method turns this behavior on. Passing false to this method turns this
behavior off. By default, this behavior is turned on. This is the reason that in most of the examples so far, your
applications were terminated when you closed the windows. When this behavior is turned on, the stop()
method of the Application class is called before terminating the JavaFX Application Thread. Terminating
the JavaFX Application Thread does not always terminate the JVM. The JVM terminates if all running non-
daemon threads terminate. If the implicit terminating behavior of the JavaFX application is turned off, you
must call the exit() method of the Platform class to terminate the application.

What Are Properties and Bindings?
A property is a publicly accessible attribute of a class that affects its state, behavior, or both. Even though a
property is publicly accessible, its use (read/write) invokes methods that hide the actual implementation
to access the data. Properties are observable, so interested parties are notified when its value changes.
A property can be read-only, write-only, or read-write. A read-only property has a getter, but no setter.
A write-only property has a setter, but no getter. A read-write property has a getter and a setter.

Unlike other programming languages such as C#, properties in Java are not supported at the language
level. Java support for properties comes through the JavaBeans API and design patterns. For more details on
properties in Java, refer to the JavaBeans specification, which can be downloaded from www.oracle.com/
technetwork/java/javase/documentation/spec-136004.html.

In programming, the term binding is used in many contexts. Here, I want to define it in the context of
data binding. Data binding defines a relationship between data elements (usually variables) in a program to
keep them synchronized. In a GUI application, data binding is frequently used to synchronize the elements
in the data model with the corresponding UI elements. Consider the following statement, assuming that x, y,
and z are numeric variables:

x = y + z;

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Chapter 8 ■ IntroduCtIon to JavaFX

577

The statement defines a binding between x, y, and z. When the statement is executed, the value of x is
synchronized with the sum of the values of y and z. A binding also has a time factor. In this statement, the
value of x is bound to the sum of y and z, and is valid at the time the statement is executed. The value of x
may not be equal the sum of y and z before and after the statement is executed. Sometimes it is desired for
a binding to hold over a period. Consider the following statement that defines a binding using listPrice,
discounts, and taxes:

soldPrice = listPrice - discounts + taxes;

For this case, you would like to keep the binding valid forever, so the sold price is computed correctly
whenever listPrice, discounts, or taxes change. In this binding, listPrice, discounts, and taxes are
known as dependencies, and it is said that soldPrice is bound to listPrice, discounts, and taxes.

For a binding to work correctly, it is necessary that it is notified whenever its dependencies change.
Programming languages that support binding provide a mechanism to register listeners with the
dependencies. When dependencies become invalid or when they change, all listeners are notified. A binding
may synchronize itself with its dependencies when it receives such notifications.

A binding may be an eager binding or a lazy binding. In an eager binding, the bound variable is
recomputed immediately when the dependencies change. In a lazy binding, the bound variable is not
recomputed when its dependencies change; it is recomputed when its value is read the next time. A lazy
binding performs better as compared to an eager binding.

A binding may be unidirectional or bidirectional. A unidirectional binding works only in one direction:
changes in the dependencies are propagated to the bound variable. A bidirectional binding works in both
directions in which the bound variable and the dependency keep their values synchronized with each
other. Typically, a bidirectional binding is defined only between two variables. For example, a bidirectional
binding, x = y and y = x, declares that the values of x and y are always the same.

Mathematically, it is not possible to define a bidirectional binding between multiple variables uniquely.
In the previous example, the sold price binding is a unidirectional binding. If you want to make it a
bidirectional binding, it is not uniquely possible to compute the values of the list price, discounts, and taxes
when the sold price is changed. There are an infinite number of possibilities in the other direction.

Applications with GUIs provide users with UI widgets such as text fields, check boxes, buttons, etc.,
to manipulate data. The data displayed in UI widgets has to be synchronized with the underlying data
model and vice versa. In this case, a bidirectional binding is needed to keep the UI and the data model
synchronized.

Properties and Bindings in JavaFX
JavaFX supports properties, events, and binding through Properties and Binding APIs. Support for properties
in JavaFX is a huge leap forward from the JavaBeans properties. All properties in JavaFX are observable. They
can be observed for invalidation and value changes. You can have read-write or read-only properties. All
read-write properties support binding. A property in JavaFX can represent a value or a collection of values.

In JavaFX, properties are objects. There is a property class hierarchy for each type of property. For
example, the IntegerProperty, DoubleProperty, and StringProperty classes represent properties of int,
double, and String types, respectively. These classes are abstract. There are two types of implementation
classes for them: one to represent a read-write property and one to represent a wrapper for a read-only
property. For example, the SimpleDoubleProperty and ReadOnlyDoubleWrapper classes are concrete classes
whose objects are used as read-write and read-only properties of type double, respectively. The following is
an example of how to create an IntegerProperty with an initial value of 100:

IntegerProperty counter = new SimpleIntegerProperty(100);

Chapter 8 ■ IntroduCtIon to JavaFX

578

Property classes provide two pairs of getter and setter methods:

•	 The get() and set() methods

•	 The getValue() and setValue() methods

The get() and set() methods get and set the value of the property, respectively. For primitive type
properties, they work with primitive type values. For example, for IntegerProperty, the return type of
the get() method and the parameter type of the set() method are int. The getValue() and setValue()
methods work with object type; for example, their return type and parameter type are Integer for
IntegerProperty.

For reference type properties, such as StringProperty and ObjectProperty<T>, both pairs of getter
and setter work with object type. That is, both get() and getValue() methods of StringProperty return a
String, and set() and setValue() methods take a String parameter. With auto-boxing for primitive types,
it does not matter which version of getter and setter is used. The getValue() and setValue() methods exist
to help you write generic code in terms of object types.

The following snippet of code uses an IntegerProperty, and its get() and set() methods. The counter
property is a read-write property because it is an object of the SimpleIntegerProperty class.

IntegerProperty counter = new SimpleIntegerProperty(1);
int counterValue = counter.get();
System.out.println("Counter:" + counterValue);

counter.set(2);
counterValue = counter.get();
System.out.println("Counter:" + counterValue);

Counter:1
Counter:2

Working with read-only properties is a bit tricky. A ReadOnlyXxxWrapper class wraps two properties of
Xxx type: one read-only and one read-write. Both properties are synchronized. Its getReadOnlyProperty()
method returns a ReadOnlyXxxProperty object. The following snippet of code shows how to create a
read-only Integer property:

// Create a read-only wrapper property
ReadOnlyIntegerWrapper idWrapper = new ReadOnlyIntegerWrapper(100);

// Get the read-only version of the read-only wrapper property object
ReadOnlyIntegerProperty id = idWrapper.getReadOnlyProperty();

System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());

// Change the value
idWrapper.set(101);

Chapter 8 ■ IntroduCtIon to JavaFX

579

System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());

idWrapper:100
id:100
idWrapper:101
id:101

The idWrapper property is read-write, whereas the id property is read-only. When the value in
idWrapper is changed, the value in id is changed automatically. To define a read-only property in a class,
you declare the idWrapper as a private instance variable. If its value is needed outside the class, you return
the id, so the outside world can read the value but cannot change it.

You can use seven types of properties that represent a single value. The base classes for those properties
are named XxxProperty, read-only base classes are named ReadOnlyXxxProperty, and wrapper classes are
named ReadOnlyXxxWrapper. The values for Xxx for each type are listed in Table 8-3.

A property object wraps three pieces of information:

•	 The reference of the bean that contains it

•	 A name

•	 A value

When you create a property object, you can supply all or none of these three pieces of information.
Concrete property classes, named like SimpleXxxProperty and ReadOnlyXxxWrapper, provide four
constructors that let you supply combinations of these pieces of information. The following are the
constructors for the SimpleIntegerProperty class:

•	 SimpleIntegerProperty()

•	 SimpleIntegerProperty(int initialValue)

•	 SimpleIntegerProperty(Object bean, String name)

•	 SimpleIntegerProperty(Object bean, String name, int initialValue)

The default value for the initial value depends on the type of the property. It is zero for numeric types,
false for boolean type, and null for reference types.

Table 8-3. Property Classes That Wrap a Single Value

Type Xxx Value

int Integer

long Long

float Float

double Double

boolean Boolean

String String

Object Object

Chapter 8 ■ IntroduCtIon to JavaFX

580

A property object may be part of a bean or it may be a standalone object. The specified bean is the
reference to the bean object that contains the property. For a standalone property object, it can be null. Its
default value is null.

The name of the property is its name. If not supplied, it defaults to an empty string.
The following snippet of code creates a property object as part of a bean and sets all three values:

public class Person {
 private StringProperty name = new SimpleStringProperty(this, "name", "Li");

 // More code for the Person goes here
}

The first argument to the constructor of the SimpleStringProperty class is this, which is the reference
of the Person bean; the second argument, "name", is the name of the property; and the third argument, "Li",
is the value of the property.

Every property class contains a getBean() and a getName() methods that return the bean reference and
the property name, respectively.

Using Properties in JavaFX Beans
In the previous section, you saw the use of JavaFX properties as standalone objects. In this section, you will
use them in classes to define properties. Let’s create a Book class with three properties (ISBN, title, and
price).

In JavaFX, you do not declare the property of a class as one of the primitive types. Rather, you use one
of the JavaFX property classes. The title property of the Book class will be declared as follows. It is declared
private as usual.

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");
}

You declare a public getter for the property, which is named, by convention, as XxxProperty, where
Xxx is the name of the property. The getter returns the reference of the property. For your title property, the
getter will be named titleProperty as shown:

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");

 public final StringProperty titleProperty() {
 return title;
 }
}

The declaration of the Book class is fine to work with the title property as shown in the following
snippet of code that sets and gets the title of a book:

Book beginningJava8 = new Book();
beginningJava9.titleProperty().set("Beginning Java 9");
String title = beginningJava9.titleProperty().get();

Chapter 8 ■ IntroduCtIon to JavaFX

581

According to the JavaFX design patterns (not for any technical requirements), a JavaFX property has
a getter and a setter that are similar to the getters and setters in JavaBeans. The return type of the getter
and the parameter type of the setter are the same as the type of the property value. The getTitle() and
setTitle() methods for the title property are declared as follows:

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");

 public final StringProperty titleProperty() {
 return title;
 }

 public final String getTitle() {
 return title.get();
 }

 public final void setTitle(String title) {
 this.title.set(title);
 }
}

Note that the getTitle() and setTitle() methods use the title property object internally to get and
set the title value.

 ■ Tip In JavaFX, by convention, getters and setters for a property of a class are declared as final. additional
getters and setters, using the JavaBeans naming convention, are added to make the class interoperable with
the older tools and frameworks that use the old JavaBeans naming conventions to identify properties of a class.

The following snippet of code shows the declaration of a read-only ISBN property for the Book class:

public class Book {
 private ReadOnlyStringWrapper ISBN = new ReadOnlyStringWrapper(this, "ISBN", "Unknown");

 public final String getISBN() {
 return ISBN.get();
 }

 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }

 // More code for the Book class goes here...
}

Chapter 8 ■ IntroduCtIon to JavaFX

582

Note the following points about the declaration of the read-only ISBN property:

•	 It uses the ReadOnlyStringWrapper class instead of the SimpleStringProperty class.

•	 There is no setter for the property value. You may declare one; however, it must be
private.

•	 The getter for the property value works the same as for a read-write property.

•	 The ISBNProperty() method uses ReadOnlyStringProperty as the return type, and
not ReadOnlyStringWrapper. It obtains a read-only version of the property object
from the wrapper object and returns the same.

For the users of the Book class, its ISBN property is read-only. However, it can be changed internally and
the change will be reflected in the read-only version of the property object automatically. Listing 8-6 shows
the complete code for the Book class.

Listing 8-6. A Book Class with a Read-Only and Two Read-Write Properties

// Book.java
package com.jdojo.javafx;

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.ReadOnlyStringProperty;
import javafx.beans.property.ReadOnlyStringWrapper;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");
 private DoubleProperty price = new SimpleDoubleProperty(this, "price", 0.0);
 private ReadOnlyStringWrapper ISBN = new ReadOnlyStringWrapper(this, "ISBN", "Unknown");

 public Book() {
 }

 public Book(String title, double price, String ISBN) {
 this.title.set(title);
 this.price.set(price);
 this.ISBN.set(ISBN);
 }

 public final String getTitle() {
 return title.get();
 }

 public final void setTitle(String title) {
 this.title.set(title);
 }

 public final StringProperty titleProperty() {
 return title;
 }

Chapter 8 ■ IntroduCtIon to JavaFX

583

 public final double getprice() {
 return price.get();
 }

 public final void setPrice(double price) {
 this.price.set(price);
 }

 public final DoubleProperty priceProperty() {
 return price;
 }

 public final String getISBN() {
 return ISBN.get();
 }

 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }
}

Listing 8-7 tests the properties of the Book class. It creates a Book object, prints the details, changes
some properties, and prints the details again. Note the use of the ReadOnlyProperty parameter type for
the printDetails() method. All property classes implement, directly or indirectly, the ReadOnlyProperty
interface. The toString() methods of the property implementation classes return a well-formatted string
that contains all relevant pieces of information for a property. I did not use the toString() method of the
property objects because I wanted to show you the use of different methods of the JavaFX properties.

Listing 8-7. A BookPropertyTest Class to Test Properties of the Book Class

// BookPropertyTest.java
package com.jdojo.javafx;

import javafx.beans.property.ReadOnlyProperty;

public class BookPropertyTest {
 public static void main(String[] args) {
 Book book = new Book("Beginning Java 9", 49.99, "148422843X");

 System.out.println("After creating the Book object...");

 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());

 // Change the book's properties
 book.setTitle("Learn JavaFX 8");
 book.setPrice(59.99);

 System.out.println("\nAfter changing the Book properties...");

Chapter 8 ■ IntroduCtIon to JavaFX

584

 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());
 }

 public static void printDetails(ReadOnlyProperty<?> p) {
 String name = p.getName();
 Object value = p.getValue();
 Object bean = p.getBean();
 String beanClassName = (bean == null) ? "null" : bean.getClass().getSimpleName();
 String propClassName = p.getClass().getSimpleName();

 System.out.print(propClassName);
 System.out.print("[Name:" + name);
 System.out.print(", Bean Class:" + beanClassName);
 System.out.println(", Value:" + value + "]");
 }
}

After creating the Book object...
SimpleStringProperty[Name:title, Bean Class:Book, Value:Beginning Java 9]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:49.99]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:148422843X]

After changing the Book properties...
SimpleStringProperty[Name:title, Bean Class:Book, Value:Learn JavaFX 8]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:59.99]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:148422843X]

Handling Property Invalidation Events
A property generates an invalidation event when the status of its value changes from valid to invalid for the
first time. Properties in JavaFX use lazy evaluation. When an already invalid property becomes invalid again
because of the status of its value changed again, an invalidation event is not generated. An invalid property
becomes valid when it is recomputed, such as by calling its get() or getValue() method.

Listing 8-8 is the program to demonstrate when invalidation events are generated for properties. The
program includes enough comments to help you understand the logic.

Listing 8-8. Testing Invalidation Events for JavaFX Properties

// InvalidationTest.java
package com.jdojo.javafx;

import javafx.beans.Observable;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

Chapter 8 ■ IntroduCtIon to JavaFX

585

public class InvalidationTest {
 public static void main(String[] args) {
 // Create a property
 IntegerProperty counter = new SimpleIntegerProperty(100);

 // Add an invalidation listener to the counter property using a
 // method reference. The invalidated() method of this class will
 // be called when the counter property becomes invalid.
 counter.addListener(InvalidationTest::invalidated);

 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");

 /*
 * At this point counter property is invalid and further changes
 * to its value will not generate any invalidation events.
 */
 System.out.println("\nBefore changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");

 // Make the counter property valid by calling its get() method
 int value = counter.get();
 System.out.println("Counter value = " + value);

 /*
 * At this point the counter property is valid and further changes
 * to its value will generate invalidation events.
 */

 // Try setting the same value
 System.out.println("\nBefore changing the counter value-3");
 counter.set(102);
 System.out.println("After changing the counter value-3");

 // Try setting a different value
 System.out.println("\nBefore changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }

 public static void invalidated(Observable prop) {
 System.out.println("Counter is invalid.");
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

586

Before changing the counter value-1
Counter is invalid.
After changing the counter value-1

Before changing the counter value-2
After changing the counter value-2
Counter value = 102

Before changing the counter value-3
After changing the counter value-3

Before changing the counter value-4
Counter is invalid.
After changing the counter value-4

In the beginning, the program creates an IntegerProperty named counter and adds an invalidation
listener to the property.

// Create the counter property
IntegerProperty counter = new SimpleIntegerProperty(100);

// Add an invalidation listener to the counter property
counter.addListener(InvalidationTest::invalidated);

When you create a property object, it is valid. When you change the counter property to 101, it fires an
invalidation event. At this point, the counter property becomes invalid. When you change its value to 102,
it does not fire an invalidation event because it is already invalid. You use the get() method to read the
counter value, which makes it valid again. Now, you set the same value of 102 to the counter, which does
not fire an invalidation event, because its value did not really change; its value was already 102. The counter
property is still valid. At the end, you change its value to a different value, and sure enough, an invalidation
event is fired.

 ■ Tip You are not limited to adding only one invalidation listener to a property. You can add as many
invalidation listeners as you need. If you do not need an invalidation listener anymore, make sure to remove it
by calling the removeListener() method of the property; otherwise, it may lead to memory leaks.

Handling Property Change Events
You can register a ChangeListener to receive notifications about property change events. A property change
event is fired every time the value of a property changes. The changed() method of a ChangeListener
receives three values:

•	 The reference of the property object

•	 The old value of the property

•	 The new value of the property

Chapter 8 ■ IntroduCtIon to JavaFX

587

You will run a similar test case for testing property change events as you did for invalidation events in
the previous section. Listing 8-9 contains the program to demonstrate change events that are generated for
properties.

Listing 8-9. Testing Change Events for JavaFX Properties

// ChangeTest.java
package com.jdojo.javafx;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;

public class ChangeTest {
 public static void main(String[] args) {
 // Create a counter property
 IntegerProperty counter = new SimpleIntegerProperty(100);

 // Add a change listener to the counter property
 counter.addListener(ChangeTest::changed);

 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");

 System.out.println("\nBefore changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");

 // Try setting the same value
 System.out.println("\nBefore changing the counter value-3");
 counter.set(102); // No change event will be fired.
 System.out.println("After changing the counter value-3");

 // Try setting a different value
 System.out.println("\nBefore changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

588

Before changing the counter value-1
Counter changed: Old = 100, new = 101
After changing the counter value-1

Before changing the counter value-2
Counter changed: Old = 101, new = 102
After changing the counter value-2

Before changing the counter value-3
After changing the counter value-3

Before changing the counter value-4
Counter changed: Old = 102, new = 103
After changing the counter value-4

In the beginning, the program creates an IntegerProperty named counter.

// Create a counter property
IntegerProperty counter = new SimpleIntegerProperty(100);

It’s little tricky to add a ChangeListener. The addListener() method in the IntegerPropertyBase class
is declared as follows:

void addListener(ChangeListener<? super Number> listener)

If you are using generics, the ChangeListener for an IntegerProperty must be written in terms of
the Number class or a superclass of the Number class. Three ways to add a ChangeListener to the counter
property are as follows. The code uses anonymous classes that I translate to lambda expressions at the end.

// Method-1: Using generics and the Number class
counter.addListener(new ChangeListener<Number>() {
 @Override
 public void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

// Method-2: Using generics and the Object class
counter.addListener(new ChangeListener<Object>() {
 @Override
 public void changed(ObservableValue<? extends Object> prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

Chapter 8 ■ IntroduCtIon to JavaFX

589

// Method-3: Not using generics. It may generate compile-time warnings.
counter.addListener(new ChangeListener() {
 @Override
 public void changed(ObservableValue prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

Listing 8-9 uses the first method that uses generics; as you can see, the signature of the changed()
method in the ChangeTest class matches the changed() method signature in method-1. You have used a
lambda expression with a method reference to add a ChangeListener as shown:

// Add a change listener using a method reference
counter.addListener(ChangeTest::changed);

The output shows that a property change event is fired when the property value is changed. Calling the
set() method with the same value does not fire a property change event.

Unlike generating invalidation events, a property uses an eager evaluation for its value to generate
change events because it has to pass the new value to the property change listeners.

Property Bindings in JavaFX
In JavaFX, a binding is an expression that evaluates to a value. The binding consists of one or more
observable values known as its dependencies. The binding observes its dependencies for changes and re-
computes its value automatically when needed. JavaFX uses lazy evaluation for all bindings. When a binding
is initially defined or when its dependencies change, its value is marked as invalid. The value of an invalid
binding is computed when it is requested the next time, usually using its get() or getValue() method. All
property classes in JavaFX have built-in support for bindings.

Let’s discuss a quick example of binding in JavaFX. Consider the following expression that represents
the sum of two integers x and y:

x + y

The expression x + y represents a binding, which has two dependencies, x and y. You can give it a
name called sum as follows:

sum = x + y

To implement this logic in JavaFX, you create two IntegerProperty variables, x and y:

IntegerProperty x = new SimpleIntegerProperty(100);
IntegerProperty y = new SimpleIntegerProperty(200);

The following statement creates a binding named sum that represents the sum of x and y:

NumberBinding sum = x.add(y);

Chapter 8 ■ IntroduCtIon to JavaFX

590

A binding has an isValid() method that returns true, if it is valid; otherwise, it returns false. You
can get the value of a NumberBinding using the methods intValue(), longValue(), floatValue(), and
doubleValue() as int, long, float, and double, respectively. The program in Listing 8-10 shows how to
create and use a binding.

Listing 8-10. Using a Simple Binding in JavaFX

// BindingTest.java
package com.jdojo.javafx;

import javafx.beans.binding.NumberBinding;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class BindingTest {
 public static void main(String[] args) {
 // Create two properties x and y
 IntegerProperty x = new SimpleIntegerProperty(100);
 IntegerProperty y = new SimpleIntegerProperty(200);

 // Create a binding: sum = x + y
 NumberBinding sum = x.add(y);

 System.out.println("After creating sum:");
 System.out.println("sum.isValid(): " + sum.isValid());

 // Let us get the value of sum, so it computes its value and
 // becomes valid
 int value = sum.intValue();

 System.out.println("\nAfter requesting value:");
 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);

 // Change the value of x
 x.set(250);

 System.out.println("\nAfter changing x:");
 System.out.println("sum.isValid(): " + sum.isValid());

 // Get the value of sum again
 value = sum.intValue();

 System.out.println("\nAfter requesting value:");
 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

591

After creating sum:
sum.isValid(): false

After requesting value:
sum.isValid(): true
sum = 300

After changing x:
sum.isValid(): false

After requesting value:
sum.isValid(): true
sum = 450

When the sum binding is created, it is invalid and it does not know its value. This is evident from the
output. Once you request its value, using the sum.intValue() method, it computes its value and marks itself
as valid. When you change one of its dependencies, it becomes invalid until you request its value again.

 ■ Tip a binding, internally, adds invalidation listeners to all its dependencies. When any of its dependencies
become invalid, it marks itself as invalid. an invalid binding does not mean that its value has changed. all it
means is that it needs to re-compute its value when the value is requested the next time.

In JavaFX, you can also bind a property to a binding. Recall that a binding is an expression that is
synchronized with its dependencies automatically. Using this definition, a bound property is a property
whose value is computed based on an expression, which is automatically synchronized when the
dependencies change. Suppose you have three properties called x, y, and z as follows:

IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);
IntegerProperty z = new SimpleIntegerProperty(60);

You can bind the property z to expression x + y, using the bind() method of the Property interface as
follows:

// Bind z to x + y
z.bind(x.add(y));

Note that you cannot write z.bind(x + y) because the + operator does not know how to add values of
two IntegerProperty objects. You need to use the binding API to create a binding expression.

Now, when x, y, or both change, the z property becomes invalid. The next time you request the value of
z, it re-computes the expression x.add(y) to get its value.

You can use the unbind() method of the Property interface to unbind a bound property. Calling the
unbind() method on an unbound or never bound property has no effect. You can unbind the z property as
follows:

// Unbind the z property
z.unbind();

Chapter 8 ■ IntroduCtIon to JavaFX

592

After unbinding, a property behaves as a normal property, maintaining its value independently. In
other words, unbinding a property breaks the link between the property and its dependencies. Listing 8-11
shows how to bind a property to an expression made up of other properties.

Listing 8-11. Binding a Property to an Expression

// BoundProperty.java
package com.jdojo.javafx;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class BoundProperty {
 public static void main(String[] args) {
 // Create three properties
 IntegerProperty x = new SimpleIntegerProperty(10);
 IntegerProperty y = new SimpleIntegerProperty(20);
 IntegerProperty z = new SimpleIntegerProperty(60);

 // Create the binding z = x + y
 z.bind(x.add(y));

 System.out.println("After binding z: Bound = "
 + z.isBound() + ", z = " + z.get());

 // Change x and y
 x.set(15);
 y.set(19);
 System.out.println("After changing x and y: Bound = "
 + z.isBound() + ", z = " + z.get());

 // Unbind z
 z.unbind();

 // Will not affect the value of z because z is not bound to x and y anymore
 x.set(100);
 y.set(200);
 System.out.println("After unbinding z: Bound = "
 + z.isBound() + ", z = " + z.get());
 }
}

After binding z: Bound = true, z = 30
After changing x and y: Bound = true, z = 34
After unbinding z: Bound = false, z = 34

A binding has a direction, which is the direction in which changes are propagated. JavaFX supports two
types of binding for properties: unidirectional binding and bidirectional binding. A unidirectional binding
works only in one direction; changes in dependencies are propagated to the bound property, not vice versa.
A bidirectional binding works in both directions; changes in dependencies are reflected in the property and
vice versa.

Chapter 8 ■ IntroduCtIon to JavaFX

593

The bind() method of the Property interface creates a unidirectional binding between a property and
an ObservableValue, which could be a complex expression. The bindBidirectional() method creates a
bidirectional binding between a property and another property of the same type.

The statement z.bind(x.add(y)) in the previous example creates a unidirectional binding.
In a unidirectional binding, the bound property cannot be changed. Its value is always computed
using its dependencies. Attempting to change the value of a unidirectional bound property throws a
RuntimeException.

A bidirectional binding works in both directions. It has some restrictions. It can only be created between
properties of the same type. That is, a bidirectional binding can only be of the type x = y and y = x, where x
and y are of the same type.

// Create two properties called x and y
IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);

// Create bidirectional binding between x and y
x.bindBidirectional(y);

// Now, both x and y are 20. The values and x and y are always the same when x or y changes.

// Remove the bidirectional binding between x and y
x.unbindBidirectional(y);

// Now, x and y maintain their values independent of each other.

Bindings are used a lot in JavaFX application to bind properties of UI elements to properties of other
UI elements or to the data model. Let’s look at an example of a JavaFX GUI application that uses bindings.
You will create a screen with a circle that will be centered on the screen. The circumference of the circle will
touch the closer sides of the screen. If the width and height of the screen is the same, the circumference of
the circle will touch all four sides of the screen.

Attempting to develop the screen with a centered circle without bindings is a tedious task. The Circle
class in the javafx.scene.shape package represents a circle. It has three properties, centerX, centerY, and
radius of the DoubleProperty type. The centerX and centerY properties define the (x, y) coordinates of
the center of the circle. The radius property defines the radius of the circle. By default, a circle is filled with
black. You create a circle with centerX, centerY, and radius set to the default value of 0.0 as follows:

Circle c = new Circle();

Next, add the circle to a group and create a scene with the group as its root node as shown:

Group root = new Group(c);
Scene scene = new Scene(root, 150, 150);

The following bindings will position and size the circle according to the size of the scene:

// The center of the circle is always in the center of the scene
c.centerXProperty().bind(scene.widthProperty().divide(2));
c.centerYProperty().bind(scene.heightProperty().divide(2));

Chapter 8 ■ IntroduCtIon to JavaFX

594

// The radius of the circle will be always the half of the minimum of
// the width and height of the scene
c.radiusProperty().bind(Bindings.min(scene.widthProperty(), scene.heightProperty())
 .divide(2));

The first two bindings bind the centerX and centerY of the circle to the middle of the width and height
of the scene, respectively. The third binding binds the radius of the circle to the half (see divide(2)) of the
minimum of the width and the height of the scene. That’s it! The binding API does the magic of keeping the
circle centered when the application is run.

Listing 8-12 contains the complete program. Figure 8-5 shows the screen when the program is
initially run. Try resizing the window and you will notice that the center of the circle is always in the
middle of the scene.

Listing 8-12. Using the Binding API to Keep a Circle Centered on a Scene

// CenteredCircle.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.beans.binding.Bindings;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class CenteredCircle extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle c = new Circle();
 Group root = new Group(c);
 Scene scene = new Scene(root, 100, 100);

 // Bind circle's centerX, centerY, and radius to scene's properties
 c.centerXProperty().bind(scene.widthProperty().divide(2));
 c.centerYProperty().bind(scene.heightProperty().divide(2));
 c.radiusProperty().bind(Bindings.min(scene.widthProperty(),
 scene.heightProperty())
 .divide(2));

 // Set the stage properties and make it visible
 stage.setTitle("A Centered Circle");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

595

Observable Collections
Observable collections in JavaFX are an extension to collections in the Java Collections framework. The
Collections framework has the List, Set, and Map interfaces. JavaFX adds the following three types of
observable collections that may be observed for changes in their contents:

•	 An observable list

•	 An observable set

•	 An observable map

JavaFX supports observable collections through the following three new interfaces:

•	 ObservableList<E>

•	 ObservableSet<E>

•	 ObservableMap<K,V>

These JavaFX interfaces inherit from List, Set, and Map in the java.util package. In addition to
inheriting from the Java collection interfaces, JavaFX collection interfaces also inherit the Observable
interface. All JavaFX observable collection interfaces and classes are in the javafx.collections package,
which is in the javafx.base module. Figure 8-6 shows a partial class diagram for the interfaces representing
observable collections.

Figure 8-5. A circle centered on the scene

Figure 8-6. A partial class diagram for observable collection interfaces in JavaFX

Chapter 8 ■ IntroduCtIon to JavaFX

596

The observable collections in JavaFX have two additional features:

•	 They support invalidation notifications as they are inherited from the Observable
interface.

•	 They support change notifications. You can register change listeners that are notified
when their contents change.

The FXCollections class is a utility class to work with JavaFX collections. It consists of all static
methods. JavaFX does not expose the implementation classes of lists, sets, and maps. You need to use one
of the factory methods in the FXCollections class to create objects of the ObservableList, ObservableSet,
and ObservableMap interfaces. The following snippet of code shows how to create observable collections:

// Create an observable list with two elements
ObservableList<String> list = FXCollections.observableArrayList("One", "Two");

// Create an observable set with two elements
ObservableSet<String> set = FXCollections.observableSet("one", "two");

// Create an observable map and add two key-value pairs to the map
ObservableMap<String,Integer> map = FXCollections.observableHashMap();
map.put("one", 1);
map.put("two", 2);

You can add invalidation and change listeners to observable collections. Adding an
InvalidationListener to observable collections is the same as adding an InvalidationListener to a
property that you have seen in the previous section. Each type of observable collection has its own change
listener type:

•	 An instance of the ListChangeListener<E> interface represents a change listener for
an ObservableList<E>.

•	 An instance of the SetChangeListener<E> interface represents a change listener for
an ObservableSet<E>.

•	 An instance of the MapChangeListener<K,V> interface represents a change listener
for an ObservableMap<K,V>.

Use the addListener() method of the observable collections to add a change listener to
them. All change listener interfaces for the observable collections declare a static inner class called
Change that encapsulates the changes in the respective type of collections. For example, you have a
ListChangeListener.Change<E> static inner class to encapsulate changes in an ObservableList<E>. The
change listener is passed an instance of the Change class. You need to use the next() method of the Change
class to iterate over all changes. The Change class contains several methods to provide the details of the
changes made to the collection. The following snippet of code shows how to add a change listener to an
ObservableList and an ObservableSet:

// Create an observable list with two elements
ObservableList<String> list = FXCollections.observableArrayList("One", "Two");

// Add a change listener to the list
list.addListener((ListChangeListener.Change<? extends String> change) -> {
 System.out.println("The list has changed.");
});

Chapter 8 ■ IntroduCtIon to JavaFX

597

// Create an observable set
ObservableSet<String> set = FXCollections.observableSet("one", "two");

// Add a change listener to the set
set.addListener((SetChangeListener.Change<? extends String> change) -> {
 System.out.println("The list has changed.");
});

Let’s look at a detailed example of how to handle changes in an ObservableList. Observing an
ObservableList for changes is a bit tricky. There could be several kinds of changes to a list. Some of the
changes could be exclusive, whereas some can occur along with other changes. Elements of a list can be
permutated, updated, replaced, added, and removed. Listing 8-13 contains a complete program that shows
how to detect changes in an ObservableList. After adding a change listener, it manipulates the list and the
listener is notified each time, as is evident from the output. This program is simplified to keep it short and
readable. The ListChangeListener.Change object contains all the details about the changes in the list such
as the affected range, size of addition and removal, etc.

Listing 8-13. Detecting Changes in an ObservableList

// ObservableListTest.java
package com.jdojo.javafx;

import javafx.collections.FXCollections;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;

public class ObservableListTest {
 public static void main(String[] args) {
 // Create a list with some elements
 ObservableList<String> list = FXCollections.observableArrayList("one", "two");

 System.out.println("After creating the list: " + list);

 // Add a ChangeListener to the list
 list.addListener(ObservableListTest::onChanged);

 // Add some more elements to the list
 list.addAll("three", "four");
 System.out.println("After addAll() - list: " + list);

 // We have four elements. Remove the middle two from index 1 (inclusive)
 // to index 3 (exclusive)
 list.remove(1, 3);
 System.out.println("After remove() - list: " + list);

 // Retain only the element "one"
 list.retainAll("one");
 System.out.println("After retainAll() - list: " + list);

 // Replace the first element in the list
 list.set(0, "ONE");
 System.out.println("After set() - list: " + list);
 }

Chapter 8 ■ IntroduCtIon to JavaFX

598

 public static void onChanged(ListChangeListener.Change<? extends String> change) {
 while (change.next()) {
 if (change.wasPermutated()) {
 System.out.println("A permutation is detected.");
 } else if (change.wasUpdated()) {
 System.out.println("An update is detected.");
 } else if (change.wasReplaced()) {
 System.out.println("A replacement is detected.");
 } else {
 if (change.wasRemoved()) {
 System.out.println("A removal is detected.");
 } else if (change.wasAdded()) {
 System.out.println("An addition is detected.");
 }
 }
 }
 }
}

After creating the list: [one, two]
An addition is detected.
After addAll() - list: [one, two, three, four]
A removal is detected.
After remove() - list: [one, four]
A removal is detected.
After retainAll() - list: [one]
A replacement is detected.
After set() - list: [ONE]

Event Handling
In general, the term event is used to describe an occurrence of interest. In a GUI application, an event is an
occurrence of a user interaction with the application. Clicking of the mouse, pressing a key on the keyboard,
etc. are examples of events in a JavaFX application. An event in JavaFX is represented by an object of the
javafx.event.Event class or any of its subclasses. Every event in JavaFX has three properties:

•	 An event source

•	 An event target

•	 An event type

When an event occurs, you typically perform some processing by executing a piece of code. The piece
of code that is executed in response to an event is known as an event handler or an event filter. I clarify the
difference between an event handler and an event filter shortly. For now, think of both as a piece of code and
I refer to both as event handlers. When you want to handle an event for a UI element, you need to add event
handlers to that UI element. When the UI element detects the event, it executes your event handlers.

The UI element that calls event handlers is the source of the event for those event handlers. When an
event occurs, it passes through a chain of event dispatchers. The source of an event is the current element in
the event dispatcher chain. The event source changes as the event passes through one dispatcher to another
in the event dispatcher chain.

Chapter 8 ■ IntroduCtIon to JavaFX

599

The event target is the destination of an event. The event target determines the route through which
the event travels during its processing. Suppose a mouse click occurs over a Circle node. In this case, the
Circle node is the event target of the mouse-clicked event.

The event type describes the type of the event that occurs. Event types are defined in a hierarchical
fashion. Each event type has a name and a supertype.

The three properties that are common to all events in JavaFX are represented by objects of three
different classes. Specific events define additional event properties; for example, the event class to represent
a mouse event adds properties to describe the location of the mouse cursor, state of the mouse buttons, etc.

Table 8-4 lists the classes and interfaces involved in event processing. JavaFX has an event delivery
mechanism that defines the details of the occurrence and processing of events.

Event Processing Mechanism
When an event occurs, several steps are performed as part of the event processing:

•	 Event target selection

•	 Event route construction

•	 Event route traversal

Event Target Selection
The first step in the event processing is the selection of the event target. Recall that an event target is the
destination node of an event. The event target is selected based on the event type. For mouse events, the
event target is the node at the mouse cursor. Multiple nodes can be at the mouse cursor. For example, you
can have a circle placed over a rectangle. The top-most node at the mouse cursor is selected as the event
target.

The event target for key events is the node that has focus. How a node gets the focus depends on
the type of the node. For example, a TextField may get focus by clicking the mouse inside it or using the
focus traversal keys such as Tab or Shift-Tab on the Windows operating system. Shapes such as Circles,
Rectangles, etc. do not get focus, by default. If you want them to receive key events, you can give them focus
by calling the requestFocus() method of the Node class.

Table 8-4. Classes Involved in Events Processing

Name Class/Interface Description

Event Class An instance of this class represents an event. Several subclasses
of the Event class exist to represent specific types of events.

EventTarget Interface An instance of this interface represents an event target.

EventType Class An instance of this class represents an event type, such as
mouse pressed, mouse released. mouse moved, etc.

EventHandler Interface An instance of this interface represents an event handler or an
event filter. Its handle() method is called when the event for
which it has been registered occurs.

Chapter 8 ■ IntroduCtIon to JavaFX

600

Event Route Construction
An event travels through event dispatchers in an event dispatch chain. The event dispatch chain is the event
route. The initial and default route for an event is determined by the event target. The default event route
consists of the container-children path starting at the stage to the event target node.

Suppose you have placed a Circle and a Rectangle in an HBox and the HBox is the root node of the
Scene of a Stage. When you click on the Circle, the Circle becomes the event target. The Circle constructs
the default event route, which is the path starting at the stage to the event target (the Circle).

In fact, an event route consists of event dispatchers that are associated with nodes. However, for all
practical and understanding purposes, you can think of the event route as the path made up of nodes.
Typically, you do not deal with event dispatchers directly.

Figure 8-7 shows the event route for the mouse-clicked event. The nodes on the event route are shown
in gray background fills. The nodes on the event route are connected by solid lines. Note that the Rectangle
that is part of the scene graph is not part of the event path when the Circle is clicked.

An event dispatch chain (or event route) has a head and a tail. In this case, the Stage and the Circle are
the head and the tail of the event dispatch chain, respectively. The initial event route may be modified as the
event processing progresses. Typically, but not necessarily, the event passes through all nodes in its route
twice during the event traversal step, as described in the next section.

Event Route Traversal
An event route traversal consists of two phases:

•	 Capture phase

•	 Bubbling phase

An event travels through each node in its route twice: once during capture phase and once during
bubbling phase. You can register event filters and event handlers to a node for specific events types. The
event filters are executed as the event passes through the node during the capture phase. The event handlers
are executed as the event passes through the node during the bubbling phase. The event filters and handlers
are passed in the reference of the current node as the source of the event. As the event travels from one node
to another, the event source keeps changing. However, the event target remains the same from the start to
the finish of the event route traversal.

Figure 8-7. Construction of the default event route for an event

Chapter 8 ■ IntroduCtIon to JavaFX

601

During the route traversal, a node can consume the event in event filters or handlers, thus completing
the processing of the event. Consuming an event is simply calling the consume() method on the event object.
When an event is consumed, the event processing is stopped, even though some of the nodes in the route
were not traversed at all.

Event Capture Phase

During the capture phase, an event travels from the head to tail of its event dispatch chain. Figure 8-8 shows
the travelling of a mouse-clicked event for the Circle in this example in the capture phase. The arrows in the
figure denote the direction the event travels. As the event passes through a node, the registered event filters
for the node are executed. Note that the event capture phase executes only event filters, not event handlers,
for the current node.

In this example, the event filters for the Stage, Scene, HBox, and Circle are executed in order, assuming
none of the event filters consumes the event.

You can register multiple event filters for a node. If the node consumes the event in one of its event
filters, its other event filters, which have not been executed yet, are executed before the event processing
stops. Suppose you have registered five event filters for the Scene in your example, and the first event
filter that is executed consumes the event. In this case, the other four event filters for the Scene will still be
executed. After executing the fifth event filter for the Scene, the event processing will stop, without the event
travelling to the remaining nodes (HBox and Circle).

In the event capture phase, you can intercept events (and provide a generic response) that are targeted
at the children of a node. For example, you can add event filters for the mouse-clicked event to the Stage in
this example to intercept all mouse-clicked events for all its children. You can block events from reaching
its target by consuming the event in event filters for a parent node. For example, if you consume the mouse-
clicked event in a filter for the Stage, the event will not reach its target, say, the Circle.

Event Bubbling Phase

During the bubbling phase, an event travels from the tail to head of its event dispatch chain. Figure 8-9
shows the travelling of a mouse-clicked event for the Circle in your example, in the bubbling phase.

Figure 8-8. The event capture phase

Chapter 8 ■ IntroduCtIon to JavaFX

602

The arrows in the figure denote the direction of the event travel. As the event passes through a node,
the registered event handlers for the node are executed. Note that the event bubbling phase executes event
handlers for the current node, whereas the event capture phase executes the event filters.

In your example, the event handlers for the Circle, HBox, Scene, and Stage are executed in order,
assuming none of the event filters consumes the event. Note that the event bubbling phase starts at the
target of the event and travels up to the top-most parent in the parent-children hierarchy.

You can register multiple event handlers for a node. If the node consumes the event in one of its
event handlers, its other event handlers, which have not been executed yet, are executed before the event
processing stops. Suppose you have registered five event handlers for the Circle in your example, and the
first event handler that is executed consumes the event. In this case, the other four event handlers for the
Circle will still be executed. After executing the fifth event handler for the Circle, the event processing will
stop without the event travelling to the remaining nodes (HBox, Scene, and Stage).

Typically, event handlers are registered to target nodes to provide specific response to events. Sometimes,
event handlers are installed on parent nodes to provide a default event response for all its children. If an
event target decides to provide a specific response to the event, it can do so by adding event handlers and
consuming the event, thus blocking the event from reaching the parent nodes in the event bubbling phase.

Let’s discuss a trivial example. Suppose you want to display a message box when the user clicks
anywhere inside a window. You can register an event handler to the window to display the message box.
When the user clicks inside a circle in the window, you want to display a specific message. You can register
an event handler to the circle to provide the specific message and consume the event. This will provide a
specific event response when the circle is clicked, whereas for other nodes, the window provides a default
event response.

Creating Event Filters and Handlers
Creating event filters and handlers is as simple as creating objects of the class that implement the
EventHandler interface. Before Java 8, you would use inner classes to create event filters and handlers.

EventHandler<MouseEvent> aHandler = new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 // Event handling code goes here
 }
};

Figure 8-9. The event bubbling phase

Chapter 8 ■ IntroduCtIon to JavaFX

603

From Java 8, using a lambda expression is the best choice for creating the event filters and handlers,
as shown:

EventHandler<MouseEvent> aHandler = e -> {
 // Event handling code goes here
};

This chapter uses lambda expressions to create event filters and handlers. If you are not familiar with
lambda expressions in Java 8, it is suggested that you learn at least the basics, so you can understand the
event handling code. The following snippet of code creates a MouseEvent handler. It prints the type of mouse
event that occurs.

EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event type: " + e.getEventType());

Registering Event Filters and Handlers
If a node is interested in processing events of specific types, you need to register event filters and handlers
for those event types with the node. When the event occurs, the handle() method of the registered event
filters and handlers are called following the rules discussed in the previous sections. If the node is no longer
interested in processing the events, you need to unregister the event filters and handlers from the node.
Registering and unregistering event filters and handlers are also known as adding and removing event filters
and handlers, respectively. JavaFX provides two ways to register and unregister event filters and handlers
with nodes:

•	 Using the addEventFilter(), addEventHandler(), removeEventFilter(), and
removeEventHandler() methods

•	 Using the onXxx convenience properties

You can use the addEventFilter() and addEventHandler() methods to register event filters and
handlers with nodes, respectively. These methods are defined in the Node class, Scene class, and Window
class. Some classes such as MenuItem and TreeItem can be event targets; however, they are not inherited
from the Node class. These methods are declared as follows:

•	 <T extends Event> void addEventFilter(EventType<T> eventType,
EventHandler<? super T> eventFilter)

•	 <T extends Event> void addEventHandler(EventType<T> eventType,
EventHandler<? super T> eventHandler)

These methods take two parameters. The first parameter is the event type and the second one is an
instance of the EventHandler interface.

You can handle mouse-clicked events for a Circle using the following snippet of code:

import javafx.scene.shape.Circle;
import javafx.event.EventHandler;
import javafx.scene.input.MouseEvent;
...
// Create a circle
Circle circle = new Circle (100, 100, 50);

Chapter 8 ■ IntroduCtIon to JavaFX

604

// Create a MouseEvent filter
EventHandler<MouseEvent> mouseEventFilter =
 e -> System.out.println("Mouse event filter has been called.");

// Create a MouseEvent handler
EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event handler has been called.");

// Register the MouseEvent filter and handler to the Circle for mouse-clicked events
circle.addEventFilter(MouseEvent.MOUSE_CLICKED, mouseEventFilter);
circle.addEventHandler(MouseEvent.MOUSE_CLICKED, mouseEventHandler);

The code creates two EventHandler objects, which print a message to the standard output. At this stage,
they are not event filters or handlers. They are just two EventHandler objects. Note that giving the reference
variables names and printing messages that use the words filter and handler does not make any difference
in their status as filters and handlers. The last two statements register one of the EventHandler objects as an
event filter and another as an event handler; both are registered for the mouse-clicked event.

The Node, Scene, and Window classes contain event properties to store event handlers of some selected
event types. The property names use the event type pattern. They are named onXxx. For example, the
onMouseClicked property stores the event handler for the mouse-clicked event type, the onKeyTyped
property stores the event handler for the key-typed event, and so on. You can use the setOnXxx() methods
of these properties to register event handlers for a node. For example, use the setOnMouseClicked() method
to register an event handler for the mouse-clicked event and use the setOnKeyTyped() method to register an
event handler for the key-typed event, and so on. The setOnXxx() methods in various classes are known as
convenience methods for registering event handlers.

You need to remember some points about the onXxx convenience properties:

•	 They only support the registration of event handlers, not event filters. If you need to
register event filters, use the addEventFilter() method.

•	 They only support the registration of one event handler for a node. Multiple event
handlers for a node may be registered using the addEventHandler() method.

•	 These properties exist only for the commonly used events for a node type. For
example, the onMouseClicked property exists in the Node and Scene classes, but not
the Window class; the onShowing property exists in the Window class, but not in the
Node and Scene classes.

The following snippet of code shows how to use the convenience onMouseClicked property to set an
event handler for a circle:

// Create a circle
Circle circle = new Circle (100, 100, 50);

// Create a MouseEvent handler
EventHandler<MouseEvent> eventHandler =
 e -> System.out.println("Mouse event handler has been called.");

// Register the handler using the setter method for the onMouseClicked
// convenience event property
circle.setOnMouseClicked(eventHandler);

Chapter 8 ■ IntroduCtIon to JavaFX

605

The following snippet of code show how to add an ActionEvent handler to a Button using the
setOnAction() convenience method of the Button class:

// Create a button
Button exitBtn = new Button("Exit");

// Add the event handler for the Exit button
exitBtn.setOnAction(e -> Platform.exit());

The convenience event properties do not provide a separate method to unregister the event handler.
Setting the property to null unregisters the event handler that has already been registered.

// Unregister the mouse-clicked event handler for the circle
circle.setOnMouseClicked(null);

Classes that define the onXxx event properties also define getOnXxx() getter methods that return the
reference of the registered event handler. If no event handler is set, the getter method returns null.

Listing 8-14 contains a program that shows the event routing and handling mechanisms. It also shows
how to consume an event and its effect. Figure 8-10 shows the screen when you run the program.

Listing 8-14. Handling and Consuming Events

// EventHandling.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import static javafx.scene.input.MouseEvent.MOUSE_CLICKED;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class EventHandling extends Application {
 private CheckBox consumeEventCbx = new CheckBox("Consume Mouse Click at Circle");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle(50, 50, 50);
 circle.setFill(Color.CORAL);

 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.TAN);

Chapter 8 ■ IntroduCtIon to JavaFX

606

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, rect, consumeEventCbx);

 Scene scene = new Scene(root);

 // Register mouse-clicked event handlers to all nodes,
 // except to the rectangle and the checkbox
 EventHandler<MouseEvent> handler = e -> handleEvent(e);
 EventHandler<MouseEvent> circleMeHandler = e -> handleEventforCircle(e);

 stage.addEventHandler(MOUSE_CLICKED, handler);
 scene.addEventHandler(MOUSE_CLICKED, handler);
 root.addEventHandler(MOUSE_CLICKED, handler);
 circle.addEventHandler(MOUSE_CLICKED, circleMeHandler);

 stage.setScene(scene);
 stage.setTitle("Event Handling");
 stage.show();
 }

 public void handleEvent(MouseEvent e) {
 print(e);
 }

 public void handleEventforCircle(MouseEvent e) {
 print(e);
 if (consumeEventCbx.isSelected()) {
 e.consume();
 }
 }

 public void print(MouseEvent e) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();

 // Get coordinates of the mouse relative to the event source
 double x = e.getX();
 double y = e.getY();

 System.out.println("Type=" + type + ", Target=" + target
 + ", Source=" + source
 + ", location(" + x + ", " + y + ")");
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

607

The program adds a Circle, a Rectangle, and a CheckBox to an HBox. The HBox is a container that lays
out its children horizontally on one row. The HBox is added to the scene as the root node. An event handler
is added to the Stage, Scene, HBox, and Circle. Notice that you have a different event handler for the Circle
just to keep the program logic simple. When the CheckBox is selected, the event handler for the Circle
consumes the mouse-clicked event, thus preventing the event from travelling up to the HBox, Scene, and
Stage. If the CheckBox is not selected, the mouse-clicked event on the Circle travels from the Circle to the
HBox, Scene, and Stage. Run the program and using the mouse, click on the different areas of the scene to
see the effect. Notice that the mouse-clicked event handler for the HBox, Scene, and Stage are executed, even
if you click on a point outside the Circle, because they are in the event dispatch chain of the clicked nodes.

Clicking on the CheckBox does not execute the mouse-clicked event handlers for the HBox, Scene, and
Stage, whereas clicking on the Rectangle does. Can you think of a reason for this behavior? The reason
is simple. The CheckBox has a default event handler (for mouse-pressed event) that takes a default action
and consumes the event, preventing it from travelling up the event dispatch chain. The Rectangle does not
consume the event, allowing it to travel up the event dispatch chain.

 ■ Tip Consuming an event by the event target in an event filter has no effect on the execution of any other
event filters. however, it prevents the event bubbling phase from happening. Consuming an event in the event
handlers of the top-most node, which is the head of the event-dispatch chain, has no effect on the event
processing.

Layout Panes
You can use two types of layouts to arrange nodes in a scene graph:

•	 Static layout

•	 Dynamic layout

In a static layout, the position and size of nodes are calculated once and they stay the same as the
window is resized. The user interface looks good when the window has the size for which the nodes were
originally laid out.

Figure 8-10. Handling and consuming events

Chapter 8 ■ IntroduCtIon to JavaFX

608

In a dynamic layout, nodes in a scene graph are laid out every time a user action necessitates a change
in their position, size, or both. Typically, changing the position or size of one node affects the position and
size of other nodes in the scene graph. The dynamic layout forces re-computation of the position and size of
some or all nodes as the window is resized.

Both static and dynamic layouts have advantages and disadvantages. A static layout gives developers
full control over the design of the user interface. It lets you make use of the available space as you see
fit. A dynamic layout requires more programming work and the logic is much more involved. Typically,
programming languages supporting GUIs such as JavaFX support dynamic layouts through libraries.
Libraries solve most of the use-cases for dynamic layouts. If they do not meet your needs, you must do the
hard work to roll out your own dynamic layout.

A layout pane is a node that contains other nodes, which are known as its children (or child nodes). The
responsibility of a layout pane is to lay out its children whenever needed. A layout pane is also known as a
container or a layout container.

A layout pane has a layout policy that controls how the layout pane lays out its children. For example,
a layout pane may lay out its children horizontally, vertically, or in any other fashion. The layout policy of a
container is a set of rules to compute the position and size of its children. A node has three type sizes called
preferred size, minimum size, and maximum size. Most of the containers attempt to give its children their
preferred size. The actual (or current) size of a node may be different from its preferred size. The current
size of a node depends on the size of the window, the layout policy of the container, and the expanding and
shrinking policy for the node, etc.

JavaFX contains several container classes. Figure 8-11 shows a class diagram for the container classes.
A container class is a subclass, direct or indirect, of the Parent class.

Figure 8-11. A class diagram for container classes in JavaFX

Chapter 8 ■ IntroduCtIon to JavaFX

609

A Group lets you apply effects and transformations to all its children collectively. The Group class is in
the javafx.scene package.

Subclasses of the Region class are used to lay out children. They can be styled with CSS. The Region
class and most of its subclasses are in the javafx.scene.layout package.

It is true that a container needs to be a subclass of the Parent class. However, not all subclasses of the
Parent class are containers. For example, the Button class is a subclass of the Parent class; however, it is a
control, not a container. A node must be added to a container to be part of a scene graph. The container lays
out its children according to its layout policy. If you do not want the container to manage the layout for a
node, you need to set the managed property of the node to false.

A node can be a child node of only one container at a time. If a node is added to a container while it is
already the child node of another container, the node is removed from the first container before it is added
to the second one. Often times, it is necessary to nest containers to create a complex layout. That is, you can
add a container to another container as a child node.

The Parent class contains three methods to get the list of children of a container:

•	 protected ObservableList<Node> getChildren()

•	 public ObservableList<Node> getChildrenUnmodifiable()

•	 protected <E extends Node> List<E> getManagedChildren()

The getChildren() method returns a modifiable ObservableList of the child nodes of a container. If
you want to add a node to a container, you add the node to this list. This is the most commonly used method
of the container classes. You have been using this method to add children to containers like Group, HBox,
VBox, etc. from the very first program in this chapter.

Notice the protected access for the getChildren() method. If the subclass of the Parent class does not
want to be a container, it will keep the access for this method as protected. For example, control-related
classes such as Button and TextField keep this method as protected, so you cannot add child nodes to
them. A container class overrides this method and makes it public. For example, the Group and Pane classes
expose this method as public.

The getChildrenUnmodifiable() method is declared as public in the Parent class. It returns a read-
only ObservableList of children. It is useful in two scenarios:

•	 You need to pass the list of children of a container to a method that should not
modify the list.

•	 You want to know what makes up a control, which is not a container.

The getManagedChildren() method has the protected access. Container classes do not expose it as
public. They use it internally to get the list of managed children during layouts. You will use this method to
roll out your own container classes.

Table 8-5 contains brief descriptions of the container classes in JavaFX. It is not possible to discuss all
types of containers in this chapter. In this section, I show you examples of using some of them.

Chapter 8 ■ IntroduCtIon to JavaFX

610

A container is meant to contain children. You can add children to a container when you create the
container object or after creating it. All container classes provide constructors that take a varargs Node type
argument to add the initial set of children. Some containers provide constructors to add an initial set of
children and set initial properties for the containers.

You can also add children to a container at any time after the container is created. Containers store their
children in an observable list, which can be retrieved using the getChildren() method. Adding a node to a
container is as simple as adding a node to that observable list. The following snippet of code shows how to
add children to an HBox when it is created and after it is created.

// Create two buttons
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");

// Create an HBox with two buttons as its children
HBox hBox1 = new HBox(okBtn, cancelBtn);

// Create an HBox with two buttons with 20px horizontal spacing between them
double hSpacing = 20;
HBox hBox2 = new HBox(hSpacing, okBtn, cancelBtn);

// Create an empty HBox, and afterwards add two buttons to it
HBox hBox3 = new HBox();
hBox3.getChildren().addAll(okBtn, cancelBtn);

 ■ Tip When you need to add multiple child nodes to a container, use the addAll() method of the
ObservableList rather than using the add() method multiple times.

Table 8-5. Container Classes in JavaFX

Container Class Description

Group Applies effects and transformations collectively to all its children.

Pane Used for absolute positioning of its children.

HBox Arranges children horizontally in a single row.

VBox Arranges children vertically in a single column.

FlowPane Arranges children horizontally or vertically in rows or columns. If they do not fit in
a single row or column, they are wrapped at the specified width or height.

BorderPane Divides the layout area in the top, right, bottom, left, and center regions and places
each of its children in one of the five regions.

StackPane Arranges children in a back-to-front stack.

TilePane Arranges children in a grid of uniformly sized cells.

GridPane Arranges children in a grid of variable sized cells.

AnchorPane Arranges children by anchoring their edges to the edges of the layout area.

TextFlow Lays out rich text whose contents may consist of several Text nodes.

Chapter 8 ■ IntroduCtIon to JavaFX

611

The program in Listing 8-15 shows how to use a BorderPane, a HBox, and a VBox to arrange UI elements,
as shown in Figure 8-12.

Listing 8-15. Using the BorderPane Container

// BorderPaneTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class BorderPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Set the top and left child nodes to null
 Node top = null;
 Node left = null;

 // Build the content nodes for the center region
 VBox center = getCenter();

 // Create the right child node
 Button okBtn = new Button("Ok");
 Button cancelBtn = new Button("Cancel");

 // Make the OK and cancel buttons the same size
 okBtn.setMaxWidth(Double.MAX_VALUE);
 VBox right = new VBox(okBtn, cancelBtn);
 right.setStyle("-fx-padding: 10;");

 // Create the bottom child node
 Label statusLbl = new Label("Status: Ready");
 HBox bottom = new HBox(statusLbl);
 BorderPane.setMargin(bottom, new Insets(10, 0, 0, 0));
 bottom.setStyle("-fx-background-color: lavender;"
 + "-fx-font-size: 7pt;"
 + "-fx-padding: 10 0 0 0;");

Chapter 8 ■ IntroduCtIon to JavaFX

612

 BorderPane root = new BorderPane(center, top, right, bottom, left);
 root.setStyle("-fx-background-color: lightgray;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a BorderPane");
 stage.show();
 }

 private VBox getCenter() {
 // A Label and a TextField in an HBox
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 HBox.setHgrow(nameFld, Priority.ALWAYS);
 HBox nameFields = new HBox(nameLbl, nameFld);

 // A Label and a TextArea
 Label descLbl = new Label("Description:");
 TextArea descText = new TextArea();
 descText.setPrefColumnCount(20);
 descText.setPrefRowCount(5);
 VBox.setVgrow(descText, Priority.ALWAYS);

 // Box all controls in a VBox
 VBox center = new VBox(nameFields, descLbl, descText);

 return center;
 }
}

Notice the use of the setStyle() method for the containers in Listing 8-15. You can customize the
visual appearance of the containers and controls in JavaFX using CSS. The CSS attributes in JavaFX are
named and work like CSS attributes used to customize HTML contents in browsers. CSS attributes in JavaFX
start with -fx-, for example, the CSS attribute name for specifying the font size is -fx-font-size. You can
also set styles to a JavaFX application using a CSS file. Listing 8-16 shows how to add padding and a rounded,
blue border around the scene by adding a style to the root node of the scene. Figure 8-13 shows the resulting
scene in a window.

Figure 8-12. A BorderPane using some controls in its top, right, bottom, and center regions

Chapter 8 ■ IntroduCtIon to JavaFX

613

Listing 8-16. Using CSS to Add Padding and a Rounded, Blue Border to a Scene

// CSSTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class CSSTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField fNameFld = new TextField();
 Label fNameLbl = new Label("First Name:");

 TextField lNameFld = new TextField();
 Label lNameLbl = new Label("Last Name:");

 GridPane root = new GridPane();
 root.addRow(0, fNameLbl, fNameFld);
 root.addRow(1, lNameLbl, lNameFld);

 // Set a CSS for the GridPane
 root.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using CSS");
 stage.show();
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

614

Using CSS in JavaFX is a big topic. This chapter does not discuss CSS in JavaFX in detail. Refer to the
following web page for the CSS reference guide that lists all CSS attributes for all nodes that can be styled
using CSS: https://docs.oracle.com/javase/9/docs/api/javafx/scene/doc-files/cssref.html.

Controls
JavaFX lets you create applications using GUI components. An application with a GUI performs three tasks:

•	 Accepts inputs from the user through input devices such as a keyboard, a mouse, etc.

•	 Processes the inputs (or takes actions based on the input)

•	 Displays outputs

A user interface provides a means to exchange information in terms of input and output between an
application and users. Entering text using a keyboard, selecting a menu item using a mouse, and clicking a
button are examples of providing inputs to a GUI application. The application displays output on a computer
monitor using text, charts, dialog boxes, etc.

Users interact with a GUI application using graphical elements called controls or widgets. Buttons,
labels, text fields, text area, radio buttons, and checkboxes are a few examples of controls. Devices like a
keyboard, a mouse, and a touch screen are used to provide input to controls. Controls can also display
output to the users. Controls generate events that indicate occurrences of some kind of interaction between
the user and the control. For example, pressing a button using a mouse or the spacebar generates an action
event indicating that the user has pressed the button.

JavaFX provides a rich set of easy-to-use basic as well as advanced controls. Controls are typically added
to layout panes that position and size them. It is not possible to discuss all controls. I list most controls in
JavaFX and provide a brief description of what they do.

Each control in JavaFX is represented by an instance of a class. If multiple controls share basic features,
they inherit from a common base class. Control classes are in the javafx.scene.control package. A control
class is a subclass, direct or indirect, of the Control class, which in turn inherits from the Region. Recall that
the Region class inherits from the Parent class. Therefore, technically, a Control is also a Parent.

A Parent can have children. Typically, a control is composed of another node (sometimes, multiple
nodes) that is its child node. Control classes do not expose the list of its children through the getChildren()
method, and therefore you cannot add any children to them.

Control classes expose the list of their internal unmodifiable children through the
getChildrenUnmodifiable() method, which returns an ObservableList<Node>. You are not required
to know about the internal children of a control to use the control. However, if you need the list of their
children, the getChildrenUnmodifiable() method will give you that.

Figure 8-14 shows a class diagram for classes of some commonly used controls. The list of control
classes is a lot bigger than the one shown in the class diagram. Table 8-6 contains a list of most of the
controls in JavaFX with brief descriptions.

Figure 8-13. Using CSS to add padding and a rounded, blue border around the scene

https://docs.oracle.com/javase/9/docs/api/javafx/scene/doc-files/cssref.html

Chapter 8 ■ IntroduCtIon to JavaFX

615

Table 8-6. JavaFX Controls

Control Description

Label A non-editable text control that is typically used to display the label for another
control.

Button Represents a command button control. It can display text and an icon. It
generates an ActionEvent when it is activated.

ButtonBar Represents a group of buttons placed in operating system specific order.

Hyperlink Represents a hyperlink control, which looks like a hyperlink in a web page. It
generates an ActionEvent when it is activated.

MenuButton Looks like a button and behaves like a menu. When it is activated, it shows a list
of options in the form of a popup menu. To execute a command when a menu
option is selected, you need to add the ActionEvent handler to the MenuItems
added to the MenuButton.

ToggleButton Represents a two-state button control. The two states are selected and unselected.

RadioButton Represents a radio button. It is used to provide a mutually exclusive choice from
the list of choices.

CheckBox Represents a three-state selection control. The three states are checked,
unchecked, and undefined.

ChoiceBox Allows users to select an item from a small list of predefined items.

ComboBox An advanced version of the ChoiceBox control. It has many features, such as the
ability to be editable, changing appearance of the items in the list, etc., which are
not offered by in ChoiceBox.

Figure 8-14. A partial class diagram for control classes in JavaFX

(continued)

Chapter 8 ■ IntroduCtIon to JavaFX

616

Control Description

ListView Provides users the ability to select multiple items from a list of items. Typically,
all or more than one item in a list is visible to the user all the time.

ColorPicker Allows users to select a color from a standard color palette or define a custom
color graphically.

DatePicker Allows users to select a date from a calendar popup.

TextField Represents a single-line text input control.

PasswordField Represents a single-line text input control to enter passwords or sensitive text
where the actual text is masked.

TextArea Represents a multiline text input control.

ProgressIndicator Used to display the progress of a task in a circular area.

ProgressBar Used to display the progress of a task in a rectangular area.

Spinner Represents a single-line text field that lets the user select a number or an object
value from an ordered sequence.

TitledPane Used to display contents (typically, a group of controls) with a title bar that may
contain title text and a graphic. It can be in the expanded or collapsed state. In
the collapsed state, only the title bar is visible. In the expanded state, both the
contents and the title bar are visible.

Accordion Used as a container for a group of TitledPane controls in which only one
TitledPane is visible at a time.

Pagination Used to display a large single content by dividing it into smaller chunks called
pages, such as the results of a search.

Tooltip Used to show additional information about a control in a popup window for a
short time when the mouse hovers over the control.

ScrollBar Used to add scrolling capability to a control.

ScrollPane Provides a scrollable view of a node.

Separator A horizontal or vertical line used to separate two groups of controls.

Slider Used to select a numeric value from a numeric range graphically by sliding a
thumb (or knob) along a track.

MenuBar A horizontal bar that acts as a container for menus.

Menu Contains a list of actionable items, which are displayed on demand, for example,
by clicking it.

MenuItem Represents an actionable option in a menu.

ContextMenu A popup control that displays a list of menu items on request.

ToolBar Used to display a group of nodes, which provide the commonly used action items
on a screen.

TabPane Displays multiple tab pages represented by instances of the Tab class. The
contents of only one tab page are visible at a time.

Table 8-6. (continued)

(continued)

Chapter 8 ■ IntroduCtIon to JavaFX

617

Listing 8-17 creates a form using JavaFX controls to enter person details such as first name, last name,
birth date, and gender, as shown in Figure 8-15. Enter the data and click the Save button to display the
entered data in the TextArea at the bottom of the window. The form uses the following controls:

•	 Two instances of the TextField control to enter the first and last names.

•	 A DatePicker control to enter the birth date.

•	 A ChoiceBox control to select a gender.

•	 A Button control to save the data.

•	 A Button control to close the window.

•	 A TextArea control to display the entered data when the Save button is clicked.

Listing 8-17. Creating a Form Using JavaFX Controls to Enter Person Details

// PersonView.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ChoiceBox;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class PersonView extends Application {
 // Labels
 Label fNameLbl = new Label("First Name:");
 Label lNameLbl = new Label("Last Name:");

Control Description

Tab Represents a tab page in a TabPane.

HTMLEditor Provides rich text editing capability in JavaFX.

FileChooser Allows you to select files from the file system graphically.

DirectoryChooser Allows you to select directories using a platform-dependent directory dialog

TableView Used to display and edit tabular data using rows and columns.

TreeView Used to display and edit hierarchical data arranged in a tree-like structure.

TreeTableView A combination of TableView and TreeView controls. Provides the ability to have a
drill-down table.

WebView Displays a web page.

Table 8-6. (continued)

Chapter 8 ■ IntroduCtIon to JavaFX

618

 Label bDateLbl = new Label("Birth Date:");
 Label genderLbl = new Label("Gender:");

 // Fields
 TextField fNameFld = new TextField();
 TextField lNameFld = new TextField();
 DatePicker bDateFld = new DatePicker();
 ChoiceBox<String> genderFld = new ChoiceBox<>();
 TextArea dataFld = new TextArea();

 // Buttons
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws Exception {
 // Populate the gender choice box
 genderFld.getItems().addAll("Male", "Female", "Unknown");

 // Set the preferred rows and columns for the text area
 dataFld.setPrefColumnCount(30);
 dataFld.setPrefRowCount(5);

 GridPane grid = new GridPane();
 grid.setHgap(5);
 grid.setVgap(5);

 // Place the controls in the grid
 grid.add(fNameLbl, 0, 0); // column=0, row=0
 grid.add(lNameLbl, 0, 1); // column=0, row=1
 grid.add(bDateLbl, 0, 2); // column=0, row=2
 grid.add(genderLbl, 0, 3); // column=0, row=3

 grid.add(fNameFld, 1, 0); // column=1, row=0
 grid.add(lNameFld, 1, 1); // column=1, row=1
 grid.add(bDateFld, 1, 2); // column=1, row=2
 grid.add(genderFld, 1, 3); // column=1, row=3
 grid.add(dataFld, 1, 4, 3, 2); // column=1, row=4, colspan=3, rowspan=3

 // Add buttons and make them the same width
 VBox buttonBox = new VBox(saveBtn, closeBtn);
 saveBtn.setMaxWidth(Double.MAX_VALUE);
 closeBtn.setMaxWidth(Double.MAX_VALUE);

 grid.add(buttonBox, 2, 0, 1, 2); // column=2, row=0, colspan=1, rowspan=2

Chapter 8 ■ IntroduCtIon to JavaFX

619

 // Show the data in the text area when the Save button is clicked
 saveBtn.setOnAction(e -> showData());

 // Close the window when the Close button is clicked
 closeBtn.setOnAction(e -> stage.hide());

 // Set a CSS for the GridPane to add a padding and a blue border
 grid.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");

 Scene scene = new Scene(grid);
 stage.setScene(scene);
 stage.setTitle("Person Details");
 stage.sizeToScene();
 stage.show();
 }

 private void showData() {
 String data = "First Name = " + fNameFld.getText()
 + "\nLast Name=" + lNameFld.getText()
 + "\nBirth Date=" + bDateFld.getValue()
 + "\nGender=" + genderFld.getValue();
 dataFld.setText(data);
 }
}

Figure 8-15. A form using JavaFX controls to enter person details

Chapter 8 ■ IntroduCtIon to JavaFX

620

Using 2D Shapes
JavaFX offers many types of nodes to draw different types of shapes, such as lines, circles, rectangles, etc. You
can add shapes to a scene graph. You can draw 2D and 3D shapes. In this section, I show you how to draw
2D shapes. Using 3D shapes in JavaFX has a learning curve. Because of space limitation, I do not discuss 3D
shapes in this book. All 2D shape classes are in the javafx.scene.shape package. Classes representing 2D
shapes are inherited from the abstract Shape class, as shown in Figure 8-16.

A shape has a size and a position that are defined by its properties. For example, the width and
height properties define the size of a rectangle; the radius property defines the size of a circle, the x and y
properties define the position of the upper-left corner of a rectangle, the centerX and centerY properties
define the center of a circle.

Shapes are not resized by their parents during layout. The size of a shape changes only when its
size-related properties are changed. You may see a phrase like “JavaFX shapes are non-resizable.” It
means shapes are non-resizable by their parent during layout. They can be resized only by changing their
properties.

Shapes have an interior and a stroke. All properties for defining the interior and stroke of a shape are
declared in the Shape class. The fill property specifies the color to fill the interior of the shape. The default
fill is Color.BLACK. The stroke property specifies the color for the outline stroke, which is null by default,
except for Line, Polyline, and Path that have Color.BLACK as their default stroke color.

The Shape class contains a smooth property, which is true by default. Its true value indicates that an
antialiasing hint should be used to render the shape. If it is set to false, the antialiasing hint will not be used,
which may result in the edges of shapes being not crisp.

The program in Listing 8-18 creates a circle, a rectangle, a line, and a polygon to represent a parallelogram,
a polyline to represent a hexagon, and an arc with a chord. The shapes are shown in Figure 8-17. Note the
following points about creating the shapes in this program:

•	 It creates a circle of radius 40px.

•	 It creates a rectangle of 100px width and 75px height.

•	 It creates a line from (0, 0) and (50, 50).

•	 It creates a polygon representing a parallelogram, by connecting four points:
(30.0, 0.0), (130.0, 0.0), (100.00, 50.0), and (0.0, 50.0). The polygon is automatically
closed by connecting the first and the last points.

Figure 8-16. A class diagram for 2D shapes

Chapter 8 ■ IntroduCtIon to JavaFX

621

•	 It creates a polyline representing a hexagon. A polyline is similar to a polygon, except
that it is not closed automatically. Notice that the first point (100.0, 0.0) and the last
point (100.0, 0.0) are the same in the polyline constructor, so it is closed.

•	 It creates an arc using the constructor Arc(double centerX, double centerY,
double radiusX, double radiusY, double startAngle, double length) of the
Arc class. An arc can be chord, round, or open. The program uses the arc type as
ArcType.CHORD to connect the two extreme points on the arc by a straight line
(a chord).

Listing 8-18. Using 2D Shapes in JavaFX

// ShapeTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Line;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Polyline;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class ShapeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a circle with an yellow fill and a black stroke of 2.0 px
 Circle circle = new Circle(40);
 circle.setFill(Color.YELLOW);
 circle.setStroke(Color.BLACK);
 circle.setStrokeWidth(2.0);

 // Create a rectangle
 Rectangle rect = new Rectangle(100, 75);
 rect.setFill(Color.RED);

 // Create a line
 Line line = new Line(0, 0, 50, 50);
 line.setStrokeWidth(5.0);
 line.setStroke(Color.GREEN);

Chapter 8 ■ IntroduCtIon to JavaFX

622

 // Create a parallelogram
 Polygon parallelogram = new Polygon();
 parallelogram.getPoints().addAll(30.0, 0.0,
 130.0, 0.0,
 100.00, 50.0,
 0.0, 50.0);
 parallelogram.setFill(Color.AZURE);
 parallelogram.setStroke(Color.BLACK);

 // Create a hexagon
 Polyline hexagon = new Polyline(100.0, 0.0,
 120.0, 20.0,
 120.0, 40.0,
 100.0, 60.0,
 80.0, 40.0,
 80.0, 20.0,
 100.0, 0.0);
 hexagon.setFill(Color.WHITE);
 hexagon.setStroke(Color.BLACK);

 // A CHORD arc with no fill and a stroke
 Arc arc = new Arc(0, 0, 50, 100, 0, 90);
 arc.setFill(Color.TRANSPARENT);
 arc.setStroke(Color.BLACK);
 arc.setType(ArcType.CHORD);

 // Add all shapes to an HBox
 HBox root = new HBox(circle, rect, line, parallelogram, hexagon, arc);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("2D Shapes");
 stage.show();
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

623

The Path class, along with many other classes such as MoveTo, LineTo, HLineTo, and VLineTo, can be
used to draw very complex shapes in JavaFX. JavaFX also supports Scalable Vector Graphics (SVG) using the
SVGPath class from path data in an encoded string. The SVG specification can be found at www.w3.org/TR/
SVG. The detailed rules of constructing the path data in string format can be found at www.w3.org/TR/SVG/
paths.html. JavaFX partially supports the SVG specification. This book does not cover creating 2D shapes
using the Path and SVGPath class in detail. Listing 8-19 shows how to create triangles using the Path and
SVGPath classes, as shown in Figure 8-18. Refer to the JavaFX API documentation for details on how to use
these classes.

Listing 8-19. Using Path and SVGPath Classes to Create 2D Shapes

// PathTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.scene.shape.SVGPath;
import javafx.stage.Stage;

public class PathTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a triangle using a Path
 Path pathTriangle = new Path(new MoveTo(50, 0),
 new LineTo(0, 50),
 new LineTo(100, 50),
 new LineTo(50, 0));

Figure 8-17. Some 2D shapes in JavaFX

http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/SVG/paths.html

Chapter 8 ■ IntroduCtIon to JavaFX

624

 pathTriangle.setFill(Color.LIGHTGRAY);
 pathTriangle.setStroke(Color.BLACK);

 // Create a triangle using a SVGPath
 SVGPath svgTriangle = new SVGPath();
 svgTriangle.setContent("M50, 0 L0, 50 L100, 50 Z");
 svgTriangle.setFill(Color.LIGHTGRAY);
 svgTriangle.setStroke(Color.BLACK);

 // Add all shapes to an HBox
 HBox root = new HBox(pathTriangle, svgTriangle);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("2D Shapes using Path and SVGPath Classes");
 stage.show();
 }
}

Drawing on a Canvas
Through the javafx.scene.canvas package, JavaFX provides the Canvas API that offers a drawing surface to
draw shapes, images, and text using drawing commands. The API also gives pixel-level access to the drawing
surface where you can write any pixels on the surface. The API consists of the following two classes:

•	 Canvas

•	 GraphicsContext

A canvas is a bitmap image that is used as a drawing surface. An instance of the Canvas class represents
a canvas. It inherits from the Node class. Therefore, a canvas is a node that can be added to a scene graph,

Figure 8-18. Creating triangles using the Path and SVGPath classes

Chapter 8 ■ IntroduCtIon to JavaFX

625

and effects and transformations can be applied to it. A Canvas has a graphics context associated with it that
is used to issue drawing commands to the Canvas. An instance of the GraphicsContext class represents a
graphics context.

The Canvas class contains two constructors. The no-args constructor creates an empty Canvas. Later,
you can set the size of the canvas using its width and height properties. The other constructor takes the
width and height of the Canvas as parameters. The following snippet of code shows how to create canvases:

// Create a Canvas of zero width and height
Canvas canvas = new Canvas();

// Set the canvas size
canvas.setWidth(400);
canvas.setHeight(200);

// Create a 400X200 canvas
Canvas canvas = new Canvas(400, 200);

Once you create a Canvas, you need to get its graphics context using the getGraphicsContext2D()
method as shown:

// Get the graphics context of the canvas
GraphicsContext gc = canvas.getGraphicsContext2D();

All drawing commands are provided in the GraphicsContext class as methods. Drawings that fall
outside the bounds of the Canvas are clipped. The Canvas uses a buffer. The drawing commands push
necessary parameters to the buffer. It is important to note that you should use the graphics context from any
one thread before adding the Canvas to the scene graph. Once the Canvas is added to the scene graph, the
graphics context should be used only on the JavaFX Application Thread.

The program in Listing 8-20 shows how to draw a round rectangle, an oval, and text on a canvas.
Figure 8-19 shows the canvas with all drawings. The strokeRoundRect(double x, double y, double
w, double h, double arcWidth, double arcHeight) method is used to draw a round rectangle;
the fillOval(double x, double y, double w, double h) method is used to draw a filled oval. The
strokeText(String text, double x, double y) method is used to draw text.

Listing 8-20. Drawing on a Canvas

// CanvasTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class CanvasTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 8 ■ IntroduCtIon to JavaFX

626

 @Override
 public void start(Stage stage) {
 // Create a canvas
 Canvas canvas = new Canvas(300, 100);

 // Get the graphics context of the canvas
 GraphicsContext gc = canvas.getGraphicsContext2D();

 // Set line width and fill color
 gc.setLineWidth(2.0);
 gc.setFill(Color.RED);

 // Draw a rounded rectangle
 gc.strokeRoundRect(10, 10, 50, 50, 10, 10);

 // Fill an oval
 gc.fillOval(70, 10, 50, 20);

 // Draw text
 gc.strokeText("Hello Canvas", 150, 20);

 Pane root = new Pane();
 root.getChildren().add(canvas);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Drawing on a Canvas");
 stage.show();
 }
}

Applying Effects
An effect is a filter that accepts one or more graphical inputs, applies an algorithm on the inputs, and
produces an output. Typically, effects are applied to nodes to create visually appealing user interfaces.
Examples of effects are shadow, blur, warp, glow, reflection, blending, different types of lighting, etc. The
JavaFX library provides several effect-related classes. An effect is a conditional feature. Effects applied to
nodes will be ignored if they are not available on the platform. Figure 8-20 shows four Text nodes using the
drop shadow, blur, glow, and bloom effects.

Figure 8-19. A rectangle, an ellipse, and text drawn on a canvas

Chapter 8 ■ IntroduCtIon to JavaFX

627

Applying effects to a node in JavaFX is easy. The Node class contains an effect property that specifies
the effect applied to the node. By default, it is null. To apply an effect, create an object of the specific effect
class and set it to the node using the setEffect() method. The following snippet of code applies a drop
shadow effect to a Text node:

Text t1 = new Text("Drop Shadow");
t1.setFont(Font.font(24));
t1.setEffect(new DropShadow());

An instance of the Effect class represents an effect. The Effect class is the abstract base for all effect
classes. All effect classes are in the javafx.scene.effect package. The program in Listing 8-21 creates Text
nodes and applies effects to them. The Text nodes look as shown in Figure 8-20.

Listing 8-21. Applying Effects to Nodes

// EffectTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.Bloom;
import javafx.scene.effect.BoxBlur;
import javafx.scene.effect.DropShadow;
import javafx.scene.effect.Glow;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class EffectTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 8-20. Text nodes with different effects

Chapter 8 ■ IntroduCtIon to JavaFX

628

 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Drop Shadow!");
 t1.setFont(Font.font(24));
 t1.setEffect(new DropShadow());

 Text t2 = new Text("Blur!");
 t2.setFont(Font.font(24));
 t2.setEffect(new BoxBlur());

 Text t3 = new Text("Glow!");
 t3.setFont(Font.font(24));
 t3.setEffect(new Glow());

 Text t4 = new Text("Bloom!");
 t4.setFont(Font.font("Arial", FontWeight.BOLD, 24));
 t4.setFill(Color.WHITE);
 t4.setEffect(new Bloom(0.10));

 // Stack the Text node with bloom effect over a Rectangle
 Rectangle rect = new Rectangle(100, 30, Color.GREEN);
 StackPane spane = new StackPane(rect, t4);

 HBox root = new HBox(t1, t2, t3, spane);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Effects");
 stage.show();
 }
}

 ■ Tip an effect applied to a Group is applied to all its children. It is also possible to chain multiple effects
where the output of one effect becomes the input for the next effect in the chain.

Chapter 8 ■ IntroduCtIon to JavaFX

629

Applying Transformations
A transformation is a mapping of points in a coordinate space to themselves, preserving distances and
directions between them. Several types of transformations can be applied to points in a coordinate space.
JavaFX supports the following types of transformation:

•	 Translation

•	 Rotation

•	 Shear

•	 Scale

•	 Affine

An instance of the abstract Transform class represents a transformation in JavaFX. The Transform
class contains common methods and properties used by all types of transformations on nodes. It contains
factory methods to create specific types of transformations. Figure 8-21 shows a class diagram for the classes
representing different types of transformations. The name of the classes match the type of transformation
they provide. All classes are in the javafx.scene.transform package.

An affine transformation is the generalized transformation that preserves the points, lines, and planes.
The parallel lines remain parallel after the transformation. It may not preserve the angles between lines
and the distances between points. However, the ratios of distances between points on a straight line are
preserved. Translation, scale, homothetic transformation, similarity transformation, reflection, rotation, and
shear are examples of the affine transformation.

An instance of the Affine class represents an affine transformation. The class is not easy to use for
beginners. Its use requires advanced knowledge of mathematics such as matrix. If you need a specific type of
transformation, use the specific subclasses such as Translate, Shear, etc. rather than using the generalized
Affine class. You can also combine multiple individual transformations to create a more complex one.

Using transformations is easy. However, sometimes it is confusing because there are multiple ways to
create and apply them. There are two ways to create a Transform instance:

•	 Use one of the factory methods of the Transform class, for example, the translate()
method to create a Translate object, the rotate() method to create a Rotate object, etc.

•	 Use the specific class to create a specific type of transform, for example, the
Translate class for a translation, the Rotate class for a rotation, etc.

Figure 8-21. A class diagram for transform-related classes

Chapter 8 ■ IntroduCtIon to JavaFX

630

Both of the following Translate objects represent the same translation:

double tx = 20.0;
double ty = 10.0;

// Using the factory method in the Transform class
Translate translate1 = Transform.translate(tx, ty);

// Using the Translate class constructor
Translate translate2 = new Translate(tx, ty);

There are two ways to apply a transformation to a node:

•	 Use the specific properties in the Node class. For example, use the translateX,
translateY, and translateZ properties of the Node class to apply a translation to a
node. Note that you cannot apply a shear transformation this way.

•	 Use the transforms sequence of a node. The getTransforms() method the Node
class returns an ObservableList<Transform>. Populate this list with all the
Transform objects. The Transforms will be applied in sequence. You can apply a
shear transformation using only this method.

The two methods of applying Transforms work little differently. I discuss the differences when I discuss
the specific types of transformation. Sometimes it is possible to use both methods to apply transformations,
and in that case, the transformations in the transforms sequence are applied before the transformation set
on the properties of the node.

The following snippet of code applies three transformations—called shear, scale, and translation—to a
Rectangle:

// Create a rectangle
Rectangle rect = new Rectangle(100, 50, Color.LIGHTGRAY);

// Apply transforms using the transforms sequence of the Rectangle
Transform shear = Transform.shear(2.0, 1.2);
Transform scale = Transform.scale(1.1, 1.2);
rect.getTransforms().addAll(shear, scale);

// Apply a translation using the translatex and translateY properties of the Node class
rect.setTranslateX(10);
rect.setTranslateY(10);

The shear and scale transformations are applied using the transforms sequence. The translation is
applied using the translateX and translateY properties of the Node class. The transformations in the
transforms sequence, shear and scale, are applied in sequence followed with the translation. Discussing
all types of transformations is beyond the scope of this book. Refer to the Java API documentation for more
details.

Listing 8-22 shows how to apply translate, rotate, scale, and shear transformations to a rectangle. It
creates two rectangles of the same size and located at the same place. The rectangles use different fill colors
to distinguish between them. Translate, rotate, scale, and shear transformations are applied to the rectangle
with the yellow fill. No transformations are applied to the rectangle with the light gray fill. Figure 8-22 shows
both rectangles.

Chapter 8 ■ IntroduCtIon to JavaFX

631

Listing 8-22. Applying Transformations to Nodes

// TransformationTest.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Rotate;
import javafx.scene.transform.Scale;
import javafx.scene.transform.Shear;
import javafx.scene.transform.Translate;
import javafx.stage.Stage;

public class TransformationTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.YELLOW);
 rect2.setStroke(Color.BLACK);

 // Apply a translation, rotate, scale and shear transformations to rect2
 Translate translate = new Translate(50, 10);
 Rotate rotate = new Rotate(30, 0, 0);
 Scale scale = new Scale(0.5, 0.5);
 Shear shear = new Shear(0.5, 0.5);
 rect2.getTransforms().addAll(translate, rotate, scale, shear);

 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(200, 100);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Transformations");
 stage.show();
 }
}

Chapter 8 ■ IntroduCtIon to JavaFX

632

Animation
In the real world, animation implies some kind of motion that is generated by displaying images in quick
succession. For example, when you watch a movie, you are watching images that change so quickly that you
get an illusion of motion.

In JavaFX, animation is defined as changing the property of a node over time. If the property that
changes determines the location of the node, the animation in JavaFX will produce an illusion of motion as
found in movies. Not all animations have to involve motion; for example, changing the fill property of a
Shape over time is an animation in JavaFX that does not involve motion.

To understand how animation is performed, it is important to understand some key concepts:

•	 Timeline

•	 Key frame

•	 Key value

•	 Interpolator

Animation is performed over a period of time. A timeline denotes the progression of time during
animation with an associated key frame at a given instant. A key frame represents the state of the node being
animated at a specific instant on the timeline. A key frame has associated key values. A key value represents
the value of a property of the node along with an interpolator to be used.

Suppose you want to move a circle in a scene from left to right horizontally in 10 seconds. Figure 8-23
shows the circle at a few positions. The thick horizontal line represents a timeline. Circles with a solid outline
represent the key frames at specific instants on the timeline. The key values associated with key frames are
shown at the top line. For example, the value for translateX property of the circle for the key frame at the
fifth second is 500, which is shown as tx=500 in the figure.

Figure 8-22. Two rectangles, one with transformations and one without transformations

Figure 8-23. Animating a circle along a horizontal line using a timeline

Chapter 8 ■ IntroduCtIon to JavaFX

633

Timeline, key frames, and key values are provided by the developer. In your example, you have five key
frames. If JavaFX shows only five key frames at the five respective instants, the animation will look jerky.
To provide a smooth animation, JavaFX needs to interpolate the position of the circle at any instant on the
timeline. That is, JavaFX needs to create intermediate key frames between two consecutive key frames.
JavaFX does this with the help of an interpolator. By default, it uses a linear interpolator that changes the
property being animated linearly with time. That is, if the time on the timeline passes x%, the value of the
property will be x% between the initial and final target values. In the figure, circles with the dashed outline
are created by JavaFX using an interpolator.

Classes providing animation are in the javafx.animation package, except for the Duration class, which
is in the javafx.util package. Figure 8-24 shows a class diagram for the animation-related classes.

The abstract Animation class represents an animation. It contains common properties and methods
used by all types of animations. JavaFX supports two types of animations:

•	 Timeline animations

•	 Transitions

In a timeline animation, you create a timeline and add key frames to it. JavaFX creates the intermediate
key frames using an interpolator. An instance of the Timeline class is represented by a timeline animation.
This type of animation requires more coding on your part, but it gives you more control.

Several types of animations are commonly performed, for example, moving a node along a path,
changing the opacity of a node over time, etc. These types of animations are known as transitions. They are
performed using an internal timeline. An instance of the Transition class represents a transition animation.
Several subclasses of the Transition class exist to support specific types of transitions. For example, the
FadeTransition class implements a fading effect animation by changing the opacity of a node over time.
You create an instance of one of the subclasses of the Transition class and then specify the initial and final
values for the property to be animated and the duration for the animation. JavaFX takes care of creating the
timeline and performing the animation. This type of animation is easier to use.

Sometimes you may want to perform multiple transitions sequentially or in parallel. The
SequentialTransition and ParallelTransition classes let you perform a set of transitions sequentially
and in parallel, respectively.

The Duration class is in the javafx.util package. It represents a duration of time in milliseconds,
seconds, minutes, and hours. It is an immutable class. A Duration represents the amount of time for each
cycle of an animation. A Duration can represent a positive or negative duration.

Figure 8-24. A class diagram for core classes used in animation

Chapter 8 ■ IntroduCtIon to JavaFX

634

An instance of the KeyValue class represents a key value that is interpolated for a particular interval
during animation. It encapsulates three things:

•	 A target

•	 An end value for the target

•	 An interpolator

The target is a WritableValue, which qualifies all JavaFX properties to be a target. The end value is
the value for the target at the end of the interval. The interpolator is used to compute the intermediate key
frames.

A key frame defines the target state of a node at a specified point on the timeline. The target state is
defined by the key values associated with the key frame. A key frame encapsulates four things:

•	 An instant on the timeline

•	 A set of KeyValues

•	 A name

•	 An ActionEvent handler

The instant on the timeline to which the key frame is associated is defined by a Duration, which
is an offset of the key frame on the timeline. The set of KeyValues define the end value of the target for
the key frame. A key frame may optionally have a name that can be used as a cue point to jump to the
instant defined by it during the animation. The getCuePoints() method of the Animation class returns
an ObservableMap of cue points on the Timeline. Optionally, you can attach an ActionEvent handler to a
KeyFrame. The ActionEvent handler is called when the time for the key frame arrives during animation. An
instance of the KeyFrame class represents a key frame.

Using the Timeline Animation
A timeline animation is used for animating any properties of a node. An instance of the Timeline class
represents a timeline animation. Using a timeline animation involves the following steps:

•	 Construct key frames

•	 Create a Timeline object with key frames

•	 Set the animation properties

•	 Use the play() method to run the animation

You can add key frames to a Timeline object at the time of creating it or after. A timeline keeps all key
frames in an ObservableList<KeyFrame>. The getKeyFrames() method returns the reference of this list. You
can modify the list of key frames at any time. If the timeline animation is already running, you need to stop
and restart it to pick up the modified list of key frames. The Timeline class contains several constructors:

•	 Timeline()

•	 Timeline(double targetFramerate)

•	 Timeline(double targetFramerate, KeyFrame… keyFrames)

•	 Timeline(KeyFrame… keyFrames)

Chapter 8 ■ IntroduCtIon to JavaFX

635

The no-args constructor creates a timeline with no key frames with animation running at the optimum
rate. Other constructors let you specify the target frame rate for the animation, which is the number of
frames per second, and the key frames. Note that the order in which the key frames are added to a timeline is
not important. The timeline will order them based on their time offset.

The program in Listing 8-23 starts a timeline animation that scrolls a text horizontally from right to left
across the scene forever. Figure 8-25 shows a screenshot of the animation.

Listing 8-23. Scrolling a Text Node Using a Timeline Animation

// ScrollingText.java
package com.jdojo.javafx;

import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;

public class ScrollingText extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("JavaFX animation is cool!");
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));

 Pane root = new Pane(msg);
 root.setPrefSize(500, 70);
 Scene scene = new Scene(root);

 stage.setScene(scene);
 stage.setTitle("Scrolling Text");
 stage.show();

 /* Set up a Timeline animation */
 // Get the scene width and the text width
 double sceneWidth = scene.getWidth();
 double msgWidth = msg.getLayoutBounds().getWidth();

 // Create the initial and final key frames
 KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), sceneWidth);
 KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);

Chapter 8 ■ IntroduCtIon to JavaFX

636

 KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
 KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);

 // Create a Timeline object
 Timeline timeline = new Timeline(initFrame, endFrame);

 // Let the animation run forever
 timeline.setCycleCount(Timeline.INDEFINITE);

 // Start the animation
 timeline.play();
 }
}

The logic to perform the animation is in the start() method. The method starts with creating a Text
object, a Pane with the Text object, and setting up a scene for the stage. After showing the stage, it sets up an
animation. First, it gets the width of the scene and the Text object.

double sceneWidth = scene.getWidth();
double msgWidth = msg.getLayoutBounds().getWidth();

Two key frames are created: one for time = 0 seconds and one for time = 3 seconds. The animation uses
the translateX property of the Text object to change its horizontal position to make it look scroll. At zero
seconds, the Text is positioned at the scene width, so it is invisible. At three seconds, it is placed to the left of
the scene at a distance equal to its length, so again it is invisible.

KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), sceneWidth);
KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);

KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);

A Timeline object is created with two key frames.

Timeline timeline = new Timeline(initFrame, endFrame);

Figure 8-25. Scrolling text using a timeline animation

Chapter 8 ■ IntroduCtIon to JavaFX

637

By default, the animation will run only one time. That is, the text will scroll from right to left once and
the animation will stop. You can set the cycle count for an animation, which is the number of times the
animation needs to run. You run your animation forever by setting the cycle count to Timeline.INDEFINITE
as follows:

timeline.setCycleCount(Timeline.INDEFINITE);

Finally, the animation is started by calling the play() method.

timeline.play();

This example has a flaw. The scrolling text does not update its initial horizontal position when the
width of the scene changes. You can rectify this problem by updating the initial key frame whenever the
scene width changes. Append the following statement to the start() method of Listing 8-23. It adds a
ChangeListener for the scene’s width that updates key frames and restarts the animation.

scene.widthProperty().addListener((prop, oldValue , newValue) -> {
 KeyValue kv = new KeyValue(msg.translateXProperty(), scene.getWidth());
 KeyFrame kf = new KeyFrame(Duration.ZERO, kv);
 timeline.stop();
 timeline.getKeyFrames().clear();
 timeline.getKeyFrames().addAll(kf, endFrame);
 timeline.play();
});

It is possible to create a timeline animation with only one key frame. The key frame is treated as the last
key frame. The timeline synthesizes an initial key frame (for time = 0 seconds) using the current values for
the property being animated. To see the effect, replace the statement

Timeline timeline = new Timeline(initFrame, endFrame);

in Listing 8-23 with the following statement

Timeline timeline = new Timeline(endFrame);

The timeline will create an initial key frame with the current value of translateX property of the Text
object, which is 0.0. This time, the text scrolls differently. The scrolling starts by placing the text at 0.0 and
scrolling it to the left, so that it goes beyond the scene.

FXML
FXML is an XML-based language for building a user interface for JavaFX applications. You can use FXML
to build an entire scene or part of a scene. FXML allows application developers to separate the logic for
building the UI from the business logic. If the UI part of the application changes, you do not need to
recompile the JavaFX code; you can change the FXML using a text editor and rerun the application. You
still use JavaFX to write business logic in the Java programming language. An FXML document is an XML
document. A basic knowledge of XML is required to understand FXML.

A JavaFX scene graph is a hierarchical structure of Java objects. The XML format is well suited for
storing information representing some kind of hierarchy. Therefore, using FXML to store the scene graph is
very intuitive.

Chapter 8 ■ IntroduCtIon to JavaFX

638

It is common to use FXML to build a scene graph in a JavaFX application. However, the use of FXML is
not limited to building only scene graphs. It can build a hierarchical object graph of Java objects. In fact, it
can be used to create just one object, for example, an object of a Person class.

Let’s get a quick preview of what an FXML document looks like. You will create a simple UI, which
consists of a VBox with a Label and a Button. Listing 8-24 contains the JavaFX code to build the UI, which is
familiar to you. Listing 8-25 contains the FXML version for building the same UI.

Listing 8-24. Building an Object Graph in JavaFX

import javafx.scene.layout.VBox;
import javafx.scene.control.Label;
import javafx.scene.control.Button;

VBox root = new VBox();
root.getChildren().addAll(new Label("FXML is cool"),
 new Button("Say Hello"));

Listing 8-25. Building an Object-Graph in FXML

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

<VBox>
 <children>
 <Label text="FXML is cool"/>
 <Button text="Say Hello"/>
 </children>
</VBox>

The first line in FXML is the standard XML declaration that is used by XML parsers. It is optional in
FXML. If it is omitted, the version and encoding are assumed to be 1 and UTF-8, respectively. The next three
lines are import statements that correspond to the import statements in Java code. Elements representing UI
(for example, VBox, Label, and Button) have the same name as the name of JavaFX classes. The <children>
tag specifies the children of the VBox. The text property for the Label and Button are specified using the text
attributes of the respective elements.

An FXML document is simply a text file. Typically, the file name has a .fxml extension such as hello.
fxml. For example, you can use Notepad to create an FXML document on Windows. If you have used XML,
you know that it is not easy to edit a large XML document in a text editor. A visual editor called Scene Builder
for editing FXML documents is available. You can download the Scene Builder tool for Java 9 from http://
gluonhq.com/products/scene-builder. Using Scene Builder is not discussed in this book.

In this section, I cover the basics of FXML. You will develop a simple JavaFX application using FXML.
The application consists of the following:

•	 A VBox

•	 A Label

•	 A Button

http://gluonhq.com/products/scene-builder
http://gluonhq.com/products/scene-builder

Chapter 8 ■ IntroduCtIon to JavaFX

639

The spacing for the VBox is set to 10px. The text properties for the Label and Button are set to “FXML
is cool!” and “Say Hello”. When the button is clicked, the text in the label changes to “Hello from FXML!”.
Figure 8-26 shows two instance of the window displayed by the application.

The program in Listing 8-26 is the JavaFX implementation of this example application using the Java
programming language to build the UI.

Listing 8-26. The JavaFX Version of the FXML Example Application

// SayHelloFX.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SayHelloFX extends Application {
 private Label msgLbl = new Label("FXML is coll!");
 private Button sayHelloBtn = new Button("Say Hello");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Set the preferred width of the label
 msgLbl.setPrefWidth(150);

 // Set the ActionEvent handler for the button
 sayHelloBtn.setOnAction(this::sayHello);

Figure 8-26. Two instances of a window whose scene graph is created using FXML

Chapter 8 ■ IntroduCtIon to JavaFX

640

 VBox root = new VBox(10);
 root.getChildren().addAll(msgLbl, sayHelloBtn);
 root.setStyle("-fx-padding: 10;"
 + "-fx-border-style: solid inside;"
 + "-fx-border-width: 2;"
 + "-fx-border-insets: 5;"
 + "-fx-border-radius: 5;"
 + "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }

 public void sayHello(ActionEvent e) {
 msgLbl.setText("Hello from FXML!");
 }
}

Now let’s build another version of the program in Listing 8-26 in which the UI will be built using FXML.
Create an FXML file sayhello.fxml with the contents shown in Listing 8-27. Listing 8-27 is the FXML
document for your example. It will create the root element for the scene shown in Figure 8-26. Save the
sayhello.fxml file in the resources/fxml directory with the source code for the jdojo.javafx module. This
file is at Java9APIsAndModules\src\jdojo.javafx\classes\resources\fxml\sayhello.fxml in the source
code for this book.

Listing 8-27. The Contents of the sayhello.fxml File

<?xml version="1.0" encoding="UTF-8"?>
<?language javascript?>
<?import javafx.scene.Scene?>
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

<VBox spacing="10" xmlns:fx="http://javafx.com/fxml">
 <Label fx:id="msgLbl" text="FXML is cool!" prefWidth="150"/>
 <Button fx:id="sayHelloBtn" text="Say Hello" onAction="sayHello()"/>
 <style>
 -fx-padding: 10;
 -fx-border-style: solid inside;
 -fx-border-width: 2;
 -fx-border-insets: 5;
 -fx-border-radius: 5;
 -fx-border-color: blue;
 </style>
 <fx:script>
 function sayHello() {
 msgLbl.setText("Hello from FXML!");
 }
 </fx:script>
</VBox>

Chapter 8 ■ IntroduCtIon to JavaFX

641

You have set the spacing property for the VBox, the fx:id attribute for the Label and Button controls.
You have set the style property of the VBox using a <style> property element. You had an option to set the
style using a style attribute or a property element. You used a property element because the style value is
a big string and it is more readable if entered on multiple lines. The <fx:script> element defines a script
block with one function, sayHello(). The function sets the text property of the Label identified by the
msgLbl fx:id attribute. You have set the sayHello() function as the onAction attribute of the Button, so
when the Button is clicked, the sayHello() function is executed.

To build the UI from an FML, you need to load it into the JavaFX program. Loading an FXML is
performed by an instance of the FXMLLoader class, which is in the javafx.fxml package.

The FXMLLoader class provides several constructors that let you specify the location, charset, resource
bundle, etc. to be used for loading the document. You need to specify at least the location of the FXML
document, which is a URL. The class contains a load() method to perform the actual loading of the
document. The following snippet of code loads an FXML document from the module jdojo.javafx. Note
that the this referred to in the code is a reference of an object of a class in the jdojo.javafx module.

// Build the URL to locate the FXMl file
URL fxmlUrl = this.getClass()
 .getResource("/resources/fxml/sayhello.fxml");

// Create an FXMLLoader object and set its location that is the URL of the FML contents
FXMLLoader loader = new FXMLLoader();
loader.setLocation(fxmlUrl);

// Load the FXML that will return a VBox
VBox root = loader.<VBox>load();

The load() method has a generic return type. In the previous snippet of code, you made your intention
clear in the call to the load() method (loader.<VBox>load()) that you are expecting a VBox instance from
the FXML document. If you prefer, you may omit the generic parameter as shown:

// The return type of the load() method will be inferred as VBox
VBox root = loader.load();

The FXMLLoader class supports loading an FXML document using an InputStream. The following
snippet of code loads the same FXML document using an InputStream:

InputStream fxmlStream = this.getClass()
 .getResourceAsStream("/resources/fxml/sayhello.fxml");
FXMLLoader loader = new FXMLLoader();
VBox root = loader.<VBox>load(fxmlStream);

Internally, the FXMLLoader reads the document using streams, which may throw an IOException. All
versions of the load() method in FXMLLoader class throws an IOException. I omitted the exception handling
in these snippets of code to keep the simple. In your application, you need to handle the exception.

What do you do next after loading an FXML document? At this point, the role of FXML is over and your
JavaFX code should take over.

The program in Listing 8-28 contains the JavaFX code for the example. It loads the FXML document
stored in the sayhello.fxml file. The program loads the document from the jdojo.javafx module. The
loader returns a VBox, which is set as the root for the scene. The rest of the code is the same you have used
before. Note one difference in the declaration of the start() method. The method declares that it may throw

Chapter 8 ■ IntroduCtIon to JavaFX

642

an IOException, which you have to add because you called the load() method of the FXMLLoader inside the
method. When you run the program, it displays a window, as shown in Figure 8-26. Click the button and the
text for the Label will change.

Listing 8-28. Using FXML to Build the GUI

// SayHelloFXML.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SayHelloFXML extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws IOException {
 // Construct a URL for the FXML document
 URL fxmlUrl = this.getClass()
 .getResource("/resources/fxml/sayhello.fxml");

 // Load the FXML document
 VBox root = FXMLLoader.<VBox>load(fxmlUrl);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }
}

FXML offers a lot more than what you have seen in this example. Using FXML, you can bind the UI
elements to variables in JavaFX, data binding, and event handling, create custom controls, etc. Discussing
these features is beyond the scope of this book.

Printing
JavaFX supports printing nodes through the Print API in the javafx.print package. The API consists of the
following classes and a number of enums (not listed):

•	 Printer

•	 PrinterAttributes

•	 PrintResolution

Chapter 8 ■ IntroduCtIon to JavaFX

643

•	 PrinterJob

•	 JobSettings

•	 Paper

•	 PaperSource

•	 PageLayout

•	 PageRange

Instances of these classes represent different components of the printing process. For example, a
Printer represents a printer that can be used for printing jobs; a PrinterJob represents a print job that can
be sent to a Printer for printing; a Paper represents the paper sizes available on printers, etc.

The Print API provides support for printing nodes that may or may not be attached to a scene graph. It
is a common requirement to print the contents of a web page, not the WebView node that contains the web
page. The javafx.scene.web.WebEngine class contains a print(PrinterJob job) method that prints the
contents of the web page, not the WebView node.

If a node is modified during the printing process, the printed node may not appear correct. Note that
the printing of a node may span multiple pulse events, resulting in a concurrent change in the content being
printed. To ensure correct printing, make sure that the node being printed is not modified during the print
process.

Nodes can be printed on any thread including the JavaFX Application Thread. It is recommended that a
large, time-consuming print job be submitted on a background thread to keep the UI responsive.

Classes in the Print API are final as they represent existing printing device properties. Most of them
do not provide any public constructors as you cannot make up a printing device. Rather, you obtain their
references using factory methods in the classes.

The Printer.getAllPrinters() static method returns an observable list of installed printers on the
machine. Note that the list of printers returned by the method may change over time as new printers are
installed or old printers removed. Use the getName() method of the Printer to get the name of the printer
represented by the Printer. The following snippet of code lists all installed printers on the machine running
the code. You may get a different output.

import javafx.collections.ObservableSet;
import javafx.print.Printer;
...
ObservableSet<Printer> allPrinters = Printer.getAllPrinters();
for(Printer p : allPrinters) {
 System.out.println(p.getName());
}

Brother HL-L2380DW series Printer
Fax
Microsoft Print to PDF
Microsoft XPS Document Writer
Send To OneNote 2013

Chapter 8 ■ IntroduCtIon to JavaFX

644

The Printer.getDefaultPrinter() method returns the default Printer. The method may return null
if no printer is installed. The default printer may be changed on a machine. Therefore, the method may
return different printers from call to call, and the printer returned may not be valid after some time. The
following snippet of code shows how to get the default printer:

Printer defaultPrinter = Printer.getDefaultPrinter();
if (defaultPrinter != null) {
 String name = defaultPrinter.getName();
 System.out.println("Default printer name: " + name);
} else {
 System.out.println("No printers installed.");
}

Printing a node is easy: create a PrinterJob and call its printPage() method passing the node to be
printed. Printing a node using the default printer with all default settings takes only three lines of code:

PrinterJob printerJob = PrinterJob.createPrinterJob();
printerJob.printPage(myNode); // myNode is the node to be printed
printerJob.endJob();

In a real-world application, you want to handle the errors, so the previous code is rewritten as follows:

// Create a printer job for the default printer
PrinterJob printerJob = PrinterJob.createPrinterJob();
if (printerJob != null) {
 // Print the node
 boolean printed = printerJob.printPage(node);
 if (printed) {
 // End the printer job
 printerJob.endJob();
 } else {
 System.out.println("Printing failed.");
 }
} else {
 System.out.println("Could not create a printer job.");
}

You can use the createPrinterJob() static method of the PrinterJob class to create a printer job. The
method is overloaded as shown:

•	 PrinterJob createPrinterJob()

•	 PrinterJob createPrinterJob(Printer printer)

The method with no-args creates a printer job for the default printer. You can use the other version of
the method to create a printer job for the specified printer.

You can change the printer for a PrinterJob by calling its setPrinter() method. If the current printer
job settings are not supported by the new printer, the settings are reset automatically for the new printer.

// Set a new printer for the printer job
printerJob.setPrinter(myNewPrinter);

Chapter 8 ■ IntroduCtIon to JavaFX

645

Setting null as the printer for the job will use the default printer. Use one of the following printPage()
methods of the PrinterJob class to print a node:

•	 boolean printPage(Node node)

•	 boolean printPage(PageLayout pageLayout, Node node)

The first version of the method takes only the node to be printed as the parameter. It uses the default
page layout for the job for printing. The second version lets you specify a page layout for printing the node.
The method returns true if the printing was successful. Otherwise, it returns false.

When you are done printing, call the endJob() method. The method returns true if the job can be
successfully spooled to the printer queue. Otherwise, it returns false, which may indicate that the job could
not be spooled or it was already completed. After a successful completion of the job, the job can no longer be
reused.

You can cancel a print job using the cancelJob() method of the PrinterJob. The printing may not be
cancelled immediately, for example, when a page is in the middle of printing. The cancellation occurs as
soon as possible. The method does not have any effect if

•	 The job has already been requested to be cancelled.

•	 The job is already completed.

•	 The job has an error.

The PrinterJob class contains a read-only jobStatus property that indicates the current status of the
print job. The status is defined by one of the following constants of the PrinterJob.JobStatus enum:

•	 NOT_STARTED

•	 PRINTING

•	 CANCELED

•	 DONE

•	 ERROR

The NOT_STARTED status indicates a new job. In this status, the job can be configured and printing can
be initiated. The PRINTING status indicates that the job has requested to print at least one page and it has not
terminated printing. In this status, the job cannot be configured.

The other three statuses, CANCELED, DONE, and ERROR, indicate a terminated state of the job. Once the
job is in one of these statuses, it should not be reused. There is no need to call the endJob() method when
the status goes to CANCELED or ERROR. The DONE status is entered when the printing was successful and the
endJob() method was called.

The program in Listing 8-29 shows how to print nodes. It displays a TextArea where you can enter text.
Two buttons are provided: one prints the TextArea node and the other the entire scene. When printing is
initiated, the print job status is displayed in a label. The code in the print() method is the same code you
have seen in the examples. The method includes the logic to display the job status in the label. The program
displays a window as shown in Figure 8-27. Run the program, enter text in the TextArea, and click one of the
two buttons to print.

Chapter 8 ■ IntroduCtIon to JavaFX

646

Listing 8-29. Printing Nodes

// PrintingNodes.java
package com.jdojo.javafx;

import javafx.application.Application;
import javafx.print.PrinterJob;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class PrintingNodes extends Application {
 private Label jobStatus = new Label();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 VBox root = new VBox(5);

 Label textLbl = new Label("Text:");
 TextArea text = new TextArea();
 text.setPrefRowCount(10);
 text.setPrefColumnCount(20);
 text.setWrapText(true);

 // Button to print the TextArea node
 Button printTextBtn = new Button("Print Text");
 printTextBtn.setOnAction(e -> print(text));

 // Button to print the entire scene
 Button printSceneBtn = new Button("Print Scene");
 printSceneBtn.setOnAction(e -> print(root));

 HBox jobStatusBox
 = new HBox(5, new Label("Print Job Status:"), jobStatus);
 HBox buttonBox = new HBox(5, printTextBtn, printSceneBtn);

 root.getChildren().addAll(textLbl, text, jobStatusBox, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Printing Nodes");
 stage.show();
 }

Chapter 8 ■ IntroduCtIon to JavaFX

647

 private void print(Node node) {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Creating a printer job...");

 // Create a printer job for the default printer
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 // Show the printer job status
 jobStatus.textProperty().bind(job.jobStatusProperty().asString());

 // Print the node
 boolean printed = job.printPage(node);
 if (printed) {
 // End the printer job
 job.endJob();
 } else {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Printing failed.");
 }
 } else {
 jobStatus.setText("Could not create a printer job.");
 }
 }
}

The Printing API provides more printing features, such as displaying the print dialog. Refer to the
JavaFX API documentation for classes in the javafx.print package for more details.

Summary
JavaFX is an open source Java-based GUI framework for developing rich client applications. It is the
successor of Swing in the arena of GUI development technology in the Java platform.

Along with JDK9, JavaFX APIs have also been modularized into the following modules: javafx.base,
javafx.controls, javafx.fxml, javafx.graphics, javafx.media, javafx.swing, and javafx.web. These
modules are included in JDK/JRE 9. The JDK9 API documentation also includes the documentation for
these modules.

Figure 8-27. A window letting the user print text in a TextArea and the scene

Chapter 8 ■ IntroduCtIon to JavaFX

648

The GUI in JavaFX is shown in a stage. A stage is an instance of the Stage class. A stage is a window in
a desktop application and an area in the browser in a web application. A stage contains a scene. A scene
contains a group of nodes (graphics) arranged in a tree-like structure.

A JavaFX application inherits from the Application class. The JavaFX runtime creates the first stage
called the primary stage and calls the start() method of the application class, passing the reference of the
primary stage. The developer needs to add a scene to the stage and make the stage visible.

A JavaFX application using JavaFX UIs must export the package containing the application class to at
least the javafx.graphics module.

JavaFX supports property classes whose instances are used to represent properties of classes. Properties
support unidirectional and bidirectional bindings. If a property is bound to an expression, the property value
is synchronized automatically with the value of the expression. Properties support invalidation and change
notifications. Interested parties can register for these notifications. They are notified when the properties
become invalid or its value changes. A property becomes invalid when its dependencies change.

JavaFX provides observable list, set, and map that are instances of the ObservableList, ObservableSet,
and ObservableMap interfaces. They can be observed for invalidation and changes. The FXCollections
class contains factory methods to create instances of such observable collections.

JavaFX supports event-handling for UI elements. You can register event handlers for UI elements. When
the event occurs, your registered event handlers are executed.

JavaFX provides layout panes that are containers for nodes. They arrange the nodes in a particular
way. For example, the HBox layout pane arranges nodes by placing them horizontally in one row whereas
the VBox layout pane arranges nodes by placing them vertically in one column. JavaFX provides a rich set of
controls such as Button, ButtonBar, Label, ChoiceBox, ComboBox, TextField, DatePicker, Spinner, etc. The
HTMLEditor control provides the editing capability to edit rich text. The WebView node is used to display the
contents of a web page.

JavaFX provides extensive support for drawing 2D and 3D shapes. It provides the Canvas API to draw
2D shapes on a canvas using the drawing commands. The Canvas API also lets you access (read and write)
pixels on the canvas surface.

You can apply effects, transformations, and animations to nodes in a scene by writing a few lines of
code. JavaFX supports FXML, an XML-based markup language for building the GUI for a JavaFX application.
You can print nodes and the contents of a web page using the Printing API.

QUESTIONS AND EXERCISES

1. What is JavaFX?

2. What is the fully qualified name of the class from which your JavaFX application
class must inherit?

3. to run a JavaFX application with uI components, your module must export the
package containing your JavaFX application class to at least one of the JavaFX
modules. What is the name of that JavaFX module?

4. What is the signature of the start() method that your JavaFX application class
needs to override?

5. do you need to include a public static void main(String[] args) method
with your application class to run your JavaFX application?

6. What is a stage? how does the primary stage get created? how do you show a
stage?

7. What is a scene and how do you add a scene to a stage?

Chapter 8 ■ IntroduCtIon to JavaFX

649

8. explain the lifecycle of a JavaFX application with the threads involved in executing
code in each stage.

9. explain two ways that a JavaFX application may get terminated.

10. Write a simple JavaFX program with the following nodes: a Label, a TextField, a
Button, and a Circle. the TextField contains an initial value of 100, which is the
radius of the Circle in pixel. When the user changes the value in the TextField,
the Circle should be redrawn to reflect the new radius. all nodes should be visible
all the time. that is, you need to resize the screen to fit the Circle.

11. Write a program using a JavaFX observable list that prints the sum of all integers in
a list to the standard output. When the elements of the list changes, the new sum is
printed.

12. What are event capturing and event bubbling phases? If you want to disable a
specific type of event on a node and all its child nodes, what kind of handler you
will be writing: an event filter or event handler?

13. Modify the EventHandling class in the source code for this chapter. add another
CheckBox with a label "disable Mouse Clicks". When this CheckBox is selected, the
mouse-clicked event for the entire stage is disabled. You cannot use mouse to click
the two CheckBox nodes or any other nodes. When you unselect the CheckBox, the
mouse-clicked event should work as it works in the example program. (hint: try
disabling the mouse-pressed event as well to disable selection of CheckBox nodes.)

14. Standard buttons such as Yes, no, and Cancel are displayed in different orders
on different operating systems. You have to pack two buttons, Yes and no, in a
horizontal bar where the buttons ordering depends on the operating system. name
the control that you will use to achieve this.

15. What is the use of Group node? name two panes that acts as a container.

16. name and define five uI controls.

17. What types of shapes does JavaFX support—2d only, 3d only, or both?

18. What is the use of a Canvas in JavaFX?

19. What are effects, transformations, and animation in JavaFX?

20. What is FXML?

21. Write a program that will print the default printer name. If there is no default printer
installed, it should print a message "No printer found".

651© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_9

CHAPTER 9

Scripting in Java

In this chapter, you will learn:

•	 What scripting in Java is

•	 How to execute scripts from Java and how to pass parameters to scripts

•	 How the ScriptContext is used in executing scripts

•	 How to use the Java programming language in scripts

•	 How to implement a script engine

•	 How to use the jrunscript and jjs command-line tools to execute scripts

All example programs in this chapter are members of a jdojo.script module, as declared in Listing 9-1,
unless specified otherwise.

Listing 9-1. The Declaration of a jdojo.script Module

// module-info.java
module jdojo.script {
 requires java.scripting;

 exports com.jdojo.script;
}

The scripting support in JDK is in the java.scripting module. Your module using the Java Scripting
API needs to read the java.scripting module as the jdojo.script module does.

What Is Scripting in Java?
Some believe that the Java Virtual Machine (JVM) can execute programs written only in the Java
programming language, which is not true. The JVM executes language-neutral bytecode. It can execute
programs written in any programming language, if the program can be compiled into Java bytecode.

A scripting language is a programming language that provides the ability to write scripts that are
evaluated (or interpreted) by a runtime environment called a script engine (or an interpreter). A script is a
sequence of characters that is written using the syntax of a scripting language and used as the source for a
program executed by an interpreter. The interpreter parses the scripts, produces intermediate code, which
is an internal representation of the program, and executes the intermediate code. The interpreter stores the
variables used in a script in data structures called symbol tables.

https://doi.org/10.1007/978-1-4842-3546-1_9

Chapter 9 ■ SCripting in Java

652

Typically, unlike in a compiled programming language, the source code (called a script) in a scripting
language is not compiled, but is interpreted at runtime. However, scripts written in some scripting languages
may be compiled into Java bytecode that can be run by the JVM.

Java 6 added scripting support to the Java platform that lets a Java application execute scripts written
in scripting languages such as Rhino JavaScript, Groovy, Jython, JRuby, Nashorn JavaScript, etc. Two-way
communication is supported. It also lets scripts access Java objects created by the host application. The Java
runtime and a scripting language runtime can communicate and use each other’s features.

Support for scripting languages in Java comes through the Java Scripting API. All classes and interfaces
in the Java Scripting API are in the javax.script package, which is in the java.scripting module.

Using a scripting language in a Java application provides several advantages:

•	 Most scripting languages are dynamically typed, which makes it simpler to write
programs.

•	 They provide a quicker way to develop and test small applications.

•	 Customization by end users is possible.

•	 A scripting language may provide domain-specific features that are not available in
Java.

Scripting languages have some disadvantages as well. For example, dynamic typing is good to write
simpler code; however, it turns into a disadvantage when a type is interpreted incorrectly and you have to
spend a lot of time debugging it.

Scripting support in Java lets you take advantage of both worlds: it allows you to use the Java
programming language for developing statically typed, scalable, and high-performance parts of the
application and use a scripting language that fits the domain-specific needs for other parts.

I use the term script engine frequently in this chapter. A script engine is a software component that
executes programs written in a scripting language. Typically, but not necessarily, a script engine is an
implementation of an interpreter for a scripting language. Interpreters for several scripting languages have
been implemented in Java. They expose programming interfaces so a Java program may interact with them.

JDK7 was co-bundled with a script engine called Rhino JavaScript. JDK8 replaced the Rhino JavaScript
engine with a lightweight, faster script engine called Nashorn JavaScript. This chapter discusses Nashorn
JavaScript, not Rhino JavaScript.

ECMAScript (ES) is a language specification for scripting-language developed by European Computer
Manufacturers Association (ECMA). Several implementations of ES exist, for example, JavaScript,
JScript, and Nashorn JavaScript. You can access the latest information on ECMAScript at http://www.
ecma-international.org/publications/standards/Ecma-262.htm. The latest version of ECMAScript
is ECMAScript 8 (ES8) or ECMAScript 2017. Nashorn JavaScript in JDK 8u40 had added support for three
ES6 features: let, const, and block scope. In JDK9, Nashorn JavaScript supports ECMAScript 6 (ES6) or
ECMAScript 2015 partially. The ES6 supported features in JDK9 are as follows:

•	 Template strings

•	 let, const, and block scope

•	 Iterators and for..of loops

•	 Map, Set, WeakMap, and WeakSet

•	 Symbols

•	 Binary and octal literals

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Chapter 9 ■ SCripting in Java

653

 ■ Tip eS6 support in nashorn is not enabled by default. You need to pass the --language=es6 argument
to the nashorn engine to enable eS6 support. the following command shows how to enable eS6 support in
nashorn from the command line:

java -Dnashorn.args=--language=es6 <other-options>

Java includes a command-line shell called jrunscript that can be used to run scripts in an interactive
mode or a batch mode. The jrunscript shell is scripting-language-neutral; the default language is Nashorn.
I discuss the jrunscript shell in detail later in this chapter. JDK8 included another command-line tool
called jjs that invokes the Nashorn engine and offers Nashorn-specific command-line options. If you are
using Nashorn, you should use the jjs command-line tool over jrunscript. I discuss the jjs command-
line tool later in this chapter.

Java can execute scripts in any scripting language that provides an implementation for a script engine.
For example, Java can execute scripts written in Nashorn JavaScript, Rhino JavaScript, Groovy, Jython, JRuby,
etc. Examples in this chapter use the Nashorn JavaScript language.

In this chapter, the terms “Nashorn,” “Nashorn Engine,” “Nashorn JavaScript,” “Nashorn JavaScript
Engine,” “Nashorn Scripting Language,” and “JavaScript” have been used synonymously.

Executing Your First Script
In this section, you will use Nashorn to print a message on the standard output. The same steps can be used to print
a message using any other scripting languages, with one difference: you will need to use the scripting language-
specific code to print the message. You need to perform the following three steps to run a script in Java:

•	 Create a script engine manager.

•	 Get an instance of a script engine from the script engine manager.

•	 Call the eval() method of the script engine to execute a script.

A script engine manager is an instance of the ScriptEngineManager class.

// Create an script engine manager
ScriptEngineManager manager = new ScriptEngineManager();

An instance of the ScriptEngine interface represents a script engine in a Java program. The
getEngineByName(String engineShortName) method of the ScriptEngineManager returns an instance of a
script engine. To get an instance of the Nashorn engine, use JavaScript as the short name of the engine as
shown:

// Get the reference of the Nashorn engine
ScriptEngine engine = manager.getEngineByName("JavaScript");

 ■ Tip the short name of a script engine is case-sensitive. Sometimes a script engine has multiple short
names. nashorn engine has the following short names: nashorn, Nashorn, js, JS, JavaScript, javascript,
ECMAScript, and ecmascript. You can use any of these short names of an engine to get its instance using the
getEngineByName() method of the ScriptEngineManager class.

Chapter 9 ■ SCripting in Java

654

In Nashorn, the print() function prints a message on the standard output. A string literal in Nashorn is
a sequence of characters enclosed in single or double quotes. The following snippet of code stores a Nashorn
script in a Java String object that prints Hello Scripting! to the standard output:

// Store a Nashorn script in a String
String script = "print('Hello Scripting!')";

If you want to use double quotes to enclose the string literal in Nashorn, the statement will look as
shown:

// Store a Nashorn script in a String
String script = "print(\"Hello Scripting!\")";

To execute the script, you need to pass the script to the eval() method of the script engine. A script
engine may throw a ScriptException when it runs a script. For this reason, you need to handle this
exception when you call the eval() method of the ScriptEngine. The following snippet of code executes the
script stored in the script variable:

try {
 engine.eval(script);
} catch (ScriptException e) {
 e.printStackTrace();
}

Listing 9-2 contains the complete code for the program to print a message on the standard output.

Listing 9-2. Printing a Message on the Standard Output Using Nashorn

// HelloScripting.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class HelloScripting {
 public static void main(String[] args) {
 // Create a script engine manager
 ScriptEngineManager manager = new ScriptEngineManager();

 // Obtain a Nashorn script engine from the manager
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Store the Nashorn script in a String
 String script = "print('Hello Scripting!')";

 try {
 // Execute the script
 engine.eval(script);
 } catch (ScriptException e) {

Chapter 9 ■ SCripting in Java

655

 e.printStackTrace();
 }
 }
}

Hello Scripting!

Using Other Scripting Languages
It is very simple to use a scripting language, other than Nashorn, in a Java program. You need to perform
only one task before you can use a script engine: include the JAR files for a particular script engine in your
application module path. Implementers of the script engines provide those JAR files.

JDK9 service provider mechanism will list all script engines whose modular JAR or JAR files have been
included in the application’s module path. An instance of the ScriptEngineFactory interface is used to
create and describe a script engine. The provider of a script engine provides an implementation for the
ScriptEngineFactory interface. The getEngineFactories() method of the ScriptEngineManager returns a
List<ScriptEngineFactory> of all available script engines factories. The getScriptEngine() method of the
ScriptEngineFactory returns an instance of the ScriptEngine. Several other methods of the factory return
metadata about the engine.

Listing 9-3 shows how to print details of all available script engines. The output shows that the script
engine for JRuby is available. It is available because I have added the jruby.jar file, which contains the
script engine for JRuby to the module path on my machine. You can download JRuby script engine from
http://www.jruby.org/. This program is helpful when you have included the JAR files for a script engine in
the module path and you want to know the short name of the script engine. You may get a different output
when you run the program. If you are interested in only using Nashorn, you do not need to install anything
on your machine. Nashorn script engine comes with JDK9.

Listing 9-3. Listing All Available Script Engines

// ListingAllEngines.java
package com.jdojo.script;

import java.util.List;
import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;

public class ListingAllEngines {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();

 // Get the list of all available engines
 List<ScriptEngineFactory> list = manager.getEngineFactories();

 // Print the details of each engine
 for (ScriptEngineFactory f : list) {
 System.out.println("Engine Name:" + f.getEngineName());
 System.out.println("Engine Version:" + f.getEngineVersion());
 System.out.println("Language Name:" + f.getLanguageName());
 System.out.println("Language Version:" + f.getLanguageVersion());
 System.out.println("Engine Short Names:" + f.getNames());

http://www.jruby.org/

Chapter 9 ■ SCripting in Java

656

 System.out.println("Mime Types:" + f.getMimeTypes());
 System.out.println("----------------------------");
 }
 }
}

Engine Name:JSR 223 JRuby Engine
Engine Version:9.1.15.0
Language Name:ruby
Language Version:jruby 9.1.15.0
Engine Short Names:[ruby, jruby]
Mime Types:[application/x-ruby]

Engine Name:Oracle Nashorn
Engine Version:9.0.1
Language Name:ECMAScript
Language Version:ECMA - 262 Edition 5.1
Engine Short Names:[nashorn, Nashorn, js, JS, JavaScript, javascript, ECMAScript,
ecmascript]
Mime Types:[application/javascript, application/ecmascript, text/javascript, text/
ecmascript]

Listing 9-4 shows how to print a message on the standard output using JavaScript, Groovy, Jython, and
JRuby. If a script engine is not available, the program prints a message to that effect. You may get a different
output.

Listing 9-4. Printing a Message on the Standard Output Using Different Scripting Languages

// HelloEngines.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class HelloEngines {
 public static void main(String[] args) {
 // Get the script engine manager
 ScriptEngineManager manager = new ScriptEngineManager();

 // Try executing scripts in Nashorn, Groovy, Jython, and JRuby
 execute(manager, "JavaScript", "print('Hello JavaScript')");
 execute(manager, "Groovy", "println('Hello Groovy')");
 execute(manager, "jython", "print 'Hello Jython'");
 execute(manager, "jruby", "puts('Hello JRuby')");
 }

Chapter 9 ■ SCripting in Java

657

 public static void execute(ScriptEngineManager manager, String engineName,
String script) {

 // Try getting the engine
 ScriptEngine engine = manager.getEngineByName(engineName);
 if (engine == null) {
 System.out.println(engineName + " is not available.");
 return;
 }

 // If we get here, it means we have the engine installed. So, run the script
 try {
 engine.eval(script);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello JavaScript
Groovy is not available.
jython is not available.
Hello JRuby

Sometimes you may want to play with a scripting language just for fun, and you do not know the syntax
that is used to print a message on the standard output. The ScriptEngineFactory class contains a method
named getOutputStatement(String toDisplay) that you can use to find the syntax for printing text on the
standard output. The following snippet of code shows how to get the syntax for Nashorn:

// Get the script engine factory for Nashorn
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");
ScriptEngineFactory factory = engine.getFactory();

// Get the script
String script = factory.getOutputStatement("\"Hello JavaScript\"");
System.out.println("Syntax: " + script);

// Evaluate the script
engine.eval(script);

Syntax: print("Hello JavaScript")
Hello JavaScript

For other scripting languages, use their engine factories to get the syntax.

Chapter 9 ■ SCripting in Java

658

Exploring the javax.script Package
The Java Scripting API in Java consists of a small number of classes and interfaces. They are in the javax.
script package in the java.scripting module. This section contains a brief description of classes and
interfaces in this package. I discuss their usage in subsequent sections.

The ScriptEngine and ScriptEngineFactory Interfaces
The ScriptEngine interface is the main interface in the Java Scripting API whose instances facilitate the
execution of scripts written in a particular scripting language.

The implementer of the ScriptEngine interface also provides an implementation of the
ScriptEngineFactory interface. A ScriptEngineFactory performs two tasks:

•	 It creates instances of the script engine.

•	 It provides information about the script engine such as engine name, version,
language, etc.

The AbstractScriptEngine Class
AbstractScriptEngine is an abstract class. It provides a partial implementation for the ScriptEngine
interface. You will not use this class directly unless you are implementing a script engine.

The ScriptEngineManager Class
The ScriptEngineManager class provides a discovery and instantiation mechanism for script engines. It also
maintains a mapping of key-value pairs as an instance of the Bindings interface storing state that is shared
by all script engines that it creates.

The Compilable Interface and the CompiledScript Class
The Compilable interface may optionally be implemented by a script engine that allows compiling scripts
for their repeated execution without recompilation.

The CompiledScript class is declared abstract. It is extended by the providers of a script engine. It
stores a script in a compiled form, which may be executed repeatedly without recompilation. Note that
using a ScriptEngine to execute a script repeatedly causes the script to recompile every time, thus slowing
down the performance. A script engine is not required to support script compilation. It must implement the
Compilable interface if it supports script compilation.

The Invocable Interface
The Invocable interface may optionally be implemented by a script engine that may allow invoking
procedures, functions, and methods in scripts that have been compiled previously.

Chapter 9 ■ SCripting in Java

659

The Bindings Interface and the SimpleBindings Class
An instance of a class that implements the Bindings interface is a mapping of key-value pairs with a
restriction that a key must be non-null, non-empty String. It extends the java.util.Map interface. The
SimpleBindings class is an implementation of the Bindings interface.

The ScriptContext Interface and the SimpleScriptContext Class
An instance of the ScriptContext interface acts as a bridge between the Java host application and the script
engine. It is used to pass the execution context of the Java host application to the script engine. The script
engine may use the context information while executing a script. A script engine may store its state in an
instance of a class that implements the ScriptContext interface, which may be accessible to the Java host
application.

The SimpleScriptContext class is an implementation of the ScriptContext interface.

The ScriptException Class
The ScriptException class is an exception class. A script engine throws a ScriptException if an error
occurs during the execution, compilation, or invocation of a script. The class contains three useful methods
called getLineNumber(), getColumnNumber(), and getFileName(). These methods report the line number,
the column number, and the file name of the script in which the error occurs. The ScriptException class
overrides the getMessage() method of the Throwable class and includes the line number, column number,
and the file name in the message that it returns.

Discovering and Instantiating Script Engines
You can create a script engine using a ScriptEngineFactory or ScriptEngineManager. Who is actually
responsible for creating a script engine: ScriptEngineFactory, ScriptEngineManager, or both? The short
answer is that a ScriptEngineFactory is always responsible for creating instances of a script engine. The
next question is “What is the role of a ScriptEngineManager?”

A ScriptEngineManager uses the service provider mechanism to locate all available script engine
factories. The service provider mechanism has been covered in Chapter 14 of the second volume of this
3-volume series.

A ScriptEngineManager locates and instantiates all available ScriptEngineFactory classes.
You can get a list of instances of all factory classes using the getEngineFactories() method of the
ScriptEngineManager class. When you call a method of the manager to get a script engine based on a
criterion such as the getEngineByName(String shortName) method to get an engine by name, the manager
searches all factories for that criterion and returns the matching script engine reference. If no factories are
able to provide a matching engine, the manager returns null. Refer to Listing 9-3 for more details on listing
all available factories and describing script engines that they can create.

Now you know that a ScriptEngineManager does not create instances of a script engine. Rather, it queries
all available factories and passes the reference of a script engine created by the factory back to the caller.

To make the discussion complete, let’s add a twist to the ways a script engine can be created. You can
create an instance of a script engine in three ways:

•	 Instantiate the script engine class directly.

•	 Instantiate the script engine factory class directly and call its getScriptEngine()
method.

•	 Use one of the getEngineByXxx() methods of the ScriptEngineManager class.

http://dx.doi.org/10.1007/978-1-4842-3546-1_14

Chapter 9 ■ SCripting in Java

660

It is advised to use the ScriptEngineManager class to get instances of a script engine. This method
allows all engines created by the same manager to share a state that is a set of key-value pairs stored as an
instance of the Bindings interface. The ScriptEngineManager instance stores this state. Using this method
also makes your code unaware of the actual script engine/factory implementation class.

 ■ Tip it is possible to have more than one instance of the ScriptEngineManager class in an application. in
that case, each ScriptEngineManager instance maintains a state common to all engines that it creates. that
is, if two engines are obtained by two different instances of the ScriptEngineManager class, those engines will
not share a common state maintained by their managers unless you make that happen programmatically.

Executing Scripts
A ScriptEngine can execute a script in a String and a Reader. Using a Reader, you can execute a script
stored on the network or in a file. One of the following versions of the eval() method of the ScriptEngine is
used to execute a script:

•	 Object eval(String script)

•	 Object eval(Reader reader)

•	 Object eval(String script, Bindings bindings)

•	 Object eval(Reader reader, Bindings bindings)

•	 Object eval(String script, ScriptContext context)

•	 Object eval(Reader reader, ScriptContext context)

The first argument of the eval() method is the source of the script. The second argument lets you
pass information from the host application to the script engine that can be used during the execution of the
script.

In Listing 9-2, you saw how to use a String to execute a script using the first version of the eval()
method. In this section, you will store your script in a file and use a Reader object as the source of the script,
which will use the second version of the eval() method. The next section discusses the other four versions
of the eval() method. Typically, a script file is given a .js extension.

Listing 9-5 shows the contents of a file named helloscript.js. It contains only one statement in
Nashorn that prints a message on the standard output.

Listing 9-5. The Contents of the helloscript.js File

// Print a message
print('Hello from JavaScript!');

Listing 9-6 has the Java program that executes the script stored in the helloscript.js file, which should
be stored in the scripts sub-directory in the current directory. If the script file is not found, the program
prints the full path of the helloscript.js file where it is expected. If you have trouble executing the script
file, try using the absolute path in the main() method such as C:\scripts\helloscript.js on Windows,
assuming that the helloscript.js file is saved in the C:\scripts directory. All scripts used in examples in
this chapter are provided under the Java9APIsAndModules\scripts directory in the source code.

Chapter 9 ■ SCripting in Java

661

Listing 9-6. Executing a Script Stored in a File

// ReaderAsSource.java
package com.jdojo.script;

import java.io.IOException;
import java.io.Reader;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class ReaderAsSource {
 public static void main(String[] args) {
 // Construct the script file path
 String scriptFileName = "scripts/helloscript.js";
 Path scriptPath = Paths.get(scriptFileName);

 // Make sure the script file exists. If not, print the full path of
 // the script file and terminate the program.
 if (!Files.exists(scriptPath)) {
 System.out.println(scriptPath.toAbsolutePath() + " does not exist.");
 return;
 }

 // Get the Nashorn script engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 try {
 // Get a Reader for the script file
 Reader scriptReader = Files.newBufferedReader(scriptPath);

 // Execute the script in the file
 engine.eval(scriptReader);
 } catch (IOException | ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello from JavaScript!

In a real-world application, you should store all scripts in files that allow modifying scripts without
modifying and recompiling your Java code. You will not follow this rule in most of the examples in this
chapter; you will store your scripts in String objects to keep the code short and simple.

Chapter 9 ■ SCripting in Java

662

Passing Parameters
The Java Scripting API allows you to pass parameters from the host environment (Java application) to
the script engine and vice versa. In this section, you will see the technical details of parameter passing
mechanisms between the host application and the script engine.

Passing Parameters from Java Code to Scripts
A Java program may pass parameters to scripts. A Java program may also access global variables declared in
a script after the script is executed. Let’s discuss a simple example of this kind where a Java program passes a
parameter to a script. Consider the program in Listing 9-7 that passes a parameter to a script.

Listing 9-7. Passing Parameters from a Java Program to Scripts

// PassingParam.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class PassingParam {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Store the script in a String. Here, msg is a variable
 // that we have not declared in the script
 String script = "print(msg)";

 try {
 // Store a parameter named msg in the engine
 engine.put("msg", "Hello from the Java program");

 // Execute the script
 engine.eval(script);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Hello from the Java program

The program stores a script in a String as follows:

// Store the script in a String
String script = "print(msg)";

Chapter 9 ■ SCripting in Java

663

In the statement, the script is

print(msg)

Note that msg is a variable used in the print() function call. The script does not declare the msg variable
or assign it a value. If you try to execute this script without telling the engine what the msg variable is, the
engine will throw an exception stating that it does not understand the meaning of the variable named msg.
This is where the concept of passing parameters from a Java program to a script engine comes into play.

You can pass a parameter to a script engine in several ways. The simplest way is to use the put(String
paramName, Object paramValue) method of the script engine, which accepts two arguments:

•	 The first argument is the name of the parameter, which needs to match the name of
the variable in the script.

•	 The second argument is the value of the parameter.

In your case, you want to pass a parameter named msg to the script engine and its value is a String. The
call to the put() method is

// Store the value of the msg parameter in the engine
engine.put("msg", "Hello from Java program");

Note that you must call the put() method of the engine before calling the eval() method. In your case,
when the engine attempts to execute print(msg), it will use the value of the msg parameter that you passed
to the engine.

Most script engines let you use the parameter names that you pass to it as the variable name in the
script. You saw this kind of example when you passed the value of the parameter named msg and used it as a
variable name in the script in Listing 9-7. A script engine may have a requirement for declaring variables in
scripts, for example, a variable name must start with a $ prefix in PHP and a global variable name contains
a $ prefix in JRuby. If you want to pass a parameter named msg to a script in JRuby, your code would be as
shown:

// Get the JRuby script engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("jruby");

// Must use the $ prefix in JRuby script
String script = "puts($msg)";

// No $ prefix used in passing the msg parameter to the JRuby engine
engine.put("msg", "Hello from Java");

// Execute the script
engine.eval(script);

Properties and methods of Java objects passed to scripts can be accessed in scripts, as they are accessed
in Java code. Different scripting languages use different syntax to access Java objects in scripts. For example,
you can use the expression msg.toString() in the example shown in Listing 9-7 and the output will be
the same. In this case, you are calling the toString() method of the variable msg. Change the statement
that assigns the value to the script variable in Listing 9-7 to the following and run the program, which will
produce the same output:

String script = "println(msg.toString())";

Chapter 9 ■ SCripting in Java

664

Passing Parameters from Scripts to Java Code
A script engine may make variables in its global scope available to the Java code. The get(String
variableName) method of a ScriptEngine is used to access those variables in Java code. It returns a Java
Object. The declaration of a global variable is scripting-language-dependent. The following snippet of code
declares a global variable and assigns it a value in JavaScript:

// Declare a variable named year in Nashorn
var year = 1969;

Listing 9-8 contains a program that shows how to access a global variable in Nashorn from Java code.

Listing 9-8. Accessing Script Global Variables in Java Code

// AccessingScriptVariable.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class AccessingScriptVariable {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Write a script that declares a global variable named year and
 // assign it a value of 1969.
 String script = "var year = 1969";

 try {
 // Execute the script
 engine.eval(script);

 // Get the year global variable from the engine
 Object year = engine.get("year");

 // Print the class name and the value of the variable year
 System.out.println("year's class: " + year.getClass().getName());
 System.out.println("year's value: " + year);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

year's class: java.lang.Integer
year's value: 1969

Chapter 9 ■ SCripting in Java

665

The program declares a global variable year in the script and assigns it a value of 1969 as shown:

String script = "var num = 1969";

When the script is executed, the engine adds the year variable to its state. In Java code, the get()
method of the engine is used to retrieve the value of the year variable as shown:

Object year = engine.get("year");

When the year variable was declared in the script, you did not specify its data type. The conversion of
a script variable value to an appropriate Java object is automatically performed. In this case, the value 1969
was evaluated as an Integer.

Advanced Parameter Passing Techniques
To understand the details of the parameter passing mechanism, three terms must be understood clearly:
bindings, scope, and context. These terms are confusing at first. This section explains the parameter passing
mechanism using the following steps:

•	 First, it defines these terms.

•	 Second, it defines the relationship between these terms.

•	 Third, it explains how to use them in Java code.

Bindings
A Bindings is a set of key-value pairs where all keys must be non-empty, non-null strings. In Java code, a
Bindings is an instance of the Bindings interface. The SimpleBindings class is an implementation of the
Bindings interface. A script engine may provide its own implementation of the Bindings interface.

 ■ Tip if you are familiar with the java.util.Map interface, it is easy to understand Bindings. the Bindings
interface inherits from the Map<String,Object> interface. therefore, a Bindings is just a Map with a restriction
that its keys must be non-empty, non-null strings.

Listing 9-9 shows how to use a Bindings. It creates an instance of SimpleBindings, adds some key-value
pairs to it, retrieves the values of the keys, removes a key-value pair, etc. The get() method of the Bindings
interface returns null if the key does not exist or the key exists and its value is null. If you want to test if a key
exists, you need to call its contains() method.

Listing 9-9. Using Bindings Objects

// BindingsTest.java
package com.jdojo.script;

import javax.script.Bindings;
import javax.script.SimpleBindings;

Chapter 9 ■ SCripting in Java

666

public class BindingsTest {
 public static void main(String[] args) {
 // Create a Bindings instance
 Bindings params = new SimpleBindings();

 // Add some key-value pairs
 params.put("msg", "Hello");
 params.put("year", 1969);

 // Get values
 Object msg = params.get("msg");
 Object year = params.get("year");
 System.out.println("msg = " + msg);
 System.out.println("year = " + year);

 // Remove year from Bindings
 params.remove("year");
 year = params.get("year");

 boolean containsYear = params.containsKey("year");
 System.out.println("year = " + year);
 System.out.println("params contains year = " + containsYear);
 }
}

msg = Hello
year = 1969
year = null
params contains year = false

You will not use a Bindings by itself. Often, you will use it to pass parameters from Java code to a script
engine. The ScriptEngine interface contains a createBindings() method that returns an instance of the
Bindings interface. This method gives a script engine a chance to return an instance of the specialized
implementation of the Bindings interface. You can use this method as shown:

// Get the Nashorn engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");

// Do not instantiate SimpleBindings class directly.
// Use the createBindings() method of the engine to create a Bindings.
Bindings params = engine.createBindings();

// Work with params as usual

Scope
Let’s move to the next term, which is scope. A scope is used for a Bindings. The scope of a Bindings determines
the visibility of its key-value pairs. You can have multiple Bindings occurring in multiple scopes. However, one
Bindings may occur only in one scope. How do you specify the scope for a Bindings? I cover this shortly.

Chapter 9 ■ SCripting in Java

667

Using the scope for a Bindings lets you define parameter variables for script engines in a hierarchical
order. If a variable name is searched in an engine state, the Bindings with a higher precedence is searched
first, followed by Bindings with lower precedence. The first found value of the variable is returned. The Java
Scripting API defines two scopes. They are defined as two int constants in the ScriptContext interface.
They are

•	 ScriptContext.ENGINE_SCOPE

•	 ScriptContext.GLOBAL_SCOPE

The engine scope has higher precedence than the global scope. If you add two key-value pairs with the
same key to two Bindings—one in engine scope and one in global scope—the key-value pair in the engine
scope will be used whenever a variable with the same name as the key has to be resolved.

Understanding the role of the scope for a Bindings is so important that I run through another analogy to
explain it. Think about a Java class that has two sets of variables: one set contains all instance variables in the
class and another contains all local variables in a method. These two sets of variables with their values are
two Bindings. The type of variables in these Bindings defines the scope. Just for the sake of this discussion,
I define two scopes: instance scope and local scope. When a method is executed, a variable name is looked
up in the local scope Bindings first because the local variables take precedence over instance variables. If a
variable name is not found in the local scope Bindings, it is looked up in the instance scope Bindings. When
a script is executed, Bindings and their scopes play a similar role.

Defining the Script Context
A script engine executes a script in a context. You can think of the context as the environment in which a
script is executed. A Java host application provides two things to a script engine: a script and the context in
which the script needs to be executed. An instance of the ScriptContext interface represents the context
for a script. The SimpleScriptContext class is an implementation of the ScriptContext interface. A script
context consists of four components:

•	 A set of Bindings, where each Bindings is associated with a different scope

•	 A Reader that is used by the script engine to read inputs

•	 A Writer that is used by the script engine to write outputs

•	 An error Writer that is used by the script engine to write error outputs

The set of Bindings in a context is used to pass parameters to the script. The reader and writers in a
context control input source and output destinations of the script, respectively. For example, by setting a file
writer as a writer, you can send all outputs from a script to a file.

Each script engine maintains a default script context, which it uses to execute scripts. So far, you have
executed several scripts without providing script contexts. In those cases, script engines were using their
default script contexts to execute scripts. In this section, I cover how to use a ScriptContext by itself. In the
next section, I cover how a ScriptContext is passed to a ScriptEngine during script execution.

You can create an instance of the ScriptContext interface using the SimpleScriptContext class:

// Create a script context
ScriptContext ctx = new SimpleScriptContext();

An instance of the SimpleScriptContext class maintains two instances of Bindings: one for engine
scope and one for global scope. The Bindings in the engine scope is created when you create the instance
of the SimpleScriptContext. To work with the global scope Bindings, you will need to create an instance of
the Bindings interface.

Chapter 9 ■ SCripting in Java

668

By default, the SimpleScriptContext class initializes the input reader, the output writer, and the error
writer for the context to the standard input System.in, the standard output System.out, and standard
error output System.err, respectively. You can use the getReader(), getWriter(), and getErrorWriter()
methods of the ScriptContext interface to get the references of the reader, writer, and the error writer from
the ScriptContext, respectively. Setter methods are also provided to set a reader and writers. The following
snippet of code shows how to obtain the reader and writers. It also shows how to set a writer to a FileWriter
to write the script output to a file.

// Get the reader and writers from the script context
Reader inputReader = ctx.getReader();
Writer outputWriter = ctx.getWriter();
Writer errWriter = ctx.getErrorWriter();

// Write all script outputs to an out.txt file
Writer fileWriter = new FileWriter("out.txt");
ctx.setWriter(fileWriter);

After you create a SimpleScriptContext, you can start storing key-value pairs in the engine
scope Bindings because an empty Bindings in the engine scope is created when you create the
SimpleScriptContext object. The setAttribute() method is used to add a key-value pair to a Bindings.
You must provide the key name, value, and the scope for the Bindings. The following snippet of code adds
three key-value pairs.

// Add three key-value pairs to the engine scope bindings
ctx.setAttribute("year", 1969, ScriptContext.ENGINE_SCOPE);
ctx.setAttribute("month", 9, ScriptContext.ENGINE_SCOPE);
ctx.setAttribute("day", 19, ScriptContext.ENGINE_SCOPE);

If you want to add key-value pairs to a Bindings in global scope, you will need to create and set the
Bindings first, like so:

// Add a global scope Bindings to the context
Bindings globalBindings = new SimpleBindings();
ctx.setBindings(globalBindings, ScriptContext.GLOBAL_SCOPE);

Now you can add key-value pairs to the Bindings in global scope using the setAttribute() method,
like so:

// Add two key-value pairs to the global scope bindings
ctx.setAttribute("year", 1982, ScriptContext.GLOBAL_SCOPE);
ctx.setAttribute("name", "Boni", ScriptContext.GLOBAL_SCOPE);

Chapter 9 ■ SCripting in Java

669

At this point, you can visualize the state of the ScriptContext instance, as shown in Figure 9-1.

Figure 9-1. A pictorial view of an instance of the SimpleScriptContext class

You can perform several operations on a ScriptContext. You can set a different value for an already
stored key using the setAttribute(String name, Object value, int scope) method. You can remove
a key-value pair using the removeAttribute(String name, int scope) method for a specified key and
a scope. You can get the value of a key in the specified scope using the getAttribute(String name, int
scope) method.

The most interesting thing that you can do with a ScriptContext is to retrieve a key-value without
specifying its scope using its getAttribute(String name) method. A ScriptContext searches for the key
in the engine scope Bindings first. If it is not found in the engine scope, the Bindings in the global scope is
searched. If the key is found in these scopes, the corresponding value from the scope, in which it is found
first, is returned. If neither scope contains the key, null is returned.

In your example, you have stored the key named year in the engine scope as well as in the global scope.
The following snippet of code returns 1969 for the key year from the engine scope as the engine scope is
searched first. The return type of the getAttribute() method is Object.

// Get the value of the key year without specifying the scope.
// It returns 1969 from the Bindings in the engine scope.
int yearValue = (Integer) ctx.getAttribute("year");

You have stored the key named name only in the global scope. If you attempt to retrieve its value, the
engine scope is searched first, which does not return a match. Subsequently, the global scope is searched
and the value "Boni" is returned as shown:

// Get the value of the key named name without specifying the scope.
// It returns "Boni" from the Bindings in the global scope.
String nameValue = (String) ctx.getAttribute("name");

You can also retrieve the value of a key in a specific scope. The following snippet of code retrieves values
for the key “year” from the engine scope and the global scope:

// Assigns 1969 to engineScopeYear and 1982 to globalScopeYear
int engineScopeYear = (Integer) ctx.getAttribute("year", ScriptContext.ENGINE_SCOPE);
int globalScopeYear = (Integer) ctx.getAttribute("year", ScriptContext.GLOBAL_SCOPE);

Chapter 9 ■ SCripting in Java

670

 ■ Tip the Java Scripting api defines only two scopes: engine and global. a subinterface of the
ScriptContext interface may define additional scopes. the getScopes() method of the ScriptContext
interface returns a list of supported scopes as a List<Integer>. note that a scope is represented as an integer.
the two constants in the ScriptContext interface—ENGINE_SCOPE and GLOBAL_SCOPE—are assigned values
100 and 200, respectively. When a key is searched in multiple Bindings occurring in multiple scopes, the scope
with the lower integer value is searched first. Because the value 100 for the engine scope is lower than the
value 200 for the global scope, the engine scope is searched for a key first when you do not specify the scope.

Listing 9-10 shows how to work with an instance of a class implementing the ScriptContext interface.
Note that you do not use a ScriptContext in your application by itself. It is used by script engines during
script execution. Most often, you manipulate a ScriptContext indirectly through a ScriptEngine and a
ScriptEngineManager, which are discussed in detail in the next section.

Listing 9-10. Using an Instance of the ScriptContext Interface

// ScriptContextTest.java
package com.jdojo.script;

import java.util.List;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.SimpleBindings;
import javax.script.SimpleScriptContext;
import static javax.script.ScriptContext.ENGINE_SCOPE;
import static javax.script.ScriptContext.GLOBAL_SCOPE;

public class ScriptContextTest {
 public static void main(String[] args) {
 // Create a script context
 ScriptContext ctx = new SimpleScriptContext();

 // Get the list of scopes supported by the script context
 List<Integer> scopes = ctx.getScopes();
 System.out.println("Supported Scopes: " + scopes);

 // Add three key-value pairs to the engine scope bindings
 ctx.setAttribute("year", 1969, ENGINE_SCOPE);
 ctx.setAttribute("month", 9, ENGINE_SCOPE);
 ctx.setAttribute("day", 19, ENGINE_SCOPE);

 // Add a global scope Bindings to the context
 Bindings globalBindings = new SimpleBindings();
 ctx.setBindings(globalBindings, GLOBAL_SCOPE);

 // Add two key-value pairs to the global scope bindings
 ctx.setAttribute("year", 1982, GLOBAL_SCOPE);
 ctx.setAttribute("name", "Boni", GLOBAL_SCOPE);

Chapter 9 ■ SCripting in Java

671

 // Get the value of year without specifying the scope
 int yearValue = (Integer) ctx.getAttribute("year");
 System.out.println("yearValue = " + yearValue);

 // Get the value of name
 String nameValue = (String) ctx.getAttribute("name");
 System.out.println("nameValue = " + nameValue);

 // Get the value of year from engine and global scopes
 int engineScopeYear = (Integer) ctx.getAttribute("year", ENGINE_SCOPE);
 int globalScopeYear = (Integer) ctx.getAttribute("year", GLOBAL_SCOPE);

 System.out.println("engineScopeYear = " + engineScopeYear);
 System.out.println("globalScopeYear = " + globalScopeYear);
 }
}

Supported Scopes: [100, 200]
yearValue = 1969
nameValue = Boni
engineScopeYear = 1969
globalScopeYear = 1982

Putting Them Together
In this section, I show you how instances of Bindings and their scopes, ScriptContext, ScriptEngine,
ScriptEngineManager, and the host application work together. The focus is on how to manipulate the key-
value pairs stored in Bindings in different scopes using a ScriptEngine and a ScriptEngineManager.

A ScriptEngineManager maintains a set of key-value pairs in a Bindings. It lets you work with those
key-value pairs using the following methods:

•	 void put(String key, Object value)

•	 Object get(String key)

•	 void setBindings(Bindings bindings)

•	 Bindings getBindings()

The put() method adds a key-value pair to the Bindings. The get() method returns the value for the
specified key; it returns null if the key is not found. The Bindings for an engine manager can be replaced
using the setBindings() method. The getBindings() method returns the reference of the Bindings of the
ScriptEngineManager.

Every ScriptEngine, by default, has a ScriptContext known as its default context. Recall that, besides
readers and writers, a ScriptContext has two Bindings: one in the engine scope and one in the global
scope. When a ScriptEngine is created, its engine scope Bindings is empty and its global scope Bindings
refers to the Bindings of the ScriptEngineManager that created it.

By default, all instances of the ScriptEngine created by a ScriptEngineManager share the Bindings of
the ScriptEngineManager. It is possible to have multiple instances of ScriptEngineManager in the same Java
application. In that case, all instances of ScriptEngine created by the same ScriptEngineManager share the
Bindings of the ScriptEngineManager as their global scope Bindings for their default contexts.

Chapter 9 ■ SCripting in Java

672

The following snippet of code creates a ScriptEngineManager, which is used to create three instances of
ScriptEngine:

// Create a ScriptEngineManager
ScriptEngineManager manager = new ScriptEngineManager();

// Create three ScriptEngines using the same ScriptEngineManager
ScriptEngine engine1 = manager.getEngineByName("JavaScript");
ScriptEngine engine2 = manager.getEngineByName("JavaScript");
ScriptEngine engine3 = manager.getEngineByName("JavaScript");

Now, let’s add three key-value pairs to the Bindings of the ScriptEngineManager and two key-value
pairs to the engine scope Bindings of each ScriptEngine.

// Add three key-value pairs to the Bindings of the manager
manager.put("K1", "V1");
manager.put("K2", "V2");
manager.put("K3", "V3");

// Add two key-value pairs to each engine
engine1.put("KE11", "VE11");
engine1.put("KE12", "VE12");
engine2.put("KE21", "VE21");
engine2.put("KE22", "VE22");
engine3.put("KE31", "VE31");
engine3.put("KE32", "VE32");

Figure 9-2 shows a pictorial view of the state of the ScriptEngineManager and three ScriptEngines
after the previous snippet of code is executed. It is evident from the figure that the default contexts of all
ScriptEngines share the Bindings of the ScriptEngineManager as their global scope Bindings.

Figure 9-2. A pictorial view of three ScriptEngines created by a ScriptEngineManager

Chapter 9 ■ SCripting in Java

673

The Bindings in a ScriptEngineManager can be modified in the following ways:

•	 By using the put() method of the ScriptEngineManager

•	 By getting the reference of the Bindings using the getBindings() method of the
ScriptEngineManager, and then using the put() and remove() methods on the
Bindings

•	 By getting the reference of the Bindings in the global scope of the default context
of a ScriptEngine using its getBindings() method, and then using the put() and
remove() methods on the Bindings

When the Bindings in a ScriptEngineManager is modified, the global scope Bindings in the default
context of all ScriptEngines created by this ScriptEngineManager are modified because they share the
same Bindings.

The default context of each ScriptEngine maintains an engine scope Bindings separately. To add a
key-value pair to the engine scope Bindings of a ScriptEngine, use its put() method as shown:

ScriptEngine engine1 = null; // get an engine

// Add an "engineName" key with its value as "Engine-1" to the
// engine scope Bindings of the default context of engine1
engine1.put("engineName", "Engine-1");

The get(String key) method of the ScriptEngine returns the value of the specified key from its
engine scope Bindings. The following statement returns "Engine-1", which is the value for the engineName
key.

String eName = (String) engine1.get("engineName");

It is a two-step process to get to the key-value pairs of the global scope Bindings in the default context
of a ScriptEngine. First, you need to get the reference of the global scope Bindings using its getBindings()
method as shown:

Bindings e1Global = engine1.getBindings(ScriptContext.GLOBAL_SCOPE);

Now you can modify the global scope Bindings of the engine using the e1Global reference. The
following statement adds a key-value pair to the e1Global Bindings:

e1Global.put("id", 89999);

Because of the sharing of the global scope Bindings of a ScriptEngine by all ScriptEngines, this
snippet of code will add the key “id” with its value to the global scope Bindings of the default context of all
ScriptEngines created by the same ScriptEngineManager that created engine1. Modifying the Bindings
in a ScriptEngineManager using the previous code is not recommended. You should modify the Bindings
using the ScriptEngineManager reference instead, which makes the logic clearer to the readers of the code.
Listing 9-11 demonstrates the concepts discussed in this section.

Chapter 9 ■ SCripting in Java

674

Listing 9-11. Using Global and Engine Scope Bindings of Engines Created by the Same
ScriptEngineManager

// GlobalBindings.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class GlobalBindings {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();

 // Add two numbers to the Bindings of the manager - shared by all its engines
 manager.put("n1", 100);
 manager.put("n2", 200);

 // Create two JavaScript engines and add the name of the engine
 // in the engine scope of the default context of the engines
 ScriptEngine engine1 = manager.getEngineByName("JavaScript");
 engine1.put("engineName", "Engine-1");

 ScriptEngine engine2 = manager.getEngineByName("JavaScript");
 engine2.put("engineName", "Engine-2");

 // Execute a script that adds two numbers and prints the result
 String script = "var sum = n1 + n2; print(engineName + ' - Sum = ' + sum)";

 try {
 // Execute the script in two engines
 engine1.eval(script);
 engine2.eval(script);

 // Now add a different value for n2 for each engine
 engine1.put("n2", 1000);
 engine2.put("n2", 2000);

 // Execute the script in two engines again
 engine1.eval(script);
 engine2.eval(script);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Engine-1 - Sum = 300
Engine-2 - Sum = 300
Engine-1 - Sum = 1100
Engine-2 - Sum = 2100

Chapter 9 ■ SCripting in Java

675

A ScriptEngineManager adds two key-value pairs with keys n1 and n2 to its Bindings. Two
ScriptEngines are created; they add a key called engineName to their engine scope Bindings. When the
script is executed, the value of the engineName variable in the script is used from the engine scope of the
ScriptEngine. The values for variables n1 and n2 in the script are retrieved from the global scope Bindings
of the ScriptEngine. After executing the script for the first time, each ScriptEngine adds a key called n2
with a different value to their engine scope Bindings. When you execute the script for the second time, the
value for the n1 variable is retrieved from the global scope Bindings of the engine, whereas the value for the
variable n2 is retrieved from the engine scope Bindings as shown in the output.

The story of the global scope Bindings shared by all ScriptEngines that are created by a
ScriptEngineManager is not over yet. It is as complex, and confusing, as it can get! Now the focus will be
on the effects of using the setBindings() method of ScriptEngineManager class and the ScriptEngine
interface. Consider the following snippet of code:

// Create a ScriptEngineManager and two ScriptEngines
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine1 = manager.getEngineByName("JavaScript");
ScriptEngine engine2 = manager.getEngineByName("JavaScript");

// Add two key-value pairs to the manager
manager.put("n1", 100);
manager.put("n2", 200);

Figure 9-3 shows the state of the engine manager and its engines after this script is executed. At this
point, there is only one Bindings stored in the ScriptEngineManager and two ScriptEngines are referring to
it as their global scope Bindings.

Figure 9-3. Initial state of ScriptEngineManager and two ScriptEngines

Let’s create a new Bindings and set it as the Bindings for the ScriptEngineManager using its
setBindings() method, like so:

// Create a Bindings, add two key-value pairs to it, and set it as the new Bindings
// for the manager
Bindings newGlobal = new SimpleBindings();
newGlobal.put("n3", 300);
newGlobal.put("n4", 400);
manager.setBindings(newGlobal);

Chapter 9 ■ SCripting in Java

676

Figure 9-4 shows the state of the ScriptEngineManager and two ScriptEngines after the previous
snippet of code is executed. Notice that the ScriptEngineManager has a new Bindings and the two
ScriptEngines are still referring to the old Bindings as their global scope Bindings.

Figure 9-5. States of ScriptEngineManager and three ScriptEngines after the third ScriptEngine is created

Figure 9-4. State of ScriptEngineManager and two ScriptEngines after a new Bindings is set to the
ScriptEngineManager

At this point, any changes made to the Bindings of the ScriptEngineManager will not be reflected in the
global scope Bindings of the two ScriptEngines. You can still make changes to the Bindings shared by the
two ScriptEngines and both ScriptEngines will see the changes made by either of them.

Let’s create a new ScriptEngine as shown:

// Create a new ScriptEngine
ScriptEngine engine3 = manager.getEngineByName("JavaScript");

Recall that a ScriptEngine gets a global scope Bindings at the time it is created and that Bindings is
the same as the Bindings of the ScriptEngineManager. The states of the ScriptEngineManager and three
ScriptEngines, after the previous statement is executed, are shown in Figure 9-5.

Chapter 9 ■ SCripting in Java

677

Here is another twist to the so-called “globalness” of the global scope of ScriptEngines. This time, you
will use the setBindings() method of a ScriptEngine to set its global scope Bindings.

// Set a new Bindings for the global scope of engine1
Bindings newGlobalEngine1 = new SimpleBindings();
newGlobalEngine1.put("n5", 500);
newGlobalEngine1.put("n6", 600);
engine1.setBindings(newGlobalEngine1, ScriptContext.GLOBAL_SCOPE);

Figure 9-6 shows the states of the ScriptEngineManager and three ScriptEngines after the following
snippet of code is executed.

Figure 9-6. States of ScriptEngineManager and three ScriptEngines after a new global scope bindings is set for
engine1

 ■ Tip By default, all ScriptEngines that a ScriptEngineManager creates share its Bindings as their
global scope Bindings. if you use the setBindings() method of a ScriptEngine to set its global scope
Bindings or if you use the setBindings() method of a ScriptEngineManager to set its Bindings, you break
the “globalness” chain as discussed in this section. to keep the “globalness” chain intact, you should always
use the put() method of the ScriptEngineManager to add key-value pairs to its Bindings. to remove a key-
value pair from the global scope of all ScriptEngines created by a ScriptEngineManager, you need to get
the reference of the Bindings using the getBindings() method of the ScriptEngineManager and use the
remove() method on the Bindings.

Using a Custom ScriptContext
In the previous section, you saw that each ScriptEngine has a default script context. The get(), put(),
getBindings(), and setBindings() methods of the ScriptEngine operate on its default ScriptContext.
When no ScriptContext is specified to the eval() method of the ScriptEngine, the default context of the

Chapter 9 ■ SCripting in Java

678

engine is used. The following two versions of the eval() method of the ScriptEngine use its default context
to execute the script:

•	 Object eval(String script)

•	 Object eval(Reader reader)

You can pass a Bindings to the following two versions of the eval() method:

•	 Object eval(String script, Bindings bindings)

•	 Object eval(Reader reader, Bindings bindings)

These versions of the eval() method do not use the default context of the ScriptEngine. They use a
new ScriptContext whose engine scope Bindings is the one passed to these methods and the global scope
Bindings is the same as for the default context of the engine. Note that these two versions of the eval()
method keep the default context of the ScriptEngine untouched.

You can pass a ScriptContext to the following two versions of the eval() method:

•	 Object eval(String script, ScriptContext context)

•	 Object eval(Reader reader, ScriptContext context)

These versions of the eval() method use the specified context to execute the script. They keep the
default context of the ScriptEngine untouched.

The three sets of the eval() method let you execute scripts using different isolation levels:

•	 The first set lets you share the default context by all scripts.

•	 The second set lets scripts use different engine scope Bindings and share the global
scope Bindings.

•	 The third set lets scripts execute in an isolated ScriptContext.

Listing 9-12 shows how scripts are executed in different isolation levels using the different versions of
the eval() method.

Listing 9-12. Using Different Isolation Levels for Executing Scripts

// CustomContext.java
package com.jdojo.script;

import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;
import javax.script.SimpleScriptContext;
import static javax.script.SimpleScriptContext.ENGINE_SCOPE;
import static javax.script.SimpleScriptContext.GLOBAL_SCOPE;

public class CustomContext {
 public static void main(String[] args) throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

Chapter 9 ■ SCripting in Java

679

 // Add n1 to Bindings of the manager, which will be shared
 // by all engines as their global scope Bindings
 manager.put("n1", 100);

 // Prepare the script
 String script = "var sum = n1 + n2;"
 + "print(msg + "
 + "' n1=' + n1 + ', n2=' + n2 + "
 + "', sum=' + sum);";

 // Add n2 to the engine scope of the default context of the engine
 engine.put("n2", 200);
 engine.put("msg", "Using the default context:");
 engine.eval(script);

 // Use a Bindings to execute the script
 Bindings bindings = engine.createBindings();
 bindings.put("n2", 300);
 bindings.put("msg", "Using a Bindings:");
 engine.eval(script, bindings);

 // Use a ScriptContext to execute the script
 ScriptContext ctx = new SimpleScriptContext();
 Bindings ctxGlobalBindings = engine.createBindings();
 ctx.setBindings(ctxGlobalBindings, GLOBAL_SCOPE);
 ctx.setAttribute("n1", 400, GLOBAL_SCOPE);
 ctx.setAttribute("n2", 500, ENGINE_SCOPE);
 ctx.setAttribute("msg", "Using a ScriptContext:", ENGINE_SCOPE);
 engine.eval(script, ctx);

 // Execute the script again using the default context to prove that the
 // default context is unaffected.
 engine.eval(script);
 }
}

Using the default context: n1=100, n2=200, sum=300
Using a Bindings: n1=100, n2=300, sum=400
Using a ScriptContext: n1=400, n2=500, sum=900
Using the default context: n1=100, n2=200, sum=300

The program uses three variables called msg, n1, and n2. It displays the value stored in the msg variable.
The values of n1 and n2 are added and the sum is displayed. The script prints what values of n1 and n2 were
used in computing the sum. The value of n1 is stored in the Bindings of ScriptEngineManager that is shared
by the default context of all ScriptEngines. The value of n2 is stored in the engine scope of the default
context and the custom contexts. The script is executed twice using the default context of the engine, once in
the beginning and once in the end, to prove that using a custom Bindings or a ScriptContext in the eval()
method does not affect the Bindings in the default context of the ScriptEngine. The program declares a
throws clause in its main() method to keep the code shorter.

Chapter 9 ■ SCripting in Java

680

Return Value of the eval() Method
The eval() method of the ScriptEngine returns an Object, which is the last value in the script. It returns
null if there is no last value in the script. It is error prone, and confusing at the same time, to depend on
the last value in a script. The following snippet of code shows some examples of using the return value of
the eval() method for Nashorn. The comments in the code indicate the returned value from the eval()
method.

Object result = null;

// Assigns 3 to result
result = engine.eval("1 + 2;");

// Assigns 7 to result
result = engine.eval("1 + 2; 3 + 4;");

// Assigns 6 to result
result = engine.eval("1 + 2; 3 + 4; var v = 5; v = 6;");

// Assigns 7 to result
result = engine.eval("1 + 2; 3 + 4; var v = 5;");

// Assigns null to result
result = engine.eval("print(1 + 2)");

It is better not to depend on the returned value from the eval() method. You should pass a Java object
to the script as a parameter and let the script store the returned value of the script in that object. After the
eval() method is executed, you can query that Java object for the returned value.

Listing 9-13 contains the code for a Result class that wraps an integer. You will pass an object of the
Result class to the script that will store the returned value in it. After the script finishes, you can read the
integer value stored in the Result object in your Java code. The Result needs to be declared public so it is
accessible to the script engine.

Listing 9-13. A Result Class That Wraps an Integer

// Result.java
package com.jdojo.script;

public class Result {
 private int val = -1;

 public void setValue(int x) {
 val = x;
 }

 public int getValue() {
 return val;
 }
}

Chapter 9 ■ SCripting in Java

681

The program in Listing 9-14 shows how to pass a Result object to a script that populates the Result
object with a value. The program contains a throws clause in the main() method’s declaration to keep the
code short.

Listing 9-14. Collecting the Return Value of a Script in a Result Object

// ResultBearingScript.java
package com.jdojo.script;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class ResultBearingScript {
 public static void main(String[] args) throws ScriptException {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Pass a Result object to the script. The script will store the
 // result of the script in the result object
 Result result = new Result();
 engine.put("result", result);

 // Store the script in a String
 String script = "3 + 4; result.setValue(101);";

 // Execute the script, which uses the passed in Result object to
 // return a value
 engine.eval(script);

 // Use the result object to get the returned value from the script
 int returnedValue = result.getValue(); // Will be 101

 System.out.println("Returned value is " + returnedValue);
 }
}

Returned value is 101

Reserved Keys for Engine Scope Bindings
Typically, a key in the engine scope Bindings represents a script variable. Some keys are reserved and they
have special meanings. Their values may be passed to the engine by the implementation of the engine. An
implementation may define additional reserved keys.

Table 9-1 contains the list of all reserved keys. Those keys are also declared as constants in the
ScriptEngine interface. An implementation of a script engine is not required to pass all these keys to
the engine in the engine scope bindings. As a developer, you are not supposed to use these keys to pass
parameters from a Java application to a script engine.

Chapter 9 ■ SCripting in Java

682

Changing the Default ScriptContext
You can get and set the default context of a ScriptEngine using its getContext() and setContext()
methods, respectively, as shown:

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");

// Get the default context of the ScriptEngine
ScriptContext defaultCtx = engine.getContext();

// Work with defaultCtx here

// Create a new context
ScriptContext ctx = new SimpleScriptContext();

// Configure ctx here

// Set ctx as the new default context for the engine
engine.setContext(ctx);

Note that setting a new default context for a ScriptEngine will not use the Bindings of the
ScriptEngineManager as its global scope Bindings. If you want the new default context to use the Bindings
of the ScriptEngineManager, you need set it explicitly as shown:

// Create a new context
ScriptContext ctx = new SimpleScriptContext();

// Set the global scope Bindings for ctx the same as the Bindings for the manager
ctx.setBindings(manager.getBindings(), ScriptContext.GLOBAL_SCOPE);

Table 9-1. Reserved Keys for Engine Scope Bindings

Key Constant in ScriptEngine Interface Meaning of the Value of the Key

"javax.script.argv" ScriptEngine.ARGV Used to pass an array of Object to
pass a set of positional argument.

"javax.script.engine" ScriptEngine.ENGINE The name of the script engine.

"javax.script.engine_
version"

ScriptEngine.ENGINE_VERSION The version of the script engine.

"javax.script.filename" ScriptEngine.FILENAME Used to pass the name of the file or
the resource that is the source of
the script.

"javax.script.language" ScriptEngine.LANGUAGE The name of the language
supported by the script engine.

"javax.script.language_
version"

ScriptEngine.LANGUAGE_VERSION The version of the scripting
language supported by the engine.

"javax.script.name" ScriptEngine.NAME The short name of the scripting
language.

Chapter 9 ■ SCripting in Java

683

// Set ctx as the new default context for the engine
engine.setContext(ctx);

Sending Script Output to a File
You can customize the input source, output destination, and error output destination of a script execution.
You need to set appropriate reader and writers for the ScriptContext that is used to execute a script. The
following snippet of code will write the script output to a file named jsoutput.txt in the current directory:

// Create a FileWriter
FileWriter writer = new FileWriter("jsoutput.txt");

// Get the default context of the engine
ScriptContext defaultCtx = engine.getContext();

// Set the output writer for the default context of the engine
defaultCtx.setWriter(writer);

The code sets a custom output writer for the default context of the ScriptEngine that will be used
during the execution of scripts that use the default context. If you want to use a custom output writer for a
specific execution of a script, you need to use a custom ScriptContext and set its writer.

 ■ Tip Setting a custom output writer for a ScriptContext does not affect the destination of the standard
output of the Java application. to redirect the standard output of the Java application, you need to use the
System.setOut() method.

Listing 9-15 shows you how to write output of a script execution to a file named jsoutput.txt. The
program prints the full path of the output file on the standard output. You may get a different output when
you run the program. You need to open the output file in a text editor to see the script’s output.

Listing 9-15. Writing the Output of Scripts to a File

// CustomScriptOutput.java
package com.jdojo.script;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import javax.script.ScriptContext;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class CustomScriptOutput {

 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

Chapter 9 ■ SCripting in Java

684

 // Print the absolute path of the output file
 File outputFile = new File("jsoutput.txt");
 System.out.println("Script output will be written to "
 + outputFile.getAbsolutePath());

 try (FileWriter writer = new FileWriter(outputFile)) {
 // Set a custom output writer for the engine
 ScriptContext defaultCtx = engine.getContext();
 defaultCtx.setWriter(writer);

 // Execute a script
 String script = "print('Hello custom output writer')";
 engine.eval(script);
 } catch (IOException | ScriptException e) {
 e.printStackTrace();
 }
 }
}

Script output will be written to C:\Java9APIsAndMdoules\jsoutput.txt

Invoking Procedures in Scripts
A scripting language may allow for creating procedures, functions, and methods. The Java Scripting API lets
you invoke such procedures, functions, and methods from a Java application. I use the term “procedure”
to mean procedure, function, and method in this section. I use the specific term when the context of the
discussion requires it.

Not all script engines are required to support procedure invocation. The Nashorn JavaScript engine
supports procedure invocation. If a script engine supports it, the implementation of the script engine class
must implement the Invocable interface. It is the responsibility of the developer to check if a script engine
implements the Invocable interface, before invoking a procedure. Invoking a procedure is a four-step
process:

•	 Check if the script engine supports procedure invocation.

•	 Cast the engine reference to the Invocable type.

•	 Evaluate the script that contains the source code for the procedure.

•	 Use the invokeFunction() method of the Invocable interface to invoke procedures
and functions. Use the invokeMethod() method to invoke methods of the objects
created in a scripting language.

The following snippet of code performs the check that the script engine implementation class
implements the Invocable interface:

// Get the Nashorn engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");

// Make sure the script engine implements the Invocable interface
if (engine instanceof Invocable) {

Chapter 9 ■ SCripting in Java

685

 System.out.println("Invoking procedures is supported.");
} else {
 System.out.println("Invoking procedures is not supported.");
}

The second step is to cast the engine reference to the Invocable interface type.

Invocable inv = (Invocable)engine;

The third step is to evaluate the script, so the script engine compiles and stores the compiled form of the
procedure for later invocation. The following snippet of code performs this step:

// Declare a function named add that adds two numbers
String script = "function add(n1, n2) { return n1 + n2; }";

// Evaluate the function. Call to eval() does not invoke the function. It just compiles it.
engine.eval(script);

The last step is to invoke the procedure or function.

// Invoke the add function with 30 and 40 as the function's arguments.
// It is as if you called add(30, 40) in the script.
Object result = inv.invokeFunction("add", 30, 40);

The first argument to the invokeFunction() is the name of the procedure or function. The second
argument is a varargs that is used to specify arguments to the procedure or function. The invokeFunction()
method returns the value returned by the procedure or function.

Listing 9-16 shows how to invoke a function. It invokes a function written in Nashorn JavaScript.

Listing 9-16. Invoking a Function Written in Nashorn JavaScript

// InvokeFunction.java
package com.jdojo.script;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class InvokeFunction {
 public static void main(String[] args) {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Make sure the script engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Invoking procedures is not supported.");
 return;
 }

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;

Chapter 9 ■ SCripting in Java

686

 try {
 String script = "function add(n1, n2) { return n1 + n2; }";

 // Evaluate the script first
 engine.eval(script);

 // Invoke the add function twice
 Object result1 = inv.invokeFunction("add", 30, 40);
 System.out.println("Result1 = " + result1);

 Object result2 = inv.invokeFunction("add", 10, 20);
 System.out.println("Result2 = " + result2);
 } catch (ScriptException | NoSuchMethodException e) {
 e.printStackTrace();
 }
 }
}

Result1 = 70
Result2 = 30

An object-oriented or object-based scripting language may let you define objects and their methods.
You can invoke methods of such objects using the invokeMethod() method of the Invocable interface,
which is declared as follows:

Object invokeMethod(Object objectRef, String name, Object... args)

The first argument is the reference of the object, the second argument is the name of the method
that you want to invoke on the object, and the third argument is a varargs argument that is used to pass
arguments to the method being invoked.

Listing 9-17 demonstrates the invocation of a method on an object that is created in Nashorn JavaScript.
Note that the object is created inside the Nashorn script. To invoke the method of the object from Java,
you need to obtain the reference of the object through the script engine. The program evaluates the script
that creates an object with an add() method and stores its reference in a variable named calculator. The
engine.get("calculator") method returns the reference of the calculator object to the Java code.

Listing 9-17. Invoking a Method on an Object Created in Nashorn JavaScript

// InvokeMethod.java
package com.jdojo.script;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class InvokeMethod {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

Chapter 9 ■ SCripting in Java

687

 // Make sure the script engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Invoking methods is not supported.");
 return;
 }

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;

 try {
 // Declare a global object with an add() method
 String script = "var calculator = new Object();"
 + "calculator.add = function add(n1, n2){return n1 + n2;}";

 // Evaluate the script first
 engine.eval(script);

 // Get the calculator object reference created in the script
 Object calculator = engine.get("calculator");

 // Invoke the add() method on the calculator object
 Object result = inv.invokeMethod(calculator, "add", 30, 40);
 System.out.println("Result = " + result);
 } catch (ScriptException | NoSuchMethodException e) {
 e.printStackTrace();
 }
 }
}

Result = 70

 ■ Tip Use the Invocable interface to execute procedures, functions, and methods repeatedly. evaluation of
the script, having procedures, functions, and methods, stores the intermediate code in the engine that results in
performance gain on their repeated execution.

Implementing Java Interfaces in Scripts
The Java Scripting API lets you implement Java interfaces in a scripting language. Methods of the Java
interface may be implemented in scripts using top-level procedures or instance methods of an object.
The advantage of implementing a Java interface in a scripting language is that you can use instances of the
interface in Java code as if the interface was implemented in Java. You can pass instances of the interface as
arguments to Java methods. The getInterface() method of the Invocable interface is used to obtain the
instances of a Java interface that is implemented in scripts. The method has two versions:

•	 <T> T getInterface(Class<T> cls)

•	 <T> T getInterface(Object obj, Class<T> cls)

Chapter 9 ■ SCripting in Java

688

The first version is used to obtain an instance of a Java interface whose methods are implemented as
top-level procedures in scripts. The interface type is passed to this method as its argument. Suppose you
have a Calculator interface, as declared in Listing 9-18, that has two methods called add() and subtract().

Listing 9-18. A Calculator Interface

// Calculator.java
package com.jdojo.script;

public interface Calculator {
 int add (int n1, int n2);
 int subtract (int n1, int n2);
}

Consider the following two top-level functions written in JavaScript:

function add(n1, n2) {
 return n1 + n2;
}

function subtract(n1, n2) {
 return n1 - n2;
}

These two functions provide the implementations for the two methods of the Calculator interface.
After these functions are compiled by a JavaScript engine, you can obtain an instance of the Calculator
interface as shown:

// Cast the engine reference to the Invocable type
Invocable inv = (Invocable) engine;

// Get the reference of the Calculator interface
Calculator calc = inv.getInterface(Calculator.class);

if (calc == null) {
 System.err.println("Calculator interface implementation not found.");
} else {
 // Use calc to call add() and subtract() methods
}

You can add two numbers as shown:

int sum = calc.add(15, 10);

Listing 9-19 shows how to implement a Java interface using top-level procedures in Nashorn. Consult
the documentation of a scripting language to learn how it supports this functionality.

Chapter 9 ■ SCripting in Java

689

Listing 9-19. Implementing a Java Interface Using Top-Level Functions in Script

// UsingInterfaces.java
package com.jdojo.script;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class UsingInterfaces {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

 // Make sure the script engine implements Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Interface implementation in script"
 + " is not supported.");
 return;
 }

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;

 // Create the script for add() and subtract() functions
 String script = "function add(n1, n2) { return n1 + n2; } "
 + "function subtract(n1, n2) { return n1 - n2; }";

 try {
 // Compile the script that will be stored in the engine
 engine.eval(script);

 // Get the interface implementation
 Calculator calc = inv.getInterface(Calculator.class);
 if (calc == null) {
 System.err.println("Calculator interface implementation not found.");
 return;
 }

 int result1 = calc.add(15, 10);
 System.out.println("add(15, 10) = " + result1);

 int result2 = calc.subtract(15, 10);
 System.out.println("subtract(15, 10) = " + result2);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

Chapter 9 ■ SCripting in Java

690

add(15, 10) = 25
subtract(15, 10) = 5

The second version of the getInterface() method is used to obtain an instance of a Java interface
whose methods are implemented as instance methods of an object. Its first argument is the reference of the
object that is created in the scripting language. The instance methods of the object implement the interface
type passed in as the second argument. The following code in Nashorn creates an object whose instance
methods implement the Calculator interface:

// Create an object
var calc = new Object();

// Add add() and subtract() methods to the calc object
calc.add = function add(n1, n2) {
 return n1 + n2;
 };

calc.subtract = function subtract(n1, n2) {
 return n1 - n2;
 };

When instance methods of a script object implements methods of a Java interface, you need to perform
an extra step. You need to get the reference of the script object before you can get the instance of the
interface, as shown:

// Get the reference of the global script object calc
Object calc = engine.get("calc");

// Get the implementation of the Calculator interface
Calculator calculator = inv.getInterface(calc, Calculator.class);

Listing 9-20 shows how to implement methods of a Java interface as instance methods of an object
using Nashorn.

Listing 9-20. Implementing Methods of a Java Interface as Instance Methods of an Object in a Script

// ScriptObjectImplInterface.java
package com.jdojo.script;

import javax.script.Invocable;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class ScriptObjectImplInterface {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");

Chapter 9 ■ SCripting in Java

691

 // Make sure the engine implements the Invocable interface
 if (!(engine instanceof Invocable)) {
 System.out.println("Interface implementation in script is not supported.");
 return;
 }

 // Cast the engine reference to the Invocable type
 Invocable inv = (Invocable) engine;

 String script = "var calc = new Object(); "
 + "calc.add = function add(n1, n2) {return n1 + n2; }; "
 + "calc.subtract = function subtract(n1, n2) {return n1 - n2;};";

 try {
 // Compile and store the script in the engine
 engine.eval(script);

 // Get the reference of the global script object calc
 Object calc = engine.get("calc");

 // Get the implementation of the Calculator interface
 Calculator calculator = inv.getInterface(calc, Calculator.class);
 if (calculator == null) {
 System.err.println("Calculator interface implementation not found.");
 return;
 }

 int result1 = calculator.add(15, 10);
 System.out.println("add(15, 10) = " + result1);

 int result2 = calculator.subtract(15, 10);
 System.out.println("subtract(15, 10) = " + result2);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

add(15, 10) = 25
subtract(15, 10) = 5

Using Compiled Scripts
A script engine may allow compiling a script and executing it repeatedly. Executing compiled scripts may
increase the performance of an application. A script engine may compile and store scripts in the form of Java
classes, Java class files, or in a language-specific form.

Chapter 9 ■ SCripting in Java

692

Not all script engines are required to support script compilation. Script engines that support script
compilation must implement the Compilable interface. Nashorn engine supports script compilation. The
following snippet of code checks if a script engine implements the Compilable interface:

// Get the script engine reference
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("YOUR_ENGINE_NAME");

if (engine instanceof Compilable) {
 System.out.println("Script compilation is supported.");
} else {
 System.out.println("Script compilation is not supported.");
}

Once you know that a script engine implements the Compilable interface, you can cast its reference to a
Compilable type as

// Cast the engine reference to the Compilable type
Compilable comp = (Compilable) engine;

The Compilable interface contains two methods:

•	 CompiledScript compile(String script) throws ScriptException

•	 CompiledScript compile(Reader script) throws ScriptException

The two versions of the method differ only in the type of the source of the script. The first version
accepts the script as a String and the second one as a Reader.

The compile() method returns an object of the CompiledScript class. CompiledScript is an
abstract class. The provider of the script engine provides the concrete implementation of this class. A
CompiledScript is associated with the ScriptEngine that creates it. The getEngine() method of the
CompiledScript class returns the reference of the ScriptEngine to which it is associated.

To execute a compiled script, you need to call one of the following eval() methods of the
CompiledScript class:

•	 Object eval() throws ScriptException

•	 Object eval(Bindings bindings) throws ScriptException

•	 Object eval(ScriptContext context) throws ScriptException

The eval() method without any arguments uses the default script context of the script engine
to execute the compiled script. The other two versions work the same as the eval() method of the
ScriptEngine interface when you pass a Bindings or a ScriptContext to them.

Listing 9-21 shows how to compile a script and execute it. It executes the same compiled script twice
with different parameters.

Listing 9-21. Using Compiled Scripts

// CompilableTest .java
package com.jdojo.script;

import javax.script.Bindings;
import javax.script.Compilable;
import javax.script.CompiledScript;

Chapter 9 ■ SCripting in Java

693

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class CompilableTest {
 public static void main(String[] args) {
 // Get the Nashorn engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JavaScript");
 if (!(engine instanceof Compilable)) {
 System.out.println("Script compilation not supported.");
 return;
 }

 // Cast the engine reference to the Compilable type
 Compilable comp = (Compilable) engine;

 try {
 // Compile a script
 String script = "print(n1 + n2)";
 CompiledScript cScript = comp.compile(script);

 // Store n1 and n2 script variables in a Bindings
 Bindings scriptParams = engine.createBindings();
 scriptParams.put("n1", 2);
 scriptParams.put("n2", 3);
 cScript.eval(scriptParams);

 // Execute the script again with different values for n1 and n2
 scriptParams.put("n1", 9);
 scriptParams.put("n2", 7);
 cScript.eval(scriptParams);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }
}

5
16

Using Java in Scripting Languages
Scripting languages allow using Java class libraries in scripts. Each scripting language has its own syntax for
using Java classes. It is not possible, and is outside the scope of this book, to discuss the syntax of all scripting
languages. In this section, I discuss the syntax of using some Java constructs in Nashorn. For the complete
coverage of the Nashorn, refer to the website at https://docs.oracle.com/javase/9/nashorn/.

https://docs.oracle.com/javase/9/nashorn/

Chapter 9 ■ SCripting in Java

694

Declaring Variables
Declaring variables in a scripting language is not related to Java. Typically, scripting languages let you assign
values to variables without declaring them. The types of variables are determined at runtime based on the
types of the values they store.

In Nashorn, the keyword var is used to declare a variable. If you wish, you can omit the keyword var in a
variable declaration. The following snippet of code declares two variables and assigns them a value:

// Declare a variable named msg using the var keyword
var msg = "Hello";

// Declare a variable named greeting without using the keyword var
greeting = "Hello";

You can use the const and let keywords to declare constants and scoped variables in Nashorn:

// Declare PI as a constant
const PI = 3.14;

print("PI = " + PI);

let x = 100;

{
 let x = 200;
 print("Inner: x = " + x); // x is 200 here
}

print("Outer: x = " + x); // x is 100 here

You must enable ES6 in Nashorn to successfully execute the previous snippet of code because const
and let are ES6 features. You need to pass --language=es6 to the Nashorn engine to enable ES6 features.
The following command shows how to do it on the command line:

C:\Java9APIsAndModules>java --module-path dist -Dnashorn.args=--language=es6
--module jdojo.script/com.jdojo.script.Test

Importing Java Classes
There are four ways to import Java classes in scripts in Nashorn:

•	 Using the Packages global object

•	 Using the type() function of the Java global object

•	 Using the importPackage() and importClass() functions

•	 Using a JavaImporter object in a with clause

The following sections describe the four ways of importing Java classes in script in detail.

Chapter 9 ■ SCripting in Java

695

Using the Packages Global Object
Nashorn defines all Java packages as properties of a global variable named Packages. For example, the java.
lang and javax.swing packages may be referred to as Packages.java.lang and Packages.javax.swing,
respectively. The following snippet of code uses the java.util.List and javax.swing.JFrame in Nashorn:

// Create a List
var list1 = new Packages.java.util.ArrayList();

// Create a JFrame
var frame1 = new Packages.javax.swing.JFrame("Test");

Nashorn declares java, javax, org, com, edu, and net as global variables that are aliases for Packages.
java, Packages.javax, Packages.org, Packages.com, Packages.edu, and Packages.net, respectively. Class
names in examples in this book start with the prefix com, for example, com.jdojo.script.Test. To use
this class name inside the JavaScript code, you may use Packages.com.jdojo.script.Test or com.jdojo.
script.Test. However, if a class name does not start with one of these predefined prefixes, you must use the
Packages global variable to access it; for example, if your class name is p1.Test, you need to access it using
Packages.p1.Test inside JavaScript code. The following snippet of code uses the java and javax aliases for
Packages.java and Packages.javax:

// Create a List
var list2 = new java.util.ArrayList();

// Create a JFrame
var frame2 = new javax.swing.JFrame("Test");

Using the Java Global Object
Accessing packages as the properties of the Packages object was also supported in Rhino JavaScript in Java 7.
Using the Packages object is slower and error-prone. Nashorn defines a new global object called Java that
contains many useful functions to work with Java packages and classes. If you are using Java 8 or later, you
should use the Java object over the Packages object. The type() function of the Java object imports a Java
type into the script. You need to pass the fully qualified name of the Java type to import. In Nashorn, the
following snippet of code imports the java.util.ArrayList class and creates its object:

// Import java.util.ArrayList type and call it ArrayList
var ArrayList = Java.type("java.util.ArrayList");

// Create an object of the ArrayList type
var list = new ArrayList();

In the code, you call the imported type returned from the Java.type() function as ArrayList that is
also the name of the class that is imported. You do it to make the next statement read as if it was written
in Java. Readers of the second statement will know that you are creating an object of the ArrayList class.
However, you can give the imported type any name you want. The following snippet of code imports java.
util.ArrayList and calls it MyList:

// Import java.util.ArrayList type and call it MyList
var MyList = Java.type("java.util.ArrayList");

// Create an object of the MyList type
var list2 = new MyList();

Chapter 9 ■ SCripting in Java

696

Using the importPackage() and importClass() Functions
Rhino JavaScript allowed using the simple names of the Java types in script. Rhino JavaScript had two
built-in functions called importPackage() and importClass() to import all classes from a package and a
class from a package, respectively. For compatibility reasons, Nashorn keeps these functions. To use these
functions in Nashorn, you need to load the compatibility module from the mozilla_compat.js file using the
load() function. The following snippet of code rewrites the previous logic using these functions:

// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");

// Import ArrayList class from the java.util package
importClass(java.util.ArrayList);

// Import all classes from the javax.swing package
importPackage(javax.swing);

// Use simple names of classes
var list1 = new ArrayList();
var frame1 = new JFrame("Test");

JavaScript does not import all classes from the java.lang package automatically because JavaScript
classes with the same names, for example, String, Object, Number, etc., will conflict with class names in the
java.lang package. To use a class from the java.lang package, you can import it or use the Packages or
Java variable to use its fully qualified name. You cannot import all classes from the java.lang package. The
following snippet of code generates an error because the String class name is already defined in JavaScript:

// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");

importClass(java.lang.String); // An error

If you want to use the java.lang.String class, you need to use its fully qualified name. The following
snippet of code uses the built-in JavaScript String class and the java.lang.String class:

var javaStr = new java.lang.String("Hello"); // Java String class
var jsStr = new String("Hello"); // JavaScript String class

If a class name in the java.lang package does not conflict with a JavaScript top-level class name, you
can use the importClass() function to import the Java class. For example, you can use the following snippet
of code to use the java.lang.System class:

// Load the compatibility module. It is needed in Nashorn, not in Rhino.
load("nashorn:mozilla_compat.js");

importClass(java.lang.System);

var jsStr = new String("Hello");
System.out.println(jsStr);

Chapter 9 ■ SCripting in Java

697

In this snippet of code, jsStr is a JavaScript String that has been passed to the System.out.println()
Java method that accepts a java.lang.String type. JavaScript takes care of the conversion from a JavaScript
type to a Java type automatically in such cases.

Using the JavaImporter Object
In JavaScript, you can use the simple names of classes using a JavaImporter object reference in a with
clause. The constructor of the JavaImporter class accepts a list of Java packages and classes. You can create
a JavaImporter object as shown:

// Import all classes from the java.lang package
var langPkg = new JavaImporter(Packages.java.lang);

// Import all classes from the java.lang and java.util packages and the
// JFrame class from the javax.swing package
var pkg2 = JavaImporter(java.lang, java.util, javax.swing.JFrame);

Note the use of the new operator in the first statement. The second statement does not use the new
operator. Both statements are valid in JavaScript.

The following snippet of code creates a JavaImporter object and uses it in a with clause:

// Create a Java importer for java.lang and java.util packages
var javaLangAndUtilPkg = JavaImporter(java.lang, java.util);

// Use the imported types in the with clause
with (javaLangAndUtilPkg) {
 var list = new ArrayList();
 list.add("one");
 list.add("two");
 System.out.println("Hello");
 System.out.println("List is " + list);
}

Hello
List is [one, two]

Creating and Using Java Objects
Use the new operator with a constructor to create a new Java object in scripts. The following snippet of code
creates a String object in Nashorn:

// Create a Java String object
var javaString = new java.lang.String("A Java string");

Chapter 9 ■ SCripting in Java

698

Accessing methods and properties of Java objects is similar in most scripting languages. Some scripting
languages let you invoke getter and setter methods on an object using the property name. The following
snippet of code in Nashorn creates a java.util.Date object and accesses the object’s method using both
the property names and the method names:

var dt = new java.util.Date();
var year = dt.year + 1900;
var month = dt.month + 1;
var date = dt.getDate();
print("Date:" + dt);
print("Year:" + year + ", Month:" + month + ", Day:" + date);

Date:Fri Jan 19 20:50:32 CST 2018
Year:2018, Month:1, Day:19

While using JavaScript, it is important to understand the different types of String objects. A String
object may be a JavaScript String object or a Java java.lang.String object. JavaScript defines a length
property for its String class, whereas Java has a length() method for its java.lang.String class. The
following snippet of code shows the difference in creating and accessing the length of a JavaScript String
and Java java.lang.String objects:

// JavaScript String
var jsStr = new String("Hello JavaScript String");
print("JavaScript String: " + jsStr);
print("JavaScript String Length: " + jsStr.length);

// Java String
var javaStr = new java.lang.String("Hello Java String");
print("Java String: " + javaStr);
print("Java String Length: " + javaStr.length());

JavaScript String: Hello JavaScript String
JavaScript String Length: 23
Java String: Hello Java String
Java String Length: 17

Using Overloaded Java Methods
Java resolves an overloaded method call at compile time. That is, the Java compiler determines the signature
of the method that will be called when the code is run. Consider the code for a PrintTest class shown in
Listing 9-22. You may get a different output in the second line.

Listing 9-22. Using Overloaded Methods in Java

// PrintTest.java
package com.jdojo.script;

public class PrintTest {
 public void print(String str) {
 System.out.println("print(String): " + str);
 }

Chapter 9 ■ SCripting in Java

699

 public void print(Object obj) {
 System.out.println("print(Object): " + obj);
 }

 public void print(Double num) {
 System.out.println("print(Double): " + num);
 }

 public static void main(String[] args) {
 PrintTest pt = new PrintTest();
 Object[] list = new Object[]{"Hello", new Object(), 10.5};

 for (Object arg : list) {
 pt.print(arg);
 }
 }
}

print(Object): Hello
print(Object): java.lang.Object@affc70
print(Object): 10.5

When the PrintTest class is run, all three calls to the print() method call the same version,
print(Object) of the PrintTest class. When the code is compiled, the Java compiler sees the call pt.
print(arg) as a call to the print() method with an Object type argument (which is the type of arg) and
therefore binds this call to print(Object) method.

In a scripting language, the type of a variable is known at runtime, not at compile time. The interpreters
of scripting languages resolve an overloaded method call appropriately depending on the runtime type
of the arguments in a method call. The output of the following JavaScript code shows that the call to the
print() method of the PrintTest class is resolved at runtime depending on the type of the argument:

// In JavaScript
var pt = new com.jdojo.script.PrintTest();
var list = ["Hello", new Object(), 10.5];
for (var i = 0; i < list.length; ++i) {
 pt.print(list[i]);
}

print(String): Hello
print(Object): [object Object]
print(Double): 10.5

JavaScript lets you select a specific version of the overloaded method explicitly. You can pass the
signature of the overloaded method to be invoked with the object reference. The following snippet of code
selects the print(Object) version:

// In JavaScript
var pt = new com.jdojo.script.PrintTest();
pt["print(java.lang.Object)"](10.5); // Calls print(Object)
pt["print(java.lang.Double)"](10.5); // Calls print(Double)

Chapter 9 ■ SCripting in Java

700

print(Object): 10.5
print(Double): 10.5

Using Java Arrays
The way Java arrays can be created in JavaScript differs in Rhino and Nashorn. In Rhino, you need to create a
Java array using the newInstance() static method of the java.lang.reflect.Array class. This syntax is also
supported in Nashorn. The following snippet of code shows how to create and access Java arrays using the
Rhino syntax:

// Create a java.lang.String array of 2 elements, populate it, and print the elements.
// In Rhino you were able to use java.lang.String as the first argument, but in Nashorn,
// you need to use java.lang.String.class instead.
var strArray = java.lang.reflect.Array.newInstance(java.lang.String.class, 2);
strArray[0] = "Hello";
strArray[1] = "Array";
for(var i = 0; i < strArray.length; i++) {
 print(strArray[i]);
}

Hello
Array

To create primitive type arrays, you need to use their TYPE constants for their corresponding wrapper
classes as shown:

// Create an int array of 2 elements, populate it, and print the elements
var intArray = java.lang.reflect.Array.newInstance(java.lang.Integer.TYPE, 2);
intArray[0] = 100;
intArray[1] = 200;
for(var i = 0; i < intArray.length; i++) {
 print(intArray[i]);
}

100
200

Nashorn supports a new syntax to create Java arrays. First, create the appropriate Java array type using
the Java.type() method, and then use the familiar new operator to create the array. The following snippet of
code shows how to create a String[] of two elements in Nashorn:

// Get the java.lang.String[] type
var StringArray = Java.type("java.lang.String[]");

// Create a String[] array of 2 elements
var strArray = new StringArray(2);
strArray[0] = "Hello";
strArray[1] = "Array";

Chapter 9 ■ SCripting in Java

701

for(var i = 0; i < strArray.length; i++) {
 print(strArray[i]);
}

Hello
Array

Nashorn supports creating the arrays of primitive types the same way. The following snippet of code
creates an int[] of two elements in Nashorn:

// Get the int[] type
var IntArray = Java.type("int[]");

// Create a int[] array of 2 elements
var intArray = new IntArray(2);
intArray[0] = 100;
intArray[1] = 200;
for(var i = 0; i < intArray.length; i++) {
 print(intArray[i]);
}

100
200

You can use a JavaScript array when a Java array is expected. JavaScript will perform the necessary
conversion from a JavaScript array to a Java array. Suppose you have a PrintArray class, as shown in
Listing 9-23, that contains a print() method that accepts a String array as an argument.

Listing 9-23. A PrintArray Class

// PrintArray.java
package com.jdojo.script;

public class PrintArray {
 public void print(String[] list) {
 System.out.println("Inside print(String[] list):");
 for(String s : list) {
 System.out.println(s);
 }
 }
}

The following snippet of JavaScript code passes a JavaScript array to the PrintArray.print(String[])
method. JavaScript takes care of converting the native array to a String array, as shown in the output.

// Create a JavaScript array and populate it with three strings
var names = new Array();
names[0] = "Rhino";
names[1] = "Nashorn";
names[2] = "JRuby";

Chapter 9 ■ SCripting in Java

702

// Create an object of the PrintArray class
var pa = new com.jdojo.script.PrintArray();

// Pass a JavaScript array to the PrintArray.print(String[] list) method
pa.print(names);

Inside print(String[] list):
Rhino
Nashorn
JRuby

Nashorn supports array type conversion between Java and JavaScript arrays using the Java.to() and
Java.from() functions. The Java.to() function converts a JavaScript array type to a Java array type. The
function takes the array object as the first argument and the target Java array type as the second argument.
The target array type can be specified as a string or a type object. The following snippet of code converts a
JavaScript array to a Java String[]:

// Create a JavaScript array and populate it with three integers
var personIds = [100, 200, 300];

// Convert the JavaScript integer array to Java String[]
var JavaStringArray = Java.to(personIds, "java.lang.String[]")

If the second argument in the Java.to() function is omitted, the JavaScript array is converted to a Java
Object[].

The Java.from() function converts a Java array type to a JavaScript array. The function takes the Java
array as an argument. The following snippet of code shows how to convert a Java int[] to a JavaScript array:

// Create a Java int[]
var IntArray = Java.type("int[]");
var personIds = new IntArray(3);
personIds[0] = 100;
personIds[1] = 200;
personIds[2] = 300;

// Convert the Java int[] array to a JavaScript array
var jsArray = Java.from(personIds);

// Print the elements in the JavaScript array
for(var i = 0; i < jsArray.length; i++) {
 print(jsArray[i]);
}

100
200
300

Chapter 9 ■ SCripting in Java

703

It seems that Nashorn is not able to convert a Java String[] to a JavaScript array. An attempt to do so in
the following script results in the error shown:

// Create a Java String object
var str = new java.lang.String("Rhino,Nashorn,JRuby");
var strDelimiter = new java.lang.String(",");
var strArray = str.split(strDelimiter);

// Convert the Java String[] array to a JavaScript array
var jsArray = Java.from(strArray); // Nashorn throws an ScriptException here

// Print the elements in the JavaScript array
for(var i = 0; i < jsArray.length; i++) {
 print(jsArray[i]);
}

javax.script.ScriptException: TypeError: Can only convert Java arrays and lists to
JavaScript arrays. Cant convert object of type {0}. in <eval> at line number 8...

 ■ Tip it is possible to return a JavaScript array to Java code from a JavaScript function. You need to extract
the elements of the native array in Java code, and therefore you need to use JavaScript-specific classes in
Java. this approach is not advised. You should convert a JavaScript array to a Java array and return the Java
array from a JavaScript function so the Java code deals only with Java classes.

Extending Java Classes and Implementing Interfaces
JavaScript lets you extend Java classes and implement Java interfaces in JavaScript. The following sections
describe different ways of achieving the same.

Using a Script Object
You need to create a script object that contains implementations of the methods of the interface and
pass it to the constructor of the Java interface using the new operator. In Java, an interface does not have a
constructor and it cannot be used with the new operator. However, JavaScript lets you do that.

Let’s implement the Calculator interface shown in Listing 9-18. The following statement creates
a script object that implements the add() and subtract() methods. Note that the two method’s
implementations are separated by a comma. The method name and its implementation are separated by a
colon.

var calFuncObj = {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };

Chapter 9 ■ SCripting in Java

704

The following statement creates an implementation of the Calculator interface:

var calc = new com.jdojo.script.Calculator(calFuncObj);

Now you can start using the calc object as if it were an implementation of the Calculator interface as
shown:

var n1 = 15;
var n2 = 10;
var result1 = calc.add(n1, n2);
var result2 = calc.subtract(n1, n2);
print(n1 + " + " + n2 + " = " + result1);
print(n1 + " - " + n2 + " = " + result2);

15 + 10 = 25
15 - 10 = 5

Using the Anonymous Class-Like Syntax
This method uses a syntax that is very similar to the syntax of creating an anonymous class in Java.
The following statement implements the Java Calculator interface and creates an instance of that
implementation:

var calc = new com.jdojo.script.Calculator() {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };

Now you can use the calc object the same way you did before.

Using JavaAdapter Object and Java.extend() Function
JavaScript lets you implement multiple interfaces and extend a class using the JavaAdapter class. However,
the Rhino JavaScript implementation that is bundled with JDK has overridden the implementation of
JavaAdapter, which allows you to implement only one interface; it does not let you extend a class. The first
argument to the JavaAdapter constructor is the interface to implement and the second argument is the
script object that implements the methods. To use the JavaAdapter object in Nashorn, you need to load
the Rhino compatibility module. The following snippet of code implements the Calculator interface using
JavaAdapter:

// Need to load the compatibility module in Nashorn.
// You do not need to the following load() call in Rhino.
load("nashorn:mozilla_compat.js");

Chapter 9 ■ SCripting in Java

705

var calFuncObj = {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };

var calc = new JavaAdapter(com.jdojo.script.Calculator, calFuncObj);

Now you can use the calc object the same way you did before.
Nashorn provides a better way that can let you extend a class and implement multiple interfaces using

the Java.extend() function. In the extend() function, you can pass maximum one class type and multiple
interface type. It returns a type that combines all passed in types. You need to use the previously discussed
anonymous class-like syntax to provide the implementation for the abstract methods of the new type or
override the existing method of the types being extended. The following snippet of code uses the Java.
extend() method to implement the Calculator interface:

// Get the Calculator interface type
var CalculatorType = Java.type("com.jdojo.script.Calculator");

// Get a type that extends the Calculator type
var CalculatorExtender = Java.extend(CalculatorType);

// Implement the abstract methods in CalculatorExtender
// using an anonymous class like syntax
var calc = new CalculatorExtender() {
 add: function (n1, n2) {
 return n1 + n2;
 },
 subtract: function (n1, n2) {
 return n1 - n2;
 }
 };

var n1 = 15;
var n2 = 10;
var result1 = calc.add(n1, n2);
var result2 = calc.subtract(n1, n2);
print(n1 + " + " + n2 + " = " + result1);
print(n1 + " - " + n2 + " = " + result2);

15 + 10 = 25
15 - 10 = 5

Chapter 9 ■ SCripting in Java

706

Using a JavaScript Function
Sometimes a Java interface has only one method. In those cases, you can pass a JavaScript function object
in place of an implementation of the interface. The Runnable interface in Java has only one method run().
When you need to use an instance of the Runnable interface in JavaScript, you can pass a JavaScript function
object.

The following snippet of code shows how to create a Thread object and start it. In the constructor of
the Thread class, a JavaScript function object myRunFunc is passed instead of an instance of the Runnable
interface.

function myRunFunc() {
 print("A thread is running.");
}

// Call Thread(Runnable) constructor and pass the myRunFunc function object that
// will serve as an implementation for the run() method of the Runnable interface.
var thread = new java.lang.Thread(myRunFunc);
thread.start();

A thread is running.

In ES6 arrow functions, which is supported in Nashorn in JDK9, you can rewrite the previous snippet of
code as follows. The syntax resembles the syntax for lambda expression in Java. Make sure to enable ES6 in
Nashorn when you run the following code.

// Use an arrow function to create an instance of the Runnable interface
var thread = new java.lang.Thread(() => print("A thread is running."));
thread.start();

A thread is running.

Using Lambda Expressions
JavaScript supports anonymous functions that can be used as lambda expressions. The following is an
anonymous function that takes a number as an argument and returns its square:

function (n) {
 return n * n;
}

The following is an example of creating a Runnable object in JavaScript using an anonymous function as
a lambda expression. The Runnable object is used in the constructor of the Thread class.

var Thread = Java.type("java.lang.Thread");

// Create a Thread using a Runnable object. The Runnable
// object is created using an anonymous function as a lambda expressions.
var thread = new Thread(function() {
 print("Hello Thread");
 });

Chapter 9 ■ SCripting in Java

707

// Start the thread
thread.start();

The Java equivalent of the JavaScript code using a lambda expression is as follows:

// Create a Thread using a Runnable object. The Runnable object is
// created using a lambda expressions.
Thread thread = new Thread(() -> {
 System.out.println("Hello Thread");
});

// Start the thread
thread.start();

Implementing a Script Engine
Implementing a full-blown script engine is no simple task and it is out of scope of this book. This section is
meant to give you a brief, but complete, overview of the setup needed to implement a script engine. In this
section, you will implement a simple script engine called the JKScript engine. It will evaluate arithmetic
expressions with the following rules:

•	 It will evaluate an arithmetic expression that consists of two operands and one
operator.

•	 The expression may have two number literals, two variables, or one number literal
and one variable as operands. The number literals must be in decimal format.
Hexadecimal, octal, and binary number literals are not supported.

•	 The arithmetic operations in an expression are limited to add, subtract, multiply,
and divide.

•	 It will recognize +, -, *, and / as arithmetic operators.

•	 The engine will return a Double object as the result of the expression.

•	 Operands in an expression may be passed to the engine using global scope or engine
scope bindings of the engine.

•	 It should allow executing scripts from a String object and a java.io.Reader object.
However, a Reader should have only one expression as its contents.

•	 It will not implement the Invocable and Compilable interfaces.

Using these rules, some valid expressions for your script engine are as follows:

•	 10 + 90

•	 10.7 + 89.0

•	 +10 + +90

•	 num1 + num2

•	 num1 * num2

•	 78.0 / 7.5

Chapter 9 ■ SCripting in Java

708

The Scripting API uses the service provider mechanism to discover script engines. The service type is
the javax.script.ScriptEngineFactory interface. Your script engine must provide an implementation
for this service type. You will package your script engine in a separate module named jdojo.jkscript, as
declared in Listing 9-24.

Listing 9-24. The Declaration of a jdojo.jkscript Module

// module-info.java
module jdojo.jkscript {
 requires java.scripting;
 provides javax.script.ScriptEngineFactory with com.jdojo.jkscript.JKScriptEngineFactory;
}

The module reads the java.scripting module because it needs to use types from this module. The
module provides an implementation of the javax.script.ScriptEngineFactory service interface, which
is the com.jdojo.jkscript.JKScriptEngineFactory class. You do not need to export any packages of your
module because no other modules are supposed to access any types from this module directly.

As part of your implementation for the JKScript script engine, you will develop three classes as listed in
Table 9-2. In the subsequent sections, you will develop these classes.

Table 9-2. Classes to be Developed for the JKScript Script Engine

Class Description

Expression The Expression class is the heart of your script engine. It performs the work
of parsing and evaluating an arithmetic expression. It is used inside the
eval() methods of the JKScriptEngine class.

JKScriptEngine An implementation of the ScriptEngine interface. It extends the
AbstractScriptEngine class that implements the ScriptEngine interface.
The AbstractScriptEngine class provides a standard implementation for
several versions of the eval() methods of the ScriptEngine interface. You
need to implement the following two versions of the eval() method:
Object eval(String, ScriptContext)
Object eval(Reader, ScriptContext)

JKScriptEngineFactory An implementation of the ScriptEngineFactory interface. This is the service
provider for the javax.script.ScriptEngineFactory service interface.

The Expression Class
The Expression class contains the main logic for parsing and evaluating an arithmetic expression. Listing 9-25
contains the complete code for the Expression class.

Listing 9-25. The Expression Class That Parses and Evaluates an Arithmetic Expression

// Expression.java
package com.jdojo.jkscript;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.script.ScriptContext;

Chapter 9 ■ SCripting in Java

709

public class Expression {
 private String exp;
 private ScriptContext context;

 private String op1;
 private char op1Sign = '+';

 private String op2;
 private char op2Sign = '+';

 private char operation;

 private boolean parsed;

 public Expression(String exp, ScriptContext context) {
 if (exp == null || exp.trim().equals("")) {
 throw new IllegalArgumentException(this.getErrorString());
 }
 this.exp = exp.trim();

 if (context == null) {
 throw new IllegalArgumentException("ScriptContext cannot be null.");
 }
 this.context = context;
 }

 public String getExpression() {
 return exp;
 }

 public ScriptContext getScriptContext() {
 return context;
 }

 public Double eval() {
 // Parse the expression
 if (!parsed) {
 this.parse();
 this.parsed = true;
 }

 // Extract the values for the operand
 double op1Value = getOperandValue(op1Sign, op1);
 double op2Value = getOperandValue(op2Sign, op2);

 // Evaluate the expression
 Double result = null;
 switch (operation) {
 case '+':
 result = op1Value + op2Value;
 break;

Chapter 9 ■ SCripting in Java

710

 case '-':
 result = op1Value - op2Value;
 break;
 case '*':
 result = op1Value * op2Value;
 break;
 case '/':
 result = op1Value / op2Value;
 break;
 default:
 throw new RuntimeException("Invalid operation:" + operation);
 }
 return result;
 }

 private double getOperandValue(char sign, String operand) {
 // Check if operand is a double
 double value;
 try {
 value = Double.parseDouble(operand);
 return sign == '-' ? -value : value;
 } catch (NumberFormatException e) {
 // Ignore it. Operand is not in a format that can be
 // converted to a double value.
 }

 // Check if operand is a bind variable
 Object bindValue = context.getAttribute(operand);
 if (bindValue == null) {
 throw new RuntimeException(operand + " is not found in the script context.");
 }

 if (bindValue instanceof Number) {
 value = ((Number) bindValue).doubleValue();
 return sign == '-' ? -value : value;
 } else {
 throw new RuntimeException(operand + " must be bound to a number.");
 }
 }

 public void parse() {
 // Supported expressions are of the form v1 op v2, where v1 and v2
 // are variable names or numbers, and op could be +, -, *, or /

 // Prepare the pattern for the expected expression
 String operandSignPattern = "([+-]?)";
 String operandPattern = "([\\p{Alnum}\\p{Sc}_.]+)";
 String whileSpacePattern = "([\\s]*)";
 String operationPattern = "([+*/-])";
 String pattern = "^" + operandSignPattern + operandPattern
 + whileSpacePattern + operationPattern + whileSpacePattern
 + operandSignPattern + operandPattern + "$";

Chapter 9 ■ SCripting in Java

711

 Pattern p = Pattern.compile(pattern);
 Matcher m = p.matcher(exp);
 if (!m.matches()) {
 // The expression is not in the expected format
 throw new IllegalArgumentException(this.getErrorString());
 }

 // Get operand-1
 String temp = m.group(1);
 if (temp != null && !temp.equals("")) {
 this.op1Sign = temp.charAt(0);
 }
 this.op1 = m.group(2);

 // Get operation
 temp = m.group(4);
 if (temp != null && !temp.equals("")) {
 this.operation = temp.charAt(0);
 }

 // Get operand-2
 temp = m.group(6);
 if (temp != null && !temp.equals("")) {
 this.op2Sign = temp.charAt(0);
 }
 this.op2 = m.group(7);
 }

 private String getErrorString() {
 return "Invalid expression[" + exp + "]"
 + "\nSupported expression syntax is: op1 operation op2"
 + "\n where op1 and op2 can be a number or a bind variable"
 + " , and operation can be +, -, *, and /.";
 }

 @Override
 public String toString() {
 return "Expression: " + this.exp + ", op1 Sign = "
 + op1Sign + ", op1 = " + op1 + ", op2 Sign = "
 + op2Sign + ", op2 = " + op2 + ", operation = " + operation;
 }
}

The Expression class is designed to parse and evaluate an arithmetic expression of the form

op1 operation op2

Here, op1 and op2 are two operands that can be numbers in decimal format or variables, and operation
can be +, -, *, or /.

Chapter 9 ■ SCripting in Java

712

The suggested use of the Expression class is

Expression exp = new Expression(expression, scriptContext);
Double value = exp.eval();

Let’s discuss important components of the Expression class in detail.

The Instance Variables
Instance variables exp and context are the expression and the ScriptContext to evaluate the expression,
respectively. They are passed in to the constructer of this class.

The instance variables op1 and op2 represent the first and the second operands in the expression,
respectively. The instance variables op1Sign and op2Sign represent signs, which could be + or -, for the first
and the second operands in the expression, respectively. The operands and their signs are populated when
the expression is parsed using the parse() method.

The instance variable operation represents an arithmetic operation (+, -, *, or /)) to be performed on
the operands.

The instance variable parsed is used to keep track of the fact whether the expression has been parsed or
not. The parse() method sets it to true.

The Constructor
The constructor accepts an expression and a ScriptContext and makes sure that they are not null and
stores them in the instance variables. It trims the leading and trailing whitespace from the expression before
storing it in the instance variable exp.

The parse() Method
The parse() method parses the expression into operands and operations. It uses a regular expression to
parse the expression text. The regular expression expects the expression text in the following form:

•	 An optional sign + or - for the first operand

•	 The first operand that may consist of a combination of alphanumeric letters,
currency signs, underscores, and decimal points

•	 Any amount of whitespace

•	 An operation sign that may be +, -, *, or /

•	 An optional sign + or - for the second operand

•	 The second operand that may consist of a combination of alphanumeric letters,
currency signs, underscores, and decimal points

The regular expression ([+-]?) will match the optional sign for the operand. The regular expression
([\\p{Alnum}\\p{Sc}_.]+) will match an operand, which may be a decimal number or a name. The regular
expression ([\\s]*) will match any amount of whitespace. The regular expression ([+*/-]) will match an
operation sign. All regular expressions are enclosed in parentheses to form groups, so you can capture the
matched parts of the expression.

If an expression matches the regular expression, the parse() method stores the matches into respective
instance variables.

Chapter 9 ■ SCripting in Java

713

Note that the regular expression to match the operand is not perfect. It will allow several invalid cases,
such as an operand having multiple decimal points, etc. However, for this demonstration purpose, it will do.

The getOperandValue() Method
This method is used during an expression evaluation after the expression has been parsed. If the operand is
a double number, it returns the value by applying the sign of the operand. Otherwise, it looks up the name of
the operand in the ScriptContext. If the name of the operand is not found in the ScriptContext, it throws
a RuntimeException. If the name of the operand is found in the ScriptContext, it checks if the value is a
number. It the value is a number, it returns the value after applying the sign to the value; otherwise, it throws
a RuntimeException.

The getOperandValue() method does not support operands in hexadecimal, octal, and binary formats.
For example, an expression like “0x2A + 0b1011” will not be treated as an expression having two operands
with int literals. It is left to readers to enhance this method to support numeric literals in hexadecimal, octal,
and binary formats.

The eval() Method
The eval() method evaluates the expression and returns a double value. First, it parses the expression if
it has not already been parsed. Note that multiple calls to the eval() parses the expression only once. It
obtains values for both operands, performs the operation, and returns the value of the expression.

The JKScriptEngine Class
Listing 9-26 contains the implementation for the JKScript script engine. Its eval(String, ScriptContext)
method contains the main logic:

Expression exp = new Expression(script, context);
Object result = exp.eval();

It creates an object of the Expression class. It calls the eval() method of the Expression object that
evaluates the expression and returns the result.

The eval(Reader, ScriptContext) method reads all lines from the Reader, concatenates them, and
passes the resulting String to the eval(String, ScriptContext) method to evaluate the expression. Note
that a Reader must have only one expression. An expression may be split into multiple lines. Whitespace in
the Reader is ignored.

Listing 9-26. An Implementation of JKScript Script Engine

// JKScriptEngine.java
package com.jdojo.jkscript;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.Reader;
import javax.script.AbstractScriptEngine;
import javax.script.Bindings;
import javax.script.ScriptContext;
import javax.script.ScriptEngineFactory;
import javax.script.ScriptException;
import javax.script.SimpleBindings;

Chapter 9 ■ SCripting in Java

714

public class JKScriptEngine extends AbstractScriptEngine {
 private final ScriptEngineFactory factory;

 public JKScriptEngine(ScriptEngineFactory factory) {
 this.factory = factory;
 }

 @Override
 public Object eval(String script, ScriptContext context) throws ScriptException {
 try {
 Expression exp = new Expression(script, context);
 Object result = exp.eval();
 return result;
 } catch (Exception e) {
 throw new ScriptException(e.getMessage());
 }
 }

 @Override
 public Object eval(Reader reader, ScriptContext context) throws ScriptException {
 // Read all lines from the Reader
 BufferedReader br = new BufferedReader(reader);

 String script = "";
 try {
 String str;
 while ((str = br.readLine()) != null) {
 script = script + str;
 }
 } catch (IOException e) {
 throw new ScriptException(e);
 }

 // Use the String version of eval()
 return eval(script, context);
 }

 @Override
 public Bindings createBindings() {
 return new SimpleBindings();
 }

 @Override
 public ScriptEngineFactory getFactory() {
 return factory;
 }
}

Chapter 9 ■ SCripting in Java

715

The JKScriptEngineFactory Class
Listing 9-27 contains the implementation for the ScriptEngineFactory interface for the JKScript engine.
Some of its methods return a "Not Implemented" string because you do not support features exposed
by those methods. The code in the JKScriptEngineFactory class is self-explanatory. An instance of the
JKScript engine may be obtained using ScriptEngineManager with a name of jks, JKScript, or jkscript as
coded in the getNames() method.

Listing 9-27. A ScriptEngineFactory Implementation for JKScript Script Engine

// JKScriptEngineFactory.java
package com.jdojo.jkscript;

import java.util.List;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineFactory;

public class JKScriptEngineFactory implements ScriptEngineFactory {
 @Override
 public String getEngineName() {
 return "JKScript Engine";
 }

 @Override
 public String getEngineVersion() {
 return "1.0";
 }

 @Override
 public List<String> getExtensions() {
 return List.of("jks");
 }

 @Override
 public List<String> getMimeTypes() {
 return List.of("text/jkscript");
 }

 @Override
 public List<String> getNames() {
 return List.of("jks", "JKScript", "jkscript");
 }

 @Override
 public String getLanguageName() {
 return "JKScript";
 }

 @Override
 public String getLanguageVersion() {
 return "1.0";
 }

Chapter 9 ■ SCripting in Java

716

 @Override
 public Object getParameter(String key) {
 switch (key) {
 case ScriptEngine.ENGINE:
 return getEngineName();
 case ScriptEngine.ENGINE_VERSION:
 return getEngineVersion();
 case ScriptEngine.NAME:
 return getEngineName();
 case ScriptEngine.LANGUAGE:
 return getLanguageName();
 case ScriptEngine.LANGUAGE_VERSION:
 return getLanguageVersion();
 case "THREADING":
 return "MULTITHREADED";
 default:
 return null;
 }
 }

 @Override
 public String getMethodCallSyntax(String obj, String m, String[] p) {
 return "Not implemented";
 }

 @Override
 public String getOutputStatement(String toDisplay) {
 return "Not implemented";
 }

 @Override
 public String getProgram(String[] statements) {
 return "Not implemented";
 }

 @Override
 public ScriptEngine getScriptEngine() {
 return new JKScriptEngine(this);
 }
}

Packaging the JKScript Files
To let others use your JKScript engine, all you need to do is to supply the modular JAR for the jdojo.
jkscript module. The modular JAR is supplied in the source code for this book. It is located at
Java9APIsAndModules\dist\jdojo.jkscript.jar.

Chapter 9 ■ SCripting in Java

717

Using the JKScript Script Engine
It is time to test your JKScript script engine. The first and most important step is to include the jdojo.
jkscript.jar, which you created the previous section, to the application’s module path. After that, using
JKScript script engine is no different from using any other script engines.

The following snippet of code creates an instance of the JKScript script engine using JKScript as its
name. You can also use its other names, jks and jkscript.

// Create the JKScript engine
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JKScript");

if (engine == null) {
 System.out.println("JKScript engine is not available. ");
 System.out.println("Add jkscript.jar to CLASSPATH.");
} else {
 // Evaluate your JKScript
}

Listing 9-28 contains a program that uses the JKScript script engine to evaluate different types of
expressions. Expressions stored in String objects and files are executed. Some expressions use numeric
literals and some bind variables whose values are passed in bindings in engine scope and global scope of
the default ScriptContext of the engine. Note that this program expects a file named jkscript.txt in the
current directory that contains an arithmetic expression that can be understood by the JKScript script
engine. If the script file does not exist, the program prints a message on the standard output with the path of
the expected script file. You may get a different output in the last line.

Listing 9-28. Using the JKScript Script Engine

// JKScriptTest.java
package com.jdojo.script;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.Reader;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class JKScriptTest {
 public static void main(String[] args) throws FileNotFoundException, IOException {
 // Create JKScript engine
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("JKScript");
 if (engine == null) {
 System.out.println("JKScript engine is not available. ");
 System.out.println("Add jkscript.jar to CLASSPATH.");
 return;
 }

Chapter 9 ■ SCripting in Java

718

 // Test scripts as String
 testString(manager, engine);

 // Test scripts as a Reader
 testReader(manager, engine);
 }

 public static void testString(ScriptEngineManager manager, ScriptEngine engine) {
 try {
 // Use simple expressions with numeric literals
 String script = "12.8 + 15.2";
 Object result = engine.eval(script);
 System.out.println(script + " = " + result);

 script = "-90.0 - -10.5";
 result = engine.eval(script);
 System.out.println(script + " = " + result);

 script = "5 * 12";
 result = engine.eval(script);
 System.out.println(script + " = " + result);

 script = "56.0 / -7.0";
 result = engine.eval(script);
 System.out.println(script + " = " + result);

 // Use global scope bindings variables
 manager.put("num1", 10.0);
 manager.put("num2", 20.0);
 script = "num1 + num2";
 result = engine.eval(script);
 System.out.println(script + " = " + result);

 // Use global and engine scopes bindings. num1 from
 // engine scope and num2 from global scope will be used.
 engine.put("num1", 70.0);
 script = "num1 + num2";
 result = engine.eval(script);
 System.out.println(script + " = " + result);

 // Try mixture of number literal and bindings. num1 from
 // the engine scope bindings will be used
 script = "10 + num1";
 result = engine.eval(script);
 System.out.println(script + " = " + result);
 } catch (ScriptException e) {
 e.printStackTrace();
 }
 }

Chapter 9 ■ SCripting in Java

719

 public static void testReader(ScriptEngineManager manager,
 ScriptEngine engine) {
 try {
 Path scriptPath = Paths.get("jkscript.txt").toAbsolutePath();
 if (!Files.exists(scriptPath)) {
 System.out.println(scriptPath + " script file does not exist.");
 return;
 }

 try (Reader reader = Files.newBufferedReader(scriptPath);) {
 Object result = engine.eval(reader);
 System.out.println("Result of " + scriptPath + " = " + result);
 }
 } catch (ScriptException | IOException e) {
 e.printStackTrace();
 }
 }
}

12.8 + 15.2 = 28.0
-90.0 - -10.5 = -79.5
5 * 12 = 60.0
56.0 / -7.0 = -8.0
num1 + num2 = 30.0
num1 + num2 = 90.0
10 + num1 = 80.0
Result of C:\Java9APIsAndModules\jkscript.txt = 88.0

The jrunscript Command-Line Shell
The JDK includes a command-line script shell called jrunscript. It is script-engine-neutral and it can be
used to evaluate any script including your JKScript. You can find this shell in the JAVA_HOME\bin directory,
where JAVA_HOME is the directory in which you have installed the JDK. In this section, I discuss how to use
the jrunscript shell to evaluate scripts using different script engines.

The Syntax
The syntax to use the jrunscript shell is as follows:

jrunscript [options] [arguments]

Both [options] and [arguments] are optional. However, if both are specified, [options] must precede
[arguments]. Table 9-3 lists all available options for the jrunscript shell.

Chapter 9 ■ SCripting in Java

720

The [arguments] part of the command is a list of arguments, which are interpreted depending on
whether the -e or -f option is used or not. Arguments that are passed to the script are available inside the
script as an array named arguments. Table 9-4 lists interpretations of the arguments when they are used with
the -e or -f option.

Table 9-4. Interpretation of [arguments] in Combination of the -e or -f Option

-e or -f Option Arguments Interpretation

Yes Yes If -e or -f option is specified, all arguments are passed to the script
as script arguments.

No Yes If arguments are specified with no -e or -f option, the first
argument is considered a script file to run. The rest of the
arguments, if any, are passed to the script as script arguments.

No No If arguments and -e or -f option are missing, the shell works in
interactive mode, where the shell executes the script entered in the
standard input interactively.

Table 9-3. Options for the jrunscript Shell

Option Description

-classpath <path> Used to specify the CLASSPATH.

-cp <path> The same as the option -classpath.

-D<name>=<value> Sets a system property for Java runtime.

-J<flag> Passes the specified <flag> to the JVM on which jrunscript is run. You
can use this option to specify any JVM option such as --module-path and
-Dnashorn.args=--language=es6.

-l <language> Allows you to specify a scripting language that you want to use. By default,
Rhino JavaScript is used in JDK6 and JDK7. In JDK8, Nashorn is the default. If
you want to use a language other than JavaScript, say JKScript, you need to use
-cp or -classpath option to include the JAR file that contains the script engine.

-e <script> Executes the specified script. Typically, it is used to execute a one-liner script.

-encoding <encoding> Specifies the character encoding used while reading script files.

-f <script-file> Evaluates the specified <script-file> in batch mode.

-f - Allows you to evaluate scripts in interactive mode. It reads scripts from the
standard input and executes.

-help, -? Outputs the help message and exits.

-q Lists all available script engines and exits. Script engines other than JavaScript
are available only when you include their JAR files using the -cp or -classpath
option.

Chapter 9 ■ SCripting in Java

721

Execution Modes of the Shell
You can use the jrunscript shell in the following three modes:

•	 One-liner mode

•	 Batch mode

•	 Interactive mode

One-Liner Mode
The -e option lets you use the shell in one-liner mode. It executes one line of script. The following command
prints a message on the standard output using Nashorn engine:

C:\Java9APIsAndModules>jrunscript -e "print('Hello Nashorn!')"

Hello Nashorn!

In one-liner mode, the entire script must be entered on one line. However, a one-liner script may
contain multiple statements.

Batch Mode
The -f option lets you use the shell in batch mode. It executes a script file. Consider a script file named
nashorntest.js, as shown in Listing 9-29.

Listing 9-29. A nashorntest.js Script File Written in Nashorn JavaScript

// Print a message
print("Hello Nashorn!");

// Add two integers and print the value
var x = 10;
var y = 20;
var z = x + y;
print(x + " + " + y + " = " + z);

The following command runs the script in the nashorntest.js file in a batch mode. You may need to
specify the full path of the nashorntest.js file if it is not in the current directory.

C:\Java9APIsAndModules>jrunscript -f nashorntest.js
Hello Nashorn!
10 + 20 = 30

Chapter 9 ■ SCripting in Java

722

Interactive Mode
In interactive mode, the shell reads and evaluates script as it is entered on the standard input. There are two
ways to use the shell in interactive mode:

•	 Using no -e or -f option and no arguments

•	 Using -f - option

The following command uses no options and arguments to enter into interactive mode. Pressing the
Enter key makes the shell evaluate the entered script.

c:\Java9APIsAndModules>jrunscript
nashorn> print("Hello Interactive mode!");
Hello Interactive mode!
nashorn> var num = 190;
nashorn> print("num is " + num);
num is 190
nashorn> exit();

The following sequence of commands show you how to enable ES6 limited features in jrunscript
while running it in interactive mode. The script uses the const keyword, which is one of the ES6 features
implemented in Nashorn, to declare a constant.

C:\Java9APIsAndModules>jrunscript -J-Dnashorn.args=--language=es6
nashorn> const PI = 3.14;
nashorn> print("PI = " + PI);
PI = 3.14
nashorn> exit();

Listing Available Script Engines
The jrunscript shell is a scripting-language-neutral shell. You can use it to run scripts in any scripting
language for which the script engines’ JAR files are available. By default, the Nashorn JavaScript engine is
available. To list all available script engines, you use the -q option as shown:

C:\Java9APIsAndModules>jrunscript -q

Language ECMAScript ECMA - 262 Edition 5.1 implementation "Oracle Nashorn" 9.0.1

Refer to the next section on how to add a script engine to the shell.

Adding a Script Engine to the Shell
How do you make script engines other than the Nashorn JavaScript engine available to the shell? To make
a script engine available to the shell, you need to provide the list of JAR files for the script engine using the
-classpath or -cp option. If you have a modular JAR, you can use -J--module-path to specify the module
path where the modular JAR is located. The following command makes JKScript available by specifying the

Chapter 9 ■ SCripting in Java

723

path to the jdojo.jkscript.jar in the -J--module-path option. Note that the Nashorn engine is always
available by default. The command uses the -q option to list all available script engines.

C:\Java9APIsAndModules>jrunscript -J--module-path=dist\jdojo.jkscript.jar -q

Language ECMAScript ECMA - 262 Edition 5.1 implementation "Oracle Nashorn" 9.0.1
Language JKScript 1.0 implementation "JKScript Engine" 1.0

Using Other Script Engines
You can use other script engines by specifying the script engine name with the -l option. You must use the
-cp or -classpath option, or the -J--module-path option to specify the modular JAR or JAR files for the
script engine, so the shell has access to the engine. The following command uses the JKScript engine in
interactive mode:

C:\Java9APIsAndModules>jrunscript -J--module-path=dist\jdojo.jkscript.jar -l JKScript
jks> 10 + 30
40.0
jks> +89.7 + -9.7
80.0
jks>

Passing Arguments to Scripts
The jrunscript shell allows passing arguments to scripts. The arguments are made available to the script
in an array named arguments. You can access the arguments array inside the script in the language-specific
way. The following command passes three arguments of 10, 20, and 30 and prints the value of the first
argument.

C:\Java9APIsAndModules>jrunscript -e "print('First argument is ' + arguments[0])" 10 20 30

First argument is 10

Consider the Nashorn JavaScript file nashornargstest.js, shown in Listing 9-30, which prints the
number of arguments and their values that are passed to the script.

Listing 9-30. A nashornargstest.js File Written in Nashorn JavaScript to Print Command-Line Arguments

// nashornargstest.js
print("Number of arguments:" + arguments.length);
print("Arguments are ") ;
for(var i = 0; i < arguments.length; i++) {
 print(arguments[i]);
}

Chapter 9 ■ SCripting in Java

724

The following commands run the nashornargstest.js file using the jrunscript shell.

C:\Java9APIsAndModules>jrunscript scripts/nashornargstest.js

Number of arguments:0
Arguments are

C:\Java9APIsAndModules>jrunscript scripts/nashornargstest.js 10 20 30

Number of arguments:3
Arguments are
10
20
30

If you want to run the nashornargstest.js file from a Java application, you need to pass an argument
named arguments to the engine. The argument named arguments is passed to the script by the shell
automatically, not by a Java application.

The jjs Command-Line Tool
To work with the Nashorn script engine, JDK8 included a new command-line tool called jjs. The command
is located in the JDK_HOME\bin directory. The command can be used to run scripts in files or scripts entered
on the command line in interactive mode. It can also be used to execute shell scripts. The syntax to invoke
the command is

jjs <options> <script-files> <-- arguments>

Here,

•	 <options> are options for the jjs command. Options are separated by spaces.

•	 <script-files> is the list of script files to be interpreted by the Nashorn engine.

•	 <-- arguments> is the list of arguments to be passed to the scripts or the interactive
shell as arguments. Arguments are specified after double hyphens and they can be
accessed using the arguments property.

Table 9-5 lists some of the commonly used options for the jjs tool. To print the list of all options, run
the tool with the –xhelp option, like so:

jjs –xhelp

Chapter 9 ■ SCripting in Java

725

If you run jjs without specifying any options or script files, it is run in interactive mode. The script
is interpreted as you enter it. Strings in Nashorn can be enclosed in single quotes or double quotes. The
following are some examples of using the jjs tool in interactive mode. You can execute the quit() or exit()
function to exit the jjs tool.

C:\Java9APIsAndModules>jjs
jjs> "Hello jjs";
Hello jjs
jjs> "Hello".toLowerCase();
hello
jjs> var list = [1, 2, 3, 4, 5];
jjs> var sum = 0;
jjs> for each(x in list) { sum = sum + x };
15
jjs> quit();

C:\Java9APIsAndModules>

Table 9-5. Options for the jjs Command-Line Tool

Option Description

-classpath <path> or -cp <path> Specifies the CLASSPATH.

--add-modules <modules> Specifies the root modules to resolve.

--module-path <path> Specifies the module path.

--language=[es5|es6] Specifies the version of the ECMAScript language to use. The
default version is ES5.

-D<name>=<value> Sets a system property for Java runtime. This option can be
repeated to set multiple runtime properties values.

-J<flag> Passes the specified <flag> to the JVM.

-scripting Enables shell scripting features.

-strict Enables strict mode where the scripts are executed using the
ECMAScript Edition 5.1 standards.

-fx Launches the script as a JavaFX application.

-doe or –dump-on-error When this is specified, a full stack trace of the error is printed. By
default, a brief error message is printed.

-v or –version Prints the version of the Nashorn engine.

-fv or –fullversion Prints the full version of the Nashorn engine.

-t=<timezone> or –
timezone=<timezone>

Sets the time zone for the script execution. The default time zone
is Chicago/America (Central Time Zone).

-help, -h Outputs the help message and exits.

-xhelp Prints extended help.

Chapter 9 ■ SCripting in Java

726

In JDK9, the jjs tool uses jline2, which is a Java library to handle console input. On a jjs shell, you
can use:

•	 Up and down arrows to navigate through input history

•	 Delete the input in both forward and backward directions

•	 Left and right arrows to move through the input

•	 Ctrl+K to delete the rest of the line and Ctrl+Y to restore the line

•	 Tab completion

The following is an example of passing arguments to the jjs tool. The first five natural numbers are
passed to the jjs tool as arguments and they are accessed using the arguments property later. Note that you
must add a space between the two hyphens and the first argument.

C:\Java9APIsAndModules>jjs -- 1 2 3 4 5
jjs> for each (x in arguments) print(x);
1
2
3
4
5
jjs> quit();

C:\Java9APIsAndModules>

Consider the script in Listing 9-31. The script has been saved in a file named stream.js. The script
works on a list of integers. The list can be passed to the script as the command-line arguments. If the list is
not passed as arguments, it uses the first five natural numbers as the list. It computes the sum of the squares
of odd integers in the list. It prints the list and the sum.

Listing 9-31. A Script to Compute the Sum of the Squares of Odd Integers in a List

// stream.js
var list;
if (arguments.length == 0) {
 list = [1, 2, 3, 4, 5];
} else {
 list = arguments;
}

print("List of numbers: " + list);

var sumOfSquaredOdds = list.filter(function(n) {return n % 2 == 1;})
 .map(function(n) {return n * n;})
 .reduce(function(sum, n) {return sum + n;}, 0);

print("Sum of the squares of odd numbers: " + sumOfSquaredOdds);

Using the jjs tool, you can run the script in the stream.js file as follows. It is assumed that the stream.js
file is in the scripts directory the current directory. Otherwise, you need to specify the full path of the file.

Chapter 9 ■ SCripting in Java

727

C:\Java9APIsAndModules>jjs scripts/stream.js
List of numbers: 1,2,3,4,5
Sum of the squares of odd numbers: 35

C:\Java9APIsAndModules>jjs scripts/stream.js -- 10 11 12 13 14 15
List of numbers: 10,11,12,13,14,15
Sum of the squares of odd numbers: 515

C:\Java9APIsAndModules>

The jjs tool can be invoked in scripting mode that allows you to run shell commands. You can start the
jjs tool in scripting mode using the –scripting option. The shell commands are enclosed in back quotes.
The following are examples of using the date and ls shell commands using the jjs tool in scripting mode.
When I ran the following commands on the Windows 10 command prompt, I had to run the command
prompt as an administrator to see the output of the commands such as date and ls.

C:\Java9APIsAndModules>jjs -scripting
jjs> `date`
Sat Jan 20 22:42:26 CDT 2018

jjs> `ls`
stream.js
test.js

jjs> quit()

C:\Java9APIsAndModules >

You can capture the output of the shell command in a variable. Scripting mode allows for expression
substitution in strings enclosed in double quotes. Note that the expression substitution feature is not
available in strings enclosed in single quotes. The expression is enclosed in ${expression}. The following
commands capture the value of the date shell command in a variable and embed the date value in a string
using the expression substitution. Note that in the example, the expression substitution does not work when
the string is enclosed in single quotes:

c:\>jjs -scripting
jjs> var today = `date`
jjs> "Today is ${today}"
Sat Jan 20 22:42:26 CDT 2018

jjs> 'Today is ${today}'
Today is ${today}
jjs> quit()

c:\>

You can also execute the shell script stored in a file using the scripting mode, like so:

C:\> jjs –scripting myscript.js

Chapter 9 ■ SCripting in Java

728

The jjs tool supports heredocs in script files that can be run in scripting mode. A heredoc is also
known as a here document, here-string, or here-script. It is a multiline string where whitespace is
preserved. A heredoc starts with a double angle brackets (<<) and a delimiting identifier. Typically, EOF
or END is used as the delimiting identifier. However, you can use any other identifier that is not used as an
identifier elsewhere in the script. The multiline string starts at the end line. The string is ended with the
same delimiting identifier. The following is an example of using a heredoc in Nashorn:

var str = <<EOF
This is a multi-line string using the heredoc syntax.
Bye Heredoc!
EOF

Listing 9-32 contains the script that uses a heredoc in Nashorn. The $ARG property is defined only in
scripting mode and its value is the arguments passed to the script using the jjs tool.

Listing 9-32. The Contents of the heredoc.js File That Uses a Heredoc to Style a Multiline String

// heredoc.js
var str = <<EOF
This is a multiline string.
Number of arguments passed to this
script is ${$ARG.length}
Arguments are ${$ARG}

Bye Heredoc!
EOF

print(str);

You can execute the heredoc.js script file as shown:

C:\Java9APIsAndModules>jjs -scripting scripts/heredoc.js
This is a multiline string.
Number of arguments passed to this
script is 0
Arguments are

Bye Heredoc!

C:\Java9APIsAndModules>jjs -scripting scripts/heredoc.js -- Kishori Sharan
This is a multiline string.
Number of arguments passed to this
script is 2
Arguments are Kishori,Sharan

Bye Heredoc!

C:\Java9APIsAndModules>

For more information on shell scripting in Nashorn, refer to https://docs.oracle.com/javase/9/
nashorn/nashorn-and-shell-scripting.htm.

https://docs.oracle.com/javase/9/nashorn/nashorn-and-shell-scripting.htm
https://docs.oracle.com/javase/9/nashorn/nashorn-and-shell-scripting.htm

Chapter 9 ■ SCripting in Java

729

JavaFX in Nashorn
The jjs command-line tool for Nashorn lets you use JavaFX from scripts. You need to create a start()
function in JavaScript as you do to launch a JavaFX application in Java. Nashorn will take care of the rest.
Optionally, you can also declare init() and stop() functions for your JavaFX application. You can use the
fully qualified name of the JavaFX classes or import them using the Java.type() function. The following
snippet of code shows the two approaches to create a Label in JavaFX:

// Using the fully qualified name of the Label class
var msg = new javafx.scene.control.Label("Hello JavaFX!");

// Using Java.type() function
var Label = Java.type("javafx.scene.control.Label");
var msg = new Label("Hello JavaFX!");

It may be cumbersome to type the fully qualified names of all JavaFX classes. Aren’t scripts supposed
to be shorter than Java code? Nashorn has a way to make your JavaFX script shorter. It includes several
script files that import the JavaFX types as their simple names. You will need to load those script files
using the load() method to use the simple names of JavaFX classes in your script. Nashorn includes a
fx:controls.js script file that imports all JavaFX control classes as their simple class names. Table 9-6
contains the list of script files and the classes/packages they import.

Table 9-6. Nashorn Script Files and the Classes/Packages They Import

Nashorn Script File Imported Classes/Packages

fx:base.js javafx.stage.Stage
javafx.scene.Scene
javafx.scene.Group
javafx/beans
javafx/collections
javafx/events
javafx/util

fx:graphics.js javafx/animation
javafx/application
javafx/concurrent
javafx/css
javafx/geometry
javafx/print
javafx/scene
javafx/stage

fx:controls.js javafx/scene/chart
javafx/scene/control

fx:fxml.js javafx/fxml

fx:web.js javafx/scene/web

fx:media.js javafx/scene/media

fx:swing.js javafx/embed/swing

fx:swt.js javafx/embed/swt

Chapter 9 ■ SCripting in Java

730

The following snippet of code shows how to load this script file and use the simple name of the
javafx.scene.control.Label class:

// Import all JavaFX control class names
load("fx:controls.js")

// Use the simple name of the Label control
var msg = new Label("Hello JavaFX!");

Listing 9-33 contains the code for a JavaFX application. Save the code in a file named hellojavafx.js.

Listing 9-33. A JavaFX Application Using a Nashorn Script

// hellojavafx.js

// Load Nashorn predefined scripts to import JavaFX specific classes and packages
load("fx:base.js")
load("fx:controls.js")
load("fx:graphics.js")

// Define the start() method of the JavaFX application class
function start(stage) {
 var nameLbl = new Label("Enter your name:");
 var nameFld = new TextField();
 var msg = new Label();
 msg.setStyle("-fx-text-fill: blue;");

 // Create buttons
 var sayHelloBtn = new Button("Say Hello");
 var exitBtn = new Button("Exit");

 // Add the event handler for the Say Hello button
 sayHelloBtn.onAction = function() {
 var name = nameFld.getText();
 if (name.trim().length() > 0) {
 msg.text = "Hello " + name;
 } else {
 msg.text = "Hello there";
 }
 };

 // Add the event handler for the Exit button
 exitBtn.onAction = function() {
 Platform.exit();
 };

 // Create the root node
 var root = new VBox();

 // Set the vertical spacing between children to 5px
 root.spacing = 5;

Chapter 9 ■ SCripting in Java

731

 // Add children to the root node
 root.children.addAll(nameLbl, nameFld, msg, sayHelloBtn, exitBtn);

 // Set the scene and title for the stage
 stage.scene = new Scene(root, 350, 150);
 stage.title = "Hello JavaFX from Nashorn";

 // Show the stage
 stage.show();
}

This is the Nashorn script equivalent of the JavaFX application defined as the ImprovedHelloFXApp Java
class in Chapter 8. The Nashorn version of the code is little simpler to write. In the script, you are able to call
the methods of the Java classes using their properties. For example, instead of writing this in Java:

root.setSpacing(5);

You can write this in Nashorn JavaScript:

root.spacing = 5;

Adding the event handler for buttons is easier. You can set an anonymous function as the event handler
for the buttons. Note that you are able to use the onAction property to set the event handler rather than
calling the setOnAction() method of the Button class. The following snippet of code shows how to set the
ActionEvent handler for a button:

// Add the event handler for the Say Hello button
sayHelloBtn.onAction = function() {
 // Script code to handle the ActionEvent goes here
};

To run a JavaFX application, you need to start the jjs tool with a –fx option. The following command
starts the JavaFX application that displays a window, as shown in Figure 9-7. Enter a name and click the Say
Hello button to see a message. Click the Exit button to exit the application.

C:\Java9APIsAndModules>jjs -fx scripts/hellojavafx.js

Figure 9-7. A JavaFX window created using a Nashorn script

http://dx.doi.org/10.1007/978-1-4842-3546-1_8

Chapter 9 ■ SCripting in Java

732

The jjs command-line tool makes it really easy to work with JavaFX applications. You can display
a message in a JavaFX window in just one line of code. Nashorn creates a global variable named $STAGE
that is the reference of the primary stage of the JavaFX application. Note that the $STAGE global variable is
available in the script only when you use the jjs tool with the –fx option. Listing 9-34 shows the code for the
simplest JavaFX application that displays a Label with a message in a JavaFX window. Save it in a file named
simplestfxapp.js. Note that you do not have to create a function for the start() method any more. You do
not need to even call the show() method on the $STAGE variable. Nashorn will show the stage automatically.

Listing 9-34. Using the $STAGE Global Variable in a Nashorn Script

// simplestfxapp.js
$STAGE.scene = new javafx.scene.Scene(new javafx.scene.control.Label("Hello JavaFX
Scripting"));

The following command will run the simplest JavaFX application that displays a window, as shown in
Figure 9-8.

C:\Java9APIsAndModules>jjs -fx scripts/simplestfxapp.js

Figure 9-8. The simplest JavaFX application using a Nashorn script

Summary
A scripting language is a programming language that provides you the ability to write scripts that are
evaluated (or interpreted) by a runtime environment called a script engine (or an interpreter). A script is
a sequence of characters that is written using the syntax of a scripting language and used as the source for
a program executed by an interpreter. The Java Scripting API allows you to execute scripts written in any
scripting language that can be compiled to Java bytecode from the Java application. JDK6 and JDK7 shipped
with a script engine called Rhino JavaScript engine. In JDK8, the Rhino JavaScript engine has been replaced
with a script engine called Nashorn.

Scripts are executed using a script engine that is an instance of the ScriptEngine interface. The
implementer of the ScriptEngine interface also provides an implementation of the ScriptEngineFactory
interface whose job is to create instances of the script engine and provide details about the script engine.
The ScriptEngineManager class provides a discovery and instantiation mechanism for script engines.
A ScriptManager maintains a mapping of key-value pairs as an instance of the Bindings interface that is
shared by all script engines that it creates.

You can execute scripts contained in a String or a Reader. The eval() method of the ScriptEngine
is used execute the script. You can pass parameters to the script using the ScriptContext. Parameters
passed can be local to a script engine, local to a script execution, or global to all script engines created by
a ScriptManager. Using the Java Scripting API, you can also execute procedures and functions written in
scripting languages. You can also precompile the scripts, if the script engine supports it, and execute the
scripts repeated from Java to get a better performance.

You can implement your script engine using the Java Scripting API. You need to provide the
implementation for the ScriptEngine and the ScriptEngineFactory interfaces. You need to package your
script engine code in a certain way so the engine can be discovered by the ScriptManager at runtime.

Chapter 9 ■ SCripting in Java

733

The Java 8 ships two command-line tools called jrunscript and jjs. They are located in the JDK_HOME\
bin directory. They are used to run scripts on a command line. The jrunscript tool is script-language-
neutral; it can be used to execute scripts in any script language such as Nashorn, JRuby, groovy, etc. The
jjs tool is used to run Nashorn scripts and its extensions; you can run shell commands, scripts, and Java
application using the jjs tool.

QUESTIONS AND EXERCISES

1. What is a scripting language?

2. What JDK module contains the Scripting api?

3. What is nashorn JavaScript?

4. What is the name of the script engine that is co-bundled with JDK9?

5. Briefly describe the use of the following classes and interfaces:
ScriptEngineFactory, ScriptEngine, ScriptEngineManager, Compilable,
Invocable, Bindings, ScriptContext, and ScriptException.

6. What is the use of the eval() method of a ScriptEngine?

7. Write a program in which you create an instance of the ScriptContext interface
using SimpleScriptContext class. Store a few attributes in the engine scope and
global scope, retrieve the same attributes, and print their values.

8. how do you add attributes to the global scope and engine scope?

9. how do you send the output of scripts executed by a ScriptEngine to a file?

10. Write a snippet of code that checks if a ScriptEngine supports compiling scripts.

11. Write part of the java command in which you enable eS6 support in nashorn.

12. how do you import Java types into nashorn JavaScript using the Packages object
and Java.type() function?

13. Create an unmodifiable list of two strings using the of() method of the java.util.
List interface and print the values in the list. Use nashorn JavaScript to write the
code.

14. Create an array of int. add two elements to the array with values 100 and 300.
print the elements in the array—one element on a single line. Use nashorn
JavaScript to write the code.

15. if you want to roll out your own script engine, what is the name of the service
interface whose implementation you must provide?

16. What are the jrunscript and jjs tools?

17. how do you start the jjs tool so you can execute shell scripts?

18. how do you exit out of the jjs tool?

735© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_10

CHAPTER 10

Process API

In this chapter, you will learn:

•	 What the Process API is

•	 How to interact with the current process running the Java application

•	 How to create a native process

•	 How to get information about a new process

•	 How to get information about the current process

•	 How to get information about all system processes

•	 How to set permissions to create, query, and manage native processes

All example programs in this chapter are members of a jdojo.process module, as declared in Listing 10-1.

Listing 10-1. The Declaration of a jdojo.process Module

// module-info.java
module jdojo.process {
 exports com.jdojo.process;
}

What Is the Process API?
The Process API consists of classes and interfaces that let you work with native processes in Java programs.
Using the API, you can:

•	 Create new native processes from Java code.

•	 Get process handles for native processes, whether they were created by Java code or
by other means.

•	 Destroy running native processes.

•	 Query processes for liveness and their other attributes.

•	 Get the list of child processes and the parent process of a process.

•	 Get the process ID (PID) of native processes.

•	 Get the input, output, and error streams of newly created processes.

https://doi.org/10.1007/978-1-4842-3546-1_10

Chapter 10 ■ proCess apI

736

•	 Wait for a process to terminate.

•	 Execute a task when a process terminates.

The Process API is small. It consists of the classes and interfaces listed in Table 10-1. I explain these
classes and interfaces in detail with examples in the following sections.

Before Java 9, the Process API was still lacking basic support for working with native processes such as
getting the PID and owner of a process, the start time of a process, how much CPU time has been used by
a process, how many native processes are currently running, etc. Note that before Java 9, you were able to
start native processes and work with their input, output, and error streams. However, you were not able to
work with native processes that you did not start and were not able to query the details of processes. To work
with native processes more closely, Java developers had to resort to writing native code using Java Native
Interface (JNI). Java 9 made these much needed features to work with native processes.

Java 9 added an interface named ProcessHandle to the Process API. An instance of the ProcessHandle
interface identifies a native process; it lets you query the process state and manage the process.

Compare the Process class and the ProcessHandle interface. An instance of the Process class
represents a native process started by the current Java program, whereas an instance of the ProcessHandle
interface represents a native process whether it was started by the current Java program or by other
means. In Java 9, several methods have been added to the Process class that are also available in the new
ProcessHandle interface. The Process class contains a toHandle() method that returns a ProcessHandle.

An instance of the ProcessHandle.Info interface represents a snapshot of the attributes of a process.
Note that processes are implemented differently by different operating systems, so their attributes vary. The
state of a process may change anytime, for example, the CPU time used by the process increases whenever
the process gets more CPU time. To get the latest information on a process, you need to use the info()
method of the ProcessHandle interface at the time you need it, which will return a new instance of the
ProcessHandle.Info interface.

Table 10-1. Classes to Be Developed for the JKScript Script Engine

Class/Interface Description

Runtime It is a singleton class whose sole instance represents the runtime
environment of a Java application.

ProcessBuilder An instance of the ProcessBuilder class holds a set of attributes for a
process. Calling its start() method starts a native process and returns an
instance of the Process class that represents the native process. You can call
its start() method multiple times; each time, it starts a new process using
the attributes held in the ProcessBuilder instance.

ProcessBuilder.Redirect It is a static nested class that represents a source of process input or a
destination of process output. It was added in JDK9.

Process It is an abstract class whose instances represent native processes started by
the current Java program using the start() method of a ProcessBuilder or
the exec() method of a Runtime.

ProcessHandle It is an interface whose instances represents handles to native processes
whether they were started by the current Java program or by any other
means. You can control and query the state of the native process using this
handle. It was added in JDK9.

ProcessHandle.Info An instance of the ProcessHandle.Info interface represents a snapshot of
the attributes of a process. It was added in JDK9.

Chapter 10 ■ proCess apI

737

All examples in this chapter were run on Windows 10. You may get a different output when you run
these programs on your machine using Windows 10 or a different operating system.

Knowing the Runtime Environment
Every Java application has an instance of the Runtime class that lets you query and interact with the runtime
environment in which the current Java application is running. The Runtime class is a singleton. You can get
its sole instance using the getRuntime() static method of this class:

// Get the instance of the Runtime
Runtime runtime = Runtime.getRuntime();

Using the Runtime, you can know the maximum memory that the current JVM can use, the currently
allocated memory in the JVM, and the free memory in the JVM. Here are the three methods that let you
query the JVM's memory in bytes:

•	 long maxMemory()

•	 long totalMemory()

•	 long freeMemory()

JVM allocates memory lazily. The maxMemory() method returns the maximum amount of memory that
the JVM can allocate. The method returns Long.MAX_VALUE if there is no maximum memory limit.

The totalMemory() method returns the currently allocated memory by the JVM out of the
maximum memory it can allocate. When the JVM needs more memory, it allocates more memory and
the totalMemory() method will return the currently allocated memory. The JVM can allocate maximum
memory up to the amount returned by the maxMemory() method.

The freeMemory() method returns the unused memory out of the currently allocated memory by the
JVM. How do you know the memory used by the JVM? The following formula will give you the memory used
by the JVM at a specific point in time:

Used Memory = Total Memory - Free Memory

Use the availableProcessors() method to get the number of available processors to the JVM
Use the version() method to get a Runtime.Version that represents the version of the Java runtime

environment. The version() was added to the Runtime class in JDK9. Refer to the Javadoc for the Runtime.
Version class for more details about the new the JDK/JRE versioning scheme from JDK9. Listing 10-2
shows you a few applications of the Runtime class in querying the Java runtime environment. You may get a
different output.

Listing 10-2. Querying the Java Runtime Environment

// QueryingRuntime.java
package com.jdojo.process;

public class QueryingRuntime {
 public static void main(String[] args) {
 // Get the Runtime instance
 Runtime rt = Runtime.getRuntime();

Chapter 10 ■ proCess apI

738

 // Get the JVM memory
 long maxMemory = rt.maxMemory();
 long totalMemory = rt.totalMemory();
 long freeMemory = rt.freeMemory();
 long usedMemory = totalMemory - freeMemory;

 System.out.format("Max memory = %d, Total memory = %d,"
 + "Free memory = %d, Used memory = %d.%n",
 maxMemory, totalMemory, freeMemory, usedMemory);

 // Print the number of processors available to the JVM
 int processors = rt.availableProcessors();
 System.out.format("Number of processors = %d%n", processors);

 // Print the version of the Java runtime
 Runtime.Version version = rt.version();
 System.out.format("Number of processors = %s%n", version);
 }
}

Max memory = 2113929216, Total memory = 132120576,Free memory = 125994760, Used memory =
6125816.
Number of processors = 4
Number of processors = 9.0.1+11

You can invoke the garbage collection using the gc() method of the Runtime class. The System.gc()
static method is the convenience method for the Runtime.getRuntime().gc().

You can terminate the JVM using the exit(int status) method of the Runtime class. The System.
exit() static method is a convenience method for Runtime.getRuntime().exit(). By convention, a non-
zero value for the status indicates an abnormal termination of the JVM. You can forcibly terminate the JVM
using the halt() method of the Runtime class.

You can add and remove shutdown hooks to the JVM using the addShutdownHook(Thread hook) and
removeShutdownHook(Thread hook) methods of the Runtime class. A shutdown hook is a thread, which is
initialized, but not started. The JVM starts the thread registered as the shutdown hook when it is terminated.

Use one of its exec() overloaded methods to start a native process. You should use the ProcessBuilder
class to start a native process. The exec() method of the Runtime class internally uses the ProcessBuilder class.

The Current Process
The current() static method of the ProcessHandle interface returns the handle of the current process. Note
that the current process returned by this method is always the Java process that is executing the code.

// Get the handle of the current process
ProcessHandle current = ProcessHandle.current();

Once you get the handle of the current process, you can use methods of the ProcessHandle interface to
get details about the process. Refer to the next section for an example on how to get information about the
current process.

Chapter 10 ■ proCess apI

739

 ■ Tip You cannot kill the current process. attempting to kill the current process by using the destroy() or
destroyForcibly() method of the ProcessHandle interface results in an IllegalStateException.

Querying Process State
You can use methods in the ProcessHandle interface to query the state of a process. Table 10-2 lists this
interface’s commonly used methods with brief descriptions. Note that many of these methods return the
snapshot of the state of a process that was true when the snapshot was taken. There is no guarantee that the
process will still be in the same state when you use its attributes later because processes are created, run,
and destroyed asynchronously.

Table 10-2. Methods in the ProcessHandle Interface

Method Description

static Stream<ProcessHandle> allProcesses() Returns a snapshot of all processes in the OS that are
visible to the current process.

Stream<ProcessHandle> children() Returns a snapshot of the current direct children
of the process. Use the descendants() method to
get a list of children at all levels, for example, child
processes, grandchild processes, great grandchild
processes, etc.

static ProcessHandle current() Returns a ProcessHandle for the current process,
which is the Java process executing this method call.

Stream<ProcessHandle> descendants() Returns a snapshot of the descendants of the
process. Compare it to the children() method,
which returns only direct descendants of the process.

boolean destroy() Requests the process to be killed. Returns true
if termination of the process was successfully
requested, false otherwise. Whether you can kill a
process depends on operating system access control.

boolean destroyForcibly() Requests the process to be killed forcibly. Returns
true if termination of the process was successfully
requested, false otherwise. Killing a process
forcibly terminates the process immediately,
whereas a normal termination allows a process to
shut down cleanly. Whether you can kill a process
depends on operating system access control.

ProcessHandle.Info info() Returns a snapshot of information about the process.

boolean isAlive() Returns true if the process represented by this
ProcessHandle has not yet terminated, false
otherwise. Note that this method may return true
for some time after you have successfully requested
to terminate the process because the process will be
terminated asynchronously.

(continued)

Chapter 10 ■ proCess apI

740

Table 10-3 lists the methods and descriptions of the ProcessHandle.Info nested interface. An instance
of this interface contains snapshot information about a process. You can obtain a ProcessHandle.Info using
the info() method of the ProcessHandle interface or the Process class. All methods in the interface return
an Optional.

Table 10-2. (continued)

Method Description

static Optional<ProcessHandle> of(long pid) Returns an Optional<ProcessHandle> for an
existing native process. Returns an empty Optional
if a process with the specified pid does not exist.

CompletableFuture <ProcessHandle> onExit() Returns a CompletableFuture <ProcessHandle>
for the termination of the process. You can use
the returned object to add a task that will be
executed when the process terminates. Calling
this method on the current process throws an
IllegalStateException.

Optional<ProcessHandle> parent() Returns an Optional<ProcessHandle> for the parent
process.

long pid() Returns the native process ID (PID) of the process,
which is assigned by the operating system. Note
that a PID may be reused by operating systems, so
two process handles having the same PID may not
represent the same process.

boolean supportsNormalTermination() Returns true if the implementation of destroy()
normally terminates the process.

Table 10-3. Methods in the ProcessHandle.Info Interface

Method Description

Optional<String[]> arguments() Returns arguments of the process. The process may change
the original arguments passed to it after startup. This
method returns the changed arguments in that case.

Optional<String> command() Returns the executable pathname of the process.

Optional<String> commandLine() It is a convenience method for combining the command
and arguments of a process. It returns the command line
of the process by combining the values returned from the
command() and arguments() methods if both methods
return non-empty optionals.

Optional<Instant> startInstant() Returns the start time of the process. If the operating system
does not return a start time, it returns an empty Optional.

Optional<Duration> totalCpuDuration() Returns the total CPU time used by the process. Note that a
process may run for a long time and may use very little CPU
time.

Optional<String> user() Returns the user of the process.

Chapter 10 ■ proCess apI

741

It is time to see the ProcessHandle and ProcessHandle.Info interfaces in action. Listing 10-3 contains
the code for a class named CurrentProcessInfo. Its printInfo() method takes a ProcessHandle as an
argument and prints the details of the process. We also use this method in other examples to print the details
of a process. The main() method gets the handle of the current process running the process, which is a Java
process, and prints its details. You may get a different output. The output was generated when the program
ran on Windows 10.

Listing 10-3. A CurrentProcessInfo Class That Prints the Details of the Current Process

// CurrentProcessInfo.java
package com.jdojo.process;

import java.time.Duration;
import java.time.Instant;
import java.time.ZoneId;
import java.time.ZonedDateTime;
import java.util.Arrays;

public class CurrentProcessInfo {
 public static void main(String[] args) {
 // Get the handle of the current process
 ProcessHandle current = ProcessHandle.current();

 // Print the process details
 printInfo(current);
 }

 public static void printInfo(ProcessHandle handle) {
 // Get the process ID
 long pid = handle.pid();

 // Is the process still running
 boolean isAlive = handle.isAlive();

 // Get other process info
 ProcessHandle.Info info = handle.info();
 String command = info.command().orElse("");

 String[] args = info.arguments()
 .orElse(new String[]{});

 String commandLine = info.commandLine().orElse("");

 ZonedDateTime startTime = info.startInstant()
 .orElse(Instant.now())
 .atZone(ZoneId.systemDefault());

 Duration duration = info.totalCpuDuration()
 .orElse(Duration.ZERO);

 String owner = info.user().orElse("Unknown");
 long childrenCount = handle.children().count();

Chapter 10 ■ proCess apI

742

 // Print the process details
 System.out.printf("PID: %d%n", pid);
 System.out.printf("IsAlive: %b%n", isAlive);
 System.out.printf("Command: %s%n", command);
 System.out.printf("Arguments: %s%n", Arrays.toString(args));
 System.out.printf("CommandLine: %s%n", commandLine);
 System.out.printf("Start Time: %s%n", startTime);
 System.out.printf("CPU Time: %s%n", duration);
 System.out.printf("Owner: %s%n", owner);
 System.out.printf("Children Count: %d%n", childrenCount);
 }
}

PID: 13420
IsAlive: true
Command: C:\java9\bin\java.exe
Arguments: []
CommandLine:
Start Time: 2018-01-21T12:48:14.406-06:00[America/Chicago]
CPU Time: PT0.625S
Owner: kishori\ksharan
Children Count: 1

Comparing Processes
It is tricky to compare two processes for equality or order. You cannot rely on PIDs for equality of processes.
Operating systems reuse PIDs after processes terminate. You may check the start time of processes along
with the PIDs; if they are the same, the two processes may be the same. The equals() method of the default
implementation of the ProcessHandle interface checks for the following three pieces of information for two
processes to be equal:

•	 The implementation class of the ProcessHandle interface must be the same for both
processes.

•	 Processes must have the same PIDs.

•	 Processes must have been started at the same time.

 ■ Tip Using the default implementation of the compareTo() method in the ProcessHandle interface is not
very useful for ordering. It compares the pIDs of two processes.

Chapter 10 ■ proCess apI

743

Creating a Process
You need to use an instance of the ProcessBuilder class to start a new native process. A ProcessBuilder
manages a collection of native process attributes. Once you set all the attributes for the process, you can call
its start() method to start a new native process. The attributes stored in the ProcessBuilder will be used
to start the new process. You can call the start() method multiple times to start new processes using the
attributes stored in the ProcessBuilder. The start() method returns an instance of the Process class that
represents the new native process. You can use one of the following constructors to create an instance of the
ProcessBuilder class:

•	 ProcessBuilder(String... command)

•	 ProcessBuilder(List<String> command)

The constructors let you specify the operating system program and arguments. Suppose you want to
run the java.exe program on Windows, which is located in the C:\java9\bin directory, as follows:

C:\java9\bin\java.exe --version

You would create a ProcessBuilder to represent this command as follows:

ProcessBuilder pb = new ProcessBuilder("C:\\java9\\bin\\java.exe", "--version");

Using methods of the ProcessBuilder class, you can manage the following attributes of a process:

•	 A command

•	 An environment

•	 A working directory

•	 Standard I/O (stdin, stdout, and stderr)

•	 Redirection property for the standard error stream

A command is simply a list of strings representing the external program and its arguments. You can set
the command in the constructor of the ProcessBuilder class. The following methods let you retrieve the
command strings and set more command strings.

•	 List<String> command()

•	 ProcessBuilder command(String... command)

The command() method without any arguments returns the command strings already set in the
ProcessBuilder. The command() method with a varargs argument lets you add more command strings.
The following snippet of code creates a ProcessBuilder to launch JVM on Windows. It uses the command()
method to set the command attribute.

ProcessBuilder pb = new ProcessBuilder()
 .command("C:\\java9\\bin\\java.exe",
 "--module-path",
 "myModulePath",
 "--module",
 "myModule/className");

Chapter 10 ■ proCess apI

744

An environment is a list of system-dependent key-value pairs. It is initialized to a copy of the
Map<String,String> returned from the System.getEnv() static method. You need to use the environment()
method of the ProcessBuilder class to get the Map<String,String> and add key-value pairs to the map. The
following snippet of code shows you how to set the environment attributes for a ProcessBuilder:

ProcessBuilder pb = new ProcessBuilder("mycommand");
Map<String,String> env = pb.environment();
env.put("arg1", "value1");
env.put("arg2", "value2");

By default, the working directory for the new process would be the working directory of the current Java
process, which is usually the directory named by the system property user.dir. The following methods in
the ProcessBuilder class let you get and set the working directory:

•	 File directory()

•	 ProcessBuilder directory(File directory)

The following snippet of code shows you how to set the working directory to C:\mydir on Windows:

ProcessBuilder pb = new ProcessBuilder("myCommand)
 .directory(new File("C:\\mydir"));

The new process created by the start() method of a ProcessBuilder is created as a child process of
the current process, which is the Java process running the code. In other words, the current Java process is
the parent process of the newly created process. The new process does not own a terminal or console for
standard I/O (stdin, stdout, and stderr). By default, the I/O of the new process is connected to the parent
process over a pipe. You have an option to set the standard I/O of the new process to the same as its parent
process by calling the inheritIO() method of a ProcessBuilder. There are several redirectXxx() methods
in the ProcessBuilder class to customize the standard I/O for the new process, for example, setting the
standard error stream to a file, so all errors are logged to a file.

Once you have configured all attributes of the process, you can call start() to start the process:

// Start a new process
Process newProcess = pb.start();

You can call the start() method of the ProcessBuilder class multiple times to start multiple processes
with the same attributes previously stored in it. This has a performance benefit that you can create one
ProcessBuilder instance and reuse it to launch the same process multiple times.

You can obtain the process handle of a process using the toHandle() method of the Process class:

// Get the process handle
ProcessHandle handle = newProcess.toHandle();

You can use the process handle to destroy the process, wait for the process to finish, or query the process
for its state and attributes such as its children, descendants, parents, CPU time used, etc. The information you
get about a process and the control you have on a process depends on the operating system access controls.

It is tricky to come up with examples to create processes that will run on all operating systems. If you
can run other examples in this book, it means that you have JDK9 installed on your machine. You can use the
java program on your machine to launch other process in the examples. You can use the command attribute
of the current process, which is the current running java program, to get the path of the Java program on
your machine, so the examples will work on all platforms.

Chapter 10 ■ proCess apI

745

Let’s look at a few examples of creating native processes using the Java program. You can print the Java
product version information to the standard output and standard error using the --version and -version
options, respectively, as follows:

java --version

java 9.0.1
Java(TM) SE Runtime Environment (build 9.0.1+11)
Java HotSpot(TM) 64-Bit Server VM (build 9.0.1+11, mixed mode)

java -version

java version "9.0.1"
Java(TM) SE Runtime Environment (build 9.0.1+11)
Java HotSpot(TM) 64-Bit Server VM (build 9.0.1+11, mixed mode)

In the previous outputs, you do not see any difference as to where the output was printed. Both outputs
are printed to the same console because, by default, both standard output and standard error are mapped
to the console. However, you will see the difference when you try capturing the outputs from these two
commands in a program.

Listing 10-4 shows a program that runs the java --version command to print the Java product
information to the standard output.

Listing 10-4. Capturing the Output of a Native Process

// PipedIO.java
package com.jdojo.process;

import java.io.IOException;

public class PipedIO {
 public static void main(String[] args) {
 // Get the path of the java program that started this program
 String javaPath = ProcessHandle.current()
 .info()
 .command().orElse(null);
 if(javaPath == null) {
 System.out.println("Could not get the java command's path.");
 return;
 }

 // Configure the ProcessBuilder
 ProcessBuilder pb = new ProcessBuilder(javaPath, "--version");

 try {
 // Start a new java process
 Process p = pb.start();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 10 ■ proCess apI

746

When you run the program ProcessIO class, it does not print anything. Where did the output go? The
program created a new process and the standard output of the process was connected to the parent process
over a pipe. If you want to access the output, you need read from the appropriate pipe. When the standard
I/O of the new process is piped to the parent process, you can use the following methods of the Process to
get the I/O streams of the new process:

•	 OutputStream getOutputStream()

•	 InputStream getInputStream()

•	 InputStream getErrorStream():

The OutputStream returned from the getOutputStream() method is connected to the standard input
stream of the new process. Writing to this output stream will be piped to the standard input of the new process.

The InputStream returned from the getInputStream() is connected to the standard output of the new
process. If you want to capture the standard output of the new process, you need to read from this input stream.

The InputStream returned from the getErrorStream() is connected to the standard error of the new
process. If you want to capture the standard error of the new process, you need to read from this input
stream. Sometimes, you want to merge the output to the standard output and standard error into one
destination. It gives the exact sequence of output and the error for easier troubleshooting issues. You can call
the redirectErrorStream(true) method of the ProcessBuilder to send the data written to standard error
to the standard output. I show examples of this kind shortly.

 ■ Tip You have options to redirect the standard I/o of a new process to other destinations such as a file, and
in that case, the getOutputStream(), the getInputStream(), and getErrorStream() methods return null.

The program in Listing 10-5 fixes the problem of not getting any output in the PipedIO class. It reads
and prints the data written to the standard output stream in the pipe.

Listing 10-5. Capturing the Output of a Native Process

// CapturePipedIO.java
package com.jdojo.process;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class CapturePipedIO {
 public static void main(String[] args) {
 // Get the path of the java program that started this program
 String javaPath = ProcessHandle.current()
 .info()
 .command().orElse(null);
 if (javaPath == null) {
 System.out.println("Could not get the java command's path.");
 return;
 }

Chapter 10 ■ proCess apI

747

 // Configure the ProcessBuilder
 ProcessBuilder pb = new ProcessBuilder(javaPath, "--version");

 try {
 // Start a new java process
 Process p = pb.start();

 // Read and print the standard output stream of the process
 try (BufferedReader input =
 new BufferedReader(new InputStreamReader(p.getInputStream()))) {
 String line;
 while ((line = input.readLine()) != null) {
 System.out.println(line);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

java 9.0.1
Java(TM) SE Runtime Environment (build 9.0.1+11)
Java HotSpot(TM) 64-Bit Server VM (build 9.0.1+11, mixed mode)

If you run the java command with a -version option, the output is written to the standard error. If you
change the option from --version to -version in Listing 10-5, you will not get any output again because the
output will be piped to the standard error stream. You have two ways to fix this:

•	 In the program, read from the InputStream returned from the getErrorStream()
method of the Process instead of the InputStream from the getInputStream()
method.

•	 Redirect the error stream to the standard output stream and keep reading from the
standard output.

The following snippet of code creates a ProcessBuilder with the java -version command and
redirects the error stream in the standard output:

// Configure the ProcessBuilder
ProcessBuilder pb = new ProcessBuilder(javaPath, "-version")
 .redirectErrorStream(true);

If you change the statement that creates the ProcessBuilder in Listing 10-5 to this statement, your
program will work fine.

A new process can also inherit the standard I/O of the parent process. If you want to set the all I/O
destinations of the new process to the same as the current process, use the inheritIO() method of the
ProcessBuilder, as shown:

// Configure the ProcessBuilder inheriting parent's I/O
ProcessBuilder pb = new ProcessBuilder(javaPath, "--version")
 .inheritIO();

Chapter 10 ■ proCess apI

748

If you change the code in Listing 10-4 to match the previous snippet of code, you will see the output.
The ProcessBuilder.Redirect nested class represents the source of the input and destination of the

outputs of the new process created by the ProcessBuilder. The class defined the following three constants
of the ProcessBuilder.Redirect type:

•	 ProcessBuilder.Redirect DISCARD: Discards the outputs of the new process. This
constant was added in JDK9.

•	 ProcessBuilder.Redirect.INHERIT: Indicates that the input source or output
destination of the new process will be the same as that of the current process.

•	 ProcessBuilder.Redirect.PIPE: Indicates that the new process will be connected
to the current process over a pipe, which is the default.

You can also redirect the input and outputs of the new process to a file using the following methods of
the Process.Redirect class:

•	 ProcessBuilder.Redirect appendTo(File file)

•	 ProcessBuilder.Redirect from(File file)

•	 ProcessBuilder.Redirect to(File file)

In the previous snippet of code, you saw how to use the inheritIO() method of the ProcessBuilder class
to let the new process have the same standard I/O as the current process. You can rewrite that code as follows:

// Configure the ProcessBuilder inheriting parent's I/O
ProcessBuilder pb = new ProcessBuilder(javaPath, "--version")
 .redirectInput(ProcessBuilder.Redirect.INHERIT)
 .redirectOutput(ProcessBuilder.Redirect.INHERIT)
 .redirectError(ProcessBuilder.Redirect.INHERIT);

The following snippet of code redirects the standard output of the new process to a file named java_
product_details.txt in the current directory.

 // Configure the ProcessBuilder
 ProcessBuilder pb = new ProcessBuilder(javaPath, "--version")
 .redirectOutput(ProcessBuilder.Redirect.to(
 new File("java_product_details.txt")));

Let’s look at a little complex example that will explore more information about new native processes.
Listing 10-6 contains the code for a class named Job. Its main() method expects two arguments: sleep
interval and sleep duration in seconds. If they are not passed, the method uses 5 seconds and 60 seconds as
the default values. In the first part, the method attempts to extract first and second arguments, if specified.
In the second part, it gets the process handle of the current process executing this method using the
ProcessHandle.current() method. It reads the PID of the current process and prints a message including
the PID, sleep interval, and sleep duration. In the end, it starts a for loop and keeps sleeping for the sleep
interval until the sleep duration is reached. In every iteration of the loop, it prints a message.

Listing 10-6. The Declaration of a Class Named Job

// Job.java
package com.jdojo.process;

import java.io.IOException;
import java.util.ArrayList;

Chapter 10 ■ proCess apI

749

import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;

/**
 * An instance of this class is used as a job that sleeps at a regular interval up to a
 * maximum duration. The sleep interval in seconds can be specified as the first argument
 * and the sleep duration as the second argument while running this class. The default
 * sleep interval and sleep duration are 5 seconds and 60 seconds, respectively. If these
 * values are less than zero, zero is used instead.
 */
public class Job {
 // The job sleep interval
 public static final long DEFAULT_SLEEP_INTERVAL = 5;

 // The job sleep duration
 public static final long DEFAULT_SLEEP_DURATION = 60;

 public static void main(String[] args) {
 long sleepInterval = DEFAULT_SLEEP_INTERVAL;
 long sleepDuration = DEFAULT_SLEEP_DURATION;

 // Get the passed in sleep interval
 if (args.length >= 1) {
 sleepInterval = parseArg(args[0], DEFAULT_SLEEP_INTERVAL);
 if (sleepInterval < 0) {
 sleepInterval = 0;
 }
 }

 // Get the passed in the sleep duration
 if (args.length >= 2) {
 sleepDuration = parseArg(args[1], DEFAULT_SLEEP_DURATION);
 if (sleepDuration < 0) {
 sleepDuration = 0;
 }
 }

 long pid = ProcessHandle.current().pid();
 System.out.printf("Job (pid=%d) info: Sleep Interval"
 + "=%d seconds, Sleep Duration=%d "
 + "seconds.%n",
 pid, sleepInterval, sleepDuration);

 for (long sleptFor = 0; sleptFor < sleepDuration;
 sleptFor += sleepInterval) {
 try {
 System.out.printf("Job (pid=%d) is going to"
 + " sleep for %d seconds.%n",
 pid, sleepInterval);
 // Sleep for the sleep interval
 TimeUnit.SECONDS.sleep(sleepInterval);

Chapter 10 ■ proCess apI

750

 } catch (InterruptedException ex) {
 System.out.printf("Job (pid=%d) was "
 + "interrupted.%n", pid);
 }
 }
 }

 /**
 * Starts a new JVM to run the Job class.
 *
 * @param sleepInterval The sleep interval when the Job class is run. It is passed to
 * the JVM as the first argument.
 * @param sleepDuration The sleep duration for the Job class. It is passed to the JVM
 * as the second argument.
 * @return The new process reference of the newly launched JVM or null if the JVM
 * cannot be launched.
 */
 public static Process startProcess(long sleepInterval,
 long sleepDuration) {
 // Store the command to launch a new JVM in a
 // List<String>
 List<String> cmd = new ArrayList<>();
 // Add command components in order
 addJvmPath(cmd);
 addModulePath(cmd);
 addClassPath(cmd);
 addMainClass(cmd);

 // Add arguments to run the class
 cmd.add(String.valueOf(sleepInterval));
 cmd.add(String.valueOf(sleepDuration));

 // Build the process attributes
 ProcessBuilder pb = new ProcessBuilder()
 .command(cmd)
 .inheritIO();
 String commandLine = pb.command()
 .stream()
 .collect(Collectors.joining(" "));
 System.out.println("Command used:\n" + commandLine);

 // Start the process
 Process p = null;
 try {
 p = pb.start();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return p;
 }

Chapter 10 ■ proCess apI

751

 /**
 * Used to parse the arguments passed to the JVM, which in turn is passed to the
 * main() method.
 *
 * @param valueStr The string value of the argument
 * @param defaultValue The default value of the argument if the valueStr is not an
 * integer.
 * @return valueStr as a long or the defaultValue if valueStr is not an integer.
 */
 private static long parseArg(String valueStr,
 long defaultValue) {
 long value = defaultValue;
 if (valueStr != null) {
 try {
 value = Long.parseLong(valueStr);
 } catch (NumberFormatException e) {
 // no action needed
 }
 }
 return value;
 }

 /**
 * Adds the JVM path to the command list. It first attempts to use the command
 * attribute of the current process; failing that it relies on the java.home system
 * property.
 *
 * @param cmd The command list
 */
 private static void addJvmPath(List<String> cmd) {
 // First try getting the command to run the current JVM
 String jvmPath = ProcessHandle.current()
 .info()
 .command().orElse("");
 if (jvmPath.length() > 0) {
 cmd.add(jvmPath);
 } else {
 // Try composing the JVM path using the java.home system property
 final String FILE_SEPARATOR = System.getProperty("file.separator");
 jvmPath = System.getProperty("java.home")
 + FILE_SEPARATOR + "bin"
 + FILE_SEPARATOR + "java";
 cmd.add(jvmPath);
 }
 }

 /**
 * Adds a module path to the command list.
 *
 * @param cmd The command list
 */

Chapter 10 ■ proCess apI

752

 private static void addModulePath(List<String> cmd) {
 String modulePath
 = System.getProperty("jdk.module.path");
 if (modulePath != null && modulePath.trim().length() > 0) {
 cmd.add("--module-path");
 cmd.add(modulePath);
 }
 }

 /**
 * Adds class path to the command list.
 *
 * @param cmd The command list
 */
 private static void addClassPath(List<String> cmd) {
 String classPath = System.getProperty("java.class.path");
 if (classPath != null && classPath.trim().length() > 0) {
 cmd.add("--class-path");
 cmd.add(classPath);
 }
 }

 /**
 * Adds a main class to the command list. Adds module/className or just className
 * depending on whether the Job class was loaded in a named module or unnamed module
 *
 * @param cmd The command list
 */
 private static void addMainClass(List<String> cmd) {
 Class<Job> cls = Job.class;
 String className = cls.getName();
 Module module = cls.getModule();
 if (module.isNamed()) {
 String moduleName = module.getName();
 cmd.add("--module");
 cmd.add(moduleName + "/" + className);
 } else {
 cmd.add(className);
 }
 }
}

The Job class contains a startProcess(long sleepInterval, long sleepDuration) method that
starts a new process. It launches a JVM with the Job class as the main class. It passes the sleep interval
and duration to the JVM as arguments. The method attempts to build a command to launch the java
command from the JDK_HOME\bin directory. If the Job class were loaded in a named module, it would build
a command like this:

JDK_HOME\bin\java --module-path <module-path>
--module jdojo.process/com.jdojo.process.Job <sleepInterval> <sleepDuration>

Chapter 10 ■ proCess apI

753

If the Job class were loaded in an unnamed module, it would attempt to build a command like this:

JDK_HOME\bin\java -class-path <class-path> com.jdojo.process.Job <sleepInterval>
<sleepDuration>

The startProcess() method prints the command used to start a process, attempts to start the process,
and returns the process reference.

The addJvmPath() method adds the JVM path to the command list. It attempts to get the command for
the current JVM process to use as the JVM path for the new process. If it is not available, it attempts to build it
from the java.home system property.

The Job class contains several utility methods that are used to compose parts of commands and parse
the arguments passed to the main() method. Refer to their Javadoc for descriptions.

If you want to start a new process that should run for 15 seconds and wake up every five seconds, you
can do so using the startProcess() method of the Job class:

// Start a process that runs for 15 seconds
Process p = Job.startProcess(5, 15);

You can print the process details using the printInfo() method of the CurrentProcessInfo class that
you created in Listing 10-3:

// Get the handle of the current process
ProcessHandle handle = p.toHandle();

// Print the process details
CurrentProcessInfo.printInfo(handle);

You can use the returned value of the onExit() method of the ProcessHandle to run a task when the
process terminates.

CompletableFuture<ProcessHandle> future = handle.onExit();

// Print a message when process terminates
future.thenAccept((ProcessHandle ph) -> {
 System.out.printf("Job (pid=%d) terminated.%n", ph.pid());
});

You can wait for the new process to terminate like so:

// Wait for the process to terminate
future.get();

In this example, future.get() will return the ProcessHandle of the process. I did not use the return
value, because I already had it in the handle variable.

Listing 10-7 contains the code for a StartProcessTest class that shows you how to create a new process
using the Job class. In its main() method, it creates a new process, prints process details, adds a shutdown
task to the process, waits for the process to terminate, and prints the process details again. Note that the
process runs for 15 seconds, but it uses only 0.359375 seconds of CPU time because most of the time the
main thread of the process was sleeping. You may get a different output. The output was generated when the
program ran on Windows 10.

Chapter 10 ■ proCess apI

754

Listing 10-7. A StartProcessTest Class That Creates New Processes

// StartProcessTest.java
package com.jdojo.process;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;

public class StartProcessTest {
 public static void main(String[] args) {
 // Start a process that runs for 15 seconds
 Process p = Job.startProcess(5, 15);

 if (p == null) {
 System.out.println("Could not create a new process.");
 return;
 }

 // Get the handle of the current process
 ProcessHandle handle = p.toHandle();

 // Print the process details
 CurrentProcessInfo.printInfo(handle);

 CompletableFuture<ProcessHandle> future = handle.onExit();

 // Print a message when process terminates
 future.thenAccept((ProcessHandle ph) -> {
 System.out.printf("Job (pid=%d) terminated.%n", ph.pid());
 });

 try {
 // Wait for the process to complete
 future.get();
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }

 // Print process details again
 CurrentProcessInfo.printInfo(handle);
 }
}

Command used:
C:\java9\bin\java.exe --module-path C:\Java9APIsAndModules\build\modules\jdojo.process;
--module jdojo.process/com.jdojo.process.Job 5 15
PID: 10160
IsAlive: true
Command: C:\java9\bin\java.exe
Arguments: []
CommandLine:

Chapter 10 ■ proCess apI

755

Start Time: 2018-01-21T20:46:07.100-06:00[America/Chicago]
CPU Time: PT0S
Owner: kishori\ksharan
Children Count: 1
Job (pid=10160) info: Sleep Interval=5 seconds, Sleep Duration=15 seconds.
Job (pid=10160) is going to sleep for 5 seconds.
Job (pid=10160) is going to sleep for 5 seconds.
Job (pid=10160) is going to sleep for 5 seconds.
Job (pid=10160) terminated.
PID: 10160
IsAlive: false
Command:
Arguments: []
CommandLine:
Start Time: 2018-01-21T20:46:07.100-06:00[America/Chicago]
CPU Time: PT0.8125S
Owner: kishori\ksharan
Children Count: 0

Obtaining a Process Handle
There are several ways to get the handle of a native process. For a process created by the Java code, you can
get a ProcessHandle using the toHandle() method of the Process class. Native processes can also be created
from outside the JVM. The ProcessHandle interface contains the following methods to get the handle of a
native process:

•	 static Optional<ProcessHandle> of(long pid)

•	 static ProcessHandle current()

•	 Optional<ProcessHandle> parent()

•	 Stream<ProcessHandle> children()

•	 Stream<ProcessHandle> descendants()

•	 static Stream<ProcessHandle> allProcesses()

The of() static method returns an Optional<ProcessHandle> for the specified pid. If there is no
process with this pid, an empty Optional is returned. To use this method, you need to know the PID of the
process:

// Get the process handle of the process with the pid of 1234
Optional<ProcessHandle> handle = ProcessHandle.of(1234L);

The current() static method returns the handle of the current process, which is always the Java process
executing the code. You have already seen an example of this in Listing 10-3.

The parent() method returns the handle of the parent process. It returns an empty Optional if the
process does not have a parent or the parent cannot be retrieved.

The children() method returns a snapshot of all direct child processes of the process. There is no
guarantee that a process returned by this method is still alive. Note that a process that’s not alive does not
have children.

Chapter 10 ■ proCess apI

756

The descendants() method returns a snapshot of all child processes of the process, direct or indirect.
The allProcesses() method returns a snapshot of all processes that are visible to this process. There is

no guarantee that the stream contains all process in the operating system at the time the stream is processed.
Processes may have been terminated or created after the snapshot was taken. The following snippet of code
prints the PIDs of all processes sorted by their PIDs:

System.out.printf("All processes PIDs:%n");
ProcessHandle.allProcesses()
 .map(ph -> ph.pid())
 .sorted()
 .forEach(System.out::println);

You can compute different types of statistics for all running processes. You can also create a task
manager in Java that displays a UI showing all running processes and their attributes. Listing 10-8 shows
how to get the longest running process details and the process that used the CPU time the most. I compared
the start time of the processes to get the longest running process and the total CPU duration to get the
process that used the CPU time the most. You may get a different output. I got this output when I ran the
program on Windows 10.

Listing 10-8. Computing Process Statistics

// ProcessStats.java
package com.jdojo.process;

import java.time.Duration;
import java.time.Instant;

public class ProcessStats {
 public static void main(String[] args) {
 System.out.printf("Longest CPU User Process:%n");
 ProcessHandle.allProcesses()
 .max(ProcessStats::compareCpuTime)
 .ifPresent(CurrentProcessInfo::printInfo);

 System.out.printf("%nLongest Running Process:%n");
 ProcessHandle.allProcesses()
 .max(ProcessStats::compareStartTime)
 .ifPresent(CurrentProcessInfo::printInfo);
 }

 public static int compareCpuTime(ProcessHandle ph1,
 ProcessHandle ph2) {
 return ph1.info()
 .totalCpuDuration()
 .orElse(Duration.ZERO)
 .compareTo(ph2.info()
 .totalCpuDuration()
 .orElse(Duration.ZERO));
 }

Chapter 10 ■ proCess apI

757

 public static int compareStartTime(ProcessHandle ph1, ProcessHandle ph2) {
 return ph1.info()
 .startInstant()
 .orElse(Instant.now())
 .compareTo(ph2.info()
 .startInstant()
 .orElse(Instant.now()));
 }
}

Longest CPU User Process:
PID: 5808
IsAlive: true
Command: C:\Windows\explorer.exe
Arguments: []
CommandLine:
Start Time: 2018-01-15T22:17:12.521-06:00[America/Chicago]
CPU Time: PT1H21M38.3125S
Owner: kishori\ksharan
Children Count: 10

Longest Running Process:
PID: 0
IsAlive: false
Command:
Arguments: []
CommandLine:
Start Time: 2018-01-21T20:49:47.757303400-06:00[America/Chicago]
CPU Time: PT0S
Owner: Unknown
Children Count: 162

Terminating Processes
You can terminate a process using the destroy() or destroyForcibly() method of the ProcessHandle
interface and the Process class. Both methods return true if the request to terminate the process
was successful, false otherwise. The destroy() method requests a normal termination, whereas the
destroyForcibly() method requests a forced termination. It is possible for the isAlive() method to return
true for a brief period after a request to terminate the process has been made.

 ■ Tip You cannot terminate the current process. Calling the destroy() or the destroyForcibly() method
on the current process throws an IllegalStateException. the operating system access controls may prevent
a process from being terminated.

Chapter 10 ■ proCess apI

758

A normal termination of a process lets the process terminate cleanly. A forced termination of a
process terminates the process immediately. Whether a process is normally terminated is implementation
dependent. You can use the supportsNormalTermination() method of the ProcessHandle interface and
the Process class to check if a process supports normal termination. The method returns true if the process
supports normal termination, false otherwise.

Calling one of these methods to terminate a process that has already been terminated results in no
action. The CompletableFuture<Process> returned from onExit() of the Process class and the Completab
leFuture<ProcessHandle> returned from onExit() of the ProcessHandle interface are completed when the
process terminates.

Managing Process Permissions
When you ran the examples in the previous sections, I assumed that there was no Java security manager
installed. If a security manager is installed, appropriate permissions need to be granted to start, manage, and
query native processes:

•	 If you are creating a new process, you need to have FilePermission(cmd,"execute")
permission, where cmd is the absolute path of the command that will create the
process. If cmd is not an absolute path, you need to have FilePermission("<<ALL
FILES>>","execute") permission.

•	 To query the state of native processes and destroy the process using the methods
in the ProcessHandle interface, the application needs to have RuntimePermission
("manageProcess") permission.

Listing 10-9 contains a program that gets a process count and creates a new process. It repeats these two
tasks without a security manager and with a security manager.

Listing 10-9. Managing Processes with a Security Manager

// ManageProcessPermission.java
package com.jdojo.process;

import java.util.concurrent.ExecutionException;

public class ManageProcessPermission {
 public static void main(String[] args) {
 // Get the process count
 long count = ProcessHandle.allProcesses().count();
 System.out.printf("Process Count: %d%n", count);

 // Start a new process
 Process p = Job.startProcess(1, 3);

 try {
 p.toHandle().onExit().get();
 } catch (InterruptedException | ExecutionException e) {
 System.out.println(e.getMessage());
 }

 // Install a security manager
 SecurityManager sm = System.getSecurityManager();

Chapter 10 ■ proCess apI

759

 if (sm == null) {
 System.setSecurityManager(new SecurityManager());
 System.out.println("A security manager is installed.");
 }

 // Get the process count
 try {
 count = ProcessHandle.allProcesses().count();
 System.out.printf("Process Count: %d%n", count);
 } catch (RuntimeException e) {
 System.out.println("Could not get a process count: " + e.getMessage());
 }

 // Start a new process
 try {
 p = Job.startProcess(1, 3);
 p.toHandle().onExit().get();
 } catch (InterruptedException | ExecutionException
 | RuntimeException e) {
 System.out.println("Could not start a new process: " + e.getMessage());
 }
 }
}

Try running the ManageProcessPermission class using the following command assuming that you have
not changed any Java policy files:

C:\Java9APIsAndModules>java --module-path dist
--module jdojo.process/com.jdojo.process.ManageProcessPermission

Process Count: 161
Command used:
C:\java9\bin\java.exe --module-path dist --module jdojo.process/com.jdojo.process.Job 1 3
Job (pid=15328) info: Sleep Interval=1 seconds, Sleep Duration=3 seconds.
Job (pid=15328) is going to sleep for 1 seconds.
Job (pid=15328) is going to sleep for 1 seconds.
Job (pid=15328) is going to sleep for 1 seconds.
A security manager is installed.
Could not get a process count: access denied ("java.lang.RuntimePermission" "manageProcess")
Could not start a new process: access denied ("java.lang.RuntimePermission"
"manageProcess")

You may get a different output. The output indicates that you were able to get the process count and
create a new process before a security manager was installed. After the security manager was installed, the
Java runtime threw exceptions while requesting the process count and creating a new process. To fix the
problem, you need to grant the following permissions:

•	 The "manageProcess" RuntimePermission, which will allow the application to
query the native process and create a new process.

•	 The "execute" FilePermission on the Java command path, which will allow
launching the JVM.

Chapter 10 ■ proCess apI

760

•	 The "read" PropertyPermission on the "jdk.module.path" and "java.class.
path" system properties, so the Job class can read these properties while building
the command line to launch the JVM.

Listing 10-10 contains a script to grant these four permissions to all code. You need to add this script
to the JDK_HOME\conf\security\java.policy file on your machine. The path to the Java launcher is C:\\
java9\\bin\\java.exe and it is valid on Windows only if you have installed JDK9 in the C:\java9 directory.
For all other platforms and JDK installations, modify this path to point to the correct Java launcher on your
machine.

Listing 10-10. Addendum to the JDK_HOME|conf\security\java.policy File

grant {
 permission java.lang.RuntimePermission "manageProcess";
 permission java.io.FilePermission "C:\\java9\\bin\\java.exe", "execute";
 permission java.util.PropertyPermission "jdk.module.path", "read";
 permission java.util.PropertyPermission "java.class.path", "read";
};

If you run the ManageProcessPermission class again using the same command, you should get output
similar to the following:

C:\Java9APIsAndModules>java --module-path dist
--module jdojo.process/com.jdojo.process.ManageProcessPermission

Process Count: 164
Command used:
C:\java9\bin\java.exe --module-path dist --module jdojo.process/com.jdojo.process.Job 1 3
Job (pid=2916) info: Sleep Interval=1 seconds, Sleep Duration=3 seconds.
Job (pid=2916) is going to sleep for 1 seconds.
Job (pid=2916) is going to sleep for 1 seconds.
Job (pid=2916) is going to sleep for 1 seconds.
A security manager is installed.
Process Count: 164
Command used:
C:\java9\bin\java.exe --module-path dist --module jdojo.process/com.jdojo.process.Job 1 3
Job (pid=12440) info: Sleep Interval=1 seconds, Sleep Duration=3 seconds.
Job (pid=12440) is going to sleep for 1 seconds.
Job (pid=12440) is going to sleep for 1 seconds.
Job (pid=12440) is going to sleep for 1 seconds.

Summary
The Process API consists of classes and interfaces to work with native processes. Java SE has provided the
Process API since version 1.0 through the Runtime and Process classes. It allowed you to create new native
processes, manage their I/O streams, and destroy them. Later versions of Java SE improved the API. Until
Java 9, developers had to resort to writing native code to get basic information such as the ID of a process,
the command used to start a processes, etc. Java 9 added an interface named ProcessHandle that represents
a process handle. You can use the process handle to query and manage a native process.

Chapter 10 ■ proCess apI

761

The following classes and interfaces comprise the Process API: Runtime, ProcessBuilder,
ProcessBuilder.Redirect, Process, ProcessHandle, and ProcessHandle.Info.

The exec() method of the Runtime class is used to start a native process. The start() method of the
ProcessBuilder class is a preferred over the exec() method of the Runtime class to start a process. An
instance of the ProcessBuilder.Redirect class represents a source of input of a process or a destination
output of a process.

By default, the standard I/O of the new process is connected to the current process over a pipe. You
need to read and write the streams associated with the pipe to access the standard I/O of the new process.
You have options to set the standard I/O of the new process to the same as that of the current process or
redirect the I/O to other source/destination such a file.

An instance of the Process class represents a native process created by a Java program.
An instance of the ProcessHandle interface represents a process created by a Java program or by other

means; it was added in Java 9 and provides several methods to query and manage processes. An instance of
the ProcessHandle.Info interface represents snapshot information of a process; it can be obtained using
the info() method of the Process class or ProcessHandle interface. If you have a Process instance, use its
toHandle() method to get a ProcessHandle.

The onExit() method of the ProcessHandle interface returns a CompletableFuture<ProcessHandle>
for the termination of the process. You can use the returned object to add a task that will be executed when
the process terminates. Note that you cannot use this method on the current process.

If a security manager is installed, the application needs to have a "manageProcess" RuntimePermission
to query and manage native processes, and an "execute" FilePermission on the command file of the
process that is started from the Java code.

QUESTIONS AND EXERCISES

1. What is the process apI?

2. What does an instance of the Runtime class represent?

3. how do you get an instance of the Runtime class?

4. how do you use the ProcessBuilder class? What method of this class is used to
start a new native process?

5. What does an instance of the Process class represent?

6. What does an instance of the ProcessHandle interface represent? how do you
obtain a ProcessHandle from a Process?

7. how do you get the handle of the current process representing the running
Java program?

8. What does an instance of the ProcessHandle.Info interface represent?

9. What is the default standard I/o of the new process created by the start() method
of the ProcessBuilder class?

10. Can you terminate the current Java program using the process apI?

763© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_11

CHAPTER 11

Packaging Modules

In this chapter, you will learn:

•	 Different formats for packaging Java modules

•	 Enhancements to the JAR format

•	 What a multi-release JAR is

•	 How to create and use multi-release JARs

•	 What the JMOD format is

•	 How to use the jmod tool to work with JMOD files

•	 How to create, extract, and describe JMOD files

•	 How to list the contents of JMOD files

•	 How to record hashes of modules in JMOD files for dependency validation

A module can be packaged in different formats to be used in three phases—compile-time, link time,
and runtime. Not all formats are supported in all phases. JDK9 supports the following formats to package
modules:

•	 Exploded directory

•	 JAR format

•	 JMOD format

•	 JIMAGE format

Exploded directories and JAR format were supported before JDK9. The JAR format has been enhanced
in JDK9 to support modular JARs and multi-release JARs. JDK9 introduced two new formats for packaging
modules: JMOD format and JIMAGE format. I discuss the enhancements to the JAR format and the JMOD
format in this chapter. Chapter 12 covers the JIMAGE format along with the jlink tool in detail.

The JAR Format
Chapter 3 in volume one covered basics of the modular JAR. Chapter 8 in volume two covered how to use
most of the options with the jar tool and how to work with modular JARs programmatically. The jar tool
is also used to list entries in a JAR file, and to extract and update the contents of a JAR file. The jar tool
supported these operations before JDK9 and there is nothing new to these operations in JDK9. In this
chapter, I cover a new feature added to the JAR format, which is called a multi-release JAR.

https://doi.org/10.1007/978-1-4842-3546-1_11
http://dx.doi.org/10.1007/978-1-4842-3546-1_12
http://dx.doi.org/10.1007/978-1-4842-3546-1_3
http://dx.doi.org/10.1007/978-1-4842-3546-1_8

Chapter 11 ■ paCkaging Modules

764

What Is a Multi-Release JAR?
As an experienced Java developer, you must have used a Java library/framework such as Spring framework,
Hibernate, etc. You may be using Java 8, but those libraries may be still using Java 6 or Java 7. Why can’t the
library developers use the latest version to take advantage of the JDK’s new features? One of the reasons is
that not all library users use the latest JDK. Updating a library to use the newer version of the JDK means
forcing all library users to migrate to that newer JDK, which is not possible in practice. Maintaining and
releasing a library targeting different JDKs is another pain when packaging the code. Typically, you will find
a separate library JAR for different JDKs. JDK9 solves this problem by offering library developers a new way
of packaging a library’s code—using a single JAR containing the same release of a library for multiple JDKs.
Such a JAR is called a multi-release JAR.

A multi-release JAR (MRJAR) contains the same release of a library (offering the same APIs) for multiple
JDK versions. That is, you can have a library as a MRJAR that will work for JDK8 and JDK9. The code in the
MRJAR will contain the class files compiled in JDK8 and JDK9. The classes compiled with JDK9 may take
advantage of the APIs offered by JDK9, whereas the classes compiled with JDK8 may offer the same library
APIs written using JDK8.

A MRJAR extends the already existing directory structure for a JAR. A JAR contains a root directory
where all its contents reside. It contains a META-INF directory that is used to store metadata about the JAR.
Typically, a JAR contains a META-INF/MANIFEST.MF file containing its attributes. Entries in a typical JAR look
like this:

- jar-root
 - C1.class
 - C2.class
 - C3.class
 - C4.class
- META-INF
 - MANIFEST.MF

The JAR contains four class files and a MANIFEST.MF file. A MRJAR extends the META-INF directory to
store classes that are specific to a JDK version. The META-INF directory contains a versions sub-directory,
which may contain many sub-directories—each of them named the same as the JDK major version. For
example, for classes specific to JDK9, there may be the META-INF/versions/9 directory and, for classes
specific to JDK10, there may be a directory called META-INF/versions/10, etc. A typical MRJAR may have the
following entries:

- jar-root
 - C1.class
 - C2.class
 - C3.class
 - C4.class
- META-INF
 - MANIFEST.MF
 - versions
 - 9
 - C2.class
 - C5.class
 - 10
 - C1.class
 - C2.class
 - C6.class

Chapter 11 ■ paCkaging Modules

765

If this MRJAR is used in an environment that does not support MRJARs, it will be treated as a regular
JAR—the contents in the root directory will be used and all other contents in META-INF/versions/9 and
META-INF/versions/10 will be ignored. So, if this MRJAR is used with JDK8, only four classes will be used:
C1, C2, C3, and C4.

When this MRJAR is used in JDK9, five classes are in play: C1, C2, C3, C4, and C5. The C2 class in the
META-INF/versions/9 directory will be used instead of the C2 class from the root directory. In this case, the
MRJAR is saying that it has a newer version of the C2 class for JDK9 that overrides the version of C2 in the root
directory that is for JDK8 or earlier. The JDK9 version also adds a new class named C5.

With a similar argument, the MRJAR overrides classes C1 and C2 and contains a new class named C6 for
the JDK version 10.

Targeting multiple JDK versions in a single MRJAR, the search process in a MRJAR is different from a
regular JAR. The search for a resource or class file in a MRJAR uses the following rules:

•	 The major version of the JDK is determined for the environment in which the MRJAR
is being used. Suppose the major version of the JDK is N.

•	 To locate a resource or a class file named R, the platform-specific sub-directory
under the META-INF/versions directory is searched starting at the directory for
version N.

•	 If R is found in sub-directory N, it is returned. Otherwise, sub-directories for versions
lower than N are searched. This process continues for all sub-directories under the
META-INF/versions directory.

•	 When R is not found in the META-INF/versions/N sub-directories, the root directory
of the MRJAR is searched for R.

Let’s take an example using the previously shown structure of the MRJAR. Suppose the program is
looking for C3.class and the current version of the JDK is 10. The search will start at META-INF/versions/10,
where C3.class is not found. The search continues in META-INF/versions/9, where C3.class is not found.
Now the search continues in the root directory, where C3.class is found.

As another example, suppose you want to find C2.class when the JDK version is 10. The search starts at
META-INF/versions/10, where C2.class is found and returned.

As another example, suppose you want to find C2.class when the JDK version is 9. The search starts at
META-INF/versions/9, where C2.class is found and returned.

As another example, suppose you want to find C2.class when the JDK version is 8. There is no JDK8-
specific directory named META-INF/versions/8. So, the search starts at the root directory, where C2.class is
found and returned.

 ■ Tip in Jdk9, all tools that process Jars—such as java, javac, and javap—have been modified to work
with multi-release Jars. apis dealing with Jars have also been updated to deal with multi-release Jars.

Creating Multi-Release JARs
Once you know the search order of the directories in a MRJAR when a resource or class file is searched on a
specific JDK version, it is easy to understand how classes and resources are found. There are some rules on
the contents of JDK version-specific directories. I describe those rules in subsequent sections. In this section,
I focus on creating MRJARs.

Chapter 11 ■ paCkaging Modules

766

To run this example, you need JDK8 and JDK9 installed on your machine. If you do not have JDK8, any
other JDK in addition to JDK9 will do. For the JDK other than version 8, you will need to change the code in
the example, so the code will compile with your JDK.

I use a MRJAR to store the JDK8 and JDK9 versions of an application. The application consists of the
following two classes:

•	 com.jdojo.mrjar.Main

•	 com.jdojo.mrjar.TimeUtil

The Main class creates an object of the TimeUtil class and calls a method in it. The Main class can be
used as a main class to run the application. The TimeUtil class contains a getLocalDate(Instant now)
method that takes an Instant as an argument and returns a LocalDate interpreting the instant in the current
time zone. JDK9 added a new method to the LocalDate class, which is named ofInstant(Instant instant,
ZoneId zone). We will update the application to use JDK9 to take advantage of this new method in JDK9 and
will keep the old application that used the JDK8 Time API for the same purpose.

The source code for this book contains two NetBeans projects. The main NetBeans project
under the Java9APIsAndModules directory contains a module named jdojo.mrjar for JDK9. The
Java9APIsAndModules\jdojo.mrjar.jdk8 directory contains a NetBeans project named jdojo.mrjar.jdk8
that contains the JDK8 code.

Listing 11-1 and Listing 11-2 contain the code for the TimeUtil and Main classes, respectively, for JDK8.
The source code for these projects is simple, so I will not provide any explanation. I could have made the
getLocalDate() method in the TimeUtil class a static method. I kept it as an instance method, so you can
see in the output (discussed later) which version of the class is instantiated. When you run the Main class, it
prints the current local date, which may be different when you run this example.

Listing 11-1. A TimeUtil Class for JDK8

// TimeUtil.java
package com.jdojo.mrjar;

import java.time.Instant;
import java.time.LocalDate;
import java.time.ZoneId;

public class TimeUtil {
 public TimeUtil() {
 System.out.println("Creating JDK 8 version of TimeUtil...");
 }

 public LocalDate getLocalDate(Instant now) {
 return now.atZone(ZoneId.systemDefault())
 .toLocalDate();
 }
}

Listing 11-2. A Main Class for JDK8

// Main.java
package com.jdojo.mrjar;

import java.time.Instant;
import java.time.LocalDate;

Chapter 11 ■ paCkaging Modules

767

public class Main {
 public static void main(String[] args) {
 System.out.println("Inside JDK 8 version of Main.main()...");

 TimeUtil t = new TimeUtil();
 LocalDate ld = t.getLocalDate(Instant.now());
 System.out.println("Local Date: " + ld);
 }
}

Inside JDK 8 version of Main.main()...
Creating JDK 8 version of TimeUtil...
Local Date: 2018-01-22

We will put all the JDK9 classes in a module named jdojo.mrjar whose declaration is shown in Listing 11-3.
Listing 11-4 and Listing 11-5 contain the code for the TimeUtil and Main classes, respectively, for JDK9.

Listing 11-3. A Module Declaration for a Module Named com.jdojo.mrjar

// module-info.java
module jdojo.mrjar {
 exports com.jdojo.mrjar;
}

Listing 11-4. A TimeUtil Class for JDK9

// TimeUtil.java
package com.jdojo.mrjar;

import java.time.Instant;
import java.time.LocalDate;
import java.time.ZoneId;

public class TimeUtil {
 public TimeUtil() {
 System.out.println("Creating JDK 9 version of TimeUtil...");
 }

 public LocalDate getLocalDate(Instant now) {
 return LocalDate.ofInstant(now, ZoneId.systemDefault());
 }
}

Listing 11-5. A Main Class for JDK9

// Main.java
package com.jdojo.mrjar;

import java.time.Instant;
import java.time.LocalDate;

Chapter 11 ■ paCkaging Modules

768

public class Main {
 public static void main(String[] args) {
 System.out.println("Inside JDK 9 version of Main.main()...");

 TimeUtil t = new TimeUtil();
 LocalDate ld = t.getLocalDate(Instant.now());
 System.out.println("Local Date: " + ld);
 }
}

Inside JDK 9 version of Main.main()...
Creating JDK 9 version of TimeUtil...
Local Date: 2018-01-22

I have shown the output that you will get when you run the Main class on JDK8 and JDK9. However,
the purpose of this example is not to run those two classes individually, but rather to package them all in a
MRJAR and run them from that MRJAR, which I am going to show you shortly.

The jar tool has been enhanced in JDK9 to support creating MRJARs. In JDK9, the jar tool accepts a
new option, called --release. Its syntax is as follows:

jar <options> --release N <other-options>

Here, N is a JDK major version such as 9 for JDK9. The value for N must be greater than or equal to 9. All
files following the --release N option are added to the META-INF/versions/N directory in the MRJAR.

The following command creates a MRJAR named jdojo.mrjar.jar and places it in the C:\
Java9APIsAndModules\mrjars directory. Make sure that output directory, mrjars in this case, exists before
you run the following command.

C:\Java9APIsAndModules>jar --create --file mrjars\jdojo.mrjar.jar
-C jdojo.mrjar.jdk8\build\classes .
--release 9 -C build\modules\jdojo.mrjar .

Notice the use of the --release 9 option in this command. All files from the build\modules\jdojo.
mrjar directory will be added to the META-INF/versions/9 directory in the MRJAR. All files from the jdojo.
mrjar.jdk8\build\classes directory will be added to the root of the MRJAR. The entries in the MRJAR will
look like:

- jar-root
 - com
 - jdojo
 - mrjar
 - Main.class
 - TimeUtil.class
- META-INF
 - MANIFEST.MF
 - versions
 - 9
 - module-info.class
 - com
 - jdojo

Chapter 11 ■ paCkaging Modules

769

 - mrjar
 - Main.class
 - TimeUtil.class

It is very helpful to use the --verbose option with the jar tool while creating MRJARs. The option prints
out many useful pieces of information that help diagnose errors. The following is the same command as
before, but with the --verbose option. The output shows what files were copied and their locations:

C:\Java9APIsAndModules>jar --create --verbose --file mrjars\jdojo.mrjar.jar
-C jdojo.mrjar.jdk8\build\classes .
--release 9 -C build\modules\jdojo.mrjar .

added manifest
added module-info: META-INF/versions/9/module-info.class
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/jdojo/(in = 0) (out= 0)(stored 0%)
adding: com/jdojo/mrjar/(in = 0) (out= 0)(stored 0%)
adding: com/jdojo/mrjar/Main.class(in = 1098) (out= 591)(deflated 46%)
adding: com/jdojo/mrjar/TimeUtil.class(in = 884) (out= 503)(deflated 43%)
adding: META-INF/versions/9/(in = 0) (out= 0)(stored 0%)
adding: META-INF/versions/9/com/(in = 0) (out= 0)(stored 0%)
adding: META-INF/versions/9/com/jdojo/(in = 0) (out= 0)(stored 0%)
adding: META-INF/versions/9/com/jdojo/mrjar/(in = 0) (out= 0)(stored 0%)
adding: META-INF/versions/9/com/jdojo/mrjar/Main.class(in = 1326) (out= 688)(deflated 48%)
adding: META-INF/versions/9/com/jdojo/mrjar/TimeUtil.class(in = 814) (out= 470)(deflated 42%)

Suppose you want to create a MRJAR for JDK versions 8, 9, and 10. The following command will do
the job, assuming that the jdojo.mrjar.jdk10\modules\jdojo.mrjar directory contains classes that are
specific to JDK10:

C:\Java9APIsAndModules>jar --create --verbose --file mrjars\jdojo.mrjar.jar
-C jdojo.mrjar.jdk8\build\classes .
--release 9 -C build\modules\jdojo.mrjar .
--release 10 -C jdojo.mrjar.jdk10\modules\jdojo.mrjar .

You can verify the entries in the MRJAR by using the --list option as follows:

C:\Java9APIsAndModules>jar --list --file mrjars\jdojo.mrjar.jar

META-INF/
META-INF/MANIFEST.MF
META-INF/versions/9/module-info.class
com/
com/jdojo/
com/jdojo/mrjar/
com/jdojo/mrjar/Main.class
com/jdojo/mrjar/TimeUtil.class
META-INF/versions/9/
META-INF/versions/9/com/

Chapter 11 ■ paCkaging Modules

770

META-INF/versions/9/com/jdojo/
META-INF/versions/9/com/jdojo/mrjar/
META-INF/versions/9/com/jdojo/mrjar/Main.class
META-INF/versions/9/com/jdojo/mrjar/TimeUtil.class

Suppose you have a JAR that contains resource and class files for JDK8 and you want to update the JAR
to make it a MRJAR by adding resource and class files for JDK9. You can do so by updating the contents of
the JAR using the --update option. The following command creates a JAR with only JDK8 files:

C:\Java9APIsAndModules>jar --create --file mrjars\jdojo.mrjar.jar
-C jdojo.mrjar.jdk8\build\classes .

The following command updates the JAR to make it a MRJAR:

C:\Java9APIsAndModules>jar --update --file mrjars\com.jdojo.mrjar.jar
--release 9 -C com.jdojo.mrjar.jdk9\build\classes .

C:\Java9APIsAndModules>jar --update --file mrjars\jdojo.mrjar.jar
--release 9 -C build\modules\jdojo.mrjar .

Take a look at this MRJAR in action. The following command runs the Main class in the com.jdojo.
mrjar package, placing the MRJAR on the class path. JDK8 is used to run the class.

C:\Java9APIsAndModules>C:\java8\bin\java -classpath mrjars\jdojo.mrjar.jar com.jdojo.mrjar.Main

Inside JDK 8 version of Main.main()...
Creating JDK 8 version of TimeUtil...
Local Date: 2018-01-22

The output shows that both classes, Main and TimeUtil, were used from the root directory of the MRJAR
because JDK8 does not support MRJAR. The following command runs the same class using the module path.
JDK9 was used to run the command:

C:\Java9APIsAndModules>C:\java9\bin\java --module-path mrjars\jdojo.mrjar.jar
--module jdojo.mrjar/com.jdojo.mrjar.Main

Inside JDK 9 version of Main.main()...
Creating JDK 9 version of TimeUtil...
Local Date: 2018-01-22

The output shows that both classes, Main and TimeUtil, were used from the META-INF/versions/9
directory of the MRJAR because JDK9 supports MRJAR and the MRJAR had versions of these classes specific
to JDK9.

Let’s give this MRJAR a little twist. Create a MRJAR having the same contents, but without the Main.
class file in the META-INF/versions/9 directory. In a real-world scenario, only the TimeUtil class has
changed in the JDK9 version of the application, so there is no need to package the Main class for JDK9. The
Main class for JDK8 can also be used on JDK9. The following command packages everything we did last time,
except the Main class for JDK9. The resulting MRJAR is named jdojo.mrjar2.jar.

Chapter 11 ■ paCkaging Modules

771

C:\Java9APIsAndModules>jar --create --file mrjars\jdojo.mrjar2.jar
-C jdojo.mrjar.jdk8\build\classes .
--release 9
-C build\modules\jdojo.mrjar module-info.class
-C build\modules\jdojo.mrjar com\jdojo\mrjar\TimeUtil.class

You can verify the contents of the new MRJAR using the following command:

C:\Java9APIsAndModules>jar --list --file mrjars\jdojo.mrjar2.jar

META-INF/
META-INF/MANIFEST.MF
META-INF/versions/9/module-info.class
com/
com/jdojo/
com/jdojo/mrjar/
com/jdojo/mrjar/Main.class
com/jdojo/mrjar/TimeUtil.class
META-INF/versions/9/com/jdojo/mrjar/TimeUtil.class

If you run the Main class on JDK8, you will get the same output as before. However, running it on JDK9
will give you a different output:

C:\Java9APIsAndModules>C:\java9\bin\java --module-path mrjars\jdojo.mrjar2.jar
--module jdojo.mrjar/com.jdojo.mrjar.Main

Inside JDK 8 version of Main.main()...
Creating JDK 9 version of TimeUtil...
Local Date: 2018-01-22

The output shows that the Main class was used from the JAR root directory, whereas the TimeUtil class
was used from the META-INF/versions/9 directory. Note that you will get a different local date value. It
prints the current date on your machine.

Rules for Multi-Release JARs
You need to follow a few rules while creating multi-release JARs. If you make a mistake, the jar tool will print
errors. Sometimes, error messages are not intuitive. As I have suggested, it’s best to run the jar tool with the
--verbose option to get more details on errors.

Most of the rules are based on one fact: A MRJAR contains an API for one release of a library (or an
application) for multiple JDK platforms. For example, you have a MRJAR named jdojo-lib-1.0.jar that
may contain version 1.0 of the APIs for the library named jdojo-lib, and that library may use APIs from
JDK8 and JDK9. That means that this MRJAR should provide the same API (in terms of public types and
their public members) when it is used on JDK8 on the class path, on JDK9 on the class path, or on JDK9 on
the module path. If the MRJAR provides different APIs on JDK8 from JDK9, this is not a valid MRJAR. The
following sections describe a few rules.

Chapter 11 ■ paCkaging Modules

772

Modular Multi-Release JARs
A MRJAR can be a modular JAR and, in that case, it can contain a module descriptor, module-info.class, in
the root directory, in one or more versioned directories, or a combination of both. The versioned descriptors
must be identical to the root module descriptor, with a few exceptions:

•	 A versioned descriptor can have different non-transitive requires statements of
java.* and jdk.* modules.

•	 Different module descriptors cannot have different non-transitive requires
statements for non-JDK modules.

•	 A versioned descriptor can have different uses statements.

These rules are based on the fact that changes in implementation details are allowed, but not in the API
itself. Allowing changes in the requires statement for non-JDK modules is considered a change in the API—
it requires you to have different user-defined modules for different versions of the JDK. This is the reason
why this is not allowed.

A modular MRJAR need not have a module descriptor in the root directory. This is what we had in our
examples in the previous section. We had no module descriptor in the root directory, but had one in the
META-INF/versions/9 directory. This arrangement makes it possible to have non-modular code for JDK8
and modular code for JDK9 in one MRJAR.

Modular Multi-Release JARs and Encapsulation
If you add a new public type in a versioned directory, which is not present in the root directory, you will
receive an error while creating a MRJAR. Suppose, in our example, you add a public class named Test for
JDK9. If the Test class is in the com.jdojo.mrjar package, it will be exported by the module and will be
available to the code outside the MRJAR. Note that the root directory does not contain a Test class, so this
MRJAR offers different public APIs for JDK8 and JDK9. In this case, adding a public Test class in the com.
jdojo.mrjar package for JDK9 will generate an error when you create a MRJAR.

Continuing with the same example, suppose you add the Test class to a com.jdojo.test package for
JDK9. Note that the module does not export this package. When you use this MRJAR on the module path,
the Test class won’t be accessible to the outside code. In this sense, this MRJAR offers the same public API
for JDK8 and JDK9. However, there is a catch! You can also place this MRJAR on the class path in JDK9 and,
in that case, the Test class is accessible to the outside code—a violation of the modular encapsulation and a
violation of the rule that a MRJAR should offer the same public API across JDK releases. Therefore, adding a
public type to a non-exported package for a module in a MRJAR is also not allowed. If you attempt to do so,
you will receive an error message similar to the following:

entry: META-INF/versions/9/com/jdojo/test/Test.class, contains a new public class not found
in base entries
invalid multi-release jar file mrjars\jdojo.mrjar.jar deleted

Sometimes, it is necessary to add more types for the same library to support a newer version of the JDK.
These types must be added to support newer implementations. You can do this by adding package-private
types to a versioned directory in a MRJAR. In this example, you can add the Test class for JDK9 if you make
the class non-public.

Chapter 11 ■ paCkaging Modules

773

Multi-Release JARs and Boot Loader
The boot loader does not support multi-release JARs, for example, specifying MRJARs using the
-Xbootclasspath/a option. Supporting this would have complicated the boot loader implementation for a
rarely needed feature.

Same Versioned Files
A MRJAR is supposed to contain different versions of the same file in a versioned directory. If a resource or
class file is the same across different platform releases, such a file should be added once to the root directory.
Currently, the jar tool issues a warning if it sees the same entry in a multiple versioned directory with the
same contents.

Multi-Release JARs and JAR URL
Before MRJARs, all resources in a JAR lived under the root directory. When you requested a resource from
a class loader (ClassLoader.getResource("com/jdojo/mrjar/TimeUtil.class")), the URL returned was
similar to the following:

jar:file:/C:/Java9APIsAndModules/mrjars/jdojo.mrjar.jar! com/jdojo/mrjar/TimeUtil.class

With MRJARs, a resource may be returned from the root directory or from a versioned directory. If you
are looking for the TimeUtil.class file on JDK9, the URL will be as follows:

jar:file:/C:/Java9APIsAndModules/mrjars/jdojo.mrjar.jar!/META-INF/versions/9/com/jdojo/
mrjar/TimeUtil.class

If your existing code expected the jar URL of a resource in a specific format or you hand-coded a jar
URL likewise, you may get surprising results with MRJARs. You need to look at your code again and change it
to work with MRJARs, if you are repacking your JARs with MRJARs.

Multi-Release Manifest Attribute
A MRJAR contains a special attribute entry in its MANIFEST.MF file:

Multi-Release: true

The Multi-Release attribute is added by the jar tool for a MRJAR. If the value for this attribute is true,
it means the JAR is a multi-release JAR. If its value is false or the attribute is missing, it is not a multi-release
JAR. The attribute is added to the main section in the manifest file.

A new constant named MULTI_RELEASE has been added to the Attributes.Name class, which is in
the java.util.jar package, to represent the new attribute Multi-Release in the manifest file. So, the
Attributes.Name.MULTI_RELEASE constant represents the value for the Multi-Release attribute in Java code.

Chapter 11 ■ paCkaging Modules

774

The JMOD Format
JDK9 introduced a new format, called JMOD, to package modules. JMOD files are designed to handle more
content types than JAR files can. JMOD files can package native code, configuration files, native commands,
and other kinds of data. At the time of this writing, the JMOD format is based on the ZIP format, which is
going to change in the future. The JDK9 modules are packaged in JMOD format for you to use at compile-
time and link time. JMOD format is not supported at runtime. You can find JDK modules in JMOD format
in the JDK_HOME\jmods directory, where JDK_HOME is the directory in which you have installed the JDK9.
You can package your own modules in JMOD format. Files in the JMOD format have a .jmod extension. For
example, the platform module named java.base has been packaged in the java.base.jmod file.

JMOD files can contain native code, which is a bit tricky to extract and link on-the-fly at runtime. This is
the reason that JMOD files are supported at compile-time and link time, but not at runtime.

Using the jmod Tool
JDK9 ships with a new tool called jmod. It is located in the JDK_HOME\bin directory. It can be used to create
a JMOD file, list the contents of a JMOD file, print the description of a module, and record hashes of the
modules used. The general syntax to use the jmod tool is as follows:

jmod <subcommand> <options> <jmod-file>

You must use one of the following sub-commands with the jmod command:

•	 create

•	 extract

•	 list

•	 describe

•	 hash

The list and describe sub-commands do not accept any options. The <jmod-file> is the JMOD file
you are creating or an existing JMOD file that you want to describe. Table 11-1 contains the list of options
supported by the tool.

Table 11-1. List of Options for the jmod Tool

Option Description

--class-path <path> Specifies the class path where classes to be packaged can be found.
<path> can be a list of paths to JAR files or directories containing
application classes. Contents at <path> will be copied to the JMOD
file.

--cmds <path> Specifies a list of directories containing native commands, which
need to be copied to the JMOD file.

--config <path> Specifies a list of directories containing user-editable configuration
files to be copied to the JMOD file.

--dir <path> Specifies the target directory where the contents of the specified
JMOD file will be extracted.

(continued)

Chapter 11 ■ paCkaging Modules

775

The following sections explain in detail how to use the jmod command. All commands used in this
chapter should be entered into one line. Sometimes, I show them on multiple lines for clarity in the book.

Table 11-1. (continued)

Option Description

--do-not-resolve-by-default If you create a JMOD file using this option, the module contained in
the JMOD file will be excluded from the default set of root modules.
To resolve such a module, you have to add it to the default set of root
modules using the --add-modules command-line option.

--dry-run Dry runs the hashing of modules. Using this option computes and
prints the hashes, but does not record them in the JMOD file.

--exclude <pattern-list> Excludes file matching the supplied comma-separated pattern
list, each element using one the following forms: <glob-pattern>,
glob:<glob-pattern>, or regex:<regex-pattern>.

--hash-modules <regex-pattern> Computes and records hashes to tie a packaged module with
modules matching the given <regex-pattern> and depending on it
directly or indirectly. The hashes are recorded in the JMOD file being
created, or a JMOD file or modular JAR on the module path specified
with the jmod hash command.

--help, -h Prints the usage description and the list of all options for the jmod
command.

--header-files <path> Specifies a list of path as <path> where header files for native code to
be copied to the JMOD file are located.

--help-extra Prints help on additional options supported by the jmod tool.

--legal-notices <path> Specifies the location of the legal notices to be copied to the JMOD
file.

--libs <path> Specifies the list of directories containing native libraries to be
copied to the JMOD file.

--main-class <class-name> Specifies the main class name to be used to run the application.

--man-pages <path> Specifies the location of the manual pages.

--module-version <version> Specifies the module version to be recorded in the module-info.
class file.

--module-path <path>,
-p <path>

Specifies the module path to find the modules for hashing.

--target-platform <platform> The <platform> is specified in the form of <os>-<arch>, for
example, windows-amd64 and linux-amd64. The option specifies
the target operating system and architecture, to be recorded in the
ModuleTarget attribute of the module-info.class file.

--version Prints the version of the jmod tool.

--warn-if-resolved <reason> Specifies a hint to the jmod tool to issue a warning if a module is
resolved, which has been deprecated, deprecated for removal,
or incubating. The value for <reason> could be one of three:
deprecated, deprecated-for-removal, or incubating.

@<filename> Reads options from the specified file.

Chapter 11 ■ paCkaging Modules

776

Creating JMOD Files
You can create a JMOD file using the create sub-command with the jmod tool. The contents of a JMOD file
are the contents of a module. Assume the following directories and files exist:

C:\Java9APIsAndModules\jmods
C:\Java9APIsAndModules\dist\jdojo.javafx.jar

The following command creates a jdojo.javafx.jmod file in the C:\Java9APIsAndModules\jmods
directory. The contents of the JMOD file come from the jdojo.javafx.jar file.

C:\Java9APIsAndModules>jmod create --class-path dist\jdojo.javafx.jar jmods\jdojo.javafx.jmod

Typically, the contents of the JMOD file come from a set of directories containing the compiled code for a
module. The following command creates a jdojo.javafx.jmod file. Its contents come from a build\modules\
jdojo.javafx directory. The command uses the --module-version option to set the module version that will
be recorded in the module-info.class file found in the build\modules\jdojo.javafx directory. Make sure
to delete the JMOD file created in the previous step, before you run the following command.

C:\Java9APIsAndModules>jmod create --module-version 1.0
--class-path build\modules\jdojo.javafx jmods\jdojo.javafx.jmod

What can you do with this JMOD file? You can place it on the module path to use it at compile-time.
You can use it with the jlink tool to create a custom runtime image that you can use to run your application.
Recall that you cannot use a JMOD file at runtime. If you try to use a JMOD file at runtime by placing it on a
module path, you will receive the following error:

Error occurred during initialization of VM
java.lang.module.ResolutionException: JMOD files not supported: jmods\jdojo.javafx.jmod
...

Extracting JMOD File Contents
You can extract the contents of a JMOD file using the extract sub-command. The following command
extracts the contents of the jmods\jdojo.javafx.jmod file into a directory named extracted.

C:\Java9APIsAndModules>jmod extract --dir extracted jmods\jdojo.javafx.jmod

Without the --dir option, the JMOD file’s contents are extracted into the current directory.

Listing JMOD File Contents
You can use the list sub-command with the jmod tool to print the names of all entries in a JMOD file. The
following command lists the contents of the jdojo.javafx.jmod file, which you created in the previous section:

C:\Java9APIsAndModules>jmod list jmods\jdojo.javafx.jmod

Chapter 11 ■ paCkaging Modules

777

classes/module-info.class
classes/com/jdojo/javafx/BindingTest.class
...
classes/resources/fxml/sayhello.fxml

The following command lists the contents of the java.base module, which is shipped as a JMOD file
named java.base.jmod. The command assumes that you have installed the JDK9 in the C:\java9 directory.
The output is over 120 pages. A partial output is shown. Note that a JMOD file internally stores different types
of content in different directories.

C:\Java9APIsAndModules>jmod list C:\java9\jmods\java.base.jmod

classes/module-info.class
classes/java/nio/file/WatchEvent.class
classes/java/nio/file/WatchKey.class
bin/java.exe
bin/javaw.exe
native/amd64/jvm.cfg
native/java.dll
conf/net.properties
conf/security/java.policy
conf/security/java.security
...

Describing a JMOD File
You can use the describe sub-command with the jmod tool to describe the module contained in a JMOD
file. The following command describes the module contained in the jdojo.javafx.jmod file:

C:\Java9APIsAndModules>jmod describe jmods\jdojo.javafx.jmod

jdojo.javafx@1.0
exports com.jdojo.javafx
requires java.base mandated
requires javafx.controls
requires javafx.fxml
contains resources.fxml

You can describe the platform modules using this command. The following command describes the
module contained in the java.sql.jmod, assuming that you installed the JDK9 in the C:\java9 directory:

C:\Java9APIsAndModules>jmod describe C:\java9\jmods\java.sql.jmod

java.sql@9.0.1
exports java.sql
exports javax.sql
exports javax.transaction.xa

Chapter 11 ■ paCkaging Modules

778

requires java.base mandated
requires java.logging transitive
requires java.xml transitive
uses java.sql.Driver
platform windows-amd64

Recording Modules Hashes
You can use the hash sub-command with the jmod tool to record hashes of other modules in the module-
info.class file of a module contained in a JMOD file. The hashes will be used later for dependency
validation. Suppose you have four modules in four JMOD files:

•	 jdojo.prime

•	 jdojo.prime.faster

•	 jdojo.prime.probable

•	 jdojo.prime.client

Suppose you want to ship these modules to your clients and ensure that the module code remains the
same. You can achieve this by recording hashes for the jdojo.prime.faster, jdojo.prime.probable, and
jdojo.prime.client modules in the jdojo.prime module. Let’s see how to achieve this.

To compute the hashes for other modules, the jmod tool needs to find those modules. You will need
to use the --module-path option to specify the module path where the other modules will be found. You
also need to use the --hash-modules option to specify the list of patterns to be used for the modules whose
hashes need to be recorded.

 ■ Tip You can also use the --hash-modules and --module-path options with the jar tool to record hashes
for dependent modules when you are packaging a module as a module Jar.

Use the following four commands to create the JMOD files for the four modules. Note that I used the
--main-class option when creating the com.jdojo.prime.client.jmod file. I use it again in Chapter 12
when I discuss the jlink tool. If you get a “file already exists” error while running these commands, delete
the existing JMOD file from the jmods directory and rerun the command.

C:\Java9APIsAndModules>jmod create --module-version 1.0
--class-path build\modules\jdojo.prime jmods\jdojo.prime.jmod

C:\Java9APIsAndModules>jmod create --module-version 1.0
--class-path build\modules\jdojo.prime.faster jmods\jdojo.prime.faster.jmod

C:\Java9APIsAndModules>jmod create --module-version 1.0
--class-path build\modules\jdojo.prime.probable jmods\jdojo.prime.probable.jmod

C:\Java9APIsAndModules>jmod create --module-version 1.0
--class-path build\modules\jdojo.prime.client jmods\jdojo.prime.client.jmod

http://dx.doi.org/10.1007/978-1-4842-3546-1_12

Chapter 11 ■ paCkaging Modules

779

Now you are ready to record hashes for all modules whose names start with "jdojo.prime." in the
jdojo.prime module using the following command:

C:\Java9APIsAndModules>jmod hash --module-path jmods --hash-modules jdojo.prime.? jmods\
jdojo.prime.jmod

Hashes are recorded in module jdojo.prime

Let’s see the hashes that were recorded in the com.jdojo.prime module. The following command prints
the module description along with the hashes recorded in the com.jdojo.prime module:

C:\Java9APIsAndModules>jmod describe jmods\jdojo.prime.jmod

jdojo.prime@1.0
exports com.jdojo.prime
requires java.base mandated
uses com.jdojo.prime.PrimeChecker
provides com.jdojo.prime.PrimeChecker with com.jdojo.prime.impl.genericprimechecker
contains com.jdojo.prime.impl
hashes jdojo.prime.client SHA-256
5950eccd247f32586ce95e9849f520f4b9f54bc520d7969c396dc4f93805121b
hashes jdojo.prime.faster SHA-256
553822453a53e3884e264cfa12848be32d3f0b9a5df506aa57ba4443dfcbdc6a
hashes jdojo.prime.probable SHA-256
a1b8b081f2f15a205d62313de97ee285ed845895c8ef3c52b53a16370dd3b2d5

You can also record hashes for other modules when you create a new JMOD file using the create sub-
command. Assuming that the three modules jdojo.prime.faster, jdojo.prime.probable, and jdojo.
prime.client exist on the module path, you can use the following command to create the jdojo.prime.
jmod file that will also record the hashes for the three modules:

C:\Java9APIsAndModules>jmod create --module-version 1.0
--module-path jmods
--hash-modules jdojo.prime.?
--class-path build\modules\jdojo.prime jmods\jdojo.prime.jmod

You can dry run the hashing process for a JMOD file where the hashes will be printed, but not recorded.
The dry run option is useful to make sure all the settings are correct without creating the JMOD file. The
following sequence of commands steps you through the process. First, delete the jmods\jdojo.prime.jmod
file, which you created in previous step.

The following command creates the jmods\jdojo.prime.jmod file without recording hashes for any
other modules:

C:\Java9APIsAndModules>jmod create --module-version 1.0
--module-path jmods
--class-path build\modules\jdojo.prime jmods\jdojo.prime.jmod

Chapter 11 ■ paCkaging Modules

780

The following command dry runs the hash sub-command. It computes and prints the hashes for
other modules, matching the regular expression specified in the --hash-modules option. No hashes will be
recorded in the jmods\jdojo.javafx.jmod file.

C:\Java9APIsAndModules>jmod hash --dry-run --module-path jmods --hash-modules jdojo.prime.?
jmods\jdojo.prime.jmod

Dry run:
jdojo.prime
 hashes jdojo.prime.client SHA-256
5950eccd247f32586ce95e9849f520f4b9f54bc520d7969c396dc4f93805121b
 hashes jdojo.prime.faster SHA-256
553822453a53e3884e264cfa12848be32d3f0b9a5df506aa57ba4443dfcbdc6a
 hashes jdojo.prime.probable SHA-256
a1b8b081f2f15a205d62313de97ee285ed845895c8ef3c52b53a16370dd3b2d5

The following command verifies that the previous command did not record any hashes in the JMOD file:

C:\Java9APIsAndModules>jmod describe jmods\jdojo.prime.jmod

jdojo.prime@1.0
exports com.jdojo.prime
requires java.base mandated
uses com.jdojo.prime.PrimeChecker
provides com.jdojo.prime.PrimeChecker with com.jdojo.prime.impl.genericprimechecker
contains com.jdojo.prime.impl

You will see JMOD files in action again in Chapter 12 when you use the jlink tool to create custom
runtime images.

Summary
JDK9 supports four formats to package modules: exploded directories, JAR files, JMOD files, and JIMAGE
files. The JAR format has been enhanced in JDK9 to support modular JARs and multi-release JARs. A multi-
release JAR allows you to package the same version of a library or an application targeting different versions
of the JDK. For example, a multi-release JAR may contain the code for a library version 1.2 that contains code
for JDK8 and JDK9. When the multi-release JAR is used on JDK8, the JDK8 version of the library code will be
used. When it is used on JDK9, the JDK9 version of the library code will be used. Files that are specific to a JDK
version N are stored in the META-INF\versions\N directory of the multi-release JAR. Files that are common
to all JDK versions are stored in the root directory. For environments not supporting multi-release JARs, such
JARs are treated as regular JARs. The search order for a file is different in a multi-release JAR—all the versioned
directories starting with the major version of the current platform are searched before the root directory is.

JMOD files are designed to handle more content types than JAR files can. They can package native code,
configuration files, native commands, and other kinds of data. At the time of this writing, the JMOD format
is based on the ZIP format, which is going to change in the future. The JDK9 modules are packaged in JMOD
format for you to use at compile-time and link time. The JMOD format is not supported at runtime. You can
use the jmod tool to work with JMOD files.

http://dx.doi.org/10.1007/978-1-4842-3546-1_12

Chapter 11 ■ paCkaging Modules

781

QUESTIONS AND EXERCISES

1. What formats can you use to package your modules?

2. What is a multi-release Jar?

3. describe the structure of a multi-release Jar.

4. What happens when a multi-release Jar is used on a Jdk version (for example
Jdk8) that does not understand multi-release Jars?

5. describe the search order when a resource is looked up in a multi-release Jar.

6. describe the limitations of a multi-release Jar.

7. What is the name of the attribute that is present in the META-INF\MANIFEST.MF file
for a multi-release Jar?

8. What is the jmod tool and where is it located?

9. What is the JMod format and how is it better than the Jar format?

10. Java supports three phases from Jdk9: compile-time, link time, and runtime. in
what phases is the JMod format supported?

11. suppose you have a JMod file named jdojo.test.jmod. Write the command using
the jmod tool to describe the module stored in this JMod file.

12. What is the location of the Jdk modules in JMod format?

783© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1_12

CHAPTER 12

Custom Runtime Images

In this chapter, you will learn:

•	 What a custom runtime image and the JIMAGE format are

•	 How to create a custom runtime image using the jlink tool

•	 How to specify the command name to run the application stored in a custom image

•	 How to use plugins with the jlink tool

What Is a Custom Runtime Image?
Before JDK9, Java runtime image was available as a huge monolithic artifact—thus increasing the download
time, startup time, and the memory footprint. The monolithic JRE made it impossible to use Java on devices
with little memory. If you deploy your Java applications to a cloud, you pay for the memory you use; most
often, the monolithic JRE uses more memory than required, thus making you pay more for the cloud service.
The compact profiles introduced in Java 8 took a step toward reducing the JRE size—hence the runtime
memory footprint—by allowing you to package a subset of the JRE in a custom runtime image called a
compact profile.

Java 9 took a holistic approach to packaging runtime images. The JDK has been modularized. Your
application code is also packaged as modules. In Java 9, you can create a custom runtime that will contain
your application modules and only those JDK modules that are used by your application. You can also
package native commands in your runtime image. Another benefit of creating a runtime image is that
you have to ship only one bundle—the runtime image—to your application users. They no longer need to
download and install a separate bundle of JRE to run your application.

The runtime image is stored in a special format called JIMAGE, which is optimized for space and speed.
The JIMAGE format is supported only at runtime. It is a container format for storing and indexing modules,
classes, and resources in the JDK. Searching and loading classes from a JIMAGE file is a lot faster than from
JAR and JMOD files. The JIMAGE format is JDK-internal and developers will rarely need to interact with a
JIMAGE file directly.

The JIMAGE format is expected to evolve significantly over time and, therefore, its internals are not
exposed to developers. JDK9 ships with a tool called jimage, which can be used to explore JIMAGE files. I
explain the tool in detail in a separate section in this chapter.

 ■ Tip You use the jlink tool to create a custom runtime image, which uses a new file format called JIMAGE
to store modules. JDK9 ships with the jimage tool to let you explore the contents of a JIMAGE file.

https://doi.org/10.1007/978-1-4842-3546-1_12

ChAptEr 12 ■ CustoM runtIME IMAGEs

784

No More rt.jar
A word of caution if your code is expecting the runtime image to be stored in a file named rt.jar. The JDK
runtime was stored in rt.jar before JDK9, but that is no longer the case in JDK9. This might break your code
when you migrate your application to JDK9.

Creating Custom Runtime Images
You can create a custom platform-specific runtime image using the jlink tool. The runtime image will
contain specified application modules with their dependencies and only the needed platform modules, thus
reducing the size of the runtime image. This is useful for applications running on embedded devices that
have a small amount of memory. The jlink tool is located in the JDK_HOME\bin directory. The general syntax
for running the jlink tool is as follows:

jlink <options> --module-path <modulepath> --add-modules <mods> --output <path>

Here, <options> includes zero or more options for jlink, as listed in Table 12-1. The <modulepath> is
the module path where the platform and application modules are located. Modules can be in modular JARs,
exploded directories, and JMOD files. The <mods> is a list of modules to be added to the image, which may
cause additional modules to be added because of transitive dependencies on other modules. <path> is the
output directory where the generated runtime image will be stored.

Table 12-1. List of Options for the jlink Tool

Option Description

--add-modules <mod>,<mod>… Specifies the list of root modules to resolve. All resolved modules
will be added to the runtime image.

--bind-services Performs full service binding during the linking process. If the
added modules contain uses statements, jlink will scan all
modules on the module path to include all service provider
modules in the runtime image for the service specified in the uses
statement.

-c, --compress
<0|1|2>[:filter=<pattern-list>]

Specifies the compression level of all resources in the output
image. 0 means constant string sharing, 1 means ZIP, and 2
means both. An optional <pattern-list> filter can be specified
to list the pattern of files to be included.

--disable-plugin <plugin-name> Disables the specified plugin.

--endian <little|big> Specifies the byte order of the generated runtime image. The
default is the byte order of the native platform.

-h, --help Prints the usage description and a list of all options for the jlink
tool.

--ignore-signing-information Suppress a fatal error when signed modular JARs are linked in the
image. The signatures of related files of the signed modular JARs
are not copied to the runtime image.

(continued)

ChAptEr 12 ■ CustoM runtIME IMAGEs

785

Table 12-1. (continued)

Option Description

--launcher <command>=<module> Specifies the launcher command for the module. <command> is
the name of the command you want to generate to launch your
application, for example, runmyapp. The tool will create a scrip/
batch file named <command> to run the main class recorded in
<module>.

--launcher <command>=<module>/
<main-class>

Specifies the launcher command for the module and the main
class. <command> is the name of the command you want to
generate to launch your application, for example, runmyapp. The
tool will create a script/batch file named <command> to run the
<main-class> in <module>.

--limit-modules <mod>,<mod> Limits the observable modules to those in the transitive closure of
the named modules plus the main module, if specified, as well as
any further modules specified with the --add-modules option.

--list-plugins Lists the available plugins.

-p, --module-path <modulepath> Specifies the module path where the platform and application
modules will be found to be added to the runtime image.

--no-header-files Excludes the include header files for the native code.

--no-man-pages Excludes the manual pages.

--output <path> Specifies the location of the generated runtime image.

--save-opts <filename> Saves the jlink options in the specified file.

-G, --strip-debug Strips the debug information from the output image.

--suggest-providers [<service-
name>,...]

If no service name is specified, it suggests the name of the
providers of all services that would be linked for the added
modules. If you specify one or more service names, it suggests
providers of the specified service names. This option can be used
before creating an image to know what services will be included
when you use the --bind-services option.

-v, --verbose Prints verbose output.

--version Prints the version of the jlink tool.

@<filename> Reads options from the specified file.

ChAptEr 12 ■ CustoM runtIME IMAGEs

786

Let’s create a runtime image that contains the four modules for the prime checker application and
the required platform modules, which includes only the java.base module. The prime check application
was created in the second volume of book in Chapter 14, in which I explained how to implement services.
I included the source code for the prime checker application in the source code for this book. The modules
are jdojo.prime, jdojo.prime.faster, jdojo.prime.probable, and jdojo.prime.client. You can choose
any other modules to create a custom runtime image.

Note that the following command includes only three modules from the prime checker application.
The fourth one, the jdojo.prime module, will be added because these three depend on the jdojo.prime
module. The command assumes that you have packaged all four modules in JMOD format and stored them
in the jmods directory. Packaging modules in JMOD format was covered in Chapter 11. The text following the
command contains an explanation.

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods
--add-modules jdojo.prime.client,jdojo.prime.faster,jdojo.prime.probable
--launcher runprimechecker=jdojo.prime.client/com.jdojo.prime.client.Main
--output image\primechecker

Before I explain all the options for this command, let’s verify that the runtime image was created
successfully. The command is supposed to copy the runtime image to the C:\Java9APIsAndModules\image\
primechecker directory. Run the following command to verify that the runtime image contains the five
modules:

C:\Java9APIsAndModules>image\primechecker\bin\java --list-modules

java.base@9
jdojo.prime@1.0
jdojo.prime.client@1.0
jdojo.prime.faster@1.0
jdojo.prime.probable@1.0

If you get output similar to what is shown here, the runtime image was created correctly. The module
version number, which is shown after the @ sign in the output, may be different for you.

The --module-path option specifies two directories—jmods and C:\java9\jmods. I saved the four
JMOD files for the prime checker application in the C:\Java9APIsAndModules\jmods directory. The first
element in the module path lets the jlink tool find all application modules. I installed the JDK9 in the C:\
java9 directory, so the second element in the module path lets the tool find the platform modules. If you do
not specify the second part, you get an error:

Error: Module java.base not found, required by jdojo.prime.probable

The --add-modules option specifies three modules of the prime checker application. You might
wonder why we did not specify the fourth module named jdojo.prime with this option. This list contains
root modules, not just the modules to be included in the runtime image. The jlink tool will resolve all
dependencies transitively for these root modules and include all the resolved dependent modules into the
runtime image. The three modules depend on the jdojo.prime module, which will be resolved by locating it
on the module path and, hence, will be included in the runtime image. The image will also contain the java.
base module because all application modules implicitly depend on it.

http://dx.doi.org/10.1007/978-1-4842-3546-1_14
http://dx.doi.org/10.1007/978-1-4842-3546-1_11

ChAptEr 12 ■ CustoM runtIME IMAGEs

787

The --output option specifies the directory where the runtime image will be copied. The command
will copy the runtime image to the C:\Java9APIsAndModules\image\primechecker directory. The output
directory contains the subdirectories and a file named release. The release file contains the JDK version
and a list of all JDK and user modules linked to this image. Table 12-2 contains the descriptions of the
contents of each directory.

Table 12-2. List of Options for the jlink Tool

Directory Description

bin Contains executable files. On Windows, it also contains dynamically-linked native libraries
(.dll files).

conf Contains the editable configuration files such as .properties and .policy files.

include Contains C/C++ header files.

legal Contains legal notices.

lib Contains, among other files, the modules added to the runtime image. On Mac, Linux, and
Solaris, it will also contain the system’s dynamically-linked native libraries.

You used the --launcher option with the jlink command. You specified runprimechecker as the
command name, jdojo.prime.client as the module name, and com.jdojo.prime.client.Main as the
main class name in the module. The --launcher option makes jlink create a platform-specific executable,
such as a runprimechecker.bat file on Windows in the bin directory. You can use this executable to run
your application. The file contents are simply a wrapper for running the main class in this module. You can
use this file to run the application:

C:\Java9APIsAndModules>image\primechecker\bin\runprimechecker

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using faster service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using probable service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

ChAptEr 12 ■ CustoM runtIME IMAGEs

788

You can also use the java command, which is copied to the bin directory by the jlink tool, to launch
your application:

C:\Java9APIsAndModules>image\primechecker\bin\java --module jdojo.prime.client/com.jdojo.
prime.client.Main

The output of this command will be the same as that of the previous command. Notice that you did not
have to specify the module path. The linker, the jlink tool, took care of the module path when the runtime
image was created. When you run the java command of the generated runtime image, it knows where to
find the modules.

Binding Services
In the previous section, you created a runtime image for the prime service client application. You had to
specify the names of all service provider modules with the --add-modules option that you wanted to include
in the image. In this section, I show you how to bind services automatically using the --bind-services
option with the jlink tool. This time, you need to add the module, which is the jdojo.prime.client module,
to the module graph. The jlink tool will take care of the rest. The jdojo.prime.client module reads the
jdojo.prime module, so adding the former into the module graph will also resolve the latter. The following
command prints the list of suggested service providers for the runtime image. A partial output is shown.

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods --add-modules jdojo.prime.
client --suggest-providers

...
jdojo.prime file:///C:/Java9APIsAndModules/jmods/jdojo.prime.jmod
 uses com.jdojo.prime.PrimeChecker
jdojo.prime.client file:///C:/Java9APIsAndModules/jmods/jdojo.prime.client.jmod
jdojo.prime.faster file:///C:/Java9APIsAndModules/jmods/jdojo.prime.faster.jmod
jdojo.prime.probable file:///C:/Java9APIsAndModules/jmods/jdojo.prime.probable.jmod
...

Suggested providers:
 jdojo.prime provides com.jdojo.prime.PrimeChecker used by jdojo.prime
 jdojo.prime.faster provides com.jdojo.prime.PrimeChecker used by jdojo.prime
 jdojo.prime.probable provides com.jdojo.prime.PrimeChecker used by jdojo.prime
...

The command specifies only the jdojo.prime.client module to the --add-modules option. The jdojo.
prime and java.base modules are resolved because the jdojo.prime.client module reads them. All resolved
modules are scanned for the uses statement and, subsequently, all modules in the module path are scanned for
service providers for the services specified in the uses statement. All service providers that are found are printed.

 ■ Tip You may specify arguments to the --suggest-providers option. If you are using it without arguments,
make sure you specify it at the end of the command. otherwise, the option after the --suggest-providers
option will be interpreted as its arguments and you will receive an error.

ChAptEr 12 ■ CustoM runtIME IMAGEs

789

The following command specifies com.jdojo.prime.PrimeChecker as the service name to the
--suggest-providers option to print all service providers found for this service:

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods --add-modules jdojo.prime.
client --suggest-providers com.jdojo.prime.PrimeChecker

Suggested providers:
 jdojo.prime provides com.jdojo.prime.PrimeChecker used by jdojo.prime
 jdojo.prime.faster provides com.jdojo.prime.PrimeChecker used by jdojo.prime
 jdojo.prime.probable provides com.jdojo.prime.PrimeChecker used by jdojo.prime

Using the same logic as described before, all three service providers were found. Let’s create a new
runtime image that includes all three service providers. The following command does the job:

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods
--add-modules jdojo.prime.client
--launcher runprimechecker=jdojo.prime.client/com.jdojo.prime.client.Main
--bind-services
--output image\primecheckerservice

Compare this command with the command used in the previous section. This time, you specified
only one module with the --add-modules option. That is, you did not have to specify the names of service
provider modules. You used the --bind-services option, so all service providers references in the added
modules are added automatically to the runtime image. You specified a new output directory named image\
primecheckerservice. The following command runs the newly created runtime image:

C:\Java9APIsAndModules>image\primecheckerservice\bin\runprimechecker

Using default service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using faster service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

Using probable service provider:
3 is a prime.
4 is not a prime.
121 is not a prime.
977 is a prime.

ChAptEr 12 ■ CustoM runtIME IMAGEs

790

The output proves that all three prime checker service providers, which were in the module path, were
added automatically to the runtime image.

There is a catch when you used the --bind-services option in the previous command. Compare the
sizes of the image\primechecker and image\primecheckerservice directories, which are 173MB and 36MB,
respectively. You did use a shorter command. However, the size of the runtime image went up by 280%!
You do not want this. The problem is with using the --bind-services option that resolved all services,
including the java.base module. You do not want to resolve any services other than the com.jdojo.prime.
PrimeChecker service, which is defined in the jdojo.prime module. You can achieve this by using the
--limit-modules option to limit the universe of observable modules to the following five modules:

•	 java.base

•	 jdojo.prime

•	 jdojo.prime.faster

•	 jdojo.prime.probable

•	 jdojo.prime.client

The following command is a revised copy of the previous command. This command uses the --limit-
modules. Note that you have not included the jdojo.prime.client module in the --list-modules because
this module is already in the --add-modules. Including it in the list of modules with --list-modules will not
make any difference. This time, your runtime image will be 36MB as it was the first time.

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods
--add-modules jdojo.prime.client --compress 2
--strip-debug
--launcher runprimechecker=jdojo.prime.client/com.jdojo.prime.client.Main
--bind-services
--limit-modules java.base,jdojo.prime,jdojo.prime.faster,jdojo.prime.probable
--output image\image\primecheckercompactservice

Using Plugins with the jlink Tool
The jlink tool uses a plugin architecture to create runtime images. It collects all classes, native libraries, and
configuration files into a set of resources. It builds a pipeline of transformers, which are plugins specified as
command-line options. Resources are fed into the pipeline. Each transformer in the pipeline applies some
kind of transformation to resources and the transformed resources are fed to the next transformer. At the
end, jlink feeds the transformed resources to an image builder.

The JDK9 ships the jlink tool with a few plugins. Those plugins define command-line options. To use a
plugin, you need to use the command-line option for it. You can run the jlink tool with the --list-plugins
options to print the list of all available plugins with their descriptions and command-line options:

C:\Java9APIsAndModules>jlink --list-plugins

ChAptEr 12 ■ CustoM runtIME IMAGEs

791

List of available plugins:

Plugin Name: class-for-name
Option: --class-for-name
Description: Class optimization: convert Class.forName calls to constant loads.

Plugin Name: compress
Option: --compress=<0|1|2>[:filter=<pattern-list>]
Description: Compress all resources in the output image.
Level 0: No compression
Level 1: Constant string sharing
Level 2: ZIP.
An optional <pattern-list> filter can be specified to list the pattern of
files to be included.

Plugin Name: dedup-legal-notices
Option: --dedup-legal-notices=[error-if-not-same-content]
Description: De-duplicate all legal notices. If error-if-not-same-content is
specified then it will be an error if two files of the same filename
are different.

Plugin Name: exclude-files
Option: --exclude-files=<pattern-list> of files to exclude
Description: Specify files to exclude. e.g.: **.java,glob:/java.base/lib/client/**

Plugin Name: exclude-jmod-section
Option: --exclude-jmod-section=<section-name>
where <section-name> is "man" or "headers".
Description: Specify a JMOD section to exclude

Plugin Name: exclude-resources
Option: --exclude-resources=<pattern-list> resources to exclude
Description: Specify resources to exclude. e.g.: **.jcov,glob:**/META-INF/**

Plugin Name: generate-jli-classes
Option: --generate-jli-classes=@filename[:ignore-version=<true|false>]
Description: Specify a file listing the java.lang.invoke classes to pre-generate.
By default, this plugin may use a builtin list of classes to pre-generate.
If this plugin runs on a different runtime version than the image being
created then code generation will be disabled by default to guarantee
correctness - add ignore-version=true to override this.

Plugin Name: include-locales
Option: --include-locales=<langtag>[,<langtag>]*
Description: BCP 47 language tags separated by a comma, allowing locale matching
defined in RFC 4647. e.g.: en,ja,*-IN

Plugin Name: order-resources
Option: --order-resources=<pattern-list> of paths in priority order. If a @file
is specified, then each line should be an exact match for the path to be ordered
Description: Order resources. e.g.: **/module-info.class,@classlist,/java.base/java/lang/**

ChAptEr 12 ■ CustoM runtIME IMAGEs

792

Plugin Name: release-info
Option: --release-info=<file>|add:<key1>=<value1>:<key2>=<value2>:...|del:<key list>
Description: <file> option is to load release properties from the supplied file.
add: is to add properties to the release file.
Any number of <key>=<value> pairs can be passed.
del: is to delete the list of keys in release file.

Plugin Name: strip-debug
Option: --strip-debug
Description: Strip debug information from the output image

Plugin Name: strip-native-commands
Option: --strip-native-commands
Description: Exclude native commands (such as java/java.exe) from the image

Plugin Name: system-modules
Option: --system-modules=retainModuleTarget
Description: Fast loading of module descriptors (always enabled)

Plugin Name: vm
Option: --vm=<client|server|minimal|all>
Description: Select the HotSpot VM in the output image. Default is all

For options requiring a <pattern-list>, the value will be a comma separated
list of elements each using one the following forms:
 <glob-pattern>
 glob:<glob-pattern>
 regex:<regex-pattern>
 @<filename> where filename is the name of a file containing patterns to be
 used, one pattern per line

The following command uses the compress and strip-debug plugins. The compress plugin will
compress the image, which will result in a smaller image size. I use the compression level 2 to have the
maximum compression. The strip-debug plugin will remove the debugging information from the Java code,
thus further reducing the size of the image.

C:\Java9APIsAndModules>jlink --module-path jmods;C:\java9\jmods
--add-modules jdojo.prime.client,jdojo.prime.faster,jdojo.prime.probable
--compress 2
--strip-debug
--launcher runprimechecker=jdojo.prime.client/com.jdojo.prime.client.Main
--output image\primecheckercompact

The output was copied to the image\primecheckercompact directory. The size of the new image
is 33MB, whereas the size of the image created in the image\primechecker directory is 36MB. This is
approximately 39% more compact image because of the two plugins you used.

 ■ Tip At the time of this writing, the plugin ApI is strictly experimental and the execution order of the plugins is
not defined. In its early implementation, the jlink tool also supported custom plugins, which was later removed.

ChAptEr 12 ■ CustoM runtIME IMAGEs

793

The jimage Tool
The Java runtime ships the JDK runtime image in a JIMAGE file. The file is named modules and it is located
in JAVA_HOME\lib, where JAVA_HOME could be your JDK_HOME or JRE_HOME. JDK9 also ships with a jimage
tool, which is used to explore the contents of JIMAGE files. The tool can:

•	 Extract entries from the JIMAGE file

•	 Print the summary of the contents stored in the JIMAGE file

•	 Print the list of entries such as their name, size, offset, etc.

•	 Verify class files

The jimage tool is stored in the JDK_HOME\bin directory. The general format of the command is as
follows:

jimage <subcommand> <options> <jimage-file-list>

Here, <subcommand> is one of the sub-commands listed in Table 12-3. <options> is one or more options
listed in Table 12-4; <jimage-file-list> is a space-separated list of JIMAGE files to be explored.

Table 12-3. List of Sub-Commands Used with the jimage Tool

Sub-Command Description

extract Extracts all entries from the specified JIMAGE files to the current directory. Use the
--dir option to specify another directory for extracted entries.

info Prints the detailed information contained in the header of the specified JIMAGE file.

list Prints the list of all modules and their entries in the specified JIMAGE file. Use the
--verbose option to include the details of the entries such as its size, offset, and
whether the entry is compressed.

verify Prints a list of .class entries in the specified JIMAGE files that do not verify as classes.

Table 12-4. List of Options Used with the jimage Tool

Option Description

--dir <dir-name> Specifies the target directory for the extract sub-command where the
entries in the JIMAGE files will be extracted.

-h, --help Prints a usage message for the jimage tool.

--include <pattern-list> Specifies a list of patterns for filtering entries. The value for the pattern list
is a comma-separated list of elements, each using one the following forms:

• <glob-pattern>

• glob:<glob-pattern>

• regex:<regex-pattern>

--verbose When used with the list sub-command, prints entry details such as size,
offset, and compression level.

--version Prints version information for the jimage tool.

ChAptEr 12 ■ CustoM runtIME IMAGEs

794

I show a few examples of using the jimage command. Examples use the JDK9 runtime image that is
stored at C:\java9\lib\modules on my computer. You will need to replace this image location with yours
when you run these examples. You can also use any custom runtime image created by the jlink tool in these
examples.

The following command extracts all entries from the runtime image and copies them to the extracted_
jdk directory. The command takes a few seconds to complete.

C:\Java9APIsAndModules>jimage extract --dir extracted_jdk C:\java9\lib\modules

The following command extracts all image entries with the .png extension from the JDK runtime image
into an extracted_images directory:

C:\Java9APIsAndModules>jimage extract --include regex:.+\.png
--dir extracted_images C:\java9\lib\modules

The following command lists all entries in the runtime image. A partial output is shown:

C:\Java9APIsAndModules>jimage list C:\java9\lib\modules

jimage: C:\java9\lib\modules
Module: java.activation
 META-INF/mailcap.default
 META-INF/mimetypes.default
...
Module: java.annotations.common
 javax/annotation/Generated.class
...

The following command lists all entries in the runtime image along with the entries’ details. Notice the
use of the --verbose option. A partial output is shown.

C:\Java9APIsAndModules>jimage list --verbose C:\java9\lib\modules

jimage: C:\java9\lib\modules
Module: java.activation
Offset Size Compressed Entry
34214466 292 0 META-INF/mailcap.default
34214758 562 0 META-INF/mimetypes.default
...
Module: java.annotations.common
Offset Size Compressed Entry
34296622 678 0 javax/annotation/Generated.class
...

The following command prints the list of class files that are invalid. You may wonder how you make
a class file invalid. Typically, you won’t have an invalid class file—but hackers would! However, to run this
example, I need to have an invalid class file. I used a simple idea—take a valid class file, open it in a text
editor, and remove its contents partly and randomly to make it an invalid class file. I copied the contents of
a compiled class file into the Main2.class file and removed some of its contents to make it an invalid class.

ChAptEr 12 ■ CustoM runtIME IMAGEs

795

I added the Main2.class file to the jdojo.prime.client module in the same directory as the Main.class. I
recreated the runtime image using the previous command for the prime check application for this example.
If you use the Java runtime image that comes with the JDK, you will not see any output because all class files
in the JDK runtime image are valid.

C:\Java9APIsAndModules>jimage verify image\primechecker\lib\modules

jimage: primechecker\lib\modules
Error(s) in Class: /jdojo.prime.client/com/jdojo/prime/client/Main2.class

Summary
In JDK9, the runtime image is stored in a special format called JIMAGE, which is optimized for space and
speed. The JIMAGE format is supported only at runtime. It is a container format for storing and indexing
modules, classes, and resources in the JDK. Searching and loading classes from a JIMAGE file is a lot faster
than from JAR and JMOD files. The JIMAGE format is JDK-internal and developers will rarely need to interact
with a JIMAGE file directly.

JDK9 ships with a tool called jlink that lets you create a runtime image in JIMAGE format for your
application that will contain application modules and only those platform modules that are used by your
application. The jlink tool can create runtime images from modules stored in module JARs, exploded
directories, and JMOD files. JDK9 ships with a tool called jimage that can be used to explore the contents of
JIMAGE files.

QUESTIONS AND EXERCISES

1. What is a custom Java runtime image?

2. What is the JIMAGE format?

3. What is the jlink tool?

4. Why do you use the --launcher option with the jlink tool?

5. What is the effect of using or not using the --bind-services option with the jlink
tool?

6. What are the plugins for the jlink tool?

7. how do you list the plugins available for jlink?

8. name two jlink plugins.

9. Can you use a custom plugin with jlink?

10. What is the jimage tool? Describe the use of the following four sub-commands for
the jimage tool: extract, info, list, and verify.

797© Kishori Sharan 2018
K. Sharan, Java APIs, Extensions and Libraries, https://doi.org/10.1007/978-1-4842-3546-1

��������� A
Abstract Window Toolkit (AWT), 90
AccessControlException, 352
Action interface, 156–157
Adaptive Server Anywhere

database, 356, 361, 395, 429
Affine transformation, 629
Alpha, 186
Application program interface (API), 266
Asynchronous socket channel, 319–320

client applications, 331
Attachment class, 327
ReadWriteHandler class, 327

CompletionHandler class, 319
server application, 321, 331

AsyncEchoServerSocket class, 324–326
Attachment class, 321
CompletionHandler class, 321
ConnectionHandler class, 322, 323
ReadWriteHandler class, 322

Auto-commit mode, 369
AWT, see Abstract Window Toolkit (AWT)

��������� B
BatchUpdateException command, 473
Bevel border, 190
Bidirectional binding, 577, 593
Binary large object (Blob), 462
Binding, 576–577
Bitmapped font, 191
Boot loader, 773
Bootstrap class loader, 508
BorderLayout, 12
Borders

bevel border, 190
classes, 189
compound border, 190
create kinds of, 189–190
empty border, 190

etched border, 190
grouping effect, 188
line border, 190
matte border, 190
types of, 187–188

ButtonGroup, 130
Bytecode, 516

��������� C
CachedRowSet

acceptChanges() method, 451
execute() method, 448
JdbcRowSet, 451
methods, populate data, 448
page size, 449–450
paging, 447, 449–450
populate() method, 448
size() method, 448
SyncResolver interface, 451
updating and detecting conflicts, 451–453

CallableStatement interface, 377–378
Adaptive Server Anywhere database, 395
DatabaseMetaData object, 389
DB2 database, 397
Derby database, 398–401
executing, 392–394
general syntax, calling stored procedures, 390
INOUT parameters, 391–392
IN parameters, 390
MySQL database, 395
Oracle database, 396
OUT parameters, 391
return parameter, 392
SQL server database, 396, 397
stored procedures and functions, 389

Campus area network (CAN), 254
Canvas, drawing, 624
Character-based user interface, 2
Character large object (Clob), 462
Classless Inter-Domain Routing (CIDR), 260

Index

https://doi.org/10.1007/978-1-4842-3546-1

■ INDEX

798

close() method, 365, 388
Cluster addressing, 264
Color class, 187
Color choosers, 185
commit() method, 369
Compact profile, 783
Compare processes, 742
Compilable interface, 692
CompiledScript, compile() method, 692
ComponentListener, 89
Compound border, 190
Confirmation dialog, 171
Connected rowset, 445–447
ConnectionPoolDataSource interface, 482
Connection socket, 275
Containment hierarchy, 3
Content pane, 7
Custom runtime images, creation, 784

jdojo.prime, 786
jdojo.prime.client, 786
jdojo.prime.faster, 786
jdojo.prime.probable, 786
jlink tool, 784
prime checker application, 786

Custom ScriptContext, 678

��������� D
Data concurrency, 370
Data consistency, 370
Data Control Language (DCL) Statement, 377
Data Definition Language (DDL)

Statement, 377
Datagram, 257
Datagram channel

binding, 333
client application, 336
close() method, 334
echo server, 335
multicast, 337

binding, 337
close() method, 340
creation, 337
DGCMulticastClient class, 341–342
DGCMulticastServer class, 342
join() method, 339
network interface, 338
receive() method, 340
send() method, 340
setOption() method, 337

network interface, 338–339
open() method, 332
receive() method, 334
send() method, 334
setOption() method, 332

Datagram socket, 266
Data Manipulation Language (DML)

Statement, 377
DataSource, 481
DB2 database, 356, 362, 397, 430
Dependencies, 589
Derby

configuration, 351
derby.properties file, 353
description, 350
downloading, 350
installing, 350
libraries, 351
running, modes, 351
server mode, 352

Dialogs
custom

confirmation, 171
displays current date and time, 171–172
input, 171
message, 171
modalities, 173
modality model, 173–174

standard
createDialog() methods, 180
list of arguments, 175–176
list of constants, 176
showConfirmDialog() method, 177
showInputDialog() method, 178–179
showMessageDialog() methods, 176
showOptionDialog() method, 179–180
static methods, 175

Distance Vector Multicast Routing Protocol
(DVMRP), 264

Domain name system (DNS), 265, 270
Double buffering, 198, 200
Drag and drop (DnD) mechanism

canImport() and importData()
methods, 226

Custom TransferHandler, 224–225
data transfer mechanism, 221
drop modes, 223
exportDone() method, 226
JFrame, 228
JList, JTree, and JTable, 223
myComponent, 222
Swing components, 226–227
Transferable interface, 221–222
TransferHandler class, 222

Drawing shapes
DrawingCanvas, 196
getGraphics() method, 198
Graphics class, methods of, 196
Graphics2D class, 198

Dynamic link library (DLL), 516

■ INDEX

799

��������� E
Eager binding, 577
Echo character, 107
ECMAScript (ES), 652
Empty border, 190
Engine scope bindings, reserved keys, 681
enquoteIdentifier() method, 384
enquoteLiteral() method, 384
enquoteNCharLiteral() method, 384
Etched border, 190
eval() method, 678, 680
evaluate() method, 456
Event handling, 4, 72

ActionEvent class, 72, 77–78
ActionListener interface, 72, 75
classes and interfaces, 599
dispatch chain, 600
event listener/eventhandler, 72
EventListener interface, 75
event source, 72
filters and handlers, 603
generic vs. action, 75
getActionCommand() method, 78
JButton, 73
listener interface, 74
route traversal

bubbling phase, 601
capture phase, 601

source, 598
target selection, 599
triggering an event, 72
types, 599

execute() method, 380
executeQuery() method, 380
executeUpdate() method, 380

��������� F
File choosers

accept() method, 184
addChoosableFileFilter() method, 185
dialog box, 183
isAcceptAllFileFilterUsed() method, 185
in JDialog, 181
setCurrentDirectory() method, 182
showDialog() method, 183
showSaveDialog() method, 183

File Transfer Protocol (FTP), 255
FilteredRowSet, 456
Font class

object, 192
object-oriented font, 191
outline font, 191
pitch, 191

setFont() method, 192
typeface, 191

Four corners, 141
Frame, 257
FXML, user interface

to build GUI, 642
to build UI, 638–641
object graph, 638
URL location, 641
use of, 638

��������� G
getBindings() method, 673
getConnection() method, 364
getMetaData() method, 375
get(String key) method, 673
getTransactionIsolation() method, 372
getXxx() method, 374
give_raise stored procedure, 400
Glass pane, 7
Glass Windowing Toolkit, 563
Glyph, 191
Gopher, 255
Graphical user interface (GUI), 2

controls, components, 614

��������� H
HTML

browser, 115
page, 115

Hypertext Transfer Protocol (HTTP), 255

��������� I
Immediate painting, 198
IN parameters, 390
INOUT parameters, 391–392
International Standard Book Numbers

(ISBN), 292
Internet Assigned Numbers Authority

(IANA), 258
Internet Control Message Protocol (ICMP), 256
Internet Group Management Protocol

(IGMP), 256, 264
Internet Protocol (IP), 256
Internet Protocol next generation

(IPng), 258
Internet Protocol Security (IPsec), 256
Internet reference model, 255
Internet Stream Protocol (ST), 258
Internetwork, 254
Interpolator, 632
Interpreter, 651

■ INDEX

800

Invocable interface, invokeMethod() method, 684, 686
Invocation API, 552

C++ console application, 554
EmbeddedJVMJNI class, printMsg() static

method, 554
JavaVMInitArgs structure, 552–553
JavaVMoption structure, 552
printMsg() method, 554
setout() and setErr() methods, 553
version field, 552

IP address, 258, 262
anycast, 264
broadcast, 264
definition, 258
InetAddress class, 270
IPv4, 258
IPv6, 261
loopback, 263
machine address, 270
multicast, 264
Regional Internet Registry (RIR)

organizations, 258
unicast, 263
unspecified, 265

isSimpleIdentifier() method, 384

��������� J
JAR format, multi-release, 764–765
Java array

Java.from() function, 702
Java.to() function, 702
Java.type() method, 700
PrintArray class, 701

java.base module, 786, 788, 790
JavaFX

animation
class diagram, 633
interpolator, 632, 634
key frames, 634
key values, 634
timeline, 633–634
transition, 633

binding, 576–577, 589
bidirectional binding, 577, 593
circle centered, 593–595
eager binding, 577
isValid() method, 590
NumberBinding methods, 590
unbind() method, 591, 592
unidirectional, 577

canvas, drawing, 624
components, 562–563

glass windowing toolkit, 563
media engine, 563

prism, 563
Quantum toolkit, 563
scene graph, 563
web engine, 563

container class (see Layout panes)
controls, 614
definition, 561
2D shapes

class diagram, 620
code implementation, 621
path and SVGpath classes, 623

effects, 626
event handling

classes and interfaces, 599
dispatch chain, 600
filters and handlers, 602
route traversal, 600
source, 598
target, 599
types, 599

features, 562
FXML

to build GUI, 642
to build UI, 638–641
object graph, 638
URL location, 641
use of, 638

GuI components controls, 614
HelloJavaFX class, 565

getChildren() method, 570
launch() method, 568
main() method, 568, 570
scene class, 570
setOnAction() method, 572
setScene() method, 571
setStyle() method, 572–573
setTitle() method, 567
start() method, 566–567
text node, 571

history, 563
layout panes

BorderPane, 611
class diagram, 608
container classes, 610
dynamic layout, 608
parent class, 609
setStyle() method, 612
static layout, 607–608
using CSS, 613–614

lifecycle
code implementation, 575
init() method, 574
launch() method, 574
start() method, 574
stop() method, 574

■ INDEX

801

modules, 564
new versions, 563
observable collections

addListener() method, 596
class diagram, 595
contents, 595
FXCollections class, 596
interfaces, 595
InvalidationListener property, 596
next() method, 596
ObservableList, 597
ObservableSet, 596

printing nodes, 642
properties, 576

change events, 587
counter, 578
get() and set() methods, 578
getReadOnlyProperty() method, 578
idWrapper property, 579
IntegerProperty, 578
invalidation event, 584
ISBN property, Book class, 581–582
printDetails() method, 583
removeListener() method, 586
SimpleIntegerProperty, 579
title property, Book class, 580
toString() methods, 583, 584

source code, 565
termination, 576
transformations

affine, 629
class diagram, 629
to nodes, 631–632
rotate class, 629
scale class, 630
shear class, 630
translate class, 629

JavaFX Application Thread, 563
javah tool, C/C++ header files, 521
Java Interface implementation

Calculator interface, 688–689
getInterface() method, 687, 690
instance methods, 690–691

java.lang.AutoCloseable interface, 365
java.lang.ClassNotFoundException, 506
Java Naming and Directory Interface (JNDI)

service, 481
Java Native Interface (JNI), 515, 736

architecture, 516
arrays, 536
C/C++

functions, 532
header file creation, 521
program implementation, 523

class libraries, 516

compiling, 521
definition, 515
dynamic link library (DLL), 516
exception handling, 549

Exceptioncheck() function, 549
ExceptionClear() function, 550
ExceptionDescribe() function, 551
ExceptionOccurred() function, 549
FatalError() function, 551
FindClass() function, 549
return statement, 551
ThrowNew() function, 551

JVM creation (see Invocation API)
mapping

primitive data types, 531
reference type, 532

MonitorEnter() function, 557
MonitorExit() function, 557
naming rules, 528

header file, 530
javah command, 528
mangled method’s signature, 528
method’s parameter

signature, 529
test class, 529

objects (see Java objects)
program implementation, 517

abstract method, 519
loadLibrary() method, 517
load() method, 518
native method, 518–519

shared library creation, 524
on Linux, 526
run command, 527
on Windows, 524

strings, 533
synchronization

MonitorEnter(), 557
MonitorExit(), 557

system requirements, 516
Java objects

class reference, 540
FindClass() function, 541
GetObjectClass() function, 540

creation, 547
AllocObject() function, 547
getValue() method, 548
methodID parameter, 547
wrapperObject, 548

field access
cls parameter, 542
GetField() function, 541
GetStaticField() function, 541

JNIJavaObjectAccessTest class, 545
callBack() method, 546–547

■ INDEX

802

methods, 542
callIntMethod(), 544
CallMethod() function, 543
GetMethodID(), 542
GetStaticMethodID(), 542
instance method, 543
javap command, 542
static methods, 543

Java primitive data types vs. Native
data types, 531

Java Remote Method Invocation
(Java RMI), 490

architecture, 491
client program, 490

components, 500
debugging, 507

java.rmi.server.logCalls, 507
setLog() method, 507

distributed programming, 490
dynamic class downloading, 508

java.rmi.server.codebase
property, 508–509

garbage collector, 509
clean message, 510
dirty message, 510
reference count, 510
unreferenced() method, 511–512
weak reference, 510

generate stub class, 501
remote interface

client program, 499
implementation, 494
methods, 493
requirements, 493
server program, 496

remote object, 490
RMI application, 501
RMI client program, 503
RMI registry application, 502
RMI server, 503
server program, 490

components, 500
troubleshooting, 504

java.lang.ClassNotFoundException, 506
java.rmi.server.ExportException, 505
java.rmi.StubNotFoundException, 504
java.security.AccessControlException, 505

UnicastRemoteObject class, 500
java.rmi.server.ExportException, 505
java.rmi.StubNotFoundException, 504

port number, 504
Java runtime environment

garbage collection, 738
getRuntime() static method, 737
query, 737

runtime class
addShutdownHook method, 738
removeShutdownHook method, 738
System.exit() static method, 738

version() method, 737
java.security.AccessControlException, 505
java.sql.Connection interface, 358
java.sql.SQLException, 364
Java Virtual Machine (JVM), 651
Javax.script package

AbstractScriptEngine class, 658
Bindings interface, 659
Compilable interface, 658
CompiledScript class, 658
getEngineFactories() method, 659
Invocable interface, 658
ScriptContext interface, 659
ScriptEngine interface, 658
ScriptEngineFactory interface, 658
ScriptEngineManager class, 658, 659
ScriptException class, 659
SimpleBindings class, 659

JButton
ActionListener interface, 91
Action object, 92
actionPerformed() method, 94
CloseAction class, 93–94
constructors, 90
ImageIcon class, 91
keyboard mnemonic, 91–92
methods, 92
modifier key, 91

JCheckBox, 130
JColorChooser, 185
JComboBox, 132–133
JComponent class

accessibility, 87
AWT, 90
border, 86
class hierarchy, 86
ComponentEvent, 89
container, 86
FocusEvent, 89
heavyweight components, 90
key binding, 87
KeyEvent, 89
layout manager, 87
lightweight components, 90
look and feel, 86
methods and descriptions, 87–88
MouseEvent, 89
MouseWheelEvent, 89
peer, 90
putClientProperty() and getClientProperty()

methods, 87
tooltips, 86

Java objects (cont.)

■ INDEX

803

JDBC API
auto-commit mode, 369
batch updates

BatchUpdateException command, 473, 474
CallableStatement interface, 472
coding implementation, 474
commands, multi-step process, 473
executeBatch() method, 473
PreparedStatement interface, 474
Statement interface, 472–473

commit() method, 369
database table

Adaptive Server Anywhere database, 356
Apache Derby, 357
DB2 database, 356
description, 355
MySQL database, 357
Oracle database, 356
person, 355
SQL Server database, 356
SQL statements SELECT, INSERT, UPDATE,

and DELETE, 355
DataSource, 481
data types mappings, JDBC and Java, 372–374
definition, 348
Java classes and interfaces, 347
jdojo.jdbc module, 347
LOB (see Large object (LOB))
Oracle databases, 348
ResultSet (see ResultSet)
rollback() method, 369
RowSets (see RowSets)
savepoints, database transaction, 478–481
SQL warnings, 483
system requirements, 348
tracing, 484
transaction isolation levels, 370–372

JDBC drivers
architecture, 349
database connection

Adaptive Server Anywhere database, 361
Apache Derby database, 363–364
DB2 database, 362
JAR files, 358
loading, driver class, 359
module path, 358
MySQL database, 362
Oracle database, 360
Oracle DBMS, 357
registerDriver() method, 359–360
registering, 358
SQL Server database, 361
system property, 359
URL, 360

DatabaseMetaData interface, 375–376
execute, SQL statements (see SQL statements)

database connection getConnection()
method, 364

java.sql.DriverManager class, 358
types of, 349–350

JDBC-Native API driver, 349
JDBC-Net driver, 349
JdbcRowSet, 445–447
JEditorPane

EditorKit object, 114
HTML browser, 115
hyperlinkUpdate() method, 115
setPage() method, 115

JFileChooser
accept() method, 184
addChoosableFileFilter() method, 185
dialog box, 183
isAcceptAllFileFilterUsed() method, 185
in JDialog, 181
setCurrentDirectory() method, 182
showDialog() method, 183
showSaveDialog() method, 183

JFormattedTextField class
advantages of, 111
constructors, 108–109
formatter

default, 110
display, 110
edit, 110
factory, 109
mask, 109
null, 110

getValue() method, 111
setFormatterFactory() method, 110

JFrame, 200–201
components, 7, 9

add() method, 9
BorderLayout, 12
closeButton, 9
Close button, 12
containment hierarchy, 8
content pane, 7–8
glass pane, 7
Help button, 12
JButton, 9–11
layered pane, 7
layout managers, 12
pack() method, 10
root pane, 7
setBounds() method, 10

creation
DISPOSE_ON_CLOSE option, 6
DO_NOTHING_ON_CLOSE option, 5
EXIT_ON_CLOSE option, 6
HIDE_ON_CLOSE option, 6
JFrame.CONSTANT_NAME syntax, 5
program implementation, 4–6

■ INDEX

804

resizing, 5
setDefaultCloseOperation() method, 6
setSize()method, 6
setVisible () method, 4
String argument, 4
WindowsConstants interface, 5

reusable creation, 70
custom creation, 71
initFrame() method, 70
main() method, 70

jimage tool, 793
JIMAGE files, 793
options, 793
sub-commands, 793
verbose option, 794

jjs command-line tool
$ARG property, 728
–xhelp option, 724
EOF/END identifier, 728
exit() function, 725
${expression}, 727
JavaFX, 732

ActionEvent handler, 731
classes/packages, 729
–fx option, 731
hellojavafx.js, 730
Label creation, 729

–scripting option, 727
$STAGE global variable, 732

stream.js, 726
syntax, 724

JKScriptEngine class, 713
JKScriptEngineFactory class, 715
JKScript Script Engine, 736
JLabel

constructors, 96
setDisplayedMnemonic() method, 97
setLabelFor() method, 97
setText() method, 97

jlink tool
memory, 784
module path, 784
options, 784–785, 787

add-modules option, 789
bind-services option, 788–789
launcher option, 787
limit-modules option, 790
list-modules, 790

plugins
command-line options, 790
compress plugin, 792
list-plugins options, 790
runtime images creation, 790
strip-debug plugin, 792

JList
getSize() method, 135
horizontal wrapping, 134
JComboBox, 134
JScrollPane, 134
methods, 136
multiple interval selection mode, 135
setSelectionMode() method, 135
setVisibleRowCount() method, 134
single interval selection mode, 135
single selection mode, 135
vertical argument, 134
vertical wrapping, 134

JMenu, 145
JMenuBar, 145
JMenuItem, 146
JMOD format

create, 776
describe, 777
extract, 776
list, 776
record hashes modules, 778–780
tool, 774

JoinRowSet, 459
JOptionPane

createDialog() methods, 180
list of arguments, 175–176
list of constants, 176
showConfirmDialog() method, 177
showInputDialog() method, 178–179
showMessageDialog() methods, 176
showOptionDialog() method, 179–180
static methods, 175

JPanel
with BorderLayout, 95
constructors, 95
FlowLayout, 95

JPasswordField class
echo character, 107
getText() and getPassword() method, 107
setEchoChar() method, 107

JProgressBar, 142–143
JRadioButton, 130
jrunscript command-line shell

arguments array, 723
arguments list, 720
batch mode, 721
-cp/-classpath option, 723
interactive mode, 722
JKScript and jython script

engines, 723
one-liner mode, 721
syntax, 719
types, 720

JScrollBar, 139–140

JFrame (cont.)

■ INDEX

805

JScrollPane
create with different options, 142
four corners, 141
JScrollBars, 141
policy, 141
row/column headers, 141
viewport, 141–142

JSeparator, 145
JSlider, 143–144
JSpinner

components, 137
editor object, 138
SpinnerDateModel, 138
SpinnerListModel, 138
SpinnerModel interface, 137
SpinnerNumberModel, 137

JSplitPane, 169–170
JTabbedPane, 169–170
JTable

AbstractTableModel interface, 160
addColumn() and addRow() methods, 158
constructors, 159
custom model, 162
getColumnClass() method, 162
getModel() method, 157
getSelectedRowCount() method, 159
getSelectedRow() method, 159
getTableHeader() method, 159
no-args constructor, 157
setAutoCreateRowSorter(), 162
setColumnIdentifiers() method, 158
simple table model, 161–162
TableModel interface, 160

JTextArea class
code implementation, 112
constructors, 111
JScrollPane, 114
methods, 112–113
setWrapStyleWord() method, 113

JTextComponent class, 100–102
JTextField class

constructors, 102–103
createDefaultModel() method, 106
insertString() method, 105
JFormattedTextField, 106
LimitedCharDocument, 106
mirroring, 103
named name and mirroredName, 103
PlainDocument class, 104–105

JTextPane class
addStyle() method, 123
attributes, 119
buttons, 123
dump() method, 126
insertString() method, 126

methods, 124
plain document, 119
root element, 119
RTFEditorKit object, 125
StyleContext object, 124
styled document, 120, 126
StyledDocument interface, 119
word processor, 120, 125
write() method, 125

JToggleButton, 129
JToolBar

action interface, 156–157
create button, 154
JFrame, 154, 156

JTree
ancestors, 164
branch node, 164
DefaultMutableTreeNode, 166
descendant, 164
getPath() method, 166
getRowCount() method, 166
leaf node, 164
MutableTreeNode, 164
navigateTree(), 167
node, 164
parent node, 164
siblings, 164
toString() method, 166
tree-expansion event, 168
TreeNode, 164
TreeSelectionListener, 168
TreeSelectionModel interface, 167
tree-will-expand event, 168

jvalue type, 532
JVM’s memory, query

freeMemory() method, 737
maxMemory() method, 737
totalMemory() method, 737

JWindow, 186

��������� K
Keyboard mnemonic/keyboard shortcut/keyboard

indicator, 91
Key frames, 632–634
Key values, 632–633

��������� L
Large object (LOB)

Blob, 462
Blob and Clob data database columns, 468–472
Clob, 462
Clob interface, 466
Connection interface, 465

■ INDEX

806

data retrieval, 464–465
locator, 462
NClob, 462
OutputStream, 466
PreparedStatement interface, 467
ResultSet interface, 467
table creation, Derby, 462–463
types, 462

Layout managers
BorderLayout, 21

close button, 23
code implementation, 22
containers orientation, 22
help button, 23

BoxLayout, 26–31
code implementation, 27
container alignment, 28
filler, 30
glue, 29–31
rigid area, 29
static methods, 28
struct, 29

CardLayout, 24
actionPerformed() method, 26
addActionListener() method, 26
class methods, 24
code implementation, 25

FlowLayout, 16–17, 19–21
code implementation, 17
component orientation, 16
JFrame buttons, 17
nesting, 20
setAlignment() method, 18
setHgap() methods, 18
setVgap() methods, 18

GridBagConstraints, 34
anchor constraint, 46
gridx and gridy constraints, 35, 39, 43
instance variables, 38
ipadx constraints, 45
ipady constraints, 45

GridBagLayout, 34–38
code implementation, 34
contentPane.add() method, 35
fill constraint, 44–45
insets constraint, 46
weightx and weighty constraints, 49

GridLayout, 31, 33
code implementation, 32
constructors, 31
containers, 33

GroupLayout, 59
addComponent() method, 65
addContainerGap() method, 65

addGap() method, 64
createParallelGroup method, 68
grouping alignment, 60
JFrame, 63
leading alignment, 60
linkSize() method, 68
nested groups, 67–68
parallel, 66
parallel group, 59, 61
ParallelGroup, 61
sequential groups, 59, 66
setHorizontalGroup() method, 62
setVerticalGroup() method, 62

null, 69
snippet code, 34
SpringLayout, 51

code implementation, 52–53
constants, 54
constant() static method, 51
pack() method, 54, 57
putConstraint() method, 56–58
scale() method, 52
setting x and y constraints, 54–55
strut, 51
subtract() method, 52
sum() method, 52

Layout panes
BorderPane, 611
class diagram, 608
dynamic layout, 608
parent class, 609
setStyle() method, 612
static layout, 607–608
using CSS, 613–614

Lazy binding, 577
length() method, 464, 698
Line border, 190
Live remote reference, 509
Locator, 462

��������� M
Matte border, 190
Maximum transmission unit (MTU), 261
Media access control (MAC), 256
Media engine, 563
Message dialog, 171
Metropolitan area network (MAN), 254
Modality model, 173–174
Model-view-controller (MVC) pattern, 99
Modifier key, 91
MouseAdapter, 82
Multi-release JARs

create, 765
definition, 764

Large object (LOB) (cont.)

■ INDEX

807

manifest attribute, 773
modular, 772
modular encapsulation, 772
rules, 771

MySQL database, 357, 362, 395, 429

��������� N
Name-Mangling Process, 529
Nashorn engine, 653
National Character Large Object (NClob), 462
Nesting menus, 147
Network News Transfer Protocol (NNTP), 255
Network programming

asynchronous socket channel, 319–320
client applications, 327, 331
server application, 320, 331

blocking vs. non-blocking classes, 307
client-server paradigm, 266–267
communication, 254
datagram channel (see Datagram channel)
data transmission, 254
definition, 253
finishConnect() method, 312, 313
host, 253
internet, 254
internetwork, 254
IP address, 258, 262

anycast, 264
broadcast, 264
InetAddress Class, 271–272
IPv4, 258
IPv6, 261
loopback, 262
machine address, 270
multicast, 264
Regional Internet Registry (RIR)

organizations, 258
unicast, 263
unspecified, 265

isReadable() and isWritable() methods, 310
local area network (LAN), 254
non-blocking socket, 307

architecture, 308
ByteBuffer object, 312
echo client, 315
echo server, 313
operations, 309
SelectionKey object, 311
ServerSockeChannel, 309

port number, 265
application layer, 266
IANA, 265

protocol suite, 255
ready set, 310–311

SelectionKey class, 309
selector, 308
socket, 266

accept primitive, 269
address, 273
bind primitive, 268
close primitive, 270
connectionless socket, 266–267
connection-oriented socket, 266–267
connect primitive, 269
datagram socket, 268
lifecycle, 268
listen primitive, 269
receive/receiveFrom primitive, 270
security permissions, 318
send/sendto primitive, 270

SocketChannel.open() method, 312
topology, 254
transmission control protocol (TCP), 266

client socket, 278
server socket, 274

uniform resource identifier (URI), 292
http scheme, 292
Java objects, 296

uniform resource locator (URL), 292
openConnection() method, 302
Reader/Writer class, 303–305

uniform resource name (URN), 292
user datagram protocol (UDP), 267

connect() method, 345
virtual connection, 266

Network protocol suite
application layer, 255
internet layer, 256
internet reference model, 255
network interface layer, 256
packet switching networks, 255
physical layer, 256
TCP/IP Layering Model, 255
transmission packets, 257
transport layer, 256

newFactory() method, 440–441

��������� O
Observable collections

addListener() method, 596
class diagram, 595
contents, 595
FXCollections class, 596
interfaces, 595
InvalidationListener property, 596
ObservableList, 597
ObservableSet, 596

Off-screen buffer, 198

■ INDEX

808

On-screen painting, 198
Oracle database, 356, 360, 396, 429
OUT parameters, 391

��������� P
Packaging modules

JAR format, 763
JMOD format, 774

Packet switching networks, 255
Paging, 447, 449–450
Painting mechanism

Graphics object, 194–195
paintComponent() method, 194–195
repaint() method, 194
RepaintManager class, 194

parse() method, 712
Passing parameters, 666
Peer, 90
Popup menu, 145, 148–149
PreparedStatement interface, 377–378
prepareStatement() method, 386
Prime checker application

add-modules option, 786
JMOD format, 786
module-path option, 786

Prism, 563
Process API

class/interface, 736
definition, 735

ProcessBuilder class, 743
command() method, 743
environment() method, 744
inheritIO() method, 747
manage attributes, 743
ProcessBuilder.Redirect

constants, 748
redirect methods, 748

redirectErrorStream method, 746
start() method, 744

Process class, 736
toHandle() method, 736, 744

Process creation, start() method, 743
Processes termination

destroyForcibly() method, 757
destroy() method, 757
supportsNormalTermination() method, 758

ProcessHandle class
allProcesses() method, 756
children() method, 755
current() static method, 755
descendants() method, 756
onExit() method, 753
parent() method, 755
toHandle() method, 755

ProcessHandle.Info interface, 736
methods, 740

ProcessHandle interface, 736
current() static method, 738
handle, native process, methods, 755
methods, 739

Process ID (PID), 740, 742, 755
ProcessIO class, 746

getInputStream() method, 746
getOutputStream() method, 746

put() method, 663, 673

��������� Q
Quantum toolkit, 563

��������� R
Recording modules hashes, 778–780
registerDriver() method, 359–360
Relational database management system

(RDBMs), 348
Remote Interface, 493

remote methods, 494
UnicastRemoteObject class, 495

Remote Method Invocation (RMI)
application, 489, 490

modules, 489
jdojo.rmi.client, 490
jdojo.rmi.common, 489
jdojo.rmi.server, 489

Reserved keys, 681
engine scope bindings, 682

ResultSet
absolute cursor movement, 418
bidirectional scrollable

getHoldability() method, 416
getRow() method, 413
getType() method, 415
last() method, 413
number of rows, 413–414
read-only concurrency, 416
SQLException, 415
throws clause, 415

close() method, 407, 420
concurrency, 403
current row, 402
cursor movement methods, 418–419
DatabaseMetaData interface, 403
deleteRow() method, 426
executeQuery() method, 406
getMetaData() method, 403
getRow() method, 412
getXxx() method, 407–408
holdability, 403

■ INDEX

809

insertRow() method, 421–423
isBeforeFirst(), isFirst(), isLast(), and

isAfterLast() methods, 420
main() method, 412
next() method, 406, 412, 417–418
Person ID, 407
PreparedStatement, 409–411
properties, 402–406
query execution, 413
relative cursor movement, 418–419
ResultSetMetaData (see ResultSetMetaData)
rows and column, structures of, 417
scrollability, 402
SELECT statement, 402
statement

CallableStatement, 427
execute() method, 426
getMoreResults() method, 427
getResultSet() method, 427
getUpdateCount() method, 427

stored procedure (see Stored procedure)
toString() method, 409
updateRow() method, 423–425
usePreparedStatement() method, 412
useStatement() method, 412
wasNull() method, 408
while loop, 407–408

ResultSetMetaData, 408
getColumnCount() method, 435
getMetaData() method, 435
information, 436–437
Person ID, 436

Rhino JavaScript, 652
RMI architecture, 491

exporting, 492
RMI registry, 492
stub, 492

RMI client program, 499
lookup() method, 499
remote object, location, 499

RMI registry, 497, 499, 509
RMI server program, 496

exportObject() method, 497
rebind() method, 497
registering remote object, 497

getRegistry() method, 499
security manager installation, 496

Java policy file, 496
rollback() method, 369
Root element, 119
Root pane, 7
RowSets

advantages, 437–438
class diagram, 439
command, 442

creating, 440–441
database connection properties, 441
disadvantages, 438
disconnected rowset (see CachedRowSet)
execute() method, 443
FilteredRowSet, 456
JdbcRowSet, 445–447
JoinRowSet, 459
RowSetFactory, 440
RowSetUtil class, 444–445
scrollability, 443
types, 438
updating data, 443
WebRowSet, 454–456

RowSetUtil class, 444–445
Runtime image

JIMAGE format, 783
jimage tool, 783

modules, 786
service providers, 788

��������� S
Scalable font, see Vector font
Scene graph, 563
Script context

bindings, 667
components, 667
FileWriter, 668
getAttribute() method, 669
getScopes() method, 670
global scope, 669
interface, 670
setAttribute() method, 668
SimpleScriptContext class, 669

Script engine, 651–652
arithmetic expressions rules, 707
Custom ScriptContext, 678
Default ScriptContext

getContext() methods, 682
setContext() methods, 682

discovering and instantiating, 659
eval() method, 660, 680
Expression class, 708

eval() method, 713
getOperandValue()

method, 713
instance variables, 712
parse() method, 712

helloscript.js, 660–661
implementation

classes, 708
JKScriptEngine class, 713
JKScriptEngineFactory class, 715
JKScript script engine, 717

■ INDEX

810

ScriptEngineManager
key-value pairs, 671
setBindings() method, 675

Scripting language
advantages, 652
compiled scripts, 691
definition, 651
disadvantage, 652
eval() method, 654
getEngineFactories() method, 655
Invocable interface, 684, 686
invokeFunction() method, 685
java in

anonymous class creation, 704
arrays, 700
Calculator interface, 704
clause, 697
global variable, 695
importClass() function, 696
importPackage() function, 696
JavaAdapter object, 704
Java.extend() method, 705
JavaImporter object, 697
lambda expressions, 706–707
method overloading, 698–700
Runnable interface, 706
String object creation, 697–698
type() function, 695
variable declaration, 694

Java Interface (see Java Interface
implementation)

javax.script Package (see Javax.script package)
jsoutput.txt, 683
Nashorn JavaScript, 686
passing parameters

bindings, 665
java code to scripts, 662–663
put() method, 671
scope, 667
script context (see Script context)
ScriptEngineManager, 672, 674–677
scripts to Java code, 664–665

print() function, 654
ScriptEngineFactory class, 657
ScriptEngineManager class, 653

Security manager, process permissions, 758
manage, 758
ManageProcessPermission class, 759–760
query, 758
start, 758

Segment, 257
Separator, 145
setAsciiStream() method, 466
setBinaryStream() method, 466
setBytes() method, 466

setCharacterStream() method, 466
setFilter() method, 456
setJoinType() method, 460
setNull() method, 374
setSavepoint() method, 478
setString() method, 466
Sharded database (SDB), 483
Simple Mail Transfer Protocol (SMTP), 255
Sliding knob, 143–144
Socket, 266
SQL JOIN types, 460
SQL Server database, 356, 361, 396–397, 430
SQL statements

CallableStatement interface (see
CallableStatement interface)

DCL, 377
DDL, 377
DML, 377
interfaces, 377
PreparedStatement interface, 377–378, 386–389
results of executing, 378
Statement interface, 377

date, time, and timestamp escape
sequences, 380–381

default methods, 384
DELETE, 385–386
enquoteIdentifier() method, 384
enquoteLiteral() method, 384
enquoteNCharLiteral() method, 384
execute, 379
execute() method, 380
executeQuery() method, 380
executeUpdate() method, 380
insertPerson() method, 382, 384
isSimpleIdentifier() method, 384
person table, 381–382
string, 379
UPDATE, 384–385

TCL, 377
Stored procedure

CallableStatement interface
DBMS, 389
Derby, 398–401
IN parameter, 390
INOUT parameter, 391
OUT parameter, 391

general syntax for calling, 390
get_person_details, 428

Adaptive Server Anywhere
database, 429

DB2 database, 430
DBMS, 428
Derby database, 431–433
MySQL database, 429
Oracle database, 429, 433–435

■ INDEX

811

SQL Server database, 430
steps to process, 428

Oracle DBMS, 428
T-SQL, 348

Stream Control Transmission Protocol (SCTP), 256
Stream socket, 266
supportsStoredProcedures() method, 389
Swing

character-based user interface, 2
container, 3
containment hierarchy, 3
DnD, 221
event handling (see Event handling)
GUI, 2
HTML, 206
invokeLater() method, 4
JLayer, component decoration, 234

BlueBorderUI class, 234
BlueBorderUI method, 235
eventDispatched() method, 237
event processing task, 237
getView() and getUI() methods, 235
JTextField components, 236, 240
LayerUI class, 238–239
paint() method, 235
processFocusEvent() method, 238
setLayerEventMask method, 237
uninstallUI() method, 237

layout managers (see Layout managers)
MDI applications, 229

DesktopManager interface, 230
JDesktopPane class, 230
JFrame class, 230
JInternalFrame class, 229

mouse event handler, 79
ActionListener interface, 82
adapter class, 81
code implementation, 80
JButton, 79
methods, 79
MouseAdapter, 82
MouseListener interface, 79–80

pluggable look and feel, 215
SDI applications, 229
shaped window, 247
simplest program (see JFrame)
TDI applications, 229
threading mechanisms, 4
threading model (see Threading model)
Toolkit class, 232
translucent windows

initFrame() method, 242
isWindowTranslucencySupported()

method, 241
JFrame, 244

JPanel, 244
per-pixel translucency, 245–247
setOpacity(float opacity) method, 242
translucent and opaque, 241
transparent, 241
WindowTranslucency enum, 241

user interface (UI), 2
utility classes

dimension class, 13
insets class, 14
point class, 13
rectangle class, 14

Swing components
ButtonGroup, 130, 132
Color class, 186
custom dialogs

modalities, 173
modality model, 173–174

dialogs, custom
confirmation, 171
displays current date and time, 171–172
Input, 171
message, 171

JButton (see JButton)
JCheckBox, 130
JComboBox, 132–133
JComponent class (see JComponent class)
jdojo.swing.component module, 85
JEditorPane

EditorKit object, 114
HTML browser, 115
hyperlinkUpdate() method, 115
setPage() method, 115

JFormattedTextField (see JFormattedTextField)
JFrame, 200–201
JLabel

constructors, 96
setDisplayedMnemonic() method, 97
setLabelFor() method, 97
setText() method, 97

JList (see JList)
JOptionPane (see JOptionPane)
JPanel

constructors, 95
FlowLayout, 95
with BorderLayout, 95

JPasswordField
echo character, 107
getText() and getPassword() method, 107
setEchoChar() method, 107

JProgressBar, 142–143
JRadioButton, 130
JScrollBar, 139–140
JScrollPane (see JScrollPane)
JSeparator, 145

■ INDEX

812

JSlider, 143–144
JSpinner (see JSpinner)
JSplitPane, 169–170
JTabbedPane, 169–170
JTable (see JTable)
JTextArea

code implementation, 112
constructors, 111
JScrollPane, 114
methods, 112–113
setWrapStyleWord() method, 113

JTextComponent, 100–102
JTextField (see JTextField class)
JTextPane (see JTextPane class)
JToggleButton, 129
JToolBar

create button, 154
JFrame, 154, 156

JTree (see JTree)
JWindow, 186
list of choices, 129
menus

JMenu, 145
JMenuBar, 145
JMenuItem, 146
nesting, 147
popup, 145, 149
setAccelerator() method, 148
setMnemonic() method, 148
show() method, 148

text components (see Text components)
validation

invalidate() method, 193
isValid() method, 192
pack() method, 193
revalidate() method, 193
setVisible() method, 193

Symbol tables, 651
System.setProperty() method, 359

��������� T
Task progress, 142–143
Telecommunication network (Telnet), 255
Text components

class diagram, 98
document interface, 99
getDocument() method, 100
JEditorPane and JTextPane, 99
JTextArea, 98
mutiline text component, 98
MVC pattern, 99
plain text component, 98

single-line text component, 98
styled text component, 98

Text input, validating
create area code JTextField, 128
setInputVerifier() method, 128
verify() method, 128

Thread class, 706
Threading model, 207

actionPerformed() method, 207
initFrame() method, 208
invokeAndWait() method, 209
invokeLater() and invokeAndWait() methods, 210
isEventDispatchThread() method, 207
JComboBox, 208
JVM, 207
SwingUtilities class, 207, 209
SwingUtilities.invokeLater() method, 209
SwingWorker class, 210–215

Timeline animation, 634
toCachedRowSet() method, 462
Transaction Control Language (TCL) Statement, 377
Transaction isolation levels, JDBC API

ANSI SQL-92 standard, 371
data concurrency, 370
data consistency, 370
dirty read, 370
getTransactionIsolation() method, 372
non-repeatable read, 370
phantom read, 371–372

Transact-SQL (T-SQL), 348
Transmission Control Block (TCB), 269
Transmission control protocol (TCP), 256

client socket, 281
server socket, 280–281

Transport Network Substrate (TNS), 360
Typeface, 191

��������� U
Unidirectional binding, 577
Uniform resource identifier (URI), 292

ASCII value, 293
hierarchical syntax, 293
rules, 294
specifications, 294

Uniform resource locator (URL), 292
content reader, 299
getContent() method, 301
Java objects, 297
TCP/IP protocols, 299
URLConnection class, 302, 306
URLEncoder and URLDecoder classes, 298

Uniform Resource Name (URN), 292
updateXxx() method, 374

Swing components (cont.)

■ INDEX

813

User datagram protocol (UDP), 256
connect() method, 288
DatagramPacket, 282
DatagramSocket class, 282–284
echo server, 284
getData() method, 283
receive() method, 284
multicast sockets, 289
sockets, 288

User interface (UI), 2

��������� V
Validating components

invalidate() method, 193
isValid() method, 192

pack() method, 193
revalidate() method, 193
setVisible() method, 193

Vector font, 191

��������� W
Web engine, 563
WebRowSet, 454–456
Wide area network

(WAN), 254
Word processor, 120, 125

��������� X, Y, Z
XADataSource interface, 483

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Swing
	What Is Swing?
	The Simplest Swing Program
	Components of a JFrame
	Adding Components to a JFrame
	Some Utility Classes
	The Point Class
	The Dimension Class
	The Insets Class
	The Rectangle Class

	Layout Managers
	FlowLayout
	BorderLayout
	CardLayout
	BoxLayout
	GridLayout
	GridBagLayout
	The gridx and gridy Constraints
	Case #1
	Case #2
	Case #3
	Case #4
	Example #1
	Example #2

	The gridwidth and gridheight Constraints
	The fill Constraint
	The ipadx and ipady Constraints
	The insets Constraint
	The anchor Constraint
	The weightx and weighty Constraints

	SpringLayout
	GroupLayout
	The null Layout Manager

	Creating a Reusable JFrame
	Event Handling
	Handling Mouse Events
	Summary

	Chapter 2: Swing Components
	What Is a Swing Component?
	JButton
	JPanel
	JLabel
	Text Components
	JTextComponent
	JTextField
	JPasswordField
	JFormattedTextField
	JTextArea
	JEditorPane
	JTextPane

	Validating Text Input
	Making Choices
	JSpinner
	JScrollBar
	JScrollPane
	JProgressBar
	JSlider
	JSeparator
	Menus
	JToolBar
	JToolBar Meets the Action Interface
	JTable
	JTree
	JTabbedPane and JSplitPane
	Custom Dialogs
	Standard Dialogs
	File and Color Choosers
	JFileChooser
	JColorChooser

	JWindow
	Working with Colors
	Working with Borders
	Working with Fonts
	Validating Components
	Painting Components and Drawing Shapes
	Immediate Painting
	Double Buffering
	JFrame Revisited
	Summary

	Chapter 3: Advanced Swing
	Using HTML in Swing Components
	Threading Model in Swing
	Pluggable Look and Feel
	Drag and Drop
	Multiple Document Interface Application
	The Toolkit Class
	Decorating Components Using JLayer
	Translucent Windows
	Shaped Window
	Summary

	Chapter 4: Network Programming
	What Is Network Programming?
	Network Protocol Suite
	IP Addressing Scheme
	IPv4 Addressing Scheme
	IPv6 Addressing Scheme

	Special IP Addresses
	Loopback IP Address
	Unicast IP Address
	Multicast IP Address
	Anycast IP Address
	Broadcast IP Address
	Unspecified IP Address

	Port Numbers
	Socket API and Client-Server Paradigm
	The Socket Primitive
	The Bind Primitive
	The Listen Primitive
	The Accept Primitive
	The Connect Primitive
	The Send/Sendto Primitive
	The Receive/ReceiveFrom Primitive
	The Close Primitive

	Representing a Machine Address
	Representing a Socket Address
	Creating a TCP Server Socket
	Creating a TCP Client Socket
	Putting a TCP Server and Clients Together
	Working with UDP Sockets
	Creating a UDP Echo Server
	A Connected UDP Socket
	UDP Multicast Sockets
	URI, URL, and URN
	URI and URL as Java Objects
	Accessing the Contents of a URL
	Non-Blocking Socket Programming
	Socket Security Permissions
	Asynchronous Socket Channels
	Setting Up an Asynchronous Server Socket Channel
	Setting Up an Asynchronous Client Socket Channel
	Putting the Server and the Client Together
	Running the Server Application
	Running the Client Applications

	Datagram-Oriented Socket Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Binding the Datagram Channel

	Sending Datagrams
	Close the Channel

	Multicasting Using Datagram Channels
	Creating the Datagram Channel
	Setting the Channel Options
	Binding the Channel
	Setting the Multicast Network Interface
	Joining the Multicast Group
	Receiving a Message
	Closing the Channel

	Further Reading
	Summary

	Chapter 5: JDBC API
	What Is the JDBC API?
	System Requirements
	Types of JDBC Drivers
	JDBC Native API Driver
	JDBC-Net Driver
	JDBC Driver

	A Brief Overview of Apache Derby
	Downloading Derby
	Installing Derby
	Derby Installation Files
	Configuring Derby
	Running the Derby Server
	Using Command Prompts

	Creating a Database Table
	Oracle Database
	Adaptive Server Anywhere Database
	SQL Server Database
	DB2 Database
	MySQL Database
	Apache Derby Database

	Connecting to a Database
	Obtaining the JDBC Driver
	Setting Up the Module Path
	Registering a JDBC Driver
	Setting the jdbc.drivers System Property
	Loading the Driver Class
	Using the registerDriver() Method

	Constructing a Connection URL
	Oracle Database
	Adaptive Server Anywhere Database
	SQL Server Database
	MySQL Database
	DB2 Database
	Apache Derby Database

	Establishing the Database Connection

	Setting the Auto-Commit Mode
	Committing and Rolling Back Transactions
	Transaction Isolation Level
	Dirty Read
	Non-Repeatable Read
	Phantom Read

	JDBC-Types-to-Java-Types Mapping
	Knowing About the Database
	Executing SQL Statements
	Results of Executing a SQL Statement
	Using the Statement Interface
	Using the PreparedStatement Interface
	CallableStatement Interface
	Using IN Parameters
	Using OUT Parameters
	Using INOUT Parameters
	Return Parameter Is OUT Parameter Type
	Executing a CallableStatement
	Example #1
	Example #2
	Example #3
	Example #4

	Adaptive Server Anywhere Database
	MySQL Database
	Oracle Database
	SQL Server Database
	DB2 Database
	Derby Database

	Processing Result Sets
	What Is a ResultSet?
	Getting a ResultSet
	Getting the Number of Rows in a ResultSet
	Scrolling Through All Rows
	Executing a Separate Query
	Using a Bidirectional Scrollable ResultSet

	Bidirectional Scrollable ResultSets
	Scrolling Through Rows of a ResultSet
	Knowing the Cursor Position in a ResultSet
	Closing a ResultSet

	Making Changes to a ResultSet
	Inserting a Row Using a ResultSet
	Updating a Row Using a ResultSet
	Deleting a Row Using a ResultSet

	Handling Multiple Results from a Statement
	Getting a Result Set from a Stored Procedure
	MySQL Database
	Adaptive Server Anywhere Database
	Oracle Database
	SQL Server Database
	DB2 Database
	Apache Derby Database

	ResultSetMetaData
	Using RowSets
	Creating a RowSet
	Setting RowSet Connection Properties
	Setting a Command for a RowSet
	Populating a RowSet with Data
	Scrolling Through Rows of a RowSet
	Updating Data in a RowSet
	The RowSetUtil Class
	JdbcRowSet
	CachedRowSet
	WebRowSet
	FilteredRowSet
	JoinRowSet

	Working with a Large Object (LOB)
	Retrieving LOB Data
	Creating a LOB Data

	Batch Updates
	Savepoints in a Transaction
	Using a DataSource
	Retrieving SQL Warnings
	Enabling JDBC Trace
	Summary

	Chapter 6: Java Remote Method Invocation
	What Is Java Remote Method Invocation?
	The RMI Architecture
	Developing an RMI Application
	Writing the Remote Interface
	Implementing the Remote Interface
	Writing the RMI Server Program
	Installing the Security Manager
	Creating and Exporting the Remote Object
	Registering the Remote Object

	Writing the RMI Client Program

	Separating the Server and Client Code
	Generating Stub and Skeleton
	Running the RMI Application
	Running the RMI Registry
	Running the RMI Server
	Running an RMI Client Program

	Troubleshooting an RMI Application
	java.rmi.StubNotFoundException
	java.rmi.server.ExportException
	java.security.AccessControlException
	java.lang.ClassNotFoundException

	Debugging an RMI Application
	Dynamic Class Downloading
	Garbage Collection of Remote Objects
	Summary

	Chapter 7: Java Native Interface
	What Is the Java Native Interface?
	System Requirements
	Getting Started with the JNI
	Writing the Java Program
	Compiling the Java Program
	Creating the C/C++ Header File
	Writing the C/C++ Program
	Creating a Shared Library
	Creating a Shared Library on Windows
	Installing MinGW C/C++ Compiler
	Using the g++ Command

	Creating a Shared Library on Linux
	Installing MinGW C/C++ Compiler
	Using the g++ Command

	Running the Java Program

	Native Function Naming Rules
	Data Type Mapping
	Using JNI Functions in C/C++
	Working with Strings
	Working with Arrays
	Accessing Java Objects in Native Code
	Getting a Class Reference
	Accessing Fields and Methods of a Java Object/Class
	Creating Java Objects

	Exception Handling
	Handle the Exception in Native Code
	Handling the Exception in Java Code
	Throwing a New Exception from Native Code

	Creating an Instance of the JVM
	Synchronization in Native Code
	Summary

	Chapter 8: Introduction to JavaFX
	What Is JavaFX?
	History of JavaFX
	System Requirements
	The JavaFX Modules
	JavaFX Source Code
	JavaFX API Documentation
	Your First JavaFX Application
	Creating the HelloJavaFX Class
	Overriding the start() Method
	Showing the Stage
	Launching the Application
	Adding the main() Method
	Adding a Scene to the Stage

	Improving Your First JavaFX Application
	The Lifecycle of a JavaFX Application
	Terminating a JavaFX Application
	What Are Properties and Bindings?
	Properties and Bindings in JavaFX
	Using Properties in JavaFX Beans
	Handling Property Invalidation Events
	Handling Property Change Events
	Property Bindings in JavaFX

	Observable Collections
	Event Handling
	Event Processing Mechanism
	Event Target Selection
	Event Route Construction
	Event Route Traversal
	Event Capture Phase
	Event Bubbling Phase

	Creating Event Filters and Handlers
	Registering Event Filters and Handlers

	Layout Panes
	Controls
	Using 2D Shapes
	Drawing on a Canvas
	Applying Effects
	Applying Transformations
	Animation
	Using the Timeline Animation

	FXML
	Printing
	Summary

	Chapter 9: Scripting in Java
	What Is Scripting in Java?
	Executing Your First Script
	Using Other Scripting Languages
	Exploring the javax.script Package
	The ScriptEngine and ScriptEngineFactory Interfaces
	The AbstractScriptEngine Class
	The ScriptEngineManager Class
	The Compilable Interface and the CompiledScript Class
	The Invocable Interface
	The Bindings Interface and the SimpleBindings Class
	The ScriptContext Interface and the SimpleScriptContext Class
	The ScriptException Class
	Discovering and Instantiating Script Engines

	Executing Scripts
	Passing Parameters
	Passing Parameters from Java Code to Scripts
	Passing Parameters from Scripts to Java Code

	Advanced Parameter Passing Techniques
	Bindings
	Scope
	Defining the Script Context
	Putting Them Together

	Using a Custom ScriptContext
	Return Value of the eval() Method
	Reserved Keys for Engine Scope Bindings
	Changing the Default ScriptContext
	Sending Script Output to a File
	Invoking Procedures in Scripts
	Implementing Java Interfaces in Scripts
	Using Compiled Scripts
	Using Java in Scripting Languages
	Declaring Variables
	Importing Java Classes
	Using the Packages Global Object
	Using the Java Global Object
	Using the importPackage() and importClass() Functions
	Using the JavaImporter Object

	Creating and Using Java Objects
	Using Overloaded Java Methods
	Using Java Arrays
	Extending Java Classes and Implementing Interfaces
	Using a Script Object
	Using the Anonymous Class-Like Syntax
	Using JavaAdapter Object and Java.extend() Function
	Using a JavaScript Function

	Using Lambda Expressions

	Implementing a Script Engine
	The Expression Class
	The Instance Variables
	The Constructor
	The parse() Method
	The getOperandValue() Method
	The eval() Method

	The JKScriptEngine Class
	The JKScriptEngineFactory Class
	Packaging the JKScript Files
	Using the JKScript Script Engine

	The jrunscript Command-Line Shell
	The Syntax
	Execution Modes of the Shell
	One-Liner Mode
	Batch Mode
	Interactive Mode

	Listing Available Script Engines
	Adding a Script Engine to the Shell
	Using Other Script Engines
	Passing Arguments to Scripts

	The jjs Command-Line Tool
	JavaFX in Nashorn
	Summary

	Chapter 10: Process API
	What Is the Process API?
	Knowing the Runtime Environment
	The Current Process
	Querying Process State
	Comparing Processes
	Creating a Process
	Obtaining a Process Handle
	Terminating Processes
	Managing Process Permissions
	Summary

	Chapter 11: Packaging Modules
	The JAR Format
	What Is a Multi-Release JAR?
	Creating Multi-Release JARs
	Rules for Multi-Release JARs
	Modular Multi-Release JARs
	Modular Multi-Release JARs and Encapsulation
	Multi-Release JARs and Boot Loader
	Same Versioned Files

	Multi-Release JARs and JAR URL
	Multi-Release Manifest Attribute

	The JMOD Format
	Using the jmod Tool
	Creating JMOD Files
	Extracting JMOD File Contents
	Listing JMOD File Contents
	Describing a JMOD File
	Recording Modules Hashes

	Summary

	Chapter 12: Custom Runtime Images
	What Is a Custom Runtime Image?
	No More rt.jar
	Creating Custom Runtime Images
	Binding Services
	Using Plugins with the jlink Tool
	The jimage Tool
	Summary

	Index

