Java EE Development with Eclipse
Second Edition

Develop, debug, test, and troubleshoot Java EE 7 applications
rapidly with Eclipse

PACKT

ww.allitebooks.co

http://www.allitebooks.org

Java EE Development
with Eclipse
Second Edition

Develop, debug, test, and troubleshoot Java EE 7
applications rapidly with Eclipse

Ram Kulkarni

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Java EE Development with Eclipse
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012
Second edition: September 2015

Production reference: 1240915

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-534-9

www . packtpub.com

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Ram Kulkarni

Reviewers
Aristides Villarreal Bravo

Jeff Maury
Phil Wilkins

Commissioning Editor
Neil Alexander

Acquisition Editor
Kevin Colaco

Content Development Editor
Nikhil Potdukhe

Technical Editor
Tanmayee Patil

Copy Editors
Tani Kothari

Kausambhi Majumdar
Alpha Singh

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Ram Kulkarni has more than two decades of experience in developing software.
He has architected and developed many enterprise web applications, client-server
and desktop applications, application servers, IDE, and mobile applications. Also,
he is the author of Eclipse 4 RCP Development How-to published by Packt Publishing.
He blogs at ramkulkarni.com.

I would like to thank Kevin Colaco and Nikhil Potdukhe of Packt
Publishing for giving me the opportunity to write this book and
helping me decide the content and format.

Writing this book has been a long process, and it would not have been
possible without the support and patience of my family.

I would like to thank my parents, my wife, Vandana, and son, Akash,
for their continuous love and support. This book is dedicated to
Vandana and Akash.

[vww allitebooks.cond

ramkulkarni.com
http://www.allitebooks.org

About the Reviewers

Aristides Villarreal Bravo is a Java developer and a member of the NetBeans
Dream Team and Java User Groups leaders. He lives in Panama.

He has organized and participated in various national as well as international
conferences and seminars related to Java, JavaEE, NetBeans, NetBeans Platform,
free software, and mobile devices. He has been a writer of tutorials and blogs on
Java, NetBeans, and web developers.

He has participated in several interviews on sites such as NetBeans, NetBeans
DZone, and javaHispano. Also, he has been a developer of plugins for NetBeans.
He has written technical reviews of many books on PrimeFaces, that includes
Primefaces BluePrints, Packt Publising.

He is also the CEO of Javscaz Software Developers.

I would like to dedicate this to Oris in the sky.

[vww allitebooks.cond

http://www.allitebooks.org

Jeff Maury is currently working as the technical lead of the Java team at SysperTec
Communication, a French ISV that offers mainframe integration tools.

Prior to SysperTec Communication, in 1996, he was a cofounder of a French ISV
called SCORT, a precursor to the application server concept that offered J2EE-based
integration tools.

He started his career in 1988 at Marben Products, a French integration company
that specialized in telecommunication protocols. At Marben Products, he started
as a software developer and left as an X.400 team technical lead and Internet
division strategist.

I would like to dedicate my work to Jean-Pierre ANSART,
my mentor, and thank my wife, Julia, for her patience, and my
three sons, Robinson, Paul, and Ugo.

Phil Wilkins has spent over 25 years in the software industry working for both
multinationals and software startups. He started out as a developer and worked
his way up through technical and developmental leadership roles, primarily in
Java-based environments. Currently, he is working as an enterprise technical
architect in the IT group of a global optical healthcare manufacturer and retailer
using Oracle middleware, cloud, and Red Hat JBoss technologies.

Outside his work commitments, he has contributed his technical capabilities to
supporting others in a wide range of activities that include developing community
websites, providing input and support to people authoring books, developing
software ideas and businesses, and reviewing a range of technical books for

Packt and other publishers. Also, he is a blogger and a participant in the Oracle
middleware community.

When not immersed in work and technology, he spends his downtime pursuing
his passion for music and with his wife and two boys.

I'd like to take this opportunity to thank my wife, Catherine, and

our two sons, Christopher and Aaron, for their tolerance for the
innumerable hours that I've spent in front of a computer contributing
to activities for both my employer and other IT-related activities that
I've supported over the years.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a]PA(:KT

https://www2.packtpub.com/books/subscription/packtlib

(C]

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

<.

Preface

Chapter 1: Introducing JEE and Eclipse
Java Enterprise Edition (JEE)

The presentation layer
Java Servlet
Java Server Pages
Java Server Faces

The business layer
Enterprise Java Beans

The enterprise integration layer
Java Database Connectivity (JDBC)
The Java Persistent API (JPA)
Java Connector Architecture (JCA)
Web services

Eclipse IDE
Workspace
Plugin
Editors and views
Perspective
Eclipse preferences

Installing products

Installing Eclipse (Version 4.4)

Installing Tomcat

Installing the GlassFish server

Installing MySQL
Installing MySQL on Windows
Installing MySQL on Mac OS X
Installing MySQL on Linux
Creating MySQL users

Summary

[U U I Q. §
OO W 200000~ NAEAPRWVCWWW ==

N oD
= oo

[il

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 2: Creating a Simple JEE Web Application 23
Configuring Tomcat in Eclipse 24
Java Server Pages 29

Creating a dynamic web project 29
Creating JSP 32
Running JSP in Tomcat 39
Using JavaBeans in JSP 42
Using JSTL 47
Implementing login application using Java Servlet 51
Creating WAR 57
Java Server Faces 58
Using Maven for project management 64
Maven views and preferences in Eclipse JEE 66
Creating a Maven project 68
Maven Archetype 69
Exploring the POM 70
Adding Maven dependencies 72
The Maven project structure 75
Creating WAR using Maven 76
Summary 77

Chapter 3: Source Control Management in Eclipse 79

The Eclipse Subversion plugin 79
Installing the Eclipse Subversion plugin 80
Adding a project to an SVN repository 82
Committing changes to an SVN repository 86
Synchronizing with an SVN repository 87
Checking out a project from SVN 88

The Eclipse Git plugin 89
Adding a project to Git 90
Committing files in a Git repository 92
Viewing a file difference after modifications 93
Creating a new branch 94
Committing a project to a remote repository 97
Pulling changes from a remote repository 99
Cloning a remote repository 101

Summary 103

Chapter 4: Creating a JEE Database Application 105
Creating a database schema 106

The script for creating tables and relationships 113
Creating tables in MySQL 115

Lii]

Table of Contents

Creating a database application using JDBC 116
Creating a project and setting up Maven dependencies 116
Creating JavaBeans for data storage 119
Creating JSP to add a course 121
JDBC concepts 123

Creating a database connection 124
Executing SQL statements 125
Handling transactions 128
Using the JDBC database connection pool 129
Saving a course in a database table using JDBC 133
Getting courses from the database table using JDBC 137
Completing the add Course functionality 141
Using Eclipse Data Source Explorer 143

Creating a database application using JPA 147
Creating the user interface for adding a course using JSF 147
JPA concepts 153

Entity 153
EntityManager 154
EntityManagerFactory 154
Creating a JPA application 154
Creating a new MySQL schema 155
Setting up a Maven dependency for JPA 156
Converting a project into a JPA project 157
Creating entities 160
Configuring entity relationships 163
Configuring a many-to-one relationship 164
Configuring a many-to-many relationship 166
Creating database tables from entities 170
Using JPA APIs to manage data 173
Wiring the user interface with a JPA service class 178
Summary 181
Chapter 5: Unit Testing 183

JUnit 184

Creating and executing unit tests using Eclipse EE 185
Creating a unit test case 187
Running a unit test case 190

Running a unit test case using Maven 191

Mocking external dependencies for unit tests 192
Using Mockito 193

Calculating test coverage 198

Summary 202

[iii]

Table of Contents

Chapter 6: Debugging a JEE Application 203
Debugging a remote Java application 204
Debugging a web application using Tomcat in Eclipse EE 205

Starting Tomcat in debug mode 205
Setting breakpoints 206
Running an application in debug mode 208
Performing step operations and inspecting variables 210
Inspecting variable values 212
Debugging an application in an externally configured Tomcat 215
Using Debugger to know the status of a program execution 217
Summary 220

Chapter 7: Creating JEE Applications with EJB 221

Types of EJB 222

Session bean 222
Stateful session bean 222
Stateless session bean 222
Singleton session bean 223
Accessing session bean from the client 223
Creating a no-interface session 223
Accessing session bean using dependency injection 224
Creating session bean using the local business interface 225
Accessing session bean using the JNDI lookup 226
Creating session bean using a remote business interface 228
Accessing a remote session bean 229
Configuring the GlassFish server in Eclipse 230
Creating the CourseManagement application using EJB 233
Creating an EJB project in Eclipse 233
Configuring datasource in GlassFish 4 237
Configuring JPA 240
Creating a JPA entity 245
Creating stateless EJB 247
Creating JSF and managed bean 252
Running the example 255
Creating EAR for deployment outside Eclipse 258
Creating a JEE project using Maven 259
Summary 265

Chapter 8: Creating Web Applications with Spring MVC 267
Dependency injection 268
Dependency injection in Spring 269

Component scopes 273
Installing the Spring Tool Suite 276
Creating a Spring MVC application 277

[iv]

Table of Contents

Creating a Spring project 278
Understanding files created by the Spring MVC project template 279
Spring MVC application using JDBC 283
Configuring datasource 283
Using the Spring JDBCTemplate class 286
Creating the Spring MVC Controller 290
Calling Spring MVC Controller 290
Mapping data using @ModelAttribute 291
Using parameters in @RequestMapping 294
Using the Spring interceptor 295
Spring MVC application using JPA 299
Configuring JPA 299
Creating the Course entity 302
Creating Course DAO and Controller 305
Creating the Course list view 306
Summary 307
Chapter 9: Creating Web Services 309
JAXB 310
JAXB example 311
REST web services 317
Creating RESTful web services using Jersey 318
Implementing the REST GET request 321
Testing the REST GET request in browser 324
Creating a Java client for the REST GET web service 326
Implementing the REST POST request 329
Writing a Java client for the REST POST web service 330
Invoking the POST REST web service from JavaScript 332
Creating the REST web service with Form POST 333
Creating a Java client for the form-encoded REST web service 334
SOAP web services 335
SOAP 336
WSDL 336
uDDI 338
Developing web services in Java 338
Creating a web service implementation class 340
Using the JAX-WS reference implementation (GlassFish Metro) 342
Inspecting WSDL 343
Implementing a web service using an interface 347
Consuming a web service using JAX-WS 348
Specifying an argument name in a web service operation 351
Inspecting SOAP messages 351
Handling interfaces in an RPC-style web service 353
Handling exceptions 355

Summary 355

[v]

Table of Contents

Chapter 10: Asynchronous Programming with JMS 357
Steps to send and receive messages using JMS 358
Creating queues and topics in GlassFish 361
Creating a JEE project for a JMS application 363
Creating a JMS application using JSP and JSP bean 365
Executing addCourse.jsp 368
Implementing a JMS queue sender class 368
Implementing a JMS queue receiver class 371
Adding multiple queue listeners 374
Implementing the JMS topic publisher 376
Implementing the JMS topic subscriber 378
Creating a JMS application using JSF and managed beans 381
Consuming JMS messages using MDB 387
Summary 390
Chapter 11: Java CPU Profiling and Memory Tracking 391
Creating a sample Java project for profiling 392
Profiling a Java application 394
Identifying resource contention 398
Memory tracking 403
Eclipse plugins for profiling memory 407
Summary 410

Index 411

[vil

Preface

Java 2 Enterprise Edition (J2EE) has been used to develop enterprise applications
for many years. It provides a standard technique to implement the many aspects
of an enterprise application, such as handling web requests, accessing database,
connecting to other enterprise systems, and implementing web services. Over the
years, it has evolved and made enterprise application development easier than
before. Its name has changed as well, from J2EE to JEE, after the J2EE version 1.4.
Currently, it is in version 7.

Eclipse is a popular Integrated Development Environment (IDE) for developing
Java applications. It has a version specific to the JEE development too, which makes
it faster to write code and easier to deploy JEE applications on a server. It provides
excellent debugging and unit testing support. Eclipse has a modular architecture,
and many plugins are available today to extend its functionality for performing
many different tasks.

This book provides you with all the information that you will need to use Eclipse
to develop, deploy, debug, and test JEE applications. The focus of this book is to
provide you with practical examples of how to develop applications using JEE
and Eclipse. The scope of this book is not limited to JEE technologies, but covers
other technologies used in the different phases of application development as well,
such as source control, unit testing, and profiling.

JEE is a collection of many technologies and specifications. Some of the technologies
are so vast that separate books will have to be written on them and many have
been already written. This book takes the approach of providing you with a brief
introduction to each technology in JEE and provides links for detailed information.
Then it moves on to develop sample applications using specific technologies under
discussion and explains the finer aspects of the technologies in the context of the
sample applications.

[vii]

Preface

This book could be useful to you if you are new to JEE and want to get started with
developing JEE applications quickly. You will also find this book useful if you are
familiar with JEE but looking for hands-on approach to use some of the technologies
in JEE.

What this book covers

Chapter 1, Introducing JEE and Eclipse, explains in brief the different technologies in
JEE and where they fit in a typical multitier JEE application. This chapter describes
installing Eclipse JEE, Tomcat, GlassFish, and MySQL, which are used to develop
sample applications in the later chapters.

Chapter 2, Creating a Simple [EE Web Application, describes the development of web
applications using JSP, Servlet, JSTL, and JSF. It also explains how to use Maven for
project management.

Chapter 3, Source Control Management in Eclipse, explains how to use the SVN and Git
plugins of Eclipse for source code management.

Chapter 4, Creating a JEE Database Application, explains the creation of database
applications using JDBC and JPA. You will learn how to execute SQL statements
directly using JDBC, map Java classes to database tables, and set relationships
between classes using the JPA and database connection pool.

Chapter 5, Unit Testing, describes how to write and run unit tests for Java applications,
mock external dependencies in unit tests, and calculate the code coverage.

Chapter 6, Debugging a JEE Application, shows the techniques used to debug JEE
applications and covers the debugging support of Eclipse.

Chapter 7, Creating JEE Applications with E]B, describes the use of EJBs to code
business logic in the JEE applications. Also, it explains how to connect to remote
EJBs using JNDI and inject E]Bs into container-managed beans.

Chapter 8, Creating Web Applications with Spring MVC, describes the creation of web
applications using Spring MVC and how some of the JEE technologies can be used
in a Spring MVC application.

Chapter 9, Creating Web Services, explains the creation of SOAP-based and RESTful
web services in JEE applications. You will learn how to consume these web services
from JEE applications as well.

[viii]

Preface

Chapter 10, Asynchronous Programming with JMS, shows explains how to write
applications to process messages asynchronously. It describes how to program
queues and topics of messaging systems using JMS and MDBs.

Chapter 11, Java CPU Profiling and Memory Tracking, describes the techniques for
profiling CPU and memory in Java applications to find performance bottlenecks.

What you need for this book

You will need JDK 1.7 or later, Eclipse JEE 4.4 or later, Tomcat 7 or later, GlassFish
Server 4 or later, and MySQL Community Server 5.6 or later.

Who this book is for

If you are a Java developer who has little or no experience in JEE application
development, or you have an experience in JEE technology but are looking for tips
to simplify and accelerate your development process, then this book is for you.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

<body>
<h2>Login:</h2>
<form method="post">
User Name: <input type="text" name="userName">

Password: <input type="password" name="password">

<button type="submit" name="submit">Submit</button>
<button type="reset">Reset</buttons>
</form>
</body>

[ix]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

try {
Thread.sleep(5000) ;
} catch (InterruptedException e) {}

Any command-line input or output is written as follows:

>catalina.bat jpda start

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To set a
breakpoint for an exception, select Run | Java Breakpoint Exception and select the
Exception class from the list."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[x]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xi]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introducing JEE and Eclipse

Java Enterprise Edition (JEE, which was earlier called J2EE) has been around for
many years now. It is a very robust platform for developing enterprise applications.
J2EE was first released in 1999, but underwent major changes in version 5, in 2006.
Since version 5, it has been renamed Java Enterprise Edition (JEE). Recent versions
of JEE has made developing a multi-tier distributed application a lot easier. J2EE had
focused on core services and had left the tasks that made application development
easier to external frameworks, for example, MVC and persistent frameworks. But JEE
has brought many of these frameworks in the core services. Along with the support
for annotations, these services simplify application development to a large extent.

Any runtime technology is not good without great development tools. Integrated
Development Environment (IDE) plays a major part in developing applications faster,
and Eclipse provides just that for JEE. Not only do you get a good editing support in
Eclipse, but you also get support for build, unit testing, version control, and many
other tasks important in different phases of software application development.

The goal of this book is to show how you can efficiently develop JEE application
using Eclipse by using many of its features during different phases of the application
development. But first, the following is a brief introduction to JEE and Eclipse.

Java Enterprise Edition (JEE)

JEE is a collection of many different specifications intended to perform specific tasks.
These specifications are defined by the Java Community Process (https://www.jcp.
org) program. Currently, JEE is in version 7. However, different specifications of JEE
are at their own different versions.

[11]

https://www.jcp.org
https://www.jcp.org

Introducing JEE and Eclipse

JEE specifications can be broadly classified in the following groups:

* Presentation layer

* Business layer

* Enterprise integration layer
Note that JEE specification does not necessarily classify APIs in such broad groups,
but such classification could help in better understanding the purpose of the different

standards and APIs in JEE. Before we see APIs in each of these categories, let's
understand a typical JEE web application flow where each of these layers fits in.

Database

client-1 —_— 1
T~ =
Wi
Internet E S.""J'er
client-n

1l

Figure 1.1 A typical JEE web application flow

Requests start from client. Client can be any application requesting services from

a remote application - for example, it could be a browser or a desktop application.
The request is first received by Web Server at the destination. Examples of Web
Servers are Apache Web Server, IIS, Nginx, and so on. If it is a request for static
content, then it is served by the web server(s). However, dynamic request typically
requires an Application Server to process it. JEE servers are such Application
Servers that handle the dynamic requests. Most JEE specification APIs execute in the
application server. Examples of JEE application servers are WebLogic, WebSphere,
GlassFish, JBoss, and so on.

Most non-trivial JEE applications access external systems such as database or
Enterprise Integration Server (EIS) for data and process it. Response is returned
from the application server to the web server and then to the clients.

The following is the brief description of each of the JEE specifications in different
layers of applications that we saw previously. We will see how to use these APIs
in more detail in subsequent chapters. However, note that the following is not the
exhaustive list of all the specifications in JEE. We will see the most commonly used
specifications here. For the exhaustive list, please visit http://www.oracle.com/
technetwork/java/javaee/tech/index.html.

[2]

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Chapter 1

The presentation layer

JEE specifications or technologies in this group receive the request from web server
and send back the response, typically, in an HTML format. However, it is also possible
to return only the data from the presentation layer, for example, in JavaScript Object
Notation (JSON) or eXtensible Markup Language (XML) format, which could be
consumed by AJAX (Asynchronous JavaScript and XML) calls to update only part of
the page, instead of rendering the entire HTML page. Classes in the presentation layer
are mostly executed in a Web Container - it is a part of the application server that
handles web requests. Tomcat is an example of a popular Web Container.

Now, we will take a look at some of the specifications in this group.

Java Serviet

Java servlets are server side modules, typically used to process a request and send
back response in the web applications. Servlets are useful for handling requests that
do not generate large HTML markup responses. They are typically used as controllers
in MVC (Model View Controller) frameworks, for forwarding/redirecting requests or
for generating non-HTML responses, such as PDFs. To generate an HTML response
from Servlet, you need to embed the HTML code (as Java String) in the Java code.
Therefore, it is not the most convenient option for generating large HTML response.
JEE 7 contains Servlet API 3.1.

Java Server Pages

Like Servlets, JSPs are also server side modules used to process the web requests.
JSPs (Java Server Pages) are great for handling requests that generate large HTML
markup responses. In JSP pages, Java code or JSP tags can be mixed with other
HTML code, such as HTML tags, JavaScript, and CSS. Since Java code is embedded
in the larger HTML code, it is easier (than Servlet) to generate an HTML response
from the JSP pages. JSP specification 2.3 is included in JEE 7.

Java Server Faces

Java Server Faces makes creating user interface on the server side modular by
incorporating the MVC design pattern in its implementation. It also provides easy

to use tags for common user interface controls that can save states across multiple
request-response exchanges between the client and server. For example, if you have
a page that posts form data from a browser, you can have JSF save that data in a
Java Bean so that it can be used subsequently in the response to the same or different
request. JSF also makes it easier to handle Ul events on the server side and specify
page navigation in an application.

[31]

Introducing JEE and Eclipse

You write the Java Server Faces (JSF) code in JSP, using custom JSP tags created for
JSF. Java Server Faces API 2.2 is part of JEE 7.

The business layer

The business layer is where you typically write code to handle the business logic

of your application. The request to this layer could come from the presentation
layer, directly from the client application, or from the middle layer consisting of,
but not limited to, web services. Classes in this layer are executed in the application
container part of JEE Server. GlassFish and WebSphere are examples of web
container plus application container.

Let us take a tour of some of the specifications in this group.

Enterprise Java Beans

Enterprise Java Beans (E]JBs) are the Java classes where you can write your business
logic. Though it is not a strict requirement to use E]Bs to write business logic,

they do provide many of the services that are essential in enterprise applications.
These services are security, transaction management, component lookup, object
pooling, and so on. You can have EJBs distributed across multiple servers and let
the application container (also called E]JB container) take care of component look

up (searching component) and component pooling (useful for scalability). This can
improve scalability of the application.

EJBs are of two types:

* Session beans: Session beans are called directly by clients or middle tier objects

* Message driven beans: Message driven beans are called in response to Java
Messaging Service (JSM) events

JMS and message driven beans can be used for handling asynchronous requests.
In a typical asynchronous request processing scenario, the client puts a request in
a messaging queue or a topic and does not wait for immediate response. Server
application gets the request message, either directly using JMS APIs or by using
MDB. It processes the request and may put response in a different queue or topic
to which the client would listen and get the response.

Java EE 7 contains E]B specification 3.2 and JMS specification 2.0.

[4]

Chapter 1

The enterprise integration layer

APIs in this layer are used for interacting with external (to JEE application) systems
in Enterprise. Most applications would need to access database, and APIs to access
it fall in this group.

Java Database Connectivity (JDBC)

JDBC is a specification to access relational database in a common and consistent way.
Using JDBC you can execute SQL statements and get results on different databases
using common APIs. Database specific driver sits between the JDBC call and the
database, which translates JDBC calls to database vendor specific API calls. JDBC can
be used in both the Presentation and Business layers directly, but it is recommended to
separate the database calls from both Ul and the business code. Typically, this is done
by creating Data Access Objects (DAO) which encapsulate logic to access the database.

JEE 7 contains JDBC specification 4.0.

The Java Persistent API (JPA)

One of the problems of using JDBC APIs directly is that you have to constantly map
the data between Java Objects and the data in columns of rows in relational database.
Frameworks such as Hibernate and Spring have made this process simpler by using
a concept known as Object Relationship Mapping (ORM). ORM is incorporated in
JEE in the form of Java Persistent API (JPA). JPA gives you the flexibility to map the
objects to the tables in relational database and execute the queries with or without
using Structured Query Language (SQL). Though when used in the content of JPA,
query language is called Java Persistence Query Language. JPA specification 2.1 is a
part of JEE.

Java Connector Architecture (JCA)

JCA APIs can be used in JEE applications for communicating with Enterprise
Integration Systems, such as SAP, Salesforce, and so on. Just like you have database
drivers to broker communication between JDBC APIs and relational database, you
have JCA adapters between JCA calls and EIS. Most EIS applications now provide
REST APIs, which are lightweight and easy to use, so REST could replace JCA in
some cases. However, if you use JCA, you get transaction and pooling support from
JEE application server.

[51]

Introducing JEE and Eclipse

Web services

Web services are remote application components that expose self-contained APIs.
Broadly, web services can be classified based on the following two standards:

* Simple Object Access Protocol (SOAP)
* Representational State Transfer (REST)

Web services can play a major role in integrating disparate applications, because they
are standard based and platform independent.

JEE provides many specifications to simplify development and consumption of both
types of web services, for example, JAX-WS (Java API for XML - web services) and
JAX-RS (Java API for RESTful web services).

The preceding are just some of the specifications that are part of JEE. There are
many other independent specifications, such as web services, and many enabling
specifications, such as dependency injection and concurrency utilities, that we will
see in subsequent chapters.

Eclipse IDE

As mentioned earlier, a good IDE is essential for better productivity while coding.
Eclipse is one such IDE, which has great editor features and many integration points
with JEE technologies. The primary purpose of this book is to show you how to
develop JEE applications using Eclipse. So following is a quick introduction to Eclipse,
if you are not already familiar with it.

Eclipse is an open source IDE for developing applications in many different
programming languages. It is quite popular for developing many different types
of Java applications. Its architecture is pluggable - there is a core IDE and many
different plugins can be added to it. In fact, support for many languages is added
as Eclipse plugins, including support for Java.

Along with editor support, Eclipse has plugins to interact with many of the external
systems used during development. For example, source control systems such as SVN
and Git, build tools such as Apache Ant and Maven, file explorer for remote systems
using FTP, managing servers such as Tomcat and GlassFish, database explorer,
memory and CPU profiler, and so on. We will see many of these features in the
subsequent chapters.

[6]

Chapter 1

-0 e Qe Qri G- G- (WO 4 @ AR BN DT o .
a5 |[¥®Java EE

[Project Explorer 2 = O = 0 5 out R ms O
= - -

An outline is not available.

|* Markers [~ Properties 4 Servers 52 ¥ Data Source E [Snippets [& REST Annotat = O

-

No servers are available. Glick this link to create a new server...

0 items selected

Figure 1.2 Default Eclipse View

Figure 1.2 shows the default view of Eclipse for JEE application development.
When working with Eclipse, it is good to understand the following terms used
in the context of Eclipse.

Workspace

The Eclipse workspace is a collection of projects, settings, and preferences.
Workspace is a folder where Eclipse stores this information. You must create
a workspace to use Eclipse. You can create multiple workspaces, but at a time
only one can be opened by one running instance of Eclipse. However, you can
launch multiple instances of Eclipse with different workspaces.

[71

Introducing JEE and Eclipse

Plugin

Eclipse has pluggable architecture. Many of the features of Eclipse are implemented
as plugins, for example, editor plugins for Java and many other languages, plugins

for SVN and Git, and many others. Default installation of Eclipse comes with many
built-in plugins and you can add more plugins for the features you want later.

Editors and views

Most windows in Eclipse can be classified either as editor or views. Editor is
something where you can change the information displayed in it. View just displays
the information and does not allow you to change it. An example of an editor is the
Java editor where you write a code. An example of view is the outline view that
displays the hierarchical structure of the code you are editing (in case of Java editor,
it shows classes in a file, and methods in them).

To see all views in a given Eclipse installation, open the Window | Show View |
Other menu.

P (= General

P (= Ant

P (- API Tools

P 5 C/CH++

P (=CVS

P (= Data Management
P (= Debug

P (= FindBugs

P (= Git

P (= Help

P (= Java

P (= Java Browsing

P (- Java Monitor

P [JavaScript

P (= JavaServer Faces
b (= JPA

Cancel

Figure 1.3 Show all Eclipse Views

[8]

Chapter 1

Perspective

Perspective is a collection of editors and views, and how they are laid out or
arranged in the main Eclipse window. At different stages of development, you
need different views to be displayed. For example, when you are editing a code,
you need to see the Project Explorer and Task views, but when you are debugging
an application, you don't need those views, but instead want to see the variables
and breakpoints view. So, the editing perspective displays, among other views and
editor, the Project Explorer and Task view and the Debug perspective displays
views and editors relevant to the debugging activities. You can change the default
perspectives to suit your purpose, though.

Eclipse preferences

The Eclipse preferences window is where you customize many features of plugins/
features. Preferences are available from the Window menu in Windows and Linux
installation of Eclipse, and from Eclipse menu in Mac installation of Eclipse.

o General v v v

» General
» Ant Always run in background
> C/C++ Keep next/previous editor, view and perspectives dialog open
» Data Management

GlassFish Preferences Show heap status
> Help Workbench save interval (in minutes): 5
» Install/Update
> Java Open mode
> Java EE
> Java Persistence * Double click
> JavaScript Single click
» Log Viewer
» Maven
> Mylyn
» Oracle

» Plug-in Development MNote: This preference may not take effect on all views

» Remote Systems

» Run/Debug

> Server

> Team
Terminal
Validation

> Web

> Web Services

> XML

Restore Defaults Apply

(Y Cancel OK

Figure 1.4 Eclipse Preferences

[o]

vww allitebooks.conl

http://www.allitebooks.org

Introducing JEE and Eclipse

Installing products

In the subsequent chapters, we will see how to develop JEE applications using
different APIs in Eclipse. But the applications are going to need a JEE application
server and a database. We are going to use Tomcat web container for the initial few
chapters and then use GlassFish JEE application server. We are going to use MySQL
database. We are going to need these products for most of the applications that we
are going to develop. So the following sections describe how to install and configure
Eclipse, Tomcat, GlassFish, and MySQL.

Installing Eclipse (Version 4.4)

You can download Eclipse from https://eclipse.org/downloads/. You will see
many different packages for Eclipse. Make sure you install the Eclipse IDE for Java
EE Developers package. Select an appropriate package based on your OS and JVM
architecture (32 or 64 bit). You may want to run the command java -version to know
if the JVM is 32-bit or 64-bit.

Unzip the downloaded zip file and then run the Eclipse application (you need

to install JDK before you run Eclipse). The first time you run Eclipse, you will be
asked to specify a workspace. Create a new folder in your file system and select that
as the initial workspace folder. If you intend to use the same folder for workspace on
every launch of Eclipse, then check the Use this as the default and do not ask again
check box.

I@} Workspace I_auncher’! o . _ |£

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: C\EclipseWorkspace\EclipselEEWorkspace -

[¥] Use this as the default and do not ask again

[oK] l Cancel

Figure 1.5 Select Eclipse Workspace

You will then see default Java EE perspective of Eclipse as shown in Figure 1.2.

[10]

https://eclipse.org/downloads/

Chapter 1

Installing Tomcat

Tomcat is a Web Container. It supports APIs in the presentation layer described
earlier. In addition, it supports JDBC and JPA also. It is easy to use and configure,
and could be a good option if you do not want to use E]Bs.

Download Tomcat from http://tomcat .apache.org/. At the time of writing, the
latest version of Tomcat available was 8. Download the zip file and unzip in a folder.
Set the JAVA HOME environment variable to point to the folder where JDK is installed
(the folder path should be the JDK folder, which has bin as one of the sub folders).
Then run startup.bat at the Command Prompt on Windows and startup.shina
Terminal window on Mac and Linux, to start the Tomcat server. If there are no errors,
then you should see the message Server startup in --msor Tomcat started.

Default Tomcat installation is configured to use port 8080. If you want to change the
port, open server.xml under the conf folder and look for connector declaration like:

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443" />

Change the port value to any port number you want, though in this book we will be
using the default port 8080. Before we open the default page of Tomcat, we will
add a user for administration of the Tomcat server. Open tomcat-users.xml under
the conf folder in any text editor. At the end of the file you will see commented
example of how to add users. Add the following configuration before closure of the
</tomcat-users> tag:

<role rolename="manager-gui"/>

<user username="admin" password="admin" roles="manager-gui"/>
Here we are adding a user admin, with password also as admin, to a role called
'manager-gui'. This role has access to web pages for managing an application
in Tomcat. This and other security roles are defined in web.xml of the manager
application. You can find it at webapps/manager/WEB-INF/web.xml. For more
information for managing Tomcat server, see http://tomcat .apache.org/tomcat-
8.0-doc/manager-howto.html.

[11]

http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html
http://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html

Introducing JEE and Eclipse

After making the preceding changes, open a web browser and browse to
http://localhost:8080 (modify port number if you have changed the default
port as described previously). You will see the following default Tomcat page:

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Apache Tomcat/8.0.14

The Apache Software Foundation|
& http://www.apache.org/

Recommended Reading:
Security Considerations HOW-TO T
Manager Application HOW-TO e

Server Status

Host Manager

Tomeat Setup Realms & AAA Examples Servlet Specifications
First Web Application JDEC DataSources Tomcat Versions
Managing Tomcat Documentation Getting Help
For security, access to the manager webapp is Tomcat 8.0 Documentation FAQ and Mailing Lists
restricted. Users are defined in: - : :
Tomcat 8.0 Configuration The following mailing lists are available
SCATALINA_HOME/conf/tomcat-users.xml 2
In Tomcat 8.0 access to the manager ; % ; ; Important announcements, releases, security
application is split between differant users. Find additional important configuration vulnerability notifications. (Low volume).
o i b information in: e
SCATALINA HOME/RUNNING.txt User support and discussion
Developers may be interested in: m,‘ and discussion for Apaghe Taglibs
Changelog
Tomeat 8.0 Bug Dalabase lomeal-dev
Migratlun Guide Tom Development mailing Est, inchuding commit
2 e mEssages
Security Notices mest 8.0 SVN i

Figure 1.6 The default Tomcat web application

Click on the Manager App button on the right. You will be asked for the user name
and password. Enter the user name and password you configured in tomcat-users.
xml for manager-gui, as described earlier. After you are successfully logged in, you
will see the Tomcat Web Application Manager page, as shown in the following

image. You can see the applications deployed in Tomcat in this page. You can also
deploy your applications from this page.

[12]

Chapter 1

Tomcat Web Application Manager
| Message: | oK
Manager
List Applications HTML Manager Help | Manager Help [Server Status
Applications
Path Versian Display Name C
Start Stop Feload Undeploy
! None specified Welcome to Tomeat true V]
Expire sessions with idle = 30 minutes
Start Stop Feloas Undaploy
{docs None specified Tomecat Documentation true 1]
Expire sessions with idle = 30 minutes
Start Stop Reload Undeploy
fexamples None specified Serviet and JSP Examples true o
Expire sessions with idle 2 30 minutes
Start Stop FAeload Undeploy
host: None sp d Tomeat Host Manager Application lrue V]
Expire sessions | with idle = 30 minutes
Start Stop Reload Undeploy
[manager None specified Tomeat Manager Application true 2 — N
Expira sessions with idle = 30 minutes
Deploy
Deploy directory or WAR file located on server
Context Path (required):
XML Configuration file URL:
WAR or Directory URL:
Deploy
WAR file to deploy
Select WAR file to upload Choose File Mo file chosen
Depioy

Figure 1.7 Tomcat Web Application Manager

To stop the Tomcat server, press Ctrl/ COMMAND + C or run shutdown script in the
bin folder.

Installing the GlassFish server

Download GlassFish from https://glassfish.java.net/download.html.
GlassFish comes in two flavors: Web Profile and Full Platform. Web Profile is
like Tomcat, which does not include EJB support. So download Full Platform.
See https://glassfish.java.net/webprofileORfullplatform31x.html
for comparison of Web Profile and Full Platform.

Unzip the downloaded file in a folder. Default port of GlassFish server is also

8080. If you want to change that, open glassfish/domains/domainl/config/
domain.xml in a text editor (you could open it in Eclipse too, using the File | Open
File menu option) and look for 8080. You should see it in one of the <network-
listeners. Change the port if you want to (which may be the case if some other
application is already using that port).

[13]

https://glassfish.java.net/download.html
https://glassfish.java.net/webprofileORfullplatform31x.html

Introducing JEE and Eclipse

To start the server, run the startserv script (.bat or . sh depending on the
OS you use). Once the server has started, open a web browser and browse to
http://localhost:8080. You should see a page like the following screenshot:

oracie.com

Your server is now running

To replace this page, ovenwriiz the file index. kexl in the document root folder of this sereer. The document root folder for this server is the docroos subdireciony of this server's domain
direciony.

Tomanage a server on the local host with the default administration port, go to the Administration Consaole.
Join the GlassFish community

“isitthe GlassFish Community page for information about how to join the GlassFish community. The GlassFish community is developing an open source, production-guality, enterprise-class
application server thatimplements the newest features ofthe Java™ Platform, Enterprise Edition (Java EE) platform and related enterprise t=chnologies.

Learn more about GlassFish Server

For more information about GlassFish Server, samples, documentation, and additional resources, se2 as-insfall/ docs/ abous . hexl, where as-insfall is the GlassFish Server installation
directony.

Gompany info | Comtact | Copyright ©2010, 2014 Omcle Coportion | Legal Nodices

Figure 1.8 The default GlassFish web application

This page is located at glassfish/domains/domainl/docroot/index.html.
Click on the go to the Administration Console link in the preceding page to
open GlassFish administrator. For details on administrating GlassFish server,
see https://glassfish.java.net/docs/4.0/administration-guide.pdf.

User admin Domain: domaini Server: localhost

GlassFish™ Server Open Source Edition

[commen Tasks

@ Domain

[server {Admin Sener)

g Clusters

[F Standalone Instances
* @ Nodes

= Applications

«s Lifecycle Modules

B Menitoring Dats
* |gp Resources

» @ Concument Resources

» 5 Conneciors

L™ JOBC
gt ME Resources

» [NDI

= JsvaMail Sessions
& Resource Adapter Configs

* g Configurations

» g defautconfy

» |y server-config

@ Updat Tool

GlassFish Console - Common Tasks

GlassFish News
| GlassFish News

Deployment

| List Deployed Appiicstions

" Deploy an Appiication
Administration

Changs Administrator Password

| List Pazsword Aliazes
Monitoring

4| Monitoring Data

Documentation
. Open Source Edition Documentation Set

|| Quick Start Guids

™ Adrninistration Guide

i Application Development Guide
| Application Ceployment Guide

Update Center

\ |nstailed Components.

W Avsilsble Updates.

. Lushetle bod Qo=

Resources

W Create New JDBC Resource

Create New JDBC Connection Pool

Figure 1.9 The GlassFish administrator

To stop the GlassFish server, run the stopserv script in the glassfish/bin folder.

https://glassfish.java.net/docs/4.0/administration-guide.pdf

Chapter 1

Installing MySQL

We will be using MySQL database for many of the examples in this book. Following
sections describe how to install and configure MySQL for different platforms.

Installing MySQL on Windows

Download MySQL Community Server from http://dev.mysqgl.com/downloads/
mysqgl/. You can either download the web installer or the all in one installer. The
web installer would download only those components that you have selected.
Following instructions show the download options using the web installer.

Web installer first downloads a small application, and when you run that, it gives
you options to select components that you want to install.

We would like to install MySQL Workbench too, which is a client application to
manage MySQL Server. As of writing this chapter, MySQL Workbench required
Visual C++ 2013 Runtime for Windows installation. If you don't have it already
installed, you can download it from http://www.microsoft.com/en-in/
download/details.aspx?1d=40784.

1. Select the Custom option and click on Next.

[] MySQL Installer (= [S

Lo

[

MySQf. Installer Choosing a Setup Type

Adding Community

Please select the Setup Type that suits your use case,

@ Developer Default Setup Type Description

Installs all products needed for Allows you to select exactly which products you

MySQL development purposes. would like to install. This alse allows to pick other

server versions and architectures (depending on

_ your OS).

@ Server only i
Installs only the MySQL Server
product,

@ Client only

Installs only the MySQL Client
products, without a server.

@ Full
Installs all included MySQL
products and features,

@ Custom

Manually select the products that
should be installed on the
system.

l < Back I [Mext >] [Cancel

Figure 1.10 MySQL Installer for Windows

[15]

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://www.microsoft.com/en-in/download/details.aspx?id=40784
http://www.microsoft.com/en-in/download/details.aspx?id=40784

Introducing JEE and Eclipse

2. Select MySQL Server and MySQL Workbench products and complete the
installation. During the installation of Server, you will be asked to set the
root password and given the option to add more users. It is always a good
idea to add user other than root for applications to use.

[*] MySQL Installer

MySQL. Installer Select Products and Features

Adding Community
Please select the products and features you would like to install on this machine.

Filter:

—
'l\ All Software, Current GA Any | [Edit

Available Products: Products/Features To Be Installed:

[=)- MySql Servers [+~ MySQL Server 5.6.21 - ¥36

E| MySQL Server -- MySQL Workbench 6.2.4 - X586
- MySQL Server 5.6

Select Products and Features

[=)- Applications
= MySQL Workbench
i = MySQL Workbench 6.2

249

[MySQL Notifier

1) MySQL For Excel

MySQL for Visual Studio
MySQL Utilities

[+~ MySQL Connectars

B 0ocumenttion

< 1 3

< Back] ’ Mext =] ’ Cancel

Figure 1.11 Select MySQL Products and Features to Install

3. Make sure you select All Hosts when adding a user so that you are able to
access MySQL database from any remote machine that has network access
to the machine where MySQL is installed.

[16]

Chapter 1

mysm User Details . . =X
Please specify the username, password, and database role.
: >
L\ ||P Usemame | iy
LJ Host <Al Hosts (3)= -

Role DB Admin A
Authentication @ MySQL

Pazzword

Confirm Pazsword

Figure 1.12 Add MySQL User

Run MySQL Workbench after installation. You will find that the default
connection to the local MySQL instance is already created for you.

_ Locdmﬁimm x
File Edit W\iew Database Tools Scnptng Help

MySQL Connections @ ®

Local instance MySQL56

root

localhost3306

Figure 1.13 MySQL Workbench Connections

[17]

Introducing JEE and Eclipse

5. Click on the local connection and you will be asked to enter the root password.
Enter the root password that you typed during the installation of MySQL
server. MySQL Workbench opens and displays the default test schema.

A& MysSQL Workbench o= []
@& Local instance MySQLSE

| File Edit View Query Datsbase Server Tools Scripting Help

&8 6 JEFEE [e @ D=0

Navigator X sQL Additions

MgAGEMENT 218 @ | umtte1000rows - | |8 4 b | (] G | wmpto
Server Status

_i Client Connections

1 Users and Privileges

Status and System Variables
d, Data Export

X, DataImport/Restore

INSTANCE
[startup / shutdown
A Server Logs
f' Options File

PERFORMANCE
ﬁ' Dashboard
é':: Performance Reports
Q\ Performance Schema Setup

SCHEMAS L

Q Filter objects Context Help [Egiisle=e

¥ 5 test
@ Tables
@ Views
[stored Procedures Time Action Duration / Fetch

Information

Object Info 0]

Figure 1.14 My SQL Workbench

Installing MySQL on Mac OS X

OS X versions before 10.7 had MySQL server installed by default. See http://dev.
mysqgl.com/doc/mysgl-macosx-excerpt/5.7/en/macosx-installation-server.
html to know which version of MySQL was installed for different versions of OS

X. If you are using OS X 10.7 or later, then you will have to download and install
MySQL Community Server from http://dev.mysql.com/downloads/mysql/.

[18]

http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/macosx-installation-server.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/macosx-installation-server.html
http://dev.mysql.com/doc/mysql-macosx-excerpt/5.7/en/macosx-installation-server.html
http://dev.mysql.com/downloads/mysql/

Chapter 1

There are many different ways to install MySQL on OS X. See http://dev.mysql.
com/doc/refman/5.7/en/osx-installation.html for installation instruction for
OS X. Note that users on OS X should have administrator privileges to install the
MySQL server.

Once you install the server, you can start it either from the Command Prompt or
from the system preferences.

1. To start it from the Command Prompt, execute the following command
in Terminal:

sudo /usr/local/mysql/support-files/mysql.server start

2. To start it from System Preferences, open the preferences and click the

MySQL icon.
(¥) < HHH MySQL Q o
MySQL Server Status
(:f i The MySQL Database Server is currently stopped.
i \ 3 To start it, use the "Start MySQL Server” button.

The MySQL Server Instance is stopped Start MySQL Server

2 Automatically Start MySQL Server on Startup
You may select to have the MySQL server start .
automatically whenever your computer starts up.

My

Figure 1.15 MySQL System Preferences - OSX

3. Click the Start MySQL Server button.

4. Next, download MySQL Workbench for OSX from
http://dev.mysql.com/downloads/workbench/.

[19]

http://dev.mysql.com/doc/refman/5.7/en/osx-installation.html
http://dev.mysql.com/doc/refman/5.7/en/osx-installation.html
http://dev.mysql.com/downloads/workbench/

Introducing JEE and Eclipse

Installing MySQL on Linux

There are many different ways to install MySQL on Linux. Refer to https://dev.
mysqgl.com/doc/refman/5.7/en/linux-installation.html for details.

Creating MySQL users

You can create MySQL user either from the Command Prompt or by using
MySQL Workbench.

1. To execute SQL and other commands from the Command Prompt, open
Terminal and type the following:

mysql -u root -p <root password>

2. Once logged in successfully, you will see the mysql Command Prompt:

mysql>

3. To create a user, first select the mysgl database.
mysqgl>user mysql;
Database changed

mysqgl>insert into user (host, user, password, select priv, insert
priv, update priv)

values ('%', 'userl',K password('usperl
passl)'IYI'IYI'IYI);

The preceding command will create a user named 'user1' with password 'userl_
pass' having privileges to insert, update, and select. And because we have specified
hostas ', this user can access the server from any host.

If you prefer a graphical user interface to manage the users, then run MySQL
Workbench, connect to the local MySQL server (see Figure 1.13 MySQL Workbench
Connections), and click on Users and Privileges under the Management section.

[20]

https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html
https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html

Chapter 1

A MySQL Warkbench i 50 e
4% Localinstance MySQL56

File Edit View Query Database Server Tools Scriping Help

§l&le JEEEL B o @ L=

MNavigator Query 1 Administration - Users and Privil..

MANAGEMENT
O Server Status
;-| Client Connections
j_ Users and Privileges
Status and System Variables
b Data Export

Laocal instance MySQL56
Users and Privileges

User Accounts Details for account admin@%

User From Host Login | Account Limits | Administrative Roles I Schema Privileges
+ {!) <anonymous:> %
ok, Datalmpaort/Restore i o . admin ‘You may create multiple

Lol to connect from different

root localhost
INSTANCE root 127.0.0.1

B startup / Shutdown root =1
A Server Logs
f‘ Options File

For the standard passwo
select 'Standard'.

Authentication Type: | Standard
Limit to Hosts Matching: % and _ wildcards may b
PERFORMANCE

ﬁ' Dashboard

oy Consider using a password with 8 or more characters with
Perfarmance Reports
& P mixed case letters, numbers and punctuation marks.

Password: Type a password to rese

(}\ Performance Schema Setup
Confirm Password: Enter password again to
SCHEMAS L

Q Filter objects

v é} test
@ Tables
@ Views

@ Stored Procedures

Information

4 [| r

[Add Account] [Delete] [Refresh] [Revul@AJanvilagas] [E)q:uraPasswurd Revert

Object Info

Figure 1.16 Creating a user in MySQL Workbench

Having installed all the above products, you should be in a position to start developing
JEE applications. We may need a few additional software, but we will see how to
install and configure them at appropriate time.

Summary

In this chapter, we had a brief introduction to different JEE APIs for the presentation
layer, business layer, and Enterprise integration layer. We learnt some of the
important terminologies in Eclipse IDE. We then learned how to install Eclipse,
Tomcat, GlassFish, MySQL, and MySQL Workbench. We are going to use these
products in this book to develop JEE applications.

In the next chapter, we will configure the JEE server and database in Eclipse, and
create a simple application using Servlet, JSP, and Java Server Faces.

We will also see how to crate JEE Web Applications using Servlet, JSP, and JSF. Along
with that, we will learn how to use Maven to build and package the JEE applications.

[21]

Creating a Simple JEE
Web Application

The previous chapter gave you a brief introduction to JEE and Eclipse. You also
learned how to install the Eclipse JEE package and install and configure Tomcat.
Tomcat is a servlet container and is easy to use and configure. Therefore, many
developers use it to run JEE web applications on local machines.

In this chapter, we will see how to configure Tomcat in Eclipse and develop and
deploy web applications. The advantage of configuring Tomcat in Eclipse is that

you can easily start and stop the server from Eclipse, and deploy a JEE project
right from within Eclipse to Tomcat.

[23]

Creating a Simple JEE Web Application

Configuring Tomcat in Eclipse

Follow these steps for configuring the Tomcat server in Eclipse:

1. IntheJava EE view of Eclipse, you will find the Servers tab at the bottom.
Since no server is added yet, you will see a link in the Servers tab - No
servers are available. Click this link to create a new server....

Ci LR R R et < T AR RS AR Nr=0 e S E R el
[(5Proje 52 = O = a o= outli 82 Task O
< <

An outline is not available,

[Markers ["] Properties (4% Servers £2) ¥ Data Source Explarer) Snippets s REST Annotations . O

No servers are available. Click this link to create a new server...

Figure 2.1 The Servers tab in Eclipse JEE

[24]

Chapter 2

2. Click the link in the Servers tab.

Define a New Server

Choose the type of server to create

Select the server type:

¥ [+ Apache
£ Tomcat v3.2 Server
£ Tomcat v4.0 Server
EJ Tomcat v4.1 Server
EJ Tomcat v5.0 Server
EJ Tomcat v5.5 Server
EJ Tomcat v6.0 Server
EJ Tomcat v7.0 Server
H Tomcat vB8.0 Server

Publishes and runs J2EE and Java EE Web projects and server configurations to a local
Tomcat server.

Server's host name: Y localhost

Server name: Tomcat vB.0 Server at localhost

@ MNext = Cancel

Download additional server adapters

o

Figure 2.2 New Server wizard. Select server

[25]

Creating a Simple JEE Web Application

3. Expand the Apache group and select the Tomcat version that you have
already installed. If Eclipse and the Tomcat server are on the same machine,
then leave Server's host name as localhost. Otherwise, enter the hostname
or IP address of the Tomcat server. Click Next.

Tomcat Server -
Specify the installation directory ’J

Name:
Apache Tomcat v8.0

Tomcat installation directory:

/Users/Ram/Applications/apache-tomcat-8.0.14 Browse...
JRE:
Workbench default JRE e Installed JREs...
'._"?j < Back Next > Cancel Finish

Figure 2.3 New Server wizard. Configure the Tomcat folder

4. Click the Browse... button and select the folder where Tomcat is installed.

5. Click Next till you complete the wizard. At the end of it, you will see the
Tomcat server added to the Servers view. If Tomcat is not already started,
you will see the status as stopped.

6. To start the server, right-click on the server and select the Start menu option.
You can also start the server by clicking the start button in the toolbar of the
Servers view.

[26]

Chapter 2

[*! Marke []Prope 4t Serve 5% WEData [Snipp @REsST — O

SE N N

E}E,Tomcat vB.0 Server at localhost [Stopped, Republish]

Figure 2.4 The Tomcat server added to the Servers view

Once the server is started successfully, you will see the status changed to started.
If you click on the Console tab, you will see console messages that the Tomcat server
output during startup.

If you expand the Servers group in the Project Explorer view, you will find

the Tomcat server that you just added. Expand the Tomcat server node to view

the Tomcat configuration files. This gives you an easy way to edit the Tomcat
configuration; you don't have to go look for the configuration files in the file system.
Double-click server.xml to open it in the XML editor. You get a Design view as
well as a Source view (two tabs at the bottom of the editor). We saw how to change
the default port of Tomcat in the last chapter. You can easily change that in the
Eclipse editor by opening server.xml and going to the Connector node. If you need
to search the text, you can switch to the Source tab (at the bottom of the editor) and
perform a search operation.

- i = 0 AR O Qe GG MO @08 - - O
T Y®JavaEE %y Debug
. Project Explorer 23 =0 ¥ serverxmi 5L = 0 5= outine 2 TaskLs . O
K- - i e =
¥ = Servers Node Content Fxmi
¥ [~ Tameat vB.0 Server at lacalhost-ca: (9 SSLEngine N L~ #commant
catalina. policy (@) elassMNama org.apache.catalinacom Aprl facycloListane: i-- #comment
| catalina. propertios - Prevent memacry leaks due 1o use of particular java/javax APls [£] Server port=8005
| contaxt.xml ¥ [e] Listenar [¥] Listener className=org.apact
| serverxml (® classMame org.apache.catalina.core.JreMemoryLeakPreventionListenar i~ ficomment
¥ tomeat-users.xml ¥ [€] Ustener 1. ficomment
| wab.oml (@ className org .apache.catalina.mbeans. GlobalRescurcaslifecyclelistaner [#] Listaner SSLEngine=on
¥ [&] Listaner {- scomment
(3) className org.apacha.catalina.cone. ThraadLocalLeakPraventionListanar [E] Listener className=org.apact
Global INDI resources [€] Listener classNamesong.apact
» (€] GlobalNamingResources [€] Listener classNamewarg apact
| A *Service® is a collection of one or more “Connectors® that share I feomment
¥ (] Service » [&] GlobalNamingRasources
(@ name Catalina - #commant
The connectars can use a shared axecutor, you can define ona. .. ¥ || Service name=Catalina
{-- #comment
A "Connector represents an endpoint by which requests ane re... L. #comment
¥ [e] Connector -+ #comment
(&) connectionTimeout 20000 |2] Gonnactor connectionTime
(& port 8080 i #comment
(@) protocal HTTR/.1 {-- #comment
(@ redirectPort 8443 4. wcomment
. A “Connector® using the shared thread pool 4=« #comment
i §-- comment
Design Source [£] Connector port=6008
Properties #8 Servers £3 Data Source Explorer Snippets Consalo AEST Annotations =0
=5 % Tl | -

3 Tomcat v8.0 Server at localhost [Started, Synchronized]

Figure 2.5 Open server.xml

[27]

Creating a Simple JEE Web Application

You can also easily edit tomcat-users.xml to add/edit Tomcat users. Recall that
we added a Tomcat user in Chapter 1, Introducing JEE and Eclipse, to administer the
Tomcat server.

By default, Eclipse does not change anything in the Tomcat Installation folder when
you add the server in Eclipse. Instead, it creates a folder in the workspace and copies
the Tomcat configuration files to this folder. Applications to deploy on Tomcat are
also copied and published from this folder. This is good during development when
you do not want to modify the Tomcat settings and any application deployed in the
Tomcat server. However, if you want to use the Tomcat installation folder, then you
need to modify the server settings in Eclipse. Double-click the server in the Servers
view to open it in the editor.

-| Tomcat v8.0 Server at localhost £2

J Overview
General Information » Publishing
Specify the host name and other common settings.
» Timeouts
Server name: Tomcat v8.0 Server at localhost
Host name: localhost ~ Ports
. _ - Modify the server ports.
Buntime Environment: Apache Tomcat v8.0 <
Port Name
Configuration path: /Servers/Tomcat v8.0 Server at loc: Browse... E:Tomcat admin port
Open launch configuration & HTTP/1.1
&5 AJPA.3

¥ Server Locations

Specify the server path (i.e. catalina.base) and deploy path. Server must
be published with no modules present to make changes.

* Use workspace metadata (does not modify Tomeat installation)

Use Tomcat installation (takes control of Tomcat installation) } MIME Mappings
Use custom location (does not modify Tomcat installation)

Server path: .metadata/.plugins/org.eclipse.wst.server

Set deploy path to the default value (currently set

Deploy path: wtpwebapps Browse...

» Server Options

Figure 2.6 Tomcat settings

See options under Server Locations. Select the second option, the Use Tomcat
installation option, if you want to use the Tomcat installation folders for
configuration and for publishing applications from within Eclipse.

[28]

Chapter 2

Java Server Pages

We will start with a project to create a simple JSP. We will create a login JSP that
submits data to it and validates the user.

Creating a dynamic web project
To create a dynamic web project, we will perform the following steps:
1. Select the File | New | Other menu. This opens the selection wizard. At the

top of the wizard, you will find a textbox with a cross icon on the extreme
right side.

2. Type web in the textbox. This is the filter box. Many wizards and views in
Eclipse have such a filter textbox that makes finding items very easy.

Select a wizard
Create a Dynamic Web project

Wizards:

¥ |+ Database Web Services

; Web Services from Builder XML
¥ (= GlassFish

«21RESTful Web Service from Pattern (Java EE 6)
¥ (= Web

" Dynamic Web Project

| Static Web Project

(¥ Web Fragment Project
¥ [Web Services

[#REST Web Service

%) REST Web Service Client

/& Web Service

/il Web Service Client

'7' Next > Cancel

Figure 2.7 New selection wizard

[29]

vww allitebooks.conl

http://www.allitebooks.org

Creating a Simple JEE Web Application

3. Select Dynamic Web Project and click Next to open the Dynamic Web
Project wizard. Enter a project name, for example, LoginSampleWebApp.
Note that the Dynamic web module version field in this page lists the
Servlet API version numbers. Select version 3.0 or greater. Click Next.

Dynamic Web Project
Create a standalone Dynamic Web project or add it to a new or existing @

Enterprise Application.

Project name: LoginSampleWebApp
Project location
v Use default location

Location:

Target runtime

Apache Tomcat v8.0 b+ New Runtime...
Dynamic web meodule version

3.1 2
Configuration

Default Configuration for Apache Tomcat v8.0 ¢ Modify...

A good starting point for working with Apache Tomcat v8.0 runtime. Additional facets
can later be installed to add new functionality to the project.

EAR membership

EAR project name:

Working sets

Add project to working sets

<

Working sets:

(?) < Back Next > Cancel Finish

Figure 2.8 Dynamic web project wizard

[30]

Chapter 2

4. Click Next in the following pages and click Finish on the last page to
create the LoginSimpleWebApp project. This project is also added to
Project Explorer.

L™ Project Explorer 23

—]
it
v E‘«J'LoginSampIeWebApp
) ‘1 Deployment Descriptor: LoginSamg
[= Referenced Types
> ¢ JAX-WS Web Services
v “# Java Resources
[src
P = Libraries
P =, JavaScript Resources
» (= build
¥ [WebContent
P (= META-INF
» (= WEB-INF
P l=F Servers

Figure 2.9 New web project

Java source files go in the src folder under Java Resources. Web resources such as
the HTML, JS, and CSS files go in the webContent folder.

We will first create the JSP for login.

To keep the page simple, in the first JSP, we will not follow many of
R the best practices. We will have the Ul code mixed with the application
~ business code. Such design is not recommended in production
Q applications but could be useful for quick prototyping. We will see how to
write a better JSP code with a clear separation of the Ul and the business
logic later in the chapter.

[31]

Creating a Simple JEE Web Application

Creating JSP

The following are the steps for creating a JSP:

1.

2.

Right-click on the webcontent folder and select New | JSP File. Name it
index. jsp. The file will open in the editor with a split view. The top part
shows the design view, and the bottom part shows the code. If the file is not
opened in the split editor, right-click on index. jsp in the Project Explorer
and select Open With | Web Page Editor.

|°5 index.jsp &2

< > head

Drag and drop Web page content here

<% page language="java" contentType="text /html; charset=UTF-8"

2 pageEncoding="UTF-8"%>

\ <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://waw.w3
<html>

= <head>

» <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

" <title>Insert title here</title>

</head>

<body>

</body>
</html>

Design Preview

Figure 2.10 The JSP editor

If you do not like the split view and want to see either the full design view or
the full code view, then use the toolbar button at the top right, as shown in
the following screenshot:

o e B FS G|

Figure 2.11 The JSP editor display buttons

[32]

Chapter 2

3.
4.

5.

Change the title from Insert title here to Login.

Let's see how Eclipse provides code assistance for HTML tags. Note that
input fields must be in a Form tag. We will add a form tag later. Inside the
body tag, type the User Name: label. Then, type <. If you wait for a moment,
Eclipse pops up a code assist window showing options for all the valid
HTML tags. You can also invoke code assist manually.

Place a caret just after < and press Ctrl + Space.

<%@ page language="java" contentType="text html; charset=UTF-8"

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.@1 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd

pageEncoding="UTF-8"%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-§">
<title>login</title>
& </head>
)= <body>
18 User Name: <
11 </body> £{>a A link if the href attribute is present, and the target for
</html> <> abbr a link if the name attribute is present
< ¥ acronym
<»address
<> applet |
Design | Preview . :pp €
| <»basefont
Markers [Properties ¢3» bdo
<> bgsound
Body <> big
£% hlink {
General Press '~Space' ta show JSP Template Proposals
Figure 2.12 HTML code assist in JSP
Code assist works on partial text too; for example, if you invoke code assist
after text <i, you will see a list of HTML tags starting with i (i, iframe,
img, input, and so on). You can also use code assist for tag attributes and
attribute values.
For now, we want to insert the input field for username.
6. Therefore, select input from the code assist proposals, or type it.

[33]

Creating a Simple JEE Web Application

7. After the input element is inserted, move the caret inside the closing >
and invoke code assist again (Ctrl/ Command + Space). You will see a list of
proposals for the attributes of the input tag.

)= <body>
<hZ>Login:</hZ>
User Name: <input type=p
</body> i= "button”® Attribute : type
Enumerated Values :
- text
*image" - password
- checkbox

Design | Preview

“password"

| - radio
Markers [_] Properties 3 “radio” - submit
“reset” - ;_‘Tse‘
Html Text = it Lo
= "submit - hidden
= “text” - image
General & isncattribite
Style Name: Press '~Space’ to show JSP Template Proposals

Figure 2.13 Code assist for the tag attribute value

8. Type the following code to create a login form:

<body>
<h2>Login:</h2>
<form method="post">
User Name: <input type="text" name="userName">

Password: <input type="password" name="password">

<button type="submit" name="submit">Submit</button>
<button type="reset">Reset</buttons>
</form>
</body>

Downloading the example code

W You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books
Q that you have purchased. If you purchased this book elsewhere, you
can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

If you are using the split editor (design and source pages), you can see the login form
rendered in the design view. If you want to see how the page would look in a web
browser, click the Preview tab at the bottom of the editor. You will see that the web
page is displayed in the browser view inside the editor. Therefore, you don't need to
move out of Eclipse to test your web pages.

[34]

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

2 index.jsp &3

Login:

i
User Name: |

FEEEEAE

Password:

Submit Reset |

@ <hZ2>Login:</hZ>

1 <form method="post">

: User Name: <input type="text" name="userName">

Password: <input type="password" name="password">

<button type="submit" name="submit">Submit</button>
<button type="reset"-Reset</button>

t </form=

Design Preview

Markers fj Properties 23 Servers Data Source Explorer [Snippets
Html Text
General
Style Name: userName
All Value:
Size:
Max length:
Disabled:

Figure 2.14 Design and Source views

If you click on any user interface control in the design view, you will see its
properties in the Properties view (see the previous screenshot). You can edit
properties, such as the Name and Value of the selected element. Click on the
Style tab of the Properties window to edit the CSS style of the element.

We have not specified the action attribute in the previous form. This
_ attribute specifies a URL to which the form data is to be posted when
% the user clicks the Submit button. If this attribute is not specified, then
= the request or the form data would be submitted to the same page; in
this case, the form data would be submitted to index.jsp. We will now
write the code to handle form data.

[35]

Creating a Simple JEE Web Application

As mentioned in Chapter 1, Introducing JEE and Eclipse, you can write the Java code
and the client-side code (HTML, CSS, and JavaScript) in the same JSP. It is not
considered a good practice to mix the Java code with the HTML code, but we will do
that anyway for this example to keep the code simple. Later in the book, we will see
how to make our code modular.

Java code is written in JSP between <% and %>; such Java code blocks in JSP are

called scriplets. You can also set page-level attributes in JSP. They are called page
directives and are included between <%@ and %>. The JSP that we created already has
a page directive to set the content type of the page. The content type tells the browser
the type of the response (in this case, html/text) returned by the server. On the
basis of the content type, the browser displays the appropriate response.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

In JSP, you have access to a number of objects to help you process and generate a
response, as described in the following table:

Object Response

Request HTTPServletRequest (http://docs.oracle.com/javaee/7/
api/javax/servlet/http/HttpServletRequest.html). Use
it to get request parameters and other request-related data.

response HtpServletResponse (http://docs.oracle.com/javaee/7/
api/javax/servlet/http/HttpServletResponse.html). Use
it to send a response.

Out JSPWriter (http://docs.oracle.com/javaee/7/api/
javax/servlet/jsp/JspWriter.html). Use this to generate a
text response.

session HTTPSession (http://docs.oracle.com/javaee/7/api/
javax/servlet/http/HttpSession.html). Use this to get/put
objects in a session.

Application ServletContext (http://docs.oracle.com/javaee/7/api/
javax/servlet/ServletContext.html). Use this to get/put
objects shared in the sample application.

[36]

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html
http://docs.oracle.com/javaee/7/api/javax/servlet/jsp/JspWriter.html
http://docs.oracle.com/javaee/7/api/javax/servlet/jsp/JspWriter.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html

Chapter 2

In this example, we are going to make use of the request and out objects. We will
first check whether the form is submitted by the pPosT method. Then, we will get the
values of username and password. If the credentials are valid (in this example, we
are going to hardcode the username and the password as admin), we will print a
welcome message.

o°

<
String errMsg = null;
//first check whether the form was submitted

if ("POST".equalsIgnoreCase (request.getMethod()) &&
request .getParameter ("submit") != null)

//form was submitted
String userName = request.getParameter ("userName") ;
String password = request.getParameter ("password") ;

if ("admin".equalsIgnoreCase (userName) &&
"admin".equalsIgnoreCase (password))

{

//valid user
System.out.println("Welcome admin !");

}

else

{

//invalid user. Set error message
errMsg = "Invalid user id or password. Please try again";

}

>

o\°

We use two built-in objects in the preceding code - request and out. We first
check whether the form was submitted - "POST" . equalsIgnoreCase (request.
getMethod (). Then, we check whether the submit button was used to post the form
- request.getParameter ("submit") != null.

We then get the username and the password by calling the request .getParameter
method. To keep the code simple, we compare them with the hardcoded values. In
a real application, you would most probably validate credentials against a database
or some naming and folder service. If the credentials are valid, we print a message
by using the out (7sPwriter) object. If the credentials are not valid, we set an error
message. We will print the error message just before the login form:

<h2>Login:</h2>
<!-- Check error message. If it is set, then display it -->

[37]

Creating a Simple JEE Web Application

<%if (errMsg != null) { %>
<%=;"><%=;"><%=errMsg %>
<%} %>

<form method="post">

</form>

Here, we start another Java code block by using <%%>. If the error message is not
null, we display it by using the span tag. Notice how the value of the error message
is printed - <$=errMsg %>. This is the shortcut for <%out .print (errMsg) ; %>. Also,
notice that the curly brace that started in one Java code block is completed in a
separate Java code block. Between these two code blocks, you can add any HTML
code and it will be included in the response only if the conditional expression in the

if statement is evaluated to true.

Here is the complete code:

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">
<titles>Login</title>
</head>
<%
String errMsg = null;
//first check whether the form was submitted

if ("POST".equalsIgnoreCase (request.getMethod())

request.getParameter ("submit") != null)

{

//form was submitted

String userName = request.getParameter ("userName") ;

String password = request.getParameter ("password") ;

if ("admin".equalsIgnoreCase (userName) &&
"admin".equalsIgnoreCase (password))

{

//valid user
out.println("Welcome admin !");

[38]

Chapter 2

return;

}

else

{

//invalid user. Set error message

errMsg = "Invalid user id or password. Please try again";
}
}
%>
<body>
<h2>Login:</h2>
<!-- Check error message. If it is set, then display it -->
<%if (errMsg != null) { %>

<%out.print (errMsg); %>
<%} %>
<form method="post">
User Name: <input type="text" name="userName"><brs>
Password: <input type="password" name="password">

<button type="submit" name="submit">Submit</button>
<button type="reset">Reset</button>
</form>
</body>
</html>

Running JSP in Tomcat

To run this page in a web browser, you will need to deploy the application in a
Servlet container. We have already seen how to configure Tomcat in Eclipse. Make
sure that Tomcat is running by checking its status in the Servers view of Eclipse.

[* Markers | Properties <. Servers 2 [Data Source Explorer

E}Tomcat vB.0 Server at localhost [Started, Restart]

Figure 2.15 Tomcat started in the Servers view

[39]

Creating a Simple JEE Web Application

There are two ways to add a project to a configured server so that the application can
be run on this server:

* Right-click on the server in the Servers view and select the Add and Remove
option. Select your project from the list on the left (Available Resources), and
click Add to move it to the Configured list. Click Finish.

Add and Remove =
Modify the resources that are configured on the server

Move resources to the right to configure them on the server
Available: Configured:

o LoginSampleWebApp

Add >

v| If server is started, publish changes immediately

?) Cancel Finish

Figure 2.16 Add a project to the server

* The other method to add a project to the server is to right-click on the
project in the Project Explorer and select Properties. This opens the Project
Properties dialog box. Click on Server in the list, and select the server on
which you want to deploy this project. Click OK or Apply.

[40]

Chapter 2

Javadoc Location
P JavaScript

JSP Fragment

Project Facets

Project References

Run/Debug Settings

Server

Service Policies

Targeted Runtimes
P Task Repository

Task Tags

b \alidatinn

(%] Server y oy w

Project: LoginSampleWebApp (J2EE Web module)

Always use the following server when running this project:

<None>
| Tomcat v8.0 Server at localhost

Cancel OK

Figure 2.17 Select Server in Project Properties

In the first method, the project is immediately deployed on the server. In the second
method, it will be deployed only when you run the project on the server.

1. To run the application, right-click on the project in Project Explorer and
select Run As | Run on Server. The first time you will be prompted to
restart the server. Once the application is deployed, you will see it under
the selected server in the Servers view:

Markers

v :iTomcat vB.0 Server at localhost [Started, Synchronized]
_» LoginSampleWebApp [Synchronized]

Properties 41l Servers 23 Data Source Ex

Figure 2.18 Project deployed on the server

[41]

Creating a Simple JEE Web Application

2. Enter some text other than admin in the username and password boxes
and click Submit. You should see the error message and the same form

displayed again.

|- index.jsp & Login 2%
] _-‘;- http://localhost:8080/LoginSampleWebApp/
3 -

Login:

User Name:

Password:

Submit Reset

Figure 2.19 Project running in the built-in browser in Eclipse

3. Now enter admin as the username and the password and then submit the
form. You should see the welcome message.

JSPs are compiled dynamically to Java classes, so if you make any changes in a page,
in most cases, you do not have to restart the server; just refresh the page, and Tomcat
will recompile the page if it has changed and the modified page would be displayed.
In cases when you need to restart the server to apply your changes, Eclipse would
prompt you if you want to restart the server.

Using JavaBeans in JSP

The code that we wrote in JSP above does not follow JSP best practices. In general,

it is a bad idea to have scriplets (Java code) in JSP. In most large organizations, the
Ul designer and programmers are different roles performed by different people.
Therefore, it is recommended that JSP contains mostly markup tags so that it is easy
for a designer to work on page design. The Java code should be in separate classes. It
also makes sense from the reusability point of view to move the Java code out of JSP.

You can delegate the processing of the business logic to JavaBeans from JSP.
JavaBeans are simple Java objects with attributes and getters and setters for these
objects. The naming convention for a getter/setter in JavaBeans is to get/set followed
by the name of the attribute, with the first letter of each word in uppercase, also
known as CamelCase. For example, if you have a class attribute named firstName,
then the getter function will be getFirstName and the setter will be setFirstName.

[42]

Chapter 2

JSP has a special tag for using JavaBeans - jsp:useBean:

<jsp:useBean id="name of variable" class="name of bean class"
scope="scope of bean"/>

Scope indicates the lifetime of this bean. Valid values are application, page,
request, and session.

Scope name Description
page Bean can be used only in the current page.
request Bean can be used in any page in the processing of the same request.

One JSP request can be handled by multiple JSPs if one page
forwards the request to another page.

session Bean can be used in the same HTTP session. The session is useful

if your application wants to save the user data per interaction with
the application, for example, to save items in the shopping cart in an
online store application.

application Bean can be used in any page in the same web application.
Typically, web applications are deployed in a web application
container as Web Application Archive (WAR) files. In the
application scope, all JSPs in a WAR file can use JavaBeans within
this scope.

We will move the code to validate the user in our login example to a JavaBean class.
First, we need to create the JavaBean class.

1. In Project Explorer, right-click on the src folder New | Package
menu option.

Create a package named packt .book.jee_eclipse.ch2.bean.
Right-click on the package, and select the New | Class menu option.

Create a class named LoginBean.

ARSI

Create two private String members as follows:
public class LoginBean {

private String userName;

private String password;

}

[43]

Creating a Simple JEE Web Application

6. Right-click anywhere inside the class (in the editor) and select the Source
Generate Getters and Setter ... menu option:

Select getters and setters to create:

v F o password Select All
v Pk o userName

Deselect All
Select Getters

Select Setters

Allow setters for final fields (remove 'final' moedifier from fields if necessary)
Insertion point:

Last member

L8]

Sort by:

<

Fields in getter/setter pairs

Access modifier

* public protected package private

final synchronized

Generate method comments

The format of the getters/setters may be configured on the Code Templates preference page.

i 4 of 4 selected.

('_?} Cancel OK

Figure 2.20 Generate getters and setters

7. We want to generate the getters and setters for all members of the class.
Therefore, click the Select All button and select Last member from the
drop-down list for Insertion point because we want to insert the getters
and setters after declaring all member variables.

You class should now look like this:

public class LoginBean {
private String userName;
private String password;
public String getUserName () {
return userName;

[44]

Chapter 2

public void setUserName (String userName) {
this.userName = userName;

}

public String getPassword() {
return password;

}

public void setPassword(String password)
this.password = password;

}

We will add one more method to it, to validate the username and
the password:

public boolean isValidUser ()
{
//Validation can happen here from a number of sources
//for example, database and LDAP

//We are just going to hardcode a valid username and
//password here.

return "admin".equals (this.userName) &&
"admin".equals (this.password) ;
}

This completes our JavaBean for storing user information and validation.

We will now use this bean in our JSP and delegate the task of validating a
user to this bean. Open index.jsp. Replace the Java scriplet just above the
<body> tag in the preceding code with the following:
<%String errMsg = null; %>
<%if ("POST".equalsIgnoreCase (request.getMethod()) && request.
getParameter ("submit") != null) {%>
<jsp:useBean id="loginBean"
class="packt.book.jee eclipse.ch2.bean.LoginBean">
<jsp:setProperty name="loginBean" property="*"/>
</jsp:useBean>
<%
if (loginBean.isValidUser())
{
//valid user
out.println("<h2>Welcome admin !</h2>");
out.println("You are successfully logged in");

}

else

[45]

Creating a Simple JEE Web Application

10.

{

errMsg = "Invalid user id or password. Please try again";

<% >

—~— o°
o\°

Before we discuss what has been changed, note that you can invoke and get
code assist for the attributes and values of <jsp: *> tags too. If you are not
sure where code assist is available, just press Ctrl + Command + C.

<%} %>

<¥if ("POST".equalsIgnoreCase(request.getMethod()) && request.getParameter("submit™) != null) {%-
<jsp:useBean id="loginBean" class="Login ></jsp:useBean>

(3 LeginBean - packt.book.jee_eclipse.ch2.bean
(C] LoginConfig - org.apache.tomeat.util.descriptor
(C] LoginConfigimpl - sun.security.jgss

C] LoginContext - javax.security.auth.login

@ LoginException - javax.security.auth.login

(C] LoginModuleControlFlag - javax.security.auth.lo
C] LoginOptions - sun.security.krb5.internal

@ LoginputStream - sun.rmi.log

Figure 2.21 Code assist in JSP tags

Notice that Eclipse displays code assist for the JavaBean that we just added.

Now; let's understand what we changed in the code:

We created multiple scriplets, one for declaration of the errMsg variable and
two more to start an if block and end the same if block.

We added the <jsp:useBean tag in the if condition. The bean will be
created when the condition in the if statement is satisfied, that is, when the
form is posted by clicking the Submit button.

We used the <jsp:setPropertys> tag to set the attributes of the bean:

<jsp:setProperty name="loginBean" property="*"/>

We are setting the values of the member variables of 1oginBean. Further,

we are setting the values of all the member variables by specifying
property="*". However, where do we specify values? The values are
specified implicitly because we have named the members of LoginBean to be
the same as the fields in the form. Therefore, the JSP runtime gets parameters
from a request object and assigns values to the JavaBean members with the
same name.

[46]

Chapter 2

If the member names of JavaBean do not match the request parameters, then
you set the values explicitly by using the same tag:

<jsp:setProperty name="loginBean" property="userName"
value="<%=request.getParameter (\"userName\") %$>"/>

<jsp:setProperty name="loginBean" property="password"
value="<%=request.getParameter (\"password\") %$>"/>

* We then checked whether a user is valid by calling 1oginBean.
isvalidUser (). The code to handle an error message is the same as that
shown in the previous example.

To test the page we have just completed, perform the following steps:

1. Right-click on index. jsp in Project Explorer.

2. Select the Run As | Run on Server menu option. Eclipse will prompt you
to restart Tomcat.

3. Click the OK button to restart Tomcat.

The page will be displayed in the internal Eclipse browser. It should behave in the
same way as in the previous example.

Although we have moved the validation of a user to LoginBean, we still have a lot
of code in Java scriplets. Ideally, we should have as few Java scriplets as possible

in JSP. We still have the code for checking conditions and for variable assignments.
We can write the same code by using tags so that it is consistent with the remaining
tag-based code in JSP and will be easier for a web designer to work on it. This can be
achieved using JSP Standard Tag Library (JSTL).

Using JSTL

JSTL tags can be used to replace much of the Java code written in scriplets. JSTL tags
are classified in five broad groups:

* Core: Covers flow control and variable support among other things

* XML: Tags to process an XML document

* i18n: Tags to support internationalization

* SQL: Tags to access a database

* Functions: Tags to perform some of the common string operations

1
‘Q See http://docs.oracle.com/javaee/5/

tutorial/doc/bnake.html for more details on JSTL.

[47]

http://docs.oracle.com/javaee/5/tutorial/doc/bnake.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnake.html

Creating a Simple JEE Web Application

We will modify the login JSP to use JSTL so that there are no Java scriplets in it.

1.
2.

Download JSTL libraries from https://jstl.java.net/download.html.

The download page contains links to JSTL API and Implementation. Make
sure you download both.

As of writing this chapter, the latest jar files are javax.servlet.
jsp.jstl-api-1.2.1.jar (http://search.maven.org/
remotecontent?filepath=javax/servlet/jsp/jstl/javax.servliet.
jsp.jstl-api/1l.2.1/javax.servlet.jsp.jstl-api-1.2.1.jar)and
javax.servlet.jsp.jstl-1.2.1.jar (http://search.maven.org/
remotecontent?filepath=org/glassfish/web/javax.servlet.jsp.
jstl/1.2.1/javax.servlet.jsp.jstl-1.2.1.jar). Make sure that these
files are copied to WEB-INF/1ib. All jar files in this folder are added to the
classpath of the web application.

We need to add a declaration for JSTL in our JSP. So, add the following
taglib declaration below the first page declaration (<@ page
language="java" ...>):

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

The taglib declaration contains the URL of the tag library and prefix.
All tags in the tag library are accessed using prefix in JSP.

Replace <$String errMsg = null; %> with the set tag of JSTL:

<c:set var="errMsg" value="${null}"/>
<c:set var="displayForm" value="${true}"/>

We have enclosed the value in ${ }. This is called
Expression Language (EL). You enclose the Java
expression in JSTL in ${ }.

S

We have also set a new variable called displayForm (initialized to true).
We will see later where it is used.

Replace the following code:
<%if ("POST".equalsIgnoreCase (request.getMethod()) &&

request.getParameter ("submit") != null) {%>
With the if tag of JSTL:
<c:if test="${\"POST\".equalsIgnoreCase (pageContext.request

.method) && pageContext.request.getParameter (\"submit\") !=
null}"s>

[48]

https://jstl.java.net/download.html
http://search.maven.org/remotecontent?filepath=javax/servlet/jsp/jstl/javax.servlet.jsp.jstl-api/1.2.1/javax.servlet.jsp.jstl-api-1.2.1.jar
http://search.maven.org/remotecontent?filepath=javax/servlet/jsp/jstl/javax.servlet.jsp.jstl-api/1.2.1/javax.servlet.jsp.jstl-api-1.2.1.jar
http://search.maven.org/remotecontent?filepath=javax/servlet/jsp/jstl/javax.servlet.jsp.jstl-api/1.2.1/javax.servlet.jsp.jstl-api-1.2.1.jar
http://search.maven.org/remotecontent?filepath=org/glassfish/web/javax.servlet.jsp.jstl/1.2.1/javax.servlet.jsp.jstl-1.2.1.jar
http://search.maven.org/remotecontent?filepath=org/glassfish/web/javax.servlet.jsp.jstl/1.2.1/javax.servlet.jsp.jstl-1.2.1.jar
http://search.maven.org/remotecontent?filepath=org/glassfish/web/javax.servlet.jsp.jstl/1.2.1/javax.servlet.jsp.jstl-1.2.1.jar

Chapter 2

The request object is accessed in the JSTL tag
s via pageContext.

JavaBean tags go within the if tag. There is no change here.
<jsp:useBean id="loginBean"
class="packt.book.jee eclipse.ch2.bean.LoginBean">
<jsp:setProperty name="loginBean" property="*"/>
</jsp:useBean>

We then add tags to call loginBean.isValidUser () and based on its
return value, to set messages. However, we can't use the if tag of JSTL here,
because we need to write an else statement too. JSTL does not have a tag
for else. Instead, for multiple if-else statements, you need to use the choose
statement, which is somewhat similar to the Java switch statement:

<c:choose>
<c:when test="${!loginBean.isValidUser () }">
<c:set var="errMsg" value="Invalid user id or password. Please
try again"/>
</c:when>
<c:otherwise>
<h2><c:out value="Welcome admin !"/></h2>
<c:out value="You are successfully logged in"/>
<c:set var="displayForm" value="${false}"/>
</c:otherwises>
</c:choose>

If the user credentials are not valid, we set an error message. Else (the
c:otherwise tag), we print the welcome message and set the displayForm
flag to false. We don't want to display the login form if the user is
successfully logged in.

Consider this code:
<%if (errMsg != null) { %>
<%out.print (errMsg); %>

<%} %>
Replace it with the following code:

<c:if test="${errMsg != null}">

<c:out value="${errMsg}"></c:out>

</c:1if>

[49]

Creating a Simple JEE Web Application

Here again, we replace the if statement in the scriplet with the JSTL if tag.
Further, we use the out tag to print an error message.

9. Finally, we enclose the entire <body> content in another JSTL if tag:
<c:if test="${displayForm}">
<body>
</body>
</c:1if>
Here is the complete source code:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.o0org/TR/htmld/loose.dtd" >

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">

<title>Login</title>

</head>

<c:set var="errMsg" value="3${null}"/>
<c:set var="displayForm" value="${true}"/>
<c:1if test="${\"POST\".equalsIgnoreCase (pageContext.request.method)
&& pageContext.request.getParameter (\"submit\") != null}">
<jsp:useBean id="loginBean"
class="packt.book.jee eclipse.ch2.bean.LoginBean">
<jsp:setProperty name="loginBean" property="*"/>
</jsp:useBean>
<c:choose>
<c:when test="${!loginBean.isValidUser () }">
<c:set var="errMsg" value="Invalid user id or password.
Please try again"/>
</c:when>
<c:otherwise>
<h2><c:out value="Welcome admin !"/></h2>
<c:out value="You are successfully logged in"/>

[50]

Chapter 2

<c:set var="displayForm" value="${false}"/>
</c:otherwises>
</c:choose>
</c:if>

<c:if test="${displayForm}">

<body>
<h2>Login:</h2>
<!-- Check error message. If it is set, then display it -->
<c:if test="${errMsg != null}">

<c:out value="${errMsg}"></c:out>

</c:if>
<form method="post">
User Name: <input type="text" name="userName"><brs>
Password: <input type="password" name="password">

<button type="submit" name="submit">Submit</button>
<button type="reset">Reset</button>
</form>
</body>
</c:if>
</html>

As you can see, there are no Java scriplets in the previous code. All of them are
replaced by tags. If a web designer opens this code in any HTML editor, they will
be able to edit the HTML code quite easily without any interfering Java code.

One last note before we leave the topic of JSP. In a real-world application, you would
probably forward the request to another page after logging in the user successfully,
instead of just displaying the welcome message on the same page. You could use the
<jsp:forwards tag to achieve this.

Implementing login application using
Java Servlet

We will now see how to implement a login application using Servlet. Create a new
Dynamic Web Application in Eclipse as described in the previous section. We will
call this LoginServletApp.

1. Right-click on the src folder under Java Resources for the project in Project
Explorer. Select the New | Servlet menu option.

[51]

Creating a Simple JEE Web Application

2. In the Create Servlet wizard, enter the package name as
packt .book.jee eclipse.book.servlet and the class name as
LoginServlet. Then, click Finish.

Create Servlet —

Specify class file destination. (: } ’

Project: LoginServietApp o}

Source folder: /LoginServletApp/src Browse...
Java package: packt.book.jee_eclipse.book.servlet Browse...
Class name: LoginServlet

Superclass: javax.servlet.http.HttpServlet Browse...

Use an existing Servlet class or JSP

Class name: LoginServiet

(7\' Next > Cancel Finish

Figure 2.22 Create Servlet wizard

3. The Servlet wizard creates the class for you. Notice the eWwebServlet ("/
LoginServlet") annotation just above the class declaration. Before JEE 5,
you had to declare servlets in web.xml in the WEB-INF folder. You can still

do that, but you can skip this declaration if you use proper annotations.

Using webServlet, we are telling the servlet container that LoginServlet is
a servlet, and we are mapping it to the following URL path: /LoginServlet.

Thus, we are avoiding two entries in web . xm1 by using this annotation:

° <servlets>

<servlet-mapping>
We will now change the mapping from /LoginServlet tojust /login.
Therefore, we will modify the annotation as follows:

@WebServlet ("/login")
public class LoginServlet extends HttpServlet {...}

[52]

Chapter 2

The wizard also created the doGet and doPost functions. These functions are
overridden from the following base class: Httpservlet.

The doGet function is called to create a response for the Get request, and
dopost is called to create a response for the Post request.

We will create the login form in the doGet function and process the form
data (Post) in the doPost function. However, since doPost may need to
display the form in case the user credentials are invalid, we will write the
createForm function, which could be called from both doGet and doPost.

Add the createForm function as follows:

protected String createForm(String errMsg)
StringBuilder sb = new StringBuilder ("<h2>Login</h2>");
//check whether error message is to be displayed
if (errMsg != null) {
sb.append ("")
.append (errMsg)
.append ("") ;
}
//create form
sb.append ("<form method='post'>\n")
.append ("User Name: <input type='text'
name="'userName'>
\n")

.append ("Password: <input type='password'
name="'password'>
\n")

.append ("<button type='submit'
name="'submit'>Submit</button>\n")

.append ("<button type='reset's>Reset</button>\n")
.append ("</form>") ;

return sb.toString() ;

}

We will now modify the doGet function to call the createForm function and
return it as the response:
protected void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.getWriter () .write (createForm(null)) ;

}

We call the getwrite method on the response object and write the form
content to it by calling the createForm function. Note that when we
display the form, initially, there is no error message, so we pass a null
argument to createForm.

[53]

Creating a Simple JEE Web Application

7. We will modify doPost to process the form content when the user posts the
form by clicking on the Submit button.

protected void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
String userName = request.getParameter ("userName") ;
String password = request.getParameter ("password") ;

//create StringBuilder to hold response string
StringBuilder responseStr = new StringBuilder() ;
if ("admin".equals (userName) && "admin".equals (password)) {
responseStr.append ("<h2>Welcome admin !</h2>")
.append ("You are successfully logged in");

}

else {
//invalid user credentials

responseStr.append (createForm("Invalid user id or password.
Please try again"));

response.getWriter () .write (responseStr.toString()) ;

}

We first get the username and the password from the request object by
calling the request .getParameter method. If the credentials are valid, we
add a welcome message to the response string; else, we call createForm
with an error message and add a return value (markup for the form) to the
response string.

Finally, we get the writer object from the response and write the response.

8. Right-click on the LoginServlet.java file in Project Explorer and select
the Run As | Run on Server option. We have not added this project to the
Tomcat server. Therefore, Eclipse will ask if you want to use the configured
server to run this servlet. Click the Finish button of the wizard.

9. Since a new web application is deployed in the server, Tomcat needs to
restart. Eclipse will prompt you to restart the server. Click OK.

[54]

Chapter 2

When the servlet is opened in the internal browser of Eclipse, notice the URL; it

ends with /1login, which is the mapping that we specified in the servlet annotation.
However, you will observe that instead of rendering an HTML form, the page displays
the markup text. This is because we missed an important setting on the response
object. We did not tell the browser the type of content that we are returning, so the
browser assumed it to be text and rendered it as plain text. We need to tell the browser
that it is HTML content. We do this by calling response. setContentType ("text/
html") in both the doGet and the doPost methods. Here is the complete source code:

package packt.book.jee eclipse.book.servlet;

import java.io.IOException;

import javax.
import javax.
import javax.
import javax.

import javax.

/**

servlet.
servlet.

servlet
servlet
servlet

ServletException;
annotation.WebServlet;

.http.HttpServlet;
.http.HttpServletRequest;
.http.HttpServletResponse;

* Servlet implementation class LoginServlet

*/

@WebServlet ("/login")

public class LoginServlet extends HttpServlet

private static final long serialVersionUID = 1L;

public LoginServlet () {

super () ;

}

//Handles HTTP Get requests
protected void doGet (HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException {

response.setContentType ("text/html") ;

response.getWriter () .write (createForm(null)) ;

}

//Handles HTTP POST requests

protected void doPost (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String userName

String password

request .getParameter ("userName") ;
request .getParameter ("password") ;

//create StringBuilder to hold response string

StringBuilder responseStr = new StringBuilder() ;

[55]

Creating a Simple JEE Web Application

if ("admin".equals (userName) && "admin".equals (password)) {
responseStr.append ("<h2>Welcome admin !</h2>")
.append ("You're are successfully logged in");
} else {
//invalid user credentials

responseStr.append (createForm("Invalid user id or password.
Please try again"));

}
response.setContentType ("text/html") ;
response.getWriter () .write (responseStr.toString()) ;

//Creates HTML Login form
protected String createForm(String errMsg) {
StringBuilder sb = new StringBuilder ("<h2>Login</h2>") ;
//check if error message to be displayed
if (errMsg != null) {
sb.append ("")
.append (errMsg)
.append ("") ;
}
//create form
sb.append ("<form method='post'>\n")

.append ("User Name: <input type='text'
name="'userName' >
\n")

.append ("Password: <input type='password'
name="'password'>
\n")

.append ("<button type='submit'
name="'submit'>Submit</button>\n")

.append ("<button type='reset'>Reset</button>\n")
.append ("</form>") ;
return sb.toString() ;

}

As you can see, it is not very convenient to write HTML markup in Servlet.
Therefore, if you are creating a page with a lot of HTML markup, then it is better

to use JSP or plain HTML. Servlets are good to process requests that do not need to
generate too much markup, for example, controllers in the Model-View-Controller
(MVC) framework; for processing requests that generate a non-text response; or for
creating a web service or web-socket end points.

[56]

Chapter 2

Creating WAR

Thus far, we have been running our web application from Eclipse, which does all
the work of deploying the application to the Tomcat server. This works fine during
development, but when you want to deploy it to the test or the production server,
you need to create Web Application Archive (WAR). We will see how to create
WAR from Eclipse. However, first, un-deploy the existing applications from Tomcat.

1. Go to the Servers view, select the application, and right-click and select the
Remove option.

|* Markers [~ Properties i Servers 32§ Data Source Explorer [snippets &) Console]

v :_D Tomcat vB8.0 Server at localhost [Started, Restart]
| 5 LoginSampleWebApp [Synchronized] Now <
» LoginServietApp [Synchronized]
w {1en

Clean Module Work Directory...

Properties

Figure 2.23 Un-deploy a web application from the server

2. Then, right-click on the project in Project Explorer and select Export | WAR
file. Select the destination for the WAR file.

WAR Export
Export Web project to the local file system. @
1

Web project: LoginServietApp
Destination: A Browse...
Target runtime

v | Optimize for a specific server runtime

<3

Apache Tomcat v8.0

Export source files

Overwrite existing file

7| Cancel

Figure 2.24 Export WAR

[57]

Creating a Simple JEE Web Application

3. To deploy the WAR file to Tomcat, copy it to the <tomcat_home>/webapps
folder.

4. Start the server if it is not already running. If Tomcat is already running, you
don't need to restart it.

Tomcat monitors the webapps folder, and any WAR file copied to it is automatically
deployed. You can verify this by opening the URL of your application in the
browser, for example, http://localhost:8080/LoginServletApp/login.

Java Server Faces

When working with JSP, we saw that it is not a good idea to mix scriplets with the
HTML markup. We solved this problem by using JavaBean. Java Server Faces takes
this design further, and in addition to supporting JavaBeans, it provides built-in
tags for HTML user controls, which are context aware, can perform validation, and
can preserve the state between requests. We will now create the login application
using JSF.

1. Create a dynamic web application in Eclipse; let's name it LoginJsFapp. In
the last page of the wizard, make sure that you check the Generate web.xml
deployment descriptor box.

2. Download JSF libraries from https://maven.java.net/content/
repositories/releases/org/glassfish/javax.faces/2.2.9/javax.
faces-2.2.9.jar and copy to the WwEB- INF/11ib folder in your project.

3. JSF follows the MVC pattern. In the MVC pattern, the code to generate a
user interface (view) is separate from the container of the data (model). The
controller acts as the interface between the view and the model. It selects
the model for processing a request on the basis of the configuration, and
once the model processes the request, it selects the view to be generated
and returned to the client, on the basis of the result of the processing in the
model. The advantage of MVC is that there is a clear separation of the UI and
the business logic (which requires a different set of expertise) so that they can
be developed independently to a large extent. In JSP, the implementation of
MVC is optional, but JSF enforces the MVC design.

Views in JSF are created as xhtm1 files. The controller is a servlet from the JSF library,
and the models are Managed Beans (JavaBeans).

[58]

https://maven.java.net/content/repositories/releases/org/glassfish/javax.faces/2.2.9/javax.faces-2.2.9.jar
https://maven.java.net/content/repositories/releases/org/glassfish/javax.faces/2.2.9/javax.faces-2.2.9.jar
https://maven.java.net/content/repositories/releases/org/glassfish/javax.faces/2.2.9/javax.faces-2.2.9.jar

Chapter 2

We will first configure a controller for JSF. We will add the servlet configuration and
mapping in web .xml. Open web . xml from the WEB- INF folder of the project (web.xml
should have been created for you by the project wizard if you checked the Generate
web.xml deployment descriptor box. See Step 1). Add the following XML snippet
before </web-apps>:

<servlets>
<servlet-name>JSFServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>JSFServlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

Note that you can get code assist when creating the above elements by pressing
Ctrl/ Command + C.

You can specify any name as servlet-name; just make sure that you use the same
name in servlet-mapping. The class for the servlet is javax.faces.webapp.
FacesServlet, which is in the JAR file that we downloaded as the JSF libraries and
copied to WEB- INF/1ib. Further, we have mapped any request ending with . xhtml
to this servlet.

Next, we will create Managed Bean for our login page. This is the same as JavaBean
that we had written earlier with the addition of JSF-specific annotations.

1. Right-click on the src folder under Java Resources for the project in

Project Explorer.

Select the New | Class menu option.

Create JavaBean, LoginBean, as described in the Using JavaBeans in JSP section.

Create two members for userName and password.

AR

Create the getters and setters for them. Then, add two annotations as follows:

package packt.book.jee eclipse.bean;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean (name="loginBean")
@RequestScoped

[59]

Creating a Simple JEE Web Application

public class LoginBean {

private String userName;

private String password;

public String getUserName () {
return userName;

}

public void setUserName (String userName) {
this.userName = userName;

}

public String getPassword()
return password;

}

public void setPassword(String password)
this.password = password;

}
}

(You can get code assist for annotations too. Type @ and press Ctrl/ Command
+ C. Code assist works for the annotation key-value attribute pairs too, for
example, for the name attribute of the ManagedBean annotation).

6. Create a new file called index.xhtml inside the WwebContent folder of the
project by selecting the File | New | File menu option. When using JSF, you
need to add a few namespace declarations at the top of the file.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

Here, we are declaring namespaces for JSF built-in tag libraries. We will
access tags in the core JSF tag library with the prefix £ and HTML tags with
the prefix h.

7. Add the title and start the body tag;:

<head>
<title>Login</title>
</head>
<body>
<h2>Login</h2>

* There are corresponding JSF tags for the head and the
% body, but we do not use any attributes specific to JSF;
T~ therefore, we have used simple HTML tags.

[60]

Chapter 2

We then add the code to display an error message, if it is not null.

<h:outputText value="#{loginBean.errorMsg}"
rendered="#{loginBean.errorMsg != null}"
style="color:red;"/>

Here, we use a tag specific to JSF and expression language to display the
value of the error message. The outputText tag is similar to the c:out tag
that we saw in JSTL. We have also added a condition to render it only if the
error message in the managed bean is not null. Additionally, we have set the
color of this output text.

We have not added the errorMsg member to the managed bean yet.
Therefore, let's add the declaration, the getter, and the setter. Open the
LoginBean class and add the following code:

private String errorMsg;

public String getErrorMsg() {
return errorMsg;

public void setErrorMsg(String errorMsg)
this.errorMsg = errorMsg;

}

Note that we access the managed bean in JSF by using the value of the name
attribute of the ManagedBean annotation. Further, unlike JavaBean in JSP,
we do not create it by using the <jsp:useBean> tag. The JSF runtime creates
the bean if it is not already there in the required scope, in this case, the
Request scope.

Let's go back to editing index.xhtml. We will now add the following form:

<h:form>
User Name: <h:inputText id="userName"
value="#{loginBean.userName}"/>

Password: <h:inputSecret id="password"
value="#{loginBean.password}"/>

<h:commandButton value="Submit"
action="#{loginBean.validate}"/>
</h:form>

Many things are happening here. First, we have used the inputText tag of
JSF to create textboxes for the username and the password. We have set their
values with the corresponding members of 1oginBean. We have used the
commandButton tag of JSF to create the Submit button. When the user clicks
the Submit button, we have set it to call the 1oginBean.validate method
(using the action attribute).

[61]

Creating a Simple JEE Web Application

10.

11.

Here i

We haven't defined the validate method in 1oginBean, so let's add that.
Open the LoginBean class and add the following code:

public String validate()
{
if ("admin".equals (userName) && "admin".equals (password)) {
errorMsg = null;
return "welcome";
} else {
errorMsg = "Invalid user id or password. Please try
again";

return null;

}

Note that the validate method returns a string. How is the return value
used? It is used for navigation purposes in JSF. The JSF runtime looks for
the JSF file with the same name as the string value returned after evaluating
the expression in the action attribute of commandButton. In the validate
method, we return welcome if the user credentials are valid. We tell the

JSF runtime to navigate to welcome.xhtml in this case. If the credentials

are invalid, we set an error message and return null, in which case, the JSF
runtime displays the same page.

We will now add the welcome.xhml page. It simply contains the
welcome message:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<body>
<h2>Welcome admin !</h2>
You are successfully logged in
</body>
</html>

s the complete source code of index.html:

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<head>
<title>Login</title>

</head>

<body>

[62]

Chapter 2

<h2>Login</h2>
<h:outputText value="#{loginBean.errorMsg}"
rendered="#{loginBean.errorMsg != null}"
style="color:red;"/>
<h:form>
User Name: <h:inputText id="userName"
value="#{loginBean.userName}"/>

Password: <h:inputSecret id="password"
value="#{loginBean.password}"/>

<h:commandButton value="Submit" action="#{loginBean.validate}"/>
</h:form>

</body>

</html>

Further, here is the source code of the LoginBean class:

package packt.book.jee eclipse.bean;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean (name="loginBean")
@RequestScoped
public class LoginBean {
private String userName;
private String password;
private String errorMsg;
public String getUserName () {
return userName;
public void setUserName (String userName) {
this.userName = userName;
public String getPassword() {
return password;
public void setPassword(String password) {
this.password = password;
public String getErrorMsg() {
return errorMsg;
public void setErrorMsg(String errorMsg) {
this.errorMsg = errorMsg;

[63]

Creating a Simple JEE Web Application

public String validate()
{
if ("admin".equals (userName) && "admin".equals (password)) {
errorMsg = null;
return "welcome";
}
else {
errorMsg = "Invalid user id or password. Please try again";
return null;

}
}
}

To run the application, right-click on index.xhtml in Project Explorer and select the
Run As | Run on Server option.

JSF can do much more than what we have seen in this small example - it has the
support to validate an input and create page templates too. However, these topics
are beyond the scope of this book. Visit http://docs.oracle.com/cd/E11035_01/
workshop102/webapplications/jsf/jsf-app-tutorial/Introduction.html for
a tutorial on JSF.

Using Maven for project management

In the projects that we created thus far in this chapter, we have managed many of
the project management tasks, such as downloading libraries on which our project
depends, adding them to the appropriate folder so that the web application can find
it, and exporting the project to create the WAR file for deployment. These are just
some of the project management tasks that we have performed so far, but there are
many more, which we will see in the subsequent chapters. It helps to have a tool do
many of the project management tasks for us so that we can focus on application
development. There are some well-known build management tools available for
Java, for example, Apache Ant (http://ant.apache.org/) and Maven (http://
maven.apache.org/).

We will now see how to use Maven for project management in this chapter. By
following the convention for creating the project structure and allowing projects
to define the hierarchy, Maven makes project management easier than Ant. Ant is
primarily a build tool, whereas Maven is a project management tool, which does
build management too. See http://maven.apache.org/what-is-maven.html to
understand what Maven can do.

[64]

http://docs.oracle.com/cd/E11035_01/workshop102/webapplications/jsf/jsf-app-tutorial/Introduction.html
http://docs.oracle.com/cd/E11035_01/workshop102/webapplications/jsf/jsf-app-tutorial/Introduction.html
http://ant.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/what-is-maven.html

Chapter 2

In particular, Maven simplifies dependency management. You saw in the JSF project
that we first downloaded the appropriate Jar files for JSF and copied them to the

1ib folder. Maven can automate this. You can configure Maven settings in pom. xm1l.
POM stands for Project Object Model.

Before we use Maven, it is important to understand how it works. Maven uses
repositories. Repositories contain plugins for many well-known libraries/ projects.
A plugin includes the project configuration information, JAR files required to use
this project in your own project, and any other supporting artifacts. The default
Maven repository is a collection of plugins. You can find a list of plugins in the
default Maven repository at http: //maven.apache.org/plugins/index.html.
You can also browse the content of the Maven repository at http://search.
maven.org/#browse. Maven also maintains a local repository on your machine.
This local repository contains only those plugins that your projects have specified
dependencies on. On Windows, you will find the local repository at c: \Users
\<username>\ .m2, and on Mac OS X, it is located at ~/ .m2.

You define plugins on which your project depends in the dependencies section of
pom.xml (we will see the structure of pom.xml shortly when we create a Maven
project). For example, we can specify a dependency on JSF. When you run the
Maven tool, it first inspects all dependencies in pom.xml. It then checks whether
the dependent plugins with the required versions are already downloaded in the
local repository. If not, it downloads them from the central (remote) repository.
You can also specify repositories to look in. If you do not specify any repository,
then dependencies are searched in the central Maven repository.

We will create a Maven project and explore pom.xml in more detail. However, if you
are curious to know what pom.xm1 is, then visit http://maven.apache.org/pom.
html#what is the POM.

The Eclipse JEE version has Maven built-in, so you don't need to download it.
However, if you plan to use Maven from outside Eclipse, then download it from
http://maven.apache.org/download.cgi. In this book, we will use Maven from
Eclipse only, so you don't need to download it.

[65]

http://maven.apache.org/plugins/index.html
http://search.maven.org/#browse
http://search.maven.org/#browse
http://maven.apache.org/pom.html#What_is_the_POM
http://maven.apache.org/pom.html#What_is_the_POM
http://maven.apache.org/download.cgi

Creating a Simple JEE Web Application

Maven views and preferences in Eclipse JEE

Before we create a Maven project, let's explore the views and preferences specific to
Maven in Eclipse.

1. Select the Window | Show View | Other... menu.

2. Type Maven in the filter box. You will see two views for Maven:

maven (%]

¥V [—~Maven
= Maven Repositories
[T Maven Workspace Build

Cancel

Figure 2.25 Maven views

3. Select the Maven Repositories view and click OK. This view is opened in
the bottom tab window of Eclipse. You can see the location of the local and
remote repositories.

4. Right-click on a global repository to see the options to index the repository.

Open POM
[Z] Copy URL
|5 Maven Repositories 2 [Markers [_| Properties & i
%" Rebuild Index
¥ Update Index

¥ |4 Local Repositories
L.:%I Local Repository (/Users/Ram/.m2/repository)

|5 Workspace Projects) .
I &3
¥ [Global Repositories %" Disable Index Details

|5 central (http://repo.maven.apache.org/maven2) v % Minimum Index Enabled
|2 Project Repositories %" Enable Full Index
|5 Custom Repositories

- Collapse All

Go Home
Go Back
> Go Into

Figure 2.26 The Maven Repositories view

5. Open Eclipse Preferences and type Maven in the filter box to see all the
Maven preferences.

[66]

Chapter 2

[] User Settings =11 v
¥ Maven
Archetypes Global Settings:
Discovery
Errors/Warnings Browse...
Installations N
Java EE Integration pEsgEstings:
Lifecycle Mappings Browse...
Templates
User Interface 1
User Settings Update Settings
Local Repository (From merged user and global settings):
/Users/Ram/.m2/repository Reindex
Restore Defaults Apply
@) Cancel OK
ey
Figure 2.27 Maven Preferences
6. You should set the Maven preferences to refresh repository indexes on
startup, so that the latest libraries are available when you add dependencies
to your project (we will learn how to add dependencies shortly).
7. Click on the Maven node in Preferences, and set the following options:

¥ Maven
Archetypes
Discovery

Installations

Templates

User Settings

User Interface

Errors/Warnings

Java EE Integration
Lifecycle Mappings

(]

Maven

Offline

v Do not automatically update dependencies from remote repositories

Debug Output

<

| Download Artifact JavaDoc

<

Update Maven projects on startup

Download Artifact Sources

Download repository index updates on startup

Hide folders of physically nested modules (experimental)

Global Checksum Policy:

<>

Restore Defaults

Cancel

Apply

OK

Figure 2.28 Maven Preferences for updating indexes on startup

Creating a Simple JEE Web Application

Creating a Maven project

In the following steps, we will see how to create a Maven project in Eclipse.

1. Select the New | Maven Project menu.

New Maven project e
Select project name and location M

Create a simple project (skip archetype selection)

V| Use default Workspace location

Location: v Browse...

Add project(s) to working set

<>

Working set:

} Advanced

(?) Next > Cancel

Figure 2.29 Maven New Project wizard

[68]

Chapter 2

2. Accept all default options and click Next. Type webapp in the filter box and
select maven-archetype-webapp.

New Maven project

Select an Archetype

Catalog: All Catalogs

Filter: webapp

Group Id
org.apache.cocoon
org.apache.maven.archetypes

A simple Java web application

» Advanced

)

+| Show the last version of Archetype only

¢ Cor
Artifact Id Version
cocoon-22-archetype-webapp RELEASE
maven-archetype-webapp RELEASE
Include snapshot archetypes Add Arch

<= Back Mext > Cancel

Figure 2.30 Maven New Project - select archetype

Maven Archetype

We selected maven-archetype-webapp in the preceding wizard. An archetype is a
project template. When you use an archetype for your project, all the dependencies
and other Maven project configurations defined in the template (archetype)

are imported into your project. See more information about Maven Archetype

at http://maven.apache.org/guides/introduction/introduction-to-

archetypes.html.

[69]

http://maven.apache.org/guides/introduction/introduction-to-archetypes.html
http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Creating a Simple JEE Web Application

Continuing with the New Maven Project wizard, click on Next. In the Group Id

field, enter packt .book.jee eclipse. In the Artifact Id field, enter maven jsf
web_app.

New Maven project O
Specify Archetype parameters M
Group Id: packt.bock.jee_eclipse v

Artifact Id: maven_jsf_web_app v

Version: 0.0.1-SNAPSHOT v

Package: packt.book.jee_eclipse.maven_jsf_web_app v

Properties available from archetype:

Name Value Add...
Remove

» Advanced

f:?\) < Back Cancel Finish

Figure 2.31 New Maven Project - Archetype parameters

Click on Finish. The maven_jsf_web_app project is added in Project Explorer.

Exploring the POM

Open pom. xml in the editor and go to the pom.xml tab. The following should be the
content of the file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>packt.book.jee eclipse</grouplds>

[70]

Chapter 2

<artifactId>maven jsf web app</artifactIds
<packagings>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>maven_ Jjsf web app Maven Webapp</names>
<url>http://maven.apache.org</urls>
<dependencies>
<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>3.8.1l</versions>
<scope>test</scope>
</dependency>
</dependencies>
<builds>
<finalName>maven jsf web app</finalName>
</build>
</project>

* modelVersion in pom.xml is the version of Maven.

* groupIdis the common ID used in a business unit or organization under
which projects are grouped together. Although it is not necessary to use the
package structure format, it is generally used.

* artifactIdis the project name.

* versionis the version number of the project. Version numbers are important
when specifying dependencies. You can have multiple versions of a project,
and you can specify different version dependencies in different projects.
Maven also appends the version number to the JAR, WAR, or EAR file that it
creates for the project.

* packaging tells Maven what kind of final output we want when the project
is built. In this book, we will be using the JAR, WAR, and EAR packaging
types, although more types exist.

* name is actually the name of the project, but Eclipse shows artifactid as the
project name in Project Explorer.

* url is the URL of your project if you are hosting the project information on
the web. The default is Maven's URL.

* The dependencies section is where we specify the libraries (or other Maven
artifacts) that this project depends on. The archetype that we selected for this
project has added a default dependency of JUnit to our project. We will learn
more about JUnit in Chapter 5, Unit Testing.

* finalName in the build tag indicates the name of the output file (JAR, WAR,
or EAR) that Maven generates for your project.

[71]

Creating a Simple JEE Web Application

Adding Maven dependencies

The archetype that we selected for the project does not include some of the
dependencies required for a JEE web project. Therefore, you might see an error
marker in index. jsp. We will fix this by adding a dependency for the JEE libraries.

1. With pom.xml open in the editor, click on the Dependencies tab.

2. Click the Add button. This opens the Select Dependency dialog.

3. In the filter box, type javax.servlet (we want to use servlet APIs in

the project).
4. Select the latest version of the API and click on the OK button.

Group Id: * javax.serviet

Artifact Id: # javax.serviet-api

<r

Version: 3.1.0 Scope: compile

Enter groupld, artifactld or shai prefix or pattern (*):

Search Results:
¥ () javax.serviet javax.serviet-api

,3.1.0 [jar]

&, 3.1-b09 [jar]
. 3.1-b08 [jar]
&, 3.1-b07 [jar]
. 3.1-b06 [jar]
&, 3.1-b05 [jar]
i, 3.1-b04 [jar]
&,3.1-b03 [jar]
i, 3.1-b02 [jar]
&, 3.1-b01 [jar]
53.0.1 [jar]

-_"?") Cancel OK

Figure 2.32 Add Servlet API dependency

[72]

Chapter 2

However, we need JAR files for servlet APIs only at the compile time;

at runtime, these APIs are provided by Tomcat. We can indicate this by
specifying the scope of the dependency; in this case, setting it to provided,
which tells Maven to evaluate this dependency for compilation only and
not to package it in the WAR file. See http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html for more
information on dependency scopes.

5. To set the scope of the dependency, select the dependency from the
Dependencies tab of the POM editor.

6. Click on the Properties button. Then, select the provided scope from the
drop-down list.

Group Id: # javax.servlet

Artifact Id: # javax.servlet-api

Version: 3.1.0

Classifier:

Type: jar v
Scope: provided A

System Path:

Optional

@) Cancel OK

Figure 2.33 Set the Maven dependency scope

7. We now need to add dependencies for JSF APIs and their implementation.
Click the Add button again, and type js£ in the search box.

[73]

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Creating a Simple JEE Web Application

8. From the list, select jsf-api with Group Id com. sun. faces, and click the
OK button.

Group Id: # com.sun.faces

Artifact Id: * jsf-api

<»

Version: 2.2.9 Scope: compile

Enter groupld, artifactld or sha1 prefix or pattern (*):

Search Results:

R L L L e e
¥ () com.sun.faces jsf-ap

i, 2.2.9 [jar]

£,2.2.8-05 [jar]

[, 2.2.8-04 [jar]

,2.2.8-02 [jar]

,2.2.8-01 [jar]

[=,2.2.8 [jar]

=.,2.2.7 [jar]

() Cancel OK

Figure 2.34 Add Maven dependencies for JSF
9. Similarly, add a dependency for jsf-impl with Group Id com. sun. faces.

The dependencies section in your pom.xml should look as follows:

<dependencies>

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>3.8.1l</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>javax.servlet</groupIld>
<artifactIds>javax.servlet-api</artifactIds>
<version>3.1.0</versions>
<scope>provided</scope>

</dependency>

[74]

Chapter 2

<dependencys>
<groupIds>com.sun.faces</groupIld>
<artifactIds>jsf-api</artifactIds>
<version>2.2.9</versions>
</dependency>

<dependencys>
<groupIds>com.sun.faces</groupIld>
<artifactId>jsf-impl</artifactIds>
<version>2.2.9</versions>

</dependency>

</dependencies>

The Maven project structure

The Maven project wizard creates the src and target folders under the main
project folder. As the name suggests, all source files go under src. However, the
Java package structure starts under the main folder. By convention, Maven expects
Java source files under the java folder. Therefore, create the java folder under src/
main. The Java package structure starts from the java folder, that is, src/main/
java/<java-packages>. Web content such as HTML, JS, CSS, and JSP go into

the webapp folder under src/main. The compiled classes and other output files
generated by the Maven build process are stored in the target folder.

vis maven_jsf_web_app
= Referenced Types
» Deployment Descriptor:
> ## Java Resources
» =, JavaScript Resources
P | Deployed Resources
V[~src
¥V [~ main
P (= java
[~ resources
P (= webapp
b (= target
|m| pom.xml

Figure 2.35 Maven web application project structure

[75]

Creating a Simple JEE Web Application

The code for our login JSF page is the same as in the previous example of
LoginJdSFApp. Therefore, copy the packt folder from the src folder of that project to
the src/main/java folder of this Maven project. This adds LoginBean. java to the
project. Then, copy web.xml from the weB- INF folder to the src/main/webapp/WEB-
INF folder of this project. Copy index.xhtml and welcome.xhtml to the src/main/
webapp folder.

¥ =2 maven_jsf_web_app

[=- Referenced Types
» |§§|Deployment Descriptor: LoginJSFApp
> ## Java Resources
P =, JavaScript Resources
b L Deployed Resources
V [=src
¥V [~ main
V[~java
V (= packt
¥V [book
¥V [~»jee_eclipse
¥V [~ bean
|J] LoginBean.java
[~ resources
¥ [~ webapp
¥ = WEB-INF
X web.xml
@ index.xhtml
=@ welcome.xhtml
P (= target
|| pom.xmi

Figure 2.36 Project structure after adding source files

No change is required in the source code. To run the application, right-click on
index.xhtml and select Run As | Run on Server.

We will be using Maven for project management in the rest of this book.

Creating WAR using Maven

In a previous example, we created a WAR file by using the Export option of Eclipse.
In a Maven project, you can create WAR by invoking the Maven Install plugin.
Right-click on the project and select the Run As | Maven install option. The WAR
file is created in the target folder. You can then deploy the WAR file in Tomcat by
copying it to the webapps folder of Tomcat.

[76]

Chapter 2

Summary

In this chapter, we saw how to configure Tomcat in Eclipse. We saw how the same
page can be implemented using three different technologies, namely JSP, Servlet, and
JSE. All of them can be used for developing any dynamic web application. However,
JSP and JSF are more suited to creating a presentation, and servlets are more suited
to controllers and end points for a web service and web-socket endpoints. Compared
with JSP, JSF enforces the MVC design and provides many additional services. Then,
we learnt how to use Maven for many project management tasks.

In the next chapter, we will see how to configure and use source control management
systems, particularly SVN and Git.

[77]

Source Control Management
In Eclipse

Source Control Management (SCM) is an essential part of software development.
By using SCM tools, you make sure that you have access to versions of your code
at important milestones. SCM also helps to manage the source code when you

are working in a team, by providing you tools to make sure you do not overwrite
the work done by others. Whether your project is small or large, whether you are
working alone or in a large team, using SCM can benefit you.

Eclipse has had support for integrating various SCM tools for a long time - this
includes support for CVS, Microsoft Source Safe, Perforce, and Subversion (SVN).
The recent versions of Eclipse have built in support for Git too. In this chapter, we
will see how to use Eclipse plugins for Git and Subversion.

The Eclipse Subversion plugin

In this section, we will see how to install and use SVN Eclipse plugin. We will create
a small project and see how to check-in a project to SVN from within Eclipse. We will
also see how to sync with the existing SVN repository.

You will need access to SVN repository to follow the steps in this chapter. If you

do not have access to a SVN repository, you can choose from some of the free SVN
offerings online. This book does not promote or suggest using any particular online
SVN hosting, but for the purpose of explaining SVN Eclipse plugin features, the
author has used https://riouxsvn.com. However, the plugin would wok the same
way with any SVN server.

[79]

[vww allitebooks.cond

https://riouxsvn.com
http://www.allitebooks.org

Source Control Management in Eclipse

Installing the Eclipse Subversion plugin

Open the Eclipse Marketplace by selecting the Help | Eclipse Marketplace menu.
Search for Subversion.

Eclipse Marketplace
Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more
infarmation.

Recent Popular Installed ., July Newsletter

~ ~

Find: subversion @ All Markets - All Categories % Go

Subversive - SVN Team Provider 3.0.0

The Subversive project is aimed to integrate the Subversion (SVN)
version control system with the Eclipse platform. Using the Subversive
plug-in, you can work... more info

SUBVERSIVE

by Eclipse.org, EPL
svn subversion team provider scm Subversive

w267 ~» Installs: 1.20M (37,999 |last month) Install

Marketplaces

=

'?\ Cancel

Figure 3.1 Installing the Subversion plugin

Install the plugin. Before we configure the SVN repository in Eclipse, we need to
select/install a SVN Connector. Go to Eclipse Preferences and type svn in the filter
box. Then, go to the SVN Connector tab.

[80]

Chapter 3

svn
¥ Teamn

SVN v v

General Project structure View Settings Error Reporting

Specify SVN connector plug-in which will be used to work with Subversive. Also you can spacify connector plug-in
settings:
SVN Connaector:

<3

Get Connectors...
Merge Sattings
BVN Merge view mode allows using of all Synchronize View features during merge:
< Use SVN Merge view

'Show merged revisions' allows you to look through revisions which took place in merge. They are linked to
revisions they are merged into (requires SVN 1.5 server or higher):

Cancel OK

Figure 3.2 SVN Connector preferences

If no connectors are installed, then you will see the Get Connectors button.

Click the button.

Subversive Connector Discovery SVN
Select connectors to install. Press Finish to proceed with installation. |
Press the information button to see a detailed overview and a link to more information.
Find:
Subversive SVN Connectors
" External SVN connectors for the Eclipse praject. ane of the
connectors is required to operate with . Selact ing on your
SVN envirenment and operation system.
- " I, SVN Kit 1.7.14 by Polarion, TMate Open Source License (D)

SVN connector based on SVN Kit library (SVN/1.7.11 SVNKIL1.7.14
r10415_v20150322_2135). Compatible with SYN 1.7.x. Pure Java, Supported
platforms: All.

SVN Kit 1.8.10 by Polarion, TMate Open Source License (D)

SVN connector based on SVN Kit library (SVIN/1.8.1 SVNKIt1.8.10
r10446_v20150526_1454). Compatible with S¥N 1.8.x. Pure Java. Supported
platforms: All.

u JavaHL 1.7.x by Polarion, Apache Software License 1.1 (D)
SVN connector based on JavaHL. Compatible with SVN 1.7.x. You also need to
manually install Subversion, including the JavaHL library, for your platform.

m JavaHL 1.8.x by Polarion, Apache Software License 1.1 ()

SVN connector based on JavaHL. Compatible with SVN 1.7.x-1.8.x. You also need
te manually install Subversion, including the JavaHL library, for your platform.

Cancel Finish

3
LY

Figure 3.3 The SVN Connector Discovery wizard

[81]

Source Control Management in Eclipse

Eclipse displays the number of available connectors. We will choose the SVN Kit
connector and install it (click the Finish button).

We will now configure an existing SVN repository in Eclipse. Select the Window

| Open Perspective | Other menu and then select the SVN Repository Exploring
perspective.

[4= Database Debug
Lt; Database Development
ﬁs: Debug
[Git
33;' Java
E:\JJava Browsing
--:? Java EE (default)
EJJava Type Hierarchy
%JavaScri pt
+ JPA
Planning
«J=Plug-in Development
:E Remote System Explorer
| Resource
{251 SVN Repository Exploring
é’CI Team Synchronizing
& Web
3T XML

Cancel OK

Figure 3.4 Open SVN Perspective

Adding a project to an SVN repository

To add a repository, right-click the SVN Repositories view and select New |
Repository Location.

[82]

Chapter 3

Enter Repository Location Information SVN
Define the SVN repository location information. You can specify |
additional settings for proxy and svn+ssh, https connections.

Advanced SSH Settings SSL Settings
URL: https://svn.riouxsvn.com/packt_jeeeclipe bl Browse...
Label
* Use the repository URL as the label

Use a custom label:
Authentication
User: ™
Password: ssssssssss

Save authentication (could trigger secure storage login)
To manage your security data, please see ''Secure Storage'

Show Credentials For: <Repository Location= o
+ Validate Repository Location on finish Reset Changes
|'l7;- Cancel Finish

Figure 3.5 Configure SVN repository

Enter the URL of your SVN repository, your user name, and the password. If you need
to set SSH or SSL information to connect to your SVN repository, then click on the
appropriate tab and enter the information. Click Finish to add the repository to Eclipse.

Let's now create a simple Java project that we would check into the SVN repository.
In this chapter, it is not important what code you write in the project; we are going
to use the project only to understand how to check-in the project files to SVN and
then see how to sync the project. Create a simple Java project as shown in the
following screenshot:

[Package Explorer £3 = 0

v E‘}SVNTestProject
v (Bsrc
v ﬂ;} packt.jee.eclipse.svn
> [J] SVNTestApplication.java
P =, JRE System Library [JavaSE-1.7]

Figure 3.6 A sample project for SVN testing

[83]

Source Control Management in Eclipse

In the preceding project, we have one source file. The source code is not important at

this point. We will now check in this project in SVN. Right-click on the project and
select Team | Share Project.

® ® Share Project

Share Project by
Select the repository plug-in that will be used to share the <:>
selected project.

Select a repository type:
ST Git
' SVN

£ | Next> Cancel

Figure 3.7 Share Project with SVN repository

Select SVN and click the Next button. The wizard gives you the option to either
create a new SVN repository or select an already configured SVN repository.

Share Project with SVN repository

SVN

Select an existing repository location or create a new location. | |

This wizard will help you to share your files with the SVN repository for the first
time. Your project will automatically be imported into the SVN repository.

Create a new repository location
) Use existing repository location:

Label ~ URL
https://svn.riouxsvn.com/p... https://svn.riouxsvn.com/packt_jeeeclipe/

'\;/' < Back Next > Cancel Finish

Figure 3.8 Select SVN repository or create a new one

[84]

Chapter 3

We are going to use the already configured repository. So, select the repository.

You can click Next and configure the advanced option, but we will keep the
configuration simple and click Finish. You will be prompted to check-in the
existing files in the project.

Enter a commit comment

are allowed, but filling a comment message would help other people to understand the
changes.

Comment

Test SVN Project. Initial check-in.

Choose a previously entered comment or template:

<

You can specify a new message or choose the previously entered one. Empty comments SVN i

Keep Locks Paste selected names
Resource Content ~ Properties Treat as Edi
v [8VNTestProject/.settings New
v .~ SVNTestProject/src New
v [SVNTestProject/src/packt New
v [SVNTestProject/src/packt/jee New
v [BVNTestProject/src/packt/jee/eclipse New
v = SVNTestProject/src/packt/jee/eclipse/svn New
Select All Clear Selection Clear All Selected: 10 of 10
1Y
k’? ') Cancel OK

Figure 3.9 Share Project with SVN repository

[85]

Source Control Management in Eclipse

Select the files you want to check-in and enter the check-in comments. Then click
OK. To see the checked in files in the SVN repository, switch to the SVN perspective
and the SVN Repositories view.

()] SVN Repositories £2 = 0

»

- ;‘_;' = |{I> kg | ik
¥ | '; https://svn.riouxsvn.com/packt_jeeeclipe/
b [SVNTestProject 2
¥ [ROOT2Z2
¥ [SVNTestProject 2
b [.settings 2
v |_5I'(: 2
¥ (= packt 2
V(i=jee 2
¥ [eclipse 2
¥ >»svn2
\J] SVNTestApplication.java 2
X .classpath 2
X .project 2
5 REVISIONS

Figure 3.10 Checked-in files in SVN Repositories view

Committing changes to an SVN repository

Let's now modify a file and check-in the changes. Switch back to the Java perspective
and open SVNTestApplication.java from Package Explorer or Navigator. Modify
the file and save the changes. To compare the files or the folders in your working
directory with those in the repository, right-click on file/folder/project in Navigator
and select Compare With | Latest from Repository. Now that we have modified
SVNTestApplication, let's see how it differs from the one in the repository.

[J] SVNTestApplication.java &P synTestapplication.java 52 = 0
4] Java Structure Compare :
¥ |J& Compilation Unit

vCe SVNTestApplication
@@ main(String [])
[J] Java Source Compare ¥ O& - = £ A

SVNTe j /packt/jee/eclip...vn/SVNTestApplication.java [Local] @ | https://svn.riouxsvn.com/packt_jee...vn/SVNTestApplication.java [Rev:2]

| package packt.jee.eclipse.svn; | package packt.jee.eclipse.svn;
tpublic class SVNTestApplication { 1public class SVNTestApplication {
| | o
public static void main(String[] args) { £ public static void main(String[] args) {
System.out.println("Hello !"); |—[£
} i }

Figure 3.11 Comparing SVN files

[86]

Chapter 3

Let's add a new file now, say, readme. txt in the root of the project. To add the file to
the repository, right-click on the file and select Team | Add to Version Control.

Selected resources will be added to the source control

There is 1 resource that is not under SVN version control. Are
you sure you want to add it? The operation will be applied only
to the resources which are selected in the list represented

SVN

==

below.
Resource Content ~ Properties
v [£] SVNTestProject/readme.txt New
Select All Clear Selection Clear All Selected: 1 of 1
|;"'3‘;. Cancel OK

Figure 3.12 Add files to SVN repository

Synchronizing with an SVN repository

To synchronize your local project with the remote repository, click on the project
and select Synchronize with Repository. This will update the project with files in
the remote repository, show files that are new in the local folder, and also show the

changed files.

&0 Synchronize &3

o J

Java Workspace for SVN (SVNTestProject)
v (=) SVNTestProject
v (% src
¥ {8 packt.jee.eclipse.svn
|J® SVNTestApplication.java
|=E readme.txt

[=]

N A N N L

8

=

Figure 3.13 The Team Synchronize view

[87]

Source Control Management in Eclipse

You can filter the list as Incoming Mode (changes from the remote repository),
Outgoing Mode (changes in your working directory), or both. As you can see in the
preceding image, we have two files that are changed in the working directory, one
modified and one new. To commit the changes, right-click on the project and select
Commit. If you want to commit from Navigator or Package Explorer, then right-
click on the project and select Team | Commit. Enter the check-in comments and
click OK. To update the project (receive all the changes from the remote repository),
right-click on the project and select Team | Update.

To see a revision history of the file or folder, right-click Navigator or Package
Explorer and select Team | Show History.

& History &8 | Tasks |°. Problems ST M E
SVNTestProject/src/packt/jee/eclipse/svn/SVNTestApplication.java
Revision Date ~ Changes Author Comment
| *3 2 ramkulkarni - Added readme.txt...
|2 10 ramkulkarni Test SVN Project. Initial check-in.
- Added readme.ixt
- Updated main method in SVNTestApplication.java
¥ [g ROOT Name Path ~
¥ %, SVNTestProject [-& readme.txt SVNTestProject
-, src/packt/jee/eclipse/svn |J® SVNTestApplication.java SVNTestProject/src/packt/jee/eclipse/svn

Figure 3.14 SVN file revision history

Checking out a project from SVN

It is easy to check out projects from a SVN repository into a new workspace. In the
SVN Repositories view, click on the project you want to check out and select the
Check Out option.

() SVN Repositories £3 =

$ B &L
¥ | | https://svn.riouxsvn.com/packt_jeeeclipe/
b (= SVNTestProject 3
v ROOT 3

: - SVNTestProject 3 New >

g REVISIONS

.4 Find/Check Out As...
Copy

of Cut

Figure 3.15 SVN file revision history

[88]

Chapter 3

This option checks out the project in the current workspace. You can also use the
import project option to check out the project from SVN. Select the File | Import
menu option and then select the SVN | Project from SVN option.

There are many other features of SVN that you can use from Eclipse. Refer to
http://www.eclipse.org/subversive/documentation.php.

The Eclipse Git plugin
Recent versions of Eclipse are pre-installed with Eclipse Git plugin (EGit). If not,

you can install the plugin from Eclipse Marketplace. Select the Help | Eclipse
Marketplace option and type egit in the Find textbox.

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more information.

Recent Popular Installed 9 July Newsletter

Find: O egit @ Al Markets ¢ All Categories < Go

EGit - Git Team Provider 4.0.1

EGit is an Eclipse Team provider for the Git version control system. Git is a
distributed SCM, which means every developer has a full copy of all history of
every... more info

by Eclipse.org, EPL

w 414 -~ Installs: 434K (2,155 last month) Installed

Marketplaces

Cancel

S

Figure 3.16 Searching the EGit plugin in Eclipse Marketplace

If the plugin is already installed, it will be marked as Installed.

[89]

http://www.eclipse.org/subversive/documentation.php

Source Control Management in Eclipse

Adding a project to Git

Git is a distributed repository. Unlike other source management systems, Git
maintains a complete local repository too. So you can perform activities such as
check-out and check-in in the local repository without connecting to any remote
repository. When you are ready to move your code to a remote repository, then
you can connect to it and push your files to the remote repository. If you are new
to Git, take a look at the following documentation and tutorial:

* https://git-scm.com/doc

* https://www.atlassian.com/git/tutorials/
Create a simple Java project in the workspace. Again, as in the previous section,
what code you write in this project is not important. Create a Java class in the project.

We will add this project to Git. Right-click on the project in Package Explorer or
Navigator and select Team | Share Project.

Share Project o

Select the repository plug-in that will be used to share the 4:;,
selected project.]

Select a repository type:
. Git
T SVN

Next > Cancel

)

Figure 3.17 Sharing Eclipse project with Git

[90]

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials/

Chapter 3

Select Git and click Next. Check the box Use or create repository in parent folder

of project.

Configure Git Repository

Select repository location

+| Use or create repository in parent folder of project

Location
L= GitPlugin... /Users/Ram/Projects/GitPluginTest

Project

Create Repository /Users/Ram/Projects/GitPluginTest

Iy
U7 < Back Cancel

L

ulL
==

1.git

Figure 3.18 Creating a Git repository for a project

Select the project (check the box for the project) and click the Create Repository
button. Then click Finish.

This creates a new Git repository in the project folder. Switch to the Git perspective
(or open Git Repositories view from the Window | Show View | Other option):

<) Git Repositories £3

» [= References
|} Remotes
¥ (= Working Directory - /Users/Ram/Projects/GitPluginTest
> (= git
> [.settings
» (= bin
P (= src
X| .classpath
¥ .project

B e & & - | A=
NS EE Y S A

¥ |] GitPluginTest [NO-HEAD] - /Users/Ram/Projects/GitPluginTest/.git

Figure 3.19 Git Repositories view

[91]

Source Control Management in Eclipse

Committing files in a Git repository

New or modified files are staged for commit. To see the staged files, click on the
Git Staging tab in the Git perspective.

[Properties [History & Synchronize %; Git Staging 52 4 | Git Aeflag = B8

I GitPluginTest [NO-HEAD]

Unstaged Changes (5) Commit Message & iz
y ¥
¥, .classpath : ;
i . 1 Invalid author specified. Example: A U Thor
_7 -gitignore - bin

<author@example.com>
¥y .project

J; GitTestApp.java - src/packt/jee/eclipsa/git
5 org.eciipse.jdt.core.prefs - settings

Staged Changes (0]

Author:

Committer:

Commit and Push | ==/ Commit

Figure 3.20 The Git Staging view

If you do not want to add a file to the Git repository, then right-click on that file

(or multiple files selection) and select the Ignore option. Before you commit the files
to Git, you need to move Unstaged Changes to Staged Changes. We are going to
add all the files to Git. So select all the files in the Unstaged view and drag and drop
them in the Staged Changes view. It is also recommended to set Author name and
Committer. It is usually in a Name <emails format. To set this option at global level
in Eclipse (so that you do not have to set these fields at every commit), go to Eclipse
Preferences and search for Git. Then go to the Team | Git | Configuration page,
and click the Add Entry button.

Add a configuration entry

Please enter a key, e.g. "user.name" and a value

Key user.name

Value Ram Kulkarni

Cancel OK

Figure 3.21 Add a Git Configuration entry

[92]

Chapter 3

Similarly, add the user.email entry.

e Configuration Gv v ow |
¥ Team v
¥ Git System Settings Repository Settings
Committing
Configuration L N)
Confirmations and We Location: /Users/Ram/.gitconfig Open
History
Label Decorations Key Value Add Entry...
Projects v ﬁ:‘:-
P awser
\?\ﬁ!:::r:g::he clean git hawser clean %f Remove
required true
smudge git hawser smudge %f
¥ user
email my@email.com
name Ram Kulkarni

Figure 3.22 Git configurations in Preferences

Coming back to the Git Staging view, enter Author, Committer, and Commit
Message. Then click the Commit button.

Viewing a file difference after modifications

Let's modify the single Java class created in the previous project. If you go to the
Git Staging view after making changes to the file, you will see that the file appears
in the Unstaged Changes list. To see what changes have been made to the file since
last commit, double-click on the file in the Git Staging view.

1 GitTestApp.java

|J] Java Structure Compare

¥ |J] Compilation Unit
\AC] GitTestApp
main(String [])

|J] Java Source Compare ¥

Local: GitTestApp.java
1 package packt.jee.eclipse.git;

public class GitTestApp {

public static void main(String[] args)

E;j Compare GitTestApp.java Current and Index &3

=

Index: GitTestApp.java (editable)
| package packt.jee.eclipse.git;

“public class GitTestApp {

public static void main(String[] ar

System.out.println("Hello !1™);

¥

}

Figure 3.23 Viewing a file difference

[93]

Source Control Management in Eclipse

To commit these changes, move it to Staged View, enter Commit Message, and click
the Commit button. You can also view the file differences by clicking on the file in
Package Explorer and selecting Compare With | Head Revision.

To see the history of changes to the project or file(s)/folder(s), right-click and select
Team | Show in History.

Problems Ja Declaration [} History &% Synchronize =0
SEM 0 0Pl EFs ~
Project: GitPluginTest [GitPluginTest]
Id Message Author Authored Date Committer Committed
0b50133 © master || HEAD | Added SOP message Ram Kulkarni 4 minutes ago Ram Kulkarni 4 minutes z
605848b © Git test project. Initial check-in Ram Kulkarni 15 minutes ago Ram Kulkarni 15 minutes

1t 6@5848b5dbc551970d321423d9d8cb2ab5686ec ¥ .classpath
thor: Ram Kulkarni 13:33:05 % -project
Committer: Ram Kulkarni 19:33:05

«-settings/org.eclipse.jdt.core.prefs
| 4 bin/.gitignore
A4 src/packt/jee/eclipse/git/GitTestApp.ji

Child: @b5@1338326cae3aBaaSbedledf4@5e5bRB78dddb (Added SOP message)
Branches: master

Git test project. Initial check-in

Figure 3.24 Git history view

Creating a new branch

It is typical when you are using source control management to create separate
branches for features or even for bug fixes. The idea is that the main or the master
branch should always have a working code and you do development on branches
which may not be stable. When you finish a feature or fix a bug and know that the
branch is stable, then you merge the code from the branch to the master branch.

To create a new branch, go to the Git Repositories view and right-click on the
repository you want to branch. Then select the Switch To | New Branch option.

[94]

Chapter 3

Create a new branch

Please choose a source branch and a name for the new branch

Source: s, master Select...

Branch name: bug#1234
Configure upstream for push and pull
When doing a pull

v Checkout new branch

@) Cancel Finish

Figure 3.25 Creating a new branch

Note that the Checkout new branch box is checked. Because of this option, the new
branch becomes the active branch once it is created. Any changes you commit are
going to be in this branch and the master branch remains unaffected. Click Finish
to create the branch.

Let's make some changes to the code, say in the main method of the GitTestApp class:

public class GitTestApp

public static void main(String[] args) {
System.out.println("Hello Git, from branch bug#1234 !!");
}
}

Commit the preceding changes to the new branch.

Now let's check out the master branch. Right-click on the repository in the Git
Repositories view and select Switch To | master. Open the file you had modified
in the new branch. You will observe that the changes you had made to the file are
not present. As mentioned previously, any changes you do to branches are not
committed to the master branch. You have to explicitly merge the changes.

[95]

Source Control Management in Eclipse

To merge changes from branch bug#1234 to the master branch, right click on the
repository in the Git Repositories view and select Merge.

Merge 'master’

Select a branch or tag to merge into the 'master' branch

¥ (= Local
s, bug#1234 ed4ac03 Modified SOP in branch bug#1234
Q.\.., master 3ac7d7b Modified SOP message
(-~ Remote Tracking
i Tags

Merge options

+ Commit (commit the result)
Mo commit (prepare merge commit, but don't commit yet)

Squash (merge changes into working directory, but don't create merge commit)

Fast forward options

* | If a fast-forward, only update the branch pointer
If a fast-forward, create a merge commit

If not a fast-forward, fail

Cancel Merge

Figure 3.26 Merge Git braches

Select branch bug#1234. This branch will be merged in the master branch.
Click Merge. Git displays the summary of merge. Click OK to complete the
merge operation. Now the file in the master branch contains the changes done
in branch bug#1234.

We have merged all the changes from branch bug#1234 to the master and we no
longer need it. So, let's delete branch bug#1234. Expand the Branches node in the
Git Repositories view and right-click on the branch to be deleted (the selected
branch should not be the active branch when deleting). Then select the Delete
Branch menu option.

[96]

Chapter 3

2] Git Repositories 3 =" m J] GitTestA
= y ’_“-l SN = A& v 1 pack
¥ [GitPluginTest [master] - /Us: am/Projects/GitPluginTest/ publ
¥ <. Branches
¥ (= Local
£ bug#1234 ed
Q..ma.ster eddat & Checkout
Remote Trackiny + Push Branch...
T Tags #% Create Branch...
» (- References ¥ Rename Branch... F2
(=
) Remges . Configure Branch...
¥ [=»Working Directory *
> (= .git !
b (= .settings
» = bin = Merge
> B src %' Rebase on
| .classpath # Synchronize with Workspace
X .project
= Reset...
Show In NEW >
Paste Repository Path or URI 3V

Figure 3.27 Delete Git branch

Committing a project to a remote repository

So far we have been working in the local Git repository. But you may want to push
your project to a remote repository if you want to share your code and/or make
sure that you do not lose your changes locally. So in this section, we will see how
to push a local project to a remote Git repository. If you do not have access to a

Git repository, you could create one at http: //www.github.com. Create a new
repository in the remote Git server, named GitPluginTest.

In the Git Repositories view, right-click on the Remotes node and select the
Create Remote option.

Please enter a name for the new remote

You need to configure the new remote for either fetch or push; you can add
configuration for the other direction later

Remote name: origin
¢ Configure push

Configure fetch

.'?:. Cancel OK

Figure 3.28 Add a remote Git repository

[97]

http://www.github.com

Source Control Management in Eclipse

By convention, the name of the remote repository is 'origin'. Click OK. In the next page,
set up configuration for push. Click on the Change button next to the URL textbox.

Destination Git Repository
Enter the location of the destination repository.

Location
URI: https://github.com/ramkulkarni1/GitPluginTest.git Local File...
Host: github.com

Repository path: /ramkulkarni1/GitPluginTest.git

Connection

Protocol: https <
Port:

Authentication

User: ramkulkarnii
Password:

Store in Secure Store

'::?)' Cancel Finish

Figure 3.29 Setup a remote Git URI

Enter URI of the remote Git repository. The wizard extracts the host, repository path,
and protocol from the URL. Enter your user ID and password and click Finish.

Config push for te 'origin’
In order to use a remote for push, you must specify at least one URI and at least one ref
mapping
Rl hitps:igi com/r ni1/GitPluginTest.git Change... Remove
» Push URIs
Ref mappings
No Push Refspec, will push currently checked cut branch instead Add...
Paste
Advanced...
Save Dry-Run Revert Cancel Save and Push

Figure 3.30 Configure a Git push

[98]

Chapter 3

Click Save and Push. This sends files in the local master branch to the remote
Git repository.

Pulling changes from a remote repository

As you work in a team, your team members would also be making changes to the
remote repository. When you want to get the changes done in the remote repository
to your local repository, then you use the Pull option. But before you perform the
Pull operation, you need to configure it. In the Package Explorer, right-click on the
project and select Team | Remote | Configure Fetch from Upstream.

In Git, both Pull and Fetch can get the changes from a remote repository.
However, the Fetch operation does not merge the changes in the local
% repository. The Pull operation first fetches the changes and then merges
"~ in the local repository. If you want to inspect the files before you merge,
then select the Fetch option.

Configure fetch for remote 'origin’
e Please provide a ref mapping

Branch: master
ugl: https://github.com/ramkulkarni1/GitPluginTest.git Change... Hemove
Ref mappings

Add...

Paste

Dry-Run Revert Cancel

Figure 3.31 Configure Git Fetch

[99]

Source Control Management in Eclipse

We need to map the local master branch with a branch in the remote repository. This
tells the pull operation to fetch the changes from the branch in the remote repository
and merge it in the given (in this case, master) local repository. Click the Add button.

Please select a fetch source

The source is a branch or tag in the remote repository

Remote repository: https://github.com/ramkulkarni1/GitPluginTest.git

Source: refs/heads/master

(?) Next > Cancel

Figure 3.32 Configure Git Fetch

Start typing the name of the branch in the source text box, and the wizard will get the
branch information from the remote repository and auto complete it. Click Next and
then Finish. This takes you back to the Configure Fetch page with mapping of the
branches added to it.

Configure fetch for remote 'origin’

In order to use a remote for fetch, you must specify a URI and at least one ref mapping

Branch: master
URl: https://github.com/ramkulkarnil/GitPluginTest.git Change... Remove

Ref mappings

refs/heads/master:refs/remotes/origin/master Add
Paste
Advanced...
Save Dry-Run Revert Cancel Save and Fetch

Figure 3.33 Configure Git Fetch with mapping added

Click Save and Fetch to pull the changes from the remote repository.

[100]

Chapter 3

Cloning a remote repository

We saw how to start development using a local Git repository and then push
changes to a remote repository. Let's see how we can get an already existing remote
Git repository and create a local copy; in other words, we will see how to clone a
remote Git repository. The easiest option is to import the remote Git project. Select
File | Import from the main menu and then Git | Projects from Git | Clone URI.

The wizard display a page similar to Figure 3.29 Setup remote Git URI. Enter the URI
of the remote repository, the user name, and the password, and then click Next.
Select a remote branch and click Next.

Branch Selection

] |
Select branches to clone from remote repository. Remote b |
tracking branches will be created to track updates for
these branches in the remote renositorv.

Branches of https://github.com/ramkulkarni1/GitPluginTest.git:

v = master

Deselect All

(?) < Back Next > Cancel

Figure 3.34 Select a Remote branch to clone

[101]

Source Control Management in Eclipse

Click Next.

Local Destination

11
Configure the local storage location for GitPluginTest. 'uu |
-
Destination
Directory: /Users/Ram/git/GitPluginTest Browse
Initial branch: | master s
Clone submodules
|\'_?;‘| < Back Next > GCancel
Figure 3.35 Select the location of the cloned project
Select the location where the project is to be saved and click Next.
Select a wizard to use for importing projects
11
Depending on the wizard, you may select a directory to determine the 'uu |
wizard's scope a

Wizard for project import

¢ | Import existing Eclipse projects
Import using the New Project wizard

Import as general project

.= Working Directory - /Users/Ram/git/GitPluginTest

@) < Back Next > Cancel

Figure 3.36 Options to import the cloned project

[102]

Chapter 3

There are three options to import the cloned project. If the remote repository contains
the entire Eclipse project then select Import existing Eclipse projects, else select
either of the remaining two options. Since we have checked in the Eclipse project in
the remote repository, we will select the first option. Click Next and then Finish.

For more information about Eclipse Git plugin, refer to https://wiki.eclipse.
org/EGit/User_ Guide.

Summary

There are Eclipse plugins available for wide variety of SCM systems. In this chapter,
we saw how to use Eclipse plugins for SVN and Git. Using these plugins you can
perform many of the typical SCM operations, such as checking out source, comparing
versions, and committing changes, right within the Eclipse environment. This provides
great convenience and can improve your productivity.

In the next chapter, we will see how to create JEE Database application using JDBC
and JDO.

[103]

https://wiki.eclipse.org/EGit/User_Guide
https://wiki.eclipse.org/EGit/User_Guide

Creating a JEE Database
Application

Most web applications today require access to a database. In this chapter, we will see
two ways to access a database from JEE web applications.

* Using JDBC APIs
* Using JPA APIs

JDBC has been part of JDK since version 1.1. It provides uniform APIs to access
different relational databases. Between JDBC APIs and the database sits the JDBC
driver for this database (either provided by the vendor of the database or some
third-party vendor). JDBC translates the common API calls to database-specific calls.
The results returned from the database are also converted into objects of common
data access classes. Although JDBC APIs require you to write a lot more code to
access the database, it is still popular in JEE web applications because of its simplicity
of use, flexibility of using database-specific SQL statements, and low learning curve.

JPA is the result of JSR 220 (which stands for Java Specification Request). JSR is part of
the Java Community Process (JCP). One of the problems of using JDBC APIs directly

is converting object representation of data to relation data. Object representation is in
your JEE application, which needs to be mapped to tables and columns in a relational
database. The process is reversed when handling data returned from the relational
database. If there is a way to automatically map object-oriented representation of data
in web applications to relational data, it would save a lot of developer time. This is also
called Object-relational mapping (ORM). Hibernate (http://hibernate.org/)is a
very popular framework for ORM in Java applications.

[105]

http://hibernate.org/

Creating a JEE Database Application

Many of the concepts of such popular third-party ORM frameworks were
incorporated in JPA. Just as JDBC provides uniform APIs for accessing relational
databases, JPA provides uniform APIs for accessing ORM libraries. Third-party
ORM frameworks provide an implementation of JPA on top of their framework.
The JPA implementation may use the JDBC APIs underneath.

We will explore many features of JDBC and JPA in this chapter as we build
applications using these frameworks. In fact, we will build the same application,
once using JDBC and then using JPA.

The application that we are going to build is for student-course management.

The goal is to take an example that can show how to model relationships between
tables and use them in JEE applications. We will use MySQL for the database and
Tomcat for the web application container. Although this chapter is about database
programming in JEE, we will revisit some of the things we learnt about JSTL and
JSF in Chapter 2, Creating a Simple JEE Web Application. We will use them to create a
user interface for our database web application. Make sure that you have configured
Tomcat in Eclipse as described in the Chapter 2, Creating a Simple JEE Web Application.

Let's first create a database and the tables for this application.

Creating a database schema

There are many ways of creating database tables and relationships in MySQL:

* You can use Data Description Language (DDL) statements directly at
MySQL Command Prompt from a console

* You can use MySQL Workbench and create tables directly by using the
user interface

* You can create an entity-relationship diagram in MySQL Workbench,
export it to create a DDL script, and then run this script to create tables
and relationships

We will use the third option. If you just want to get a script to create tables and
want to skip creating an ER diagram, then jump to the The script for creating tables
and relationships section.

If you have not already installed MySQL and MySQL Workbench, then refer to
Chapter 1, Introducing JEE and Eclipse, for instructions.

1. Open MySQL Workbench. Select the File | New Model menu. A blank
model will be created with the option to create ER diagrams.

[106]

Chapter 4

A | MySaL Model x |

DZv o> 01333

| Description |

Mo Selection &

¥ EER Diagrams

LE]
Add Diagram

» Physical Schemas
» Schema Privileges
» SQL Scripts
» Model Notes

Figure 4.1.Create new MySQL Workbench model

_ MySQL Model x | EER Diagram x |

BEW o~ g8 D
| Navigator | n

W

=

o

()

]

, @ 100 &
Catalog | Layers User Types @
v [mydb
v) Tables 11
v 5] Views g
¥ 55 Routine Groups LD
1

N

Figure 4.2.Create new ER diagram

2. Double-click the Add Diagram icon; a blank ER diagram will be opened.

[107]

Creating a JEE Database Application

3. By default, the new schema is named mydb. Double-click on it to open the
properties of the schema. Rename the schema as course_management.

| Catalog | Layers User Types
T
¥ | course_management
e
v 55 Tables @
v) Views W
v Z‘E Routine Groups 1:1
——&
lin
1:1
—]
Iin
—

}‘ course_management - Schema _

= , Schema Name: course_management The name ¢
3 schema. It
Rename References Refactor m.

chanaina al

| Description | Properties History

<»

Mo Selection

Specifies w

charset/coll

<>

Default Collation: utf8 - utf8_general_ci

Comments:

Schema

Diagram added.

Figure 4.3.Rename schema

4. Hover over the toolbar buttons on the left side of the page, and you will see
tool tips about their functions. Click on the button for new table and then
click on the blank page. This will insert a new table with the name tablel.
Double-click the table icon to open the properties page of the table. In the
Properties page, change the name of the table to Course.

[108]

Chapter 4

"'ﬁ

11|] Course v
__é - v

1I:in
11

—

I.-!ﬂ‘ Name: Course Schema: course_ma
Column Datatype PK NN UQ BIN UN ZF Al Default

<click to edit> : o . 3) 3

Columns Indexes Foreign Keys Triggers Partitioning Options Inserts

Figure 4.4.Create table in ER diagram

5. We will now create the columns of the table. Double-click in the first column
and name it id. Check the PK (primary key), NN (not null), and AI (auto
increment) checkboxes. Add other columns shown as follows:

....... > name VARCHAR(45
11 > credits INT

7] [[S—
1

m Name: Course Schema:
Column Datatype PK NN UQ BIN UN ZF Al Default
id INT 2 Vv v

name VARCHAR(45) & " i if

credits INT 4 v

Figure 4.5.Create columns in a table in the ER diagram

[109]

Creating a JEE Database Application

6. Create other tables, namely Student and Teacher, as follows:

[m] O O
0 "] Course v] Teacher -
& IINT id INT
ol + name VARCHAR(45) : first_name VARCHAR(45)
credits INT last_name VARGHAR(45)
[< ‘ » designation VARCHAR(45)
»>
i a O O
| Student v
id INT
:
» first_name VARCHAR(45)
‘Al last_name VARCHAR(45)
e » enrolled_since LONG
1:1 >
—
Iin
11
—iir Name: Student Schema: d
Column Datatype PK NN UQ BIN UN ZF Al Default
id INT R R v
first_name VARCHAR(45) A v
last_name VARCHAR(45) .
enrolled_since LONG) +

Figure 4.6.Create additional tables

Note that if you want to edit the column properties of any table, then double-click
the table in the ER diagram. Just selecting a table by a single click would not change
the table selection in the properties page. All columns in all tables are required

(not null), except the last_name column in the Student and Teacher tables.

We will now create the relationships between tables. One course can have many
students and students can take many courses. So, there is a many-to-many
relationship between Course and Student.

We will assume that one course is taught by only one teacher. However, a teacher
can teach more than one courses. Therefore, there is a many-to-one relationship
between Course and Teacher.

[110]

Chapter 4

Let's now model these relationships in the ER diagram.

1. First, we will create a non-identifying relationship between Course
and Teacher.

2. Click on the non-identifying one-to-many button in the toolbar
(dotted lines and 1:n).

3. Then, click on the Course table first and then on the Teacher table. It will
create a relationship as shown in Figure 4.7.Create a one-to-many relationship
between tables. Notice that a foreign key Teacher_id is created in the Course
table. We don't want to make the Teacher_id field required in Course.

A course can exist without a teacher in our application. Therefore,
double-click on the link joining the Course and Teacher tables.

Then, click on the Foreign Key tab.
5. On the Referenced Table side, uncheck the mandatory checkbox.

9 "] Course v] Teacher v
& id INT | | VidINT [
name VARCHAR(45) | | » first_name VARCHAR(45)
- _ U -
» credits INT | v last_name VARCHAR(45)
i) # Teacher_id INT ‘ | » designation VARCHAR(45)
~ > >
o
& | Student v
id INT
‘@l , first_name VARCHAR(45)
— > last_name VARCHAR(45)
: » enrolled_since LONG
I:n >
11
7 Gourse-Tabie 0] # Retationarin -
Referencing Table Cardinality Referenced Table
Course * One-to-Many (1:n) Teacher
Foreign Key: fk_Course_Teacher One-to-One (1:1)
Teacher_id: INT id: INT (PK)
Mandatory Edit Table... Mandatory Edit Table...
Identifying Relationship
Relationship = Foreign Key

Figure 4.7.Create a one-to-many relationship between tables

[111]

Creating a JEE Database Application

The creation of a many-to-many relationship requires a link table to be created. To
create a many-to-many relationship between Course and Student, click on the icon
for many-to-many (n:m) and then click on the Course table and the Student table.
This will create a third table (link table) called Course_has_Student. We will rename
this table as Course_Student. The final diagram is as shown in the following figure:

| Teacher v
—| Course v id INT
id INT first_name VARCHAR(45)
name VARCHAR(45) o i s m last_name VARCHAR(45)
credits INT designation VARCHAR(45)
» Teacher_id INT | H >
>
—_| Student v g O
id INT —_| Course_Student v
first_name VARCHAR(45) ! Course_id INT
last_name VARCHAR(45) ! Student_id INT éﬁ
enrolled_since LONG >
> O O 0O

Figure 4.8 ER diagram for the course management example

Follow these steps to create DDL scripts from the preceding ER diagram:

1.

To create DDL scripts from this ER diagram, select the File | Export |
Forward Engineer SQL Create Script... menu.

In the SQL Export Options page, select checkboxes for two options:
° Generate DROP Statements Before Each CREATE Statement
° Generate DROP SCHEMA

Also, specify the Output SQL Script File path if you want to save the script.

On the last page of the Export wizard, you will see the script generated by
MySQL Workbench. Copy this script by clicking the Copy to Clipboard
button.

[112]

Chapter 4

The script for creating tables and relationships

The following is the DDL script to create tables and relationships for the course
management example.

-- MySQL Script generated by MySQL Workbench
-- Sun Mar 8 18:17:07 2015

-- Model: New Model Version: 1.0

-- MySQL Workbench Forward Engineering

SET @OLD UNIQUE CHECKS=@@UNIQUE CHECKS, UNIQUE CHECKS=0;
SET @OLD FOREIGN KEY CHECKS=@@FOREIGN KEY CHECKS, FOREIGN KEY
CHECKS=0; - - -

SET @OLD_ SQL MODE=@@SQL_MODE, SQL MODE='TRADITIONAL,ALLOW INVALID
DATES ' ;

DROP SCHEMA IF EXISTS ~course management” ;

CREATE SCHEMA IF NOT EXISTS ~“course management ™ DEFAULT CHARACTER SET
utf8 COLLATE utf8 general ci ;

USE “course management™ ;

DROP TABLE IF EXISTS ~course management . Teacher™ ;

CREATE TABLE IF NOT EXISTS ~course management . Teacher™ (
“id® INT NOT NULL AUTO_INCREMENT,
“first_name”~ VARCHAR(45) NOT NULL,
“last name”~ VARCHAR (45) NULL,
“designation” VARCHAR (45) NOT NULL,
PRIMARY KEY (~id"))
ENGINE = InnoDB;

Creating a JEE Database Application

DROP TABLE IF EXISTS ~“course management . Course” ;

CREATE TABLE IF NOT EXISTS ~course management™ . Course” (
“id® INT NOT NULL AUTO_ INCREMENT,
“name~ VARCHAR (45) NOT NULL,
“credits® INT NOT NULL,
“Teacher id® INT NULL,
PRIMARY KEY (~id~),
INDEX ~“fk Course Teacher idx~ (" Teacher id~ ASC),
CONSTRAINT ~fk Course Teacher™
FOREIGN KEY (" Teacher_ id")
REFERENCES ~course management™ . Teacher™ (7id")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

DROP TABLE IF EXISTS ~course management . Student™ ;

CREATE TABLE IF NOT EXISTS ~course management . Student™ (
“id® INT NOT NULL AUTO_ INCREMENT,
“first name”~ VARCHAR(45) NOT NULL,
“last name”~ VARCHAR (45) NULL,
“enrolled since™ MEDIUMTEXT NOT NULL,
PRIMARY KEY (~id™))
ENGINE = InnoDB;

DROP TABLE IF EXISTS ~“course management . Course Student™ ;

CREATE TABLE IF NOT EXISTS ~course management™ . Course Student™ (

“Course_ id~ INT NOT NULL,
“Student id® INT NOT NULL,
PRIMARY KEY (“Course id~, “Student id"),
INDEX “fk Course has Student Studentl idx~ (~Student id~ ASC),
INDEX ~“fk Course has Student Coursel idx~ (Course id~ ASC),
CONSTRAINT ~fk Course has Student Coursel”

FOREIGN KEY (~Course id~)

[114]

Chapter 4

REFERENCES ~course management™ . Course” (

ON DELETE NO ACTION
ON UPDATE NO ACTION,

tid")

CONSTRAINT ~fk Course has Student Studentl”
FOREIGN KEY (~Student_id")

REFERENCES ~course management™ . Student™

ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

SET SQL MODE=@OLD_SQL MODE;
SET FOREIGN_ KEY CHECKS=@OLD_ FOREIGN KEY CHECKS;
SET UNIQUE CHECKS=@OLD UNIQUE CHECKS;

Creating tables in MySQL

Let's now create tables and relationships in the MySQL database by using the script

created in the previous section.

(Tid")

Make sure that MySQL is running and there is an open connection to the server from
MySQL Workbench (see Chapter 1, Introducing JEE and Eclipse, for more details):

1.
preceding script.

Execute the query.

Create a new query tab (the first button in the toolbar) and paste the

At the end of the execution, refresh the schemas in the left pane. You should
see the course_management schema and the tables created in it.

¥

iy v v v

SCHEMAS
Q Fite

er oDjects

—| course_management
(=
¥ 17 Tables

= course

=| course student
E| student

=| teacher

Views

Stored Procedures
Functions

L U

Figure 4.9 MySQL schema for the course management example

[115]

Creating a JEE Database Application

Creating a database application
using JDBC

In this section, we will use JDBC to create a simple course management web
application. We will use the MySQL schema created in the previous section.

Further, we will create a web application using Tomcat; we have already seen how
to create one in Chapter 2, Creating a Simple [EE Web Application. We also learnt how
to use JSTL and JSF in the same chapter. In this section, we will use JSTL and JDBC
to create the course management application, and in the next section, we will use JSF
and JPA to create the same application. We will use Maven (as described in Chapter
2, Creating a Simple JEE Web Application) for project management, and of course, our
IDE is going to be Eclipse JEE.

Creating a project and setting up Maven
dependencies

The following are the steps to create the Maven project for our application:
1. Create a Maven web project as described in Chapter 2, Creating a Simple JEE
Web Application.
Name the project CourseManagementJDBC.
Add dependencies for Servlet and JSP, but do not add a dependency for JSF.

To add a dependency for JSTL, open pom.xml and go to the Dependencies
tab. Click on the Add button. Type javax.servlet in the search box and
select jstl.

[116]

Chapter 4

Group Id: + javax.serviet
Artifact Id: « jst|

Version: 12 Scope: compile *

Enter groupld, artifactld or shal prefix or pattern (*):
javax.servlet
Search Results
P () javax.serviet javax.serviet-api
b | javax.serviet jsp-api
¥ | javax.serviet jstl
1.2 [jar]
=,1.1.2 [jar]
= 1.1.1 [jar]
= 1.1.0 [jar]
=,1.0.6 [Jar]
= 1.0.5 [jar]
= 1.0.4 [jar]

Cancel OK

Figure 4.10 Add a dependency for JSTL

5. Add a dependency for the MySQL JDBC driver too.

Group ld: + mysgl
Artifact Id: * mysqgl-connector-java

Version: 5.1.36 Scope: compile o]

Enter groupld, artifactld or sha1 prefix or pattern (*):
mysql
Search Results:
b iowvertx vertx-mysgl-postgresgl-client
b | lio.wvertx vertx-mysql-postgresql-service
) mm-mysgl mm-mysgl
F) mm.mysgl mm.mysgl
¥ () mysgl mysgl-connector-java
[,5.1.36 [jar]
&= 5.1.35 [jar]
B 5.1.34 [jar]
= 5.1.33 [jar]

IR PN |

l:'?\' Cancel OK

Figure 4.11 Add a dependency for the MySQL JDBC driver

[117]

Creating a JEE Database Application

Here is the pom.xm1 file after adding dependencies:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupIds>packt.book.jee.eclipse</groupld>
<artifactId>CourseManagementJDBC</artifactId>
<versionsl</version>
<packagings>war</packaging>
<dependenciess>
<dependency>
<groupId>javax.servlet</grouplds>
<artifactIds>javax.servlet-api</artifactIds>
<version>3.1.0</versions>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>javax.servlet</grouplds>
<artifactIds>jstl</artifactId>
<versions>1l.2</version>
</dependency>
<dependencys>
<groupId>mysgl</groupId>
<artifactId>mysqgl-connector-java</artifactId>
<version>5.1.34</version>
</dependency>
<dependency>
<groupIds>javax.servlet.jsp</groupld>
<artifactIds>jsp-api</artifactIds>
<versions>2.2</version>
<scope>provided</scope>
</dependency>
</dependencies>
</projects>

Note that the dependencies for Servlet and JSP are marked as provided, which
means that they will be provided by the web container (Tomcat) and will not be
packaged with the application.

A description of how to configure Tomcat and add a project to it is skipped
here. Refer to Chapter 2, Creating a Simple JEE Web Application, for these details.
This section will also not repeat information on how to run JSP pages and about
JSTL that were covered in Chapter 2, Creating a Simple JEE Web Application.

[118]

Chapter 4

Creating JavaBeans for data storage

We will first create the JavaBean classes for Student, Course, and Teacher. Since
both the student and the teacher are people, we will create a new class called Person
and have the student and Teacher classes extend it. Create these JavaBeans in the
packt .book.jee.eclipse.ch4.beans package as follows:

* Course bean:

package packt.book.jee.eclipse.ch4.bean;

public class Course

private int id;

private String name;

private int credits;

public int getId() ({
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getCredits() {
return credits;

}

public void setCredits (int credits)
this.credits = credits;

}

* DPerson bean:

package packt.book.jee.eclipse.ch4 .bean;

public class Person
private int id;
private String firstName;
private String lastName;

public int getId() {
return id;

[119]

Creating a JEE Database Application

}

public void setId(int id) {
this.id = id;
}

public String getFirstName ()
return firstName;

}

public void setFirstName (String firstName)
this.firstName = firstName;

}

public String getLastName () {
return lastName;

}

public void setLastName (String lastName)
this.lastName = lastName;

}

* Student bean:
package packt.book.jee.eclipse.ch4.bean;

public class Student extends Person {
private long enrolledsince;

public long getEnrolledsince() {
return enrolledsince;

public void setEnrolledsince (long enrolledsince) ({
this.enrolledsince = enrolledsince;

}
®* Teacher bean:

package packt.book.jee.eclipse.ch4.bean;

public class Teacher extends Person
private String designation;

public String getDesignation() {
return designation;

[120]

Chapter 4

public void setDesignation(String designation) {
this.designation = designation;

}

Creating JSP to add a course

We will create a JSP page to add a new course. Right-click on the project in Package
Explorer, and select the New | Other option. Type jsp in the filter box and select
JSP File. Name the file addcourse. jsp. Eclipse will create the file in the src/main/
webapp folder of the project.

Type the following code in addCourse. jsp:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Add Course</titles>
</head>
<body>
<c:set var="errMsg" value="${null}"/>
<c:set var="displayForm" value="${true}"/>
<c:1if test:"${\"POST\".equalsIgnoreCase(pageContext.request.method)
&& pageContext.request.getParameter (\"submit\") != null}">
<jsp:useBean id="courseBean" class="packt.book.jee.eclipse.ch4.
bean.Course">
<c:catch var="beanStorageException"s>
<jsp:setProperty name="courseBean" property="*" />
</c:catch>
</jsp:useBean>
<c:choose>
<c:when test="${!courseBean.isValidCourse() ||
beanStorageException != null}"s>
<c:set var="errMsg" value="Invalid course details. Please
try again"/>
</c:when>
<c:otherwise>
<c:redirect url="listCourse.jsp"/>

[121]

Creating a JEE Database Application

</c:otherwises>
</c:choose>
</c:1if>

<h2>Add Course:</h2>
<c:if test="${errMsg != null}">

<c:out value="${errMsg}"></c:out>

</c:1if>
<form method="post">
Name: <input type="text" name="name">

Credits : <input type="text" name="credits">

<button type="submit" name="submit">Add</button>
</form>
</body>
</html>

Most of the code should be familiar, if you have read Chapter 2, Creating a Simple JEE
Web Application (see section Using [STL). We have a form to add a course. At the top
of the file, we check whether the post request is made; if yes, store the content of the
form in courseBean (make sure that the names of the form field are the same as the
members defined in the bean). The new tag that we have used here is <c:catchs.

It is like the try-catch block in Java. Any exception thrown from within the body

of <c:catchs> is assigned to the variable name declared in the var attribute. Here,
we are not doing anything with beanStorageException; we are suppressing the
exception. When an exception is thrown, the credits field of the Course bean will
remain set to zero and it will be caught in the courseBean.isvalidCourse method.
If the course data is valid, then we redirect the request to the 1istCourse.jsp page
by using the JSTL <c:redirect> tag.

We need to add the isvalidCourse method in the Course bean. Therefore, open the
class in the editor and add the following method:

public boolean isValidCourse() {
return name != null && credits != 0;

}

We also need to create 1istCourse. jsp. For now, just create a simple JSP with no
JSTL/Java code, and with only one header in the body tag:

<h2>Courses:</h2>

[122]

Chapter 4

Right-click on addcourse. jsp in Package Explorer, and select Run As | Run on
Server. If you have configured Tomcat properly and added your project in Tomcat
(as described in Chapter 2, Creating a Simple JEE Web Application), then you should see
the JSP page running the Eclipse built-in browser. Test the page with both valid and
invalid data (a wrong credit value; for example, a non-numeric value). If the data
entered is valid, then you would be redirected to 1istCourse. jsp; else, the same
page would be displayed with an error message.

Before we start writing the JDBC code, let's learn some fundamental concepts of JDBC.

JDBC concepts

Before performing any operations in JDBC, we need to establish a connection to the
database. Here are some of the important classes/interfaces in JDBC for executing
SQL statements:

JDBC class/interface Description

java.sqgl.Connection Represents the connection between the application
and the backend database. Must for performing
any action on the database.

java.sqgl.DriverManager Manages JDBC drivers used in the application.
Use the DriverManager .getConnection static
method to obtain the connection.

java.sqgl.Statement Used for executing static SQL statements

java.sql.PreparedStatement | Used for preparing parameterized SQL statements.
SQL statements are pre-compiled and can be
executed with different parameters repeatedly.

Java.sqglCallableStatement | Used for executing a stored procedure.

java.sgl.ResultSet Represents a row in the database table in the result
returned after the execution of an SQL query by
Statement or PreapredStatement.

You can find all the interfaces for JDBC at http://docs.oracle.com/javase/8/
docs/api/java/sqgl/package-frame.html.

Many of these are interfaces, and concrete implementations of these interfaces are
provided by the JDBC drivers.

[123]

http://docs.oracle.com/javase/8/docs/api/java/sql/package-frame.html
http://docs.oracle.com/javase/8/docs/api/java/sql/package-frame.html

Creating a JEE Database Application

Creating a database connection

Make sure that the JDBC driver for the database that you want to connect to is
downloaded, and is in the class path. In our project, we have already ensured this
by adding a dependency in Maven. Maven downloads the driver and adds it to the
class path of our web application.

It is always a good practice to make sure that the JDBC driver class is available
when the application is running. If it is not, we can set a suitable error message
and not perform any JDBC operations. The name of the MySQL JDBC driver class
is com.mysqgl.jdbc.Driver (see http://dev.mysgl.com/doc/connector-j/en/
connector-j-usagenotes-connect-drivermanager.html).

try {
Class.forName ("com.mysqgl.jdbc.Driver") ;
}
catch (ClassNotFoundException e)
//log excetion
//either throw application specific exception or return
return;

}

Then, get the connection by calling the briverManager.getConnection method.

try {

Connection con =
DriverManager.getConnection ("jdbc:mysgl://localhost:3306/schema_name?"
+

"user=your user name&password=your password") ;
//perform DB operations and then close the connection
con.close() ;
}
catch (SQLException e) ({
//handle exception

}

The argument to DriverManager.getConnection is called a connection URL or
string. It is specific to the JDBC driver. So, check the documentation of the JDBC
driver to understand how to create a connection URL. The preceding URL format
is for MySQL. See http://dev.mysqgl.com/doc/connector-j/en/connector-7j-
reference-configuration-properties.html.

[124]

http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-connect-drivermanager.html
http://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-connect-drivermanager.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Chapter 4

The connection URL contains the following details: the hostname of MySQL, the
port on which MySQL is running (default is 3306), and the schema name (database
name that you want to connect to). You can pass the username and the password to
connect to the database as the URL parameters.

Creating a connection is an expensive operation. Also, database servers allow a
certain maximum number of connections to it, so connections should be created
sparingly. It is advisable to cache a database connection and reuse it. However,
make sure that you close the connection when you no longer need it, for example, in
the final blocks of your code. Later, we will see how to create a pool of connections
so that we create a limited number of connections, take them out of the pool when
required, perform the required operations, and return them to the pool so that they
can be reused.

Executing SQL statements

Use statement for executing static SQL (having no parameters) and
PreparedStatement for executing parameterized statements (to avoid the risk
of SQL Injection, refer to http://en.wikipedia.org/wiki/SQL_injection
and https://www.owasp.org/index.php/SQL_injection).

To execute any Statement, you first need to create the statement by using the
Connection object. You can then perform any SQL operation, such as create,
update, delete, and select. The Select statement (query) returns the ResultSet
object. Iterate over the Resultset object to get individual rows.

For example, use the following code to get all rows from the Course table:

Statement stmt = null;
ResultSet rs = null;

try {
stmt = con.createStatement () ;
rs = stmt.executeQuery("select * from Course") ;

List<Course> courses = new ArrayList<Courses () ;
//Depending on the database that you connect to, you may have to

//call rs.first () before calling rs.next(). In the case of a MySQL
//database, it is not necessary to call rs.first()
while (rs.next()) {

Course course = new Course() ;
course.setId(rs.getInt ("id")) ;
course.setName (rs.getString ("name")) ;
course.setCredits (rs.getInt ("credits")) ;
courses.add (course) ;

[125]

http://en.wikipedia.org/wiki/SQL_injection and https://www.owasp.org/index.php/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection and https://www.owasp.org/index.php/SQL_injection

Creating a JEE Database Application

}

catch (SQLException e) ({
//handle exception
e.printStackTrace() ;

}

finally {
try {

}

}

if (rs != null)
rs.close () ;

if (stmt != null)
stmt.close () ;

catch (SQLException e) ({

}

//handle exception

Things to note:

Use Connection.createStatement () to create an instance of Statement

Statement .executeQuery returns ResultsSet. If the SQL statement is
not a query, for example, for the create, update, and delete statements,
use Statement .execute (Which returns true if the statement is executed
successfully; else, false) or Statement .executeUpdate (which returns
the number of rows affected or zero if none is affected).

Pass the SQL statement to the Statement . executeQuery function. This can
be any valid SQL string understood by the database.

Iterate over ResultSet by calling the next method, till it returns false.

Use different variations of the get methods (depending on data type of

the column) to obtain values of column in the current row that Resultset
is pointing to. You can either pass the positional index of the column in
SQL that you passed to executeQuery or the column name as used in the
database table or alias specified in the SQL statement. For example, we
would use the following code if we had specified column names in the SQL:

rs = stmt.executeQuery("select id, name, credits as
courseCredit from Course") ;

Then, we could retrieve column values as follows:

course.setId(rs.getInt (1)) ;
course.setName (rs.getString(2)) ;
course.setCredits (rs.getInt ("courseCredit")) ;

Make sure that you close ResultSet and Statement.

[126]

Chapter 4

Instead of getting all courses, if you want to get a specific course, you would want to
use PreparedStatement.

PreparedStatement stmt = null;
int courselId = 10;
ResultSet rs = null;
try {
stmt = con.prepareStatement ("select * from Course where id =
")
stmt.setInt (1, courseld);
rs = stmt.executeQuery() ;

Course course = null;

if (rs.next()) {
course = new Course() ;
course.setId(rs.getInt ("id")) ;
course.setName (rs.getString ("name")) ;
course.setCredits (rs.getInt ("credits")) ;

}

catch (SQLException e) ({
//handle exception
e.printStackTrace () ;

}

finally ({
try {
if (rs != null)
rs.close() ;
if (stmt != null

stmt.close() ;

}

catch (SQLException e) ({
//handle exception

}

In this example, we are trying to get the course with ID 10. We first get an instance of
PreparedStatement by calling Connection.prepareStatement. Note that you need
to pass an SQL statement as an argument to this function. Parameters in the query
are replaced by the » placeholder. We then set the value of the parameter by calling
stmt . setInt. The first argument is the position of the parameter (it starts from 1),
and the second argument is the value. There are many variations of the set method
for different data types.

[127]

Creating a JEE Database Application

Handling transactions

If you want to perform multiple changes to the database as a single unit, that is,
either all changes should be done or none, then you need to start a transaction in
JDBC. You start a transaction by calling Connection. setAutoCommit (false).
Once all operations are executed successfully, commit the changes to the database
by calling Connection.commit. If for any reason you want to abort the transaction,
call connection.rollback (). Changes are not done in the database until you call
Connection.commit.

Here is an example of inserting a bunch of courses in the database. Although in a real
application, it may not make sense to abort a transaction when one of the courses is
not inserted, here, we assume that either all courses must be inserted in the database
or none.

PreparedStatement stmt = con.prepareStatement ("insert into Course
(id, name, credits) values (?,?,?)");

con.setAutoCommit (false) ;
try {
for (Course course : courses) {
stmt.setInt (1, course.getId());
stmt.setString (2, course.getName()) ;
stmt.setInt (3, course.getCredits());
stmt .execute () ;
}
//commit the transaction now
con.commit () ;
}
catch (SQLException e) ({
//rollback commit
con.rollback() ;

}

There is more to learn about transactions than explained here. Refer to Oracle's
JDBC tutorial at http://docs.oracle.com/javase/tutorial/jdbc/basics/
transactions.html.

[128]

http://docs.oracle.com/javase/tutorial/jdbc/basics/transactions.html
http://docs.oracle.com/javase/tutorial/jdbc/basics/transactions.html

Chapter 4

Using the JDBC database connection pool

As mentioned before, a JDBC database connection is an expensive operation and
the connection object should be reused. Connection pools are used for this purpose.
Most web containers provide their own implementation of a connection pool along
with ways to configure it using JNDI. Tomcat also lets you configure a connection
pool using JNDI. The advantage of configuring a connection pool by using JNDI

is that the database configuration parameters, such as host name and port remain
outside the source code and can be easily modified. See http://tomcat .apache.
org/tomcat-8.0-doc/jdbc-pool.html.

However, a Tomcat connection pool can also be used without JNDI, as described

in the preceding link. In this example, we will use a connection pool without JNDI.
The advantage is that you can use the connection pool implementation provided by
a third party; your application then becomes easily portable to other web containers.
With JNDI, you can also port your application, as long as you create the JNDI context
and resources in the web container that you are switching to.

We will add the dependency of the Tomcat connection pool library to Maven's pom.
xml. Open the pom.xml file and add the following dependencies (see Chapter 2,
Creating a Simple JEE Web Application to know how to add dependencies to Maven):

<dependency>
<groupIds>org.apache.tomcat</groupIlds>
<artifactId>tomcat-jdbc</artifactIds>
<version>8.0.20</version>
</dependency>

Note that you can use any other implementation of the JDBC connection pool.
One such connection pool library is HikariCP (https://github.com/
brettwooldridge/HikariCP).

We also want to move the database properties out of the code. Therefore, create a file
called db.properties in src/main/resources. Maven puts all the files in this folder
in the classpath of the application. Add the following properties in db.properties:

db_host=localhost

db_port=3306

db_name=course_ management

db_user name=your user_ name
db_password=your_password

db _driver class_name=com.mysql.jdbc.Driver

[129]

http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html
http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP

Creating a JEE Database Application

We will create a singleton class to create JDBC connections by using the Tomcat
connection pool. Create the packt .book.jee.eclipse.ch4.db.connection
package and create DatabaseConnectionFactory init:

package packt.book.jee.eclipse.ch4.db.connection;

import java.io.IOException;
import java.io.InputStream;
import java.sqgl.Connection;
import java.sql.SQLException;
import java.util.Properties;

import org.apache.tomcat.jdbc.pool.DataSource;
import org.apache.tomcat.jdbc.pool.PoolProperties;

/**
* Singleton Factory class to create JDBC database connections
*

*/
public class DatabaseConnectionFactory {
//singleton instance

private static DatabaseConnectionFactory conFactory = new
DatabaseConnectionFactory () ;

private DataSource dataSource = null;

//Make the construction private
private DatabaseConnectionFactory() {}

//

/**
* Must be called before any other method in this class.
* Initializes the data source and saves it in an instance
variable
*
* @throws IOException
*/
public synchronized void init() throws IOException {
//Check if init was already called

[130]

Chapter 4

if (dataSource != null)
return;

//load db.properties file first

InputStream inStream =
this.getClass () .getClassLoader () .getResourceAsStream("db.properties") ;

Properties dbProperties = new Properties() ;
dbProperties.load (inStream) ;
inStream.close () ;

//create Tomcat specific pool properties

PoolProperties p = new PoolProperties();
p.setUrl ("jdbc:mysql://" + dbProperties.getProperty ("db host") +
":" + dbProperties.getProperty("db port") + "/" +
dbProperties.getProperty ("db name")) ;

p.setDriverClassName (dbProperties.getProperty ("db driver class
name")) ;
p.setUsername (dbProperties.getProperty ("db user name")) ;
p.setPassword (dbProperties.getProperty ("db password")) ;
p.setMaxActive (10) ;

dataSource = new DataSource () ;
dataSource.setPoolProperties (p) ;

//Provides access to singleton instance
public static DatabaseConnectionFactory getConnectionFactory() {
return conFactory;

//returns database connection object
public Connection getConnection () throws SQLException
if (dataSource == null)
throw new SQLException ("Error initializing datasource") ;
return dataSource.getConnection() ;

}

We must call the init method of DatabaseConnectionFactory before getting a
connection from it. We will create a servlet and load it on startup. Then, we will
call DatabaseConnectionFactory.init from the init method of the servlet.

[131]

Creating a JEE Database Application

Create package packt.book.jee.eclipse.ch4.servlet, and then, create
InitServlet init:

package packt.book.jee.eclipse.ch4.servlet;
import java.io.IOException;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import packt.book.jee.eclipse.ch4.db.connection.
DatabaseConnectionFactory;

@WebServlet (value="/initServlet", loadOnStartup=1)
public class InitServlet extends HttpServlet
private static final long serialVersionUID = 1L;

public InitServlet() {
super () ;

public void init (ServletConfig config) throws ServletException

try {
DatabaseConnectionFactory.getConnectionFactory () .init () ;

}

catch (IOException e) {
config.getServletContext () .log(e.getLocalizedMessage () ,e) ;

}

Note that we have used the eWebServlet annotation to mark this class as a servlet
and the loadonStartup attribute is set to 1, to tell the web container to load this
servlet at startup.

Now, we can call the following statement to get the Connection object from
anywhere in the application:

Connection con =
DatabaseConnectionFactory.getConnectionFactory () .getConnection() ;

If there are no more connections available in the pool, then the getConnection
method throws an exception (particularly, in the case of Tomcat datasource, it throws
PoolExhaustedException). When you close the connection that was obtained from
the connection pool, then the connection is returned to the pool for reuse.

[132]

Chapter 4

Saving a course in a database table
using JDBC

Now that we have figured out how to use a JDBC connection pool and get a
connection from it, let's write the code to save a course to the database.

We will create Course Data Access Object (CourseDAO), which will have the
functions required to directly interact with the database. We are thus separating
the code to access the database from the UI and business code.

Create package packt.book.jee.eclipse.ch4.dao. Create a Java class called
CourseDAO in it:

package packt.book.jee.eclipse.ch4d.dao;

import java.sqgl.Connection;

import java.sqgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sqgl.SQLException;

import java.sgl.Statement;

import packt.book.jee.eclipse.ch4.bean.Course;

import packt.book.jee.eclipse.ch4.db.connection.
DatabaseConnectionFactory;

public class CourseDAO {

public static void addCourse (Course course) throws SQLException

{

//get connection from connection pool
Connection con =
DatabaseConnectionFactory.getConnectionFactory () .getConnection () ;
try {
final String sgl = "insert into Course (name, credits)
values (?,?)";
//create the prepared statement with an option to get auto-
generated keys
PreparedStatement stmt = con.prepareStatement (sql,
Statement. RETURN_GENERATED_KEYS) ;
//set parameters
stmt.setString(l, course.getName ()) ;
stmt.setInt (2, course.getCredits());

stmt .execute () ;

[133]

Creating a JEE Database Application

//Get auto-generated keys
ResultSet rs = stmt.getGeneratedKeys() ;

if (rs.next())
course.setId(rs.getInt (1)) ;

rs.close() ;
stmt.close () ;
}
finally {
con.close() ;

}
}
}

We have already seen how to insert a record by using JDBC. The only new thing in
the preceding code is to get an auto-generated ID. Remember that the id column in
the course table is auto-generated. This is the reason that we did not specify it in the
insert SQL.:

String sqgl = "insert into Course (name, credits) values (?,?)";

When we prepare a statement, we are telling the driver to get the auto-generated ID.
Further, after the row is inserted in the table, we get the auto-generated ID by calling

ResultSet rs = stmt.getGeneratedKeys() ;

We have already created addCourse . jsp. Somehow, addCourse. jsp needs to send
the form data to CourseDAOQO in order to save the data to the database. addCourse.
jsp already has access to the Course bean and saves the form data in it. So, it makes
sense for the Course bean to interface between addCourse. jsp and CourseDAO.

So, we will modify the course bean to add an instance of CourseDAO as a member
variable and then add a function to add a course to the database by using the
instance of CourseDAO.

public class Course {

private CourseDAO courseDAO = new CourseDAO() ;

public void addCourse() throws SQLException {
courseDAO.addCourse (this) ;

}
}

[134]

Chapter 4

We will then modify addCourse. jsp to call the addcourse method of the Course
bean. We will have to add the code for this after the form is submitted and the data
is validated:

<c:catch var="addCourseException"s>
${courseBean.addCourse () }
</c:catch>
<c:choose>
<c:when test="${addCourseException != null}"s>
<c:set var="errMsg" value="${addCourseException.message}"/>
</c:when>
<c:otherwise>
<c:redirect url="listCourse.jsp"/>
</c:otherwises>
</c:choose>

One thing to note in the preceding code is the following:
${courseBean.addCourse () }

You can insert Expression Language (EL) in JSP as discussed previously. This
method does not return anything (it is void method). Therefore, we didn't use

the <c:set> tag. Further, note that the call is made within the <c:catch> tag.

If any SQLException is thrown from the method, then it will be assigned to the
addCourseException variable. We then check whether addCourseException is
set in the <c:when> tag. If the value is not null, then it means that the exception
was thrown. We set the error message, which is later displayed on the same page.
If no error is thrown, then the request is redirected to 1istCourse.jsp. Here is the
complete code of addCourse. jsp with the preceding changes:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<titles>Insert title here</title>
</head>
<body>
<c:set var="errMsg" value="${null}"/>
<c:set var="displayForm" value="${true}"/>

[135]

Creating a JEE Database Application

<c:1f
test="${\"POST\".equalsIgnoreCase (pageContext.request.method)
&& pageContext.request.getParameter (\"submit\") != null}">

<jsp:useBean id="courseBean"
class="packt.book.jee.eclipse.ch4 .bean.Course">
<c:catch var="beanStorageException"s
<jsp:setProperty name="courseBean" property="*" />
</c:catch>
</jsp:useBean>
<c:choose>
<c:when test="${!courseBean.isValidCourse() ||
beanStorageException != null}"s
<c:set var="errMsg" value="Invalid course details. Please
try again"/>
</c:when>
<c:otherwise>
<c:catch var="addCourseException">
${courseBean.addCourse () }
</c:catch>
<c:choose>
<c:when test="${addCourseException != null}"s>
<c:set var="errMsg"
value="${addCourseException.message}"/>
</c:when>
<c:otherwise>
<c:redirect url="listCourse.jsp"/>
</c:otherwises>
</c:choose>
</c:otherwises>
</c:choose>
</c:1if>

<h2>Add Course:</h2>
<c:if test="${errMsg != null}">

<c:out value="${errMsg}"></c:out>

</c:1if>
<form method="post">
Name: <input type="text" name="name">

Credits : <input type="text" name="credits"s>

<button type="submit" name="submit">Add</buttons>
</form>
</body>
</html>

[136]

Chapter 4

Run the page, either in Eclipse or outside (see Chapter 2, Creating a Simple JEE Web
Application to know how to run JSP in Eclipse and view it in Eclipse's internal
browser) and add a couple of courses.

Getting courses from the database table
using JDBC

We will now modify listCourses. jsp to display the courses that we have added
using addCourse. jsp. However, we first need to add a method in courseD2o to get
the courses from the database.

Note that the course table has a one-to-many relationship with Teacher. It stores
the teacher id in it. Further, the teacher id is not a required field, so a course can exist
in the course table with a null teacher_id. To get all the details of a course, we
need to get the teacher for the course too. However, we cannot create a simple join in
SQL query to get the details of a course and of the teacher for each course, because a
teacher may not have been set for the course. In such cases, we use the left outer join,
which returns all records from the table on the left side of the join but only matching
records from the table on the right side of the join. Here is the SQL statement to get
all courses and teachers for each course.

select course.id as courseld, course.name as courseName,
course.credits as credits, Teacher.id as teacherId,
Teacher.first name as firstName, Teacher.last name as lastName,
Teacher.designation designation

from Course left outer join Teacher on

course.Teacher id = Teacher.id

order by course.name

We will use the preceding query in CourseDAO to get all courses. Open the
CourseDAO class and add the following method:

public List<Course> getCourses () throws SQLException {
//get connection from connection pool

Connection con =
DatabaseConnectionFactory.getConnectionFactory () .getConnection() ;

List<Course> courses = new ArrayList<Courses> () ;
Statement stmt = null;
ResultSet rs = null;

try {
stmt = con.createStatement () ;

[137]

Creating a JEE Database Application

//create SQL statement using left outer join

StringBuilder sb = new StringBuilder ("select course.id as
courseld, course.name as courseName,")

.append ("course.credits as credits, Teacher.id as teacherId,
Teacher.first name as firstName, ")

.append ("Teacher.last name as lastName, Teacher.designation
designation ")

.append ("from Course left outer join Teacher on ")
.append ("course.Teacher id = Teacher.id ")
.append ("order by course.name") ;

//execute the query

rs = stmt.executeQuery(sb.toString()) ;

//iterate over result set and create Course objects
//add them to course list
while (rs.next()) {
Course course = new Course() ;
course.setId(rs.getInt ("courseId")) ;
course.setName (rs.getString ("courseName")) ;
course.setCredits (rs.getInt ("credits")) ;
courses.add (course) ;

int teacherId = rs.getInt ("teacherId");

//check whether teacher id was null in the table
if (rs.wasNull()) //no teacher set for this course.

continue;

Teacher teacher = new Teacher() ;
teacher.setId(teacherId) ;
teacher.setFirstName (rs.getString ("firstName")) ;
teacher.setLastName (rs.getString("lastName")) ;
teacher.setDesignation(rs.getString("designation")) ;
course.setTeacher (teacher) ;

return courses;

}

finally {
try {if (rs != null) rs.close();} catch (SQLException e) {}
try {if (stmt != null) stmt.close();} catch (SQLException e) {}

try {con.close();} catch (SQLException e) {}

}

[138]

Chapter 4

We have used statement to execute the query because it is a static query. We have
used StringBuilder to build the SQL statement because it is a relatively large
query (compared to those that we have written so far) and we would like to avoid
a concatenation of string objects, because they are immutable. After executing the
query, we iterate over the result set and create the course object and add it to the
list of courses, which is returned at the end.

One interesting thing here is the use of ResultSet.wasNull. We want to check
whether the teacher id field in the Course table for that particular row was null.
Therefore, immediately after calling rs.getInt ("teacherId"), we check whether
the value fetched by Resultset was null by calling rs.wasNull. If teacher_id was
null, then the teacher was not set for that course, so we continue the loop, skipping
the code to create the Teacher object.

In the final block, we catch an exception when closing ResultsSet, Statement,
and Connection and ignoring it.

Let's now add a method in the course bean to fetch courses by calling the getCourses
method of coursebao. Open the Course bean and add the following method:

public List<Course> getCourses () throws SQLException
return courseDAO.getCourses() ;

}

We are now ready to modify listCourse.jsp to display courses. Open the JSP and
replace the existing code with the following;:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.o0rg/TR/htmld/loose.dtd" >
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Courses</title>
</head>
<body>
<c:catch var="err">
<jsp:useBean id="courseBean"
class="packt.book.jee.eclipse.ch4 .bean.Course"/>
<c:set var="courses" value="${courseBean.getCourses()}"/>
</c:catch>
<c:choose>

[139]

Creating a JEE Database Application

<c:when test="${err != null}">
<c:set var="errMsg" value="${err.message}"/>
</c:when>
<c:otherwise>
</c:otherwises>
</c:choose>
<h2>Courses:</h2>
<c:1if test="${errMsg != null}">

<c:out value="${errMsg}"></c:out>

</c:1if>
<table>
<tr>
<th>Id</th>
<th>Name</th>
<th>Credits</th>
<th>Teacher</th>
</tr>
<c:forEach items="${courses}" var="course"s>
<tr>
<td>${course.id}</td>
<td>${course.name}</td>
<td>${course.credits}</td>
<c:choose>
<c:when test="${course.teacher != null}">
<td>${course.teacher.firstName}</td>
</c:when>
<c:otherwise>
<td></td>
</c:otherwises>
</c:choose>
</tr>
</c:forEachs>
</table>
</body>
</html>

Most of the code should be easy to understand because we have used similar code in
the previous examples. At the beginning of the script, we create the Course bean and
get all the courses and assign the course list to a variable called courses.

<c:catch var="err">
<jsp:useBean id="courseBean"
class="packt.book.jee.eclipse.ch4 .bean.Course"/>
<c:set var="courses" value:"${courseBean.getCourses()}"/>
</c:catch>

[140]

Chapter 4

To display courses, we create an HTML table and set its headers. One new thing
in the preceding code is the use of the <c: forEach> JSTL tag to iterate over the list.
The forEach tag takes the following two attributes:

* List of objects

* Variable name of a single item when iterating over the list

In the preceding case, the list of objects is provided by the courses variable that
we set at the beginning of the script and we identify a single item in the list with
the variable name course. We then display the course details and the teacher for
the course, if any.

Writing code to add Teacher and Student and list them is left to the readers as an
exercise. The code would be very similar to that for course, of course, with different
table and class names.

Completing the add Course functionality

We still haven't completed the functionality for adding a new course; we need

to provide an option to assign a teacher to the course when adding a new course.
Assuming that you have implemented TeacherDa0 and added the addTeacher
and getTeachers methods in the Teacher bean, we can now complete the add
Course functionality.

First, modify addCourse in CourseADO to save the teacher id for each course, if it is
not zero. The SQL statement to insert a record changes as follows:

String sgl = "insert into Course (name, credits, Teacher id) values
(?,2,2)";

We have added the Teacher_id column and the corresponding parameter holder ».
We will set Teacher id to null if it is zero; else, the actual value:

if (course.getTeacherId() == 0)
stmt.setNull (3, Types.INTEGER) ;

else
stmt.setInt (3, course.getTeacherId()) ;

We will then modify the Course bean to save the teacher id that will be passed along
with the posT request from the HTML form.

public class Course {

private int teacherId;
public int getTeacherId() {

[141]

Creating a JEE Database Application

return teacherId;

public void setTeacherId(int teacherId) {
this.teacherId = teacherId;

}

Next, we will modify addcourse. jsp to display the drop-down list of teachers when
adding a new course. We first need to get the list of teachers. Therefore, we will create
a Teacher bean and call the getTeachers method on it. We will do this just before the
Add Course header

<jsp:useBean id="teacherBean" class="packt.book.jee.eclipse.ch4 .bean.
Teacher"/>

<c:catch var="teacherBeanErr">
<c:set var="teachers" value="${teacherBean.getTeachers()}"/>
</c:catch>
<c:1if test="${teacherBeanErr != null}">
<c:set var="errMsg" value="${err.message}"/>
</c:1if>

Finally, we will display the HTML drop-down list in the form and populate it with
the teacher names:

Teacher

<select name="teacherId">

<c:forEach items="${teachers}" var="teacher"s>
<option value="${teacher.id}">${teacher.firstName}
</options>

</c:forEachs>

</select>

Download the accompanying code for this chapter to see the complete source code of
CourseDAO and addCourse. jsp.

With this, we conclude our discussion on using JDBC to create web database
applications. With the examples that you have seen so far, you should be in a good
position to complete the remaining application by adding the functionality to modify
and delete the records in the database. The update and delete SQL statements can be
executed by Statement or PreparedStatement, just as the insert statements are
executed using these two classes.

[142]

Chapter 4

Using Eclipse Data Source Explorer

It is sometimes useful if you can see the data in the database table from your IDE
and can modify it. This is possible in Eclipse JEE by using Data Source Explorer.
This view is displayed in a tab at the bottom pane, just below editors, in the Java EE
perspective. If you do not see the view, or have closed the view, you can reopen it
by using the Window | Show View | Other menu. Type data source in the filter
textbox and you should see the view name under the Data Management group.
Open the view:

Markers Properties Servers H-b Data Source Explorer £2

(= Database Connections
¥ [0DA Data Sources
.~ Flat File Data Source
. ~~Web Services Data Source
(XML Data Source

Figure 4.12 Data Source Explorer

Right-click on the Database Connections node and select New. From the list,
select MySQL.

Connection Profile

Create a MySQL connection profile.

Connection Profile Types:

my

E4 MysaL

Name:
New MySQL

Description (optional):

|’7 Next > Cancel

Figure 4.13 Select MySQL Connection Profile

[143]

Creating a JEE Database Application

Click Next. If the Drivers list is empty, you haven't configured the driver yet. Click
on an icon next to the drop-down list for drivers to open the configuration page.

Specify a Driver Template and Definition Name
€3 Unable to locate JAR/zip in file system as specified by the driver definition:
mysql-connector-java-5.1.0-bin.jar.
JAR List Properties
Available driver templates:

Name ~ System Vendor System Version
¥ Database
MySQL JDBC Driver MySQL 40
MySQL JDBC Driver MySQL 4.1
MySQL JDBC Driver MySQL 5.0
MySQL JDBC Driver MySQL 5.1
Driver name:

MySQL JOBC Driver
Driver type:
MySQL JDBC Driver

Y
(?) Cancel

Figure 4.13 JDBC Driver Definition page

Select the MySQL version and click on the JAR List tab.

Specify a Driver Template and Definition Name
€3 A driver already exists with that name. Please
provide a unigue driver name.
Name/Type Properties
Driver files:
Add JAR/Zip...
P~
|\?) Cancel

Figure 4.13 JDBC Driver Definition page

[144]

Chapter 4

Remove any file from the Driver files list. Click on the Add JAR/Zip... button. This
opens the File Open dialog. Select the JAR file for the MySQL driver version that
you have selected. Since Maven has already downloaded the JAR file for you, you
can select it from the local Maven repository. On OS X and Linux, the path is ~/.m2/
repository/mysql/mysql-connector-java/<version nums>/mysql connector
java_version num/mysgl-connector-java-version num.jar (version numisa
placeholder for the actual version number in the path). On Windows, you can find
the Maven repository at C: \Documents and Settings\{your-username}\.m2, and
then, the relative path for the MySQL driver is the same as in OS X.

If you have trouble finding the JAR in the local Maven repository, you can download
the JAR file (for the MySQL JDBC driver) from http://dev.mysqgl.com/downloads/

connector/j/.

Once you specify the correct driver JAR file, you need to set the following properties:

Specify a Driver and Connection Details

Select a driver from the drop-down and provide login details for
the connection.

Drivers: | MySQL JDBC Driver Co@® A
Properties
Optional
Database: |course_management
URL: jdbc:mysql://localhost:3306/course_management
User name: |root
Password:

Save password

v| Connect when the wizard completes Test Connection

Connect every time the workbench is started

(7\1 < Back Next > Cancel Finish

Figure 4.14 Set JDBC driver properties

[145]

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Creating a JEE Database Application

Click Next and then Finish. A new database connection will be added in Data Source
Explorer. You can now browse the database schema and tables.

I'_ Markers [} Properties +i: Servers w Data Source Explorer £3

V [~ Database Connections
v &4 New MySQL (MySQL v. 5.6.20)
¥ [] course_management
P[] Authorization IDs
¥ [Schemas
v @g course_management
» [Dependencies
»] Stored Procedures
V[Tables
» [Course
» [Course_Student
» [Student
» [T Teacher
P [User-Defined Functions
» [Views
¥ (= ODA Data Sources
(= Flat File Data Source
[=+Web Services Data Source
(=~ XML Data Source

Figure 4.14 Browse tables in Data Source Explorer

Right-click on any table to see the menu options available for different actions.

¥ [»Database Connections
¥ &4 New MySQL (MySQL v. 5.6.20)
v L_J course_management
» || Authorization |1Ds
¥ | _1Schemas
v '3_@ course_management
» |_) Dependencies
» || Stored Procedures

¥ | | Tables

» [T]Course .

= Edit

» [Course_Student Load

> [Student #0 Generate DDL... Ext t

b [Teacher Refresh xtract...
» [User-Defined Functior e £ =, Sample Contents
¥ [Views

Figure 4.14 Table menu options in Data Source Explorer

Select the Edit menu to open a page in the editor where you can see the existing
records in the table. You can also modify or add new data in the same page. Select
the Load option to load data from an external file into the table. Select the Extract
option to export data from the table.

[146]

Chapter 4

Creating a database application using JPA

In the previous section, we learnt how to create a Course Management application

by using JDBC and JSTL. In this section, we will build the same application using JPA
and JSF. We have seen how to create a web application using JSF in Chapter 2, Creating
a Simple JEE Web Application. We will use much of this learning in this section.

As mentioned at the beginning of this chapter, JPA is an ORM framework, which is
now part of the JEE specification. At the time of writing, it is in version 2.1.

We will learn a lot about JPA as we develop our application.

Create a Maven project called CourseManagementJpPA with the group ID packt.
book.jee_eclipse and the artefact ID CourseManagementJPA. Eclipse JEE has
great tools for creating applications using JPA, but you need to convert your
project to a JPA project. We will see how to do this later in this section.

Creating the user interface for adding a
course using JSF

Before we write any data access code using JPA, let's first create a user interface using
JSE. As we have learnt in Chapter 2, Creating a Simple JEE Web Application, we need to
add Maven dependencies for JSF. Add the following dependencies in pom.xm1:

<dependenciess>
<dependencys>
<groupId>javax.servlet</groupld>
<artifactId>javax.servlet-api</artifactId>
<version>3.1.0</versions>
<scope>provided</scope>
</dependency>
<dependencys>
<groupIds>com.sun.faces</groupld>
<artifactId>jsf-api</artifactId>
<version>2.2.9</versions>
</dependency>
<dependencys>
<groupIds>com.sun.faces</groupld>
<artifactId>jsf-impl</artifactIds>
<version>2.2.9</versions>
</dependency>
</dependencies>

[147]

Creating a JEE Database Application

We need to add web. xm1, declare the JSF Servlet, and add the mapping for it.
Eclipse provides you a very easy way to add web.xml (which should be in the
WEB- INF folder). Right-click on the project and select the Java EE Tools | Generate
Deployment Descriptor Stub menu. This creates the WeB- INF folder under src/
main/webapp and creates web.xml in the WEB- INF folder with the default content.
Now, add the following servlet and mapping;:

<servlets>
<gservlet-name>JSFServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlets>

<servlet-mapping>
<gservlet-name>JSFServlet</servlet-name>
<url-pattern>*.xhtml</url-patterns>

</servlet-mapping>

We will now create JavaBeans for course, Teacher, Student, and Person, just as we
created them in the previous example for JDBC. Create a packt .book.jee.eclipse.
ch4 . jpa.bean package and create the following JavaBeans:

Course.java

package packt.book.jee.eclipse.ch4.jpa.bean;

import java.io.Serializable;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean (name="course")

@RequestScoped

public class Course implements Serializable
private static final long serialVersionUID = 1L;

private int id;

private String name;
private int credits;
private Teacher teacher;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

[148]

Chapter 4

public String getName () {
return name;

}

public void setName (String name)
this.name = name;

}

public int getCredits() {
return credits;

}

public void setCredits (int credits) {

this.credits = credits;

}

public boolean isValidCourse() {
return name != null && credits != 0;

}
public Teacher getTeacher() {
return teacher;

}
public void setTeacher (Teacher teacher) {
this.teacher = teacher;

}

Person.java

package packt.book.jee.eclipse.ch4.jpa.bean;
import java.io.Serializable;

public class Person implements Serializable({
private static final long serialVersionUID = 1L;

private int id;
private String firstName;
private String lastName;

public int getId() ({
return id;

}

public void setId(int id) {
this.id = id;

}

public String getFirstName ()
return firstName;

[149]

Creating a JEE Database Application

public void setFirstName (String firstName)
this.firstName = firstName;

}

public String getLastName () {
return lastName;

}

public void setLastName (String lastName)
this.lastName = lastName;

}

® Student.java

package packt.book.jee.eclipse.ch4.jpa.bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;
import java.util.Date;

@ManagedBean (name="student")
@RequestScoped
public class Student extends Person {
private static final long serialVersionUID = 1L;

private Date enrolledsince;
public Date getEnrolledsince () {

return enrolledsince;

public void setEnrolledsince (Date enrolledsince) {
this.enrolledsince = enrolledsince;

}

¢ Teacher.java

package packt.book.jee.eclipse.ch4.jpa.bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean (name="teacher")
@RequestScoped

[150]

Chapter 4

public class Teacher extends Person
private static final long serialVersionUID = 1Lj;

private String designation;

public String getDesignation() {
return designation;

public void setDesignation(String designation) {
this.designation = designation;

}

public boolean isValidTeacher() {
return getFirstName() != null;

+ All are JSF managed beans in RequestScope. Refer to JSF
% discussion in Chapter 2, Creating a Simple JEE Web Application
s
to know more about managed beans and scopes.

These beans are now ready for use in JSF pages. Create a JSF page and name it
addCourse.xhtml:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<h2>Add Course:</h2>

<h:form>
<h:outputLabel value="Name:" for="name"/>
<h:inputText value="#{course.name}" id="name"/>

<h:outputLabel value="Credits:" for="credits"/>
<h:inputText value="#{course.credits}" id="credits"/>

<h:commandButton value="Add" action="
#{courseServiceBean.addCourse} "/>
</h:form>

</html>

[151]

Creating a JEE Database Application

The page uses JSF tags and Managed Beans to get/set values. Notice that the value
of an action attribute calls courseServiceBean. In the application that we created
using JDBC, we had some code to interact with DAOs in the JavaBeans. For example,
the course bean had a method for addcourse. However, here, we will handle it
differently. We will create service bean classes (they are also Managed Beans, just
like course) to interact with the data access objects and have the course bean
contain only the values set by the user.

Create a package and name it packt .book.jee.eclipse.ch4.jpa.service_bean
Create a class called CourseServiceBean in this package with the following code:

package packt.book.jee.eclipse.ch4.jpa.service bean;
import javax.faces.bean.ManagedBean;

import javax.faces.bean.ManagedProperty;
import javax.faces.bean.RequestScoped;

import packt.book.jee.eclipse.ch4.jpa.bean.Course;
@ManagedBean (name="courseServiceBean")
@RequestScoped
public class CourseServiceBean {

@ManagedProperty (value="#{course}")

private Course course;

private String errMsg= null;

public Course getCourse () {

return course;

public void setCourse (Course course) {
this.course = course;

public String getErrMsg() {
return errMsg;

public void setErrMsg(String errMsg)
this.errMsg = errMsg;

public String addCourse() {

[152]

Chapter 4

return "listCourse";

}
}

CourseServiceBean is a managed bean including the errMsg field (to store any
error message during the processing of requests), a method called addcourse,
and a field called course. This field is annotated with @ManagedProperty.

The ManagedProperty annotation tells the JSF implementation to inject another
bean (specified in the value attribute) in the current bean. Here, we expect
CourseServiceBean to have access to the course bean at runtime, without
instantiating it. This is part of the Dependency Injection (DI) framework supported
by Java EE. We will learn more about the DI framework in Java EE in the later
chapters. The addCourse function doesn't do much at this point but just returns the
"listCourse" string. If you want to execute addCourse.xhtml at this point, create
a simple listCourse.xml file with some placeholder content and test addcourse.
xhtml. We will add more content to 1istCourse.xml later on in this section.

JPA concepts

JPA is an ORM framework in JEE. It provides a set of APIs that the JPA
implementation providers are expected to implement. There are many JPA providers,
such as EclipseLink (https://eclipse.org/eclipselink/), Hibernate JPA (http://
hibernate.org/orm/), and OpenJPA (http://openjpa.apache.org/). Before we
start writing the persistence code using JPA, it is important to understand some basic
concepts of JPA.

Entity

Entity represents a single object instance that is typically related to one table.

Any Plain Old Java Object (POJO) can be converted to entity by annotating the
class with @Entity. Members of the class are mapped to columns of a table in

the database. Entity classes are simple Java classes, so they can extend or include
other Java classes or even another JPA entity. We will see an example of this in our
application. You can also specify validation rules for members of the Entity class;
for example, you can mark a member as not null by using the @NotNull annotation.
These annotations are provided by Java EE Bean Validation APIs. See http://docs.
oracle.com/javaee/7/tutorial/bean-validation001.htm#GIRCZ for a list of
validation annotations.

[153]

https://eclipse.org/eclipselink/
http://hibernate.org/orm/
http://hibernate.org/orm/
http://openjpa.apache.org/
http://docs.oracle.com/javaee/7/tutorial/bean-validation001.htm#GIRCZ
http://docs.oracle.com/javaee/7/tutorial/bean-validation001.htm#GIRCZ

Creating a JEE Database Application

EntityManager

The EntityManager APIs manages entities. They provide the persistence context in
which entities exist. The persistence context also allows you to manage transactions.
By using EntityManager APIs, you can perform query and write operations on
entities. The entity manager can be web container managed (in which case an
instance of EntityManager is injected by the container), or application managed. In
this chapter, we are going to look at an application-managed entity manager. We
will visit container-managed entity manager in Chapter 7, Creating JEE Applications
with E]B when we learn EJBs. The persistence unit of the entity manager defines

the database connectivity information and groups entities that become part of the
persistence unit. It is defined in a configuration file called persistence.xml and is
expected to be in META- INF in the class path.

EntityManager has its own persistence context, which is a cache of entities. Updates
to entities are first done in the cache and then pushed to the database when a
transaction is committed or when the data is explicitly pushed to the database.

When an application is managing EntityManager, it is advisable to have only one
instance of EntityManager for a persistence unit.

EntityManagerFactory

EntityManagerFactory creates EntityManager. EntityManagerFactory itself is
obtained by calling a static Persistence.createEntityManagerFactory method.
The argument to this function is the persistence-unit name that you have
provided in persistence.xml.

Creating a JPA application
The following are the typical steps in creating a JPA application.
1. Create a database schema (tables and relationships). Optionally, you can
create tables and relationships from JPA entities. We will see an example of
this. However, it should be mentioned here that although creating tables from

JPA entities is fine for development, it is not recommended in the production
environment; doing so may result in a non-optimized database model.

Create persistence.xml and specify the database configurations.
Create entities and relationships.

Get an instance of EntityManagerFactory by calling persistence.
createEntityManagerFactory.

5. Create an instance of EntityManager from EntityManagerFactory.

[154]

Chapter 4

6. Start a transaction on EntityManager if you are performing an insert
or update operation on Entity.

Perform operations on Entity.

Commit the transaction.

Here is an example:

EntityManagerFactory factory =
Persistance.Persistence.createEntityManagerFactory ("course
management")

EntityManager entityManager = factory.createEntityManager () ;
EntityTransaction txn = entityManager.getTransaction() ;
txn.begin() ;

entityManager. persist (course) ;

txn.commit () ;

You can find a description of JPA annotations at http://eclipse.org/
eclipselink/documentation/2.5/jpa/extensions/annotations ref.htm.
JPA tools in Eclipse EE make adding many of the annotations very easy, as we
will see in this section.

Creating a new MySQL schema

For this example, we will create a separate MySQL schema (we won't use the
same schema that we created for the JDBC application, although it is possible).
Open MySQL Workbench and connect to your MySQL database (see Chapter 1,
Introducing JEE and Eclipse, if you do not know how to connect to the MySQL
database from MySQL Workbench).

Right-click in the Schema window and select Create Schema....

SCHEMAS B "
Q, Filter objects

p =] course_management

Create Schema...

Refresh All

Figure 4.19 Create New MySQL schema

Name the new schema course_management_jpa and click Apply. We are going to
use this schema for the JPA application.

[155]

http://eclipse.org/eclipselink/documentation/2.5/jpa/extensions/annotations_ref.htm
http://eclipse.org/eclipselink/documentation/2.5/jpa/extensions/annotations_ref.htm

Creating a JEE Database Application

Setting up a Maven dependency for JPA

In this example, we will use EclipseLink (https://eclipse.org/eclipselink/)

for the JPA implementation. We will use a MySQL JDBC driver and a Bean Validation
framework for validating the members of entities. Finally, we will use Java annotations
provided by JSR0250. So, let's add Maven dependencies for all these:

<dependencys>
<groupIds>org.eclipse.persistence</groupld>
<artifactIdseclipselink</artifactId>
<version>2.5.2</versions>

</dependency>

<dependencys>
<groupId>mysqgl</groupId>
<artifactIds>mysqgl-connector-java</artifactIds>
<version>5.1.34</version>

</dependency>

<dependencys>
<groupld>javax.validation</groupIds>
<artifactIdsvalidation-api</artifactId>
<version>1.1.0.Final</version>

</dependency>

<dependencys>
<groupld>javax.annotation</groupIds>
<artifactId>jsr250-api</artifactIds>
<version>1l.0</version>

</dependency>

[156]

https://eclipse.org/eclipselink/

Chapter 4

Converting a project into a JPA project

Many JPA tools become active in Eclipse JEE only if the project is a JPA project.
Although we have created a Maven project, it is easy to add an Eclipse JPA facet to it.

1. Right-click on the project and select Configure | Convert to JPA Project.

Project Facets -
Select the facets that should be enabled for this project. \/
Configuration: zcustom> o] Save As... Delete
Project Facet Version Runtimes
Application Client module 6.0 -
» | | Axis2 Web Services . Application Client module 6.0
| CXF 2.% Web Services 1.0 =
7 (5 Dynamic Web Module 25~ | popication Glemt moduie. T
| EAR 6.0 v
(& EJB Module 3.1 - Requires the following facet:
EJBDoclet (XDoclet) 1.2.3 - [J] Java 1.6 or newer
GlassFish EJB Extensions 4.0 -
| GlassFish Web Extensions 40 . Conflicts with the following facets:
o 4] Java 1.5 4 | Application Client module
L4 GEl JavaScript 1.0 2 Dynamic Web Module
l¥ JavaServer Faces 2.2 - EAR
JAX-RS (REST Web Services) 1.1 - & EJB Module
+ JAXB 2.2 -
JCA Module 18 - arodie
7 & JPA 2.1 . Static Web Module
“’-:JJSTL 1.2 - Utility Module
| Static Web Module Web Fragment Module
w5 Struts 1.3 -
W Trinidad 2.0 -
Utility Module
| Web Fragment Module 3.0 -
| WebDoclet (XDoclet) 1.2.3 -
'7 Next > Cancel

Figure 4.20 Add a JPA facet to a project

2. Make sure JPA is selected.
3. In the next page, select EclipseLink 2.5.x as the platform.
4. For the JPA implementation type, select Disable Library Configuration.

[157]

Creating a JEE Database Application

5. The drop-down list for Connection lists any connections you have
configured in the Data Source Explorer. For now, do not select any
connection. At the bottom of the page, select the Discover Annotated
Classes Automatically option.

JPA Facet .

1, Library configuration is disabled. The user may need to configure
further classpath changes later.

Platform

EclipseLink 2.5.x v

JPA implementation

<>

Type: Disable Library Configuration

The JPA facet requires a JPA implementation library to be present on the
project classpath. By disabling library configuration, the user takes on the
responsibility of ensuring that the classpath is configured appropriately via
alternate means.

Connection
<None> s
Add connection...
Connect
Driver: <
Catalog: <
Schema: #
Persistent class management
Discover annotated classes automatically
* Annotated classes must be listed in persistence.xml
oy ini
(? < Back Cancel Finish

W/

Figure 4.21 Configure a JPA facet (need to change the image with Discover ... option | Ram)

Click Finish.

Notice that the JPA Content group is created under the project and
persistence.xml is created in it. Open persistence.xml in the editor.

[158]

Chapter 4

8. Click on the Connection tab and change Transaction type to Resource
Local. We have selected Resource Local because in this chapter, we are
going to manage EntityManager. If you want a JEE container to manage
EntityManager, then you should set Transaction type to JTA. We will
see an example of the JTA transaction type in Chapter 7, Creating JEE
Applications with EJB.

9. Enter the EclipseLink connection pool attributes according to the following
screenshot and save the file.

Persistence Unit Connection
Configure the data source or JOBC connection properties.

Transaction type: Resource Local
Batch writing: Default (None)

= Statement caching:

= Native SQL (False)

Database

JTA data source:
Non-JTA data source:

EclipseLink connection pool

Populate from connection...

Driver: com.mysqgl.jdbc.Driver

URL: jdbc:mysql://localhost/course_management_jpa
User: root

Password:

= Bind parameters (True)

Figure 4.22 Setup Persistence Unit Connection

10. Next, click on the Schema Generation tab. Here, we will set the options to
generate database tables and relationships from entities. Select the options
according to the following screenshot:

Schema Generation

Schema Generation i ink G
Schema generation DDL generaticn type: Create Tables t+
Database action: Create ¢ Output mode: Both <
Scripts generation: Create s DDL generation location: Default) ¥ | Browse...
Metadata and script craation: s Create DDL file name: Default [createDDL.sg) i
Metadata and script dropping: 2 Drop DOL file name: Default [dropDDL.3ql) -

- Create database schemas (False)

Figure 4.23 Setup Schema Generation options of Persistence Unit

[159]

Creating a JEE Database Application

Here is the code of the persistenace.xml file for the previous settings:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence 2 1.xsd">

<persistence-unit name="CourseManagementJPA" transaction-
type="RESOURCE_LOCAL" >
<propertiess
<property name="javax.persistence.jdbc.driver"
value="com.mysqgl.jdbc.Driver"/>

<property name="javax.persistence.jdbc.url"
value="jdbc:mysql://localhost/course management jpa"/>

<property name="javax.persistence.jdbc.user" value="root"/>

<property name="javax.persistence.schema-
generation.database.action" value="create"/>

<property name="javax.persistence.schema-
generation.scripts.action" value="create"/>

<property name="eclipselink.ddl-generation" value="create-
tables"/>

<property name="eclipselink.ddl-generation.output-mode"
value="both"/>

</properties>
</persistence-units>
</persistences>

Creating entities

We have already created JavaBeans for Course, Person, Student, and Teacher.
We will now convert them to JPA entities by using the @Ent ity annotation.
Open Course. java and add the following annotations:

@ManagedBean (name="course")

@RequestScoped

@Entity

public class Course implements Serializable

The same bean can act as a managed bean for JSF and an entity for JPA. Note that if
the name of the class is different from the table name in the database, you will need
to specify the name attribute of the @Entity annotation. For example, if our Course
table were called schoolCourse, then the entity declaration would be as follows:

@Entity (name="SchoolCourse")

[160]

Chapter 4

To specify the primary key of the Entity, use the @Id annotation. In the Course
table, id is the primary key and is auto-generated. To indicate the auto-generation
of the value, use the @Generatedvalue annotation. Use the @column annotation to
indicate that the member variable corresponds to a column in the table. Therefore,
the annotations for id are as follows:

@Id

@GeneratedValue (strategy=GenerationType.IDENTITY)
@Column (name="1id")

private int id;

You can specify the validations for a column by using the Bean Validation framework
annotation, as mentioned earlier. For example, the course name should not be null:

@NotNull
@Column (name="name")
private String name;

Further, the minimum value of credits should be 1:

@Min (1)
@Column (name="credits")
private int credits;

In the preceding examples, the @Column annotation is not necessary
% to specify the name of the column if the field name is the same as the
"~ column name.

If you are using JPA entities to create tables and want to exactly specify the type
of columns, then you can use the columnDefinition attribute of the @Column
annotation; for example, to specify a column of type varchar with length 20, you
could use @Column (columnDefinition="VARCHAR (20) "). Refer to http://docs.
oracle.com/javaee/7/api/javax/persistence/Column.html to see all the
attributes of the @Column annotation.

We will add more annotations to Course Entity as needed later. For now, let's turn
our attention to the person class. This class is the parent class of the Student and
Teacher classes. However, in the database, there is no Person table and all the fields
of Person and Student are in the Student table and the same for the Teacher table.
So, how do we model this in JPA? Well, JPA supports the inheritance of entities and
provides control over how they should be mapped to database tables. Open the
person class and add the following annotations:

@Entity
@Inheritance (strategy=TABLE PER_ CLASS)
public abstract class Person implements Serializable { ..

[161]

http://docs.oracle.com/javaee/7/api/javax/persistence/Column.html
http://docs.oracle.com/javaee/7/api/javax/persistence/Column.html

Creating a JEE Database Application

We are not only identifying the pPerson class as Entity, but we are also saying that it
is used for inheritance (using @Inheritance). The inheritance strategy decides how
tables are mapped to classes. There are three possible strategies:

* SINGLE_ TABLE: In this case, fields of the parent and child classes would be
mapped to the table of the parent class. If we use this strategy, then the fields
of Parent, Student, and Teacher will be mapped to table mapped to by the
Person entity.

* TABLE_PER CLASS: In this case, each concrete class (non-abstract class) is
mapped to a table in the database. All the fields of the parent class are also
mapped to the table mapped to the child class. For example, all the fields of
person and Student will be mapped to columns in the Student table. Since
person is marked as abstract, no table will be mapped by the pPerson class.
It exists only to provide inheritance support in the application.

* JOINED: In this case, the parent and its children are mapped to separate
tables. For example, Person will be mapped to the Person table and student
and Teacher would be mapped to the corresponding tables in the database.

On the basis of the schema that we created for the JDBC application, we have the
Student and Teacher tables with all the required columns and there is no person
table. Therefore, we have selected the TABLE_PER_CLASS strategy here.

See more information about entity inheritance in JPA at http://docs.oracle.com/
javaee/7/tutorial/persistence-intro002.htm#BNBQN.

The id, firstName, and lastName fields in the Person table are shared by Student
and Teacher. Therefore, we need to mark them as columns in tables and set the
primary key. Hence, add the following annotations to the fields in the Person class:

@Id
@GeneratedValue (strategy=GenerationType.IDENTITY)
@Column (name="1id")

private int id;

@Column (name = "first name")
@NotNull
private String firstName;

@Column (name = "last name")
private String lastName;

Here, the column names in the table do not match the class fields. Therefore, we have
to specify the name attribute in the @Column annotations.

[162]

http://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm#BNBQN
http://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm#BNBQN

Chapter 4

Let's now mark the Student class as Entity:

@Entity

@ManagedBean (name="student")

@RequestScoped

public class Student extends Person implements Serializable

The student class has a Date field called enrolledSince, which is of the java.
util.Date type. However, JDBC and JPA use the java.sqgl.Date type. If you
want JPA to automatically convert java.sql.Date to java.util.Date, then you
need to mark the field with the @Temporal annotation:

@Temporal (DATE)
@Column (name="enrolled since")
private Date enrolledSince;

Open the Teacher class and add the @Ent ity annotation to it.

@Entity

@ManagedBean (name="teacher")

@RequestScoped

public class Teacher extends Person implements Serializable

Then, map the designation field in the class:

@NotNull
@Column (name="designation")
private String designation;

We have now added annotations for all tables and their fields that do not
participate in table relationships. We will now model the relationships between
tables in our classes.

Configuring entity relationships

First, we will model the relationship between Course and Teacher. There is a
one-to-many relationship between them: one teacher may teach a number of
courses. Open Course. java in the editor. Open the JPA perspective in Eclipse
JEE (the Window | Open Perspective | JPA menu).

[163]

Creating a JEE Database Application

Configuring a many-to-one relationship

With course. java open in the editor, click on the JPA Details tab in the bottom
window (just below the editor window). In Course. java, click on the teacher
member variable. The JPA Details tab shows the details of this attribute:

Problems 4%% JPA Details 22 Console

Attribute 'teacher' is mapped as default (one to one).

¥ One to One
Target entity: Default (packt.book.jee.eclipse.ch4.jpa.bean.Teacher)
Fetch: Default (Eager)
Join fetch: <None>
= Optional (True)
Private owned

= Orphan removal (False)

Cascade

All Persist Merge Remove Refresh Detach

Figure 4.24 JPA details of an entity attribute

Target entity is auto-selected (as Teacher) because we have marked Teacher as an
entity and the type of teacher field is the Teacher entity.

However, Eclipse has assumed a one-to-one relationship between course and
Teacher, which is not correct. There is a many-to-one relationship between course
and Teacher. To change this, click on the (one_to_one) hyperlink at the top of the JPA
Details view and select Many To One in the Mapping Type Selection dialog box.

Select only the Merge and Refresh cascade options; else, duplicate entries will
be added in the Teacher table for every Teacher that you selected for a Course.
See https://docs.oracle.com/javaee/7/tutorial /persistence-intro001.
htm#BNBQH for more details on entity relationships and cascade options.

When you select the Merge and Refresh cascade options, the cascade attribute
added to the annotation is added to the teacher field in the Course entity:

@ManyToOne (cascade = { MERGE, REFRESH })
private Teacher teacher;

[164]

https://docs.oracle.com/javaee/7/tutorial/persistence-intro001.htm#BNBQH
https://docs.oracle.com/javaee/7/tutorial/persistence-intro001.htm#BNBQH

Chapter 4

Scroll down in the JPA Details page to see Joining Strategy. This determines how

columns in the Course and Teacher tables are joined.

L.'_ Problems JPA Details £3 E Console

» Derived Identity
¥ Joining Strategy
Mapped by
Primary key join columns

* Join columns
Override default

Default (teacher_id -> id)

Figure 4.25 Editing Joining Strategy in an entity relationship

Note that the default joining strategy is that the teacher_id column in the Course
table maps to the id column in the Teacher table. Eclipse has just guessed teacher_

id (the appended id to the teacher field in the Course entity), but if we had a

different join column in the Course table, for example, teacher1d, then we would
need to override the default join columns. Click on the Override default checkbox

and then on the Edit button on the right side of the textbox.

Edit Join Column

Specify a mapped column for joining an entity association.
Name: teacher_id
Referenced column name: id
Table: Default (Course)
Column definition:

= Insertable (True) = Updatable (True)
= Unique (False) = Nullable (True)

@

OK

Figure 4.26 Editing Join Column

[165]

Creating a JEE Database Application

Since, in our case, the default options match the table columns, we will keep them
unchanged. When you select the Override default checkbox above, the @JoinColumn
annotation is added to the teacher field in Course Entity:

@JoinColumn (name = "teacher id", referencedColumnName = "id")
@ManyToOne (cascade = { MERGE, REFRESH })
private Teacher teacher;

All the required annotations for the teacher field are now added.

Configuring a many-to-many relationship

We will now configure the Course and Student entities for a many-to-many
relationship (a course can have many students, and one student can take
many courses).

Many-to-many relations could be unidirectional or bidirectional. For example, you
may only want to track students enrolled in courses (so the course entity will have
a list of students) and not students taking courses (the student entity does not keep
a list of courses). This is a unidirectional relationship where only the course entity
knows about the students, but the student entity does not know about courses).

In a bidirectional relationship, each entity knows about the other one. Therefore,
the course entity will keep a list of students and the student entity will keep a
list of courses. We will configure the bidirectional relationship in this example.

A many-to-many relationship also has one owning side and the other inverse
side. You can mark either entity in the relationship as the owning entity. From the
configuration point of view, the inverse side is marked by the mappedBy attribute
to the @ManyToMany annotation.

In our application we will make student as the owning side of the relationship and
Course as the inverse side. A many-to-many relationship in the database needs a join
table, which is configured in the owning entity by using the @JoinTable annotation.

We will first configure the many-to-many relationship in the Course entity. Add a
member variable in Course to hold a list of Student entities and add the getter and
the setter for it.

private List<Student> students;

public List<Students> getStudents () {
return students;

public void setStudents (List<Student> students) {
this.students = students;

}

[166]

Chapter 4

Then, click on the students field (added previously) and notice the settings in the

JPA Details view:

* One to Many
Target entity:
Fetch:

Join fetch: <Mone>

Private owned

= Orphan removal (False)

Cascade

All Persist

Problems 4%'&} JPA Details 3

Default (Lazy)

Merge

Console

Attribute 'students’' is mapped as default (one to many).

Default (packt.book.jee.eclipse.ch4.jpa.bean.Student)

Remove

Refresh Detach

Figure 4.27 Default JPA details for the students field in Course Entity

Because the students field is a list of student entities, Eclipse has assumed
a one-to-many relationship (see the link at the top of the JPA Details view).
We need to change this. Click on the one_to_many link and select Many To Many.

Check the Merge and Refresh cascade options. Since we are putting the Course
entity on the inverse side of the relationship, select Mapped By as Joining Strategy.
Enter courses in the Attributes text field. The compiler will show an error for this
because we don't have the courses field in the student entity yet. We will fix this
shortly. The JPA settings for the students field should be as follows:

Problems ?:;} JPA Details £3

+ Many to Many

Target entity:
Fetch: Default (Lazy)
Join fetch: <Nonex
Cascade
All Persist + Merge

+ Joining Strategy
* Mapped by

Attribute: courses

Join table

Console

Attribute 'students’ is mapped as many to many.

Default (packt.book.jee.eclipse.ch4.jpa.bean.Student)

Remove

v Refresh Detach

Figure 4.28 Modified JPA settings for the students field in Course Entity

[167]

Creating a JEE Database Application

Further, annotations for the students field in the course entity should be as follows:

@ManyToMany (cascade = { MERGE, REFRESH }, mappedBy = "courses")
private List<Student> students;

Open student . java in the editor. Add the courses field and the getter and the

setter for it. Click on the courses field in the file and change the relationship from
one-to-many to many-to-many in the JPA Details view (as described above for the
students field in the Course entity). Select the Merge and Refresh cascade options.

In the Joining Strategy section, make sure that the Join table option is selected. Eclipse
creates the default join table by concatenating the owning table and the inverse table
separated by an underscore (in this case, Student _Course). Change this to Course_
Student to make it consistent with the schema that we created for the JDBC application.

In the Join columns section, select the Override default checkbox. Eclipse has named
the join columns as students_id->id, but again, in the Course_Student table, we
had created in the JDBC application, we had named the student_id column. So,
click the Edit button and change the name to student_id.

Similarly, change Inverse join columns from courses_id->id to course_id->id.
After these changes, JPA Details for the courses field should be as follows:

* Problems % JPA Details 22 [Console

Attribute " ' is mapped as many 1o many.
* Many to Many
Target entity: Defaull (packt.book. jee eclipse.chd. jpa.bean Course)
Fetch: Default (Lazy)
Join fetch: <Mone:>
Cascade
Al Persist + Merge Remove '« Refresh Detach

= Joining Strategy
Mapped by
* Join table
Name: Course_Student
Schema: Default

Catalog: Default

Join columns

¥ Override default
student_id -> id

Invarse join columns

+ Override default

coursa_id - id

Figure 4.29 JPA Details for the courses field in Student Entity

[168]

Chapter 4

The previous settings create the following annotations for the courses field should
be as follows:

@ManyToMany (cascade = { MERGE, REFRESH })

@JoinTable (name = "Course Student", joinColumns = @JoinColumn (name =
"student id", referencedColumnName = "id"), inverseJoinColumns =
@JoinColumn (name = "course id", referencedColumnName = "id"))

List<Course> courses;

We have set all the entity relationships required for our application. Download the

accompanying code for this chapter to see the complete source code for the course,
Student, and Teacher entities.

We need to add the entities that we created above in persistence.xml. Open the file

and make sure that the General tab is open. In the Managed Classes session, click the

Add button. Type the name of entity that you want to add (for example, Student) and
select the class from the list. Add all the four entities that we have created.

|J] Course.java |J] Teacher.java |J] Person.java |J] Student.java + persistence.xml £% = 8
3
General @
General Managed Classes
Name: CourseManagementJPA Specify the list of classes to be managed in this persistence unit.
. . e packt.book.jee.eclipse.chd.jpa.bean. Teacher Add...
Persistence provider: c'? packt.book.jee.eclipse.ch4d.jpa.bean.Student
Description: (3 packt.book.jee.eclipse.ch4.jpa.bean.Course Open

G_?; packt.book.jee.eclipse.chd.jpa.bean.Person
XML Mapping Files

Specify the XML mapping files for this persistence unit.

Remove

Add...

Figure 4.30 Add entities in persistence.xml

[169]

Creating a JEE Database Application

Creating database tables from entities

Follow these steps to create database tables from entities and relationships that we
have modeled.

1. Right-click on the project and select JPA Tool | Generate Tables from Entities.

Database Schema

Select a database schema

Schema settings

<>

Schema:

(Note: JPA project must have a connection and it must be active to select a schema)
Add a connection to JPA project...

Connect

|".- :j‘l

Cancel

Figure 4.31 JPA Details for the courses field in Student Entity

2. Because we haven't configured any schema for our JPA project, the Schema
dropdown will be empty. Click the Add a connection to JPA project link.

[170]

Chapter 4

> Resource
AppXray
Builders
Deployment Assembly
FindBugs
Java Build Path

» Java Code Style

» Java Compiler

> Java Editor
Javadoc Location

» JavaScript

» JPA
JSP Fragment

> Maven
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server
Service Policies
Targeted Runtimes

> Task Repository
Task Tags

» Validation
Web Content Settings
Web Page Editor
Web Project Settings
WikiText

» XDoclet

)
)
Ly

L) [

Library configuration is disabled. The u...figure further classpath changes later. = —
Platform
EclipseLink 2.5.x [+

Change JPA version...

JPA implementation

Type: Disable Library Configuration o

The JPA facet requires a JPA implementation library to be present on the project classpath. By

disabling library configuration, the user takes on the responsibility of ensuring that the
classpath is configured appropriately via alternate means.

Connection

<None= o

Add connection...
Connect

Override default catalog from connection
Catalog: <

Override default schema from connection

<>

Schema:

Persistent class management

* Discover annotated classes automatically

Annotated classes must be listed in persistence.xml

Canonical metamodel (JPA 2.0)

<»

Source folder: <None>

Cancel OK

Figure 4.32 JPA project properties

3. Click the Add connection link and create a connection to the course
management_jpa schema that we had created. We have already seen
how to create a connection to the MySQL schema in the Using Eclipse
Data Source Explorer section.

[171]

Creating a JEE Database Application

4. Select course_management_jpa in the dropdown shown in Figure 4.30
Add entities in persistence.xml and click Next.

Schema Generation

Select DDL generation action

Generation Output Mode

* Database
Sqgl-script
Both

{‘?ju < Back Cancel Finish

Figure 4.33 Schema Generation from entities

5. Click Finish.

Eclipse generates DDL scripts for creating tables and relationships and executes
these scripts in the selected schema. Once the script ID is run successfully, open
the Data Source Explorer view (see the previous Using Eclipse Data Source Explorer
section) and browse tables in the course_management_jpa connection. Make sure
that the tables and fields are created according to the entities that we have created.

hﬂ Data Source Explorer &2 =" {m]

S ESmdB v
¥ [Database Connections
» &4 CourseManagement (MySQL v. 5.6.20)
¥ &4 CourseManagementJPA (MySQL v. 5.6.20)
v L.J course_management_jpa
> Authorization IDs
¥ | Schemas
v 59 course_management_jpa
b || Dependencies
» |} Stored Procedures
v Tables
] COURSE
7 Course_Student
I STUDENT
] TEACHER
P [User-Defined Functions
> Views
¥~ ODA Data Sources
(- Flat File Data Source
[Web Services Data Source

(XML Data Source

2
>
>
>

Figure 4.34 Tables created from JPA entities

[172]

Chapter 4

This feature of Eclipse and JPA makes it very easy to update the database as you
modify your entities.

Using JPA APIs to manage data

We will now create classes that use JPA APIs to manage data for our application:
course management. We will create service classes for the Course, Teacher, and
Student entities and add methods that directly access the database though JPA APIs.

As mentioned in the JPA concepts section, it is a good practice to cache an instance
of EntityManagerFactory in our application. Further, Managed Beans of JSF act
as an interface between the Ul and the backend code, and as a conduit to transfer
data between the UI and the data access objects. Therefore, they must have an
instance of the data access objects (which use JPA to access data from the database).
To cache an instance of EntityManagerFactory, we will create another Managed
Bean, whose only job is to make the EntityManagerFactory instance available to
other Managed Beans.

Therefore, create an Ent ityManagerFactoryBean class in the packt .book. jee.
eclipse.ch4.jpa.service bean package. This package contains all the managed
beans. EntityManagerFactoryBean creates an instance of EntityManagerFactory
in the constructor and provides a getter method:

package packt.book.jee.eclipse.ch4.jpa.service bean;

import javax.faces.bean.ApplicationScoped;
import javax.faces.bean.ManagedBean;

import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

//Load this bean eagerly, i.e., before any request is made
@ManagedBean (name="emFactoryBean", eager=true)
@ApplicationScoped

public class EntityManagerFactoryBean

private EntityManagerFactory entityManagerFactory;

public EntityManagerFactoryBean() {

entityManagerFactory =
Persistence.createEntityManagerFactory ("CourseManagementJPA") ;

}

[173]

Creating a JEE Database Application

public EntityManagerFactory getEntityManagerFactory()
return entityManagerFactory;

}
Note the argument passed in the following:

entityManagerFactory =
Persistence.createEntityManagerFactory ("CourseManagementJPA") ;

This is the name of the persistence unit in persistence.xml.
Now, let's write service classes that actually use the JPA APIs to access database tables.

Create a package called packt.book.jee.eclipse.ch4.jpa.service. Create
a new class named Courseservice. Every service class will need access to
EntityManagerFactory. So, create a private member variable as follows:

private EntityManagerFactory factory;

Constructor takes an instance of EntityManagerFactoryBean and gets the reference
of EntityManagerFactory from it.

public CourseService (EntityManagerFactoryBean factoryBean) {
this.factory = factoryBean.getEntityManagerFactory () ;

}
We will add a function to get all courses from the database:

public List<Course> getCourses() {
EntityManager em = factory.createEntityManager () ;
CriteriaBuilder cb = em.getCriteriaBuilder () ;
CriteriaQuery<Course> cqg = cb.createQuery(Course.class) ;
TypedQuery<Course> tg = em.createQuery(cq) ;
List<Course> courses = tg.getResultList();
em.close () ;
return courses;

}

Note how CriteriaBuilder, CriteriaQuery, and TypesQuery are used to get all
the courses. It is a type-safe way to execute a query. See http://docs.oracle.com/
javaee/7/tutorial/persistence-criteria.htm#GJIITV for a detailed discussion
on how to use the JPA criteria APIs. We could have done the same thing using

Java Query Language (JQL) - http://www.oracle.com/technetwork/articles/
vasiliev-jpgl-087123.html, but it is not type safe. However, here is an example
of using JQL to write the get Courses function:

[174]

http://docs.oracle.com/javaee/7/tutorial/persistence-criteria.htm#GJITV
http://docs.oracle.com/javaee/7/tutorial/persistence-criteria.htm#GJITV
http://www.oracle.com/technetwork/articles/vasiliev-jpql-087123.html
http://www.oracle.com/technetwork/articles/vasiliev-jpql-087123.html

Chapter 4

public List<Course> getCourses() {
EntityManager em = factory.createEntityManager () ;

List<Course> courses = em.createQuery("select crs from Course
crs") .getResultList () ;

em.close () ;
return courses;

}
Add a method to insert a course in the database:

public void addCourse (Course course) {
EntityManager em = factory.createEntityManager() ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
em.persist (course) ;
txn.commit () ;

}

The code is quite simple. We get the entity manager and then start a transaction
because it is an update operation. Then, we call the persist method on
EntityManager by passing an instance of Course to save. Then, we commit the
transaction. Methods to update and delete are also simple. Here is the entire
source code of CourseService:

package packt.book.jee.eclipse.ch4.jpa.service;
import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;
import javax.persistence.EntityTransaction;

import javax.persistence.TypedQuery;

import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;

import packt.book.jee.eclipse.ch4.jpa.bean.Course;

import packt.book.jee.eclipse.ch4.jpa.service bean.
EntityManagerFactoryBean;

public class CourseService {
private EntityManagerFactory factory;

public CourseService (EntityManagerFactoryBean factoryBean) {
factory = factoryBean.getEntityManagerFactory () ;

[175]

Creating a JEE Database Application

public List<Course> getCourses() {
EntityManager em = factory.createEntityManager () ;
CriteriaBuilder cb = em.getCriteriaBuilder () ;
CriteriaQuery<Course> cqg = cb.createQuery(Course.class);
TypedQuery<Course> tg = em.createQuery(cq) ;
List<Course> courses = tg.getResultList();
em.close () ;

return courses;

public void addCourse (Course course)
EntityManager em = factory.createEntityManager () ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
em.persist (course) ;
txn.commit () ;

public void updateCourse (Course course)
EntityManager em = factory.createEntityManager () ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
em.merge (course) ;
txn.commit () ;

public Course getCourse (int id) {
EntityManager em = factory.createEntityManager () ;
return em.find(Course.class, id);

public void deleteCourse (Course course)
EntityManager em = factory.createEntityManager () ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
Course mergedCourse = em.find(Course.class, course.getId());
em.remove (mergedCourse) ;
txn.commit () ;

[176]

Chapter 4

Create the StudentService and TeacherService classes with the following methods:

public class StudentService {
private EntityManagerFactory factory;

public StudentService (EntityManagerFactoryBean factoryBean) {
factory = factoryBean.getEntityManagerFactory () ;

public void addStudent (Student student) {
EntityManager em = factory.createEntityManager () ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
em.persist (student) ;
txn.commit () ;

public List<Students> getStudents () {
EntityManager em = factory.createEntityManager () ;
CriteriaBuilder cb = em.getCriteriaBuilder () ;
CriteriaQuery<Student> cqg = cb.createQuery (Student.class);
TypedQuery<Student> tgq = em.createQuery(cq) ;
List<Student> students = tg.getResultList();
em.close () ;
return students;

public class TeacherService {
private EntityManagerFactory factory;

public TeacherService (EntityManagerFactoryBean factoryBean)
factory = factoryBean.getEntityManagerFactory () ;

public void addTeacher (Teacher teacher) {
EntityManager em = factory.createEntityManager () ;
EntityTransaction txn = em.getTransaction() ;
txn.begin() ;
em.persist (teacher) ;
txn.commit () ;

public List<Teachers> getTeacher () {
EntityManager em = factory.createEntityManager () ;

[177]

Creating a JEE Database Application

CriteriaBuilder cb = em.getCriteriaBuilder () ;
CriteriaQuery<Teacher> cqg = cb.createQuery (Teacher.class);
TypedQuery<Teacher> tg = em.createQuery(cq) ;

List<Teacher> teachers = tg.getResultList();

em.close () ;

return teachers;

public Teacher getTeacher (int id) {
EntityManager em = factory.createEntityManager () ;
return em.find(Teacher.class, id);

Wiring the user interface with a JPA
service class

Now that we have all data access classes ready, we need to connect the user interface
that we have created for adding a course, addCourse.xhtml, to pass data and get
data from the JPA service classes. As mentioned previously, we are going to do this
by using Managed Beans, in this case, CourseServiceBean.

CourseServiceBean will need to create an instance of CourseService and call
the addCourse method. Open CourseServiceBean and create a member variable
as follows:

private CourseService courseService ;

We also need an instance of the EntityManagerFactoryBean Managed Bean that
we created in the earlier section.

@ManagedProperty (value="#{emFactoryBean}")
private EntityManagerFactoryBean factoryBean;

The factoryBean instance is injected by the JSF runtime and is available only

after the managed bean in completely constructed. However, for this bean to be
injected, we need to provide a setter method. Therefore, add a setter method for
factoryBean. We can have JSF call a method of our bean after it is fully constructed
by annotating the method with @Postconstruct. Therefore, let's create a method
called postConstruct:

@PostConstruct
public void init () {
courseService = new CourseService (factoryBean) ;

[178]

Chapter 4

Then, modify the addcourse method to call our service method:

public String addCourse() {
courseService.addCourse (course) ;
return "listCourse";

}

Since our listCourse.xhtml page will need to get a list of courses, let's add the
getCourses method too in CourseServiceBean:

public List<Course> getCourses () {
return courseService.getCourses() ;

}

Here is the CourseServiceBean after the above mentioned changes:

@ManagedBean (name="courseServiceBean")
@RequestScoped
public class CourseServiceBean {

private CourseService courseService ;

@ManagedProperty (value="#{emFactoryBean}")
private EntityManagerFactoryBean factoryBean;

@ManagedProperty (value="#{course}")
private Course course;

private String errMsg= null;

@PostConstruct
public void init() {
courseService = new CourseService (factoryBean) ;

public void setFactoryBean (EntityManagerFactoryBean factoryBean)

this.factoryBean = factoryBean;

public Course getCourse()

return course;

[179]

Creating a JEE Database Application

public void setCourse (Course course)
this.course = course;

public String getErrMsg()
return errMsg;

public void setErrMsg(String errMsg)
this.errMsg = errMsg;

public String addCourse()
courseService.addCourse (course) ;
return "listCourse";

public List<Course> getCourses() {
return courseService.getCourses|() ;

}

Finally, we will write the code to display the list of courses in 1istCourse.xhtml.
We have already created this file but not the code to display the courses.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:c="http://java.sun.com/jsp/jstl/core">

<h2>Courses:</h2>
<h:form>
<h:messages style="color:red"/>
<h:dataTable value="#{courseServiceBean.courses}"
var="course">
<h:column>
<f:facet name="header">ID</f:facet>
<h:outputText value="#{course.id}"/>
</h:column>
<h:column>
<f:facet name="header">Name</f:facets>
<h:outputText value="#{course.name}"/>

</h:column>

[180]

Chapter 4

<h:column>
<f:facet name="header">Credits</f:facets>
<h:outputText value="#{course.credits}"
style="float:right" />
</h:column>
</h:dataTable>
</h:form>

<h:panelGroup rendered="#{courseServiceBean.courses.size ()
O}">

<h3>No courses found</h3>
</h:panelGroup>

<c:1if test="#{courseServiceBean.courses.size() > 0}">
Total number of courses
<h:outputText value="#{courseServiceBean.courses.size()}"/>

</c:1if>
<p/>
<h:button value="Add" outcome="addCourse"/>
</html>

Because of space constraints, we will not discuss how to add a functionality to delete/
update courses or to create a course with the Teacher field selected. Please download
the complete source code for the examples discussed in this chapter to see the complete
working applications.

Summary

In this chapter, we learnt how to build web applications that require data access
from a relational database. First, we built a simple Course Management application
using JDBC and JSTL, and then, the same application was built using JPA and JSF.

JPA is preferred to JDBC because you end up writing a lot less code. The code to
map object data to relational data is created for you by the JPA implementation.
However, JDBC is still being used in many web applications because it is simpler
to use. Although JPA has a moderate learning curve, JPA tools in Eclipse EE can
make using JPA APIs a bit easier, particularly configuring entities, relationships,
and persistence.xml.

In the next chapter, we will deviate a bit from our discussion on JEE and see how
to write and run unit tests for Java applications. We will also see how to measure
code coverage after running unit tests.

[181]

Unit Testing

Testing of software that you develop is a very important part of the overall software
development cycle. There are many types of testing, and each one has a specific
purpose. Each one varies in the scope of testing. Some of the examples of testing

are functional testing, integration testing, scenario testing, and unit testing.

Of all these types, unit tests are the narrowest in scope and are typically coded and
executed by developers. Each unit test is meant to test a specific and small piece

of functionality (typically, a method in a class) and is expected to execute without
any external dependencies. Here are some of the reasons why you should write
good unit tests:

* Catch bugs early. If you find a bug in functional or integration testing, which
have a much wider scope of testing, then it might be difficult to isolate the
code that caused the bug. However, it is much easier to catch and fix bugs in
unit testing, because unit tests, by definition, work in a narrow scope, and if
a test fails, you know exactly where to go and fix the issue.

* Unit tests can help you catch any regression that you might have introduced
when editing the code. There are good tools and libraries available for
automating the execution of unit tests. For example, by using build tools
such as Ant and Maven, you can execute a unit test at the end of a successful
build so that you immediately know if the changes that you have made have
broken any previously working code.

As mentioned previously, writing unit tests and executing them is typically the
responsibility of a developer. Therefore, most IDEs have good built-in support for
writing and executing unit tests. Eclipse JEE is no exception. It has built-in support
for JUnit, which is a popular unit testing framework for Java.

[183]

Unit Testing

In this chapter, we will see how to write unit tests for Java applications by using
tools available in Eclipse JEE. We will discuss how to write and execute JUnit tests
for the course management web application that we built in Chapter 4, Creating a JEE
Database Application. However, first, here is a quick introduction to JUnit.

JUnit

JUnit test classes are separate Java classes from the classes you want to test.
Each test class can contain many test cases, which are just methods marked to be
executed when JUnit tests are executed. A test suite is a collection of test classes.

The convention is to assign the test class the same name as that of the class you want
to test and append Test to this name. For example, if you want to test the Course
class from the previous chapter, then you would create a JUnit test class and name

it courseTest. The test case (method) name starts with test followed by the name
of the method in the class that you want to test; for example, if you want to test the
validate method in the Course class, then you would create the testvalidate
method in the CourseTest class. Test classes are also created in the same package

as the package in which the classes to be tested are present. In Maven projects, test
classes are typically created under the src/test/java folder. The convention is to
create the same package structure in the test folder as in the src/main/java folder.

JUnit supports annotations to mark unit tests and test suites. Here is a simple test
case for the course class:

/**
* Test for {@link Course}
*/
Class CourseTest {
@Test
public void testValidate() {
Course course = new Course() ;
Assert.assertFalse (course.validate()) ;
course.setName ("coursel")
Assert.assetFalse (course.validate()) ;
-5);
course.validate()) ;
5);
Assert.assertTrue (course.validate()) ;

Course.setCredits (
Assert.assetFalse (
course.setCredits (
(

Let's say the validate method checks whether the course name is not null and
credits is greater than zero.

[184]

Chapter 5

The test case is marked with the eTest annotation. This case creates an instance

of the course class and then calls the Assert . assertFalse method to make sure
that the validate method returns false, because the name and credits are not set
and they will have their default values, which are null and o, respectively. Assert
is a class provided by the JUnit library and has many assert methods to test many
conditions (see http://junit.sourceforge.net/javadoc/org/junit/Assert.
html). The method then sets only the name and again does the same validation and
expects the method to return false, because credits is still zero. Finally, the test case
sets both name and credits and calls the Assert .assertTrue method to ensure that
course.validate () returns true. If any of the assertions fail, then the test case fails.

Other than eTest, you can use the following annotations provided by JUnit:

* @Before and eAfter: Functions annotated with these annotations are
executed before and after each test. You may want to initialize resources
in @Before and free them in eaAfter.

* @BeforeClass and eAfterClass: Similar to @Before and @After but
instead of being called per test, these methods are called once per test class.
A method with the @BeforeClass annotation is called before any of the test
cases in that class are executed and that with eaftercClass is called after all
the test cases are executed.

You can find more annotations of JUnit at http://junit.org/javadoc/latest/
org/junit/package-summary.html.

Creating and executing unit tests using
Eclipse EE

We will take the JDBC version of the course management application that we
developed in Chapter 4, Creating a JEE Database Application, because it is simple to
understand. Let's start with a simple test case for validating a course. The following
is the source code of Course.java:

package packt.book.jee.eclipse.ch5.bean;

import java.sql.SQLException;
import java.util.List;

import packt.book.jee.eclipse.ch5.dao.CourseDAO;

public class Course
private int id;

[185]

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.org/javadoc/latest/org/junit/package-summary.html
http://junit.org/javadoc/latest/org/junit/package-summary.html

Unit Testing

private String name;

private int credits;

private Teacher teacher;

private int teacherId;

private CourseDAO courseDAO = new CourseDAO() ;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getCredits() {
return credits;

}

public void setCredits (int credits) {

this.credits = credits;

}

public boolean isValidCourse() {
return name != null && credits != 0;

}

public Teacher getTeacher() {
return teacher;

}

public void setTeacher (Teacher teacher) {
this.teacher = teacher;

}

public void addCourse() throws SQLException
courseDAO.addCourse (this) ;

}

public List<Course> getCourses () throws SQLException {
return courseDAO.getCourses() ;

}

public int getTeacherId() {
return teacherId;

}

public void setTeacherId(int teacherId) {
this.teacherId = teacherId;

[186]

Chapter 5

Creating a unit test case

Maven projects follow certain conventions; the entire application source in a Maven
project is in the src/main/java folder, and unit tests are expected to be in the src/
test/java folder. In fact, when you create a Maven project in Eclipse, it creates the
src/test/java folder for you. We are going to create our test cases in this folder.
We are going to create the same package structure for the test classes as those for the
application source; that is, to test the packt .book.jee.eclipse.ch5.bean.Course
class, we will create the packt .book.jee.eclipse.ch5.bean package under the
src/test/java folder and then create a JUnit test class called CourseTest.

1. Right-click on the src/test/java folder in Package Explorer in Eclipse and
select New | JUnit Test Case (if you do not find this option in the menu,
select New | Other and type junit in the filter textbox. Then, select the
JUnit Test Case option).

2. Type the package name as packt .book.jee.eclipse.ch5.bean and the
class name as CourseTest.

3. Click the Browse button next to the Class under test textbox. Type course
in the filter box and select the course class.

JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify I:
the class under test and on the next page, to select methods to be tested. —_

New JUnit 3 test * New JUnit 4 test

Source folder: CourseManagementJDBC/src/test/java Browse...
Package: packt.book.jee.eclipse.ch5.bean Browse...
Name: CourseTest

Superclass: java.lang.Object Browse...

Which method stubs would you like to create?
setUpBeforeClass() tearDownAfterClass()
setUp() tearDown()

Do you want to add comments? (Configure templates and default value herg)

Generate comments

Class under test: packt.book.jee.eclipse.chS.bean.Course Browse...

€) < Back Next > Cancel Finigh

Figure 5.1 JUnit Test Case wizard

[187]

Unit Testing

4. Click Next.

5. The page shows methods in the class (Course) for which we want to create
test cases. Select the methods that you want to create test cases for.

6. We don't want to test the getters and setters because they are simple
methods and don't do much other than just setting or getting member
variables. Presently, we will create a test case for only one method:
isvValidTestcCase. Therefore, select the checkbox for this method.

Test Methods

Select methods for which test method stubs should be created.]:

Available methods:

- v course Select All
getld()

setld{int) Deselect All
getName()

setName(String)

getCradits()

setCredits(int)

isValidCourse()

getTeacher()

setTeacher(Teacher)

addCourse()

getCourses()

getTeacherld()

setTeacherld(int)

v (® Object

<
e 0O OOOOQOCTOOOOT

1 method selected.

Create final method stubs

Create tasks for generated test methods

(?) < Back Cancal Finish

Figure 5.2 Select methods for test cases

7. Click Finish. Eclipse checks whether the JUnit libraries are included in your
project, and if not, prompts you to include them:

[188]

Chapter 5

1 JUnit 4 is not on the build path. Do you want to add it?

Not now
Open the build path property page
* Perform the following action:

= Add JUnit 4 library to the build path

Cancel OK

Figure 5.3 Include JUnit libraries in the project

8. Click OK. Eclipse creates the package that we specified and the test class
with one method/test case called testIsvalidCourse. Note that the method
is annotated with eTest, indicating that it is a JUnit test case.

How do we test whether isvalidCourse works as expected? We create an
instance of the Course class, set some values that we know are valid or not, call the
isValidateCourse method, and compare the result with the expected result. JUnit
provides many methods in the Assert class to compare the actual results obtained
by calling test methods with the expected results. So, let's add the test code to the
testIsValidCourse method:

package packt.book.jee.eclipse.ch5.bean;
import org.junit.Assert;

import org.junit.Test;

public class CourseTest

@Test

public void testIsValidCourse() {
Course course = new Course() ;
//First validate without any values set
Assert.assertFalse (course.isValidCourse()) ;
//set name
course.setName ("coursel") ;
Assert.assertFalse (course.isValidCourse()) ;
//set zero credits
course.setCredits (0) ;
Assert.assertFalse (course.isValidCourse()) ;
//now set valid credits
course.setCredits (4) ;
Assert.assertTrue (course.isValidCourse()) ;

[189]

Unit Testing

We first create an instance of Course, and without setting any of its values, call

the isvalidCourse method. We know that it is not a valid course because name
and credits are required fields in a valid course. So, we check whether the returned
value of isvalidCourse is false by calling the Assert .assertFalse method. We
then set the name and check again, expecting the instance to be an invalid course.
Then, we set 0 credit value in Course, and finally, we set 4 credits for Course. Now,
isvalidCourse is expected to return true because both name and credits are valid.
We verify this by calling Assert.assertTrue.

Running a unit test case

Let's run this test case in Eclipse. Right-click on the file or anywhere in the project
in Package Explorer and select the Run As | Junit Test menu. Eclipse finds all unit
tests in the project, executes them, and shows the result in the JUnit view:

BLH Q .
I*" Problems gif Junit 83 - o @ AR
Finished after 0.012 seconds
Runs: 1/ B Errors: 0 B Failures: 0
. . — . —+1_
V rit] packt.book.jee.eclipse.ch5.bean.CourseTest [| = Failure Trace oF
i testisValidCourse (0.000 s)

Figure 5.4 JUnit results view

This view shows a summary of the test cases run. In this case, it has run one
test case, which was successful. The green bar shows that all test cases were
executed successfully.

Now, let's add one more check in the method:

@Test
public void testIsValidCourse() {

//set empty course name
course.setName ("") ;
Assert.assertFalse (course.isValidCourse()) ;

[190]

Chapter 5

Run the test case again.

L £ B N 0
I# Problems gu Junit £3 4 4P El Q2 He =2 8

Finished after 0.016 seconds

v E,__pﬂulcl.huuk.jee.eulipse,chs.beﬂn.Cuurse‘l'esl = Failure Trace
g testisValidCourse (0.001 s) J

. java.lang.AssertionError

= at packt.book.jee.eclipse.ch5.bean.CourseTest.testlsValidCourse(CourseTest. java: 23)

Figure 5.5 JUnit results view showing the failed test

The test case failed now because course.isvalidCourse () returned true when the
course name was set to an empty string, whereas the test case expected the instance
to be an invalid course. So, we need to modify the isvalidCourse method of the
Course class to fix this failure:

public boolean isValidCourse() {
return name != null && credits != 0 && name.trim() .length() > 0;

}

We have added the condition to check the length of the name field. This should fix
the test case failure. You can run the test case again and verify.

Running a unit test case using Maven

You can run unit test cases using Maven too. In fact, the install target of Maven runs
unit tests too. However, you can run only unit tests. Right-click on the project in
Package Explorer and select Run As | Maven | Test.

You might see the following error in the console:

java.lang.NoClassDefFoundError: org/junit/Assert

at packt.book.jee.eclipse.ch5.bean.CourseTest.testIsValidCourse
(CourseTest.java:10)
Caused by: java.lang.ClassNotFoundException: org.junit.Assert

at java.net.URLClassLoader$l.run (URLClassLoader.java:366)

at java.net.URLClassLoader$l.run (URLClassLoader.java:355)

at java.security.AccessController.doPrivileged (Native Method)

The reason for this error is that we haven't added a dependency on JUnit for our
maven project. Add the following dependency in pom. xm1:

<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>4.12</versions>
</dependency>

[191]

Unit Testing

Refer to the Using Maven for project management section in Chapter 2, Creating a Simple
JEE Web Application, to learn how to add dependencies to a Maven project.

Run the Maven test again; this time, the test should pass.

Mocking external dependencies for
unit tests

Unit tests are meant to execute without external dependencies. We can certainly
write methods at a granular level such that the core business logic methods

are totally separate from methods that have external dependencies. However,
sometimes, this is not practical and we may have to write unit tests for code that
is closely dependent on methods that access external systems.

For example, let's assume that we have to add a method in our Course bean to
add students to the course. We will also mandate that the course has an upper
limit on the number of students that it can enroll, and once this limit is reached,
no more students will be enrolled. Therefore, we add the following method to
the course bean:

public void addStudent (Student student)
throws EnrolmentFullException, SQLException {
//get current enrolement first
int currentEnrolment = courseDAO.getNumStudentsInCourse (id) ;
if (currentEnrolment >= getMaxStudents())
throw new EnrolmentFullException("Course if full. Enrolment
closed") ;
courseDAO.enrolStudentInCourse (id, student.getId()) ;

}

The addstudent method first finds the current enrolment in the course. For this,
it queries the database by using the courseD2o class. It then checks whether

the current enrolment is less than the maximum enrolment. Then, it calls the
enrollStudent InCourse method of CourseDao.

The addstudent method has an external dependency. It depends on successful
access to an external database. We can write a unit test for this function as follows:

@Test

public void testAddStudent ()
//create course
Course course = new Course() ;
course.setId (1) ;

[192]

Chapter 5

course.setName ("coursel") ;
course.setMaxStudents (2) ;
//create student
Student student = new Student () ;
student .setFirstName ("Studentl") ;
student.setId (1) ;
//now add student
try {
course.addStudent (student) ;
} catch (Exception e) {
Assert.fail (e.getMessage()) ;

}
}

The testaddstudent method is meant to check whether the addstudent method
works fine if all external dependencies are satisfied; in this case, it means that a
database connection is established, the database is up and running if it is a server,
and the tables are configured properly. If we want to verify that the functionality to
enroll a student in a course works by taking into account all dependencies, then we
should write a functional test. Unit tests need to only check whether code that does
not depend on external dependencies works fine; in this case, it is a trivial check to
verify whether the total enrolment is less than the maximum allowed enrolment.
This is a simple example, but in real applications, you might have a lot more complex
code to test.

The problem with the previous unit test is that we may have false failures, from
the perspective of unit testing because the database could be down or might not
be configured correctly. One solution is to mock external dependencies; we can
mock calls to a database (in this case, calls to CourseD20). Instead of making
real calls to the database, we can create stubs that will return some mock data or
perform a mock operation. For example, we can write a mock function for the
getNumStudent sInCourse method of CourseDAO that returns some hardcoded
value. However, we don't want to modify the application source code to add
mock methods. Fortunately, there are open source frameworks that let us mock
dependencies in unit tests. Next, we will see how to mock dependencies by using
a popular framework called Mockito (http://mockito.org/).

Using Mockito

At a very high level, we can use Mockito to do two things:

* Provide wrapper implementation over dependent methods in classes

* Verify that these wrapper implementations are called

[193]

http://mockito.org/
http://mockito.org/

Unit Testing

We specify the wrapper implementation by using a static method of Mockito:

Mockito.when (object name.method name (params)) .thenReturn(return value) ;

Further, we verify whether the wrapper method was called by calling another static
method of Mockito:

Mockito.verify (object name,
Mockito.atLeastOnce()) .method name (params) ;

To use Mockito in our project, we need to add a dependency on it in our pom.xml.

<dependencys>
<groupld>org.mockito</groupIds>
<artifactIdsmockito-core</artifactIds
<version>1.10.19</version>

</dependency>

Before we start writing a unit test case by using Mockito, we will make a small
change in the Course class. Currently, CourseDAO in the Course class is private and
there are no setters for it. Add the setter method (setCourseDa0) in the Course class:

public void setCourseDAO (CourseDAO courseDAO) {
this.courseDAO = courseDAO;

}

Now, let's rewrite our test case using Mockito.

First, we need to tell Mockito which method calls we want to mock and what

action should be taken in the mocked function (for example, return a specific value).
In our example, we would like to mock methods in CourseDa0 that are called from
the Course.addstudent method, because methods in the CourseDa0 access database
and we want our unit tests to be independent of the data access code. Therefore, we
create a mocked (wrapper) instance of CourseD20 by using Mockito:

CourseDAO courseDAO = Mockito.mock (CourseDAO.class) ;

Then, we tell Mockito which specific methods in this object to mock. We want to
Inod(getNumStudentsInCourseEnuigetNumStudentsInCourse

try {
Mockito.when (courseDAO.getNumStudentsInCourse (1)) .thenReturn (60) ;
Mockito.doNothing () .when (courseDAO) .enrollStudentInCourse (1, 1);
} catch (SQLException e) ({

Assert.fail (e.getMessage ()) ;

}

[194]

Chapter 5

The code is in a try-catch block because the getNumStudentsInCourse and
getNumStudentsInCourse methods throw SQLException. This will not happen
when we mock the method because the mocked method will not call any SQL code.
However, since the signature of these methods indicate that SQLException can be
thrown from these methods, we have to call them in try-catch to avoid compiler errors.

The first statement in the try block tells Mockito that when the
getNumStudentsInCourse method is called on the coursebao object with
parameter 1 (course ID), then it should return 60 from the mocked method.

The second statement tells Mockito that when enrollstudentInCourse is called on
the courseDAO object with arguments 1 (course ID) and 1 (student ID), then it should
do nothing. We don't really want to insert any record in the database from the unit
test code.

We will now create the Course and student objects and call the addstudent method
of course. This code is similar to the one we wrote in the preceding test case.

Course coursgse = new Course() ;
course.setCourseDAO (courseDAO) ;

course.setId (1) ;

course.setName ("coursel") ;
course.setMaxStudents (60) ;
//create student

Student student = new Student () ;
student.setFirstName ("Studentl") ;
student.setId (1) ;

//now add student
course.addStudent (student) ;

Note that the course ID and student ID that we used when creating the course
and student objects, respectively, should match the arguments that we passed to
getNumStudentsInCourse and enrollStudent InCourse when mocking the methods.

We have set that the maximum number of students to be allowed in this course
should be 60. When mocking getNumStudentsInCourse, we asked Mockito to also
return 60. Therefore, the addstudent method should throw an exception because
the course is full. We will verify this by adding the eTest annotation later.

At the end of the test, we want to verify that the mocked method was actually called.

try {
Mockito.verify (courseDAO,
Mockito.atLeastOnce ()) .getNumStudentsInCourse (1) ;

[195]

Unit Testing

} catch (SQLException e) ({
Assert.fail (e.getMessage()) ;

}

The preceding code verifies that getNumStudentsInCourse of courseDAO was called
at least once by Mockito when running this test.

Here is the complete test case, including the eTest annotation attribute, to make sure
that the function throws an exception:

@Test (expected = EnrollmentFullException.class)
public void testAddStudentWithEnrollmentFull () throws Exception

{

CourseDAO courseDAO = Mockito.mock (CourseDAO.class) ;

try {
Mockito.when (courseDAO.getNumStudentsInCourse (1)) .thenReturn (60) ;
Mockito.doNothing () .when (courseDAO) .enrollStudentInCourse(1l, 1) ;

} catch (SQLException e) ({

Assert.fail (e.getMessage()) ;

}

Course course = new Course() ;

course.setCourseDAO (courseDAO) ;

course.setId (1) ;

course.setName ("coursel") ;
course.setMaxStudents (60) ;
//create student

Student student = new Student () ;
student .setFirstName ("Studentl") ;
student.setId (1) ;

//now add student
course.addStudent (student) ;

try {
Mockito.verify (courseDAO,
Mockito.atLeastOnce ()) .getNumStudentsInCourse (1) ;

} catch (SQLException e) ({
Assert.fail (e.getMessage()) ;

//If no exception was thrown then the test case was successful
//No need of Assert here

[196]

Chapter 5

Run the unit tests. All tests should pass. Here is a similar test case that makes
Mockito return the current enrolment number of 59 and makes sure that a
student is enrolled successfully:

@Test
public void testAddStudentWithEnrollmentOpen() throws Exception

{

CourseDAO courseDAO = Mockito.mock (CourseDAO.class) ;

try {
Mockito.when (courseDAO.getNumStudentsInCourse (1)) .thenReturn(59) ;
Mockito.doNothing () .when (courseDAO) .enrollStudentInCourse (1, 1);

} catch (SQLException e) ({

Assert.fail (e.getMessage()) ;

}

Course course = new Course() ;

course.setCourseDAO (courseDAO) ;

course.setId(1) ;

course.setName ("coursel") ;
course.setMaxStudents (60) ;
//create student

Student student = new Student () ;
student.setFirstName ("Studentl") ;
student.setId (1) ;

//now add student
course.addStudent (student) ;

try {
Mockito.verify (courseDAO,
Mockito.atLeastOnce ()) .getNumStudentsInCourse (1) ;

Mockito.verify (courseDAO,

Mockito.atLeastOnce()) .enrollStudentInCourse(1,1) ;
} catch (SQLException e) ({

Assert.fail (e.getMessage()) ;

//If no exception was thrown then the test case was successful
//No need of Assert here

}

Note that this test case does not expect any exceptions to be thrown (if an exception
is thrown, then the test case fails). We can also verify that the mocked method
called enrollstudentInCourse is called. We did not verify this in the previous test
case because an exception was thrown before calling this method in the course.
addstudent method.

[197]

Unit Testing

There are many topics of JUnit that we have not covered in this section. You are
encouraged to read the JUnit documentation at https://github.com/junit-team/
junit/wiki. In particular, the following topics might be of interest to you:

* JUnit test suites. You can aggregate test cases from different test classes in
a suite. Find more information about test suites at https://github.com/
junit-team/junit/wiki/Aggregating-tests-in-suites.

e Parameterized test cases at https://github.com/junit-team/junit/
wiki/Parameterized-tests.

* If you are using Apache Ant for building your project, then take a look at
JUnit Ant task - https://ant.apache.org/manual/Tasks/junit.html.

Calculating test coverage

Unit tests tell you if your application code behaves as expected. Unit tests are
important to maintain code quality and catch errors early in the development
cycle. However, this goal is at risk if you do not write enough unit tests to test
your application code or if you have not tested all possible input conditions in
the test cases and the exception paths. To measure the quality and adequacy of
your test cases, you need to calculate the coverage of your test cases. In simple
terms, coverage tells you what percentage of your application code was touched
by running your unit tests. There are different measures to calculate coverage:

e Number of lines covered

* Number of branches (created using the if, else, elseif, switch, and
try/catch statements)

e Number of functions covered

Together, these three measures give a fair measurement of the quality of your unit
tests. There are many code coverage tools for Java. In this chapter, we will take a look
at an open source code coverage tool called JaCoCo (http://www.eclemma.org/
jacoco/). JaCoCo also has an Eclipse plugin (http://www.eclemma.org/), and we
can use it from right within Eclipse.

You can either install the JaCoCo plugin by using the update URL (http://update.

eclemma.org/) or from Eclipse Marketplace. To install it using the update site, select
the Help | Install New Software menu. Click the Add button and enter the name of
the update site (you can give any name) and update URL:

[198]

https://github.com/junit-team/junit/wiki
https://github.com/junit-team/junit/wiki
https://github.com/junit-team/junit/wiki/Aggregating-tests-in-suites
https://github.com/junit-team/junit/wiki/Aggregating-tests-in-suites
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://github.com/junit-team/junit/wiki/Parameterized-tests
https://ant.apache.org/manual/Tasks/junit.html
http://www.eclemma.org/jacoco/
http://www.eclemma.org/
http://update.eclemma.org/
http://update.eclemma.org/

Chapter 5

Name: Jacoco Local...
Location: http://update.eclemma.org/ Archive...
I:_: Cancel OK

Figure 5.6 Add an update site for JaCoCo

Then, follow the instructions to install the plugin.

Alternatively, you can install it from the marketplace. Select the Help | Eclipse
Marketplace menu. Type Ec1Emma in the find textbox, and click the Go button.

Eclipse Marketplace ‘
Salect solytions to_ install. Prass Finish to prm:eed \.\fi!h installal_ian. _ 7
Press the information button to see a detailed overview and a link to more information.

Recent Popular Installed ¥ January 02/24
Find: EclEmma] All Markets o All Categories o Go

EclEmma Java Code Coverage 2.3.2

EclEmma is a free Java code coverage tool for Eclipse, available under the

Eclipse Public Licenss. It brings code coverage analysis directly into the
| Eclipse... more info

by Mountainminds GmbH Co. KG, EPL

guality metrics code coverage

4 208 ~» Installs: 238K (3,638 last month) Install

Marketplaces

90

|"_7 Cancel

Figure 5.7 Install the EclEmma Code Coverage plugin from the marketplace
Click the Install button and follow the instructions to install the plugin.

To verify that the plugin is installed properly, open Window | Show View | Other.
Type coverage in the filter box and make sure that the Coverage (under Java category)
view is available. Open the view.

[199]

Unit Testing

To run a unit test with coverage, right-click on the project in Package Explorer and
select Coverage As | JUnit Test. After the tests are run, the coverage information is

displayed in the Coverage view.

Gonsole Junit |=m Coverage £3
CourseManagementJDBC (22 Mar, 2015 7:49:16 PM)
Element Coverage Covered Instructions Missed Instructions ~
¥ =/ CourseManagementJDBC = 242% 221 694
¥ (# sre/main/java = 140% a9 608
» £ packt.book.jee.eclipse.ch5.dao == 07% 3 405
> {4} packt.book.jee.eclipse.ch5.db.connection I 0.0 % 0 a5
v tﬂ packt.book.jee.eclipse.ch5.bean B 50.5 % g2 ao
v [J] Course.java = 641 % 75 42
» © Course o 641% 75 42
» [J] Teacher.java [0.0 % 31
» |J] Person.java 1 58.3 % 14 10
> [J] Student.java | 30.0 % 3 7
» {}} packt.book.jee.eclipse.chS.serviet 0.0 %] 14
| 2 {-_ﬂ packt.book.jee.eclipse.ch5.error 50.0 % 4 4
> (#src/test/java [58.7 % 122 86

Total Instructions
915
707
408

a5
182
117
117
a
24
10
14

208

Figure 5.8 Coverage results

How to interpret these results? Overall, at the project level, the coverage is 24.2%.
This means that out of all the code that we have written in this application, out
unit test case has touched only 24.2%. Then, there is the coverage percentage at the

package level and the class level.

Double-click on Course. java in the Coverage view to see which lines are covered
in this file. The following is a part of the file where the red lines denote code that is

not covered and the green lines, the code that is covered.

60 public int getTeacherId() {
61 return teacherld;

public void setTeacherId(int teacherId) {
this.teacherld = teacherld;

public int getMinStudents() {
return minStudents;

3 public void setMinStudents(int minStudents) {
70 this.minStudents = minStudents;

1
public int getMaxStudents() {
return maxStudents;

public void setMaxStudents(int maxStudents) {
this.maxStudents = maxStudents;

}
public void addStudent (Student student)
throws EnrollmentFullException, SQLException {
20 //get current enrgllement first

@i if (currentEnrollment »>= getMaxStudents())

courseDAQ. enroll5tudentInCourse(id, student.getId());

81 int currentEnrollment = courseDAQO.getNumStudentsInCourse(id);

throw new EnrollmentFullException("Course if full. Enrollment closed");

Figure 5.9 Line coverage details

[200]

Chapter 5

We have written unit tests for addstudent, and the coverage of this class is 100%,
which is good. We haven't used all the setters and getters in our unit tests, so some
of them are not covered.

As you can see, the coverage results help you understand places in your code for
which unit tests are not written or which are partially covered by unit tests. Using
this data, you can add unit tests for the code that is not covered. Of course, you may
not want all lines to be covered if the code is very simple, such as the getters and the
setters in the above class.

In Figure 5.8 Coverage results, observe that the coverage tool has analyzed the test
classes too. Typically, we don't want to measure coverage on test classes; we want to
measure the coverage of the application code by running the test classes. To exclude
the test classes from this analysis, right-click on the project and select Coverage As |
Coverage Configurations. Click on the Coverage tab and select only sr¢/main/java.

Create, manage, and run configurations

Coverage of a JUnit test run.

[

& Eclipse Application
7] Java Application
¥ JuJunit
Ju CourseManageme
Jujava
Ju JUnit Plug-in Test
4 0SGI Framework

Filter matched 7 of 7 items

@

Name: CourseManagementJDBC

£ Test |wm Coverage

Analysis scope:

v [CourseManagementJDBC -
(# CourseManagementJDBC -
(# CourseManagementJDBC -
(- CourseManagementJDBC -
i« CourseManagementJDBC -

- javax.servlet-api-3.1.0.jar

- jsp-api-2.2.jar

- jstl-1.2.jar

(# CourseManagementJDBC
= CourseManagementJDBC
(1 CourseManagementJDEC
o CourseManagementJDBC
(1« GourseManagementJDBC

(1= CourseManagementJDBC -

we CourseMananemeant.IDBC -

)= Arguments

- »,
“; Classpath | = JRE & Source 2

src/main/java
src/main/resources
sro/test/java
src/test/resources
hamcrest-core-1.3.jar

= junit.jar
- junit-4.12 jar

mockito-core-1,10,19.jar

mvanl-connaector-iava-5.1.34 iar

Select All Deselect All
Apply Revert
Close Coverage

Figure 5.10 Coverage configuration

Click Coverage to run coverage with the new settings. You will see in the Coverage
view that the test classes do not appear in the report and that the overall test
coverage on the project has also dropped.

[201]

Unit Testing

If you want to run coverage using Maven, then refer to http: //www.eclemma.org/
jacoco/trunk/doc/maven.html. In particular, take a look at pom.xml

(http ://jacoco.org/jacoco/trunk/doc/examples/build/pom-it. xml),

which creates reports for the JUnit and JaCoCo coverage.

Summary

Writing unit tests is an important part of application development. Unit tests help
you catch bugs in your application at a very early stage; they also help you catch any
regression because of the subsequent code changes. JUnit and Eclipse provide an
easy way to integrate unit tests in your development workflow. Eclipse also creates
a nice report in the JUnit view that makes it easy to identify the failed tests and jump
to the line in the code where the test failed.

Unit tests are meant to be executed without any external dependencies. Libraries such
as Mockito help you to mock any external dependencies.

Use coverage tools such as JaCoCo to know the quality of the unit tests that you have
written. Coverage tools tell you the percentage of application code that is covered by
your unit tests. You can also see in each class which lines are covered by your unit
tests and which are not. Such a report can help you to decide whether you need to
write more unit test cases or modify the existing unit test cases to cover important
code that your unit tests have not tested.

In the next chapter, we will see how to debug a Java application from Eclipse.
The chapter will also explain how to connect to a remote JEE server for debugging.

[202]

http://www.eclemma.org/jacoco/trunk/doc/maven.html
http://www.eclemma.org/jacoco/trunk/doc/maven.html
http://www.eclemma.org/jacoco/trunk/doc/examples/build/pom-it.xml
http://www.eclemma.org/jacoco/trunk/doc/examples/build/pom-it.xml
http://jacoco.org/jacoco/trunk/doc/examples/build/pom-it.xml

Debugging a JEE Application

Debugging is an unavoidable part of application development. Unless the
application is very simple, chances are that it is not going to work as expected in the
very first attempt and you will spend time trying to find out the reasons. In very
complex applications, in fact, application developers might end up spending more
time debugging than writing application code. Problems may not necessarily exist in
your code, but may exist in the external system on which your application depends,
and you may even find that you have to debug your application. Debugging a
complex piece of software requires skill, which can be developed with experience.
However, it also needs good support from the application runtime and IDE.

There are different ways to debug applications. You might just put the System.out.
println() statements in your code and print values of variables, or just a message
that the execution of the application has reached a certain point. If the application

is small or simple, this might work but may not be a good idea when debugging
large and complex applications. You also need to remember to remove such debug
statements before moving the code to staging or production. If you have written
unit tests and if some of the unit tests fail, then that might give you some idea about
the problems in your code. However, in many cases, you may want to monitor

the execution of code at the line level or the function level and check the values of
variables at that line or in that function. This requires support from the language
runtime and a good IDE that helps you visualize and control the debugging process.
Fortunately, Java has an excellent debugger and Eclipse JEE provides great support
for debugging Java code.

In this chapter, we are going to learn how to debug a JEE application using Eclipse
JEE. We will use the same Course Management application that we built in Chapter 4,
Creating a JEE Database Application, for debugging. The debugging technique described
in this chapter can be applied to remotely debug any Java application, and not
necessarily restricted to the JEE applications.

[203]

Debugging a JEE Application

Debugging a remote Java application

You might have debugged standalone Java applications from Eclipse. You set
breakpoints in the code, run the application in the debug mode from Eclipse, and
then, can debug the application in steps. Debugging remote Java applications is a bit
different, particularly when it comes to how you launch the debugger. In the case

of a local application, the debugger launches the application. In the case of a remote
application, it is already launched and you need to connect the debugger to it. In
general, if you want to allow remote debugging for an application, you need to run
the application using the following parameters:

-Xdebug -Xrunjdwp:transport=dt socket,address=9001, server=y, suspend=n
Here:

* Xdebug enables debugging

* Xrunjdwp runs the debugger implementation of JDWP (which stands for
Java Debug Wire Protocol)

Instead of -Xdebug -Xrunjdwp, you can also use -agentlib:jdwp for JRE 1.5 and
above, for example:

-agentlib:jdwp=transport= dt socket,address=9001, server=y, suspend=n
Here:

* transport=dt_socket starts a socket server at address=9001 (this can be
any free port) to receive debugger commands and send responses.

* server=y tells the JVM if it is a server or a client, in the context of debugger
communication. Use the y value for the remote application to be debugged.

* suspend=n tells the JVM to not wait for the debugger client to attach to it.
If the value is y, then the JVM will wait before executing the main class till
the debugger client attaches to it. Setting the y value for this option may be
useful in cases where you want to debug, for example, the initialization code
of servlets that are loaded upon the startup of a web container. In such cases,
if you do not choose to suspend the application till the debugger connects to
it, the code that you want to debug might get executed before the debugger
client attaches to it.

[204]

Chapter 6

Debugging a web application using
Tomcat in Eclipse EE

We have already learnt how to configure Tomcat in Eclipse EE and deploy a web
application in it from Eclipse (refer to the Configure Tomcat in Eclipse and Running
JSP in Tomcat sections in Chapter 2, Creating JEE Project). We will use the Course
Management application that we created in Chapter 4, Creating a JEE Database
Application, using JDBC for debugging.

Starting Tomcat in debug mode

If you want to debug a remote Java process, you need to start the process by using
the debug parameters. However, if you have configured Tomcat in Eclipse EE, you
don't need to do this manually. Eclipse takes care of launching Tomcat in the debug
mode. To start Tomcat in the Debug mode, select the server in the Servers view and
click the Debug button in the Server view. Alternatively, right-click on the server
and select Debug from the menu. Make sure that the project that you want to debug
is already added to Tomcat; in this case, the project is CourseManagementJDBC.

New >
Open Fa
Show In NEW >
Copy #C
Paste
& Delete =
Rename F2
|*| Markers [| Properties 0 Start %R Snippets [w REST Annotations = 8
Profile s :
v ET t vB8.0 S Hlop %l
“wTomcat vB.0 Server: = =
o CourseManagem: Publish &P
Clean...
iy Add and Remove...
Monitoring >
Clean Tomcat Work Directory...
Coverage As >
Properties |

Figure 6.1 Start Tomcat in the debug mode

[205]

Debugging a JEE Application

Once Tomcat is started in the debug mode, its status changes to Debugging.

[*7 Marker [Proper ¢ Server 52 ¥ Datas [snipp [E consol & REST e 1

v If‘nTomcat v8.0 Server at localhost [Debugging, Synchronized]

EHOS mE

[g CourseManagementJDBC [Synchronized)]

Figure 6.2 Tomcat running in the debug mode

Setting breakpoints

Let's now set breakpoints in the code before we launch the CourseManagement
application. Open CourseDAO from the CourseManagementJDBC project and
double-click in the left margin of the first line in the getCourses method.

|J] CourseDAO.java 3

public List<Course> getCourses () throws SQLException {

//get connection from connection pool
Connection con = DatabaseConnectionFactory.getConnectionFactory().getConnection();

List<Course> courses = new ArraylList<Course>();
Statement stmt = null;
ResultSet rs = null;
try {
stmt = con.createStatement();

StringBuilder sb = new StringBuilder("select course.id as courseld, course.name as c¢
.append("course.credits as credits, Teacher.id as teacherId, Teacher.first_name ¢
.append("Teacher.last_name as lastMame, Teacher.designation designation ")
.append("from Course left outer join Teacher on ")

.append("course.Teacher_id = Teacher.id ")
.append("order by course.name");

Figure 6.3 Set a breakpoint

[206]

Chapter 6

Another way to set a breakpoint at a line is to right-click in the left margin and select
Toggle Breakpoint.

18
49

e

© Toggle Breakpoint {+3€B
Disable Breakpoint {+*Double Click Course>();

{f] Open with Log Viewer

Go to Annotation 381
"\"&" Show Bug Info lder("select course.id as cou
rif“ Show Bug in Bug Explorer ~edits, Teacher.id as teacher
5 lastName, Teacher.designati
Add Bookmark... ter join Teacher on ")
Add Task... osocher-d %)
-] L]
v Show Quick Diff ~0rQ 603
v Show Line Numbers ’
Folding >
Preferences... seld"));
'courseName"));
Breakpoint Properties... 3 Double Click ‘credits”));

public List<Course> getCourses () throws SQLException {
//get connection from connection pool

ctory.getConnectionFactory()

WU LS WM LU 3%)y

Figure 6.4 Toggle breakpoints using the menu

You can also set the breakpoint at the method level. Just place the caret inside any
method, and select the Run | Toggle Method Breakpoint menu. This is equivalent
to setting a breakpoint at the first line of the method. This is preferred over setting
a breakpoint at the first line of the method when you always want to stop at the
beginning of the method. The debugger will always stop at the first statement in
the method even if you later add more code at the beginning of the method.

[207]

Debugging a JEE Application

Another useful breakpoint option is to set it when any an exception occurs during
program execution. Often, you may not want to set a breakpoint at a specific location
but may want to investigate why an exception is happening. If you do not have access
to the stack trace of the exception, you can just set a breakpoint for the exception and
run the program again. Next time, the execution will stop at the code location where
the exception occurred. This makes it easy to debug exceptions. To set a breakpoint for
an exception, select Run | Java Breakpoint Exception and select the Exception class
from the list.

Choose an exception (? = any character, * = any string) v

SQLEx [
Matching items:
(C] SQLException - java.sql

v'| Suspend on caught exceptions

v| Suspend on uncaught exceptions

£ java.sql - [Java SE 7 [1.7.0_67]]

.7- Cancel OK

Figure 6.5 Set a breakpoint at an exception

Running an application in debug mode

Let's now run the listCourse.jsp page in the debug mode. In Project Navigator,
go to src/main/webapp/listCourse. jsp and right-click. Select Debug As | Debug
on Server. Eclipse might prompt you to use the existing debug server.

[208]

Chapter 6

Debug On Server

Select which server to use |J

How do you want to select the server?
* Choose an existing server
Manually define a new server
Select the server that you want to use:

Server State

¥ [~localhost
=}

- Tomcat v8.0 Server at localhost _,, Started

Apache Tomcat v8.0 supports J2EE 1.2, 1.3, 1.4, and Java EE 5, 6, and 7 Web
modules Columns...

Always use this server when running this project

(7 Next > Cancel Finish

Figure 6.6 Use the existing debug server

Click Finish. Eclipse asks you if you want to switch to the Debug perspective
(refer to Chapter 1, Introducing JEE and Eclipse for discussion on Eclipse perspectives).

This kind of launch is configured to open the Debug perspective when it suspends.

-

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

v Remember my decision

Mo Yes

Figure 6.7 Auto switching to the Debug perspective

[209]

Debugging a JEE Application

Eclipse switches to the Debug perspective. Eclipse tries to open the page in the
internal Eclipse browser, but it won't display the page immediately. Recall that
listCourse.jsp calls Course.getCourses (), which in turn calls CourseDaO.
getCourses (). We have set a breakpoint in the CourseDAO.getCourses () method,
so the execution of the page stops there.

M L i A5 0w G i 2O a1 0| LS G S (o o

45 Debug 2 Servers f v =8

¥ Daemon Thread [http-nio-8080-exec-7] (Suspended (breakpoint at line 50 in CourseDAQ))
== owns: NioChannel (id=72)
= CourseDAQ.getCourses() line: 50
= Course.getCourses(line: 58
= NativeMethodAccessorimpl.invokeO(Mathod, Object, Object(]) line: not available [native method]
= NativeMethodAccessorimpl.invoke(Object, Object]) line: 62
= Naleaatinah Aceessorimol invakelOhiect. Ohiactll lina: 43

|J] CourseDAQ.java &% (J Courses x| server.xml

con.close();

}

public List<Course> getCourses () throws 5QLException {
1 //get connection from connection pool
® 50 Connection con = DatabaseConnectionFactory.getConnectionFactory().getConnection();

List<Course> courses = new Arraylist<Course>();
Statement stmt = null;
ResultSet rs = null;
try {
stmt = con.createStatement();

StringBuilder sb = new StringBuilder("select course.id as courseld, course.name as courseName,")
.append("course.credits os credits, Teacher.id as teacherId, Teacher.first_name as firstName, ")
.append("Teacher.last_nare as lastName, Teacher.designation designation ")

.append("from Course left outer join Teacher on ")
.append("course.Teacher_id = Teacher.id ")
.append("order by course.name”);

Figure 6.8 Debugger paused at a breakpoint

Performing step operations and inspecting
variables

You can now perform different step operations (step over, step in, and step out)

by using the toolbar icons at the top, or using keyboard shortcuts. Drop-down the
Debug menu to know the menu and toolbar shortcuts for debugging. Typically, you
would inspect variables or perform step operations to verify whether the execution
flow is correct and then continue the execution by pressing the Resume button or the
menu/keyboard shortcut.

[210]

Chapter 6

In the preceding Debug window the editor, you can see all threads and inspect

the stack frames of each thread, when the debugger is suspended. Stack frames of

a thread show you the path of program execution in that thread until the point that
the debugger was suspended after hitting a breakpoint or due to step operations.

In a multithreaded application, such as Tomcat web container, more than one thread
might have been suspended at a time and they might have different stack frames.
When debugging a multi-threaded application, make sure that you have selected the
required thread in the Debug window before selecting options to step over/in/out
or resume.

Often, you step into a method and realize that the values are not what you expect
and you want to re-run statements in the current method to investigate. In such
cases, you can drop to any previous stack frame and start over.

For example, let's say, in the above example, we step into the
DatabaseConnectionFactory.getConnectionFactory () .getConnection method.
When we perform step-in, the debugger first steps into the getConnectionFactory
method, and in the next step-in operation, it steps into the get Connection method.
Suppose that when we are in the get Connection method, we want to go back

and check what happened in the getConnectionFactory method that we might

have missed earlier (although in this simple example, not much happens in the
getConnectionFactory method, it should just serve as an example). We can go back
to the getCcourses method and start over the execution of getConnectionFactory and
getConnection. In the Debug view, right-click on the CourseDAO.getCourses () stack
frame and select Drop to Frame, as shown in the following screenshot:

T L | T DS TS

¥+ Daemon Thread [http-nio-B080-exec-4] (Suspended)
«=owns: NioChannel (id=72)

= DatabaseConnectionFar " - """
= CourseDAO.getCourses Open Declared Type

= Course.getCourses() lini Open Declared Type Hierarchy

= MativeMethodAccessorl i

= NativeMethodAccessorl Copy Stack #C
= DelegatingMethodAcce: Find... EF
\J] CourseDAO.java 53 Courses | % Drop To Frz
public List<Courses Step Into
1 //get connectior K Step Over F6
» 50 Connection con =
E -, .12 Step Return F7 7]

Figure 6.9 Drop to Frame

[211]

Debugging a JEE Application

The debugger discards all the stack frames above the selected frame and execution
drops back to the selected frame, in this case, in the getCourses method of CourseDaO.
You can then step over again into the getConnection method. Note that only stack
variables and their values are discarded when you drop to frame. Any changes made
to reference objects that are not in the stack are not rolled back.

Inspecting variable values

Let's now step over a few statements till we are in the while loop to create the
Course objects from the data returned by the result set. In the top-right window,
you will find the Variables view, which displays variables applicable at that point
of execution.

(%)= Variables £2 ' @@ Breakpoints i = | b=
Name Value
wouns wUUIsSEUAY (IU=109)
> & con $Proxy4 (id=170)
v O courses ArrayList<E> (id=171)
¥V 4 elementData Object[10] (id=176)
v a [0] Course (id=175)
@ courseDAO CourseDAO (id=178)
@ credits 5
= id 1
@ maxStudents 60
@ minStudents 10
P @ name "Machine Learning" (id=179)
= teacher null
= teacherld 0
~» modCount 1
= size 1
P O stmt Statementimpl (id=172)
> Ors JDBC4ResultSet (id=173)
Machine Learning

Figure 6.10 Debugger paused at a breakpoint

[212]

Chapter 6

You can inspect variables in the previous methods calls too by changing the
selection in the Debug view: click on any previous method call (stack frame) and the
Variables view displays variables valid for the selected method. You can change the
value of any variable, including the values of the member variables of the objects.
For example, in Figure 6.8 Debugger paused at a breakpoint, we can change the value of
the course name from "Machine Learning" to "Machine Learning - Partl".

To change the variable value, right-click on the variable in the Variables view

and select Change Value.

@ this CourseDAC (id=163)
» @ con $Proxy4 (id=170)
¥ O courses Arraylist<E> (id=171)
¥ A elementData Object[10] (id=176)
¥ a (0] Course (id=175)
@ courseDAO CourseDAO (id=178)
| credits 5
= id 1
m maxStudents 60
= minStudents 10
» @ name Select All saming" (id=179)
: :::::::I d =| Copy Variables
~ modCount Enable
B size Disable
> O stmt View Memory 9l (id=172)
b B ore Find“‘ HQat fid_177N
hod] @ All References... W W e w T
<p All Instances... i dao
Instance Count...
New Detail Formatter... jid
Open Declared Type Irse>
Open Declared Type Hierarchy nt, int) : void
'se(int) : int

Add Global Variables...
Remove Global Variables
Remove All Global Variables
Instance Breakpoints...
%Y Watch

I « [

4 Inspect
% Toggle Watchpoint

Figure 6.11 Change a variable's value during debugging

[213]

Debugging a JEE Application

You don't have to go to the Variables view to check a variable's value every time.
There is a quick way: just hover over the cursor on the variable in editor and Eclipse
pops up a window showing the variable's value.

W weuuY e s ves
¥ ; Daemon Thread [http-nio-8080-exec-7] (Suspended)
«wowns: NioChannel (id=72)
= CourseDAO.getCourses() line: 74

|J] CourseDAQ.java §¥ (J Courses X| server.xml = NativeMethodAccessorimpl.invoke0O(Methd

while (rs.next()) {
Course course = new Course();

course. "5 7" ourse= Course (id=175)

course. -
course. @ courseDAO= CourseDAO (id=178)
courses W credits= 5
| id=1
® 74 int tea = maxStudents= 60
£ if (rs. minStudents= 10

con » @ name= "Machine Learning” (id=179)

TEOCherpackt.book.jee.eclipse.ch5.bean.(ourse@6609e055
teacher

teacher I — —
teacher,setLastName(rs.getString("lastName"));
teacher.setDesignation(rs.getString("designation”));
course.setTeacher(teacher);

Figure 6.12 Inspect variable

You can also right-click on a variable and select the Inspect option to see the
variable's values. However, you cannot change the value when you select the
Inspect option.

If you want to see the value of a variable frequently (for example, a variable in a
loop), you can add the variable to the watchlist. It is a more convenient option than
trying to search for the variable in the Variables view. Right-click on a variable and
select the Watch option from the menu. The Watch option adds the variable to the
Expressions view (its default location is next to the Breakpoints view at the top
right) and displays its value.

()= Variables ©g Breakpoints & Expressions 3 EE o i
Name Value
v f?"" "course” (id=175)
@ courseDAOD CourseDAO (id=178)
| credits 5
|id 1
m mavShidente RN
packt.book. jee.eclipse.ch5.bean.Course@660%ea55

Figure 6.13 Inspect a variable

[214]

Chapter 6

The use of the Expressions view is not limited to watching variable values. You can
watch any valid Java expression, such as an arithmetic expression, or even method
calls. Click on the plus icon in the Expressions view and add an expression.

Debugging an application in an externally
configured Tomcat

Thus far, we have debugged our application using Tomcat configured within Eclipse.
When we launched Tomcat in the Debug mode, Eclipse took care of adding the JVM
parameters for the debugging to the Tomcat launch script. In this section, we will

see how to launch an external (to Eclipse) Tomcat instance and connect to it from
Eclipse. Although we are going to debug a remote instance of Tomcat, information
in this section can be used for connecting to any remotely running Java program that
is launched in the debug mode. We have already seen the debug parameters to pass
when launching a remote application in the debug mode.

Launching Tomcat externally in the debug mode is not too difficult. Tomcat startup
scripts already have an option to start Tomcat in the Debug mode; you just need to
pass the appropriate parameter. From the Command Prompt, change the folder to
<TOMCAT_HOME>/bin and type the following command in Windows:

>catalina.bat jpda start
And on Mac and Linux:
$./catalina.sh jpda start

Passing the jpda argument sets the default values to all the required debug
parameters. The default debug port is 8000. If you want to change it, either modify
catalin.bat/catalin.sh or set the environment variable called JPDA_ADDRESS,
use the following code:

In Windows:

>set JPDA ADDRESS=9001
On Mac and Linux:

$export JPDA ADDRESS=9001

Similarly, you can set JPDA_SUSPEND to y or n to control whether the debugger
should wait for the client to connect before executing the main class.

[215]

Debugging a JEE Application

To connect the debugger from Eclipse to a remote instance, select the Run | Debug
Configuration ... menu. Right-click on the Remote Java Application node in the list
view on the left and select New.

Create, manage, and run configurations

2

Attach to a Java virtual machine accepting debug connections

-+,
X E - -A Name: CourseDAO

¥ Connect B Source | [_] Commen
» | Apache Tomcat
& Eclipse Application
&4 Eclipse Data Tools
- Generic Server
| Generic Server(External Li
«21GlassFish Application Ser

Project:
CourseManagementJDEC Browse...

Connection Type:

£ HTTP Preview Standard (Socket Attach) s
~| J2EE Preview
5] Java Applet Connection Properties:

[7] Java Application

[JAXRS Application Host: localhost

Ju JUnit Port: 8000
Ju JUnit Plug-in Test
m2 Maven Build Allow termination of remote VM

4% 0SGi Framework

v 2] Remote Java Application

7] CourseDAO
‘» Remote JavaScript
Q_bj Rhino JavaScript
Ji1Task Context Plug-in Test
Juy Task Context Test
i TestNG
x$ XSL
Filter matched 24 of 24 items

':):. Close Debug

Figure 6.14 Inspect a variable

Set the appropriate Project and Port (the same as the one you selected to start
Tomcat in the Debug mode, that is, default 8000) and click Debug. If the debug
connection is successful, Eclipse will switch to the debug perspective. From here
on, the process of debugging is the same as that explained earlier.

[216]

Chapter 6

Using Debugger to know the status of a
program execution

We have seen how to use the debugger to verify the execution flow of a program
(using the step operations) and to inspect variables. You can also use the debugger
to know the status of the running program. For example, a web request is taking too
long and you want to know where exactly the execution is stuck. You can use the
debugger to find this. It is similar to taking the thread dump of a running program,
but much easier than the methods used to get the thread dump. Let's assume that
our method CourseDAO.getCourses is taking a long time to execute. Let's simulate
this by using a couple of Thread.sleep calls:

public List<Course> getCourses () throws SQLException
//get connection from connection pool

Connection con =
DatabaseConnectionFactory.getConnectionFactory () .getConnection() ;

try {
Thread.sleep(5000) ;

} catch (InterruptedException e) {}

List<Course> courses = new ArrayList<Courses>() ;
Statement stmt = null;
ResultSet rs = null;

try {
stmt = con.createStatement () ;

StringBuilder sb = new StringBuilder ("select course.id as
courseld, course.name as courseName,")
.append ("course.credits as credits, Teacher.id as teacherId,
Teacher.first name as firstName, ")
.append ("Teacher.last name as lastName, Teacher.designation
designation ")
.append ("from Course left outer join Teacher on ")
.append ("course.Teacher id = Teacher.id ")
.append ("order by course.name") ;

[217]

Debugging a JEE Application

rs = stmt.executeQuery(sb.toString()) ;

while (rs.next()) {
Course course = new Course() ;
course.setId(rs.getInt ("courseId")) ;
course.setName (rs.getString ("courseName")) ;
course.setCredits (rs.getInt ("credits")) ;
courses.add (course) ;

int teacherId = rs.getInt ("teacherId");

if (rs.wasNull()) //no teacher set for this course.
continue;

Teacher teacher = new Teacher() ;

teacher.setId(teacherId) ;

teacher.setFirstName (rs.getString ("firstName")) ;

teacher.setLastName (rs.getString ("lastName")) ;

teacher.setDesignation(rs.getString("designation")) ;

course.setTeacher (teacher) ;

try {
Thread.sleep(5000) ;
} catch (InterruptedException e) {}

return courses;

} finally {
try {if (rs != null) rs.close();} catch (SQLException e) {}
try {if (stmt != null) stmt.close();} catch (SQLException e)

try {con.close();} catch (SQLException e) {}

}

Start Tomcat in the debug mode, and run l1istCourses.jsp in the Debug mode.
Because we have put in the Thread. sleep statements, the request will take time.
Go to the Debug view where the threads and stack frames are displayed. Click on
the first node under the Tomcat debug configuration node and select the Suspend
option, as shown in the following screenshot:

[218]

Chapter 6

15 Debug 32 ik Servers

v [Tomeat v8.0 Server at localhost [Apache Tomeat]

- Copy Stack %C
@ Thread [main] (Running) Find s8F
4@ Daesmon Thread [NioBlockingSelector.Bloc -
& Daemon Thread [NioBlockingSelector.Bloc
& Daemon Thread [ContainerBackgroundProi
,EI Daemon Thread [http-nio-8080-ClientPolle Step Into
»& Daemon Thread [http-nio-8080-ClientPolle
»@ Daemon Thread [http-nio-8080-Acceptor-0 Step Over
& Daemon Thread [ajp-nio-8009-ClientPoller Step Return
..‘3 Daemon Thread [ajp-nio-8009-ClientPoller .
,© Daemon Thread [ajp-nio-8009-Acceptor-0] 17 Instruction Stepping Mode
»& Daemon Thread [http-nio-8080-exec-1] (R ... Use Step Filters
,@ Daemon Thread [http-nio-8080-exec-2] (AL

*. Drop To Frame

»@ Daemon Thread [nttp-nio-8080-exec-3] (R + Resume Without Signal
4@ Daemon Thread [Tomcat JOBC Pool Clean Resume
~ ,.G.F Daemon Th‘raad [Abandonfg cchIaction c
p [Library/Java/JavaVir hines/jdk1.8.0_1 8 Terminate pre

&, Terminate and Relaunch

Figure 6.15 Suspend program execution

The debugger pauses the execution of all threads in the program. You can then see
the status of each thread by expanding the thread nodes. You will find one of the
threads executing the CourseDAO. getCourse method and the statement that it was
executing before being suspended:

v El Tomcat v8.0 Server at localhost [Apache Tomcat]
¥ [} org.apache.catalina.startup.Bootstrap at localhost:51947 (Suspended)
» i Daemon System Thread [Signal Dispatcher] (Suspended)
» i Daemon System Thread [Finalizer] (Suspended)
> i Daemon System Thread [Reference Handler] (Suspended)
» 4 Thread [main] (Suspended)
» . Daemon System Thread [GC Daemon] (Suspended)
» 4 Daemon Thread [NioBlockingSelector.BlockPoller-1] (Suspended)
» % Daemon Thread [NioBlockingSelector.BlockPoller-2] (Suspended)
» i* Daemon Thread [ContainerBackgroundProcessor{StandardEngine[Catalinal]] (Suspended)
> _ﬁ) Daemon Thread [http-nio-8080-ClientPoller-0] (Suspended)
> _15) Daemon Thread [http-nio-8080-ClientPoller-1] (Suspended)
» i Daemon Thread [http-nio-B8080-Acceptor-0] (Suspended)
» ;i Daemon Thread [ajp-nio-8009-ClientPoller-0] (Suspended)
¥ ;i Daemon Thread [ajp-nio-8003-ClientPoller-1] (Suspended)
¥ ;i Daemon Thread [ajp-nio-8009-Acceptor-0] (Suspended)
» ;i Daemon Thread [http-nio-B80B0-exec-1] (Suspended)
» ;% Daemon Thread [http-nio-B0B0-exec-2] (Suspended)
¥ Daemon Thread [http-nio-8080-exec-3] (Suspended)
w=owns: NioChannel (id=64)
= Thread.sleep(long) line: not available [native method]
= CourseDAQ.getCourses() line: 53
= Course.getCourses() line: 58
= NativeMethodAccessorimpl.invokeO(Method, Object, Object]]) line: not available [native method]
= NativeMethodAccessorimpl.invoke(Object, Object]]) line: 62
= DelegatingMethodAccessorimpl.invoke(Object, Object[]) line: 43

Figure 6.16 Status of suspended threads

[219]

Debugging a JEE Application

As shown in the preceding Figure 6.16 Status of suspended threads, CourseDAO.
getCourses is suspended at the Thread. sleep statement. You can even inspect
variables at each stack frame when the program is suspended. By suspending the
program and inspecting the state of threads and stack frames, you might be able
to find the bottlenecks in your application.

Summary

Good support for debugging from language runtime and IDE can considerably reduce
the time required for debugging. Java runtime and Eclipse provide excellent support
for debugging remote applications. To debug a remote application, launch it with the
debug parameters for JVM and connect Eclipse Debugger to it. You can then debug the
remote application just as you would debug the local one - set breakpoints, perform
step operations, and inspect variables. You can also change the variable values in the
application when its execution is suspended.

In the next chapter, we will see how to develop JEE applications using EJBs. We will
use the GlassFish server in the next chapter. Although this chapter explained the
debugging of JEE applications deployed in Tomcat, you can use the same techniques
in the GlassFish server.

[220]

Creating JEE Applications
with EJB

Recall the architecture of database applications in Chapter 4, Creating a JEE Database
Application. We had JSP or a JSF page calling a JSP bean or a managed bean. The
beans then called DAOs to execute the data access code. This separated code for

the user interface, business logic, and the database nicely. This would work for
small or medium applications but may prove to be a bottleneck in large enterprise
applications; the application may not scale very well. If the processing of business
logic is time consuming then it would make more sense to distribute it on different
servers for better scalability and resilience. If the code for the user interface, business
logic, and data access is all on the same machine, then it may affect the scalability of
the application; that is, it may not perform well under load.

Using Enterprise Java Beans (EJBs) for implementing business logic is ideal in
scenarios where you want components processing the business logic to be distributed
across different servers. However, this is just one of the advantages of EJB. Even if you
use EJBs on the same server as the web application, you may gain from a number of
services that the EJB container provides to applications through E]Bs; you can specify
the security constraints for calling EJB methods declaratively (using annotations) and
can easily specify transaction boundaries (specify which method calls form a part of
one transaction) by using annotations. Further, the container handles the lifecycle of
EJBs, including the pooling of certain types of EJB objects so that more objects can be
created when the load on the application increases.

In Chapter 4, Creating a JEE Database Application, we created a Course Management
web application using simple Java beans. In this chapter, we will create the same
application using E]Bs and deploy it on the GlassFish 4 server. However, before this,
we need to understand some basic concepts of E]Bs.

[221]

Creating JEE Applications with E]B

Types of EJB

The EJB can be of the following types according to the EJB3 specification:

* Session bean

o

Stateful session bean

o

Stateless session bean
° Singleton session bean
* Message-driven bean

We will discuss the details of message-driven bean (MDB) in a later chapter when
we talk about the asynchronous processing of requests in a JEE application. In this
chapter, we will focus on session beans.

Session bean

In general, session beans are meant to contain methods to execute the main business
logic of enterprise applications. Any POJO (which stands for Plain Old Java Object)
can be annotated with the appropriate EJB3-specific annotations to make it session
bean. Session beans come in three types.

Stateful session bean

One stateful session bean serves requests for one client only. There is one-to-one
mapping between the stateful session bean and the client. Therefore, stateful
beans can hold the state data for the client between multiple method calls. In our
Course Management application, we could use a stateful bean for holding Student
data (student profile and courses taken by her) after a student logs in. The state
maintained by the stateful bean is lost when the server restarts or when the session
times out. Since there is one stateful bean per client, using a stateful bean might
impact the scalability of the application.

We use the @stateful annotation to create a stateful session bean.

Stateless session bean

A stateless session bean does not hold any state information for the client. Therefore,
one session bean can be shared across multiple clients. The EJB container maintains
pools of stateless beans, and when a client request comes, it takes out a bean from
the pool, executes methods, and returns the bean to the pool again. Stateless session
beans provide excellent scalability because they can be shared and need not be
created for each client.

[222]

Chapter 7

We use the @estateless annotation to create a stateless session bean.

Singleton session bean

As the name suggests, there is only one instance of a singleton bean class in the

EJB container (this is true in the clustered environment too; each EJB container will
have an instance of a singleton bean). This means that they are shared by multiple
clients, and they are not pooled by EJB containers (because there can be only one
instance). Since a singleton session bean is a shared resource, we need to manage
concurrency in it. Java EE provides two concurrency management options for
singleton session beans, namely container-managed concurrency and bean-managed
concurrency. Container-managed concurrency can be easily specified by annotations.
See https://docs.oracle.com/javaee/7/tutorial/ejb-basicexamples002.
htm#GIPSZ for more information on managing concurrency in singleton session
beans. The use of a singleton bean could have an impact on the scalability of the
application if there are resource contentions in the code.

We use the @singleton annotation to create a singleton session bean.

Accessing session bean from the client

Session beans can be designed to be accessed locally (within the same application
as session beans) or remotely (from a client running in a different application or
JVM) or both. In the case of remote access, session beans are required to implement
a remote interface. For local access, session beans can implement a local interface or
implement no interface (the no-interface view of a session bean). The remote and
local interfaces that the session bean implements are sometimes also called business
interfaces because they typically expose the primary business functionality.

Creating a no-interface session

To create a session bean with the no-interface view, create a POJO and annotate it
with the appropriate EJB annotation type and @eLocalBean. For example, we can
create a local stateful student bean as follows:

import javax.ejb.LocalBean;
import javax.ejb.Singleton;

@Singleton

@LocalBean
public class Student {

}..

[223]

https://docs.oracle.com/javaee/7/tutorial/ejb-basicexamples002.htm#GIPSZ
https://docs.oracle.com/javaee/7/tutorial/ejb-basicexamples002.htm#GIPSZ

Creating JEE Applications with E]B

Accessing session bean using dependency
injection

You can access session beans by either using the @EgB annotation (for dependency
injection) or performing the JNDI (which stands for Java Naming and Directory

Interface) lookup. E]B containers are required to make the JNDI URLSs of E]Bs
available to clients.

Dependency injection of session beans using @EJB works only for managed
components, that is, components of the application whose lifecycle is managed

by the EJB container. When a component is managed by the container, it is

created (instantiated) and destroyed by the container. You do not create managed
components by using the new operator. JEE-managed components that support

the direct injection of EJBs are Servlets, managed beans of JSF pages, and EJBs
themselves (one EJB can have another E]B injected into it). Unfortunately, you cannot
have a web container inject EJBs in JSPs or JSP beans. Further, you cannot have E]Bs
injected into any custom classes that you create and that are instantiated using the
new operator. Later in the chapter, we will see how to use JNDI to access E]Bs from
objects that are not managed by the container.

We could use a student bean (created previously) from a managed bean of JSF
as follows:

import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;

@ManagedBean

public class StudentJSFBean {
@EJB
private Student studentEJB;

}

Note that if you create EJB with the no-interface view, then all public methods in that
EJB will be exposed to clients. If you want to control what methods could be called
by clients, then you should implement a business interface.

[224]

Chapter 7

Creating session bean using the local business
interface

The business interface for EJB is a simple Java Interface with either the @Remote or
the @Local annotation. Therefore, we can create a local interface for a student bean
as follows:

import java.util.List;
import javax.ejb.Local;

@Local
public interface StudentLocal {
public List<Course> getCourses() ;

}

Further, we can implement a session bean as follows:

import java.util.List;
import javax.ejb.Local;
import javax.ejb.Stateful;

@Stateful

@Local

public class Student implements StudentLocal
@Override
public List<CourseDTO> getCourses () {

//get courses are return

}

Clients can access the student EJB only through the local interface.

import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;

@ManagedBean

public class StudentJSFBean {
@EJB
private StudentLocal student;

}

A session bean can implement multiple business interfaces.

[225]

Creating JEE Applications with E]B

Accessing session bean using the JNDI lookup

Although accessing EJB using dependency injection is the easiest way, it works
only if the container manages the class that accesses the EJB. If you want to access
EJB from a POJO that is not a managed bean, then dependency injection will not
work. Another scenario where dependency injection does not work is when EJB is
deployed in a separate JVM (could be on a remote server). In such cases, you will
have to access EJB using JNDI lookup (visit https://docs.oracle.com/javase/
tutorial/jndi/ for more information on JNDIL.).

JEE applications could be packaged in EAR (which stands for enterprise application
archive), which contains a . jar file for E]Bs and a . war file for web applications

(and a 1ib folder containing libraries required for both). If, for example, the name

of an EAR file is CourseManagement . ear and the name of the E]B JAR in it is
CourseManagementEJBs . jar, then the name of the application is CourseManagement
(name of the EAR file) and the module name is CourseManagementEJBs. The EJB
container uses these names to create a JNDI URL for the lookup E]Bs. A global JNDI
URL for EJB is created as follows:

"java:global/<application names/<module name>/<bean names! [<bean
interface>]"

* java:global indicates that it is a global JNDI URL.

* <application names is typically the name of the EAR file.
* <module name> is the name of the EJB JAR.

* <bean name> is the name of the E]JB bean class.

* <bean_interfaces is optional if EJB has a no-interface view, or if E]B
implements only one business interface. Else, it is a fully qualified name of a
business interface.

EJB containers are also required to publish two more variations of JNDI URLSs for
each EJB. These are not global URLs, which means that they can't be used to access
EJBs from clients that are not in the same JEE application (in the same EAR).

* "java:app/[<module name>]/<bean names! [<bean interface>]"

®* "java:module/<bean name>! [<bean interface>]"

The first URL can be used if the E]B client is in the same application, and the second
URL can be used if the client is in the same module (the same . jar file as the E]B).

[226]

https://docs.oracle.com/javase/tutorial/jndi/
https://docs.oracle.com/javase/tutorial/jndi/

Chapter 7

Before you look up any URL in a JNDI server, you need to create InitialContext,
which includes information, among other things, such as the host name of the JNDI
server and the port on which it is running. If you create InitialContext in the same
server, then there is no need to specify these attributes.

InitialContext initCtx = new InitialContext() ;
Object obj = initCtx.lookup ("jndi url");

We can use the following JNDI URLs to access no-interface (LocalBean) Student EJB
(assuming that the name of the EAR file is CourseManagement and the name of the
.jar file for E]Bs is CourseManagementEJBs).

URL When to use
java:global/CourseManagement/ | The client can be anywhere in the EAR file,
CourseManagementEJBs/Student because we use a global URL. Note that we

haven't specified the interface name because
we are assuming that a student bean provides
the no-interface view in this example.

java:app/CourseManagementEJBs/ | The client can be anywhere in the EAR.
Student We skipped the application name because
the client is expected to be in the same
application, because the namespace of the
URL is java:app.
java:module/Student The client must be in the same . jar file as
EJB.

We can use the following JNDI URLs for accessing Student EJB that implemented a
local interface called StudentLocal:

URL When to use

java:global/CourseManagement/ | The client can be anywhere in the EAR file,

CourseManagementEJBs/ because we use a global URL.

Student !packt.jee.book.ché6.

StudentLocal

java:global/CourseManagement/ | The client can be anywhere in the EAR. We

CourseManagementEJBs/Student skipped the interface name because the bean
implements only one business interface. Note
that the object returned from this call will
be of the StudentLocal type, and not the
Student type.

[227]

Creating JEE Applications with E]B

URL When to use
java:app/CourseManagementEJBs/ | The client can be anywhere in the EAR. We
Student skipped the application name because the
Or JNDI namespace is java: app.

java:app/CourseManagementEJBs/
Student !packt.jee.book.ché6.

StudentLocal
java:module/Student The client must be in the same EAR as the
Or EJB.

java:module/Student !packt. jee.
book.ché.StudentLocal

Here is an example of how we can call a student bean with a local business
interface from one of the objects (that is not managed by the web container)
in our web application:

InitialContext ctx = new InitialContext () ;
StudentLocal student = (StudentLocal) ctx.loopup
("java:app/CourseManagementEJBs/Student") ;

return student.getCourses(id) ; //get courses from Student EJB

Creating session bean using a remote business
interface

If a session bean that you create is going to be accessed by a client object that is not
in the same JVM as the bean, then the bean needs to implement a remote business
interface. You create a remote business interface by using the @rRemote annotation.

import java.util.List;
import javax.ejb.Remote;

@Remote
public interface StudentRemote
public List<CourseDTO> getCourses() ;

}

[228]

Chapter 7

The E]JB implementing the remote interface is also annotated with @rRemote.

@Stateful
@Remote
public class Student implements StudentRemote {
@Override
public List<CourseDTO> getCourses () {
//get courses are return

}

Remote EJBs can be injected into managed objects in the same application by using
the @EgB annotation. For example, a JSF bean can access the previously mentioned
student bean (in the same application) as follows:

import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;

@ManagedBean

public class StudentJSFBean {
@EJB
private StudentRemote student;

}

Accessing a remote session bean
We can use the following JNDI URLs for accessing the remote Student E]JB:

URL When to use
java:global/CourseManagement/ The client can be in the same application
CourseManagementEJBs/ or remote. In case of a remote client, we
Student !packt.jee.book.ché. need to set up proper InitialContext
StudentRemote parameters.
java:global/CourseManagement/ The client can be in the same application
CourseManagementEJBs/Student or remote. We skipped the interface
name because the bean implements only
one business interface.

[229]

Creating JEE Applications with E]B

URL When to use

java:app/CourseManagementEJBs/ The client can be anywhere in the

Student EAR. We skipped the application

Or name because the JNDI namespace is
java:app.

java:app/CourseManagementEJBs/
Student !packt.jee.book.ché6.

StudentRemote
java:module/Student The client must be in the same EAR as
Or the EJB.

java:module/Student !packt.jee.
book.ché.StudentRemote

To access E]Bs from a remote client, you need to use a JNDI lookup method. Further,
you need to set up InitialContext with certain properties; some of them are JEE
application server specific. See https://glassfish.java.net/javaee5/ejb/EJB_
FAQ.html#nonJavaEEwebcontainerRemoteEJB for information on the properties to
be set in GlassFish. If the remote E]JB and the client are both deployed in GlassFish
(different instances of GlassFish), then you can look up the remote EJB as follows:

Properties jndiProperties = new Properties() ;

jndiProperties.setProperty ("org.omg.CORBA.ORBInitialHost",
"<remote host>");

//target ORB port. default is 3700 in Glassfish

jndiProperties.setProperty ("org.omg.CORBA.ORBInitialPort",
"3700") ;

InitialContext ctx = new InitialContext (jndiProperties) ;
StudentRemote student =

(StudentRemote) ctx.lookup ("java:app/CourseManagementEJBs/Student") ;
return student.getCourses() ;

Configuring the GlassFish server in
Eclipse

We are going to use the GlassFish application server in this chapter. We have already
seen how to install GlassFish in the Installing GlassFish server section of Chapter 1,
Introducing JEE and Eclipse.

[230]

https://glassfish.java.net/javaee5/ejb/EJB_FAQ.html#nonJavaEEwebcontainerRemoteEJB
https://glassfish.java.net/javaee5/ejb/EJB_FAQ.html#nonJavaEEwebcontainerRemoteEJB

Chapter 7

We will first configure the GlassFish server in Eclipse JEE.

1. To configure the GlassFish server in Eclipse EE, make sure that you are in
the Java EE perspective in Eclipse. Right-click in the Servers view and select

New | Server.

Define a New Server =
Choose the type of server to create ‘J

Download additional server adapters

Select the server type:
o

> [~ Apache

» [Basic

¥ [GlassFish
=21GlassFish 3.1
«=1GlassFish 4

» [ObjectWeb

k

Reference implementation of Java EE 7.

Server's host name: v localhost
Server name: GlassFish 4 at localhost
|\?/| Next > Cancel

Figure 7.1 Define GlassFish 4 server in Eclipse EE

[231]

Creating JEE Applications with E]B

2. Select the GlassFish 4 server and click Next.

GlassFish 4

Define GlassFish runtime properties. C :!

Name: GlassFish 4
Server root: /Users/Ram/Applications/glassfish4/glassfish =1

Java Development Kit: Java SE 8 [1.8.0_11] (Eclipse default)

<>
[

@) < Back Next > Cancel

Figure 7.2 Define GlassFish runtime properties

3. Enter the path of the GlassFish 4 server on your local machine in the Server
Root field and click Next.

GlassFish 4
Define GlassFish Application Server properties. (G ;- q
Domain path: lam/Applications/glassfishd/glassfish/domains/domaini ;_i g
Admin name: admin

Admin password:

Debug port:

v Preserve sessions across redeployment

Use JAR archives for deployment

@ < Back Next > Cancel Finish

Figure 7.3 Define GlassFish server properties

[232]

Chapter 7

4. The default domain after you install GlassFish is domain1. If you have not
changed the default domain in GlassFish after installation, then accept all
the default options on this page, or change the values appropriately. We will
assume that the domain name is the default one, that is, domaini. Click Next.

5. The next page allows you to deploy the existing Java EE projects in GlassFish
4. We don't have any projects to add at this point, so just click Finish.

6. The server is added to the Servers view. Right-click on the server and select
Start. If the server is installed and configured properly, then the server status
should change to Started.

7. To open the admin page of the server, right-click on the server and select
GlassFish | View Admin Console. The admin page is opened in the built-
in Eclipse browser. You can browse to the server home page by opening the
http://localhost:8080 URL. 8080 is the default GlassFish port.

Creating the CourseManagement
application using EJB

Now, let's create the CourseManagement application that we created in

Chapter 4, Creating a JEE Database Application by using E]Bs. In Chapter 4, Creating a
JEE Database Application we created service classes (which were POJOs) for writing
the business logic. We will replace them with EJBs. We will start with creating
Eclipse projects for E]Bs.

Creating an EJB project in Eclipse

EJBs are packaged in a JAR file. Web applications are packaged in a WAR (which
stands for Web Application Archive). If E]Bs are to be accessed remotely, then the
client needs to have access to business interfaces. Therefore, EJB business interfaces
and shared objects are packaged in a separate JAR, called EJB client JAR. Further, if
EJB and the web application are to be deployed as one single application, then they
need to be packaged in EAR (which stands for Enterprise Application Archive).

So, in most cases an application with E]Bs is not a single project but four different
projects:
1. EJB project that creates EJB JAR.

2. EJB client project that contains business classes and shared (between EJB
and client) classes.

[233]

Creating JEE Applications with E]B

3. Web project that generates WAR.

4. EAR project that generates EAR containing EBJ JAR, E]B client JAR, and
WAR.

You can create each of these projects independently and integrate them. However,
Eclipse gives you the option to create an EJB project, an E]B client project, and an
EAR project with one wizard.

1. Select File | New | EJB Project. Type CourseManagementEJBs in the Project
name textbox. Make sure that Target runtime is Glassfish 4 and EJB
module version is 3.2 or later. From the Configuration drop-down list,
select Default Configuration for Glassfish 4.Inthe EAR membership
group, check the Add project to an EAR box.

EJB Project p @

Create an EJB Project and add it to a new or existing Enterprise Application. .-"J_ y
| A
Project name: CourseManagementEJBs

Project location

+ | Use default location

Location:

Target runtime

GlassFish 4 ke New Runtime...

EJB module version

3.2

<

Configuration

Dafault Configuration for GlassFish 4 v Maodify...

A good starting point for working with GlassFish 4 runtime. Additional facets can later be
installed to add new functionality te the project.

EAR membership
¥ Add project to an EAR

EAR project name: CourseManagementEJBsEAR v New Project...

Working sets

Add project to working sets

Working sets:

2 Next > Cancel Finish

Figure 7.4 New E]B Project wizard

[234]

Chapter 7

2. Select Next. On the next page, specify the source and output folders for the
classes. Leave the defaults unchanged on this page.

Java . ;l
Is
Configure project for building a Java application.
Source folders on build path:
(# ejbModule Add Folder...
Edit...
Remove
Default output folder:
build/classes
Yy
\{) < Back Next > Cancel Finish

Figure 7.5 Select source and output folders

3. The source Java files in this project would be created in the ejbModule folder.
Click Next.

EJB Module
Configure EJB module settings.

EJB Client JAR
v Create an EJB Client JAR module to hold the client interfaces and classes
Name: CourseManagementEJBsClient

Client JAR URI: CourseManagementEJBsClient.jar

() < Back Cancel Finish

Figure 7.6 Create EJB client project

[235]

Creating JEE Applications with E]B

4. Eclipse gives an option to create an EJB client project. Select the option and
click Finish.

5. Since we are building a web application, we will create a web project. Select
File | Dynamic Web Project. Set the project name as CourseManagementWeb.

Dynamic Web Project

Create a standalone Dynamic Web project or add it to a new or existing @
Enterprise Application.

Project name: CourseManagementWeb
Project location
¥ Use default location

Location:

Target runtime

GlassFish 4 v

Dynamic web module version

(]

31

Configuration

Default Configuration for GlassFish 4 i+ Modify...

A good starting point for working with GlassFish 4 runtime. Additional facets can
later be installed to add new functionality to the project.

EAR membership
v| Add project to an EAR

EAR project name: CourseManagementEJBSEAR v New Project...

Working sets

Add project to working sets

Working sets: <

(¢)) Next > Cancel Finish

2/

Figure 7.7 New Dynamic Web Project

[236]

Chapter 7

6. Select the Add Project to an EAR checkbox. Since we have only one EAR
project in the workspace, Eclipse selects this project from the drop-down list.
Click Finish.

We now have the following four projects in the workspace.

L™ Project Explorer 23 "

=

- I
o

> & CourseManagementEJBs

> CourseManagementEJBsClient

> E?CourseManagementEJ BsEAR

- CourseManagementWeb

Figure 7.8 Course Management projects

In the course management application, we will create a stateless EJB called
CourseBean. We will use JPA (which stands for Java Persistence APIs) for data
access and create Course entity. See Chapter 4, Creating a JEE Database Application, for
details on using JPA. The CourseManagementEJBClient project will contain the EJB
business interface and shared classes. In CourseManagementWeb, we will create a JSF
page and a managed bean that will access course EJB in the CourseManagementEJBs
project to get a list of courses.

Configuring datasource in GlassFish 4

In Chapter 4, Creating a JEE Database Application we created the JDBC datasource
locally in the application. In this chapter, we will create a JDBC datasource in
GlassFish 4. The GlassFish 4 server is not packaged with the JDBC driver for MySQL.
So, we need to place the . jar file for MysQLDriver in the path where GlassFish can
find it. You can place such external libraries in the 1ib/ext folder of the GlassFish
domain in which you will deploy your application. For this example, we will copy
the JAR in <glassfish homes/glassfish/domains/domainl/lib/ext.

[237]

Creating JEE Applications with E]B

If you do not have the MySQL JDBC driver, you can download it from http://dev.
mysql.com/downloads/connector/j/.

1.

Open the GlassFish admin console, either by right-clicking on the server in
the Servers view and selecting GlassFish | View Admin Console (this opens
admin console inside Eclipse) or browsing to http://localhost:4848 (4848
is the default port to which the GlassFish admin console application listens).
In the admin console, select Resources | JDBC | JDBC Connection Pools.
Click the New button in the JDBC Connection Pool page of GlassFish.

New JDBC Connection Pool (Step 1 of 2)

ldentify the general settings for the connection pool.

General Settings

Pool Name: * MySQLconnectionPool
Resource Type: javax.sql.DataSource 4
Must be specified if the datasource class implements more than 1 of the interface.

Database Driver Vendor: | pysg .

Select or enter a database driver vendor

Introspect: Enabled
If enabled, data source or driver implementation class names will enable introspection.

Figure 7.9 Create JDBC Connection Pool in GlassFish

Set Pool Name as MySQLconnectionPool and select javax.sqgl.Datasource
as Resource Type. Select MySql from the Database Driver Vendor list and
click Next. In the next page, select the correct Datasource Classname (com.
mysqgl.jdbc.jdbc2.optional .MysglDatasource) on the basis of our
selection of the MySQL database in the previous page.

New JDBC Connection Pool (Step 2 of 2)

Identify the general settings for the connection pool. Datasource Classname or Driver Classname must bg

General Settings

Pool Name: MySQLconnectionPool
Resource Type: javax.sgl.DataScurce

Database Driver Vender: MySal

Datasource Classname: com.mysqgl.jdbc.jdbc2 optional MysglDataSource 4

Select or enter vendor-specific classname that implements the DataSource

Driver Classname: L

Select or enter vendor-specific classname that implements the java.sql.Driv
Ping: Enabled
When enabled, the pool is pinged during creation or reconfiguration to iden

Description:

Figure 7.10 JDBC Connection Pool settings 2 in GlassFish

[238]

http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Chapter 7

3. We need to set the host name, port, user name, and password of MySQL.

Scroll down the

page to the Additional Properties section.

Port/PortNumber 3306

DatabaseName <schemaname of coursemanagement> for example,
course management. See Chapter 4, Creating a [EE Database
Application for details on creating the MySQL schema for the
Course Management database.

Password MySQL database password.

URL/Url jdbc:mysqgl://:3306/<database name> for example,
jdbc:mysqgl://:3306/course_management

ServerName localhost

User MySQL username

4. Click Finish. The new connection pool is added to the list in the left pane.
Click on the newly added connection pool. In the General tab, click on the
Ping button and make sure that the ping is successful.

General

Advanced ‘ Additional Properties

0 Ping Succeeded

Edit JDBC Connection Pool

Modify an existing JDBC connection pool. A JDBC connection pool is a grq

| Load Defaults | | Flush | | Ping |

General Settings

Pool Name: MySQLconnectionPool

Resource Type: javax.sql.DataSource

D

Figure 7.11 Test JDBC Connection Pool in GlassFish

[239]

Creating JEE Applications with E]B

5. Next, we need to create a JNDI resource for this connection pool so that it
can be accessed from the client application. Select the Resources | JDBC |
JDBC Resources node in the left pane. Click the New button to create a new
JDBC resource.

New JDBC Resource

Specify a unique JNDI name that identifies the JDBC resource you want to create.

JNDI Name: * |jdbc/CourseManagement

Pool Name: | MySQLconnectionPool 4
Use the JDBC Connection Pools page to create new pools

Description:

Status: ") Enabled

Figure 7.12 Test JDBC Connection Pool in GlassFish

6. Set JNDI Name as jdbc/CourseManagement. From the Pool Name
drop-down list, select the connection pool that we created for MySQL,
MySQLconnectionPool. Click Save.

Configuring JPA

We will now configure our EJB project to use JPA to access the MySQL database. We
have already seen how to enable JPA for an Eclipse project in Chapter 4, Creating a
JEE Database Application.

[240]

Chapter 7

However, we will briefly cover the steps here again.

1. Right-click on the CourseManagementEJBs project in Project Explorer
and select Configure | Convert to JPA Project. Eclipse opens the
Project Facets window.

Project Facets

Salect the faceis that should be enabled for this project. \)

Configuration: <custom= < Save As... Delate
Project Facet Version Runtimes
v [#»EJB Module 3.2 -

EJBDoclet (XDoclet) 123 - @ EJB Module 3.2
v GlassFish EJB Extensions 4.0 - =

. Enables the project to ba deployed as an EJB
v o] Java 1.8 - module.

JavaSeript 1.0 : :

JAX-RS (REST Web Services) 1.1 - Requires the following facet:

H JAXB 2.2 hd |J] Java 1.7 or newer
S H JPA 2.1 -
:9' MNext > Cancel Finish

Figure 7.13 Eclipse Project Facets

2. Click Next to go to the JPA Facet page.

JPA Facet

Configure JPA settings. | i' - 7

Platform

Generic 2.1 e

JPA implementation

Type: GlassFish System Library

<>

GlassFish 4 includes JPA 2.1 on system classpath.
Connection
<None> Z

Add connection...

@ < Back Cancel Finish

Figure 7.14 JPA Facet

[241]

Creating JEE Applications with E]B

Keep the default values unchanged, and click Finish. Eclipse adds persistence.xml
required by JPA to the project, under the JPA Content group in Project Explorer. We
need to configure the JPA datasource in persistence.xml. Open persistence.xml
and click on the Connection tab. Set Transaction Type to JTA. In the JTA datasource
textbox, type JNDI name that we set up for our MySQL database in the previous
section, as jdbc/CourseManagement. Save the file. Note that the actual location of
persistence.xml iS ejbModule/META-INF.

Now, let's create a database connection in Eclipse and link it with the JPA properties
of the project so that we can create JPA entities from the database tables. Right-

click on the CourseManagementEJBs project and select Properties. This opens the
Project Properties window. Click on the JPA node. Click on the Add connection
link just below the Connection drop-down box. We have already seen how to set up
a database connection in the Using Eclipse Data Source Explorer section of Chapter 4,
Creating a JEE Database Application. However, we will quickly recap the steps:

1. Inthe Connection Profile window, select MySQL.

Connection Profile

Create a MySQL connection profile.

Connection Profile Types:

type filter text
£ 4 Ingres

£ 4 MaxDB

£4 MysaL

k4 Oracle

k4 PostgreSQL

Name:
CoureManagementDBConnection

Description (optional):

(?) MNext > Cancel

Figure 7.15 New DB Connection Profile

[242]

Chapter 7

2. Type CourseManagementDBConnection in the name textbox and click Next.
In the New Connection Profile window, click on the new connection profile
button (the circle next to the Drivers drop-down box) to open the New
Driver Definition window. Select the appropriate MySQL JDBC Driver
version and click on the JAR List tab. Remove any existing . jar file from
the list if you see an error, and click on the Add JAR/Zip button. Browse
to the MySQL JDBC driver JAR that we saved in the <glassfish homes/
glassfish/domains/domainl/lib/ext folder. Click OK. Back in the New
Connection Profile window, enter the database name, modify the connection
URL, and enter User name and Password.

Specify a Driver and Connection Details

Select a driver from the drop-down and provide login details for the

connection.
Drivers: = MySQL JDBC Driver C & A
Properties
Optional
Database: |course_management
URL: jdbc:mysql://localhost:3306/course_management
User name: | admin
Password: | eeese
v | Save password
v Connect when the wizard completes Test Connection

Connect every time the workbench is started

17' < Back Next > Cancel Finish

Figure 7.16 Configure MySQL Database Connection

[243]

Creating JEE Applications with E]B

3. Select the Save password checkbox. Click the Test Connection button
and make sure that the test is successful. Click the Finish button. Back on
the JPA properties page, the new connection is added and the appropriate
schema is selected.

@ | JpeA v Dy w

»Resource
AppXray
Builders
Coverage
Deployment Assembly
FindBugs
Java Build Path
> Java Code Style
»Java Compiler
» Java Editor
Javadoc Location
> JPA
Project Facets
Project References
Refactoring History
Run/Debug Settings
Server
Service Policies
Targeted Runtimes
P Task Repository
Task Tags
TestNG
> Validation
WikiText
F XDoclet

Platform

Generic 2.1 v

Change JPA version...

JPA implementation

Type: GlassFish System Library 4]
GlassFish 4 includes JPA 2.1 on system classpath.
Connection

CoureManagementDBConnection ¢

Add connection...

Connected

Override default catalog from connection

<3

Catalog:

Override default schema from connection

<>

Schema: course_management

Persistent class management

* Discover annotated classes automatically

Annotated classes must be listed in persistence.xmi

Canonical metamodel (JPA 2.0)

<

Source folder: <None>

Cancel OK

Figure 7.17 Connection Added to JPA project properties

4. Click OK to save the changes.

[244]

Chapter 7

Creating a JPA entity

We will now create an entity class for Course by using Eclipse JPA tools.

1. Right-click on the CourseManagementEJBs project, and select JPA Tool |
Generate Entities from Tables.

Select Tables ;)
| .II
Select tables from which entities will be generated. I\L

Connection: CoureManagementDBConnection

<>

(Note: You must have an active connection to select schema.)
Schema: course_management s
Tables:
+| COURSE ;
COURSE_STUDENT -
STUDENT
TEACHER |

v List generated classes in persistence.xmil
Restore Defaults

['?:. Next > Cancel Finish

Figure 7.18 Create entity from table

[245]

Creating JEE Applications with E]B

2. Select the Course table and click Next. Click Next in the Table Associations
window. On the next page, select identity as Key generator.

Customize Defaults | v
| a
Optionally customize aspects of entities that will be generated by default from database \&‘—
tables. A Java package should be specified.

Mapping defaults

>

Key generator: identity

Sequence name:

You can use the patterns $table and/or $pk in the sequence name.
These patterns will be replaced by the table name and the primary key
column name when a table mapping is generated.

Entity access: * Field Property
Associations fetch: * | Default Eager Lazy
Collection properties type: java.util.Set * java.util.List

Always generate optional JPA annotations and DDL parameters

Domain java class

Source folder: CourseManagementEJBs/ejbModule Browse...
Package: packt.book.jee.eclipse.ch7.jpa Browse...
Superclass: Browse...
Interfaces: © java.io.Serializable Add...
|\?\| < Back Next > Cancel Finish

Figure 7.19 Customize JPA entity details

3. Enter the package name. We do not want to change anything on the next
page, so click Finish. Notice that the wizard creates a £indall query for the
class that we can use to get all courses.

@Entity

@NamedQuery (name="Course.findAll", query="SELECT c FROM
Course c")

public class Course implements Serializable { ..}

[246]

Chapter 7

Creating stateless EJB

We will now create stateless EJB.

1. Right-click on the ejbModule folder of the CourseManagementEJBs project
and select New | Session Bean (3.x). Type packt .book.jee.eclipse.ch7.
ejb in the Java package textbox and CourseBean in Class name. Select the
Remote checkbox.

Create EJB 3.x Session Bean
Specify class file destination. L@
Project: CourseManagementEJBs <
Source folder: |/CourseManagementEJBs/ejbModule Browse...
Java package: packt.book.jee.eclipse.ch7.ejb Browse...
Class name: CourseBean
Superclass: Browse...
State type: Stateless 2
Create business interface
v Remote |packt.book.jee.eclipse.ch7.ejb.CourseBeanRemote
Local
v No-interface View
Asynchronous
'."_‘:' Next > Cancel Finish

Figure 7.20 Create stateless session bean

[247]

Creating JEE Applications with E]B

2. Click Next. No change is required on the next page.

Create EJB 3.x Session Bean

Enter Session Bean specific information. |_®
Bean name: CourseBean
Mapped name:

<

Transaction type: ~ Container

Interfaces: R packt.book.jee.eclipse.ch7.ejb.CourseBeanRemote Add...

» Home and Component interfaces (EJB 2.x)
Which method stubs would you like to create?

v Inherited abstract methods

v Constructors from superclass

'\'7;' < Back Cancel Finish

Figure 7.21 Stateless session bean information

3. Click Finish. The courseBean class is created with the @stateless and @
Localbean annotations. The class also implements the CourseBeanRemote
interface, which is defined in the CourseManagementEJBClient project
because it is a shared interface (a client calling EJB needs to access this
interface).

@Stateless

@LocalBean

public class CourseBean implements CourseBeanRemote
public CourseBean()

}

[248]

Chapter 7

The interface is annotated with @rRemote.

@Remote
public interface CourseBeanRemote

}

Now, the question is how do we return Course information from EJB? EJB would
call JPA APIs to get the instances of Course entity, but do we want EJB to return

the instances of Course entity or should it return the instances of lightweight DTO
(which stands for data transfer object)? Each has its own advantages. If we return
Course entity, then we do not need to transfer data between objects, which we

will have to in case of DTO (transfer the data of entity to the corresponding DTO).
However, passing entities between layers may not be a good idea if the EJB client

is not in the same application, and you may not want to expose your data model to
external applications. Further, by passing back JPA entities, you are forcing the client
application to depend on JPA libraries in its implementation.

DTOs are lightweight, and you can expose only those fields that you want your
clients to use. However, you will have to transfer data between entities and DTOs.

If your E]Bs are going to be used by the client in the same application, then it
could be easier to transfer Entities to the client from EJB. However, if your client
is not part of the same EJB application or when you want to expose EJB as a web
service (we will see how to create web services in Chapter 9, Creating Web Services),
then you may need to use DTOs.

In our application, we will see an example of both the approaches, that is, the EJB
method returning JPA entities as well as DTOs. Remember that we have created
CourseBean as a remote as well as a local bean (no-interface view). Implementation
of the remote interface method will return DTOs and that of the local method will
return JPA entities.

We will add the getCourses method to the EJB. We will create CourseDTO, a data
transfer object, which is a POJO and returns instances of that from getcourses. This
DTO needs to be in the CourseManagementEJBsClient project because it will be a
shared class between EJB and its client.

[249]

Creating JEE Applications with E]B

Create the following class in the packt .book.jee.eclipse.ch7.dto package in the
CourseManagementEJBsClientprdect

package packt.book.jee.eclipse.ch7.dto;

public class CourseDTO {

private int id;

private int credits;

private String name;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public int getCredits() {
return credits;

}

public void setCredits (int credits)
this.credits = credits;

}

public String getName () {
return name;

}

public void setName (String name) {

this.name = name;

}
Add the following method to CourseBeanRemote:

public List<CourseDTO> getCourses() ;

We need to implement this method in CourseBean EJB. To get the courses from the
database, the E]JB needs to first get an instance of EntityManager. Recall that in Chapter
4, Creating a JEE Database Application we created EntityManagerFactory and got an
instance of EntityManager from it. Then, we passed this instance of EntityManager to
the service class, which actually got the data from the database by using JPA APlIs.

[250]

Chapter 7

JEE application servers make injecting EntityManager very easy. You just need to
create an EntityManager field in EJB and annotate it with @ePersistenceContext (u
nitName="<name as specified in persistence.xml>").The unitName attribute
is optional if there is only one persistence unit defined in persistence.xml. Open
the courseBean class and add the following declaration:

@PersistenceContext
EntityManager entityManager;

EJBs are managed objects, and the EJB container injects EntityManager after the EJBs
are created. This is a part of the JEE feature called CDI (which stands for Context
and Dependency Injection). See https://docs.oracle.com/javaee/7/tutorial/
partcdi.htm#GJIBNR for information on CDI.

We will add a function to CourseBean EJB that will return a list of Course entities.
This function will be called by the getcourses method in the same E]JB, which will
then convert the list of entities to DTOs and can also be called by a web application,
because the E]JB exposes the no-interface view (by using the @LocalBean annotation).

public List<Course> getCourseEntities() {

//Use named query created in Course entity using @NameQuery
annotation.

TypedQuery<Course> courseQuery =
entityManager.createNamedQuery ("Course.findAll", Course.class);

return courseQuery.getResultList () ;

}

After implementing the get Courses method (defined in our remote business
interface called CourseBeanRemote), we have CourseBean as follows:

@Stateless

@LocalBean

public class CourseBean implements CourseBeanRemote {
@PersistenceContext
EntityManager entityManager;

public CourseBean() {

}

public List<Course> getCourseEntities() {

//Use named query created in Course entity using @NameQuery
annotation.

[251]

https://docs.oracle.com/javaee/7/tutorial/partcdi.htm#GJBNR
https://docs.oracle.com/javaee/7/tutorial/partcdi.htm#GJBNR

Creating JEE Applications with E]B

TypedQuery<Course> courseQuery =
entityManager.createNamedQuery ("Course.findAll", Course.class);

return courseQuery.getResultList () ;

@Override
public List<CourseDTO> getCourses() {
//get course entities first
List<Course> courseEntities = getCourseEntities();

//create list of course DTOs. This is the result we will
return
List<CourseDTO> courses = new ArrayList<CourseDTO> () ;

for (Course courseEntity : courseEntities) ({
//Create CourseDTO from Course entity
CourseDTO course = new CourseDTO() ;
course.setId(courseEntity.getId()) ;
course.setName (courseEntity.getName ()) ;
course.setCredits (course.getCredits()) ;
courses.add (course) ;

}

return courses;

Creating JSF and managed bean

We will now create a JSF page to display courses and a managed bean that will call
the getCourses method of CourseEJIB. See the Java Server Faces section in Chapter 2,
Creating a Simple JEE Web Application for the details of JSF.

As discussed in Chapter 2, Creating a Simple JEE Web Application we need to add JSF
Servlet and mapping to web.xml. Open web.xml from the CourseManagementieb
project. You can open this file either by double-clicking the Deployment Descriptor
| CourseManagementWeb node or from the webContent\Web- INF folder. Add the
following servlet declaration and mapping (within the web-app node):

<servlets>
<servlet-name>JSFServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

[252]

Chapter 7

</servlet>

<servlet-mapping>
<servlet-name>JSFServlet</servlet-name>
<url-pattern>*.xhtml</url-patterns>
</servlet-mapping>

The courseManagementWeb project needs to access the business interface of EJB,
which is in CourseManagementEJBsClient. So, we need to add the reference

of CourseManagementEJBsClient to CourseManagementWeb. Open the project
properties of CourseManagementWeb (right-click on the CourseManagementwWeb
project) and select Java Build Path. Click on the Projects tab, and click Add. Select
CourseManagementEJBsClient from the list and click OK.

o Java Build Path =k v
> Resource
AppXray (# Source = = Libraries -},_-_,_ Order and Export
Builders . . .
Coverage Required projects on the build path:
Deployment Assembly » => GourseManagementEJBsClient Add...
FindBugs

Java Build Path

> Java Code Style

» Java Compiler

» Java Editor
Javadoc Location

> JavaScript
JSP Fragment
Project Facets
Project References
Run/Debug Settings
Server
Service Policies
Targeted Runtimes

> Task Repository
Task Tags
TestNG

> Validation
Web Content Settings
Web Page Editor
Web Project Settings
WikiText

» XDoclet

Remove

@ Cancel oK

Figure 7.22 Add project reference

[253]

Creating JEE Applications with E]B

Now, let's now create a managed bean for JSF. Create the CourseJsFBean class in the
packt.book.jee.eclipse.ch7.web.beanpackageintheCourseManagementWeb
project (Java source files go in the src folder under the Java Resources group).

import java.util.List;

import javax.ejb.EJB;

import javax.faces.bean.ManagedBean;

import packt.book.jee.eclipse.ch7.dto.CourseDTO;

import packt.book.jee.eclipse.ch7.ejb.CourseBeanRemote;

@ManagedBean (name="Course")
public class CourseJSFBean {
@EJB
CourseBeanRemote courseBean;

public List<CourseDTO> getCourses () {
return courseBean.getCourses() ;

}

JSF beans are managed beans, so we can have a container inject EJB by using
the @EJB annotation. We referenced courseBean with its remote interface,
CourseBeanRemote.

We then created a method called getCourses that calls a method with the same
name on Course EJB and returns the list of CourseDTO objects. Note that we have set
the name attribute in the @ManagedBean annotation. This managed bean would be
accessed from JSF with the variable name Course.

We will now create a JSF page, course. xhtml. Right-click on the WebContent group
in the CourseManagementWeb project, and select New | File. Create courses.xhtml.
Add the following content to it:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<head>

[254]

Chapter 7

<title>Courses</title>
</head>
<body>
<h2>Courses</h2>
<h:dataTable value="#{Course.courses}" var="course">
<h:column>
<f:facet name="header">Name</f:facets>
#{course.name}
</h:column>
<h:column>
<f:facet name="header">Credits</f:facets>
#{course.credits}
</h:column>
</h:dataTable>
</body>
</html>

The page uses the dataTable tag (https://docs.oracle.com/javaee/7/
javaserver-faces-2-2/vdldocs-jsp/h/dataTable.html), which receives

the data to populate from the Course managed bean (which is actually the
CourseJSFBean class). Course. courses in the expression language syntax is a
shortcut for Course.getCourses (). This results in the call getCourses method of
the CourseJSFBean class.

Each element of the list returned by Course.courses, which is List of CourseDTO, is
represented by the course variable (in the var attribute value). We then display the
name and the credits of each course in the table by using the column child tag.

Running the example

Before we can run the example, we need to start GlassFish server and deploy our JEE
application in it.

1. Start the GlassFish server.

[255]

https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-jsp/h/dataTable.html
https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-jsp/h/dataTable.html

Creating JEE Applications with E]B

2. Once it is started, right-click on the GlassFish server in the Servers view and
select the Add and Remove ... menu option.

Add and Remove ’ ‘

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:
> (= CourseManagementEJBSEAR

Add >

Add All >>

v If server is started, publish changes immediately

|'_‘?‘- Cancel Finish

Figure 7.23 Add project to GlassFish for deployment

[256]

Chapter 7

3. Select the EAR project and click on the Add button. Then, click Finish.
The selected EAR application will be deployed in the server.

|* Markers [| Properties 4l Servers 32 H'E Data Source Explorer

vfT'gGIa.b:.sFish 4 at localhost [domain1] [Started, Republish]
¥ «Z1GlassFish Management
» Lﬁ’ Resources
¥ «21Deployed Applications
» (7 CourseManagementEJBSEAR
@ Deployed Web Services
¥ ([CourseManagementEJBSEAR [Republish]

|) CourseManagementEJBsClient [Synchronized]

_» CourseManagementWeb [Synchronized]

Figure 7.24 Application deployed in GlassFish

4. To run the JSF page, course.xhtml, right-click on it in Project Explorer
and select Run As | Run on Server. The page would be opened in the
internal Eclipse browser and courses in the MySQL database would be
displayed on the page.

Note that we could use CourseBean (EJB) as a local bean in CourseJSFBean
because they are in the same application deployed on the same server. To do

this, add a reference of the CourseManagementEJBs project in the build path of
CourseManagementWeb (open the project properties of CourseManagementWeb,
select Java Build Path, select the Projects tab, and click the Add button. Select the
CourseManagementEJBs project and add its reference).

Then, in the coursedsFBean class, remove the declaration of CourseBeanRemote
and add one for courseBean.

//@EJB
//CourseBeanRemote courseBean;

@EJB
CourseBean courseBean;

[257]

Creating JEE Applications with E]B

When you make any changes in the code, the EAR project needs to be redeployed

in the GlassFish server. In the Servers view, you can check whether redeployment is
needed by checking the status of the server. If it is [Started, Synchronized], then no
redeployment is needed. However, if it is [Started, Republish], then redeployment is
required. Just click on the server node and select the Publish menu option.

Creating EAR for deployment outside Eclipse

We saw how to deploy an application to GlassFish from Eclipse. This works
fine during development, but finally, you will need to create an EAR file for
deployment to the external server. To create the EAR file from the project,
right-click on the EAR project (in our example, it is CourseManagement EJBSEAR)
and select Export | EAR file.

EAR Export

Export Enterprise Application project to the local file system.

EAR project: CourseManagementEJBsEAR ~
Destination: vanagementEJBsEAR/dist/CourseManagementEJBsEAR.ear Browse...
Target runtime

v | Optimize for a specific server runtime

GlassFish 4

<3

Export source files

Overwrite existing file

(?) Cancel Finish

Figure 7.25 Exporting to EAR file

Select the destination folder, and click Finish. This file can then be deployed in
GlassFish by using the management console or by copying it to the autodeploy
folder in GlassFish.

[258]

Chapter 7

Creating a JEE project using Maven

In this section, we will discuss how to create JEE projects with E]Bs using Maven.
Creating Maven projects may be preferable than Eclipse JEE projects because builds
can be automated. We have seen many details of creating EJBs, JPA entities, and
other classes in the previous section, so we won't repeat all this information here. We
have also seen how to create Maven projects in Chapter 2, Creating a Simple JEE Web
Application and Chapter 3, Source Control Management in Eclipse so the basic details of
creating a Maven project will not be repeated either. We will focus mainly on how to
create EJB projects using Maven. We will create the following projects:

* CourseManagementMavenEJBs: This project contains EJBs

* CourseManagementMavenEJBClient: This project contains shared interfaces
and objects between an EJB project and the client projects

* CourseManagementMavenWAR: This is a web project containing a JSF page and
a managed bean

* CourseManagementMavenEAR: This project creates an EAR file that could be
deployed in GlassFish

* CourseManagement: This project is an overall parent project that builds all
the previously mentioned projects

We still start with CourseManagementMavenEJdBs. This project should generate an
EJB JAR file. Create a Maven project with the following details:

Group ID packt.book.jee.eclipse.ch7.maven
Artifact ID CourseManagementMavenEJBClient
Version 1

Packaging Jar

We need to add a dependency of JEE APIs to our EJB project. We add a dependency
of javax.javaee-api. Since we are going to deploy this project in GlassFish, which
comes with its own JEE implementation and libraries, we will scope this dependency
as provided. Add the following in pom.xm1:

<dependencies>
<dependencys>
<groupIds>javax</groupIld>
<artifactId>javaee-api</artifactId>
<version>7.0</version>

[259]

Creating JEE Applications with E]B

<scope>provided</scope>
</dependency>
</dependencies>

When we create E]Bs in this project, we need to create local or remote business
interfaces in a shared project (client project). Therefore, we will create
CourseManagementMavenEJBClient with the following details:

Group ID packt.book.jee.eclipse.ch7.maven
Artifact ID CourseManagementMavenEJBs

Version 1

Packaging Jar

This shared project also needs to access E]JB annotations. So, add the same
dependency for javax.javaee-api that we added previously to the pom.xm1 file of
the CourseManagementMavenEJBClient project.

We will create the packt .book.jee.eclipse.ch7.ejb package in this project and
create a remote interface. Create the CourseBeanRemote interface (just as we created
in the Creating stateless EJB section). Further, create a CourseDTO class in the packt .
book.jee.eclipse.ch7.dto package. This class is the same as the one we created in
the Creating stateless EJB section.

We are going to create a Course JPA entity in CourseManagementMavenEJBs. Before
we do that, let's convert this project to the JPA project. Right-click on the project

in Package Explorer and select Configure | Convert to JPA Project. In the JPA
configuration wizard, select the following JPA facet details:

Platform Generic 2.1

JPA Implementation Disable Library Configuration

JPA wizard creates a META- INF folder in the src folder of the project and creates
persistence.xml. Open persistence.xml and click on the Connection tab.
We have already created a MySQL datasource in GlassFish (see the Configuring
datasource in GlassFish 4 section). Enter the JNDI name of the datasource, jdbc/
CourseManagement, in the JTA data source field.

[260]

Chapter 7

Create a Course entity in packt.book.jee.eclipse.ch7.jpa, as described in the
Creating a JPA entity section. Before we create EJB in this project, let's add an EJB
facet to this project. Right-click on the project and select Properties. Click on the
Project Facets group and check the EJB Module checkbox. Set the version to the
latest one (as of writing this chapter, the latest version was 3.2). We will now create
an implementation of the remote session bean interface that we created previously.
Right-click on the CourseManagementMavenEJBs project, and select the New |
Session Bean menu. Create an E]JB class with the following details:

Java package packt .book.jee.eclipse.ch7.ejb
Class name CourseBean
State type Stateless

Do not select any business interface, because we have already created the

business interface in the CourseManagementMavenEJBClient project. Click

Next. On the next page, select CourseBeanRemote. You will see Eclipse

showing errors because CourseManagementMavenEJBs does not know about
CourseManagementMavenEJBClient, which contains the CourseBeanRemote interface,
used by CourseBean in the EJB project. Adding the Maven dependency (in pom.

xml) of CourseManagementMavenEJBClient in CourseManagementMavenEJBs and
implementing the get Courses method in the E]JB class should fix the compilation
errors. A complete implementation of CourseBean as described in the Creating stateless
EJB section. Make sure that EJB is marked as Remote:

@Stateless
@Remote
public class CourseBean implements CourseBeanRemote

}
Now, let's create a web application project for course management by using Maven.
Create a Maven project with the following details:

Group ID packt.book.jee.eclipse.ch7.maven
Artifact ID CourseManagementMavenWebApp
Version 1

Packaging War

[261]

Creating JEE Applications with E]B

To create web . xm1 for this project, right-click on the project and select Java EE
Tools | Generate Deployment Descriptor Stub. The web.xm1 file is created in the
src/main/webapp/WEB-INF folder. Open web.xml and add the Servlet definition
and mapping for JSF (see the Creating JSF and managed bean section). Add a
dependency of the CourseManagementMavenEJBClient project and javax. javaee-
api in the pom. xml file of the CourseManagementMavenWebApp project so that the
web project has access to the EJB business interface declared in the shared project
and to the EJB annotations.

Now, create CoursedSFBean in the web project as described in the Creating JSF and
managed bean section. Note that this will reference the remote interface of EJB in the
managed bean as follows:

@ManagedBean (name="Course")
public class CourseJSFBean {
@EJB
CourseBeanRemote courseBean;

public List<CourseDTO> getCourses () {
return courseBean.getCourses() ;

}
}

Create course.xhtml in the webapp folder as described in the Creating JSF and
managed bean section.

We will now create CourseManagementMavenEAR. Create a Maven project with the
following details:

Group ID packt.book.jee.eclipse.ch7.maven
Artifact ID CourseManagementMavenEAR

Version 1

Packaging Ear

You will have to type ear in the Packaging file; there is no ear option in the drop-
down list. Add a dependency of web, ejb, and client projects to the pom. xml file of
the EAR project as follows:

<dependenciess>
<dependencys>
<groupId>packt.book.jee.eclipse.ch7.maven</groupIld>

[262]

Chapter 7

<artifactId>CourseManagementMavenEJBClient</artifactIds>
<versions>l</version>

<type>jar</types>

</dependency>

<dependencys>
<groupIds>packt.book.jee.eclipse.ch7.maven</groupIds>
<artifactId>CourseManagementMavenEJBs</artifactIds>
<versions>l</version>
<type>ejb</types>

</dependency>

<dependencys>
<groupIds>packt.book.jee.eclipse.ch7.maven</groupIds>
<artifactId>CourseManagementMavenWebApp</artifactIds>
<versions>l</version>
<type>war</types>

</dependency>

</dependencies>

Make sure to set <type> of each dependency properly. You also need to update
JNDI URLs for any name changes.

Maven does not have built-in support to package EAR. However, there is a Maven
plugin for EAR. You can find details of this plugin at https://maven.apache.
org/plugins/maven-ear-plugin/ and https://maven.apache.org/plugins/
maven-ear-plugin/modules.html. We need to add this plugin to our pom.xml and
configure its parameters. Our EAR file will contain JARs for EJB and client projects
and WAR for web projects. Right-click on pom. xml of the EAR project, and select
Maven | Add Plugin. Type ear in the filter box, and select the latest plugin version
under maven-ear-plugin. Make sure that you also install the maven-acr-plugin
plugin. Configure the EAR plugin in the pom.xml details as follows:

<builds>
<plugins>

<plugin>
<groupld>org.apache.maven.plugins</groupIlds>
<artifactIds>maven-acr-plugin</artifactIds>
<version>1.0</version>
<extensions>true</extensions>

</plugin>

<plugin>
<groupld>org.apache.maven.plugins</groupId>

[263]

https://maven.apache.org/plugins/maven-ear-plugin/
https://maven.apache.org/plugins/maven-ear-plugin/
https://maven.apache.org/plugins/maven-ear-plugin/modules.html
https://maven.apache.org/plugins/maven-ear-plugin/modules.html

Creating JEE Applications with E]B

<artifactIds>maven-ear-plugin</artifactIds>
<version>2.10</versions>
<configurations>
<versions6</versions
<defaultLibBundleDir>lib</defaultLibBundleDir>
<modules>
<webModule>
<groupIds>packt.book.jee.eclipse.ch7.maven</groupIds>
<artifactId>CourseManagementMavenWebApp</artifactId>
</webModule>
<ejbModule>
<groupIds>packt.book.jee.eclipse.ch7.maven</groupIds>
<artifactId>CourseManagementMavenEJBs</artifactId>
</ejbModule>
< jarModule >
<groupIds>packt.book.jee.eclipse.ch7.maven</groupIds>
<artifactId>CourseManagementMavenEJBClient</artifactIds>
</ jarModule >
</modules>
</configurations>
</plugin>
</plugins>
</build>

At any time when modifying pom.xml if Eclipse may display the following error:

Project configuration is not up-to-date with pom.xml. Run Maven-
>Update Project or use Quick Fix..

In such a case, right-click on the project and select Maven | Update Project.

The last project that we create in this section is CourseManagement, which will

be a container project for all other EJB projects. When this project is installed, it
should build and install all the contained projects. Create a Maven project with the
following details:

Group ID packt.book jee.eclipse.ch7.maven
Artifact ID CourseManagement

Version 1

Packaging Pom

[264]

Chapter 7

Open pom. xml and click on the Overview tab. Expand the Modules group, and add
all other projects as modules. This adds the following modules in pom. xm1:

<modules>
<modules>. ./CourseManagementMavenEAR</module>
<modules>. ./CourseManagementMavenEJBClient</module>
<modules>../CourseManagementMavenEJBs</module>
<modules. ./CourseManagementMavenWebApp</module>
</modules>

Right-click on the CourseManagement project and select Run As | Maven Install.
This builds all EJB projects, and an EAR file is created in the target folder of the
CourseManagementMavenEAR project. You can deploy this EAR in GlassFish from
the management console, or you can right-click on the configured GlassFish server
in the Servers view of Eclipse, select the Add and Remove ... option, and deploy
the EAR project from right within Eclipse. Browse to http://localhost:8080/
CourseManagementMavenWebApp/course.xhtml to see the list of courses displayed
by the course.xhtml JSF page.

Summary

EJBs are ideal for writing business logic in web applications. They can act as the
perfect bridge between web interface components such as JSF, Servlet, or JSP

and data access objects such as JDO. EJBs can be distributed across multiple JEE
application servers (this could improve application scalability), and their lifecycle is
managed by the container. E]Bs can be easily injected into managed objects or can be
looked up by using JNDI.

Eclipse JEE makes creating and consuming E]Bs very easy. Just like we saw how
Tomcat can be configured and managed within Eclipse, the JEE application server
GlassFish could also be managed by applications deployed from within Eclipse.

In the next chapter, we will discuss how to create web applications by using Spring
MVC. Although Spring is not part of JEE, it is a popular framework to implement
MVC in JEE web applications; it can work with many of the JEE specifications.

[265]

Creating Web Applications
with Spring MVC

Although this book is about JEE and Eclipse, and Spring MVC is not a part of JEE, it
would be worthwhile to understand the Spring MVC framework. Spring MVC is a
very popular framework for creating web applications and can be used with other
JEE technologies, such as Servlet, JSP, JPA, and E]Bs. In this chapter, we will see in
detail how to create web applications by using Spring MVC, JDBC, JPA, and JSPs.

JEE does support MVC out of the box, if you use JSF. Refer to Java Server Faces in
Chapter 2, Creating a Simple JEE Web Application, for details. However, there is a
difference in the design of JSP and Spring MVC. JSF is a component-based MVC
framework. It is designed so that the user interface designer can create pages by
assembling reusable components that are either provided by JSF or custom developed.
Spring MVC is a request-response-based MVC framework. If you are familiar with
writing JSP or Servlets, then Spring MVC would be an easier framework to use than
JSE. You can find a good description of component-based MVC (as implemented by
JSF) and request-response-based MVC (as implemented by Spring MVC) by Ed Burns
athttp://www.oracle.com/technetwork/articles/java/mvc-2280472 . html.

Before we see how Spring MVC works, we need understand what an MVC framework
is. MVC stands for Model-View-Controller framework. We are going to refer to the
MVC framework in the context of Java web applications only, although it should be
mentioned here that MVC is often used in desktop applications too.

* Model: Model contains data that will be used by View to create the output.
In the example that we have been following in this book, of the Course
Management application, if you have a Course class that contains information
about the course to be displayed in a page, then the course object can be called
the model.

[267]

http://www.oracle.com/technetwork/articles/java/mvc-2280472.html

Creating Web Applications with Spring MVC

Some definitions of MVC include classes that also implement business logic
in the Model layer. For example, the CourseService class that takes the
Course object and calls CourseDAO to save Course in the database could
also be considered a part of the Model layer.

* View: View is a page that is displayed to the user. JSP that displays a
list of courses could be considered a part of the View layer. View holds a
reference to the Model object and uses the data to create the page that users
see in browsers.

* Controller: Controller is the glue between Model and View. It handles the
request, calls Model to handle business logic, and makes Model objects
available to View to create the user interface. Controller could be a Servlet,
as in the case of JSF or could be POJOs (as in the case of Spring MVC). When
controllers are POJO, they get called, typically, by DispatcherServlet.

MVC provides the separation of concerns; that is, the code for the user interface and
the business logic is separate. Because of this, the Ul and the business layer can be
modified independently to a great extent. Of course, since the Ul usually displays
the data generated by the business layer, it is not always possible to make changes to
each of the data elements independent of the others. Developers of appropriate skills
can work on each layer independently. A Ul expert need not be too worried about
how the business layer is implemented and vice versa.

Dependency injection

Spring MVC is a part of the overall Spring framework. The core feature of the Spring
framework is dependency injection (DI). Almost all other features of the Spring
framework use DI. Objects managed by the dependency injection framework are

not directly instantiated in the code (by using, for example, new operator). Let's

call them managed objects. These objects are created by a DI framework, such as
Spring. Because objects are created by a framework, the framework has a lot more
flexibility in deciding how to set values in the object and from where to get them. For
example, your Data Access Object (DAO) class might need an instance of a database
connection factory object. However, instead of instantiating in the DAO class, you
just tell the DI framework that when it instantiates the DAO, it has to set the value of
the connection pool factory object. Of course, the parameters for the connection pool
factory will have to be configured somewhere and be known to the DI framework.

[268]

Chapter 8

When a class instantiates another class, there is a tight dependency. Such design could
be a problem if you want to test classes independent of others. For example, you may
want to test a class that has business logic, but one which also refers to DAO, which in
turn depends on a JDBC connection object. When testing the first class, you will have
to instantiate DAO and configure the connection pool. As we saw in Chapter 5, Unit
Testing, unit tests should be able to run without an external dependency. One way

to achieve this is by using DI. Instead of instantiating the DAO class, our class could
refer to an interface that is implemented by DAO and have the DI framework inject the
implementation of this interface at runtime. When you are unit testing this class, the
DI framework can be configured to inject a mock object that implements the required
interface. So, DI enables loose coupling between objects.

Dependency injection in Spring

Because Dl is at the core of the Spring framework, let's spend some time
understanding how it works in Spring. We will create a standalone application
for this purpose. Create a simple Maven project. Add the following dependency
for the Spring framework:

<dependencys>
<groupIds>org.springframework</groupIld>
<artifactId>spring-context</artifactIds>
<version>4.1.6.RELEASE</version>
</dependency>

Replace the preceding version number with the latest version of Spring. Classes
managed by the DI container of Spring are called beans or components. You can
either declare beans in an XML file or you can annotate a class in the source file.
We will use annotations in this chapter. However, even though we use annotations,
we need to specify the minimum configuration in an XML file. So, create a XML file
in the src/main/resource folder of your project and name it context .xml. The
reason that we are creating this file in the src/main. resource folder is that the
files in this folder are made available in the classpath. Therefore, add the following
content to context .xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

[269]

Creating Web Applications with Spring MVC

xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-
beans.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-
context .xsd">

<context :component-scan base-package="packt.jee.eclipse.spring"
/>

</beans>

By using the <context : component-scan> tag, we are telling the Spring framework
to scan the base-package folder and then, look for classes annotated with @
Component and recognize them as managed classes so that they can be made
available when injecting dependencies. In the preceding example, all classes in

the packt.jee.eclipse.spring package (and its sub packages) would be

scanned to identify components.

Information read from the configuration file must be saved in an object. In
Spring, it is saved in an instance of the ApplicationContext interface. There
are different implementations of ApplicationContext. We will be using the

ClassPathXmlApplicationContext class, which looks for the configuration
XML file in the classpath.

We will now create two Spring components. The first one is CourseD20, and the
second is CourseService. Although we won't write any business logic in these classes
(the purpose of this example is to understand how DI works in Spring), assume that
CourseDAO could have the code to access the database and CourseService calls
CourseDAO to perform the database operations. So, CourseService is dependent on
CourseDAO. To keep the code simple, we will not create an interface for CourseDAO
but will have a direct dependency. Create the CourseDO class as follows:

package packt.jee.eclipse.spring;
import org.springframework.stereotype.Component;

@Component
public class CourseDAO

[270]

Chapter 8

We will have no methods in CourseDbao, but as mentioned above, it could have
methods to access the database. @component marks this class as managed by Spring.
Now, create the courseService class. This class needs an instance of CourseD20.

package packt.jee.eclipse.spring;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component ;

@Component
public class CourseService {

@Autowired
private CourseDAO courseDAO;

public CourseDAO getCourseDAO () {
return courseDAO;

}

We have declared a member variable called courseDa0 and annotated it
with eAutowired. This tells Spring to look for a component in its context
(of the courseDao type) and assign that to the coursepao member.

We will now create the main class. It creates ApplicationContext, gets the
CourseService bean, calls the get CourseDao method, and then checks
whether it was injected properly. Create the SpringMain class.

package packt.jee.eclipse.spring;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public class SpringMain

public static void main (String[] args) {
//create ApplicationContext
ApplicationContext ctx = new
ClassPathXmlApplicationContext ("context.xml") ;
//Get bean

CourseService courseService = (CourseService)
ctx.getBean ("courseService") ;

[271]

Creating Web Applications with Spring MVC

//Get and print CourseDAO. It should not be null

System.out.println ("CourseDAO = " +
courseService.getCourseDAO()) ;

}
}

We first create an instance of ClassPathXmlApplicationContext. The configuration
XML file is passed as the argument to the constructor. We then get the courseservice
bean/component. Notice the naming convention when specifying bean name; it is

the class name with the first letter in lowercase. We then get and print the value of
CourseDAO. The value won't show any meaningful information, but if the value is not
null, then it would mean that the Spring DI container has injected this value properly.
Note that we have not instantiated CourseDA0; it is the Spring DI container that
instantiates and injects this object.

In the preceding code, we saw an example of injecting objects at the member
declaration (this is also called property injection). We can have this object
injected in the constructors too.

@Component
public class CourseService {

private CourseDAO courseDAO;

@Autowired
public CourseService (CourseDAO coueseDAO)
this.courseDAO = coueseDAO;

public CourseDAO getCourseDAO () {
return courseDAO;

}
}

Notice that the @autowired annotation is moved to the constructor and the single
constructor argument is autoinjected. You can also have the object injected in a setter.

@Component
public class CourseService {

private CourseDAO courseDAO;

@Autowired

[272]

Chapter 8

public void setCourseDAO (CourseDAO courseDAO)
this.courseDAO = courseDAO;

}

public CourseDAO getCourseDAO()
return courseDAO;

}
}

Component scopes

You can specify the scope for your components. The default scope is singleton,
which means that there will be only one instance of the component in the context.
Every request for this component will be served with the same instance. The other
scopes are as follows:

* Prototype: Each request for a component is served with a new instance
of that class.

* Request: Valid for web applications. Single instance of a component
class created for each HTTP request.

* Session: Single instance of a component class created for each HTTP
session. Used in web applications.

* Global session: Single instance of a component class created for the
global HTTP session. Used in portlet applications.

* Application: Single instance of a component class in a web application.
The instance is shared by all sessions in this application.

See http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/beans.html#beans-factory-scopes for more information
on component scopes in Spring.

If the component to be injected was not instantiated at the time that it was requested,
then Spring creates an instance of the component. In the previous example, we have
not specified the scope of the CourseDAO component, so the same instance would be
injected if there is another request for injecting CourseDa0. You can specify the scope
in the @Component annotation. You can also specify the component name if you want
to override the default name that Spring gives to the component.

[273]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-scopes
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-scopes

Creating Web Applications with Spring MVC

To see if a single instance of a component is injected when no scope is specified,
let's change the main method in the springMain class and make two calls to the
getBean method:

public static void main (String[] args) {
//create ApplicationContext

ApplicationContext ctx = new
ClassPathXmlApplicationContext ("context.xml") ;

//call and print ctx.getBean first time

System.out.println("Course Service 1 - " +
ctx.getBean ("courseService")) ;

System.out.println("Course Service 2 - " +
ctx.getBean ("courseService")) ;

}

Run the application and you should see the same instance of the courseService
bean printed. Let's change scope of the CourseService component.

@Component
@Scope (ConfigurableBeanFactory.SCOPE_ PROTOTYPE)
public class CourseService {

//content remains the same

}

Run the application again; this time, you should see different instances of the
CourseService component.

When Spring sees the @autowire annotation, it tries to find the component by type.
In the preceding example, courseDA0 is annotated with @autowire. Spring tries

to find a component of the courseDAO type; it finds an instance of CourseDpao and
injects it. But what if there are multiple instances of a class in the context? In such

a case, we can use the @Qualifier annotation to uniquely identify components.
Let's now create an ICourseDAO interface, which will be implemented by two
components, namely CourseDAO and CourseDAO1.

public interface ICourseDAO {

}

[274]

Chapter 8

CourseDAO implements ICourseDAO and is uniquely qualified as "courseDro".

@Component
@Qualifier ("courseDAO")
public class CourseDAO implements ICourseDAO {

}

CourseDAO1 implements ICourseDAO and is uniquely qualified as "courseDaO1".

@Component
@Qualifier ("courseDAO1")
public class CourseDAOl implements ICourseDAO

}

In the Courseservice class, we will use a qualifier to uniquely identify whether
we want CourseDAO or CourseDAO1 to be injected.

@Component
public class CourseService {

@Autowired
private @Qualifier ("courseDAOl") ICourseDAO courseDAO;

public ICourseDAO getCourseDAO() {
return courseDAO;

}
The qualifier can also be specified at the method argument. For example:

@Autowired

public void setCourseDAO (@Qualifier ("courseDAO1l") ICourseDAO
courseDRO) {

this.courseDAO = courseDAO;

}

We have covered the basics of dependency injection in Spring. However, Spring offers
a lot more options and features for dependency injection than we have covered here.
We will see more DI features as and when required in this chapter. Visit http://docs.
spring.io/spring/docs/current/spring-framework-reference/html/beans.
html for more information about dependency injection in Spring.

[275]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html

Creating Web Applications with Spring MVC

Installing the Spring Tool Suite

Spring Tool Suite (STS) is a set of tools for creating Spring applications. It can

be either installed as a plugin to an existing installation of Eclipse JEE or can be
installed standalone. The standalone version of STS is also packaged with Eclipse
EE, so all Eclipse features for Java EE development are available in STS too. You can
download STS from https://spring.io/tools. Since we have already installed
Eclipse EE, we will install STS as a plugin. The easiest way to install an STS plugin
is from Eclipse Marketplace. Select the Help | Eclipse Marketplace menu.

Type spring Tool Suite in the find box, and click the Go button.

Eclipse Marketplace PN
Select solutions to install. Press Finish to proceed with installation. '
Press the information button to see a detailed overview and a link to more

Recent Popular Installed .. March 03/26
Find: Spring Tool Suite @ All Markets b+ All Categories % Go

Spring Tool Suite (STS) for Eclipse Luna (4.4) 3.6.4.RELEASE

The Spring Tool Suite™ (STS) provides the best Eclipse-powered development
: environment for building Spring-powered enterprise applications. STS supplies
’ tools for... more info

by Pivotal, EPL
J2EE gpring Cloud jee STS

21 ~» Installs: 105K (13,020 last month) Install

Marketplaces

9 W

? Cancel

Figure 8.1 Search STS in Eclipse Marketplace

Click Install. The next page shows the features of STS that will be installed.
Click Confirm to install the selected features.

[276]

https://spring.io/tools

Chapter 8

Creating a Spring MVC application

Spring MVC can be used for creating web applications. It provides an easy
framework to map an incoming web request to a handler class (controller) and create
dynamic HTML. It provides an implementation of the MVC pattern. The controller,
models, POJOs, and views can be created using JSP, JSTL, XSLT, and even JSF.
However, in this chapter, we will focus on creating views using JSP and JSTL. You
can find the Spring web documentation at http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/spring-web.html for details.

A web request is handled by four layers in Spring MVC

* Front controller: This is a Spring Servlet configured in web . xm1.
Based on the request URL pattern, it passes requests to Controller.

* Controller: These are POJOs annotated with econtroller. For each controller
that you write you need to specify a URL pattern that the controller is expected
to handle. Sub-URL patterns can be specified at the method level too. We will
see examples of this later. Controller has access to Model and to the HTTP
request and response objects. Controller can delegate the processing of a
request to other business handler objects, get results, and populate the
Model object that is made available to View by Spring MVC.

* Model: These are data objects. The Controller and View layers can set
and get data from model objects.

* View: These are typically JSPs, but Spring MVC supports other types of

views too. See View technologies in Spring documentation at http://docs.
spring.io/spring/docs/current/spring-framework-reference/html/
view.html.

We will learn Spring MVC in this chapter through examples, as we have been
learning in some other chapters in this book. We will create a part of the same
Course Management application by using Spring MVC. The application will
display a list of courses with options to add, remove, and modify them.

[277]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/spring-web.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/spring-web.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/view.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/view.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/view.html

Creating Web Applications with Spring MVC

Creating a Spring project
First, make sure that you have installed STS. In Eclipse EE, select the File | New |

Spring Project menu. Enter the project name, and select the Spring MVC
Project template.

Spring Project o

—1
@ Click 'Next’ to load the template contents, i ’ 7

Project name: CourseManagementSpringMVC

v Use default location

Location:

Select Spring version: Default

Templates:
> = Simple Projects
> Batch
*» GemFire
- Integration
= Persistence
¥/ & Simple Spring Utility Project
¥/ & Spring MVC Project

it

vYYyVYYy
¥ §

4 requires downloading Configure templates... Refresh

Description:
A new Spring MVC web application development project

URL:http://dist.springsource.com/ral /STS/help/org.springframework.templates.mve-3.2.2.zip

Working sets

Add project to working sets

Working sets: v

Next > Cancel

Figure 8.2 Select Spring MVC project template

Click Next. The next page would ask you to enter a top-level package name.

[278]

Chapter 8

Project Settings - Spring MVC Project o
Define project specific settings. Required settings are denoted by "*". _,-r ¢

24

Please specify the top-level package e.g. com.mycompany.myapp*

packt.jee.course_management

|'?| < Back Cancel Finish

Figure 8.3 Enter top-level package

Whatever you enter as a top-level package, the wizard takes the third sub-package as
the application name. When the application is deployed in a server, the application
name becomes the context name. For example, if you enter the package name as
packt.jee.course_management, then course_management becomes the application
name and the base URL of the application, on a local machine, would be http://
localhost:8080/course_management/.

Click Finish. This creates a Maven project with the required libraries for
Spring MVC.

Understanding files created by the Spring MVC
project template

Let's examine some of the files created by the template.

* src/main/webapp/WEB-INF/web.xml: A front controller Servlet is declared
here along with other configurations:

<!-- Processes application requests -->

<servlets>
<servlet-namesappServlet</servlet-name>
<servlet-

class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>

<init-params>
<param-name>contextConfiglLocation</param-name>

[279]

Creating Web Applications with Spring MVC

<param-value>/WEB-INF/spring/appServlet/servlet-
context .xml</param-value>

</init-param>
<load-on-startup>1l</load-on-startup>
</servlet>

DispatcherServlet is the front controller Servlet. It is passed the path of
the context (XML) file for configuring Spring DI. Recall that in the standalone
Spring application, we had created context .xml to configure dependency
injection. The Dispatcherservlet Servlet is mapped to handle requests to
this web application.

* gsrc/main/webapp/WEB-INF/spring/appServlet/servliet-context.
xml: Context configuration for Spring DI. Some of the notable configuration
parameters in this file are as follows:

<annotation-driven />

This enables annotations for configuring dependency injection at the class
level.

<resources mapping="/resources/**" location="/resources/" />

Static files, such as CSS, JavaScript, and images can be placed in the resources
folder (src/main/webapp/resources).

<beans:bean
class="org.springframework.web.servlet.view.
InternalResourceViewResolver"s>

<beans:property name="prefix" value="/WEB-INF/views/" />
<beans:property name="suffix" value=".Jjsp" />
</beans :bean>

This tells Spring to use the InternalResourceViewResolver class to resolve views.

Properties of this bean tell the InternalResourcevViewResolver class to look for the
view files in the /WEB- INF/views folder. Further, views will be JSP files, as indicated
by the suffix property. Our views will be the JSP files in the src/main/webapp/WEB-

INF/views folder.

<context :component-scan base-package="packt.jee.course management" />

This tells Spring to scan the packt .book . jee package and its sub-packages for
searching components (annotated by @Component).

[280]

Chapter 8

The default template also creates one controller and one view. The controller class is
HomeController in the package that you specified in the Spring project wizard (in
our example, it is packt . jee.course_management). Controller in Spring MVC is
called by the dispatcher Servlet. Controllers are annotated by econtroller. To map
the request path to Controller, you use the @RequestMapping annotation. Let's see
the code generated by the template in the HomeController class.

@Controller
public class HomeController {

private static final Logger logger =
LoggerFactory.getLogger (HomeController.class) ;

/**
* Simply selects the home view to render by returning its name.
*/

@RequestMapping (value = "/", method = RequestMethod.GET)

public String home (Locale locale, Model model) {
logger.info ("Welcome home! The client locale is {}.", locale);

Date date = new Date() ;

DateFormat dateFormat =
DateFormat.getDateTimeInstance (DateFormat .LONG, DateFormat .LONG,
locale) ;

String formattedDate = dateFormat.format (date) ;
model.addAttribute ("serverTime", formattedDate) ;

return "home";

}

The home method is annotated with @rRequestMapping. The value of mapping is /,
which tells the dispatcher Servlet to send all requests coming its way to this method.
The method attribute tells the dispatcher to call the home method only for the HTTP
request of the GET type. The home method takes two arguments, namely Locale and
Model; both are injected at runtime by Spring. The @RequestMapping annotation also
tells Spring to insert any dependencies when calling the home method, and hence,
locale and model are autoinjected.

[281]

Creating Web Applications with Spring MVC

The method itself does not do much; it gets the current date-time and sets it as an
attribute in the Model. Any attributes set in the model are available to view (JSP).
Method returns a string "home". This value is used by Spring MVC to resolve a
view to be displayed. InternalResourceViewResolver that we saw in servlet-
context .xml above resolves this as home . jsp in the /WEB-INF/views folder. home.
jsp has the following code in the <body> tag.

<P> The time on the server is ${serverTime}. </P>

The serverTime variable is coming from the Model object set in the home method
of HomeController.

To run this project, we need to configure a server in Eclipse and add this project
to the server. Refer to the Configuring Tomcat in Eclipse and Running JSP in Tomcat
sections in Chapter 2, Creating a Simple JEE Web Application.

Once you configure Tomcat and add the project to it, start the server. Then,
right-click on the project and select Run As | Run on Server. You should see a
hello message with the timestamp displayed in the internal Eclipse browser. The
URL in the browser's address bar should be http://localhost:8080/course
management/, assuming that Tomcat is deployed on port 8080 and the context
name (derived from the top-level package name) is course_management. If you
want to change the default context name or remove the context, that is, deploy the
application in the root context, then open the project properties (right-click on the
project and select Properties) and go to Web Project Settings. You can change the
context root name or remove it from this page.

o Web Project Settings - v v
185TNa
> Validation Context root: course_management
Web Content Settings
Web Page Editor
Web Project Settings
WikiText Restore Defaults
> XDoclet
(?) Cancel OK

Figure 8.4 Context Root setting

For our course management application, we are not going to need the
HomeController class and home. jsp, so you can go ahead and delete these files.

[282]

Chapter 8

Spring MVC application using JDBC

In this section, we will build a part of the course management application using
Spring MVC and JDBC. The application will display a list of courses and options
for adding, deleting, and modifying courses. We will continue using the project
that we created in the previous section. We will learn many of the features of
Spring for data access using JDBC as we go along.

First, we will configure our datasource. We will use the same MySQL database
that we created in the Creating a database schema section in Chapter 4, Creating a JEE
Database Application.

Configuring datasource

In Spring, you can configure a JDBC datasource either in Java code or in the XML
configuration (context) file. Before we see how to configure a datasource, we need to
add some dependencies in Maven. In this chapter, we will use Apache's Commons
DBCP component for connection pooling (recall that in Chapter 4, Creating a JEE
Database Application, we had selected the Hikari connection pool). Visit https://
commons . apache . org/proper/commons-dbcp/ for details of Apache DBCP. In
addition to adding a dependency for Apache DBCP, we need to add dependencies
for Spring JDBC and the MySQL JDBC driver. Add the following dependencies to
pom.xml of the project:

<!-- Spring JDBC -->

<dependency>
<groupld>org. springframework</groupIlds>
<artifactIds>spring-jdbc</artifactIds>
<version>${org.springframework—version}</version>

</dependency>

<!-- Apache DBCP -->

<dependency>
<groupId>commons-dbcp</groupIds>
<artifactId>commons-dbcp</artifactIds>
<version>1l.4</version>

</dependency>

<!-- MySQL -->

<dependency>
<groupld>mysqgl</grouplds>
<artifactIds>mysgl-connector-java</artifactIds>
<version>5.1.35</version>

</dependency>

[283]

https://commons.apache.org/proper/commons-dbcp/
https://commons.apache.org/proper/commons-dbcp/

Creating Web Applications with Spring MVC

If you want to create a datasource in Java code, you can do so as follows:

DriverManagerDataSource dataSource = new
DriverManagerDataSource () ;

dataSource.setDriverClassName ("com.mysqgl.jdbc.Driver") ;
dataSource.setUrl ("jdbc:mysqgl://localhost:3306/course_management") ;
dataSource.setUsername("your_user_name");
dataSource.setPassword ("your password") ;

However, we will configure a datasource in the XML configuration file. Open
servlet-context.xml (you will find it in the src/main/webapp/WEB-INF/spring/
appServlet folder), and add the following bean:

<beang:bean id="dataSource"

class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<beans:property name="driverClassName"
value="com.mysqgl.jdbc.Driver"/>
<beans:property name="url"
value="jdbc:mysgl://localhost:3306/course management" />
<beans:property name="username" value="your user name"/>
<beans:property name="password" value="your password"/>
</beans :beans>

If you are wondering what bean means, it is the same as the component that we
created in examples in an earlier section. We have so far created a component by
using annotations, but the component and the bean can be declared in the XML file
too. In fact, this is how it used to be in earlier versions till support for annotations
was added in Spring. You can find more information about Spring beans at http://
docs.spring.io/spring/docs/current/spring-framework-reference/html/
beans.html#beans-definition. In a real-world application, you may want to
encrypt database passwords before specifying them in the configuration file. One
way to decrypt a password before sending it to the database is to create a wrapper
class for the datasource (in the previous example, create a wrapper for org.apache.
commons . dbcp . BasicDataSource) and override the set Password method, where
you can decrypt the password.

If you want to keep the database connection parameters separate from the Spring
configuration, then you can use the properties file. Spring provides a consistent
way to access resources such as the properties file. Just as you can access web URLs
by using the http protocol prefix or the file URL by using the £ile protocol prefix,
Spring allows you to access resources in the classpath by using the classpath prefix.
For example, if we create the jdbc.properties file and save it in one of the folders
in the classpath, then we could access it as classpath:jdbc.properties.

[284]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-definition
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-definition
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-definition

Chapter 8

Visit http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/resources.html for detailed information on accessing resources
using Spring. The Spring resource URL formats can be used in configuration files or
Spring APIs where the resource location is expected.

Spring also provides a convenient tag to load the properties file in the context config
XML. You can access the values of properties in the property file in the config XML
by using the $ {property name} syntax.

We will move the database connection properties to a file in this example. Create
jdbc.properties in the src/main/resources folder. Maven makes this folder
available in the classpath, so we can access it by using the Spring resource format in
the XML configuration file.

jdbc.driverClassName=com.mysql. jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/course_management
jdbc.username=your user name

jdbc.password=your password

We will load this properties file from servlet-context.xml by using the property-
placeholder tag.

<context:property-placeholder location="classpath:jdbc.properties"/>

Notice that the location of the property file is specified using the Spring resource
format. In this case, we ask Spring to look for the jdbc.properties file in the
classpath. Further, because the src/main/resources folder is in the classpath
(where we have saved jdbc.properties), it should be loaded by Spring.

Further, we will modify the datasource bean declaration to use the property values.

<beang:bean id="dataSource"

class="org.apache.commons.dbcp.BasicDataSource" destroy-

method="close">
<beans:property name="driverClassName"

value="${jdbc.driverClassName}"/>

<beans:property name="url" value="${jdbc.url}" />

<beans:property name="username" value="${jdbc.username}"/>

<beans:property name="password" value="${jdbc.password}"/>
</beans :beans>

Note that the order of the property-placeholder tag and where the properties are
used does not matter. Spring loads the entire XML configuration file before replacing
the property references with their values.

[285]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

Creating Web Applications with Spring MVC

Using the Spring JDBCTemplate class

Spring provides a utility class called JDBCTemplate that makes it easy to perform
many operations using JDBC. It provides convenient methods to execute SQL
statements, map results of a query to an object (using the RowMapper class), close

a database connection at the end of database operations, and many others. Visit
http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/jdbc.html#jdbc-core for more information on JdbcTemplate.

Before we write any data access code, we will create a Data Transfer Object (DTO),
CourseDTO, which will just contain members that describe one course and the setters
and getters for them. Create CourseDTO in the packt.jee.course_management.dto
package. Instances of this class will be used to transfer data between different tiers

of our application.

public class CourseDTO {
private int id;
private int credits;
private String name;

//skipped setters and getters to save space

}

We will now create a simple DAO that will use the JdbcTemplate class to execute
a query to get all courses. Create the CourseDAO class in the packt.jee.course
management .dao package. Annotate the CourseDa0 class with @Repository.
Just like @Component, the @Repository annotation marks the class as a Spring DI
container managed class.

As per the Spring documentation (http://docs.spring.io/spring/docs/
current/spring-framework-reference/html/beans.html#beans-stereotype-
annotations), @omponent is a generic annotation to mark a Spring container
managed class and @Repository and eController are more specific ones. More
specific annotations help to identify classes for specific treatments. It is recommended
to use the @Repository annotations for DAOs.

CourseDAO needs to have an instance of the JdbcTemplate class to execute queries
and other SQL statements. JdbcTemplate needs a DataSource object before it can
be used. We will have DataSource injected in a method in CourseDao.

@Repository
public class CourseDAO {

private JdbcTemplate jdbcTemplate;

@Autowired

[286]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-core
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-core
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-stereotype-annotations
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-stereotype-annotations
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-stereotype-annotations

Chapter 8

public void setDatasource (DataSource dataSource) {
jdbcTemplate = new JdbcTemplate (dataSource) ;

}

The datasource that we have configured in servlet-context .xml will be injected
by Spring when the CourseDAO object is created.

We will now write the method to get all courses. The ddbcTemplate class query
method allows you to specify RowMapper, where you can map each row in the
query to a Java object.

public List<CourseDTO> getCourses () {
List<CourseDTO> courses = jdbcTemplate.query("select * from
course",
new CourseRowMapper()) ;

return courses;

public static final class CourseRowMapper implements
RowMapper<CourseDTO> {

@Override
public CourseDTO mapRow (ResultSet rs, int rowNum) throws
SQLException {
CourseDTO course = new CourseDTO() ;
course.setId(rs.getInt ("id")) ;
course.setName (rs.getString ("name")) ;
course.setCredits (rs.getInt ("credits")) ;
return course;

}

In the getCourses method, we will execute a static query. Later, we will see how

to execute parameterized queries too. The second argument to the query method

of JDBCTemplate is an instance of the RowMapper interface. We have created a

static inner class CourseRowMapper that implements the RowMapper interface. We
override the mapRow method, which is called for each row in ResultsSet, and then,
we create/ map the CourseDTO object from ResultSet passed in the arguments. The
method returns the CourseDTO object. The result of JdbcTemplate.query is a list of
CourseDTO objects. Note that the query method can also return other Java collection
objects, such as Map.

[287]

Creating Web Applications with Spring MVC

Now, let's write a method to add a course to the table.

public void addCourse (final CourseDTO course) {
KeyHolder keyHolder = new GeneratedKeyHolder () ;
jdbcTemplate.update (new PreparedStatementCreator () {

@Override

public PreparedStatement createPreparedStatement (Connection
con)

throws SQLException {

String sql = "insert into Course (name, credits) values
(2,2)";
PreparedStatement stmt = con.prepareStatement (sgql, new

String[] {"id"});

stmt.setString(l, course.getName()) ;
stmt.setInt (2, course.getCredits());
return stmt;

}

}, keyHolder) ;

course.setId(keyHolder.getKey () .intValue()) ;

}

When we add or insert a new course, we want to get the ID of the new record,
which is auto-generated. Further, we would like to use the prepared statement to
execute SQL. Therefore, first, we create KeyHolder for the auto-generated field. The
update method of JdbcTemplate has many overloaded versions. We use the one
that takes PreparedStatementCreator and KeyHolder. We create an instance of
PreparedStatementCreator and override the createPreparedStatement method.
In this method, we create JDBC PreparedStatement and return it. Once the update
method is successfully executed, we retrieve the auto-generated value by calling the
getKey method of KeyHolder

The methods to update or delete a course are similar.

public void updateCourse (final CourseDTO course) {
jdbcTemplate.update (new PreparedStatementCreator () {
@Override

public PreparedStatement createPreparedStatement (Connection
con)

throws SQLException {

String sql = "update Course set name = ?, credits = ? where
id = ?";
PreparedStatement stmt = con.prepareStatement (sql) ;

[288]

Chapter 8

stmt.setString(l, course.getName()) ;
stmt.setInt (2, course.getCredits());
stmt.setInt (3, course.getId()) ;
return stmt;

3N

public void deleteCourse(final int id) {
jdbcTemplate.update (new PreparedStatementCreator () {
@Override
public PreparedStatement createPreparedStatement (Connection
con)
throws SQLException {
String sqgl = "delete from Course where id = ?";
PreparedStatement stmt = con.prepareStatement (sql) ;
stmt.setInt (1, id);
return stmt;

3N
}

We need to add one more method to CourseD2O, to get the details of a course,
given the ID.

public CourseDTO getCourse (int id)

String sql = "select * from course where id = ?";
CourseDTO course = jdbcTemplate.queryForObject (sgl, new
CourseRowMapper (), id) ;

return course;

}

queryForObject returns a single object for a given query. We use a parameterized
query here and the parameter is passed as the last argument to the queryForoObject
method. Further, we use CourseRowMapper to map the single row returned by this
query to CourseDTO. Note that you can pass a variable number of parameters to the
queryForObject method, although in this case, we pass a single value, that is, of ID.

We now have all the methods in the CourseDa0 class to access data for Course.

For a detailed discussion on data access using JDBC in Spring, refer to http://docs.
spring.io/spring/docs/current/spring-framework-reference/html/jdbc.
html.

[289]

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html

Creating Web Applications with Spring MVC

Creating the Spring MVC Controller

We will now create the controller class. In Spring MVC, the controller is mapped to
the request URL and handles requests matching this URL pattern. The request URL
for matching an incoming request is specified at the method level in a controller.
However, more generic request mapping can be specified at the controller class
level and a specific URL, with respect to the URL at the class level, can be specified
at the method level.

Create a class called CourseController in the packt.jee.course management.
controller package. Annotate it with the @Controller. @Controller annotation is
of type @Component, and allows Spring framework to identify class specifically

as controller. Add a method to get courses in CourseController.

@Controller

public class CourseController
@Autowired
CourseDAO courseDAO;

@RequestMapping ("/courses")

public String getCourses (Model model) {
model.addAttribute ("courses", courseDAO.getCourses()) ;
return "courses";

}
}

The courseDAO instance is autowired; that is, it will be injected by Spring. We

have added a getCourses method that takes a Spring Model object. Data can be
shared between View and Controller by using this Model object. Therefore, we add
an attribute to Model, named courses, and assign the list of courses that we get

by calling courseDa0. getCourses. This list could be used in the view JSP as the
courses variable. We have annotated this method with @RequestMapping. This
annotation maps an incoming request URL to a controller method. In this case, we
are saying that any request (relative to the root) that starts with /courses should be
handled by the getCourses method in this controller. We will add more methods to
CourseController later and discuss some of the parameters that we can pass to the @
RequestMapping annotation, but first, let's create a view to display the list of courses.

Calling Spring MVC Controller

We have created data access objects for Ccourse and Controller. Let's see how we
can call them from a view. Views in Spring are typically JSPs. Create a JSP (name it
courses.jsp) in the src/main/webapp/WEB- INF/views folder. This is the folder
that we configured in servlet-context.xml to hold the Spring view files.

[290]

Chapter 8

Add the JSTL tag library in courses. jsp:
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

The markup code to display courses is very simple; we make use of the courses
variable that is made available in the Model from the coursecontroller.
getCourses method and displays values using JSTL expressions.

<table>
<tr>
<th>Id</th>
<th>Name</th>
<th>Credits</th>
<th></th>
</tr>
<c:forEach items="${courses}" var="course">
<tr>
<td>${course.id}</td>
<td>${course.name}</td>
<td>${course.credits}</td>
</tr>
</c:forEachs>
</tables>

Recall that courses is a list of objects of the CourseDTO type. Members of CourseDTO
are accessed in the forEach tag to display the actual values.

Unfortunately, we can't run this page from Eclipse the way that we have so far in
this book, that is, by right-clicking on the project or page and selecting Run As |

Run on Server. If you try to run the project (right-click on the project and select the
Run menu), then Eclipse will try to open the http://localhost:8080/course_
management / URL, and because we do not have any start page (index.html or
index.jsp), we will get HTTP 404 error. The reason that we can't run the page

by right-clicking and selecting the run option is that Eclipse tries to open http://
localhost:8080/course management/WEB-INF/views/courses.jsp, and this fails
because files in WEB- INF are not accessible from outside the server. Another reason,
or rather the primary reason, that this URL will not work is that in web .xm1, we have
mapped all requests to be handled by DispatchersServlet of the Spring framework
and it does not find suitable mapping for the request URL.

Mapping data using @ModelAttribute

In this section, we will implement a feature to insert a new course. In the process,
we will learn more about mapping requests to methods and mapping request
parameters to method arguments.

[291]

Creating Web Applications with Spring MVC

In a previous section, we implemented CourseController with one method,
getCourses. We will now add methods to insert new courses. To add a course,
we first need to display a view with a form that accepts a user input. When a user
actually submits the course, the form should post data to a URL that handles the
insertion of new course data in the database. Therefore, there are two requests
involved here: the first is to display the added course form and the second is to
handle the data posted from the form. We will call the first request addcourse and
the second request doaddCourse. Let's first create the user interface. Create a new
JSP and name it addCourse. jsp. Add the following markup to the body of the
page (JSTL and other header declarations are skipped to save space):

<h2>Add Course</h2>
<c:1f test="${not empty error}">

${error}

</c:if>

<c:set var="actionPath"
value="${pageContext.request.contextPath}/doAddCourse" />

<form method="post" action="${actionPath}">
<table>
<tr>
<td>Course Name:</td>
<td><input type="text" name="name" value="${course.name}">
</td>
</tr>
<tr>
<td>Credits:</td>
<td><input type="text" name="credits"
value="${course.credits}"> </td>
</tr>
<tr>
<td colspan="2">
<button type="submit">Submit</buttons>
</td>
</tr>
</tables>
<input type="hidden" name="id" value="${course.id}">

</form>

[292]

Chapter 8

The page expects the course variable to be made available by the controller. In the
form body, it assigns values of the course to appropriate input fields; for example,
the ${course.name} value is assigned to the text input for Course Name. The form
posts data to the "${pageContext .request.contextPath}/doAddCourse" URL.
Note that since our application is not deployed in the root context, we need to
include the context name in the URL.

Let's now add controller methods to handle two requests for add: addcourse

and doAddCourse. When an addCourse request is made, we want to serve the
above mentioned page that displays the input form. When a user clicks the Submit
button, we want form data to be sent using the doaddcourse request. Open the
CourseController class and add the following method:

@RequestMapping (" /addCourse")
public String addCourse (@ModelAttribute ("course") CourseDTO
course, Model model) ({
if (course == null)
course = new CourseDTO() ;
model .addAttribute ("course", course) ;
return "addCourse";

}

The addcourse method is configured, using the @RequestMapping annotation,

to handle a request URL starting (relative to context root) with " /addcourse". If
previously, a course attribute was added to Model, then we want this object to be
passed as an argument to this function. By using eModelAttribute, we tell the Spring
framework to inject the model attribute called course if it is present and assign it to
the argument named course; else, null is passed. In case of the first request, Model
would not have a course attribute, so it would be null. In the subsequent requests, for
example, when the user-entered data in the form (to add a course) is not valid and we
want to redisplay the page, Model will have the course attribute.

We will now create a handler method for the ' /doaddCourse' request. This is a POST
request sent when the user submits the form in addCourse. jsp (see the form and its
POST attribute discussed earlier).

@RequestMapping ("/doAddCourse")
public String doAddCourse (@ModelAttribute ("course") CourseDTO
course, Model model) {
try {
coursesDAO.addCourse (course) ;

[293]

Creating Web Applications with Spring MVC

} catch (Throwable th) ({
model.addAttribute ("error", th.getLocalizedMessage()) ;
return "addCourse";

}

return "redirect:courses";

}

The doaddcourse method also asks Spring to inject the model attribute called
course as the first argument. It then adds a course in the database by using
CourseDAO. In case of any error, it returns the addCourse string, and Spring MVC
displays addcourse. jsp again. If a course is successfully added, then the request is
redirected to courses, which tell Spring to process and display course. jsp. Recall
that in servlet-context.xml (the Spring context configuration file in the src/
main/webapp/WEB- INF/spring/appServlet folder), we had configured a bean with
the org.springframework.web.servlet.view.InternalResourceViewResolver
class. This class is extended from UrlBasedviewResolver, which understands how
to handle URLs with the redirect and forward prefixes. So, in doAddCourse, we
save the data in the database, and if successful, we redirect the request to courses,
which displays (after processing courses. jsp) the list of courses.

At this point, if you want to test the application, browse to http://
localhost:8080/course management/addCourse. Enter the course name and
credits and click Submit. This should take you to the courses page and display
the list of courses, with the newly added course also in the list.

Note that Spring MVC looks at the form field names and properties of the object

in Model (in this case, CourseDT0) when mapping forms values to the object. For
example, the form field name is mapped to the CourseDTO.name property. So, make
sure that the names of the form fields and the property names in the class (objects
of which are added to Model) are the same.

Using parameters in @RequestMapping

We have seen how to use the @RequestMapping annotation to map an incoming
request to a controller method. So far, we have mapped static URL patterns in @
RequestMapping. However, it is possible to map a parameterized URL (line
ones used in REST - see https://spring.io/understanding/REST) by

using @RequestMapping. The parameters are specified inside { }.

Let's add a feature to update an existing course. Here, we will only discuss how
to code the controller method for this feature. The complete code is available
when you download the samples for this chapter.

[294]

https://spring.io/understanding/REST

Chapter 8

Let's add the following method in Coursecontroller.

@RequestMapping ("/course/update/{id}")
public String updateCourse (@PathVariable int id, Model model) {
//TODO: Error handling
CourseDTO course = coursesDAO.getCourse (id) ;
model .addAttribute ("course", course) ;
model.addAttribute ("title", "Update Course") ;
return "updateCourse";

}

Here, we map the updateCourse method to handle a request with the following
URL pattern: /course/update/{id}, where {id} could be replaced with the ID
(number) of any existing course, or for that matter, any integer. To access the value
of this parameter, we used the @Pathvariable annotation in the arguments.

Using the Spring interceptor

Spring interceptors can be used to process any request before it reaches the controller.
These could be used, for example, to implement security features (authentication and
authorization). Like request mappers, interceptors can also be declared for specific
URL patterns. We will add a login page to our application, which should be displayed
before any other page in the application, if the user is not already logged in.

We will first create UserDTO in the packt.jee.course_management.dto package.
This class contains the user name, password, and any message to be displayed
on the login page, for example, authentication errors.

public class UserDTO {
private String userName;
private String password;
private String message;

public boolean messageExists () {
return message != null && message.trim().length() > 0;

}

//skipped setters and getters follow

[295]

Creating Web Applications with Spring MVC

Now, let's create UserController that will process the login request. Once a user

is logged in successfully, we would like to keep this information in the session. The
presence of this object in the session can be used to check whether the user is already
logged in. Create the UserController class in the packt . jee.course_management.
controller package.

@Controller
public class UserController {

}
Add a handler method for the GET request for the login page.

@RequestMapping (value="/login", method=RequestMethod.GET)
public String login (Model model) {

UserDTO user = new UserDTO() ;
model .addAttribute ("user", user) ;
return "login";

}

Note that we have specified the method attribute in the @RequestMapping
annotation. When the request URL is /1ogin and the HTTP request type is GET,
only then will the 1ogin method be called. This method would not be called if the
POST request is sent from the client. In the login method, we create an instance of
UserDTO and add it to Model so that it is accessible to view.

We will add a method to handle the POST request from the login page. We will
keep the same URL, that is, /1login.

@RequestMapping (value="/login", method=RequestMethod.POST)
public String doLogin (@ModelAttribute ("user") UserDTO user,
Model model) {

//Hard-coded validation of user name and
//password to keep this example simple
//But validation could be done against database or
//any other means here.
if (user.getUserName () .equals ("admin") &&
user.getPassword () .equals ("admin"))
return "redirect:courses";

user.setMessage ("Invalid user name or password. Please try
again") ;
return "login";

}

[296]

Chapter 8

We now have two methods in UserController handling the request URL /login.
However, the login method handles the GET request and doLogin handles the posT
request. If authentication is successful in the doLogin method, then we redirect to
the courses (list) page. Else, we set an error message and return to the login page.

We want to save the user object created in the login method in the HTTP session.
This can be done with a simple @SessionAttributes annotation. You can specify
the list of attributes in Model that need to be saved in the session too. Further, we
want to save the user attribute of Model in the session. Therefore, we will add the
following annotation to the Usercontroller class:

@Controller
@SessionAttributes ("user")

public class UserController {

}

Now, let's create the login page. Create 1ogin. jsp in the views folder and add
the following code in the HTML <body>:

<c:if test="${user.messageExists () }">

${user.message}

</c:1if>

<form id="loginForm" method="POST">
User Id : <input type="text" name="userName" required="required"
value="${user.userName}">

Password : <input type="password" name="password"s>

<button type="submit">Submit</buttons>
</form>

The page expects user (instance of UserDTO) to be available. This is made available
by Usercontroller through Model.

We now have a login page and UsercController to handle the authentication, but
how do we make sure this page is displayed for every request when the user is not
already logged in? This is where we can use a Spring interceptor. We will configure
the interceptor in the Spring context configuration file: servlet-context.xml. Add
the following code to servlet-context.xml:

<interceptors>

<interceptors

[297]

Creating Web Applications with Spring MVC

<mapping path="/**"/>
<beans:bean
class="packt.jee.course management.interceptor.LoginInterceptor"/>
</interceptor>
</interceptors>

In the above configuration, we are telling Spring to call LoginInterceptor before
executing any request (indicated by mapping path = "/**").

We will now implement LoginInterceptor. Interceptors must implement
HandlerInterceptor. We will make LoginInterceptor extend
HandlerInterceptorAdapter, which implements HandlerInterceptor

CkeakzLoginInterceptorinthepackt.jee.course_management.interceptor

package.

@Component
public class LoginInterceptor extends HandlerInterceptorAdapter {

public boolean preHandle (HttpServletRequest request,
HttpServletResponse response, Object handler)

throws Exception ({

//get session from request
HttpSession session = request.getSession() ;
UserDTO user = (UserDTO) session.getAttribute ("user");

//Check if the current request is for /login. In that case
//do nothing, else we will execute the request in loop
//Intercept only if request is not /login
String context = request.getContextPath() ;
if (!request.getRequestURI () .equals (context + "/login") &&
(user == null || user.getUserName() == null)) {
//User is not logged in. Redirect to /login
response.sendRedirect (request.getContextPath() + "/login") ;
//do not process this request further
return false;

return true;

[298]

Chapter 8

The preHandle method of the interceptor is called before Spring executes any request.
If we return true from the method, then the request is handled further; else, it is
aborted. In preHandle, we first check whether the user object is present in the session.
The presence of the user object means that the user is already logged in. In such a case,
we don't do anything more in this interceptor and return true. If the user is not logged
in, then we redirect to the login page and return false so that Spring does not process
this request further.

Spring MVC application using JPA

In the previous section, we saw how to create a web application by using Spring and
JDBC. In this section, we will take a quick look at how to use Spring with JPA (which
stands for Java persistence API). We have already learnt how to use JPA in Chapter

4, Creating a JEE Database Application, and in Chapter 7, Creating JEE Application using
EJB, so we won't get into detail of how to set up an Eclipse project for JPA. However,
we will discuss how to use JPA along with Spring in detail in this section.

We will create a separate project for this example. Create a Spring MVC project as
described in the Creating a Spring project section. On the second page of the project
wizard, where you are asked to enter a top-level package name, enter packt.jee.
course_management_jpa. Recall that the last part of this package name is also used
to create the web application context.

Configuring JPA

We are going to use the EclipseLink JPA provider and the MySQL database driver
in this project. So, add the Maven dependencies for them in the pom. xm1 file of
the project.

<!-- JPA -->
<dependencys>
<groupId>org.eclipse.persistence</groupld>
<artifactIds>eclipselink</artifactId>
<versions>2.5.2</versions>
</dependency>
<dependencys>
<groupId>mysqgl</groupIld>
<artifactId>mysqgl-connector-java</artifactIds>
<version>5.1.34</version>
</dependency>

[299]

Creating Web Applications with Spring MVC

We will now configure the project for JPA. Right-click on the project and select
Configure | Convert to JPA Project. This opens the Project Facets page, with JPA
selected as one of the facets.

Project Facets 3
Salact the facets that should be enabled for this project. \)
Configuration: <custorms < Save As... Colote
Project Facot Version Runtimes
» || Axis2 Web Services
|| CXF 2.x Web Services 10 Axis2 Web Services
¥ lga Dymamic Web Moduls 25 Enables Web services generation through the
|| GlassFish Wab Extensions 40 Axis2 Web services engine.
¥ 4] Java 16 -
JavaScript 1.0
&y JavaServer Faces 22
| JnX-AS (REST Web Services) 11 -
 JAXE 22
+ + JPA 24
I asTL 12
4 Struts 13
 Trinidad 20
WebDoclat XDoclet) 123
\"J Moot = Cancel

Figure 8.5 Project Facets

Click the Next button to configure the JPA facet.

JPA Facet
1, Library configuration is digabled. The user may need 1o configure furthar | —“'r.'
classpath changes later.
Platform
Eclipselink 2.5.x =

JPA implementation

Type: Disable Library Configuration o

The JPA facet requires a JPA Implamentation library to be prasent on the project
classpath. By disabling library configuration, the user takes on the responsibility of

ansuring that the is via altamate means.
Connection
CourseMgmtDBConnection =

Add connection....

Catalog:
Override default schema from connection
Schema:

managemant

Persislent class management

Discover annotated classes automatically
* Annotated classes must ba listed in persistence.xm

¢ < Back Cancal Finish

Figure 8.6 Project facets

[300]

Chapter 8

Select the EclipseLink platform in the preceding page. We will also disable the
library configuration (select from the drop-down for the Type field). Configure
the MySQL Connection (named CourseMgmtDBConnection), as described in the
Configuring JPA section of Chapter 7, Creating JEE Applications with EJB.

Click Finish. persistence.xml is created under the JPA Content group in
Project Explorer (the actual location of this file is src/main/resources/META-
INF/persistence.xml). We will configure the properties for the MySQL JDBC
connection in this. Open the file, and click the Connection tab.

& persistence.xml g3
Connection

Persistence Unit Connection
Configure the data source or JOBC connection properties.

Transaction type: Resource Local
Batch writing: Default (None)

= Statement caching:

— Native 5QL (False)

Database

JTA data source:
Non-JTA data source:

EclipseLink connection pool

Populate from connection...

Driver: com.mysql.jdbe.Driver
URL: jdbc:mysgl://localhost/course_management
User: admin

Password: sssss

= Bind parameters (True)

= Read Connection = Write Connection
= Shared (False) Minimum: Default (5) ¥
Minimum: Default (2) v Maximum: Default (10) ¥

Maximum: Default (2) ¥

General Connection Customization Caching Options Schema Generation Properties Source

Figure 8.7 Configure connection in persistence.xml

Select Transaction type as Resource Local. Then, enter the JDBC driver details.
Save the file.

[301]

Creating Web Applications with Spring MVC

Creating the Course entity

Right-click on the project and select the JPA Tools | Generate Tables from
Entities menu.

Select Tables
Salact tabiles from which sntities will be genarated. WA=
Connection: = CourseMgmtDBConnaction 2 E
[Mote: You must have an active connection 1o select scl
Schema: course_management B
Tables:
+ COURSE —
COURSE_STUDENT i
STUDENT

TEACHER |

+ List generated classes in persistence.xmi

Restore Datauits

? Noxt = Cancel Finish

Figure 8.8 Generate Course entity

Make sure that CourseMgmtDBConnection is selected (refer to the Configuring JPA
section of Chapter 7, Creating JEE Applications with EJB, for configuring the MySQL

database connection in Eclipse) and that List generated classes in persistence.xml
is selected. Click Next on this and the next page. In the Customize Defaults page,

select identity Key generator and set the package name as packt.jee.course_

management jpa.entity.

Customize Defaults

Optionally customize aspects of entities that will be
qgenerated by default from database tables. A Java

Mapping defaults

Kay genorator: identity 3

Soquence name:
You can use the pattarns Stable andfor Spk in the s
Thase pattarns will be replaced by the table name ¢
column nama whan @ table mapping is panemtsd.

Entity sccess: * Fiokd Property

Associations fetch: * Defwult Eager Lazy

Callection proparties typa: [ovouutilSet + javmutil List

Awnys genorate optional JPA annatations and DOL paramoters

Domain fava class

Source foidar; o AgHTantSEringMVGIPASIC/m Browss...
Package: Ljea course_management_jpa.entily Browse...
Superclass: Browsa..,.

Interfaces:) java o Seralizable

(7 < Back Noxt > Cancol Finish

Figure 8.9 Customize JPA entity defaults

[302]

Chapter 8

Click Next. Verify the entity class name and the other details.

Customize Individual Entities

Tables and columns
» [CJ COURSE

Mapping defaults
Class name: Course
Key generator: identity A

Sequence name:

You can use the patterns $table and/or $pk in the sequenc
These patterns will be replaced by the table name and the
column name when a table mapping is generated.

Entity access: * Field Property

Domain java class

Superclass: Browse...
Interfaces: 3 java.io.Serializable Add...
? < Back Cancel Finish

13

Figure 8.10 Customize JPA entity details

Click Finish. A course entity class would be created in the package selected in Figure
8.9 Customize JPA entity defaults.

//skipped imports
@Entity
@Table (name="COURSE")
@NamedQuery (name="Course.findAll", query="SELECT c FROM Course c")
public class Course implements Serializable {
private static final long serialVersionUID = 1L;

@Id
@GeneratedValue (strategy=GenerationType.IDENTITY)
private int id;

private int credits;

private String name;

[303]

Creating Web Applications with Spring MVC

@Column (name="teacher id")
private int teacherId;

//skipped setter and getters

}

Note that the wizard has created a named query to get all the courses from the table.

We now need to create EntityManagerFactory so that EntityManager could

be created from it (refer to the JPA concepts section in Chapter 4, Creating a JEE
Database Application). We will create a Spring bean/component to create and store
EntityManagerFactory. Further, we will inject (autowire) this component in the
DAO class.

Create the JPAEntityFactoryBean class in the packt.jee.course management
jpa.entity package.

//skipped imports

@Component
public class JPAEntityFactoryBean

EntityManagerFactory entityManagerFactory;

@PostConstruct
public void init() {
entityManagerFactory =

Persistence.createEntityManagerFactory ("CourseManagement SpringMVCJd
PA") ;

}

public EntityManagerFactory getEntityManagerFactory() {
return entityManagerFactory;

}

In the constructor of the preceding class, we create EntityManagerFactory.
The argument to createEntityManagerFactory is the name of the persistence
unit, as specified in persistence.xml.

[304]

Chapter 8

Creating Course DAO and Controller

Let's first create the coursepao class. We will have an instance of
JPAEntityFactoryBean injected (autowired) in this class. Create the packt.jee.
course_management_jpa.dao package and the CourseDao class in it.

@Component
public class CourseDAO {

@Autowired
JPAEntityFactoryBean entityFactoryBean;

public List<Course> getCourses() {
//Get entity manager
EntityManagerFactory emf =
entityFactoryBean.getEntityManagerFactory () ;
EntityManager em = emf.createEntityManager () ;

//Execute Query

TypedQuery<Course> courseQuery =
em.createNamedQuery ("Course.findAll", Course.class);

List<Course> courses = courseQuery.getResultList () ;
em.close() ;

return courses;

}

In the getCourses method, we first create EntityManager (from
JPAEntityFactoryBean) and execute the named query. Once we get results,
we close EntityManager.

The controller class for Course will have CourseDAO autoinjected (autowired).
CkeauzCourseControllerinthepackt.jee.course_management_jpa.controller

package.

//skipped imports

@Controller

public class CourseController {
@Autowired
CourseDAO courseDAO;

@RequestMapping ("/courses")

[305]

Creating Web Applications with Spring MVC

public String getCourses (Model model)
model.addAttribute ("courses", courseDAO.getCourses()) ;
return "courses";

}
}

As we saw in CourseController created for the JDBC application earlier, we
get courses from the database and add the list of courses to Model under the key
name courses. This variable would be available to the view page that displays
the list of courses.

Creating the Course list view

We have all the classes to get courses. We will now create a JSP to display the list
of courses. Create courses.jsp in the src/main/webapp/WEB-INF/views folder.
Add the following content in the HTML body of the page.

<h2>Courses:</h2>

<table>
<tr>
<th>Id</th>
<th>Name</th>
<th>Credits</th>
<th></th>
</tr>
<c:forEach items="${courses}" var="course's>
<tr>
<td>${course.id}</td>
<td>${course.name}</td>
<td>${course.credits}</td>
</tr>
</c:forEach>
</table>

The view page makes use of the JSTL tags to iterate over courses (by using the
variable that was made available in Model by the controller) and display them.

We are not going to build the entire application here. The idea was to understand
how to use JPA with Spring MVC, which we have learnt in this section.

[306]

Chapter 8

Summary

In this chapter, we learnt how to use Spring MVC to create web applications.
As the name indicates, Spring MVC implements an MVC design pattern, which
enables a clear separation of the user interface code and the business logic code.

Using the dependency injection feature of the Spring framework, we can easily
manage the dependencies of different objects in the application. We also learnt how
to use JDBC and JPA along with Spring MVC to create data-driven web applications.

In the next chapter, we will see how to create and consume web services in JEE
applications. We will look at both SOAP-based and RESTful web services.

[307]

Creating Web Services

As we learnt in Chapter 7, Creating JEE Applications with EJB, E]Bs can be used to
create distributed applications. This helps in the communication between different
JEE applications in enterprises. However, what if an enterprise wants to let its
partners or customers make use of some of the application functionality? For
example, an airline might want to let its partners make online reservations. One
option is for the partner to redirect its customer to the airline website, but this does
not provide a unified experience to the end users. A better way to handle this is for
the airline to expose its reservation APIs to partners who can integrate these APIs
in their own applications, providing a unified user experience. This is the case of a
distributed application, and E]Bs can be used in such cases. However, for E]Bs to
work in such scenarios, where API calls cross enterprise boundaries, the client of
APIs also need to be implemented in Java. As we know this is not practical. Some of
the airline partners, in the above example, may have their applications implemented
using different programming platforms, such as .NET and PHP.

Web services are useful in situations such as the above mentioned one. Web
services are self-contained APIs that are based on open standards and are platform
independent. They are widely used for communication between disparate systems.
There are mainly two types of web service implementations:

* Simple Object Access Protocol (SOAP) based
* Representational State Transfer (RESTful) services
For many years, SOAP-based web services were quite popular, but recently,

RESTful services are gaining ground because of the simplicity in its implementation
and consumption.

[309]

Creating Web Services

Web services are a common integration form that offer Service-Oriented
Architecture (SOA) in which certain components expose services for consumption
by other components or applications. The consumer of such services can create an
entire application by assembling a number of such loosely coupled services, possibly
from different sources.

In this chapter, we will see how to develop and consume both SOAP and RESTful
services by using JEE and Eclipse. However, before this, it will be useful to have a
quick look at Java Architecture for XML Binding (JAXB), because it is used in the
implementations of both REST and SOAP web services.

JAXB

JAXB provides an easy way to convert an XML or JSON representation of data

into a Java object and vice versa. Using simple annotations, you can have a JAXB
implementation create XML or JSON data from a Java object or create a Java object
from XML or JSON. Since the XML and JSON data formats are widely used in web
services, it is useful to learn JAXB APIs. The process of generating XML and JSON
from Java objects is known as marshalling, and creating Java objects from XML or
JSON is called unmarshalling. To understand how Java data types are mapped to
XML schema types, refer to https://docs.oracle.com/javase/tutorial/jaxb/
intro/bind.html.

The following are a few important JAXB annotations:

* @xXmlRootElement: This annotation specifies the root element of the XML
document and is typically used at the class level.

* @xmlElement: This annotation specifies an XML element that is not a root
element. Java class members can be marked as XMLElement when the class is
annotated with @XmlRootElement.

* @xmlAttribute: This annotation marks a field of the Java class as an attribute
of the parent XML element.

* @XmlAccessorType: This annotation is specified at the class level. It lets
you control how class fields are serialized to XML or JSON. Valid values
are XmlAccessType.FIELD (every non-static and non-exmlTransient field
is serialized), XmlAccessType . PROPERTY (every pair of getter/setter that is
not annotated with @XmlTransient is serialized), Xml1AccessType . NONE (no
fields are serialized, unless specific fields are annotated for serialization), and
XmlAccessType.PUBLIC_ MEMBER (all public getter/setter pairs are serialized,
unless annotated with @xmlTransient).

[310]

https://docs.oracle.com/javase/tutorial/jaxb/intro/bind.html
https://docs.oracle.com/javase/tutorial/jaxb/intro/bind.html

Chapter 9

* @XMLTransient: This annotation specifies the field or getter/setter pair that
is not to be serialized.

For a complete list of JAXB annotations, refer to https://jaxb.java.net/
tutorial/section 6 1-JAXB-Annotations.html#JAXB Annotations.

JAXB example

Let's create a Maven project to try out JAXB APIs. Select the File | Maven
Project menu.

New Maven project =T
Configure project M
Artifact
Group Id: packt.jee.eclipse.jaxb v
Artifact Id: | JAXBExampleProject v
Version: 1 v
Packaging: |jar v
Name: v
Description:

Parent Project

Group Id: v
Artifact Id: v
Version: v Browse...

» Advanced
(‘_?\. < Back Cancel Finish

Figure 9.1 Create Maven project for JAXB example

[311]

https://jaxb.java.net/tutorial/section_6_1-JAXB-Annotations.html#JAXB Annotations
https://jaxb.java.net/tutorial/section_6_1-JAXB-Annotations.html#JAXB Annotations

Creating Web Services

Make sure that the project is configured to use JRE 1.7 or later. Let's now create two
classes - Course and Teacher. We would want to serialize instances of these classes
to XML and back. Create these classes in the packt.jee.eclipse.jaxb.example
package.

package packt.jee.eclipse.jaxb.example;
//Skipped imports

@XmlRootElement
@XmlAccessorType (XmlAccessType.FIELD)
public class Course
@XmlAttribute
private int id;
@XmlElement (namespace="http://packt.jee.eclipse.jaxb.example")
private String name;
private int credits;
@XmlElement (name="course_ teacher")
private Teacher teacher;

public Course() {}

public Course (int id, String name, int credits) {
this.id = id;
this.name = name;
this.credits = credits;

//Getters and setters follow

}

When a course is marshalled to an XML document, we want the course element to
be the root. Therefore, the class is annotated with @xmlRootElement. You can specify
a different name for the root element (other than the class name) by specifying the
name attribute, for example:

@XmlRootElement (name="school course")

The id field is marked as an attribute of the root element. You don't have to mark
fields specifically as elements if there are public getters/setters for them. However,
if you want to set additional attributes, then you need to annotate them with e
xmlElement. For example, we have specified namespace for the name element/field.
The credits field is not annotated, but it will still be marshalled as an XML element.

package packt.jee.eclipse.jaxb.example;

public class Teacher {
private int id;

[312]

Chapter 9

}

private String name;
public Teacher() {}
public Teacher (int id, String name) {

this.id = id;
this.name = name;

//Getters and setters follow

We are not annotating the Teacher class with JAXB because we are not going
to marshal it directly. It will be marshalled by JAXB when an instance of Course
is marshalled.

Let's create a class with the main method.

Create the JaAXBExample class.

package packt.jee.eclipse.jaxb.example;

//Skipped imports

public class JAXBExample {

public static void main(String[] args) throws Exception ({
doJAXBXml () ;

//Create XML from Java object and then vice versa
public static void doJAXBXml () throws Exception {
Course course = new Course(l, "Course-1", 5);

course.setTeacher (new Teacher (1, "Teacher-1"));

JAXBContext context = JAXBContext.newInstance (Course.class) ;

//Marshall Java object to XML
Marshaller marshaller = context.createMarshaller() ;
//Set option to format generated XML

marshaller.setProperty (Marshaller.JAXB FORMATTED OUTPUT,
true) ;

StringWriter stringWriter = new StringWriter();

[313]

Creating Web Services

//Marshal Course object and write to the StringWriter
marshaller.marshal (course, stringWriter) ;

//Get String from the StringWriter

String courseXml = stringWriter.getBuffer () .toString() ;
stringWriter.close() ;

//Print course XML

System.out.println (courseXml) ;

//Now unmarshall courseXML to create Course object
Unmarshaller unmarshaller = context.createUnmarshaller () ;
//Create StringReader from courseXml

StringReader stringReader = new StringReader (courseXml) ;
//Create StreamSource which will be used by JAXB unmarshaller
StreamSource streamSource = new StreamSource (stringReader) ;

Course unmarshalledCourse
unmarshaller.unmarshal (streamSource, Course.class) .getValue() ;

System.out.println("----------------- \nUnmarshalled course

name -
n

+ unmarshalledCourse.getName ()) ;
stringReader.close() ;
}
}

To marshal or unmarshal using JAXB, we first create JAXBContext, passing it a Java
class that needs to be worked on. Then, we create the marshaller or unmarshaller,
set the relevant properties, and perform the operation. The code is quite simple. We
first marshal the course instance to XML and then, use the same XML output to
unmarshal it back to a course instance. Right-click on the class and select Run As |
Java Application. You should see the following output in the console.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<course id="1" xmlns:ns2="http://packt.jee.eclipse.jaxb.example">
<ns2:name>Course-1</ns2:name>
<credits>5</credits>
<course_teacher>
<id>1l</id>
<name>Teacher-1</name>
</course_teachers>
</course>

Unmarshalled course name - Course-1

[314]

Chapter 9

Let's now see how to marshal a Java object to JSON and back. JSON support in JAXB
is not available out of the box in JDK. We will have to use an external library that
supports JAXB APIs with JSON. One such library is EclipseLink MOXy (https://
eclipse.org/eclipselink/#moxy). We will use this library to marshal the course
object to JSON.

Open pom.xml and add a dependency on EclipseLink.

<dependencies>
<dependency>
<groupld>org.eclipse.persistence</grouplds>
<artifactIdseclipselink</artifactIds>
<version>2.6.1-RCl</version>
</dependency>
</dependencies>

We also need to set the javax.xml.bind.context.factory property to make the
JAXB implementation use EclipseLink's gAXBContextFactory. Create the jaxb.
properties file in the same package as the classes whose instances are to be
marshalled. In this case, create the file in the packt .jee.eclipse.jaxb.example
package. Set the following property in this file:

javax.xml.bind.context.factory=org.eclipse.persistence.jaxb.
JAXBContextFactory

This is very important. If you do not set this property, then the example won't work.

Open JaxBExample. java and add the following method:

//Create JSON from Java object and then vice versa
public static void doJAXBJson() throws Exception {

Course course = new Course(l,"Course-1", 5);
course.setTeacher (new Teacher (1, "Teacher-1"));

JAXBContext context = JAXBContext.newlInstance (Course.class) ;

//Marshal Java object to JSON

Marshaller marshaller = context.createMarshaller() ;
//Set option to format generated JSON
marshaller.setProperty (Marshaller.JAXB FORMATTED OUTPUT,
true) ;

marshaller.setProperty (MarshallerProperties.MEDIA TYPE,
"application/json") ;

[315]

https://eclipse.org/eclipselink/#moxy
https://eclipse.org/eclipselink/#moxy

Creating Web Services

}

marshaller.setProperty (MarshallerProperties.JSON INCLUDE ROOT,
true) ;

StringWriter stringWriter = new StringWriter () ;
//Marshal Course object and write to the StringWriter
marshaller.marshal (course, stringWriter) ;

//Get String from the StringWriter

String coursedson = stringWriter.getBuffer().toString() ;
stringWriter.close() ;

//Print course JSON

System.out.println (coursedson) ;

//Now, unmarshall coursedson to create Course object
Unmarshaller unmarshler = context.createUnmarshaller() ;
unmarshler.setProperty (MarshallerProperties.MEDIA TYPE,
"application/json") ;

unmarshler.setProperty (MarshallerProperties.JSON INCLUDE ROOT,
true) ;

//Create StringReader from coursedson

StringReader stringReader = new StringReader (coursedson) ;
//Create StreamSource which will be used by JAXB unmarshaller
StreamSource streamSource = new StreamSource (stringReader) ;
Course unmarshalledCourse unmarshler.unmarshal (streamSource,
Course.class) .getValue () ;

System.out.println("----------------- \nUnmarshalled course
name - " + unmarshalledCourse.getName()) ;
stringReader.close() ;

Much of the code is the same as in the method dogaxBxml method. Specific changes
are as follows:

We set the marshaller property for generating the JSON output
(application/json)

We set another marshaller property to include the JSON root in the output.

We set the corresponding properties on unmarshaller

Modify the main method to call dogaXBJson, instead of dogaxBxml. When you run
the application, you should see the following output:

{

"course" : {
nign o1,

[316]

Chapter 9

"name" : "Course-1",
"credits" : 5,
"course teacher" : {
Ilidll . 1[
"name" : "Teacher-1"
Unmarshalled course name - Course-1

We have covered the basics of JAXB in this chapter. For a detailed tutorial on JAXB,
refer to https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html.

REST web services

We will first start with REST web services because they are widely used and are easy
to implement. REST is not necessarily a protocol but an architectural style, and is
typically based on HTTP. REST web services act on the resources on the server side,
and the actions are based on the HTTP method (Get, Post, Put, and Delete). The
state of resources is transferred over HTTP in either the XML or the JSON format,
although JSON is more popular. The resources on the server side are identified by
URLs. For example, to get details of a course with ID 10, you could use the HTTP GET
method with the following URL: http://<server_address>:<port>/course/10.
Notice that the parameter is a part of the base URL. To add a new Course or modify
a Course, you could use either the POST or the PUT method. Further, the DELETE
method could be used to delete a Course by using the same URL as that used for
getting the course, that is, http://<server_address>:<port>/course/10.

Resource URLs in REST web services can be nested too; for example, to get all
courses in a particular department (with ID, say 20), the REST URL could be as
follows: http://<server address>:<port>/department/20/courses.

Refer to https://en.wikipedia.org/wiki/Representational state transfer
for more details on the properties of REST web services and HTTP methods used for
acting on the REST resources on the server side.

The Java specification for working with RESTful web services is called JAX-RS, a
Java API for RESTful services (https://jax-rs-spec.java.net/). Project Jersey
(https://jersey.java.net/) is the reference implementation of this specification.
We will use this reference implementation to implement REST web services in

this chapter.

[317]

https://docs.oracle.com/javase/tutorial/jaxb/intro/index.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://jax-rs-spec.java.net/
https://jersey.java.net/

Creating Web Services

Creating RESTful web services using Jersey

We will create a web service for the Course Management example that we have

been developing in this book. The web service will have methods to get all courses
and create a new course. To keep the example simple, we will not write the data
access code (you could use the JDBC or JDO APIs that we have learnt in the previous
chapters), but will hardcode the data.

First, create a Maven web project. Select File | New | Maven Project. Check the
Create a Simple Project checkbox on the first page of the wizard and click Next.

New Maven project e
Configure project M
Artifact
Group Id: packt.jee.eclipse.rest.ws v
Artifact Id: | CourseManagementREST v
Version: 1 v
Packaging: |war v
Name: v
Description:

Parent Project

Group Id: v
Artifact Id: b
Version: v Browse...

» Advanced
'5- < Back Cancel Finish

Figure 9.2 Create Maven project for REST web service

Enter the Artifact details and click Finish. Make sure that the packaging is war.

[318]

Chapter 9

Since we are going to use the Jersey library for the JAX-RS implementation, we will
add its Maven dependency into the project. Open pom.xml and add the following
dependency:

<dependenciess>
<dependencys>
<groupId>org.glassfish.jersey.containers</groupId>
<artifactId>jersey-container-servlet</artifactIds>
<version>2.18</version>
</dependency>
</dependencies>

Using the JAX-RS @Path annotation, we can convert any Java class into a REST
resource. Values passed to the @path annotation are the relative URIs of the resource.
Methods in the implementation class to be executed for different HTTP methods are
annotated with one of the following annotations: @GET, @PUT, @POST, Or @DELETE.

The @Path annotation can also be used at the method level for a sub-resource path
(the main resource or the root resource path is at the class level, again using the @
path annotation). We can also specify the mime type that these methods produce or
consume by using the @Produces or @Consumes annotation, respectively.

Before we create a web service implementation class, let's create utility classes, more
specifically in this case, DTO.

Create the Course and Teacher classes in the packt.jee.eclipse.rest.ws.dto
package. We will also annotate them with the JAXB annotations.

Here is the Teacher class:

package packt.jee.eclipse.rest.ws.dto;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
@XmlAccessorType (XmlAccessType.FIELD)

public class Teacher ({

@XmlAttribute

private int id;

@XmlElement (name="teacher name")

[319]

Creating Web Services

private String name;

//constructors
public Course() {}

public Course (int id, String name, int credits,

teacher) ({
this.id = id;
this.name = name;
this.credits = credits;
this.teacher = teacher;

//Getters and setters follow

}
Further, here is the course class:

package packt.jee.eclipse.rest.ws.dto;

import javax.
import javax.
import javax.
import javax.
import javax.

xml
xml
xml
xml
xml

@XmlRootElement
@XmlAccessorType (XmlAccessType.FIELD)

.bind.
.bind.
.bind.
.bind.
.bind.

public class Course {

@XmlAttribute

private int id;

@XmlElement (name="course name")

private String name;

private int credits;

annotation.
annotation.
annotation.
annotation.
annotation.

private Teacher teacher;

//constructors

public Teacher () {}

public Teacher
this.id =

id;

XmlAccessType;
XmlAccessorType;
XmlAttribute;
XmlElement;
XmlRootElement;

(int id, String name) {

Teacher

[320]

Chapter 9

this.name = name;

//Getters and setters follow

}

We have annotated the id fields in both classes as @exMLAt tribute. If objects of
these classes are marshalled (converted from Java objects) to XML, course id

and Teacher id would be the attributes (instead of elements) of the root element
(course and Teacher, respectively). If no filed annotation is specified and if public
getters/setters for an attribute are present, then it is considered an XML element
with the same name.

We have specifically used the @XMLElement annotation for name fields because we
want to rename them as course name or teacher name when marshalled to XML.

Implementing the REST GET request

Let's now create a REST web service implementation class. Create the
CourseService class in the packt.jee.eclipse.rest.ws.services package.

package packt.jee.eclipse.rest.ws.services;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import packt.jee.eclipse.rest.ws.dto.Course;
import packt.jee.eclipse.rest.ws.dto.Teacher;

@Path (" /course")
public class CourseService {

@GET

@Produces (MediaType.APPLICATION XML)

@Path ("get/{courseId}")

public Course getCourse (@PathParam("courseId") int id) {

//To keep the example simple, we will return
//hardcoded values here. However, you could get

[321]

Creating Web Services

//data from database using, for example, JDO or JDBC

return new Course (id, "Course-" + 1id, 5, new Teacher (2,
"Teacherl")) ;

}
}

The epath annotation specifies that resources made available by this class will be
accessible by the relative URI " /course™.

The getcCourse method has many annotations. Let's discuss them one at a time.

The eGET annotation specifies that when the relative URI (as specified by @path on
the courseservice class) " /course" is called using the HTTP GET method, then this
method will be invoked.

@Produces (MediaType .APPLICATION_JSON) specifies that this method generates

a JSON output. If the client specifies the accepted mime types, then this annotation
would be used to resolve the method to be called, if more than one method is
annotated with @GET (or, for that matter, any of the other HTTP method annotations).
For example, if we have another method called getCourseJson annotated with @
GET but producing data with different mime types (as specified by @Produces), then
an appropriate method will be selected on the basis of the mime type requested

by the client. The mime type in the @Produces annotation also tells the JAX-RS
implementation the mime type of the response when marshalling the Java object that
is returned from the method. For example, in the getCourse method, we return an
instance of Course, and the mime type specified in @Produces tells Jersey to generate
an XML representation of this instance.

The epPath annotation can also be used at the method level to specify sub-

resources. The value specified in @Path at the method level is relative to the path
value specified at the class level. The resource (in this case, Course) with ID 20

can be accessed as /course/get/20. The complete URL can be http://<server-
address>:<port>/<app-name>/course/get/10. Parameter names in the path value
are enclosed in {}.

Path parameters need to be identified in method arguments by using the @PathParam
annotation and the name of the parameter as its value. The JAX-RS implementation
framework matches the path parameters with arguments matching the epathparam
annotation and appropriately passes the parameter values to the method.

[322]

Chapter 9

To keep the example simple and keep focus on the implementation of REST web
services, we are not going to implement any business logic in this method. We could
get data from the database by using, for example, the J]DO or JDBC APIs (and we
have seen examples of how to use these APIs in the earlier chapters), but we are just
going to return hardcoded data. The method returns an instance of the course class.
The JAX-RS implementation would convert this object into an XML representation
by using JAXB when the data is finally returned to the client.

We need to tell the Jersey framework what packages it needs to scan to look for REST
resources. There are two ways to do this:

* One is by configuring the Jersey Servlet in web.xml (see https://jersey.
java.net/nonav/documentation/latest/user-guide.html#deployment.
servlet).

* For Servlet 3.x containers, we could create a subclass of javax.ws.rs.core.
Application. Tomcat 8.0 that we have been using in this book is a Servlet
3.x container.

We will use the second option to create a subclass of Application. However, instead
of directly subclassing Application, we will subclass the Resourceconfig class of
Jersey, which in turn extends Application.

Create the CourseMgmtRESTApplication class in the packt.jee.eclipse.rest.ws
package.

package packt.jee.eclipse.rest.ws;
import javax.ws.rs.ApplicationPath;
import org.glassfish.jersey.server.ResourceConfig;

@ApplicationPath("services")
public class CourseMgmtRESTApplication extends ResourceConfig

public CourseMgmtRESTApplication ()
packages ("packt.jee.eclipse.rest.ws.services") ;

}
}

We have used the eapplicationPath annotation to specify the URL mapping

for the REST services implemented using JAX-RS. All epath URIs on the resource
implementation classes will be relative to this path. For example, the " /course"
URI that we specified for the Courseservice class would be relative to "services",
specified in the @ApplicationPath annotation.

[323]

https://jersey.java.net/nonav/documentation/latest/user-guide.html#deployment.servlet
https://jersey.java.net/nonav/documentation/latest/user-guide.html#deployment.servlet
https://jersey.java.net/nonav/documentation/latest/user-guide.html#deployment.servlet

Creating Web Services

Before we deploy the application and test our service, we need to generate web . xm1.
Right-click on the project in Project Explorer and select Java EE Tools | Generate
Deployment Descriptor Stub. This will create web.xml in the WEB- INF folder. We
don't need to modify it for this example.

Configure Tomcat in Eclipse as described in the Installing Tomcat section of Chapter 1,
Introducing JEE and Eclipse, and in the Configuring Tomcat in Eclipse section of Chapter
2, Creating a Simple JEE Web Application). To deploy our web application, right-click
on the configured Tomcat server in the Servers view and select the Add and Remove
option. Add the current project.

Start the Tomcat server by right-clicking on the configured server in the Servers
view and selecting Start.

Testing the REST GET request in browser

To test the web service, browse to http://localhost:8080/
CourseManagementREST/services/course/get/10.

You should see the following XML displayed in the browser:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<course 1d="10">

<course_name>Course-10</course_name>

<credits>5</creditss>

<teacher id="2">

<teacher name>Teacherl</teacher name>

</teachers>

</course>

Instead of generating an XML response, let's say we want to create a JSON response,
because it would be much easier to consume a JSON response from JavaScript in a
web page than an XML response. To add support for creating a JSON response, we
will have to change the value of the @produces annotation in the Courseservice
class. Currently, it is set to MediaType . APPLICATION_ XML and we want to set it to
MediaType.APPLICATION_JSON.

public class CourseService {

@GET

@Produces (MediaType.APPLICATION JSON)

@Path ("get/{courseIld}")

public Course getCourse (@PathParam("courseId") int id) {

[324]

http://localhost:8080/CourseManagementREST/services/course/get/10
http://localhost:8080/CourseManagementREST/services/course/get/10

Chapter 9

We also need to add libraries to handle the JSON response. The Jersey library
does support the creation of a JSON response, but we need to add a dependency
on the module that handles this. Open pom.xml of the project and add the
following dependency:

<dependency>
<groupld>org.glassfish.jersey.media</groupId>
<artifactId>jersey-media-json-jackson</artifactIds>
<version>2.18</version>

</dependency>

Restart the Tomcat server and browse to the http://localhost:8080/
CourseManagementREST/services/course/get/10 URL again. This time, you
should see a JSON response:

{
id: 10,
credits: 5,
teacher: ({
id: 2,
teacher name: "Teacherl"

b

course_name: "Course-10"

}

Let's create two versions of the getCourse methods, one that produces XML and the
other that produces JSON. Replace the getCourse function (and annotation) with the
following code:

@GET

@Produces (MediaType.APPLICATION JSON)

@Path ("get/{courseIld}")

public Course getCoursedSON (@PathParam("courseId") int id) {

return createDummyCourse (id) ;

}

@GET

@Produces (MediaType.APPLICATION_XML)

@Path ("get/{courseIld}")

public Course getCourseXML (@PathParam("courseId") int id) {

return createDummyCourse (id) ;

}

private Course createDummyCourse (int id) {
//To keep the example simple, we will return

[325]

Creating Web Services

//hardcoded value here. However, you could get
//data from database using, for example, JDO or JDBC

return new Course (id, "Course-" + id, 5, new Teacher (2,
"Teacherl")) ;

We have refactored the code. We added the createbDummyCourse method, which
has the same code that we had earlier in the get Course method. We now have two
versions of get Course methods: get CourseXML and getCoursedSON, producing the
XML and JSON responses, respectively.

Creating a Java client for the REST GET web
service

Let's now create a Java client application for our REST web service. Create a simple
Maven project, call it CourseManagementRESTClient.

New Maven project e
Configure project M |
Artifact
Group Id: packt.jee.eclipse.rest.ws.client b
Artifact Id: CourseManagementRESTClient N
Version: 1 ¥
Packaging: jar »

Name: ¥
Description:

Parent Project

Group Id: b
Artifact Id: v
Version: W Browse...
» Advanced
(7 < Back Cancel Finish

Figure 9.3 Create JAX-RS client project

[326]

Chapter 9

Open pom.xml and add a dependency for the Jersey client module.

<dependenciess>
<dependencys>
<groupIds>org.glassfish.jersey.core</groupld>
<artifactId>jersey-client</artifactId>
<version>2.18</version>
</dependency>
</dependencies>

Create the Java class called CourseManagementRESTClient in the packt.jee.
eclipse.rest.ws.client package.

Java Class p—
Create a new Java class. @

Source folder: CourseManagementRESTClient/src/main/java Browse...

Package: packt.jee.eclipse.rest.ws.client Browse...

Enclosing type:

Name: CourseManagementClient
Modifiers: * | public package
abstract final
Superclass: java.lang.Object Browse...
Interfaces: Add...

Which method stubs would you like to create?
v public static void main(String[] args)
Constructors from superclass
v Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

Generate comments

(?) Cancel Finish

Figure 9.4 Create REST client main class

[327]

Creating Web Services

You could invoke a REST web service by using java.net .HttpURLConnection or
other external HTTP client libraries, but the JAX-RS client APIs makes this task a lot
easier, as you will see in the following code:

package packt.jee.eclipse.rest.ws.client;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

/**

* This is a simple test class for invoking REST web service
* using JAX-RS client APIs

*/

public class CourseManagementClient
public static void main(String[] args) {

testGetCoursesJSON() ;

//Test getCourse method (XML or JSON) of CourseService
public static void testGetCoursesJSON () {
//Create JAX-RS client
Client client = ClientBuilder.newClient () ;
//Get WebTarget for a URL
WebTarget webTarget =
client.target ("http://localhost:8080/CourseManagementREST/services/
course") ;
//Add paths to URL
webTarget = webTarget.path("get") .path("10") ;

//We could also have create webTarget in one call with the full
URL -

//WebTarget webTarget =
client.target ("http://localhost:8080/CourseManagementREST/services/
course/get/10") ;

//Execute HTTP get method
Response response =
webTarget.request (MediaType .APPLICATION JSON) .get () ;

//Check response code. 200 is OK

[328]

Chapter 9

}
}

if (response.getStatus() != 200) {
System.out.println ("Error invoking REST Web Service - " +
response.getStatusInfo() .getReasonPhrase()) ;
return;

//REST call was successful. Print the response
System.out.println (response.readEntity (String.class)) ;

For a detailed description of how to use the JAX-RS client APIs, refer to https://
jersey.java.net/documentation/latest/client.html.

Implementing the REST POST request

We saw an example of how to implement an HTTP GET request by using JAX-RS.
Let's now implement a pOST request. We will implement a method to add a course
in the Ccourseservice class, which is our web service implementation class in the
CourseManagementRESTpr@ect

As in the case of the getCourse method, we won't actually access the database but
will simply write a dummy method to save the data. Again, the idea is to keep the
example simple and focus only on the JAX-RS APIs and implementation. Open
CourseService.java and add following methods:

@POST

@Consumes (MediaType.APPLICATION JSON)
@Produces (MediaType.APPLICATION JSON)
@Path ("add")

public Course addCourse (Course course)

int courseId = dummyAddCourse (course.getName (),
course.getCredits()) ;

course.setId(courseld) ;

return course;

private int dummyAddCourse (String courseName, int credits)

//To keep the example simple, we will just print
//parameters we received in this method to console and not

[329]

https://jersey.java.net/documentation/latest/client.html
https://jersey.java.net/documentation/latest/client.html

Creating Web Services

//actually save data to database.

System.out.println("Adding course " + courseName + ", credits
= " 4+ credits);

//TODO: Add course to database table

//return hard-coded id
return 10;

}

The addCourse method produces and consumes JSON data. It is invoked when

the resource path (web service endpoint URL) has the following relative path: "/
course/add". Recall that the CourseService class is annotated with the following
path: "/course". So, the relative path for the addCourse method becomes the path
specified at the class level and at the method level (which in this case is "add").

We are returning a new instance of Course from addCourse. Jersey creates an
appropriate JSON representation of this class on the basis of the JAXB annotation
that we have added to the course class. We have already added a dependency in the
project on the Jersey module that handles the JSON format (in pom.xml, we added a
dependency on jersey-media-json-jackson).

Restart the Tomcat server for these changes to take effect.

Writing a Java client for the REST POST web
service

We will now add a test method in the CourseManagementClient (in the
CourseManagementRESTClient project) class.

//Test addCourse method (JSON version) of CourseService
public static void testAddCourseJSON() {

//Create JAX-RS client
Client client = ClientBuilder.newClient () ;

//Get WebTarget for a URL

WebTarget webTarget =
client.target ("http://localhost:8600/CourseManagementREST/services/
course/add") ;

//Create JSON representation of Course,
//with course name and credits fields. Instead of creating
//JSON manually, you could also use JAXB to create JSON from

[330]

Chapter 9

//Java object.
String courseJSON = "{\"course name\":\"Course-4\",
\"credits\":5}";

//Execute HTTP post method
Response response = webTarget.request ().

post (Entity.entity (courseJSON,
MediaType.APPLICATION JSON TYPE)) ;

//Check response code. 200 is OK
if (response.getStatus() != 200) {
//Print error message

System.out.println ("Error invoking REST Web Service - " +
response.getStatusInfo() .getReasonPhrase () +

", Error Code : " + response.getStatus());
//Also dump content of response message
System.out.println(response.readEntity (String.class)) ;
return;

//REST call was successful. Print the response
System.out.println (response.readEntity (String.class)) ;

}

We need to send input data (the course information) in the JSON format. Although
we have hardcoded JSON in our example, you could use JAXB or any other library
that converts a Java object into JSON.

Note that we have used the post method (webTarget . request () .post (...)). We
have also set the content type of the request to "application/JsoN" (because our
web service to add Course consumes the JSON format). This is done by creating an
entity and setting its content type to JSON:

//Execute HTTP post method

Response response =

webTarget .request () .post (Entity.entity (courseJSON,
MediaType.APPLICATION JSON TYPE)) ;

Modify the main method of the CourseManagementClient class to call the
testAddCoursedsoN method. Right-click on the class and select Run As | Java
Application. You should see the Course information in the JSON format printed in
the console. Also, check the Tomcat console in Eclipse. You should see the console
message that we printed in the coursesService. dummyAddCourse method.

[331]

Creating Web Services

Invoking the POST REST web service from
JavaScript

Here is a simple example of how to invoke our REST web service to add a course
from JavaScript.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">
<title>Add Course - JSON</title>

<script type="text/javascript">
function testAddCourseJSON () {

//Hardcoded course information to keep example simple.
//This could be passed as arguments to this function

//We could also use HTML form to get this information from
users

var courseName = "Course-4";

var credits = 4;

//Create XMLHttpRequest
var req = new XMLHttpRequest () ;

//Set callback function, because we will have XMLHttpRequest
//make asynchronous call to our web service
req.onreadystatechange = function () {
if (reqg.readyState == 4 && req.status == 200)
//HTTP call was successful. Display response
document .getElementById ("responseSpan") .innerHTML =
req.responseText;

}
bi

//Open request to our REST service. Call is going to be asyc

req.open ("POST",
"http://localhost:8080/CourseManagementREST/services/course/add",
true) ;

//Set request content type as JSON

req.setRequestHeader ("Content-type", "application/JSON") ;

//Create Course object and then stringify it to create JSON
string

[332]

Chapter 9

var course = {
"course name": courseName,
"credits" : credits

}i

//Send request.
reqg.send (JSON.stringify (course)) ;

}

</script>

</head>
<body>
<button type="submit" onclick="return testAddCoursedSON() ;">Add
Course using JSON</buttons>
<p/>
</spans
</body>
</html>

If you want to test this code, create an HTML file, say addCourseJdSON. html, in the
src/main/webapp folder of the CourseManagementREST project. Then, browse to
http://localhost:8080/CourseManagementREST/addCourseJSON. html. Click the
Add Course using JSON button. The response is displayed in the same page.

Creating the REST web service with Form
POST

We have created the REST web services so far with HTTP GET and posT. The web
service with the POST method took input in the JSON format. We can also have the
pOST method in the web service take input as HTML form elements. Let's create a
method that handles the data posted from the HTTP form. Open CourseService.
java from the CourseManagementREST project. Add the following method:

@POST

@Consumes (MediaType.APPLICATION FORM URLENCODED)

@Path ("add")

public Response addCourseFromForm (@FormParam("name") String
courseName,

@FormParam ("credits") int credits) throws URISyntaxException {
dummyAddCourse (courseName, credits) ;

return Response.seeOther (new
URI("../addCourseSuccess.html")) .build() ;

}

[333]

Creating Web Services

The method is marked to handle form data by specifying the @consume annotation
with the following value: "application/x-www-form-urlencoded". Just as we
mapped parameters in the path in the getCourse method with @PathParam, we
map the form fields to method arguments by using the @FormpParam annotation.
Finally, once we successfully save course, we want the client to be redirected to
addCourseSuccess.html. We do this by calling the Response . seeOther method.
The addCourseFromForm method returns the Response object. Refer to https://
jersey.java.net/documentation/latest/representations.html for more
information on how to configure Response from the web service method.

We need to create addCourseSuccess.html. Create this file in the src/main/webapp
folder of the CourseManagementREST project. The file contains just a simple message:

<h3>Course added successfully</h3>

Creating a Java client for the form-encoded
REST web service

Let's now create a test method for calling the above web service that consumes
form-encoded data. Open CourseManagementClient.java from the
CourseManagementRESTClient project and the following method:

//Test addCourse method (Form-Encoded version) of CourseService
public static void testAddCourseForm()

//create JAX-RS client
Client client = ClientBuilder.newClient () ;

//Get WebTarget for a URL

WebTarget webTarget =
client.target ("http://localhost:8600/CourseManagementREST/services/
course/add") ;

//Create Form object and populate fields
Form form = new Form() ;

'name", "Course-5") ;
'credits", "5");

form.param('
form.param('
//Execute HTTP post method
Response response = webTarget.request ().
post (Entity.entity (form,
MediaType. APPLICATION_FORM_URLENCODED)) ;

//check response code. 200 is OK

[334]

https://jersey.java.net/documentation/latest/representations.html
https://jersey.java.net/documentation/latest/representations.html

Chapter 9

if (response.getStatus() != 200) {
//Print error message

System.out.println ("Error invoking REST Web Service - " +
response.getStatusInfo() .getReasonPhrase () +

", Error Code : " + response.getStatus()) ;
//Also dump content of response message
System.out.println (response.readEntity (String.class)) ;
return;

//REST call was successful. Print the response
System.out.println (response.readEntity (String.class)) ;

}

Notice that the form data is created by creating an instance of the Form object and
setting its parameters. The POST request is encoded with MediaType . APPLICATION_
FORM_URLENCODED, which has the following value: "application/x-www-form-
urlencoded".

Modify the main method to call testaddCourseForm. Right-click on the class
and select Run As | Java Application. You should see the success message (from
addCourseSuccess.html) printed in the console.

SOAP web services

Simple Object Access Protocol (SOAP) is a specification from World Wide

Web Consortium (W3C) (http://www.w3.org/TR/2007/REC-soapl2-
part0-20070427/). Although we are referring to SOAP-based web services here,
SOAP is one of the specifications used to implement XML-based web services. There
are a few other specifications required to implement SOAP web services, which we
will see later. One of the premises of SOAP web services was the dynamic discovery
and invocation of services. For example, an application can look for a service from
the central directory and invoke it dynamically. However, in practice, very few
enterprises would be willing to invoke services dynamically without testing them, so
this aspect of SOAP web services is less utilized.

W3C has defined many specifications for SOAP web services, for example,
specifications for messages, auto discovery, security, and service orchestration.
However, at the minimum, we need to understand the following specification
before we develop SOAP web services.

[335]

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

Creating Web Services

SOAP

SOAP defines the format of message exchanges between a web service provider and
a consumer.

SOAP Message

SOAP Envelope

SOAP Header
(Optional)

SOAP Body
EOAP

lements
SOAP Fault
(Optional)

Figure 9.5 SOAP message structure

The top element in a SOAP Message is SOAP Envelope. It contains a SOAP Header
(Optional) and a SOAP Body. SOAP Body actually contains the message payload
(for processing by the consumer) and optionally SOAP Fault, if there is any error.

The SOAP header provides extensibility to a SOAP message. It can contain
information such as user credentials, transaction management, and message routing.

WSDL

As the name suggests, Web Service Description Language (WSDL) describes web
services; in particular, it describes the data types used (schemas), input and output
messages, operations (methods), and binding and service endpoints.

[336]

Chapter 9

<definitions>
<import>*
<types>
<schema></schema>"
</types>
<message>"*
<part></part>*
</message>
<PortType>
<operation=*
<input></input>
<output=></output>
<fault></fault>
</operation>
</PortType>
<binding>*
<operation>*
<input><f/input>
<output></output>
</operation>
</binding>

</definitions>

Figure 9.6 WSDL structure

Although you don't necessarily need to understand the details of WSDL when
creating web services in Java, it is good to know the basic structure of WSDL.
WSDLs are typically meant to be produced and processed by programs instead of
the developer hardcoding them.

definitions is the root element of WSDL.

The Import element allows you to import elements from an external file.
This way, you can make the WSDL file modular.

The Types element defines the schema for different data types used
in WSDL.

The Messages element defines the format of the input and output messages
exchanged between web services and clients.

portType defines the methods or operations supported by web services.
Each operation in PortType can declare the request and response messages.
Operations in PortType refer to messages defined in a message element.

[337]

Creating Web Services

Although in the preceding figure, the binding element looks the same as PortType,
it actually specifies the transport protocol bound to the operations and message

type (Remote Procedure Call or Document Type) and encoding (encoded or literal) for
messages of each operation declared in PortType. The typical transport protocol is
HTTP, but it could be other protocols such as JMS and SMTP. The difference between
RPC and Document type is that the RPC message type contains the name of the
remote method in the message, whereas Document type does not contain the method
name. The name of the method to process the payload in a Document-type message
is either derived from the endpoint URL or from the information in the header.
However, there is another type called Document Wrapped, which does contain the
name of the method as the enclosing element for an actual message payload.

The service element contains the actual location of each web service endpoint.

UDDI

Universal Description, Discovery and Integration (UDDI) is a directory of web
services where you can publish your own web services or search for existing web
services. The directory could be global or could be local to enterprises. UDDI is also a
web service with operations supported for publishing and searching contents.

We will not be focusing on UDDI in this book, but you can visit http: //docs.
oracle.com/cd/E14571 01/web.1111/e13734/uddi.htm#WSADV226.

Developing web services in Java

There have been many frameworks around for developing web services in Java.
New frameworks have evolved as specifications changed. Some of the popular
frameworks for developing web services in Java over the years are Apache Axis
(https://axis.apache.org/axis/), Apache Axis2 (http://axis.apache.org/
axis2/java/core/), Apache CFX (http://cxf.apache.org/), and GlassFish Metro
(https://metro.java.net/).

[338]

http://docs.oracle.com/cd/E14571_01/web.1111/e13734/uddi.htm#WSADV226
http://docs.oracle.com/cd/E14571_01/web.1111/e13734/uddi.htm#WSADV226
https://axis.apache.org/axis/
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://cxf.apache.org/
https://metro.java.net/

Chapter 9

Earlier implementations of web service frameworks were based on the JAX-RPC
(Java API for XML - Remote Procedure Call) specification (http://www.oracle.
com/technetwork/java/docs-142876.html). JAX-RPC was replaced with Java API
for XML - Web Services (JAX-WS) in JEE 5. JAX-WS makes the development of web
services easier by supporting annotations. In this chapter, we will learn how to create
and consume web services using JAX-WS. Continuing with the example (Course
Management) that we have been following in this book, we will create web services
to get all courses and add a new course.

First, we will create a Maven web project. Select File | New | Maven Project. Check
the Create a simple project option.

New Maven project L,
Select project name and location M [

v Create a simple project (skip archetype selection)

v Use default Workspace location

Location: Browse...

Add project(s) to working set

Working set:

» Advanced

|'> Next > Cancel

Figure 9.7 New Maven project

[339]

http://www.oracle.com/technetwork/java/docs-142876.html
http://www.oracle.com/technetwork/java/docs-142876.html

Creating Web Services

Click Next. Enter Group Id, Artefact id, and Version in the next page. Select the
war packaging.

New Maven project S
Configure project M
Artifact
Group Id: packt.jee.eclipse.ws.soap ¥
Artifact Id: CourseMgmtWSProject hed
Version: 1 il
Packaging: war =
Name: it
Description:

Parent Project

Group Id: ¥
Artifact Id: ol
Version: b Browse...

» Advanced
('_7 < Back Cancel Finish

Figure 9.8 Enter artifact details

Click Finish to complete the wizard.

Creating a web service implementation class

JAX-WS annotations were added in Java EE 5.0. Using these annotations, we can
turn any Java class (including POJO) into a web service. Use the eWebservice
annotation to make any Java class a web service. This annotation can be used either
on an interface or on a Java class. If a Java class is annotated with ewebservice, then
all public methods in the class are exposed in the web service. If a Java interface

is annotated with ewebservice, then the implementation class still needs to be
annotated with eWebservice with the endpointInterface attribute and its value as
the interface name.

[340]

Chapter 9

Before we create the web service implementation class, let's create a few helper
classes. The first one is the Course data transfer object. This is the same class that
we created in the previous chapters. Create the Course class in the packt . jee.
eclipse.ws.soap package

package packt.jee.eclipse.ws.soap;

public class Course
private int id;
private String name;

private int credits;

//Setters and getters follow here

}

Let's now create the web service implementation class. Create the class
CourseManagementServiceinthepackt.jee.eclipse.ws.soappackage

package packt.jee.eclipse.ws.soap;

import java.util.ArrayList;
import java.util.List;

import javax.jws.WebService;

@WebService
public class CourseManagementService {

public List<Course> getCourses()
//Here courses could be fetched from database using,
//for example, JDBC or JDO. However, to keep this example
//simple, we will return hardcoded list of courses

List<Course> courses = new ArrayList<Courses () ;

courses.add (new Course(1l, "Course-1", 4));
courses.add (new Course (2, "Course-2", 3));

return courses;
public Course getCourse (int courseId)

//Here again, we could get course details from database using
//JDBC or JDO. However, to keep this example

[341]

Creating Web Services

//simple, we will return hardcoded course

return new Course (1, "Course-1",4) ;

}
}

CourseManagementService has the following two methods: getCourses and
getCourse. To keep the example simple, we have hardcoded the values, but you can
very well fetch data from a database by using the JDBC or J]DO APIs that we have
discussed earlier in this book. The class is annotated with @WwebService, which tells
the JAX-WS implementation to treat this class as a web service. All methods in this
class would be exposed as web service operations. If you want a specific method to
be exposed, you could use ewebMethod.

Using the JAX-WS reference implementation
(GlassFish Metro)

Annotating a class with eWwebservice is not enough to implement web services.

We need an implementation of the JAX-WS specification that would process

classes annotated with the JAX-WS annotations. There are a number of JAX-WS
frameworks available, for example, Axis2, Apache CFX, and GlassFish Metro. In this
chapter, we will use the GlassFish Metro implementation, which is also a reference
implementation (https://jax-ws.java.net/) of JAX-WS from Oracle.

Let's add the Maven dependency for the JAX-WS framework. Open pom.xml and
add the following dependency:

<dependencies>
<dependency>
<groupId>com.sun.xml.ws</groupId>
<artifactId>jaxws-rt</artifactId>
<version>2.2.10</version>
</dependency>
</dependencies>

Replace the version number with the latest version above. The Metro framework
also requires you to declare web service endpoints in a configuration file called sun-
jaxws .xml. Create the sun-jaxws.xml file in the src/main/webapp/WEB-INF folder
and add the endpoint as follows:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime"
version="2.0">

<endpoint name="CourseService" implementation="packt.jee.eclipse.
ws.soap.CourseManagementService"

[342]

https://jax-ws.java.net/

Chapter 9

url-pattern="/courseService" />
</endpoints>

Endpoint implementation is the fully qualified name of our web service
implementation class. url-pattern is just like the Servlet mapping that you specify
in web.xml. In this case, any relative URL starting with /courseservice would
result in the invocation of our web service.

Inspecting WSDL

We are done with implementing our web service. As you can see, JAX-WS really
makes it very easy to develop web services. Let's now inspect WSDL for our web
service. Configure Tomcat in Eclipse as described in the Installing Tomcat section of
Chapter 1, Introducing JEE and Eclipse and in the Configuring Tomcat in Eclipse section
of Chapter 2, Creating a Simple JEE Web Application). To deploy our web application,
right-click on the configured Tomcat server in the Servers view and select the Add
and Remove option.

Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

o CourseMgmtWSProject

<< Remove All

+ If server is started, publish changes immediately

(2] Cancel Finish

Figure 9.9 Add a project to Tomcat

[343]

Creating Web Services

Add the project and click Finish.

Start the Tomcat server by right-clicking on the configured server in the Servers view
and selecting Start.

To inspect the WSDL of our web service, browse to http://localhost:8080/
CourseMgmtWSProject/courseService?wsdl (assuming that Tomcat is running on
port 8080). The following WSDL is generated:

<definitions
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-utility-1.0.xsd"
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:wspl 2="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsam="http://www.w3.0rg/2007/05/addressing/metadata"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:tns="http://socap.ws.eclipse.jee.packt/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://socap.ws.eclipse.jee.packt/"
name="CourseManagementServiceService">
<types>
<xsd:schemas>
<xsd:import namespace="http://soap.ws.eclipse.jee.packt/"
schemaLocation="http://localhost:8080/CourseMgmtWSProject/
courseService?xsd=1" />
</xsd:schema>
</types>
<message name="getCourses'">
<part name="parameters" element="tns:getCourses" />
</message>
<message name="getCoursesResponse">
<part name="parameters" element="tns:getCoursesResponse" />
</message>
<message name="getCourse">
<part name="parameters" element="tns:getCourse" />
</message>
<message name="getCourseResponse">
<part name="parameters" element="tns:getCourseResponse" />
</message>
<portType name="CourseManagementService">
<operation name="getCourses">
<input
wsam:Action="http://soap.ws.eclipse.jee.packt/CourseManagementService/
getCoursesRequest"
message="tns:getCourses" />
<output

[344]

Chapter 9

wsam:Action="http://soap.ws.eclipse.jee.packt/CourseManagementService/
getCoursesResponse"
message="tns:getCoursesResponse" />
</operation>
<operation name="getCourse"s>
<input
wsam:Action="http://soap.ws.eclipse.jee.packt/CourseManagementService/
getCourseRequest"
message="tns:getCourse" />
<output
wsam:Action="http://soap.ws.eclipse.jee.packt/CourseManagementService/
getCourseResponse"
message="tns:getCourseResponse" />
</operation>
</portType>
<binding name="CourseManagementServicePortBinding"
type="tns:CourseManagementService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="getCourses">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="getCourse"s>
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="CourseManagementServiceService">
<port name="CourseManagementServicePort"
binding="tns:CourseManagementServicePortBinding" >
<soap:address
location="http://localhost:8080/CourseMgmtWSProject/courseService"
/>
</port>
</service>
</definitions>

[345]

Creating Web Services

Notice that the schema (see the definitions of the /types/xsd: schemas element) for
this web service is imported in the above WSDL. You can see the schema generated
at http://localhost:8080/CourseMgmtWSProject/courseService?xsd=1.

<xs:schema xmlns:tns="http://socap.ws.eclipse.jee.packt/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" version="1.0"
targetNamespace="http://socap.ws.eclipse.jee.packt/">

<xs:element name="getCourse" type="tns:getCourse" />

<xs:element name="getCourseResponse"

type="tns:getCourseResponse" />

<xXs:element name="getCourses" type="tns:getCourses" />

<xs:element name="getCoursesResponse"
type="tns:getCoursesResponse" />

<xs:complexType name="getCourses">
<Xs:sequence />
</xs:complexType>
<xs:complexType name="getCoursesResponse">
<Xs:sequence>
<xs:element name="return" type="tns:course" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="course">
<xXs:sequence>
<xs:element name="credits" type="xs:int" />
<xs:element name="id" type="xs:int" />
<xs:element name="name" type="xXs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="getCourse">
<xXs:sequence>
<xs:element name="arg0" type="xs:int" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="getCourseResponse'>
<Xs:sequence>
<xs:element name="return" type="tns:course" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schemas>

[346]

Chapter 9

The schema document defines the data types for the getCourse and getCourses
methods and their responses (getCoursesResponse and getCourseResponse) and
also for the course class. It also declares the members of the course data type (id,
credits, and name). Notice that the getCourse data type has one child element
(which is an argument to the getCourse method in the CourseManagementService
method) called argo, which is actually the course ID of the int type. Further, notice
the definition of getCoursesResponse. In our implementation class, getCourses
returns List<Courses>, which is translated in WSDL (or types in WSDL) as a
sequence of course types.

In WSDL, the following four messages are defined: getCourses,
getCoursesResponse, getCourse, and getCourseResponse. Each message contains
a part element that refers to the data types declared in types (or schema).

The PortType name is the same as the web service implementation class called
CourseManagementService and the operations of the port are the same as the public
methods of the class. The input and output of each operation refer to the messages
already defined in WSDL.

Binding defines the network transport type, which in this case is HTTP, and the style
of message in the SOAP body, which is of the document type. We have not defined
any message type in our web service implementation, but the JAX-WS reference
implementation (GlassFish Metro) has set a default message type to document.
Binding also defines the message encoding type for the input and output messages of
each operation.

Finally, the service element specifies the location of the port, which is the URL that
we access to invoke the web service.

Implementing a web service using an interface

All methods declared in our web service implementation class,
CourseManagementService, are exposed as web service operations. However, if you
want to expose only a limited set of methods from the web service implementation
class, then you can use the Java interface to declare the web service. For example, if
we want to expose only the getCourses method as the web service operation, then
we can create an interface, let's say ICourseManagementService.

package packt.jee.eclipse.ws.soap;
import java.util.List;
import javax.jws.WebService;

@WebService

[347]

Creating Web Services

public interface ICourseManagementService
public List<Course> getCourses|() ;

}

The implementation class also needs to be annotated with ewebservice, with the
endpointInterface attribute.

package packt.jee.eclipse.ws.soap;

import java.util.ArrayList;
import java.util.List;

import javax.jws.WebService;

@WebService
(endpointInterface="packt.jee.eclipse.ws.soap.
ICourseManagementService")

public class CourseManagementService implements
ICourseManagementService {

//getCourses and getCourse methods follow here

}

Now, restart Tomcat and inspect WSDL. You will notice that only the getCourses
operation is defined in WSDL.

Consuming a web service using JAX-WS

We will create a simple Java console app to consume the web service that we created
earlier. Select File | New | Maven Project. Check the Create a simple project option
on the first page and click Next. Enter the following Artifact details:

[348]

Chapter 9

New Maven project F=—__ TN
Configure project M
Artifact
Group Id: packt.jee.eclipse.ws.soap v
Artifact Id: CourseMgntWSClientProject v
Version: 1 v
Packaging: jar v
Name: v
Description:

Parent Project

Group Id: v
Artifact Id: v
Version: v Browse...

» Advanced
('5\1 < Back Cancel Finish

Figure 9.10 Create a Maven project for the web service client
Make sure that the Packaging type is jar. Click Finish.

We will now generate a stub and a supporting class on the client side for invoking
our web service. We will use the wsimport tool to generate client classes. We will
specify the package for the generated classes by using the -p option and the WSDL
location to generate the client classes. The wsimport tool is a part of JDK and should
be available in the <JDK_HOME>/bin folder, if you are using JDK 1.7 or later.

We will now run wsimport from the Command Prompt. Change the folder to
<project_home>/src//main/java and run the following command:

wgimport -keep -p packt.jee.eclipse.ws.soap.client http://localhost:8080/
CourseMgmtWSProject/courseService?wsdl

[349]

Creating Web Services

The -keep flag instructs wsimport to keep the generated file.
The -p option specifies the package name for the generated classes.

The last argument is the WSDL location for our web service. In Package Explorer or
Project Explorer of Eclipse, refresh the client project to see the generated files. The
files will be in the packt . jee.eclipse.ws.soap.client package.

wsimport generates a client-side class for each type defined in the schema (in

the types element of WSDL). Therefore, you will find the course, GetCourse,
GetCourseResponse, GetCourses, and GetCoursesResponse classes. Further,

it generates classes for portType (CourseManagementService) and the service
(CourseManagementServiceService) elements of WSDL. Additionally, it creates
the ObjectFactory class that creates Java objects from XML by using JAXB.

Let's now write the code to actually call the web service. Create the
CourseMgmtWSClient class in the packt.jee.eclipse.ws.soap.client.test
package.

package packt.jee.eclipse.ws.soap.client.test;

import packt.jee.eclipse.ws.soap.client.Course;

import packt.jee.eclipse.ws.soap.client.CourseManagementService;
import packt.jee.eclipse.ws.soap.client.
CourseManagementServiceService;

public class CourseMgmtWSClient

public static void main(String[] args) {
CourseManagementServiceService service = new
CourseManagementServiceService () ;

CourseManagementService port =
service.getCourseManagementServicePort () ;

Course course = port.getCourse(l);
System.out.println("Course name = " + course.getName()) ;

}

We first create the Service object and then get the port from it. The port object has
operations defined for the web service. We then call the actual web service method
on the port object. Right-click on the class and select Run As | Java Application. The
output should be the name of the course that we hardcoded in the web service, that
is, Course-1.

[350]

Chapter 9

Specifying an argument name in a web service
operation

As mentioned earlier, when WSDL was created for our Course web service,
the argument for the get Course operation name was created as arg0. You can
verify this by browsing to http://localhost:8080/CourseMgmtWSProject/
courseService?xsd=1 and checking the getCourse type.

<xs:complexType name="getCourse">
<Xs:sequence>
<xs:element name="arg0" type="xs:int"/>
</Xs:sequence>
</xs:complexType>

Thus, the client-side generated code (by wsimport) in CourseManagementService.
getCourse also names the argument as argo. It would be nice to give a meaningful
name to arguments. This could be done easily be adding the eWsparam annotation in
our web service implementation class, CourseManagementService.

public Course getCourse (@WebParam(name="courseId") int courseld)

{-}

Restart Tomcat after this change and browse to the WSDL schema URL (http://
localhost:8080/CourseMgthSProject/courseService?xsd:l)agahﬁfYou
should now see a proper argument name in the getCourse type.

<xs:complexType name="getCourse">
<XS:sequence>
<xs:element name="courseId" type="xs:int"/>
</xs:sequence>
</xs:complexType>

Generate the client-side code again by using wsimport, and you will see that the
argument of the getCourse method is named courseId.

Inspecting SOAP messages

Although you don't necessarily need to understand the SOAP messages passed
between the web service and the client, sometimes, looking at the SOAP messages
exchanged between the two could help debug some of the issues.

You can print the request and response SOAP messages when running the client
quite easily by setting the following system property:

com.sun.xml.internal.ws.transport.http.client.HttpTransportPipe.
dump=true

[351]

Creating Web Services

In Eclipse, right-click on the courseMgmtwsclient class that we created in

the previous section and select Run As | Run Configurations. Click on the
Arguments tab and specify the following VM argument: Dcom. sun.xml.internal.
ws.transport.http.client.HttpTransportPipe.dump=true

Create, manage, and run configurations —.
Run a Java application (I ;)
-+,
) X | B e Name: CourseMgmtWSClient

o © Main | 69= Arguments = JRE | “; Classpath E:-Source Environment ™

» | Apache Tomcat
EAspectJ Load-Time Wi
i AspectJ/Java Applicat
& Eclipse Application
& 4 Eclipse Data Tools
| Generic Server
| Generic Server(Extern:
«*1GlassFish Application
5 HrTP Previ:: VM arguments:
1| J2EE Preview
¥ Java Applet
3] Java Application
[J] CourseMgmtWSClit Variables...

Program arguments:

Variables...

-Dcom.sun.xml.internal.ws.transport.http.client.Http TransportPipe.dump=true

|

& JAXRS Application
Ju JUnit v Use the -XstartOnFirstThread argument when launching with SWT
Jt JUnit Plug-in Test
m2 Maven Build
4 0OSGi Framework « Default:
& Pivotal tc Server
@ Spring Boot App
Ji Task Context Plug-in T
Juy Task Context Test
i TestNG
4 XSL
Filter matched 25 of 25 items

Working directory:

Other:

'\?\J Close Run

Figure 9.11 Set VM arguments

Click Run. You will see the request and response SOAP messages printed in the
Console window in Eclipse. After formatting the request message, this is what the

request SOAP message looks like:

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>

[352]

Chapter 9

<ns2:getCourse xmlns:ns2="http://socap.ws.eclipse.jee.packt/">
<courselds>l</courselds>
</ns2:getCourse>
</S:Body>
</S:Envelope>

Further, the response is as follows:

<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getCourseResponse
xmlns:ns2="http://socap.ws.eclipse.jee.packt/">
<returns>
<credits>4</creditss>
<id>1l</id>
<name>Course-1l</name>
</returns
</ns2:getCourseResponse>
</S:Body>
</S:Envelope>

Handling interfaces in an RPC-style web service

Recall that the message style for our web service implementation class is
Document and the encoding is 1iteral. Let's change the style to RPC. Open
CourseManagementService. java and change the style of the SOAP binding
from Style.DOCUMENT to Style.RPC.

@WebService
@SOAPBinding (style=Style.RPC, use=Use.LITERAL)
public class CourseManagementService {..}

Restart Tomcat. In the Tomcat console, you might see the following error:

Caused by: com.sun.xml.bind.v2.runtime.IllegalAnnotationsException: 1
counts of IllegalAnnotationExceptions

java.util.List is an interface, and JAXB can't handle interfaces.
this problem is related to the following location:

at java.util.List

[353]

Creating Web Services

This problem is caused by this method definition in the CourseManagementService
class:

public List<Course> getCourses() {..}

In RPC-style SOAP binding, JAX-WS uses JAXB, and JAXB cannot marshal
interfaces very well. A blog entry at https://weblogs.java.net/blog/kohsuke/
archive/2006/06/jaxb_and_interf.html tries to explain the reason for this.

The workaround is to create a wrapper for List and annotate it with @XMLElement.
So, create a new class called courses in the same package.

package packt.jee.eclipse.ws.soap;
import java.util.List;

import javax.xml.bind.annotation.XmlAnyElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement

public class Courses {
@XmlAnyElement
public List<Course> courselist;

public Courses() {

}

public Courses (List<Course> courselList) {
this.courselList = courselList;

}
}

Then, modify the getCourses method of CourseManagementService to return the
Courses object instead of List<Courses.

public Courses getCourses () {
//Here, courses could be fetched from database using,
//for example, JDBC or JDO. However, to keep this example
//simple, we will return hardcoded list of courses

List<Course> courses = new ArrayList<Courses> () ;

courses.add (new Course(l, "Course-1", 4));
courses.add (new Course (2, "Course-2", 3));

return new Courses (courses) ;

[354]

https://weblogs.java.net/blog/kohsuke/archive/2006/06/jaxb_and_interf.html
https://weblogs.java.net/blog/kohsuke/archive/2006/06/jaxb_and_interf.html

Chapter 9

Restart Tomcat after the preceding changes. This time, the application should be
deployed in Tomcat without any error. Re-generate the client classes by using
wsimport, run the client application, and verify the results.

Handling exceptions

In JAX-WS, a Java exception thrown from a web service is mapped to SOAP Fault
when the XML payload is sent to the client. On the client side, JAX-WS maps SOAP
Fault to either SOAPFaultException or an application-specific exception. The client
code could wrap the web service call in the try-catch block to handle exceptions
thrown from the web service. For a good description of how SOAP exceptions are
handled in JAX-WS, refer to https://docs.oracle.com/cd/E24329 01/web.1211/
e24965/faults. htm#WSADVE24.

Summary

Web services are a very useful technology for enterprise application integration.
They allow disparate systems to communicate with each other. Web service APIs
are typically self-contained and lightweight.

There are broadly two types of web services: SOAP-based and RESTful. SOAP-
based web services are XML based and provide many features such as security,
attachments, and transactions. RESTful web services can exchange data by using
XML or JSON. RESTful JSON web services are quite popular because they can be
easily consumed from the JavaScript code.

In this chapter, we learnt how to develop and consume RESTful and SOAP-based
web services by using the latest Java specifications, namely JAX-RS and JAX-WS,
respectively.

In the next chapter, we will take a look at another technology for application
integration: asynchronous programming using JMS (which stands for Java
messaging service).

[355]

https://docs.oracle.com/cd/E24329_01/web.1211/e24965/faults.htm#WSADV624
https://docs.oracle.com/cd/E24329_01/web.1211/e24965/faults.htm#WSADV624

10

Asynchronous Programming
with JMS

Thus far, we have seen examples of clients making requests to the JEE server

and waiting till the server sends a response back. This is a synchronous model of
programming. This model of programming may not be suitable when the server
takes a long time to process requests. In such cases, a client might want to send a
request to the server and return it immediately without waiting for the response.
The server would process the request and somehow make the result available to the
client. Requests and responses in such scenarios are sent through messages. Further,
there is a message broker that makes sure that messages are sent to the appropriate
recipients. This is also known as message-oriented architecture. The following are
some of the advantages of adopting the message-oriented architecture:

* It can greatly improve the scalability of an application. Requests are put
in a queue at one end, and at the other end, there could be many handlers
listening to the queue and processing the requests. As the load increases,
more handlers can be added, and when the load reduces, some of the
handlers can be taken off.

* Messaging systems can act as the glue between disparate software
applications. An application developed using PHP can put a JSON or XML
message in a messaging system, which can be processed by a JEE application.

* It can be used to implement an event-driven program. Events can be put as
messages in a messaging system, and any number of listeners can process
events at the other end.

* It can reduce the impact of system outages in your application because
messages are persisted till they are processed.

[357]

Asynchronous Programming with JMS

There are many enterprise messaging systems, such as Apache ActiveMQ (http://
activemq.apache.org/), RabbitMQ (https://www.rabbitmg.com/), and MSMQ
(https ://msdn.microsoft.com/en-us/library/ms711472 (v=vs.85) . aspx).
Further, the JMS (which stands for Java messaging service) specification provides a
uniform interface to work with many different messaging systems. JMS is also a part
of the overall Java EE specifications. Refer to http://docs.oracle.com/javaee/7/
tutorial/jms-concepts.htm#BNCDQ for an overview of JMS APIs.

There are two types of message containers in messaging systems:

* Queue: This is used for point-to-point messaging. One message producer
puts a message in a queue, and only one message consumer receives the
message. There can be multiple listeners for a queue, but only one listener
receives the message. However, it is not necessary that the same listener gets
all the messages.

* Topic: This is used in a publish-subscribe type of scenario. One message
producer puts messages in a topic, and many subscribers receive the
message. Topics are useful for broadcasting messages.

In this chapter, we will see how to use JMS APIs for sending and receiving messages.
We will use a GlassFish server, which also has a built-in JMS provider. We will use
JMS APIs to implement a use case in the Course Management application, the same
application that we have been building in the other chapters of this book.

Steps to send and receive messages
using JMS

However, before we start using JMS APIs, let's take a look at the generic steps
involved in using them. The following steps show how to send a message to a queue
and receive it; however, the steps for topic are similar but with appropriate topic-
related classes.

1. Look up ConnectionFactory using JNDI:

InitialContext ctx = new InitialContext () ;
QueueConnectionFactory connectionFactory =

(QueueConnectionFactory) initCtx.lookup ("jndi name of connection
factory");

[358]

http://activemq.apache.org/
http://activemq.apache.org/
https://www.rabbitmq.com/
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
http://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm#BNCDQ
http://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm#BNCDQ

Chapter 10

2. Create JMS connection and start it:

QueueConnection con =
connectionFactory.createQueueConnection () ;

con.start () ;

3. Create JMS session:

QueueSession session = con.createQueueSession(false,
SeSSion.AUTO_ACKNOWLEDGE);

4. Look up JMS Queue/Topic:

Queue queue = (Queue)initCtx.lookup ("jndi queue name") ;

5. For sending messages:

o

Create a sender:
QueueSender sender = session.createSender (queue) ;
Create a message. The message could be of any of the following

types: TextMessage/ObjectMessage/MapMessage/BytesMessage/
StreamMessage:

TextMessage textMessage = session.createTextMessage ("Test
Message") ;

Send the message:

sender.send (textMessage) ;

Close the connection when no longer needed:

con.close() ;

6. For receiving messages:

o

Create a receiver:

//create a new session before creating the receiver.
QueueReceiver receiver = session.createReceiver (queue) ;

Register a message listener or call a receive method:

receiver.setMessagelistener (new MessagelListener () {
@Override
public void onMessage (Message message)
try {
String messageTxt =
((TextMessage)message) .getText () ;

[359]

Asynchronous Programming with JMS

//process message
} catch (JMSException e) ({
//handle exception
}
}
1

Alternatively, you can use any variation of the receive method:

Message message = receiver.receive(); //this blocks the
thread till message is received

Or:

Message message = receiver.receive (timeout) ;

Or:

Message message = receiver.receiveNoWait (); //returns null

if no message is available.

In a JEE application that uses EJB, it is recommended to use MDBs
(which stands for message-driven beans). We will see an example of
MDBs later in this chapter.

7. When done, close connection. This stops message listeners too:

con.close() ;

Some of the steps can be skipped when JMS annotations are used or when MDBs are
used to receive messages. We will see examples of these later.

Now, let's create a working example of sending and receiving messages using JMS.
Make sure that you have installed the GlassFish application server (refer to the
Installing the GlassFish server section in Chapter 1, Introducing JEE and Eclipse) and
configured it in Eclipse JEE (refer to the Configuring the GlassFish server in Eclipse
section in Chapter 7, Creating JEE Applications with EJB). The use case that we will
implement in this example is adding a new course. Although this is not a strong use
case for asynchronous processing, we will assume that this operation takes a long
time and needs to be handled asynchronously.

[360]

Chapter 10

Creating queues and topics in GlassFish

Let's create one queue and one topic in GlassFish. Make sure that the GlassFish
server is running. Open the GlassFish admin console. You can right-click the
GlassFish server instance configured in Eclipse (in the Servers view) and select
GlassFish | View Admin Console. This opens the admin console in the built-in
Eclipse browser. If you want to open it outside Eclipse in a browser, then browse to
http://localhost:4848/ (assuming a default GlassFish installation).

We will first create a JMS connection factory. In the admin console, go to the
Resources | JMS Resources | Connection Factories page. Click the New button to
create a new connection factory.

Home About...
User: admin Domain: domain1 Server: localhost

GlassFish™ Server Open Source Edition

Tree
- New JMS Connection Factory Gancel
Common Tasks The creation of a new Java Message Service (JMS) connection factory also creates a
@ Domain connector connection pool for the factory and a connector resource.
server (Admin Server) G .
&8 Clusters eneral Settings
Standalone Instances JNDI Name: * [jms/CourseManagemenCF
> &g Nodes Resource Type: | javax.jms.ConnectionFactory s
> (] Applications .
<2 Lifecycle Modules Description: Queue connection factory for CourseManagement applicati
@ Monitoring Data Status: Enabled
7 @ Resources f'aal Settings
* [Concurrent Resources
» 3 Connectors Initial and Minimum Pool Size: 1 Connections
> |z JDBC Minimum and initial number of connections maintained
v g+ JMS Resources in the pool
_D_ﬁ Connection Factories Maximum Pool Size: 250 | Connections
> Destination Resources Maximum number of connections that can be created
to satisfy client requests

Figure 10.1 Create JMS Connection Factory

[361]

Asynchronous Programming with JMS

Enter JNDI Name of the factory as jms/CourseManagementCF and select javax.

jms.ConnectionFactory as Resource Type. Leave the default values for Pool
Settings. Click OK.

To create queues and topics, go to the Resources | JMS Resources | Destination
Resources page. Click the New button.

Home About...
User: admin Domain: domain1 = Server: localhost

GlassFish™ Server Open Source Edition

F
i,

Tree

New JMS Destination Resource [OK |

Common Tasks The creation of a new Java Message Service (JMS) destination resource also creates an

e Domain admin object resource.

E| server (Admin Server)

&9 Clusters

B Standalone Instances N
» @ Nodes JNDI Name: jmslcourseManagementQueue
* (] Applications Physical Destination Name * |CourseManagementQueue

Destination name in the Message Queue broker. If the
o destination does not exist, it will be created automatically
[Monitoring Data when needed.

v | Resources
> [Concurrent Resources
» 5 Connectors
7]
» & JoBC Status:) Enabled

=1 JMS Resources

s Lifecycle Modules

Resource Type: » - javax.jms.Queue ¢-

Description:

Additional Properties (0)

» [Connection Factories | Add Property | Delete Properties
A | Select | Name | Value Description
No items found.

[JavaMail Sessions

Figure 10.2 Create JMS queue

Enter JNDI Name of the queue as jms/courseManagementQueue and Physical
Destination Name as CourseManagementQueue, and select javax.jms.Queue as
Resource Type. Click OK to create the queue.

[362]

Chapter 10

Similarly, create a topic by entering JNDI Name as jms/courseManagementTopic
and Physical Destination Name as CourseManagementTopic, and select javax.
jms.Topic as Resource Type.

You should now have one queue and one topic configured in the Destination
Resources page.

JMS Destination Resources

JMS destinations serve as the repositories for messages. Click New to create a new
destination resource. Click the name of a destination resource to modify its properties.

Destination Resources (2)
87 |8 | | |MNewus| Delete | Enable | Disable

Resource
Select | JNDI Name +, | Enabled + | Type + | Description 4
jms/courseManagementQueue javax.jms.Queue
jms/courseManagementTopic v javax.jms.Topic

Figure 10.3 Queue and topic Created in GlassFish

Creating a JEE project for a JMS
application
We will see examples of using JMS APlIs in three different ways.

In the first example, we will create a simple addCourse. jsp page, one JSP bean,
and one Service class that actually perform JMS tasks.

In the second example, we will use JSF and managed beans. We will use JMS
APIs in the managed beans. We will also see how to use JMS annotations in JSF
managed beans.

In the last example, we will use MDB to consume JMS messages.

[363]

Asynchronous Programming with JMS

Let's start with the first example that uses JSP, bean, and JMS APIs. Create a web
project by selecting File | New | Dynamic Web Project.

Dynamic Web Project
Create a standalone Dynamic Web project or add it to a new or existing G

Enterprise Application.

Project name: CourseManagementJMSWeb
Project location
+ Use default location

Location:

Target runtime

GlassFish 4 < New Runtime...
Dynamic web module version

3.1 ¢
Configuration

<custom> e Modify...

Hint: Get started quickly by selecting one of the pre-defined project configurations.

EAR membership

Add project to an EAR

EAR project name:

Working sets

Add project to working sets

>

Working sets:

€)) Next > Cancel Finish

Figure 10.4 Create dynamic web project for JMS app

Enter Project name as CourseManagementJMSWeb. Make sure that Target runtime
is Glassfish 4. Click Next, and accept all default options. Click Finish to create
the project.

[364]

Chapter 10

Creating a JMS application using JSP
and JSP bean

Let's first create JSP that displays a form to enter course details and a Submit button.
We will have a JSP bean to process the form data. Right-click on the webContent
folder under the project in the Project Explorer view and select New | JSP File.
Create a JSP file named addCourse. jsp.

We will now create CourseDTO and JSP bean called CoursegspPBean. Create the
CourseDTO class in the packt.jee.eclipse.jms.dto package. Add the id, name,
and credits properties, and the getters and setters for them:

import java.io.Serializable;

public class CourseDTO implements Serializable {
private static final long serialVersionUID = 1L;
private int id;
private String name;
private int credits;

//getters and setters follow

}

CkeaﬂeCourseJSPBeaninthepackt.jee.eclipse.jms.jsp.beanspaCkage

import packt.jee.eclipse.jms.dto.CourseDTO;
public class CourseJSPBean {
private CourseDTO course = new CourseDTO() ;

public void setId(int id) {
course.setId(id) ;

}

public String getName () {
return course.getName () ;

}

public void setName (String name) {
course.setName (name) ;

}

public int getCredits() {
return course.getCredits() ;

}

[365]

Asynchronous Programming with JMS

public void setCredits (int credits)
course.setCredits (credits) ;

}

public void addCourse()
//TODO: send CourseDTO object to a JMS queue

}

We will implement the code to send the CourseDTO object to the JMS queue that we
have configured in the addCourse method later. For now, add the following code to
addCourse. jsp:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd" >

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">
<title>Add Course</titles>
</head>
<body>
<!-- Check if form is posted -->
<c:if test="${\"POST\".equalsIgnoreCase (pageContext.request.method)
&& pageContext.request.getParameter (\"submit\") != null}">
<!-- Create CourseJdJSPBean -->

<jsp:useBean id="courseService" class="packt.jee.eclipse.jms.jsp
beans.CourseJSPBean"
scope="page"></jsp:useBean>

<!-- Set Bean properties with values from form submission -->

<jsp:setProperty property="name" name="courseService"
param="course name"/>

<jsp:setProperty property="credits" name="courseService"
param="course credits"/>

<!-- Call addCourse method of the bean -->

[366]

Chapter 10

${courseService.addCourse () }

Course detailed are sent to a JMS Queue. It will be
processed later

</c:if>
<h2>New Course:</h2>

<!-- Course data input form -->
<form method="post">
<table>
<tr>
<td>Name:</td>
<td>
<input type="text" name="course name">
</td>
</tr>
<tr>
<td>Credits:</td>
<td>
<input type="text" name="course credits">
</td>
</tr>
<tr>
<td colspan="2">
<button type="submit" name="submit">Add</button>
</td>
</tr>
</table>
</form>

</body>
</html>

At the top of the JSP file, we check whether the form is submitted. If yes, then we
create an instance of CourseJdSPBean and set its properties with values from the form
submission. Then, we call the addcourse method of the bean.

[367]

Asynchronous Programming with JMS

Executing addCourse.jsp

We still haven't added any code to put the Course object in the J]MS queue.

However, if you want to test the JSP and bean, add the project to the GlassFish server
configured in Eclipse. To do this, right-click on the configured server in the Servers
view of Eclipse and select the Add Remove ... option. Select the web project that we
created above and click Finish. Make sure that the server is started and the status is
[Started, Synchronized].

|'_ Markers E Properties 4l Servers 23 E?ﬂ Data Source Explorer

V =Z1GlassFish 4 at localhost [domain1] [Started, Synchronized]
P «Z1GlassFish Management

_u CourseManagementJMSWeb [Synchronized]

Figure 10.5 Status of GlassFish after adding web project

If the status is Republish, then right-click on the server and select the Publish
option. If the status is Restart, right-click on the server and select the Restart option.
You may not have to do this immediately after adding a project, but later when we
make changes to the code, you may have to republish or restart the server or both.
So, keep a watch on the server status before you execute the code in Eclipse.

To execute addCourse. jsp, right-click on the file in either Project Explorer or the
editor, and select the Run As | Run on Server option. This will open the built-in
Eclipse browser and open JSP in it. You should see the form for adding the course
details. If you click the Submit button, you should see the message that we added in
JSP when the form is submitted.

Let's now add a class to send the course details to the JMS queue.

Implementing a JMS queue sender class

Create the CourseQueuesender class in the packt.jee.eclipse.jms package.

package packt.jee.eclipse.jms;

//skipped imports

public class CourseQueueSender {
private QueueConnection connection;

private QueueSession session;
private Queue queue;

public CourseQueueSender () throws Exception

[368]

Chapter 10

//Create JMS Connection, session, and queue objects
InitialContext initCtx = new InitialContext () ;
QueueConnectionFactory connectionFactory =
(QueueConnectionFactory) initCtx.

lookup ("jms/CourseManagemenCF") ;
connection = connectionFactory.createQueueConnection() ;
connection.start () ;
session = connection.createQueueSession (false,
Session. AUTO_ACKNOWLEDGE) ;

queue = (Queue)initCtx.lookup ("jms/courseManagementQueue") ;
}
public void close() {
if (connection != null) {
try {

connection.close () ;
} catch (JMSException e) ({
e.printStackTrace () ;

}
}

@Override
protected void finalize() throws Throwable
close(); //clean up

super.finalize () ;

}

public void sendAddCourseMessage (CourseDTO course) throws
Exception
//Send CourseDTO object to JMS Queue
QueueSender sender = session.createSender (queue) ;
ObjectMessage objMessage =
session.createObjectMessage (course) ;
sender.send (objMessage) ;

}

In the constructor, we look up the JMS connection factory and create the connection.
We then create a JMS session and look up queue with the JNDI name that we used
for creating the queue in a previous section.

[369]

Asynchronous Programming with JMS

Note that we did not specify any configuration properties when constructing
InitialContext. This is because the code is executed in the same instance of the
GlassFish server that hosts the JMS provider. If you are connecting to a JMS provider
hosted in a different GlassFish server, then you will have to specify the configuration
properties, particularly for the remote host. For example:

Properties jndiProperties = new Properties();

jndiProperties.setProperty ("org.omg.CORBA.ORBInitialHost",
"<remote host>") ;

//target ORB port. default is 3700 in Glassfish

jndiProperties.setProperty ("org.omg.CORBA.ORBInitialPort",
ll3’700||> ;

InitialContext ctx = new InitialContext (jndiProperties) ;

The CourseQueueSender . sendAddcourseMessage method creates a QueueSender
object and ObjectMessage. Because the producer and the consumer of the message
in this example are in Java, we use ObjectMessage. However, if you are to send a
message to a messaging system where the message is going to be consumed by a
non-Java consumer, then you could create JSON or XML from the Java object and
send TextMessage. We have already seen how to serialize Java objects to JSON and
XML by using JAXB in Chapter 9, Creating Web Services.

Now, let's modify addCourse in CoursedSPBean to use the preceding class to

send JMS messages. Note that we could create an instance of CourseQueueSender
in the bean class, CousedSPBean, but the bean is created every time a page is
requested. So, CourseQueueSender will be created frequently and the lookup for
the JMS connection factory and the queue will also take place frequently, which is
not necessary. Therefore, we will create an instance of CourseQueueSender and
save it in the HTTP session. Then, we will modify the addcourse method to take
HttpServletRequest as a parameter. We will also get the Ht tpSession object from
the request.

public void addCourse (HttpServletRequest request) throws
Exception

//get HTTP session

HttpSession session = request.getSession(true) ;

//look for instance of CourseQueueSender in Session
CourseQueueSender courseQueueSender =
(CourseQueueSender) session
getAttribute ("CourseQueueSender") ;
if (courseQueueSender == null) {
//Create instance of CourseQueueSender and save in Session
courseQueueSender = new CourseQueueSender () ;

[370]

Chapter 10

session.setAttribute ("CourseQueueSender",
courseQueueSender) ;

//TODO: perform input validation
if (courseQueueSender != null) {

try {
courseQueueSender . sendAddCourseMessage (course) ;
} catch (Exception e) {
e.printStackTrace() ;
//TODO: log exception

}
}
}

If we don't find the CourseQueueSender object in the session, then we will create one
and save it in the session.

We need to modify the call to the addcourse method from addcourse.

jsp. Currently, we do not pass any argument to the method. However,

with the preceding changes to the addCourse method, we need to pass the
HttpServletRequest object to it. JSP has a build-in property called pageContext
that provides access to the Ht tpServletRequest object. So, modify the code in
addCourse. jsp where courseService.addCourse is called as follows:

<!-- Call addCourse method of the bean -->
${courseService.addCourse (pageContext .request) }

We can test our code at this point, but although a message is sent to the queue, we
haven't implemented any consumer to receive a message from the queue. So, let's
implement a JMS queue consumer for our Course queue.

Implementing a JMS queue receiver class

Create the CourseQueueReceiver class in the packt.jee.eclipse. jms package.
public class CourseQueueReceiver {
private QueueConnection connection;
private QueueSession session;
private Queue queue;
private String receiverName;

public CourseQueueReceiver (String name) throws Exception(

//save receiver name

[371]

Asynchronous Programming with JMS

this.receiverName = name;

//look up JIMS connection factory

InitialContext initCtx = new InitialContext () ;

QueueConnectionFactory connectionFactory =
(QueueConnectionFactory) initCtx.lookup ("jms/CourseManagemenCF") ;

//create JMS connection
connection = connectionFactory.createQueueConnection() ;
connection.start () ;

//create JMS session

session = connection.createQueueSession (false,

Session.AUTO ACKNOWLEDGE) ;

//look up queue

queue = (Queue)initCtx.lookup ("jms/courseManagementQueue") ;

topicPublisher = new CourseTopicPublisher () ;

QueueReceiver receiver = session.createReceiver (queue) ;
//register message listener
receiver.setMessagelistener (new MessageListener () ({

@Override
public void onMessage (Message message)
//we expect ObjectMessage here; of type CourseDTO
//skipping validation
try {
CourseDTO course = (CourseDTO)
((ObjectMessage) message) .getObject () ;
//process addCourse action. For example, save it in the
database

System.out.println ("Received addCourse message for Course
name - " +
course.getName () + " in Receiver " + receiverName) ;

} catch (Exception e) {

e.printStackTrace () ;
//TODO: handle and log exception

3N

public void stop() {
if (connection != null) {

[372]

Chapter 10

try {
connection.close () ;

} catch (JMSException e) ({
e.printStackTrace () ;
//TODO: log exception

}
}
}
}

The code to look up the connection factory and the queue is similar to that in
CourseQueueSender. Note that the constructor takes a name argument. We don't
really need to use a JMS API, but we will use it as an identifier for instances of the
CourseQueueReceiver class. We register a message listener in the constructor, and
in the onMessage method of the listener class, we get the CourseDTO object from the
message and print the message to the console. This message will appear in GlassFish
console in Eclipse when we execute the code. To keep the example simple, we have
not implemented the code to save the Course information to the database, but you
can do so by using JDBC or JDO APIs that we have already learnt in Chapter 4,
Creating a JEE Database Application.

We need to instantiate this class at the application startup so that it will start listening
for messages. One way to implement this is in a Servlet that loads on startup.

Create the JMSReceiverInitServlet class in the packt.jee.eclipse.jms.
servlet package. We will mark this Servlet to load at startup by using annotations
and instantiate CourseQueueReceiver in the init method.

package packt.jee.eclipse.jms.servlet;

//skipped imports

@WebServlet (urlPatterns="/JMSReceiverInitServlet",
loadOnStartup=1)

public class JMSReceiverInitServlet extends HttpServlet {
private static final long serialVersionUID = 1L;

private CourseQueueReceiver courseQueueReceiver = null;
public JMSReceiverInitServlet () {

super () ;
}

@Override
public void init (ServletConfig config) throws ServletException

[373]

Asynchronous Programming with JMS

super.init (config) ;

try {

courseQueueReceiver = new CourseQueueReceiver ("Receiverl") ;
} catch (Exception e) {

log("Error creating CourseQueueReceiver", e);

}
@Override
public void destroy() {
if (courseQueueReceiver != null)

courseQueueReceiver.stop() ;
super.destroy () ;

}
}

Publish the project again in the server and execute addCourse. jsp (see the Executing
addCourse.jsp section). Switch to the Console view in Eclipse. You should see the
message that we printed in the onMessage method in CourseQueueReceiver.

Data Source Explorer [Snippets [Console £3 REST Annatations

Redirecting to /index.jsf
Admin Console: Initializing Session Attributes...

Domain Pinged: release.glassfish.org

visiting unvisited references

visiting unvisited references

visiting unvisited references

Loading application [CourseManagementIMSWeb] at [/CourseManagementIMSWeb]

CourseManagement illiseconds.
ceived addCourse message for Course name - Course-1 in Receiver Receilverl—

Figure 10.6 Example of console message from JMS receiver class

Adding multiple queue listeners

Queues are meant for point-to-point communication, but this does not mean that
there can't be more than one listener for a queue. However, only one listener gets

a message. Further, it is not guaranteed that the same listener will get the message
every time. If you want to test this, add one more instance of CourseQueueReceiver
in JMSReceiverInitServlet. Let's add the second instance with a different name,
say Receiver2.

@WebServlet (urlPatterns="/JMSReceiverInitServlet",

loadOnStartup=1)

public class JMSReceiverInitServlet extends HttpServlet
private CourseQueueReceiver courseQueueReceiver = null;

[374]

Chapter 10

private CourseQueueReceiver courseQueueReceiverl = null;

@Override
public void init (ServletConfig config) throws ServletException

super.init (config) ;
try {

//first instance of CourseQueueReceiver
courseQueueReceiver = new CourseQueueReceiver ("Receiverl") ;
//create another instance of CourseQueueReceiver with a
different name
courseQueueReceiverl = new CourseQueueReceiver ("Receiver2") ;

} catch (Exception e) {
log ("Error creating CourseQueueReceiver", e);

@Override
public void destroy() {
if (courseQueueReceiver != null)

courseQueueReceiver.stop() ;
if (courseQueueReceiverl != null)
courseQueueReceiverl.stop () ;
super.destroy () ;

//rest of the code remains the same

}

Republish the project, execute addCourse. jsp, and add a few courses. Check
the Console messages. You may see that some of the messages were received by
Receiverl and the others by Receiver2.

Data Source Explorer |5 Snippets & console 3% |[@ REST Annotations

CourseManagementJMSWeb was successfully deployed in 213 milliseconds.
Received addCourse message for Course name - Course-1 in Receiver Receiverl
visiting unvisited references

visiting unvisited references

visiting unvisited references

Loading application [CourseManagementIMSWeb] at [/CourseManagementIMSWeb]
CourseManagementIMSWeb was successfully deployed in 468 milliseconds.
Received addCourse message for Course name - Coursel in Receiver Receiverl
Received addCourse message for Course name - CourseZ in Receiver Receiver?

Figure 10.7 Console output showing multiple JMS receivers listening to a JMS queue

[375]

Asynchronous Programming with JMS

Implementing the JMS topic publisher

Let's say that we want to inform a bunch of applications when a new course is
added. Such use cases can be best implemented by JMS topic. Topic can have many
subscribers. When a message is added to a topic, all subscribers are sent the same
message. This is unlike queue where only one queue listener gets a message.

Steps to publish messages to topic and subscribe for messages are very similar
to those for queue, except for the different classes, and in some cases, different
method names.

Let's implement a topic publisher, which we will use when a message for adding
course is successfully handled in the onMessage method of the listener class
implemented in CourseQueueReceiver

Create CourseTopicPublisher in the packt.jee.eclipse.jms package.

package packt.jee.eclipse.jms;
//skipped imports

public class CourseTopicPublisher
private TopicConnection connection;
private TopicSession session;
private Topic topic;

public CourseTopicPublisher () throws Exception {
InitialContext initCtx = new InitialContext () ;

TopicConnectionFactory connectionFactory =
(TopicConnectionFactory) initCtx.

lookup ("jms/CourseManagemenCF") ;
connection = connectionFactory.createTopicConnection() ;
connection.start () ;

session = connection.createTopicSession(false,
Session.AUTO ACKNOWLEDGE) ;

topic = (Topic)initCtx.lookup ("jms/courseManagementTopic") ;
}
public void close() {
if (connection != null) {
try {

connection.close() ;
} catch (JMSException e) {
e.printStackTrace() ;.

[376]

Chapter 10

public void publishAddCourseMessage (CourseDTO course) throws
Exception
TopicPublisher sender = session.createPublisher (topic) ;

ObjectMessage objMessage =
session.createObjectMessage (course) ;

sender.send (objMessage) ;

}

The code is quite simple and self-explanatory. Let's now modify the queue receiver
class that we implemented, CourseQueueReceiver, to publish a message to the
topic from the onMessage method, after the message from the queue is handled
successfully.

public class CourseQueueReceiver {
private CourseTopicPublisher topicPublisher;
public CourseQueueReceiver (String name) throws Exception(

//code to lookup connection factory, create session,
//and look up gqueue remains unchanged. Skipping this code

//create topic publisher
topicPublisher = new CourseTopicPublisher () ;

QueueReceiver receiver = session.createReceiver (queue) ;
//register message listener
receiver.setMessagelistener (new MessageListener () {

@Override
public void onMessage (Message message)
//we expect ObjectMessage here; of type CourseDTO
//Skipping validation
try {
//code to process message is unchanged. Skipping it

//publish message to topic

[377]

Asynchronous Programming with JMS

if (topicPublisher != null)
topicPublisher.publishAddCourseMessage (course) ;

} catch (Exception e) {
e.printStackTrace() ;
//TODO: handle and log exception

3N

//remaining code is unchanged. Skipping it

Implementing the JMS topic subscriber

We will now implement a topic subscriber class. Create the CourseTopicSubscriber
class in the packt.jee.eclipse. jms package.

package packt.jee.eclipse.jms;
//skipping imports
public class CourseTopicSubscriber

private TopicConnection connection;
private TopicSession session;
private Topic topic;

private String subscriberName;
public CourseTopicSubscriber (String name) throws Exception({
this.subscriberName = name;

InitialContext initCtx = new InitialContext () ;

TopicConnectionFactory connectionFactory =
(TopicConnectionFactory) initCtx.lookup ("jms/CourseManagemenCF") ;

connection = connectionFactory.createTopicConnection() ;

connection.start () ;

session = connection.createTopicSession(false,

Session.AUTO ACKNOWLEDGE) ;

topic = (Topic)initCtx.lookup ("jms/courseManagementTopic") ;

TopicSubscriber subscriber = session.createSubscriber (topic);

[378]

Chapter 10

subscriber.setMessagelistener (new MessageListener () {

@Override
public void onMessage (Message message)
//we expect ObjectMessage here; of type CourseDTO
//skipping validation
try {
CourseDTO course = (CourseDTO)
((ObjectMessage) message) .getObject () ;

//process addCourse action. For example, save it in
database

System.out.println("Received addCourse notification for
Course name - "

+ course.getName() + " in Subscriber " +
subscriberName) ;

} catch (JMSException e) ({
e.printStackTrace() ;
//TODO: handle and log exception

3N

public void stop() {
if (connection != null) {
try {
connection.close() ;
} catch (JMSException e) ({
e.printStackTrace() ;
//TODO: log exception

}

Again, JMS APIs to subscribe to a topic are similar to those in
CourseQueueReceiver, but with different class names and method names. We also
identify subscribers with names so that we know which instance of the class receives
the messages.

[379]

Asynchronous Programming with JMS

In the preceding example, we created the topic subscriber by calling TopicSession.
createSubscriber. In this case, the subscriber will receive messages from the

topic as long as the subscriber is active. If the subscriber becomes inactive and then
active again, it loses messages published by the topic during that period. If you
want to make sure that the subscriber receives all messages, you need to create a
durable subscription using TopicSession.createDurableSubscriber. Along with
the topic name, this method takes the subscriber name as the second argument.
Refer to https://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.
html#createDurableSubscriber-javax.jms.Topic-java.lang.String- for
more information.

We will create two instances of this class (so there would be two topic subscribers)
in JMSReceiverInitServlet, so that subscribers start listening for messages on the
application start (the Servlet is loaded on startup).

@WebServlet (urlPatterns="/JMSReceiverInitServlet",
loadOnStartup=1)

public class JMSReceiverInitServlet extends HttpServlet {
private CourseQueueReceiver courseQueueReceiver = null;
private CourseTopicSubscriber courseTopicSubscriber = null;
private CourseQueueReceiver courseQueueReceiverl = null;
private CourseTopicSubscriber courseTopicSubscriberl = null;

@Override
public void init (ServletConfig config) throws ServletException

super.init (config) ;

try {

courseQueueReceiver = new CourseQueueReceiver ("Receiverl") ;
courseQueueReceiverl = new CourseQueueReceiver ("Receiver2") ;

courseTopicSubscriber = new
CourseTopicSubscriber ("Subscriberl") ;

courseTopicSubscriberl = new
CourseTopicSubscriber ("Subscriber2") ;

} catch (Exception e) ({
log ("Error creating CourseQueueReceiver", e);

//remaining code is unchanged. Skipping it

[380]

https://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html#createDurableSubscriber-javax.jms.Topic-java.lang.String-
https://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html#createDurableSubscriber-javax.jms.Topic-java.lang.String-

Chapter 10

Therefore, now, we have two queue listeners and two topic listeners ready when the
application starts. Republish the project, execute addCourse. jsp, and add a course.
Check messages in the Console view of Eclipse. You will see that the message
published in the topic is received by all subscribers, but the same message published
in queue is received by only one receiver.

Data Source Explorer | Snippets) Console 32 & REST Annotations

Received addCourse message for Course name - Course2 in Receiver Receiver?
visiting unvisited references

visiting unvisited references

visiting unvisited references

Loading application [CourseManagementJMSWeb] at [/CourseManagementJMSWeb]
CourseManagementJMSWeb was successfully deployed in 567 milliseconds.
Iﬁeceived addCourse message for Course name - Coursel in Receiver Receiverl

Received addCourse notification for Course name - Coursel in Subscriber Subscriberl
Received aoddCourse notification for Course name - Coursel in Subscriber Subscriber2

Figure 10.8 Console output showing multiple JMS receivers listening to JMS queue and topic

Creating a JMS application using JSF
and managed beans

In this section, we will see how to create a JMS application by using JSF and
managed beans. With managed beans, we can reduce the code that you write to
using JMS APIs, because we can use annotations to inject objects such as the JMS
connection factory, queue, and topic. Once we obtain reference to these objects,
steps to send or receive data are the same as those discussed in the previous section.
Therefore, our examples in this section do not list the entire code. For the complete
source code, download the source code for this chapter.

To prepare our project for using JSF, we need to create web.xml and add the JSF
Servlet definition and mapping in it. Right-click on the project and select the Java
EE Tools | Generate Deployment Descriptor Stub option. This creates web . xml in
the webContent /WEB- INF folder. Add the following Servlet definition and mapping
(within the web-app tag) in web.xml:

<servlets>
<servlet-name>JSFServelt</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>

[381]

Asynchronous Programming with JMS

<servlet-name>JSFServelt</servlet-name>
<url-pattern>*.xhtml</url-patterns>
</servlet-mapping>

We will first create three managed beans for JSF. The first one is
CourseManagedMsgSenderBean.TheseamuioneisCourseManagedMngeceiverBean,
and the last one is CoursedSFBean, which will be referenced from the JSF page.

Create the CourseManagedMsgSenderBean class in the packt.jee.eclipse.jms.
jsf_bean package:

package packt.jee.eclipse.jms.jsf bean;
//skipped imports

@ManagedBean (name="courseMessageSender")
@SessionScoped
public class CourseManagedMsgSenderBean {

@Resource (name = "jms/CourseManagemenCF")

private QueueConnectionFactory connectionFactory;
@Resource (lookup = "jms/courseManagementQueue")
private Queue queue;

QueueConnection connection;
QueueSession session;
Exception initException = null;

@PostConstruct
public void init()
try {
connection = connectionFactory.createQueueConnection() ;
connection.start () ;

session = connection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

} catch (Exception e) {
initException = e;

@PreDestroy

[382]

Chapter 10

}

public void cleanup() {
if (connection != null) {
try {

connection.close () ;

} catch (JMSException e) ({
e.printStackTrace () ;
//TODO: log exception

public void addCourse (CourseDTO courseDTO) throws Exception {

if (initException != null)
throw initException;

QueueSender sender = session.createSender (queue) ;

ObjectMessage objMessage =
session.createObjectMessage (courseDTO) ;

sender.send (objMessage) ;

Notice that the JMS connection factory and queue objects are injected using the @
Resource annotation. We have used the @PostConstruct annotation to create a JMS
connection and session and the @PreDestroy annotation for a clean-up operation.
The addcourse method is similar to the code that we have already implemented in
the courseQueueSender class in a previous section.

Now, create a JMS message receiver class. Create the
CourseManagedMsgReceiverBean class in the packt.jee.eclipse.jms.jsf bean

package.

package packt.jee.eclipse.jms.jsf bean;

//skipped imports

@ManagedBean (name="courseMessageReceiver")

@ApplicationScoped

public class CourseManagedMsgReceiverBean

@Resource (name = "jms/CourseManagemenCF")
private QueueConnectionFactory connectionFactory;

[383]

Asynchronous Programming with JMS

@Resource (lookup = "jms/courseManagementQueue")
private Queue queue;

QueueConnection connection;
QueueSession session;
Throwable initException = null;

@PostConstruct
public void init() {
try {
connection = connectionFactory.createQueueConnection() ;
connection.start () ;

session = connection.createQueueSession (false,
SeSSion.AUTO_ACKNOWLEDGE);

//skipped code to create receiver and add MessageListener
//the code is same as in the constructor of
CourseQueueReceiver

} catch (Throwable e) {
initException = e;

//skipped @PreDestroy method to close connection

}

In this class also, JMS resources are injected using the @rResource tags. The @
PostConstruct method creates a connection, session, and a receiver. It also registers
MessageListener. The code is similar to what we wrote in the constructor of
CourseQueueReceiver, so some of the code is skipped in the previous listing. Please
download the source code for this chapter to see the complete source code.

We need to create an instance of this class on application startup. We have
already created dMSReceiverInitServlet thatloads on startup in a previous
section. We also instantiated the course and topic listeners that we created
earlier in the init method of this Servlet. So, now, let's create an instance of
CourseManagedMsgReceiverBean in the init method.

@Override
public void init (ServletConfig config) throws ServletException {
super.init (config) ;

//get JSF Managed bean for receiving Course messages
FacesContext context = FacesContext.getCurrentInstance() ;
//Evaluating #{courseMessageReceiver} expression will

[384]

Chapter 10

//instantiate CourseManagedMsgReceiverBean and start

//message listener

context.getApplication() .evaluateExpressionGet (context,

"#{courseMessageReceiver}",
CourseManagedMsgReceiverBean.class) ;

}

Note that if you want only CourseManagedMsgReceiverBean to receive messages
from the course queue, then remove the previously added message receivers from
the init method.

Now, let's create the CoursedSFBean class in the packt.jee.eclipse.jms.jsf
bean package.

package packt.jee.eclipse.jms.jsf bean;

//skipped imports

@ManagedBean (name="course")
@RequestScoped
public class CourseJSFBean {

private CourseDTO courseDTO = new CourseDTO() ;

@ManagedProperty (value="#{courseMessageSender}")
private CourseManagedMsgSenderBean courseMessageSender;

//skipped getters and setters

public void setCourseMessageSender (CourseManagedMsgSenderBean
courseMessageSender) {

this.courseMessageSender = courseMessageSender;

public void addCourse() throws Exception {
//skipping validation
//TODO: handle exception properly and show error message
courseMessageSender.addCourse (courseDTO) ;

CourseJSFBeanobuﬂnSareﬁﬂencetoCourseManagedMsgSenderBean
by using the @ManagedBean annotation. We need to provide the setter
for CourseManagedMsgSenderBean so that the container can set its
value. The addcourse method simply calls the same named method in
CourseManagedMsgSenderBean.

[385]

Asynchronous Programming with JMS

Finally, create addCourse.xhtml in the webContents folder.

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<head>
<title>Add Course</title>
</head>

<body>
<h2>Course Details</h2>

<h:form>
<table>
<tr>
<td>Name:</td>
<td>
<h:inputText id="course name" value="#{course.name}"/>
</td>
</tr>
<tr>
<td>Credits:</td>
<td>
<h:inputText id="course credits"
value="#{course.credits}"/>
</td>
</tr>
<tr>
<td colspan="2">
<h:commandButton value="Submit"
action="#{course.addCourse}"/>
</td>
</tr>
</table>
</h:form>

</body>
</html>

Form fields are bound to fields in courseJdsFBean. When the Submit button is
clicked, the addcourse method of the same bean is called, which puts a message in
the JMS queue.

Republish the project and execute addCourse . xhtml by right-clicking it and
selecting Run As | Run on Server. Add a course and see the message printed (from
MessageListener in CourseManagedMsgReceiverBean) in the GlassFish Console
view of Eclipse.

[386]

Chapter 10

Consuming JMS messages using MDB

Message-driven beans (MDBs) make consuming JMS messages a lot easier. With
just a couple of annotations and implementing the onMessage method, you can make
any Java object a consumer of the JMS messages. In this section, we will implement
an MDB to consume messages from the course queue. To implement MDB, we need
to create an EJB project. Select File | New | EJB Project from the main menu.

EJB Project _ &

Create an EJB Project and add it to a new or existing Enterprize Application. ,a_f_ "

Project name: CourseManagementEJB
Project location
v Use default location

Location:

Target runtime

GlassFish 4 o New Runtime...

EJB module version

3.2

<

Configuration

Default Configuration for GlassFish 4 b Modify...

A good starting point for working with GlassFish 4 runtime. Additional facets can later be
installed to add new functionality to the project.

EAR membership

Add project to an EAR
EAR project name: b
Working sets

Add project to working sets

Working sets:

|'?) Next = Cancel Finish

Figure 10.9 Create EJB project to implement MDB

[387]

Asynchronous Programming with JMS

Enter Project name as CourseManagementEJB. Click Next. Accept the default values
on the subsequent pages, and click Finish on the last page.

Right-click on the project, and select the New | Message-Driven Bean option. This
opens the MDB creation wizard.

Create EJB 3.x Message-Driven Bean

N
Specify class file destination. L ®
Project: CourseManagementEJB +

Source folder: /CourseManagementEJB/ejbModule Browse...

Java package: packt.jee.eclipse.jms.mdb Browse...

Class name: CourseMDB

Superclass: Browse...

Destination name: CourseManagementQueue

v JMS

Destination type: Queue

<>

|':'?:'|

Next > Cancel Finish

Figure 10.10 MDB creation wizard: class file information

Enter packt.jee.eclipse.jms.mdb as Java package and CourseMDB as Class name.
Keep Destination type as Queue.

Destination name is the physical destination name that we specified when creating
the queue and is not the JNDI name.

[388]

Chapter 10

Edit JMS Destination Resource

Editing a Java Message Service (JMS) destination resource also modifies the associated
admin object resource.

Load Defaults

JNDI Name: jms/courseManagementQueue

Physical Destination Name - CourseManagementQueue
Destination name in the Message Queue broker. If the
destination does not exist, it will be created automatically
when needed.

Resource Type: i javax.jms.Queue %

Deployment Order: 100

Specifies the loading order of the resource at server
startup. Lower numbers are loaded first.

Description:

Status: Enabled

Figure 10.11 JMS queue physical destination name in GlassFish admin console

Enter CourseManagementQueue as Destination type. Click Next. Accept the default
values on the second page and click Finish. The wizard creates the following code:

@MessageDriven (
activationConfig = {
@ActivationConfigProperty (propertyName = "destinationType",
propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty (propertyName = "destination",
propertyValue = "CourseManagementQueue")
I
mappedName = "jms/courseManagementQueue")

public class CourseMDB implements MessageListener

/**
* Default constructor.
*/
public CourseMDB() {
// TODO Auto-generated constructor stub

/**
* @see Messagelistener#onMessage (Message)

*/

[389]

Asynchronous Programming with JMS

public void onMessage (Message message)

System.out.println("addCourse message received in
CourseMDB") ;

}

The class is annotated with eMessageDriven with activationConfig with the
JMS destination parameters specified in the wizard. It also creates the onMessage
method. In this method, we just print a message that the MDB received for adding
a course. To process ObjectMessage in this class, we will have to refactor the
CourseDTO class to a shared . jar between EJB and the web project. This is left to
the readers as an exercise.

At runtime, the JEE container creates a pool of MDB objects for a single MDB class.
An incoming message can be handled by any one of the instances of MDB in the
pool. This can help in building a scalable message processing application.

Summary

Messaging systems can be powerful tools for integrating disparate applications.
They provide an asynchronous model of programming. The client does not wait for
the response from the server and the server does not necessarily process requests at
the same time that the client sends them. Messaging systems can also be useful for
building scalable applications and batch processing. JMS provides uniform APIs to
access different messaging systems.

In this chapter, we discussed how to send and receive messages from queue and
to publish and subscribe messages from topic. There are many different ways to
use JMS APIs. We started with the basic JMS APIs and then, discussed how
annotations can help reduce some of the code. We also discussed how to use
MDBs to consume messages.

In the next chapter, we will see some of the techniques and tools used for profiling
the CPU and memory usage in Java applications.

[390]

11

Java CPU Profiling and
Memory Tracking

Enterprise applications tend to be quite complex and big. There could be situations
when the application does not perform as per your requirements or expectations.
For example, some of the operations performed in the application might be taking
too long or consuming more memory that you expected. Further, debugging
performance and memory issues could sometimes become very difficult.

Fortunately, there are tools available, both in JDK and Eclipse, to help us debug these
issues. JDK 6 (update 7) and above are bundled with the jVisualVM application that
can connect to remote or local applications. You can find this tool in the <JDK_HOME>/
bin folder. jVisualVM can help to profile memory and CPU usage and jVisualVM can
also be configured to launch from Eclipse when an application is run from Eclipse. We
will discuss how to use VisualVM to profile Java applications in this chapter. You can
find detailed information about jVisualVM/VisualVM at http://docs.oracle.com/
javase/7/docs/technotes/guides/visualvm/index.html and http://visualvm.
java.net/.

We will create a small standalone Java application to simulate performance and
memory issues and will see how to use VisualVM for troubleshooting. Although

the real application that you may want to troubleshoot would be a lot more complex,
the techniques that we learn in this chapter can be used there too.

[391]

http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/visualvm/index.html
http://visualvm.java.net/
http://visualvm.java.net/

Java CPU Profiling and Memory Tracking

Creating a sample Java project for
profiling

We will create a simple standalone Java application so that it is easy to learn by
using Visual VM. Although it would be a standalone application, we will create
similar classes as those that we created for the CourseManagement web application
in some of the previous chapters, particularly CourseDTO, CourseBean (JSP bean),
CourseService (service bean), and CourseDaO (for database access).

Create a standard Java project in Eclipse, named CourseManagementStandalone.
Create CourseDTO in the packt .jee.eclipse.profile.dto package.

package packt.jee.eclipse.profile.dto;

public class CourseDTO {
private int id;
private String name;
private int credits;

//skipped Getters and Setters

}

Create the CourseDAO class in the packt.jee.eclopse.profile.dao package.

//skipped imports
public class CourseDAO

public List<CourseDTO> getCourses() {
//No real database access takes place here
//We will just simulate a long-running database operation

try {
Thread.sleep(2000); //wait 2 seconds
} catch (InterruptedException e) {
e.printStackTrace() ;

}

//return dummy/empty list
return new ArrayList<>();

}

We simulate a long-running database operation in the getCourses method by
making the thread sleep for a few seconds.

[392]

Chapter 11

Create the CourseService class in the packt .jee.eclipse.profile.service

package.

//skipped imports
public class CourseService {

private CourseDAO courseDAO = new CourseDAO () ;

public List<CourseDTO> getCourses() {
return courseDAO.getCourses () ;

}

CourseService.getCourses delegates the call to Coursepno.

Create CourseBean in the packt.jee.eclipse.profile.bean package.

//skipped imports
public class CourseBean {
private CourseService courseService = new CourseService() ;

public List<CourseDTO> getCourses () {
return courseService.getCourses|() ;

}

CourseBean.getcourses delegates to CourseService.

Finally, create CourseManagement in the packt.jee.eclipse.profile package.
This class contains the main method and starts the loop to call the getCourses
method repeatedly after reading any character from the standard input.

//skipped imports
public class CourseManagement {

public static void main(String[] args) throws IOException
CourseBean courseBean = new CourseBean|() ;

System.out.println ("Type any character to get courses. Type q
to quit.");

int ch;
while ((ch = System.in.read()) != -1) {

[393]

Java CPU Profiling and Memory Tracking

if (ch != 10 && ch != 13) { //ignore new lines
if (¢ch == 'qg') //quit if user types g
break;

System.out.println ("Getting courses") ;
List<CourseDTO> courses = courseBean.getCourses|() ;
System.out.println ("Got courses") ;

System.out.println ("Type any character to get courses.
Type q to quit.");

System.out.println ("Quitting ...");

}

Run the application (right-click on the file and select Run As | Java Application).
In the console window, type any character and press Enter. You should see the
Getting courses and Got courses messages.

Profiling a Java application

Run jVisualVM from the <JDK_HOME>/bin folder.

e 8 EB
-
[avpicsuons & [sarcrsce o [)

v 8 Local v
| VisualvM . " \
(¥ visua Java™ VisualVM \p
& Eclipse (pid 77433) .
fﬁ Remote
sual ome va eference ata ance
G5 VM Coredumps Vi IVM H. Java SE Refe Gl
& snapshets Getting Started with VisualvM Troubleshooting Guide for Java SE 6
VisualVM Troubleshooting Guide Troubleshooting Java™ 2 SE 5.0
Getting Started Extending VisualVM Monitoring and M ing JavaSE 6
ORACLE
v Show On Startup

https:/ fvisualvm.java.net/api-guickstart.html

Figure 11.1 Java Visual VM profiler

[394]

Chapter 11

VisualVM lists all Java processes that can be profiled by it on the local machine
under the Local node. You can see VisualVM itself listed along with Eclipse.
Once you run the CourseManagement application, the process should also

show up under Local.

v [H] Local

@ Remote

Applications)

|#°| VisualVM
< Eclipse (pid 77433)
& packt.jee.eclipse.profile.CourseManagement (pid 79432)

5 VM Coredumps
Snapshots

Figure 11.2 CourseManagement application available for profiling

Double-click on the process (or right-click and select Open). Go to the Profile tab.

Then, click the CPU button.

= 8 8 @ ® &

&) VisualvM

& Eclipse (pid 77433)

Q packt.jee.eclipse.profile. Cours
& Remote
155 M Coredumps
[Snapshots

Applications £ .| Q packt.jee.eclipse.profile.CourseManagement (pid 79432) £
v (5 Local |6 Overview = |4 Monitor = [= Threads | G Sampler PR

C packtjee.eclipse.profile.CourseManagement (pid 79432
Profiler Settings
Profile: L © cru J |G Memory | |] stop]

Status: profiling running (25 methods instrumented)

Profiling results

Q @ @ @

¥ Snapshort

[No profiling results available yet

Figure 11.3 VisualVM Profiler tab

You should see the profiling running status.

After starting CPU profiling, if you get an error such as Redefinition failed with
error 62, try running the application with the -Xverify:none parameter. In Eclipse,

select the Run | Run Configurations menu and then, select the CourseManagement

application under the Java Application group. Go to the Arguments tab, and add
-Xverify:none to VM arguments. Run the application again.

[395]

Java CPU Profiling and Memory Tracking

In the Visual VM Profiler page, click on the Settings checkbox to see the packages
included for profiling. Note that Visual VM selects these packages automatically.

|’ Overview = |4 Monitor

Profiler

Profile: | ®CPU J (& Memory [@Slop |

profiling running (25 methods instrumented)

Status:

Profiling results

R (@ (8 =

ﬁ No profiling results available yet

¥ Snapshot

Start Page |é packt jee.eclipse.profile.CourseManagement (pid 79432) &

=] Threads

Z packtjee.eclipse.profile.CourseManagement (pid 79432)

£ Sampler PO NZEET

v Settings

CPU settings | Memory settings

Start profiling from classes:

packt.jee.eclipse.profile.x*

v Profile new Runnables

Profile only classes: '* Do not profile classes:

java.*, javax.*,
SUn.*, SUNW.*, COM.SUN.*,
com.apple.%, apple.awt.%, apple.laf.*

Edit...

Preset: = Default

Figure 11.4 VisualVM Profiler settings

You must stop CPU profiling to edit settings. However, we will retain the default
settings. Uncheck the Settings box to hide the settings.

Click on the Monitor table for the overview of profiling activities.

[396]

Chapter 11

Start Page QIQ packtjee.eclipse.profile.CourseManagement (pid 79432) &
|8 Overview m [=) Threads (& Sampler | (5 Profiler |
C packtjee.eclipse.profile.CourseManagement (pid 79432)
Monitor v cPu ¥ Memory ¥ Classes (v Threads
Uptime: 47 min 10 sec Perform GC Heap Dump
CPU * | Heap | PermGen B x|
CPU usage: 0.4% GC activity: 0.0% Size: 212,336,640 B Used: 50,149,680 B
00K Max: 4,294,967,296 B
200 MB]'I
50%
100 MB
-l . 0 MB
9:10 AM 9:20 AM 9:10 AM 9:20 AM
CPU usage B CC activity Heap size B Used heap
Classes % Threads X
12
P I s e A ! =
o 10 I
1,000
500 ’
T T 04]
9:10 AM 9:20 AM 9:10 AM 9:20 AM
Total loaded classes B Shared loaded classes Live threads B Daemon threads

Figure 11.5 Overview of profiling activities

Now, let's execute the getCourse method in our application. Go to the console view
of Eclipse in which our application is running, type a character (other than q), and hit

Enter. Go to the Profiler tab of VisualVM to view the profiled data.

StartPage ' | & packt.jee.eclipse.profile.CourseManagement (pid 79432) &

=
g Overview = ki Monitor | (=) Threads = 43 Sampler
C packtjee.eclipse.profile.CourseManagement (pid 79432)
Profiler Settings
Profile: L ® cru J la Memory | stop
Status: profiling running (25 methods instrumented)
Profiling results
@ﬁﬂﬁ) .E;.Srlapshol @
Hot Spots - Method Self time [%] + Self time Invocations | =]
packt.jee.eclipse.profile.dao.CourseDAO.getCourses () I 4,002 ms (100%) 1
packt.jee.eclipse.profile.bean.CourseBean.getCourses () 0.007 ms %) 1
packt.jee.eclipse.profile.service.CourseService.getCourses () 0.007 ms (0%) 1

Figure 11.6 CPU profiling of CourseManagement

[397]

Java CPU Profiling and Memory Tracking

Observe the Self time column. This indicates the CPU time or the elapsed time
required to execute the corresponding method, excluding the time required to
execute methods called from this method. In our case, CourseDAO.getCourses
took the maximum time, so it is at the top of the list. This report could help you
identify the bottlenecks in your application.

Identifying resource contention

In a multithreaded application, it is typical for threads to lock or wait for a lock.
The thread dump could be used for identifying resource contentions. Let's
simulate this scenario in our application by modifying the main method of the
CourseManagement class to call courseBean.getCourses in separate threads.

public class CourseManagement {
public static void main(String[] args) throws IOException {
final CourseBean courseBean = new CourseBean|() ;

System.out.println ("Type any character to get courses. Type g
to quit.");

int ch, threadIndex = 0;

while ((ch = System.in.read()) != -1) {
if (ch != 10 && ch != 13) { //ignore new lines
if (ch == 'gq') //quit if user types g
break;

threadIndex++; //used for naming the thread

Thread getCourseThread = new Thread ("getCourseThread" +
threadIndex)

@Override
public void run() {
System.out.println ("Getting courses") ;
courseBean.getCourses () ;
System.out.println ("Got courses") ;
}
}i

//Set this thread as Daemon so that the application can exit
//immediately when user enters 'q'

[398]

Chapter 11

getCourseThread. setDaemon (true) ;
getCourseThread.start () ;

System.out.println ("Type any character to get courses.
Type q to quit.");

System.out.println ("Quitting ...");

}

Note that we create a new Thread object in the while loop and call courseBean.
getCourses in the run method of the thread. The while loop does not wait for
getCourses to return results and can process the next user input immediately.
This will allow us to simulate a resource contention.

To actually cause a resource contention, let's synchronize CourseService.getCourses.

public class CourseService {
private CourseDAO courseDAO = new CourseDAO() ;

public synchronized List<CourseDTO> getCourses () {
return courseDAO.getCourses() ;

}
}

The synchronized getCourses method will result in only one thread executing

this method in an instance of the Courseservice class. We can now trigger multiple
getCourses calls simultaneously by typing characters in the console without waiting
for the previous call to the getCourse method to return. To give us more time to get
the thread dump, let's increase the thread sleep time in CourseDAO.getCourses to
say 30 s.

public class CourseDAO {

public List<CourseDTO> getCourses () {
//No real database access takes place here.
//We will just simulate a long-running database operation

try {
Thread.sleep(30000); //wait 30 seconds
} catch (InterruptedException e) {

[399]

Java CPU Profiling and Memory Tracking

e.printStackTrace () ;

//return dummy/empty list
return new ArrayList<>();

}

Run the application and start monitoring this process in VisualVM. In the console
window where the application is running in Eclipse, type a character and press Enter.
Repeat this one more time. Now, two calls to getCourses would be triggered. In
VisualVM, go to the Threads tab and click the Thread Dump button. A new thread
dump is saved under the process node and is displayed in a new tab. Look for threads
starting with the get CourseThread prefix. Here is a sample thread dump of two
getCourseThreads:

"getCourseThread2" daemon prio=6 tid=0x000000001085b800 nid=0x34f8
waiting for monitor entry [0x0000000013aef000]
java.lang.Thread.State: BLOCKED (on object monitor)

at
packt.jee.eclipse.profile.service.CourseService.
getCourses (CourseService.java:13)

- waiting to lock <0x00000007aaf57a80> (a
packt.jee.eclipse.profile.service.CourseService)

at packt.jee.eclipse.profile.bean.CourseBean.getCourses (CourseBean.
java:12)

at packt.jee.eclipse.profile.CourseManagement$l.
run (CourseManagement . java:27)

Locked ownable synchronizers:
- None

"getCourseThreadl" daemon prio=6 tid=0x000000001085a800 nid=0x2738
waiting on condition [0x000000001398£f000]
java.lang.Thread.State: TIMED WAITING (sleeping)

at java.lang.Thread.sleep(Native Method)

at packt.jee.eclipse.profile.dao.CourseDAO.getCourses (CourseDAO.
java:15)

at packt.jee.eclipse.profile.service.CourseService.
getCourses (CourseService.java:13)

- locked <0x00000007aaf57a80> (a packt.jee.eclipse.profile.service.
CourseService)

at packt.jee.eclipse.profile.bean.CourseBean.getCourses (CourseBean.
java:12)

[400]

Chapter 11

at packt.jee.eclipse.profile.CourseManagementS$1l.
run (CourseManagement . java:27)

Locked ownable synchronizers:
- None

From the preceding thread dumps, it is clear that get CourseThread2 is waiting
(to lock <0x00000007aaf57a80>) and getCourseThreadl is holding lock on the
same object (Locked <0x00000007aa£57a80>).

Using the same technique (of inspecting locks), you can also detect deadlocks in the
application. In fact, VisualVM can detect deadlocks and explicitly point to threads
that are deadlocked. Let's modify the main method in the CourseManagement class
to cause a deadlock. We will create two threads and make them lock two objects in
the reverse order.

WARNING: The following code will cause the application to hang.
= You will have to kill the process to exist.

public static void main(String[] args) throws IOException
System.out.println ("Type any character and Enter to cause
deadlock - ");
System.in.read() ;

final Object objl = new Object (), obj2 = new Object () ;

Thread thl = new Thread("MyThreadl") {

public void run()
synchronized (objl) {
try {
sleep (2000) ;

} catch (InterruptedException e) ({
e.printStackTrace () ;

}

synchronized (obj2) {
//do nothing
}
}
}
Vi

Thread th2 = new Thread ("MyThread2") {
public void run() {
synchronized (obj2) {

[401]

Java CPU Profiling and Memory Tracking

try {
sleep (2000) ;

} catch (InterruptedException e) ({
e.printStackTrace () ;

}

synchronized (objl) {

}
bi

thl.start () ;
th2.start () ;

MyThread1 first locks obj1 and then it tries to lock obj2, whereas MyThread?2
locks obj2 first and then tries to lock obj 1. When you monitor this application
by using VisualVM and switch to the Threads tab, you would see the Deadlock
detected! message.

StartPage = é packt.jee.edipse.profile. CourseManagement (pid 15178) m| @EJ @
E Cverview | @ Monitor| Threads @ Sampler I @ Proﬁler|

< packt.jee.eclipse.profile.CourseManagement (pid 15176)

Threads Threads visualization
Live threads: 12 Deadlock detected!) Thread Dump
Daemon threads: 3 Take a thread dump to get more info.

Timeline 4
@ G e | View: :AII threads

Mame 33455 PM Running Total -
O IM¥ server connection timeout 18 0 ms g 35,017 ms =~
EI RMI Scheduler (0) —— oms 35,017 ms
ERMI TCP Connection{1)-10, 193480000 3501Fms | 35,017 ms
EIRMI TCP Accept-0 —— 35,017ms | 35,017 ms

@ DestroyJavavM] 35,017 ms | 35,017 ms
B MyThread2 1 oms 35,017 ms

B MyThread1 Oms [0%) 35,017 ms

[Attach Listener] 35,017 ms (100%) 35,017 ms

[Signal Dispatcher] 35,017 ms (100%) 35,017 ms

O Finalizer ams [0%) 35,017 ms

O Reference Handler ams a) 35,017 ms

B RMI TCP Connection(2)-10. 123, <2 s 28,014 ms (52.4%) 34,018 ms

4 My

O Running [Sleeping [JWait [Park [Monitor

Figure 11.7 Detecting deadlock with VisualVM

[402]

Chapter 11

If you take the thread dump, it will specifically show you where the deadlock
is caused:

Found one Java-level deadlock:

"MyThread2":

waiting to lock monitor 0x000000000f6f71a8 (object
0x00000007aaf56538, a java.lang.Object),

which is held by "MyThreadl"
"MyThreadl":

waiting to lock monitor 0x000000000f6f4a78 (object
0x00000007aaf56548, a java.lang.Object),
which is held by "MyThread2"

Memory tracking

VisualVM can be used to monitor memory allocations and to detect the possible
memory leaks. Let's modify our application to simulate a large memory allocation
that is not released. We will modify the courseService class.

public class CourseService {
private CourseDAO courseDAO = new CourseDAO() ;

//Dummy cached data used only to simulate large
//memory allocation
private byte[] cachedbData = null;

public synchronized List<CourseDTO> getCourses() {

//To simulate large memory allocation,
//let's assume we are reading serialized cached data
//and storing it in the cachedData member
try {
this.cachedData = generateDummyCachedData () ;
} catch (IOException e) {
//ignore

return courseDAO.getCourses () ;

private byte[] generateDummyCachedData () throws IOException
ByteArrayOutputStream byteStream = new ByteArrayOutputStream() ;

[403]

Java CPU Profiling and Memory Tracking

}

byte[] dummyData = "Dummy cached data".getBytes();

//write 100000 times
for (int 1 = 0; 1 < 100000; i++)
byteStream.write (dummyData) ;

byte[] result = byteStream.toByteArray () ;
byteStream.close() ;
return result;

}

In the getCourses method, we create a large byte array and store it in a member
variable. The memory allocated to the array would not be released till an instance of
CourseService is not garbage collected. Now, let's see how this memory allocation
shows up in Visual VM. Start monitoring the process, and go to the Profiler tab.
Click the Memory button to start monitoring memory. Now, go back to the console
window in Eclipse and enter a character to trigger the get Courses method. Go back
to VisualVM to inspect the memory profiling report.

StartPage | £ packt.jee.edipse.profile.CourseManagement (pid 16100) ﬁ| EHES B @

Querview |] Maniitor | [=] Threads | £ Sampler| (&) Profiler |
< packt.jee.eclipse.profile.CourseManagement (pid 16100)

Profiler

Profile: [) cru][[Memary][[stop]

Status: profiing running {1,577 dasses instrumented, tracking each 10th object)

Profiling results

@E @ B | Snapshot|

30,96...
30,19...

jgva.lang. StringBuilder

java.util. HashMap

P Class Name Filter {Contains)

[Settings

Class Name - Live Allocated Objects Live Bytes [... v Live Bytes Live Objects Generations
byte[] I 2,008,...(50.6%) 1,571 (3.4%) 2 -
char[] B 459,4, 5,356 | 1|8
java.lang. Object[] I 342,7. 3,906 [1
java.io, ObjectStreamClasssWeakClasskey || 214,1, 6,69 1
java.utl. TreeMap$Entry I 203,0. 5,076 (1
int[] | 170,3. 653 1
java.lang. String | £2,20... 2,592 1
java.io. ObjectStreamClass | 50,23... 433 1
java.util, TreeMap$KeyIterator | 38,%.... 1,216 i

| 1

| 1

Live Results

Figure 11.8 Memory monitoring with VisualVM

[404]

Chapter 11

This report is useful for seeing the live status of the memory consumed by different
objects in the application. However, if you want to analyze and find where exactly
the allocation is made, then take a heap dump. Go to the Monitor tab, and click the
Heap Dump button. A heap dump report is saved under the process node. Click
on the Classes button in the heap dump report and then, on the Size column to sort
objects in the descending order of the amount of memory consumed.

StartPage ® é packt.jee.edipse. profile. CourseManagement (pid 14368) ﬁ| EE @
[overview | [Monitor | [=] Threads I &0 sampler | & Proﬁler| [i2] heapdump] 9:56:25 AM x

Z packt.jee.eclipse.profile.CourseManagement (pid 14368)

Heap Dump

<}:l E:> | € summary O Instances I:Q) OGL Console fisi) "%
@Classes Compare with ancther heap dump
Class Mame Instances [%:] Instances Size v
byte[] | 1,792 (3.4%) 3,206,592 (4 -
org.netbeans.lib. profiler serve [N 13,955 | 1,117,480
char[] B 7,307 | 558,894
java.lang.ref. WeakRefer... 1 257,040
java.lang. String . 72491 231,712
java.lang.reflect. Method | 1,215 166,455

short[] | 2,148 151,584
java.lang.reflect. Field | 596 | 67,348
java.lang. Object{] | 782 58,104 |
java.uti. LinkedHashMap... | 773 01 46,380
java.lang. Class[] | 1,298 | 41,344
java.utl, HashMap$Entry[] 180 38,608
java.utl. HashMap$Entry | 366 33,104
int[] 58 30,856
java.lang.reflect. Construc... 225 25,425 |
java.lang. String[] | 477 24,760 |
java.utl. HashMap | 351 23,868 |
java.lang.ref. SoftRefere... | 363 20,608 |
java.lang. ClasssReflecti... 213 17,892
java.utl. HashtableSEntr... 100 14,335
java.lang.reflect. Method[] 133 14,168
java.utl. WeakHashMap$... 181 12,308 |
java.utl, Hashtable$Entry 264 11,616 |

java.util. concurrent. Concu.... 206 (o 9,064 |

2 Class Name Filter (Contains) -

Figure 11.9 Classes in heap dump report

[405]

Java CPU Profiling and Memory Tracking

According to the report, byte [1 takes up the maximum memory in our application.
To find where the memory is allocated, double-click on the row containing byte [].

StartPage = é packt.jee.edipse profile. CourseManagement (pid 9436) $| EB @
|3 QOverview | @ Monitor | (=] Threads | £ sampler | QE’) Proﬁler| Q [heapdump] 10:01:48 AM = |
C packt.jee.eclipse.profile.CourseManagement (pid 9436)
Heap Dump
& P | @ sy e @ 00t Comse
& byte[] Instances: 1,801 | Total size: 3,209,133 | Compute Retained Sizes
\")__|Instances x "%Fields x
Instance Size v Field Type Value
[1#83 1,7 s 1,700,024 ~ |1 this byte[] #33 1,70
7 #61 1,200,024 [4]-<items 0-439> byte (500 items)
VEZ3 16,742 [i]-<items 500-399> byte (500 items)
[0 =3 8,216 [i-<items 1,000-1,499> byte (500 items)
[l =9 8,216 [)-<items 1,500-1,999> byte (500 items)
[T 8,216 [i-<items 2,000-2,439> byte (500 items)
7 #13 8,216 [i)-<items 2,500-2,999> byte (500 items)
LR e == [-<items 3,000-3,499> byte (500 items)
Array items: [#-<items 3,500-3,999 > byte {500 items)
88, 117, 109, 108, 121, 32, 99, 97, 23, 104, 101, [H-<jtems 4.000-4.499 byte (500 items) *
100, 32, 100, 97, 116, 97, 68, 117, 103, 103, 121, ||| T8 References "
32,99, 97, 99, 104, 101, 100, 32, 100, 97, 115, 97,
68, 117, 109, 109, 121, 32, 99, 97, 99, 104, 101, Field Type Value
100, 32, 100, 97, 116, 97, 68, 117, 109, 109, 121, | ||gg this bytel T L |
32... <truncated> L .
= @ cachedData CourseService #1
E-F5 courseService (Java frame) CourseBean #1
“zno references s <nonex <nonex
Show &l Save to file -
E1 Array type | © Objecttype | O Primitive type | 4 Static field | F GCRoot | @E} Loop

Figure 11.10 Object instance report in heap dump

The references window at the bottom-right shows objects holding a reference
to the selected instance in the top-left window. As you can see, a reference to
byte[] is held by the cachedData field of Courseserve. Further, a reference to
CourseService is held by CourseBean.

Large memory allocation does not necessarily mean a memory leak. You may want
to keep a reference to a large object in your applications. However, the heap dump
can help you find where the memory was allocated and if that instance is intended
to be in the memory. If not, you could find where the memory was allocated and
release it at the appropriate place.

[406]

Chapter 11

The heap dump that we have taken will be lost if we restart VisualVM. Therefore,
save it to the disk; to do so, right-click on the Heap Dump node and select Save As.
We will use this heap dump in Eclipse Memory Analyzer in the next section.

Eclipse plugins for profiling memory
Eclipse Memory Analyzer (https://eclipse.org/mat/) can be used to analyze
a heap dump created by VisualVM. It provides additional features such as auto
memory leak detection. Further, by using it as an Eclipse plugin, you can quickly
jump to the source code from the heap dump reports. You can use this tool either
as a standalone application or as an Eclipse plugin. We will see how to use it as an
Eclipse plugin in this section.

To install the Memory Analyzer plugin, open Eclipse Marketplace (select the Help |
Eclipse Marketplace menu). Search for Memory Analyzer and install the plugin.

Eclipse Marketplace

Select solutions to install, Press Finish to proceed with installation,
Press the information button to see a detailed overview and a link to more information.

Search | Recent | Popular | Installed | | July Newsletter

Find: | Memory Analyzer T |AII Markets V| |AII Categories Vl |§|

e

Memory Analyzer 1.5.0

The Eclipse Memory Analyzer is a fast and feature-rich Java heap analyzer that
helps you find memory leaks and reduce memory consumption. Use the
Memory Analyzer... more info

by Eclipse.org, EPL

mat memory heap analyzer leaks

m

0 | [#] mstalls: 2.25K 317 last month) | Install |

Figure 11.11 Search Memory Analyzer plugin in Eclipse Marketplace

[407]

https://eclipse.org/mat/

Java CPU Profiling and Memory Tracking

Once you install the plugin, open the heap dump that you saved in the previous
section by using VisualVM. Select the File | Open File menu and select the . hprof
file saved by Visual VM. Memory Analyzer will prompt you to select a report type:

'@ Getting Started Wizard ==

Getting Started

Choose one of the common reports below. Press Escape to close this dialog.

@ Leak Suspects Report

Automatically check the heap dump for leak suspects. Report what objects are kept
alive and why they are not garbage collected.

Component Report

Analyze a set of ohjects for suspected memery issues: duplicate strings, empty
collections, finalizer, weak references, etc.

Re-open previously run reports

Existing reports are stored in ZIP files next to the heap dump.

| Show this dialeg when epening a heap dump.

ey
?
£

it = Finish l | Cancel

Im
o
i

Figure 11.12 Eclipse Memory Analyzer: Getting Started Wizard

[408]

Chapter 11

Select Leak Suspects Report and click Finish. Eclipse Memory Analyzer creates the

Leak Suspects report with a couple of Problem Suspects.

2 heapdump-1438057908153.hprof 52
im0 - & | Q

i Overview default_repurt org.eclipse.mat.apisuspects 2

Leak Suspects

Leak Suspects

System Overview
-~ Leaks

+ Overview

() 15 MB

(k) 1.1 MB

T—— (@ 1A ME

() B35.7 KB

Total: 4.4 MB

~ @ Problem Suspect 1

The thread java.lang.Thread @ 0x700e10360 main keeps local variables with total
size 1,700,880 (36.51%) bytes.

The memory is accumulated in one instance of "byte[]" loaded by "<system class
loader>".

The stacktrace of this Thread is available. See stacktrace.

Keywords
byte[]

Details »

OEEN

(@) Problem Suspect 1
(h) Problem Suspect 2
() Problem Suspect 3
() Remaincer

Figure 11.13 Eclipse Memory Analyzer: Leak Suspect report

[409]

Java CPU Profiling and Memory Tracking

Click on the Details link in the first Problem Suspect.

2 heapdump-1438057908153.hprof 32 = 5
il B om ‘-’r| @'%‘| Q

i Overview default_report org.eclipse.mat.apiisuspects &2

Leak Suspects * Leaks > Problem Suspect 1

« Description

The thread java.lang.Thread @ 0x700e10260 main keeps local variables with total
size 1,700,880 (36.51%) bytes.

The memory is accumulated in one instance of "byte[]" loaded by "<system class
loader>".

The stacktrace of this Thread is available. See stacktrace.

Keywords
byte[]

+ Shortest Paths To the Accumulation Point &

Class Name Shallow Retained
Heap Heap

byte[1700000] @ 0x7010b1%a0 Dummy cached dataDummy cached dataDummy
cached dataDummy cached dataDummy cached dataDummy cached dataDummy 1,700,016 1,700,016
cac dataDummy cached dataDummy cached dataDummy cached dataDummy ! ' e

e
cached dataDummy cached dataDummy cached dataDummy cached dataDummy
cache:

dataD...

cachedData packt.jee.eclipse.profile.service. CourseService @ 0x700e10b30 24 1,700,056

courseService packt.jee.eclipse.profile.bean. CourseBean @ 0x700e102b8 1,700,072

@i <Java Local> java.lang.Thread @ 0x700e10360 main Thread 1,700,880

Figure 11.14 Eclipse Memory Analyzer: Details of Problem Suspect

The report clearly identifies cachedData in CourseService as a leak suspect.
To open the source file, click on a node and select the Open Source File option.

Memory Analyzer also provides many other useful reports. Refer to http://help.
eclipse.org/mars/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.
html for details.

Summary

The Visual VM tool shipped with JDK 6 and above is useful for detecting
performance bottlenecks and memory leaks.

In this chapter, we discussed how to use this tool in a simple Java application.
However, the technique could be used in large applications too. Eclipse Memory
Analyzer can be used to quickly detect memory leaks from a heap dump.

[410]

http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html
http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html
http://help.eclipse.org/mars/index.jsp?topic=/org.eclipse.mat.ui.help/welcome.html

Symbols

@ModelAttribute

used, for mapping data 292-294
@RequestMapping

using 294, 295

A

add Course functionality
finishing 141, 142
addCourse.jsp
executing 368
annotations, JUnit
@After 185
@AfterClass 185
@Before 185
@BeforeClass 185
reference link 185
Apache ActiveMQ
URL 358
Apache Ant
URL 64
Apache Axis
URL 338
Apache CFX
URL 338
Apache DBCP
URL 283
application
debugging, in externally configured
Tomcat 215, 216
argument name
specifying, in web service operation 351
Assert class, JUnit library
reference link 185

Index

B

Bean scopes

URL 273
browser

REST GET request, testing in 324-326
business layer, JEE

about 4

Enterprise Java Beans (E]Bs) 4

C

classes/interfaces, JDBC
Java.sqlCallableStatement 123
java.sql.Connection 123
java.sql.DriverManager 123
java.sql.PreparedStatement 123
java.sql.ResultSet 123
java.sql.Statement 123
container-managed concurrency
URL 223
Context and Dependency Injection (CDI)
URL 251
Controller 268
Course Data Access Object
(CourseDAO) 133
CourseManagement application
creating, EJB used 233
datasource, configuring in
GlassFish 4 237-240
EAR, creating for deployment outside
Eclipse 258
EJB project, creating in Eclipse 233-237
example, running 255, 257
JPA, configuring 240-244
JPA entity, creating 245, 246

[411]

JSF and managed bean, creating 252-255
stateless E]B, creating 247-251

D

data
managing, JPA APIs used 173-177
Data Access Object (DAO) 268
database application, creating with JDBC
about 116
JavaBeans, creating for data
storage 119, 120
JSP page, creating 121-123
Maven dependencies, creating 116-118
Maven project, creating 116-118
database application, creating with JPA
about 147
user interface, creating 147-153
database schema
creating 106-112
DDL script, for creating relationships 113
DDL script, for creating tables 113
tables, creating in MySQL 115
database tables
creating, from entities 170-173
Data Description Language (DDL) 106
data storage
JavaBeans, creating for 119
dataTable tag
URL 255
Data Transfer Object (DTO) 286
DDL script
used, for creating relationships 113
used, for creating tables 113
Debugger
used, for knowing status of program
execution 217-220
debugging 203
debug mode
Tomcat, starting in 205, 206
web application, running in 208-210
dependency injection (DI), Spring
about 268-272
application 273
component scopes 273-275
global session 273
prototypes 273

request 273

session 273

URL 275

used, for accessing session bean 224
dependency scopes

reference link 73
Dynamic Web Application

creating, in Eclipse 51-56
dynamic web project

creating 29-31

E

EAR (enterprise application archive)
creating, for deployment
outside Eclipse 258
URL 263
Eclipse
Dynamic Web Application,
creating in 51-56
EJB project, creating 233-237
GlassFish server, configuring 230-233
Maven project, creating in 68, 69
Tomcat, configuring in 24-28
Eclipse Data Source Explorer
using 143-146
Eclipse EE
used, for creating unit tests 185
used, for executing unit tests 185
web application, debugging
with Tomcat 205
Eclipse Git plugin (EGit)
about 89
changes, extracting from remote
repository 99, 100
file difference after modifications,
viewing 93, 94
files, committing in Git repository 92, 93
new branch, creating 94-96
project, adding 90, 91
project, committing to remote
repository 97-99
remote repository, cloning 101-103
URL 103
Eclipse IDE
about 6,7
Eclipse preferences 9

[412]

editors 8

perspective 9

plugin 8

view 8

workplace 7
Eclipse Memory Analyzer

URL 407
Eclipse plugins

for profiling memory 407-410
Eclipse (Version 4.4)

installing 10

URL 10
Enterprise integration layer, JEE

about 5

Java Connector Architecture (JCA) 5

Java Database Connectivity (JDBC) 5

Java Persistent API (JPA) 5

web services 6
Enterprise Integration Server (EIS) 2
Enterprise Java Beans (EJBs)

about 4, 221

message driven beans 4

session bean 222

session beans 4

types 222
entities

database tables, creating from 170-173
entity inheritance, JPA

reference link 162
EntityManager APIs 154
EntityManagerFactory 154
entity relationships

configuring 163

many-to-many relationship,

configuring 166-169
many-to-one relationship,
configuring 164-166

exceptions

handling 355
Expression Language (EL) 48, 135
eXtensible Markup Language (XML) 3
external dependencies

mocking, for unit tests 192, 193
externally configured Tomcat

application, debugging in 215, 216

F

form-encoded REST web service

Java client, creating for 334, 335

Form POST

used, for creating REST web services 333

G

GitHub

URL 97

GlassFish

queue, creating in 361, 362
topic, creating in 361, 362

GlassFish 4

datasource, configuring 237-240

GlassFish Metro

URL 338

GlassFish server

configuring, in Eclipse 230-233
installing 13, 14
URL 13

H

Hibernate

about 105
URL 105

Hibernate JPA

URL 153

HikariCP

reference link 129

HTTPServletRequest

URL 36

HTTPSession

URL 36

installation

Spring Tool Suite (STS) 276

Integrated Development

Environment (IDE) 1

interface

used, for implementing web
services 347, 348
handling, in RPC-style web service 353-355

[413]

J

JaCoCo
references 198
Java
web services, developing in 338-340
Java API for XML - Web Services
JAX-WS) 339
Java application, profiling
about 394-398
memory tracking 403-406
resource contention, identifying 398-402
Java Architecture for XML Binding (JAXB)
about 310
example 311-316
reference link, for tutorial 317
JavaBeans
creating, for data storage 119
using, in JSP 42-47
Java client
creating, for form-encoded REST
web service 334, 335
creating, for REST GET web service 326-329
writing, for REST POST web
service 330, 331
Java Community Process
URL 1
Java Community Process (JCP) 105
Java Connector Architecture (JCA) 5
Java Database Connectivity (JDBC)
about 105, 123
database connection, creating 124, 125
reference link, for interfaces 123
SQL statements, executing 125-127
transactions, handling 128
URL 289
used, for building Spring MVC
application 283
used, for obtaining courses from
database table 137-141
used, for saving course in database
table 133-137
Java data types, mapping to XML
schema types
reference link 310
Java Debug Wire Protocol (JDWP) 204

Java Enterprise Edition (JEE)
about 1,2
business layer 4
Eclipse IDE 6
enterprise integration layer 5
layers 2
presentation layer 3
URL 2
Java Messaging Service (JMS)
about 358
used, for receiving messages 358-360
used, for sending messages 358-360
Java Naming and Directory Interface
(JNDI lookup) 224
URL 226
used, for accessing session bean 226, 227
Java Persistent API (JPA)
about 5, 105, 153
configuring 240-244, 299-301
Entity 153
EntityManager 154
EntityManagerFactory 154
Maven dependency, setting up for 156
reference link, for annotations 155
used, for building Spring MVC
application 299
Java Query Language (JQL) 174
JavaScript
POST REST web service, invoking
from 332, 333
JavaScript Object Notation (JSON) 3
Java Server Faces (JSF)
about 4, 58
URL, for tutorial 64
used, for creating JMS application 381-386
Java Server Pages (JSP)
about 29
creating 32-38
JavaBeans, using in 42-47
running, in Tomcat 39-42
used, for creating JMS application 365-367
Java Servlet 3,51
Java Specification Request (JSR) 105
JAXB annotations
@XmlAccessorType 310
@XmlAttribute 310

[414]

@XmlElement 310
@XmlRootElement 310
@XMLTransient 311
reference link 311
JAX-RPC (Java API for XML - Remote
Procedure Call) 339
JAX-RS
reference link 317
JAX-RS client APIs
reference link 329
JAX-WS
used, for consuming web services 348-350
JAX-WS reference implementation
(GlassFish Metro)
reference link 342
using 342, 343
JDBC database connection pool
using 129-132
JEE project
creating, for JMS application 363, 364
creating, Maven used 259-265
Jersey
used, for creating RESTful web
services 318-321
Jersey Servlet, in web.xml
reference link 323
JMS application
creating, JSF used 381-386
creating, JSP bean used 365-367
creating, JSP used 365-367
creating, managed beans used 381-386
JEE project, creating for 363, 364
JMS messages
consuming, MDB used 387-390
JMS queue receiver class
implementing 371-374
JMS queue sender class
implementing 368-371
JMS topic publisher
implementing 376, 377
JMS topic subscriber
implementing 378-381
JPA APIs
used, for managing data 173-177
JPA application
creating 154, 155

JPA entities

creating 160-162, 245, 246

JPA project

project, converting into 157-159

JPA service class

user interface, writing with 178-181

JSF libraries

URL, for downloading 58

JSP bean

used, for creating JMS application 365-367

JSP page

creating 121-123

JSP Standard Tag Library (JSTL)

about 47
Core 47
functions 47
i18n 47
references 48
SQL 47
using 47-51
XML 47

JSPWriter

URL 36

JSR 220 105
JUnit

about 184, 185
reference link, for documentation 198

JUnit Ant task

reference link 198

JUnit test suites

reference link 198

jVisualvVM

about 391
URL 391

L

Linux

MySQL, installing 20

local business interface

used, for accessing session bean 225

Mac OS()X

MySQL, installing 18
URL, for installation 19

[415]

managed beans
about 58
creating, for login page 59-64
used, for creating JMS application 381-386
Maven
URL 64
used, for creating JEE project 259-264
used, for creating WAR file 76
used, for running unit test case 191
using, for project management 64, 65
Maven Archetype
about 69
URL 69
Maven dependencies
adding 72-74
setting up, for JPA 156
Maven preferences, in Eclipse JEE
exploring 66, 67
Maven project
creating, in Eclipse 68, 69
Maven project structure 75,76
Maven repository
references 65
Maven views, in Eclipse JEE
exploring 66, 67
message containers, messaging systems
queue 358
topic 358
message-driven bean (MDB)
about 222
used, for consuming JMS messages 387-390
message-oriented architecture
adopting, advantages 357
messages
receiving, JMS used 358-360
sending, JMS used 358-360
Mockito
reference link 193
using 193-197
Model 267
Model-View-Controller (MVC)
framework
about 56, 267, 268
URL 267
MSMQ
URL 358

multiple queue listeners
adding 374, 375

MySQL
about 15
installing, on Linux 20
installing, on Mac OS()X 19
installing, on Windows 15-18
tables, creating in 115
URL 15
users, creating 20

MySQL JDBC driver
URL 238

MySQL schema
creating 155

MySQL Workbench
URL, for download 19

(0

Object Relationship Mapping (ORM) 5
objects, JSP

Application 36

Out 36

Request 36

response 36

session 36
Open]JPA

URL 153

P

page directives 36
parameterized test cases
reference link 198
POST REST web service
invoking, from JavaScript 332, 333
presentation layer, JEE
about 3
Java Server Faces (JSF) 3
Java Server Pages (JSPs) 3
Java Servlet 3
products
Eclipse (Version 4.4), installing 10
GlassFish server, installing 13, 14
installing 10
MySQL, installing 15
Tomcat, installing 11, 13

[416]

profiling
sample Java project, creating for 392-394

project
converting, into JPA project 157-159
Project Jersey
reference link 317
project management
Maven, using for 64, 65
Project Object Model (POM)
about 65
exploring 70, 71

Q

queue
about 358
creating, in GlassFish 361, 362

R

RabbitMQ
URL 358
relationships
creating, DDL script used 113
remote business interface
used, for accessing session bean 228, 229
remote Java application
debugging 204
remote session bean
accessing 229, 230
Representational State Transfer (REST) 6
resources, Spring
URL 284
REST GET request
implementing 321-323
testing, in browser 324-326
REST GET web service
Java client, creating for 326-329
REST POST request
implementing 329, 330
REST POST web service
Java client, writing for 330, 331
REST web services
about 317
creating, Form POST used 333
creating, Jersey used 318-321
reference link 317

RiouxSVN
URL 79

RPC-style web service
interfaces, handling in 353-355

S

sample Java project
creating, for profiling 392-394
scope name, JavaBeans
application 43
page 43
request 43
session 43
scriplets 36
Service-Oriented Architecture (SOA) 310
ServletContext
URL 36
session bean
about 222
accessing, dependency injection used 224
accessing, from client 223
accessing, JNDI lookup used 226-228
accessing, local business interface used 225
accessing, remote business interface
used 228, 229
no-interface session, creating 223
remote session bean, accessing 229, 230
singleton session bean 223
stateful session bean 222
stateless session bean 222
Simple Object Access Protocol
(SOAP) 6, 336
SOAP Body 336
SOAP Envelope 336
SOAP exceptions, JAX-WS
reference link 355
SOAP Fault 336
SOAP Header (Optional) 336
SOAP messages
inspecting 351, 352
SOAP web services 335
Source Control Management (SCM) 79
Spring
dependency injection (DI) 269-272
URL 286

[417]

Spring beans
URL 284
Spring interceptor
using 295-299
Spring JDBCTemplate class
using 286-289
Spring MVC application
building, with JDBC 283
building, with JPA 299
controller 277
creating 277
front controller 277
Model 277
Spring project, creating 278
URL 277
View 277
Spring MVC application, building
with JDBC
@ModelAttribute, used for mapping
data 291-294
about 283
datasource, configuring 283-285
parameters, using in
@RequestMapping 294
Spring interceptor, using 295-299
Spring JDBCTemplate class, using 286-289
Spring MVC controller, calling 290, 291
Spring MVC application, building with JPA
about 299
Controller, creating 305, 306
CourseDAO class, creating 305, 306
course entity, creating 302-304
Course list view, creating 306
Spring project
creating 278, 279
files created, by MVC template 279-282
Spring Tool Suite (STS)
installing 276
URL 276
SQL Injection
reference link 125
stateless EJB
creating 247-251
Structured Query Language (SQL) 5
Subversion (SVN) 79

SVN Eclipse plugin
about 79
changes, committing to SVN
repository 86, 87
installing 80, 81
project, adding to SVN repository 82-85
project, checking 88, 89
synchronizing, with SVN repository 87, 88
URL 89

T

tables
creating, DDL script used 113
test coverage
calculating 198-201
test suite 184
Tomcat
configuring, in Eclipse 24-28
connection pool 129
installing 11-13
JSP, running in 39-42
starting, in debug mode 205, 206
URL 11
used, for debugging web application 205
topic
about 358
creating, in GlassFish 361, 362

U

unit test case
creating 187-190
running 190, 191
running, Maven used 191
unit tests
about 183
creating, Eclipse EE used 185
executing, Eclipse EE used 185
external dependencies,
mocking for 192, 193
Universal Description, Discovery and
Integration (UDDI)
about 338
reference link 338
unmarshalling 310

[418]

user interface

writing, with JPA service class 178-181

Vv

validation annotations
reference link 153
View 268
VisualVM
URL 391

w

WAR (Web Application Archive)
creating 57, 58

WAR file
creating, Maven used 76

web application
breakpoints, setting in code 206-208
debugging, Tomcat used 205
running, in debug mode 208-210
step operations, performing 210-212
variables, inspecting 210-212
variable values, inspecting 212-215

web service
Representational State Transfer (REST) 6
Simple Object Access Protocol (SOAP) 6
Web Service Description Language (WSDL)
about 336-338
inspecting 343-347
web service implementation class
creating 340-342
web service operation
argument name, specifying in 351
web services
about 309, 310
consuming, JAX-WS used 348-350
developing, in Java 338-340
implementing, interface used 347, 348
Windows
MySQL, installing 15-18
World Wide Web Consortium (W3C) 335
wsimport tool 349

[419]

open source

community experience distilled

PUBLISHING

Thank you for buying
Java EE Development with Eclipse
Second Edition

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

"PUBLISHING

Java EE 7 Development
with WildFly

open source

community experience distilled

Java EE 7 Development
with WildFly

ISBN: 978-1-78217-198-0 Paperback: 434 pages

Leverage the power of the WildFly application server
from JBoss to develop modern Java EE 7 applications

1. Develop Java EE 7 applications using the
WildFly platform.

2. Discover how to manage your WildFly
production environment.

3. A step-by-step tutorial guide to help you get
a firm grip on WildFly to create engaging
applications.

Java EE 7 Performance Tuning
and Optimization

Osama Oransa

Java EE 7 Performance Tuning

and Optimization
ISBN: 978-1-78217-642-8 Paperback: 478 pages

Boost the efficiency of your enterprise applications by
performance tuning and optimization with Java

1. Learn to plan a performance investigation in
enterprise applications.

2. Build a performance troubleshooting strategy.

3. Design and implement high performing Java
enterprise applications.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Advanced Java® EE

Development with WildFly®

Advanced Java® EE Development
with WildFly®

ISBN: 978-1-78328-890-8 Paperback: 416 pages

Your one-stop guide to developing Java® EE
applications with the Eclipse IDE, Maven, and
WildFly® 8.1

1. Develop Java EE 7 applications using the
WildFly platform.

2. Discover how to use EJB 3.x, JSF 2.x, Ajax,
JAX-RS, JAX-WS, and Spring with WildFly 8.1.

3. A practical guide filled with easy-to-understand
programming examples to help you gain
hands-on experience with Java EE development
using WildFly.

Java EE 7 Development
with NetBeans 8

Java EE 7 Development with

NetBeans 8
ISBN: 978-1-78398-352-0 Paperback: 364 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use the features of the popular NetBeans IDE
to accelerate your development of Java EE
applications.

2. Covers the latest versions of the major Java EE
APIs such as JSF 2.2, EJB 3.2, JPA 2.1, CDI 1.1,
and JAX-RS 2.0.

3. Walks you through the development of
applications utilizing popular JSF component
libraries such as PrimeFaces, RichFaces, and
ICEfaces.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing JEE and Eclipse
	Java Enterprise Edition (JEE)
	The presentation layer
	Java Servlet
	Java Server Pages
	Java Server Faces

	The business layer
	Enterprise Java Beans

	The enterprise integration layer
	Java Database Connectivity (JDBC)
	The Java Persistent API (JPA)
	Java Connector Architecture (JCA)
	Web services

	Eclipse IDE
	Workspace
	Plugin
	Editors and views
	Perspective
	Eclipse preferences

	Installing products
	Installing Eclipse (Version 4.4)
	Installing Tomcat
	Installing the GlassFish server
	Installing MySQL
	Installing MySQL on Windows
	Installing MySQL on Mac OS X
	Installing MySQL on Linux
	Creating MySQL users

	Summary

	Chapter 2: Creating a Simple JEE
Web Application
	Configuring Tomcat in Eclipse
	Java Server Pages
	Creating a dynamic web project
	Creating JSP
	Running JSP in Tomcat
	Using JavaBeans in JSP
	Using JSTL

	Implementing login application using Java Servlet
	Creating WAR
	Java Server Faces
	Using Maven for project management
	Maven views and preferences in Eclipse JEE
	Creating a Maven project
	Maven Archetype

	Exploring the POM
	Adding Maven dependencies
	The Maven project structure
	Creating WAR using Maven

	Summary

	Chapter 3: Source Control Management in Eclipse
	The Eclipse Subversion plugin
	Installing the Eclipse Subversion plugin
	Adding a project to an SVN repository
	Committing changes to an SVN repository
	Synchronizing with an SVN repository
	Checking out a project from SVN

	The Eclipse Git plugin
	Adding a project to Git
	Committing files in a Git repository
	Viewing a file difference after modifications
	Creating a new branch
	Committing a project to a remote repository
	Pulling changes from a remote repository
	Cloning a remote repository

	Summary

	Chapter 4: Creating a JEE Database Application
	Creating a database schema
	The script for creating tables and relationships
	Creating tables in MySQL

	Creating a database application
using JDBC
	Creating a project and setting up Maven dependencies
	Creating JavaBeans for data storage
	Creating JSP to add a course
	JDBC concepts
	Creating a database connection
	Executing SQL statements
	Handling transactions

	Using the JDBC database connection pool
	Saving a course in a database table
using JDBC
	Getting courses from the database table using JDBC
	Completing the add Course functionality
	Using Eclipse Data Source Explorer

	Creating a database application using JPA
	Creating the user interface for adding a course using JSF
	JPA concepts
	Entity
	EntityManager
	EntityManagerFactory

	Creating a JPA application
	Creating a new MySQL schema
	Setting up a Maven dependency for JPA
	Converting a project into a JPA project
	Creating entities
	Configuring entity relationships
	Configuring a many-to-one relationship
	Configuring a many-to-many relationship

	Creating database tables from entities
	Using JPA APIs to manage data
	Wiring the user interface with a JPA
service class

	Summary

	Chapter 5: Unit Testing
	JUnit
	Creating and executing unit tests using Eclipse EE
	Creating a unit test case
	Running a unit test case
	Running a unit test case using Maven

	Mocking external dependencies for
unit tests
	Using Mockito

	Calculating test coverage
	Summary

	Chapter 6: Debugging a JEE Application
	Debugging a remote Java application
	Debugging a web application using Tomcat in Eclipse EE
	Starting Tomcat in debug mode
	Setting breakpoints
	Running an application in debug mode
	Performing step operations and inspecting variables
	Inspecting variable values

	Debugging an application in an externally configured Tomcat
	Using Debugger to know the status of a program execution
	Summary

	Chapter 7: Creating JEE Applications with EJB
	Types of EJB
	Session bean
	Stateful session bean
	Stateless session bean
	Singleton session bean

	Accessing session bean from the client
	Creating a no-interface session
	Accessing session bean using dependency injection
	Creating session bean using the local business interface
	Accessing session bean using the JNDI lookup
	Creating session bean using a remote business interface
	Accessing a remote session bean

	Configuring the GlassFish server in Eclipse
	Creating the CourseManagement application using EJB
	Creating an EJB project in Eclipse
	Configuring datasource in GlassFish 4
	Configuring JPA
	Creating a JPA entity
	Creating stateless EJB
	Creating JSF and managed bean
	Running the example
	Creating EAR for deployment outside Eclipse

	Creating a JEE project using Maven
	Summary

	Chapter 8: Creating Web Applications with Spring MVC
	Dependency injection
	Dependency injection in Spring
	Component scopes

	Installing the Spring Tool Suite
	Creating a Spring MVC application
	Creating a Spring project
	Understanding files created by the Spring MVC project template

	Spring MVC application using JDBC
	Configuring datasource
	Using the Spring JDBCTemplate class
	Creating the Spring MVC controller
	Calling Spring MVC controller
	Mapping data using @ModelAttribute
	Using parameters in @RequestMapping
	Using the Spring interceptor

	Spring MVC application using JPA
	Configuring JPA
	Creating the Course entity
	Creating Course DAO and Controller
	Creating the Course list view

	Summary

	Chapter 9: Creating Web Services
	JAXB
	JAXB example

	REST web services
	Creating RESTful web services using Jersey
	Implementing the REST GET request
	Testing the REST GET request in browser
	Creating a Java client for the REST GET web service
	Implementing the REST POST request
	Writing a Java client for the REST POST web service
	Invoking the POST REST web service from JavaScript
	Creating the REST web service with Form POST
	Creating a Java client for the form-encoded REST web service

	SOAP web services
	SOAP
	WSDL
	UDDI
	Developing web services in Java
	Creating a web service implementation class
	Using the JAX-WS reference implementation
(GlassFish Metro)
	Inspecting WSDL
	Implementing a web service using an interface
	Consuming a web service using JAX-WS
	Specifying an argument name in a web service operation
	Inspecting SOAP messages
	Handling interfaces in an RPC-style web service
	Handling exceptions

	Summary

	Chapter 10: Asynchronous Programming with JMS
	Steps to send and receive messages using JMS
	Creating queues and topics in GlassFish
	Creating a JEE project for a JMS application
	Creating a JMS application using JSP and JSP bean
	Executing addCourse.jsp
	Implementing a JMS queue sender class
	Implementing a JMS queue receiver class
	Adding multiple queue listeners

	Implementing the JMS topic publisher
	Implementing the JMS topic subscriber

	Creating a JMS application using JSF and managed beans
	Consuming JMS messages using MDB
	Summary

	Chapter 11: Java CPU Profiling and Memory Tracking
	Creating a sample Java project for profiling
	Profiling a Java application
	Identifying resource contention
	Memory tracking

	Eclipse plugins for profiling memory
	Summary

	Index

