
Java Image
Processing
Recipes

With OpenCV and JVM
—
Nicolas Modrzyk

www.allitebooks.com

http://www.allitebooks.org

Java Image
Processing Recipes

With OpenCV and JVM

Nicolas Modrzyk

www.allitebooks.com

http://www.allitebooks.org

Java Image Processing Recipes

ISBN-13 (pbk): 978-1-4842-3464-8		 ISBN-13 (electronic): 978-1-4842-3465-5
https://doi.org/10.1007/978-1-4842-3465-5

Library of Congress Control Number: 2018936912

Copyright © 2018 by Nicolas Modrzyk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott / Shiva Ramachandran
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.
com/9781484234648. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Nicolas Modrzyk
Tokyo, Japan

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3465-5
http://www.allitebooks.org

iii

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Table of Contents

Chapter 1: �OpenCV on the JavaVM��1

1�-1 Getting Started with Leiningen��2

Problem��2

Solution��2

How it works��3

1�-2 Writing Your First OpenCV Java Program���9

Problem��9

Solution��9

How it works��9

1�-3 Automatically Compiling and Running Code��13

Problem��13

Solution��13

How it works��13

1�-4 Using a Better Text Editor��15

Problem��15

Solution��16

How it works��16

www.allitebooks.com

http://www.allitebooks.org

iv

1�-5 Learning the Basics of the OpenCV Mat Object���21

Problem��21

Solution��21

How it works��21

1�-6 Loading Images from a File���24

Problem��24

Solution��24

How it works��25

1�-7 Saving Images into a File��28

Problem��28

Solution��28

How it works��28

1�-8 Cropping a Picture with Submat��30

Problem��30

Solution��30

How it works��30

1�-9 Creating a Mat from Submats���35

Problem��35

Solution��35

How it works��35

1�-10 Highlighting Objects in a Picture���40

Problem��40

Solution��40

How it works��41

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

1�-11 Using a Canny Result as a Mask���44

Problem��44

Solutions���45

How it works��45

1�-12 Detecting Edges with Contours���47

Problem��47

Solution��47

How it works��47

1�-13 Working with Video Streams���51

Problem��51

Solution��51

How it works��52

1�-14 Writing OpenCV Code in Scala���57

Problem��57

Solution��58

How it works��58

1�-15 Writing OpenCV Code in Kotlin���66

Problems��66

Solutions���66

How it works��66

Chapter 2: �OpenCV with Origami���83

2�-1 Starting to Code with Origami���84

Problem��84

Solution��84

How it works��85

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

2�-2 Working with Mats���106

Problem��106

Solution��106

How it works��107

2�-3 Loading, Showing, Saving Mats���117

Problem��117

Solution��117

How it works��117

2�-4 Working with Colors, ColorMaps, and ColorSpaces�������������������������������������124

Problem��124

Solution��125

How it works��125

2�-5 Rotating and Transforming Mats���138

Problem��138

Solution��138

How it works��139

2�-6 Filtering Mats��148

Problem��148

Solution��148

How it works��148

2�-7 Applying Simple Masking Techniques���161

Problem��161

Solution��161

How it works��161

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

2�-8 Blurring Images���166

Problem��166

Solution��167

How it works��167

Chapter 3: �Imaging Techniques���175

3�-1 Playing with Colors��176

Problem��176

Solution��177

How it works��177

3�-2 Creating Cartoons��201

Problem��201

Solution��201

How it works��201

3�-3 Creating Pencil Sketches���211

Problem��211

Solution��211

How it works��212

3�-4 Creating a Canvas Effect���221

Problem��221

Solution��221

How it works��221

3�-5 Highlighting Lines and Circles���226

Problem��226

Solution��226

How it works��227

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

3�-6 Finding and Drawing Contours and Bounding Boxes����������������������������������239

Problem��239

Solution��240

How it works��240

3�-7 More on Contours: Playing with Shapes��252

Problem��252

Solution��252

How it works��252

3�-8 Moving Shapes��260

Problem��260

Solution��261

How it works��262

3�-9 Looking at Trees��266

Problem��266

Solution��266

How it works��266

3�-10 Detecting Blur��269

Problem��269

Solution��269

How it works��270

3�-11 Making Photomosaics���272

Problem��272

Solution��272

How it works��273

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

Chapter 4: �Real-Time Video���279

4�-1 Getting Started with Video Streaming���280

Problem��280

Solution��280

How it works��281

4�-2 Combining Multiple Video Streams��288

Problem��288

Solution��289

How it works��289

4�-3 Warping Video��290

Problem��290

Solution��290

How it works��291

4�-4 Using Face Recognition���293

Problem��293

Solution��293

How it works��294

4�-5 Diffing with a Base Image���297

Problem��297

Solution��297

How it works��298

4�-6 Finding Movement���302

Problem��302

Solution��302

How it works��303

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

x

4�-7 Separating the Foreground from the Background Using Grabcut���������������308

Problem��308

Solution��308

How it works��309

4�-8 Finding an Orange in Real Time���317

Problem��317

Solution��317

How it works��318

4�-9 Finding an Image Within the Video Stream���323

Problem��323

Solution��323

How it works��324

�Index��333

Table of ContentsTable of Contents

xi

About the Author

Nicolas Modrzyk is currently Chief Technical

Officer of Karabiner Software and a leader of

development teams. 

He is also an active contributor to the

open source software community. As a

developer and technical consultant, Nico

has been involved over many years in

designing large-scale server applications for

a video conferencing company, managing

enormous clusters of databases through high-

performance middleware developed from scratch, enabling Japanese

leaders with content management and process management systems,

and pushing the boundaries of business processes for leading Asian

companies.

Nico is an ardent advocate of Agile methods and is focused on getting

the job done right to satisfy clients. He also loves to push friends and team

members to challenge themselves and reach their goals. He has lived

by those empowering standards in various countries, including France,

America, Ireland, Japan, China, and India. Nico is also the author of a few

other books on the Clojure programming language, in both English and

Japanese.

He is currently based in Tokyo, Japan, where he is often found after

hours playing soccer, hiking, performing live concerts with his guitar, and

enjoying life with friends and colleagues.

xiii

About the Technical Reviewer

Aakash Kag is an AI developer at Manacola

Private Ltd. He has two years of experience

in big data analytics. He is a postgraduate

in Computer Science with a specialization

in Big Data Analytics. Aakash has also made

contributions to the Microsoft bot builder. 

Currently, Aakash is working on problems

related to Conversational Bots and Natural

Language Understanding.

He is passionate about Machine Learning

meetups, where he often presents talks.

xv

Acknowledgments

It’s been the most amazing typing race of my life to get this book out on

time, and to beat time and the odds, I got support from so many people

that it would take another book just to write the list of names. So …

Thank you to all my family, brother, sister, friends, Abe-san, all my

soccer friends, people still having Guinness pints in Ireland (keep one

for me!), the awesome people in America (who sometimes send LP

records… when I need them the most), Sawada-san, Chris and the Biners,

my French friends (always there for support even when not being asked

for it), publisher Apress, Divya for never being impressed and kicking

my butt on a regular basis, and … the people deep in my heart for your

NEVER-ENDING support. I never could have finished this without you. I

appreciate it so much.

And, of course… thank you to my two beautiful daughters, Mei and

Manon, for keeping up and always doing their best even during hard times.

You simply rock! I love you.

xvii

Introduction

My father is a dentist. When I was in my early childhood, he used to repeat

the same sentence over and over again, which as far as I can remember

and translate properly now was something like:

“Son, get the right tool for the job.”

And as he was looking at me trying to wash the car with the wrong

washing product and spending twice the amount of time that I should

have, I knew somewhere deep inside of me that he was right.

He did not use a screwdriver to pull out teeth from his patients, and he

had what seemed like twenty different brushes to clean each type of tooth.

I even thought it was funny at the time.

Fast-forward thirty years later; I was talking about this book with him

and he added:

“Well, son, you know, it’s not only about the right tool, it’s about the

right tool at the right time.”

And so, this is the philosophy guiding this book.

OpenCV, the computer vision library, has always been one of the tools

to work on imaging- and vision-related projects, even more so with every

improvement in AI and neural networks. But OpenCV was always taking

some time to get the right libraries, and the right build tools, and the right

build settings, and so forth.

The vision of the Clojure wrapper Origami is to bring you all the power

of OpenCV to your hands almost instantly, along with a pleasurable syntax.

This way we hope you can focus and spend your time entirely on the job,

not on the tool.

Chapter 1 will introduce you to pure OpenCV on the JVM using Java,

Scala, and Kotlin and present some of their shortcomings.

xviii

Chapter 2 will present Origami, the Clojure wrapper, and how to use it

to perform simple image manipulation.

Chapter 3 will get you up to speed with more advanced concepts of

image manipulation, like shape finding, but still in a pleasant syntax.

Finally, Chapter 4 moves to video analysis, with shape finding,

transformations, and various techniques to analyze real-time streams with

ease.

IntroductionIntroduction

1© Nicolas Modrzyk 2018
N. Modrzyk, Java Image Processing Recipes, https://doi.org/10.1007/978-1-4842-3465-5_1

CHAPTER 1

OpenCV
on the JavaVM
A few years ago, while on a trip to Shanghai, a very good friend of mine

bought me a massive book on OpenCV. It had tons of photography

manipulation, real–time video analysis samples, and in-depth

explanations that were very appealing, and I just could not wait to get

things up and running on my local environment.

OpenCV, as you may know, stands for Open Source Computer Vision;

it is an open source library that gives you ready-to-use implementations

of advanced imaging algorithms, going from simple-to-use but advanced

image manipulations to shape recognition and real-time video analysis

spy powers.

The very core of OpenCV is a multidimensional matrix object named

Mat. Mat is going to be our best friend all along this book. Input objects are

Mat, operations are run on Mat, and the output of our work is also going to

be Mat.

Mat, even though it is going to be our best friend, is a C++ object, and

as such, is not the easiest of friends to bring and show around. You have to

recompile, install, and be very gentle about the new environment almost

anywhere you take him.

But Mat can be packaged.

Mat, even though he is a native (i.e., runs natively), can be dressed to

run on the Java Virtual Machine almost without anyone noticing.

2

This first chapter wants to get you introduced to work with OpenCV

with some of the main languages of the Java Virtual Machine, namely Java

of course, but also the easier-to-read Scala and the Google-hyped Kotlin.

To run all these different languages in a similar fashion, you will first

get (re-?)introduced to a Java build tool named leiningen and then you will

move on to use simple OpenCV functions with it.

The road of this first chapter will take you to the door of the similarly

JVM-based language Clojure, which will give your OpenCV code instant

visual feedback for great creativity. That will be for Chapter 2.

�1-1 Getting Started with Leiningen
�Problem
You remember the write-once-run-everywhere quote, and you would like

to compile Java code and run the Java program in an easy and portable

manner across different machines. Obviously, you can always revert to

using the plain javac command to compile Java code, and pure Java on the

command line to run your compiled code, but we are in the 21st century,

and hey, you are looking for something more.

Whatever the programming language, setting up your working

environment by hand is quite a task, and when you are done, it is hard to

share with other people.

Using a build tool, you can define in simple ways what is required to

work on your project, and get other users to get started quickly.

You would like to get started with an easy-to-work-with build tool.

�Solution
Leiningen is a build tool targeting (mostly) the JavaVM. It is similar in

that sense to other famous ones like (Remember? The) Ant, (Oh My God)

Maven, and (it used to work) Gradle.

Chapter 1 OpenCV on the JavaVM

3

Once the leiningen command is installed, you can use it to create new

JavaVM projects based on templates, and run them without the usual

headaches.

This recipe shows how to install Leiningen quickly and run your first

Java program with it.

�How it works
You will start by simply installing Leiningen where you need it, and then

creating a blank Java project with it.

Note  Installing Leiningen requires Java 8 to be installed on your
machine. Note also that due to the fact that Java 9 is solving old
problems by breaking current solutions, we will choose to keep Java 8
for now.

�Installing Leiningen

The Leiningen web site itself is hosted and can be found at

https://leiningen.org/

At the top of the Leiningen page, you can find the four easy steps to

install the tool manually yourself.

So here it goes, on macOS and Unix:

	 1.	 Download the lein script

•	 https://raw.githubusercontent.com/

technomancy/leiningen/stable/bin/lein

	 2.	 Place it on your $PATH where your shell can find it

(e.g., ~/bin)

Chapter 1 OpenCV on the JavaVM

https://leiningen.org/
https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein
https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein
https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein

4

	 3.	 Set it to be executable (chmod a+x ~/bin/lein)

	 4.	 Run it from a terminal, lein, and it will download the

self-install package

And on Windows:

	 1.	 Download the lein.bat batch script

•	 https://raw.githubusercontent.com/

technomancy/leiningen/stable/bin/lein.bat

	 2.	 Place it on your C:/Windows/System32 folder, using

admin permission

	 3.	 Open a command prompt and run it, lein, and it will

download the self-install package

On Unix, you can almost always use a package manager. Brew, on
macOS, has a package for leiningen.

On Windows, there is also a good Windows installer, located at
https://djpowell.github.io/leiningen-win-installer/.

If you are a Chocolatey fan, Windows has a package for Chocolatey
as well: https://chocolatey.org/packages/Lein.

If you finished the install process successfully on a terminal or

command prompt, you should be able to check the version of the installed

tool. On the first run, Leiningen downloads its own internal dependencies,

but any other subsequent runs will regularly be fast.

NikoMacBook% lein -v

Leiningen 2.7.1 on Java 1.8.0_144 Java HotSpot(TM) 64-Bit

Server VM

Chapter 1 OpenCV on the JavaVM

www.allitebooks.com

https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein.bat
https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein.bat
https://djpowell.github.io/leiningen-win-installer/
https://chocolatey.org/packages/Lein
http://www.allitebooks.org

5

�Creating a New OpenCV-Ready Java Project
with Leiningen

Leiningen mainly works around a text file, named project.clj, where the

metadata, dependencies, plug-ins, and settings for those projects are

defined in a simple map.

When you execute commands on the project calling the lein

command, lein will look into that project.clj to find the relevant

information it needs regarding that project.

Leiningen comes with ready-to-use project templates, but in order to

understand them properly, let’s first walk through a first example step by step.

For a leiningen Java project, you need two files:

•	 One that describes the project, project.clj

•	 One file with some Java code in it, here Hello.java

A first project simple directory structure looks like this:

.

├── java
│ └── Hello.java
└── project.clj

1 directory, 2 files

For peace of mind, we will keep the code of this first Java example

pretty simple.

public class Hello {

 public static void main(String[] args) {

 System.out.println("beginning of a journey");

 }

}

Chapter 1 OpenCV on the JavaVM

6

Now let’s see the content of the text file named project.clj in a bit of

detail:

(defproject hellojava "0.1"

 :java-source-paths ["java"]

 :dependencies [[org.clojure/clojure "1.8.0"]]

 :main Hello)

This is actually Clojure code, but let’s simply think of it as a domain

specific language (DSL), a language to describe a project in simple terms.

For convenience, each term is described in Table 1-1.

Table 1-1.  Leiningen Project Metadata

Word Usage

Defproject Entry point to define a project

Hellojava The name of the project

0.1 A string describing the version

:java-source-paths A list of directories relative to the project folder, where you

will put Java code files

:dependencies The list of external libraries and their versions needed to run

the project

[[org.clojure/clojure

“1.8.0”]]

By default, the list contains Clojure, which is needed to run

leiningen. You will put OpenCV libraries here later on

:main The name of the Java class that will be executed by default

Now go ahead and create the preceding directory and file structure,

and copy-paste the content of each file accordingly.

Once done, run your first leiningen command:

lein run

Chapter 1 OpenCV on the JavaVM

7

The command will generate the following output on your terminal or

console depending on your environment.

Compiling 1 source files to /Users/niko/hellojava/target/classes

beginning of a journey

Whoo-hoo! The journey has begun! But, wait, what happened just there?

A bit of magic was involved. The leiningen run command will make

Leiningen execute a compiled Java class main method. The class to be

executed was defined in the project’s metadata, and as you remember, that

would be Hello.

Before executing the Java compiled class there is a need to… compile

it. By default, Leiningen does compilation before performing the run

command, and so this is where the “Compiling …” message came out from.

Along the way, you may have noticed that a target folder was created

inside your project folder, with a classes folder, and a Hello.class file

inside.

.

├── dev
├── java
│ └── Hello.java
├── project.clj
├── src
├── target
│ ├── classes
│ │ ├── Hello.class

The target/classes folder is where the compiled Java bytecode goes

by default, and that same target folder is then added to the Java execution

runtime (classpath).

Chapter 1 OpenCV on the JavaVM

8

The execute phase triggered by “lein run” follows, and the code block

from the main method of the Hello class is executed; then the message

prints out.

beginning of a journey.

You may ask: “What if I have multiple Java files, and want to run a

different one than the main one?”

This is a very valid question, as you will be probably doing that a few

times in this first chapter to write and run the different code samples.

Say you write a second Java class in a file named Hello2.java in the

same Java folder, along with some updated journey content.

import static java.lang.System.out;

public class Hello2 {

 public static void main(String[] args) {

 String[] text = new String[]{

 "Sometimes it's the journey that ",

 "teaches you a lot about your destination.",

 "--",

 "- Drake"};

 for(String t : text) out.println(t);

 }

}

To run that exact main method from the Hello2.java file, you would call

lein run with the optional –m option, where m stands for main, and then

the name of the main Java class to use.

lein run –m Hello2

Chapter 1 OpenCV on the JavaVM

9

This gives you the following output:

Compiling 1 source files to /Users/niko/hellojava/target/

classes

Sometimes it's the journey that

teaches you a lot about your destination.

--

- Drake

Great. With those instructions, you now know enough to go ahead and

run your first OpenCV Java program.

�1-2 Writing Your First OpenCV Java Program
�Problem
You would like to use Leiningen to have a Java project setup where you can

use OpenCV libraries directly.

You would like to run Java code making use of OpenCV, but you got

headaches already (while compiling the opencv wrapper yourself), so you

would like to make this step as simple as possible.

�Solution
Recipe 1-1 presented Leiningen to help you with all the basic required

setup. From there, you can add a dependency on the OpenCV C++ library

and its Java wrapper.

�How it works
For this first OpenCV example, we will get set up with a Leiningen

project template, where the project.clj file and the project folders are

already defined for you. Leiningen project templates do not have to be

Chapter 1 OpenCV on the JavaVM

10

downloaded separately and can be called upon to create new projects

using Leiningen’s integrated new command.

To create this project on your local machine, on the command line,

let’s call the command of lein.

Whether on Windows or Mac, the command gives

lein new jvm-opencv hellocv

What the preceding command basically does is

	 1.	 create a new project folder named hellocv

	 2.	 create directories and files with the content of the

folder based on a template named jvm-opencv

After running the command, the rather simple following project files

are created:

.

├── java
│ └── HelloCv.java
└── project.clj

That does not seem too impressive, but actually those are almost the same

as the two files from the previous recipe: a project descriptor and a Java file.

The project.clj content is a slightly modified version from before:

(defproject hellocv "0.1.0-SNAPSHOT"

 :java-source-paths ["java"]

 :main HelloCv

 :repositories [

 ["vendredi" "http://hellonico.info:8081/repository/

hellonico/"]]

 :dependencies [[org.clojure/clojure "1.8.0"]

 [opencv/opencv "3.3.1"]

 [opencv/opencv-native "3.3.1"]])

Chapter 1 OpenCV on the JavaVM

11

You probably have noticed straightaway three new lines you have not

seen before.

First of all is the repositories section, which indicates a new

repository location to find dependencies. The one provided here is the

author’s public repository where custom builds of opencv (and others) can

be found.

The opencv core dependency and the native dependency have been

compiled and uploaded on that public repository and provided for your

convenience.

The two dependencies are as follows:

•	 opencv

•	 opencv-native

Why two dependencies, you might ask?
Well one of these dependencies is the opencv code in c++ for macOS,
Windows, or Linux. The opencv core is the platform-independent Java
wrapper that calls the platform-dependent c++ code.
This is actually the way the opencv code is delivered when you do the
compilation of OpenCV yourself.
For convenience, the packaged opencv-native dependency contains
the native code for Windows, Linux, and macOS.

The Java code in file HelloCv.java, located in the Java folder, is a

simple helloworld kind of example, which will simply load OpenCV native

libraries; its content is shown in the following.

import org.opencv.core.Core;

import org.opencv.core.CvType;

import org.opencv.core.Mat;

Chapter 1 OpenCV on the JavaVM

12

public class HelloCv {

 public static void main(String[] args) throws Exception {

 System.loadLibrary(Core.NATIVE_LIBRARY_NAME); // ①
 Mat hello = Mat.eye(3,3, CvType.CV_8UC1); // ②
 System.out.println(hello.dump());　// ③
 }

}

What does the code do?

•	 ① It tells the Java runtime to load the native opencv

library via loadLibrary. This is a required step when

working with OpenCV and needs to be done once in

the lifetime of your application.

•	 ② A native Mat object can then be created via a Java

object.

•	 Mat is basically an image container, like a matrix, and

here we tell it to be of size 3×3: height of three pixels,

width of three pixels, where each pixel is of type 8UC1,

a weird name that simply means one channel (C1) of

eight bits (unsigned) integer (8U).

•	 ③ Finally, it prints the content of the mat (matrix)

object.

The project is ready to be run as you have done before, and

whichever platform you are running on, the same leiningen run

command will do the job:

NikoMacBook% lein run

The command output is shown in the following.

Retrieving opencv/opencv-native/3.3.1/opencv-native-3.3.1.jar

from vendredi

Compiling 1 source files to /Users/niko/hellocv2/target/classes

Chapter 1 OpenCV on the JavaVM

13

[1, 0, 0;

 0, 1, 0;

 0, 0, 1]

The 1s and 0s you see printed are the actual content of the matrix that

was created.

�1-3 Automatically Compiling
and Running Code
�Problem
While the lein command is pretty versatile, you would like to start the

process in the background and get the code to be automatically run for you

as you change the code.

�Solution
Leiningen comes with an auto plug-in. Once enabled, that plug-in watches

changes in patterns of files and triggers a command. Let’s use it!

�How it works
When you create a project using the jvm-opencv template (see Recipe 1-2),

you will notice that the content of the file project.clj is slightly longer than

presented in the recipe. It was actually more like this:

(defproject hellocv3 "0.1.0-SNAPSHOT"

 :java-source-paths ["java"]

 :main HelloCv

 :repositories [

Chapter 1 OpenCV on the JavaVM

14

 �["vendredi" "http://hellonico.info:8081/repository/

hellonico/"]]

 :plugins [[lein-auto "0.1.3"]]

 :auto {:default {:file-pattern #"\.(java)$"}}

 :dependencies [[org.clojure/clojure "1.8.0"]

 [opencv/opencv "3.3.1"]

 [opencv/opencv-native "3.3.1"]])

Two extra lines have been highlighted. One line is the addition of the

lein-auto plug-in in a :plugins section of the project metadata.

The second line, the :auto section, defines the file pattern to watch

for changes; here, files that end in Java will activate the refresh of the auto

subcommand.

Let’s go back to the command line, where now we will be prepending

the auto command before the usual run command. The command you

need to write is now as follows:

lein auto run

The first time you run it, it will give the same output as the previous

recipe, but with some added extra lines:

auto> Files changed: java/HelloCv.java

auto> Running: lein run

Compiling 1 source files to /Users/niko/hellocv3/target/classes

[1, 0, 0;

 0, 1, 0;

 0, 0, 1]

auto> Completed.

Nice; note here that the leiningen command has not finished running

and is actually listening for file changes.

Chapter 1 OpenCV on the JavaVM

15

From there, go ahead and update the Java code of HelloCv, with a Mat

object of a different size. So replace the following line:

Mat hello = Mat.eye(3,3, CvType.CV_8UC1);

with

Mat hello = Mat.eye(5,5, CvType.CV_8UC1);

The updated code says that the Mat object is now a 5×5 matrix, each

pixel still being represented by a one-byte integer.

And look at the terminal or console where the leiningen command was

running to see the output being updated:

auto> Files changed: java/HelloCv.java

auto> Running: lein run

Compiling 1 source files to /Users/niko/hellocv3/target/classes

[1, 0, 0, 0, 0;

 0, 1, 0, 0, 0;

 0, 0, 1, 0, 0;

 0, 0, 0, 1, 0;

 0, 0, 0, 0, 1]

auto> Completed.

Note how this time the printed matrix of the mat object is made of five

rows of five columns.

�1-4 Using a Better Text Editor
�Problem
You may have used your own text editor to type in code up to now, but

you would like a slightly better working environment for working with

OpenCV.

Chapter 1 OpenCV on the JavaVM

16

�Solution
While this is not a final solution and other different environments may be

more productive for you, I found using a simple setup based on Github’s

Atom editor to be quite effective. That editor will be of great use as well

when typing code in real time.

One of the main reasons to enjoy working in Atom is that pictures are

reloaded on the fly, so that when working on an image, updates to that

image will be automatically reflected directly on your screen. As far as I

know, this is the only editor with such a support. Let’s see how it works!

�How it works
Installing the base Atom editor should be a simple matter of going to the

web site and downloading the software, so simply go ahead and download

the installer.

https://atom.io/

Not only is atom a good editor by default, but it is easy to add plug-ins

to match your work style.

Here for OpenCV, we would like to add three plug-ins:

•	 one generic IDE plug-in

•	 one plug-in for the Java language, making use of the

•	 last one for a terminal inside the editor.

The three plug-ins are shown in Figures 1-1, 1-2, and 1-3.

Chapter 1 OpenCV on the JavaVM

https://atom.io/

17

The terminal that opens at the bottom will let you type the same “lein

auto run” command, so you do not need a separate command prompt or

terminal window for the autorunning feature of Leiningen. That keeps all

your code writing in a single window.

Ideally, your Atom layout would look something like either Figure 1-4

or Figure 1-5.

Figure 1-1.  Atom ide-ui plug-in

Figure 1-2.  Atom Java language plug-in

Figure 1-3.  Atom ide-terminal plug-in

Chapter 1 OpenCV on the JavaVM

18

Figure 1-4.  Atom IDE standard layout

Figure 1-5.  Atom IDE clean layout

Chapter 1 OpenCV on the JavaVM

19

Note that autocompletion for Java is now enabled through Atom’s Java

plug-in too, so typing function names will show a drop-down menu of

available options, as shown in Figure 1-6:

Figure 1-6.  Atom IDE autocompletion

Finally, updates on the image, while not able to be seen in real

time, can be seen while saving the file, and if you open that file in the

background it will be refreshed on each save, a save being done with

OpenCV’s function imwrite.

So, with the leiningen auto run command running in the

background, when the Java file is saved, the compilation/run cycle is

triggered and the image is updated.

Figure 1-7 shows how the picture onscreen is visually updated, even

without a single user action (apart from file save).

Chapter 1 OpenCV on the JavaVM

20

You will see that later in this chapter, but for reference right now, here

is the code snippet changing the color of one subsection of the Mat object

using the submat function.

import org.opencv.core.Core;

import org.opencv.core.CvType;

import org.opencv.core.Mat;

import org.opencv.core.Scalar;

import static org.opencv.imgcodecs.Imgcodecs.imwrite;

public class HelloCv {

 public static void main(String[] args) {

 System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

 Mat hello = new Mat(150,150, CvType.CV_8UC3);

 hello.setTo(new Scalar(180,80,250));

 Mat sub = hello.submat(0,50,0,50);

Figure 1-7.  Automatically updated image on Java file save

Chapter 1 OpenCV on the JavaVM

21

 sub.setTo(new Scalar(0,0,100));

 imwrite("dev/hello.png", hello);

 }

}

You now have a setup to enjoy full-blown OpenCV powers. Let’s use them.

�1-5 Learning the Basics of
the OpenCV Mat Object
�Problem
You would live to get a better grasp of the OpenCV object Mat, since it is at

the core of the OpenCV framework.

�Solution
Let’s review how to create mat objects and inspect their content through a

few core samples.

�How it works
This recipe needs the same setup that was completed in the previous recipe.

To create a very simple matrix with only one channel per “dot,” you

would usually use one of the following three static functions from the Mat

class: zeros, eye, ones.

It easier to see what each of those does by looking at each output in

Table 1-2.

Chapter 1 OpenCV on the JavaVM

22

If you have used OpenCV before (and if you haven’t yet, please trust

us), you will remember that CV_8UC1 is the OpenCV slang word for eight

bits unsigned per channel, and one channel per pixel, so a matrix of 3×3

will therefore have nine values.

Its cousin CV_8UC3, as you would have guessed, assigns three

channels per pixel, and thus a 1×1 Mat object would have three values. You

would usually use this type of Mat when working with Red, Blue, Green, or

RGB, images. It also is the default format when loading images.

This first example simply shows three ways of loading a one-channel-

per-pixel Mat object and one way to load a three-channels-per-pixel Mat

object.

import org.opencv.core.Core;

import org.opencv.core.Mat;

import static java.lang.System.loadLibrary;

import static java.lang.System.out;

Table 1-2.  Static Functions to Create One Channel per Pixel Mat

Function Name Code Usage Output

zeros Mat.zeros(3,3,CV_8UC1) When you want the

new mat to be all

zeros

[0, 0, 0;

0, 0, 0;

0, 0, 0]

eye Mat.eye(3, 3, CV_8UC1) When you want all

zeros except when

x=y

[1, 0, 0;

0, 1, 0;

0, 0, 1]

ones Mat.ones(3,3,CV_8UC1) When you want all

ones

[1, 1, 1;

1, 1, 1;

1, 1, 1]

(any of the

preceding)

Mat.ones(1,1,CV_8UC3) Each pixel is of 3

channels

[1, 0, 0]

Chapter 1 OpenCV on the JavaVM

23

import static org.opencv.core.CvType.CV_8UC1;

import static org.opencv.core.CvType.CV_8UC3;

public class SimpleOpenCV {

 static {

 loadLibrary(Core.NATIVE_LIBRARY_NAME);

 }

 public static void main(String[] args) {

 Mat mat = Mat.eye(3, 3, CV_8UC1);

 out.println("mat = ");

 out.println(mat.dump());

 Mat mat2 = Mat.zeros(3,3,CV_8UC1);

 out.println("mat2 = ");

 out.println(mat2.dump());

 Mat mat3 = Mat.ones(3,3,CV_8UC1);

 out.println("mat3 = ");

 out.println(mat3.dump());

 Mat mat4 = Mat.zeros(1,1,CV_8UC3);

 out.println("mat4 = ");

 out.println(mat4.dump());

 }

}

The last Mat object, mat4, is the one containing three channels per

pixel. As you can see when you try to dump the object, a three-zeros array

is created.

CV_8UC1 and CV_8UC3 are the two most common types of format per

pixel, but many others exist and are defined in the CvType class.

Chapter 1 OpenCV on the JavaVM

24

When doing mat-to-mat computations, you may eventually also need

to use float values per channel. Here is how to achieve that:

Mat mat5 = Mat.ones(3,3,CvType.CV_64FC3);

out.println("mat5 = ");

out.println(mat5.dump());

And the output matrix:

mat5 =

[1, 0, 0, 1, 0, 0, 1, 0, 0;

 1, 0, 0, 1, 0, 0, 1, 0, 0;

 1, 0, 0, 1, 0, 0, 1, 0, 0]

In many situations, you would probably not create the matrix from

scratch yourself, but simply load the image from a file.

�1-6 Loading Images from a File
�Problem
You would like to load an image file to convert it to a Mat object for digital

manipulation.

�Solution
OpenCV has a simple function to read an image from a file, named imread.

It usually takes only a file path on the local file system to the image, but it

may also have a type parameter. Let’s see how to use the different forms of

imread.

Chapter 1 OpenCV on the JavaVM

25

�How it works
The imread function is located in the Imgcodecs class of the same named

package.

Its standard usage is down to simply giving the path of the file.

Supposing you have downloaded an image of kittens from a Google

search and stored it in images/kittenjpg (Figure 1-8), the code gives the

following:

Mat mat = Imgcodecs.imread("images/kitten.jpg");

out.println("mat ="+mat.width()+" x "+mat.height()+","+mat.

type());

Figure 1-8.  Running kitten

If the kitten image is found and loaded properly, the following message

will be shown on the output of the console:

mat =350 x 234,16

Chapter 1 OpenCV on the JavaVM

26

Note that if the file is not found, no exception is thrown, and no error

message is reported, but the loaded Mat object will be empty, so no row

and no column:

mat =0 x 0,0

Depending on how you code, you may feel the need to wrap the

loading code with a size check to make sure that the file was found and the

image decoded properly.

It is also possible to load the picture in black-and-white mode (Figure 1-9).

This is done by passing another parameter to the imread function.

Mat mat = Imgcodecs.imread(

 "images/kitten.jpg",

 Imgcodecs.IMREAD_GRAYSCALE);

Figure 1-9.  Grayscale loading

That other parameter is taken from the same Imgcodecs class.

Here, IMREAD_GRAYSCALE forces the reencoding of the image on load,

and turns the Mat object into grayscale mode.

Chapter 1 OpenCV on the JavaVM

27

Other options can be passed to the imread function for some specific

handling of channels and depth of the image; the most useful of them are

described in Table 1-3.

Table 1-3.  Image Reading Options

Parameter Effect

IMREAD_REDUCED_GRAYSCALE_2

IMREAD_REDUCED_COLOR_2

IMREAD_REDUCED_GRAYSCALE_4

IMREAD_REDUCED_COLOR_4

IMREAD_REDUCED_GRAYSCALE_8

IMREAD_REDUCED_COLOR_8

Reduce the size of the image on load by a

factor of 2, 4, or 8. This means dividing the

width and the height by that number.

At the same time, specify the color or

grayscale mode. Grayscale means one-

channel grayscale mode. Color means

three-channel RGB.

IMREAD_LOAD_GDAL Use the GDAL driver to load raster format

images.

IMREAD_GRAYSCALE Load the picture in one-channel grayscale

mode.

IMREAD_IGNORE_ORIENTATION If set, do not rotate the image according to

EXIF’s orientation flag.

Figure 1-10.  Reduced size loading

Figure 1-10 shows what happens when the image is loaded in

REDUCED_COLOR_8.

Chapter 1 OpenCV on the JavaVM

28

As you may have noticed, no indication of the image format was
needed when loading the image with imread. OpenCV does all the
image decoding, depending on a combination of the file extension
and binary data found in the file.

�1-7 Saving Images into a File
�Problem
You want to be able to save an image using OpenCV.

�Solution
OpenCV has a sibling function to imread used to write files, named

imwrite, similarly hosted by the class Imgcodecs. It usually takes only a file

path on the local file system pointing where to store the image, but it can

also take some parameters to modify the way the image is stored.

�How it works
The function imwrite works similarly to imread, except of course it also

needs the Mat object to store, along with the path.

The first code snippet simply saves the cat image that was loaded in color:

Mat mat = imread("images/glasses.jpg");

imwrite("target/output.jpg", mat);

Figure 1-11 shows the content of output.jpg picture.

Chapter 1 OpenCV on the JavaVM

29

Now, you can also change the format while saving the Mat object

simply by specifying a different extension. For example, to save in Portable

Network Graphic (PNG) format, just specify a different extension when

calling imwrite.

Mat mat = imread("images/glasses.jpg");

imwrite("target/output.png", mat);

Without working with encoding and crazy byte manipulation, your

output file is indeed saved in PNG format.

You can give saving parameters to imwrite, the most needed ones

being compression parameters.

For example, as per the official documentation:

•	 For JPEG, you can use the parameter CV_IMWRITE_

JPEG_QUALITY, which value is in the range 0 to 100 (the

higher the better). The default value is 95.

•	 For PNG, it can be the compression level () from 0

to 9. A higher value means a smaller size and longer

compression time. The default value is 3.

Compressing the output file by using a compression parameter is

done through another opencv object named MatOfInt, which is a matrix of

integers, or in simpler terms, an array.

MatOfInt moi = new MatOfInt(CV_IMWRITE_PNG_COMPRESSION, 9);

Imgcodecs.imwrite("target/output.png", mat, moi);

Figure 1-11.  JPEG formatted image on disk

Chapter 1 OpenCV on the JavaVM

30

This will enable compression on the png. And by checking the filesize

you can actually see that the png file is at least 10% smaller.

�1-8 Cropping a Picture with Submat
�Problem
You would like to save only a given subsection of an image.

�Solution
The main focus of this short recipe is to introduce the submat function.

Submat gives you back a Mat object that is a submatrix or subsection of the

original.

�How it works
We will take a cat picture and extract only the part we want with submat.

The cat picture used for this example is shown in Figure 1-12.

Figure 1-12.  A cat

Chapter 1 OpenCV on the JavaVM

31

Of course, you can use whichever cat picture you like. Let’s start by

reading the file normally, with imread.

Mat mat = Imgcodecs.imread("images/cat.jpg");

out.println(mat);

As you may notice, println gives you some info about the Mat object

itself. Most of it is informative memory addressing, so you can hack the

memory directly, but it also shows whether the Mat object is a submat or

not. In this case, since this is the original picture, it is set to false.

 [1200*1600*CV_8UC3,

 isCont=true,

 isSubmat=false,

 nativeObj=0x7fa7da5b0a50,

dataAddr=0x122c63000]

Autocompletion in the Atom editor presents you the different versions

of the submat function as shown in Figure 1-13.

Figure 1-13.  Submat with different parameters

Now let’s use the submat function in its first form, where submat takes

start and end parameters, one for each row and column:

Mat submat = mat.submat(250,650,600,1000);

out.println(submat);

Chapter 1 OpenCV on the JavaVM

32

Printing the object shows that the newly created Mat object is indeed a

submat.

Mat [400*400*CV_8UC3,

isCont=false,

isSubmat=true,

nativeObj=0x7fa7da51e730,

dataAddr=0x122d88688]

You can act directly on the submat just like a regular Mat, so you could

start for example by saving it.

Imgcodecs.imwrite("output/subcat.png", submat);

With the range nicely adapted to the original cat picture, the output of

the saved image is shown in Figure 1-14:

Figure 1-14.  Sub-cat

The nice thing is that not only can you act on the submat, but it also

reflects on the original Mat object as well. So if you apply a blur effect to

the cat’s face on the submat and save the whole mat (not the submat), only

the cat’s face will look blurry. See how that works:

Imgproc.blur(submat,submat, new Size(25.0, 25.0));

out.println(submat);

Imgcodecs.imwrite("output/blurcat.png", mat);

Chapter 1 OpenCV on the JavaVM

33

blur is a key function of class org.opencv.imgproc.Imgproc. It takes a

size object as a parameter, to specify the surface to consider per pixel when

applying the blur effect, and so the bigger the size, the stronger the blur

effect.

See the result in Figure 1-15, where if you look carefully, only the face

of the cat is actually blurred, and this is the exact face we saved earlier on.

Figure 1-15.  Poor blurred cat

As you have seen in the contextual helper menu for the submat

function, there are two other ways to grab the submat.

One way is with two ranges, the first one for a range of rows (y, or

height), and the second ones for a range of columns (x, or width), both

created using the Range class.

Mat submat2 = mat.submat(new Range(250,650), new Range(600,1000));

Another way is with a rectangle, where you give top left coordinates

first, then the size of the rectangle.

Mat submat3 = mat.submat(new Rect(600, 250, 400, 400));

Chapter 1 OpenCV on the JavaVM

34

This last way of using submat is one of the most used since it is the

most natural. Also, when finding objects within a picture, you can use the

bounding box of that object, which type is a Rect object.

Note that, as you have seen, changing a submat has collateral damage

effects on the underlying Mat. So if you decide to set the color of a submat

to blue:

submat3.setTo(new Scalar(255,0,0));

Imgcodecs.imwrite("output/submat3_2.png", submat3);

Imgcodecs.imwrite("output/submat3_3.png", submat2);

Imgcodecs.imwrite("output/submat3_4.png", mat);

Then Figure 1-16 shows the blue cat face of both submat3_2.png and

submat3_3.png.

Figure 1-17.  Blue cat face in big picture

Figure 1-16.  Blue cat face

But those changes to the submat also update the underlying mat, as

shown in Figure 1-17!!

Chapter 1 OpenCV on the JavaVM

www.allitebooks.com

http://www.allitebooks.org

35

So the idea here is to be careful where and when using submat, but

most of the time this is a powerful technique for image manipulation.

�1-9 Creating a Mat from Submats
�Problem
You would like to create a Mat manually from scratch, made of different

submats.

�Solution
setTo and copyTo are two important functions of OpenCV. setTo will set the

color of all the pixels of a mat to the color specified, and copyTo will copy

an existing Mat to another one. When using either setTo or copyTo you will

probably work with submats, thus affecting only parts of the main mat.

To use setTo, we will use colors defined using OpenCV’s Scalar object,

which, for now, will be created with a set of values in the RGB color space.

Let’s see all this in action.

�How it works
The first example will use setTo to create a mat made of submats, each of

them of a different color.

�Mat of Colored Submats

First, let’s define the colors using RGB values. As mentioned, colors are

created using a Scalar object, with three int values, where each value is

between 0 and 255.

The first color is the blue intensity, the second is the green intensity,

and the last one is the red intensity. Thus to create red, green, or blue, you

put its main color value to its max intensity, so 255, and the others to 0.

Chapter 1 OpenCV on the JavaVM

36

See how it goes for red, green, and blue:

Scalar RED = new Scalar(0, 0, 255); �// Blue=0, Green=0, Red=255

Scalar GREEN = new Scalar(0, 255, 0); �// Blue=0, Green=255, Red=0

Scalar BLUE = new Scalar(255, 0, 0); �// Blue=255, Green=0, Red=0

To define cyan, magenta, and yellow, let’s think of those colors as the

complementary colors of RGB, so we set the other channels to the max

value of 255, and the main one to 0.

Cyan is complementary to red, so the red channel value is set to 0, and

the other two channels are set to 255:

Scalar CYAN = new Scalar(255, 255, 0);

Magenta is complementary to green, and yellow to blue. These are

defined as follows:

 Scalar MAGENTA = new Scalar(255, 0, 255);

 Scalar YELLOW = new Scalar(0, 255, 255);

Alright. We have the colors all set up; let’s use them to create a mat

of all the defined colors. The following setColors method takes the

main mat object and fills a row with either the main RGB colors or the

complementary colors CMY.

See how the submat content is filled using the setTo function on a

submat with a scalar color.

 static void setColors(Mat mat, boolean comp, int row) {

 for(int i = 0 ; i < 3 ; i ++) {

 �Mat sub = mat.submat(row*100, row*100+100, i*100,

i*100+100);

 if(comp) { // RGB

 if(i==0) sub.setTo(RED);

 if(i==1) sub.setTo(GREEN);

Chapter 1 OpenCV on the JavaVM

37

 if(i==2) sub.setTo(BLUE);

 } else { // CMY

 if(i==0) sub.setTo(CYAN);

 if(i==1) sub.setTo(MAGENTA);

 if(i==2) sub.setTo(YELLOW);

 }

 }

}

Then, the calling code creates the mat in three-channel RGB color

mode and fills the first and second rows.

 Mat mat = new Mat(200,300,CV_8UC3);

 setColors(mat, false, 1);

 setColors(mat, true, 0);

 Imgcodecs.imwrite("output/rgbcmy.jpg", mat);

The result is a mat made of two rows, each of them filled with the

created colored submats, as shown in Figure 1-18.

Figure 1-18.  Mat of colored submats

Chapter 1 OpenCV on the JavaVM

38

�Mat of Picture Submats

Colors are great, but you will probably be working with pictures. This

second example is going to show you how to use submats filled with a

picture content.

First start by creating a 200×200 mat and two submats: one for the top

of the main mat, one for the bottom of the main mat.

int width = 200,height = 200;

Mat mat = new Mat(height,width,CV_8UC3);

Mat top = mat.submat(0,height/2,0,width);

Mat bottom = mat.submat(height/2,height,0,width);

Let’s then create another small Mat by loading a picture into it

and resizing it to the size of the top (or bottom) submat. Here you are

introduced to the resize function of the Imgproc class.

Mat small = Imgcodecs.imread("images/kitten.jpg");

Imgproc.resize(small,small,top.size());

You are free to choose the picture, of course; for now, let’s suppose the

loaded small mat is like Figure 1-19:

Figure 1-19.  Kitten power

Chapter 1 OpenCV on the JavaVM

39

The small cat mat is then copied to both the top and bottom submats.

Note that the preceding resize step is crucial; the copy succeeds

because the small mat and the submat sizes are identical, and thus no

problem occurs while copying.

small.copyTo(top);

small.copyTo(bottom);

Imgcodecs.imwrite("output/matofpictures.jpg", mat);

This gives a matofpictures.jpg file of two kittens as shown in Figure 1-20.

Figure 1-20.  Double kitten power

If you forget to resize the small mat, the copy fails very badly, resulting

in something like Figure 1-21.

Chapter 1 OpenCV on the JavaVM

40

�1-10 Highlighting Objects in a Picture
�Problem
You have a picture with a set of objects, animals, or shapes that you would

like to highlight, maybe because you want to count them.

�Solution
OpenCV offers a famous function named Canny, which can highlight

lines in a picture. You will see how to use canny in more detail later in this

chapter; for now, let’s focus on the basic steps using Java.

OpenCV’s canny works on gray mat for contour detection. While you

can leave it to canny to do it for you, let’s explicitly change the color space

of the input mat to be in grayspace.

Changing color space is easily done with OpenCV using the cvtColor

function found in the Core class.

Figure 1-21.  Kitten gone wrong

Chapter 1 OpenCV on the JavaVM

41

�How it works
Suppose you have a picture of tools as shown in Figure 1-22.

Figure 1-22.  Tools at work

We start by loading the picture into a Mat as usual:

Mat tools = imread("images/tools.jpg");

We then convert the color of that tools mat using the cvtColor function,

which takes a source mat, a target mat, and a target color space. Color space

constants are found in the Imgproc class and have a prefix like COLOR_.

So to turn the mat to black and white, you can use the COLOR_
RGB2GRAY constant.

cvtColor(tools, tools, COLOR_RGB2GRAY);

The black-and-white picture is ready to be sent to canny. Parameters

for the canny function are as follows:

•	 Source mat

•	 Target mat

•	 Low threshold: we will use 150.0

Chapter 1 OpenCV on the JavaVM

42

•	 High threshold: usually approximately low threshold*2

or low threshold*3

•	 Aperture: an odd value between 3 and 7; we will use 3.

The higher the aperture, the more contours will be found.

•	 L2Gradient value, for now set to true

Canny computes a gradient value for each pixel, using a convolution

matrix with the center pixels and neighboring pixels. If the gradient

value is higher than the high threshold, then it is kept as an edge. If it’s in

between, it is kept if it has a high gradient connected to it.

Now, we can call the Canny function.

Canny(tools,tools,150.0,300.0,3,true);

imwrite("output/tools-01.png", target);

This outputs a picture as shown in Figure 1-23:

Figure 1-23.  Canny tools

For the eyes, the printer, and the trees, it may be sometimes easier to

draw the inverted Mat where white is turned to black, and black is turned

to white. This is done using the bitwise_not function from the Core class.

Mat invertedTools = tools.clone();

bitwise_not(invertedTools, invertedTools);

imwrite("output/tools-02.png", invertedTools);

Chapter 1 OpenCV on the JavaVM

43

The result is shown in Figure 1-24.

Figure 1-25.  Ready to be canny kittens

Figure 1-24.  Inverted canny tools

You can of course apply the same Canny processing to ever more

kitten pictures. Figures 1-25, 1-26, and 1-27 show the same code applied to

a picture of kittens.

Chapter 1 OpenCV on the JavaVM

44

�1-11 Using a Canny Result as a Mask
�Problem
While canny is awesome at edge detection, another way of using its output

is as a mask, which will give you a nice artistic image.

Let’s experiment drawing the result of a canny operation on top of

another picture.

Figure 1-27.  Inverted canny kittens

Figure 1-26.  Canny kittens

Chapter 1 OpenCV on the JavaVM

45

�Solutions
When performing a copy operation, you can use what is called a mask as a

parameter. A mask is a regular one-channel Mat, thus with values of 0 and 1.

When performing a copy with a mask, if the mask value for that pixel is

0, the source mat pixel is not copied, and if the value is 1, the source pixel is

copied to the target Mat.

�How it works
In the previous recipe, from the result of the bitwise_not function we have

obtained a new Mat object.

Mat kittens = imread("images/three_black_kittens.jpg");

cvtColor(kittens,kittens,COLOR_RGB2GRAY);

Canny(kittens,kittens,100.0,300.0,3, true);

bitwise_not(kittens,kittens);

If you decide to dump the kittens (probably not a good idea, because

the file is pretty big…), you will see a bunch of zeros and ones; this is how

the mask is created.

Now that we have the mask, let’s create a white mat, named target, to

be the target of the copy function.

Mat target = new Mat(kittens.height(), kittens.width(),

CV_8UC3, WHITE);

Then we load a source for the copy, and as you remember, we need

to make sure it is of the same size as the other component of the copy

operation, so target.

Chapter 1 OpenCV on the JavaVM

46

Let’s perform a resize operation on the background object.

Mat bg = imread("images/light-blue-gradient.jpg");

Imgproc.resize(bg, bg, target.size());

There you go; you are ready for the copy.

bg.copyTo(target, kittens);

imwrite("output/kittens-03.png", target);

The resulting Mat is shown in Figure 1-28.

Figure 1-28.  Kittens on blue background

Now can you answer the following question: Why are the cats drawn in

white?

The correct answer is indeed that the underlying Mat was initialized

to be all white; see the new Mat(…, WHITE) statement. When the mask

prevents the copy of a pixel, that is, when its value for that pixel is zero,

then the original color of the mat will show up, here WHITE, and this is

how the kittens are shown in white in Figure 1-28. You could of course go

ahead and try with a black underlying Mat, or a picture of your choice.

We will see some more of those examples in the coming chapters.

Chapter 1 OpenCV on the JavaVM

47

�1-12 Detecting Edges with Contours
�Problem
From the result of the canny operation, you would like to find a list of

drawable contours, as well as drawing them on a Mat.

�Solution
OpenCV has a set of two functions that often go hand in hand with the

canny function: these functions are findContours and drawContours.

findContours takes a Mat and finds the edges, or the lines that define

shapes, in that Mat. Since the original picture probably contains a lot of

noise from colors and brightness, you usually use a preprocessed image, a

black-and-white Mat where the canny function has been applied.

drawContours takes the results of findContours, a list of contour

objects, and allows you to draw them with specific features, like the

thickness of the line used to draw and the color.

�How it works
As presented in the solution, OpenCV’s findContours method takes a

preprocessed picture along with other parameters:

	 1.	 The preprocessed Mat

	 2.	 An empty List that will receive the contour object

(MatOfPoint)

	 3.	 A hierarchy Mat; you can ignore this for now and

leave it as an empty Mat

Chapter 1 OpenCV on the JavaVM

48

	 4.	 The contour retrieval mode, for example whether to

create relationship between contours or return all of

them

	 5.	 The type of approximation used to store the

contours; for example, draw all the points or only

key defining points

First, let’s wrap the preprocessing of the original picture, and the

finding contours, in our own custom method, find_contours.

static List find_contours(Mat image, boolean onBlank) {

 Mat imageBW = new Mat();

 Imgproc.cvtColor(image, imageBW, Imgproc.COLOR_BGR2GRAY);

 Canny(imageBW,imageBW,100.0,300.0,3, true);

 List contours = new ArrayList<MatOfPoint>();

 Imgproc.findContours(imageBW, contours, new Mat(),

 Imgproc.RETR_LIST,

 Imgproc.CHAIN_APPROX_SIMPLE);

 return contours;

}

This method returns the list of found contours, where each contour is

itself a list of points, or in OpenCV terms, a MatOfPoint object.

Next, we write a draw_contours method that will take the original Mat

to find out the size of each contours found in the previous step, and the

thickness we want each contour to be drawn with.

To draw the contours à la opencv, you usually use a for loop and give

the index of the contour to draw to the drawContours method.

static Mat draw_contours(Mat originalMat, List contours,

int thickness) {

 Mat target =

Chapter 1 OpenCV on the JavaVM

49

 �new Mat(originalMat.height(), originalMat.width(),

CV_8UC3, WHITE);

 for (int i = 0; i < contours.size(); i++)

 Imgproc.drawContours(target, contours, i, BLACK, thickness);

 return target;

}

Great; the building blocks of this recipe have been written so you can

put them in action. You can use the same picture of kittens as before as the

base picture.

Mat kittens = imread("images/three_black_kittens.jpg");

List contours = find_contours(kittens, true);

Mat target = draw_contours(kittens, contours, 7);

imwrite("output/kittens-contours-7.png", target);

The draw_contours result is shown in Figure 1-29.

Figure 1-29.  Kitten contours, thickness=7

Chapter 1 OpenCV on the JavaVM

50

Go ahead and change the thickness used when drawing contours.

For example, with the thickness set to 3, the slightly different result, with

thinner lines, is shown in Figure 1-30.

Figure 1-30.  Kitten contours, thickness=3

From there, we can again use the resulting Mat as a mask when doing a

background copy.

The following snippet is code taken from the previous recipe; the

function takes a mask and does a copy using that mask.

 static Mat mask_on_bg(Mat mask, String backgroundFilePath) {

 �Mat target = new Mat(mask.height(),mask.

width(),CV_8UC3,WHITE);

 Mat bg = imread(backgroundFilePath);

 Imgproc.resize(bg, bg, target.size());

 bg.copyTo(target, mask);

 return target;

 }

Figure 1-31 shows the result of a copy with the mask created while

drawing contours on thickness set to 3.

Chapter 1 OpenCV on the JavaVM

51

Notably in Chapter 3, you will be introduced to cooler ways of using

masks and backgrounds for some artsy results, but for now, let’s wrap this

recipe up.

�1-13 Working with Video Streams
�Problem
You would like to use OpenCV on a video stream and do image processing

in real time.

�Solution
The Java version of OpenCV presents a videoio package, and in particular a

VideoCapture object, that provides ways to read a Mat object directly from

a connected video device.

You will see first how to retrieve a Mat object from the video device,

with a given size, and then save the Mat to a file.

Using a Frame, you will also see how to plug previous processing code

in the real-time image acquisition.

Figure 1-31.  White kittens on blue background

Chapter 1 OpenCV on the JavaVM

52

�How it works
�Taking Still Pictures

Let’s introduce the do_still_captures function. It will take a number of

frames to grab, how much time to wait between each frame, and which

camera_id to take pictures from.

A camera_id is the index of the capture device connected to your

machine. You would usually use 0, but you may come to plug in and use

other external devices, and in that case, use the corresponding camera_id.

First a VideoCapture object is created, with the camera_id in

parameter.

Then you create a blank Mat object and pass it to receive data from the

camera.read() function.

The Mat object is the standard OpenCV Mat object you have worked

with up to now, and so you can easily apply the same transformations you

have learned.

For now, let’s simply save the frames one by one, with timestamped file

names.

Once finished, you can put the camera back to standby mode with the

release method on the VideoCapture object.

See how it goes in the following listing.

static void do_still_captures(int frames, int lapse, int

camera_id) {

 VideoCapture camera = new VideoCapture(camera_id);

 camera.set(Videoio.CV_CAP_PROP_FRAME_WIDTH, 320);

 camera.set(Videoio.CV_CAP_PROP_FRAME_HEIGHT, 240);

 Mat frame = new Mat();

 for(int i = 0 ; i <frames;i++) {

Chapter 1 OpenCV on the JavaVM

53

 if (camera.read(frame)){

 String filename = "video/"+new Date()+".jpg";

 Imgcodecs.imwrite(filename, frame);

 try {Thread.sleep(lapse*1000);}

 catch (Exception e) {e.printStackTrace();}

 }

 }

 camera.release();

}

Calling the newly created function is simply a matter of filling the

parameters, and so the following will take ten pictures from device with ID

0, and will wait 1 second between each shot.

do_still_captures(10,1,0);

As is shown in Figure 1-32, ten pictures should be created in the video

folder of the project. And, indeed, time flies; it is already past midnight.

Figure 1-32.  Mini–time lapse of still bedroom

Chapter 1 OpenCV on the JavaVM

54

�Working in Real Time

Alright; so the bad news here is that the OpenCV Java wrapper does not

include obvious ways to convert a Mat to a BufferedImage, which is the de

facto object to work with images in the Java graphic packages.

Without going into much detail here, let’s say you actually need this

MatToBufferedImage to work in real time in a Java frame, by converting

a Mat object to a BufferedImage and thus being able to render it into

standard Java GUI objects.

Let’s quickly write a method that converts an OpenCV Mat object to a

standard Java BufferedImage.

public static BufferedImage MatToBufferedImage(Mat frame) {

 int type = 0;

 if(frame==null) return null;

 if (frame.channels() == 1) {

 type = BufferedImage.TYPE_BYTE_GRAY;

 } else if (frame.channels() == 3) {

 type = BufferedImage.TYPE_3BYTE_BGR;

 }

 BufferedImage image =

 new BufferedImage(frame.width(), frame.height(), type);

 WritableRaster raster = image.getRaster();

 �DataBufferByte dataBuffer = (DataBufferByte) raster.

getDataBuffer();

 byte[] data = dataBuffer.getData();

 frame.get(0, 0, data);

 return image;

}

Once you have this building block of code, it actually gets easier,

but you will still need one more glue piece of code; a custom panel that

extends the Java Panel class JPanel.

Chapter 1 OpenCV on the JavaVM

55

What this custom panel, which we will call MatPanel, is made of is

a field which is the Mat object to draw. Then MatPanel extends the Java

JPanel class in a way that the paint() method now converts the Mat directly

using the method you have just seen before: MatToBufferedImage.

class MatPanel extends JPanel {

 public Mat mat;

 public void paint(Graphics g) {

 �g.drawImage(WebcamExample.MatToBufferedImage(mat), 0,

0, this);

 }

}

Alright; the somehow missing code in the default OpenCV packages

has now been reimplemented and you can create a Java frame ready to

receive Mat objects.

MatPanel t = new MatPanel();

JFrame frame0 = new JFrame();

frame0.getContentPane().add(t);

frame0.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

frame0.setSize(320, 240);

frame0.setVisible(true);

frame0.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

The final step of this exercise is to simply use code similar to the do_
still_captures method, but instead of stopping after a number of frames,

you will write a forever loop to give the video streaming impression.

VideoCapture camera = new VideoCapture(0);

camera.set(Videoio.CV_CAP_PROP_FRAME_WIDTH, 320);

camera.set(Videoio.CV_CAP_PROP_FRAME_HEIGHT, 240);

Mat frame = new Mat();

Chapter 1 OpenCV on the JavaVM

56

while(true){

 if (camera.read(frame)){

 t.mat=frame;

 t.repaint();

 }

}

Figure 1-33 gives a real-time view of a Japanese room at 1 am, painted

in real time in a Java frame.

Figure 1-33.  Real-time stream in Java frame

Obviously, the goal of this is to be able to work with the Mat object in

real time, so now a good exercise for you is to write the necessary code that

leads to the screenshot seen in Figure 1-34.

Chapter 1 OpenCV on the JavaVM

57

The answer is shown in the following code snippet, and as you would

have guessed, this is a simple matter of applying the already seen canny

transformation to the Mat object read from the camera.

if (camera.read(frame)){

 Imgproc.cvtColor(frame,frame, Imgproc.COLOR_RGB2GRAY);

 Mat target = new Mat();

 Imgproc.Canny(frame,target,100.0,150.0,3,true);

 t.mat=target;

t.repaint();

}

�1-14 Writing OpenCV Code in Scala
�Problem
Now that you can write a bit of OpenCV code in Java, you are starting to

enjoy it, but would like to use Scala instead to reduce boilerplate code.

Figure 1-34.  Canny picture in real time

Chapter 1 OpenCV on the JavaVM

58

�Solution
The current OpenCV setup you have done so far makes it easy to run any

class compiled for the JavaVM. So if you manage to compile Scala classes,

and there is a Leiningen plug-in just for that, then the rest is pretty much

identical.

What that means is that with the current Leiningen setup you have used

so far, you will just need to update the project metadata, in project.clj, in a

few places to get things going.

This works in two steps. First, add the scala compiler and libraries, and

then update the directory where the files with scala code are found.

�How it works
�Basic Setup

The project.clj needs be updated in a few places as highlighted in the

following.

•	 The project name; that is optional, of course.

•	 The main class; you may keep the same name, but if

you do, make sure to delete the old Java code with lein
clean.

•	 Next, the lein-zinc plug-in is the all-in-one scala plug-

in for Leiningen and needs to be added.

•	 The lein-zinc plug-in needs to be triggered before lein

performs compilation, so we will add a step to the

prep-tasks key of the project metadata. The prep-tasks

key is responsible for defining tasks that need to be

executed before similar commands run.

•	 Finally, the scala library dependency is added to the

dependencies key.

Chapter 1 OpenCV on the JavaVM

59

The resulting project.clj file can be found in the following.

(defproject opencv-scala-fun "0.1.0-SNAPSHOT"

 :java-source-paths ["scala"]

 :repositories [["vendredi"

 "http://hellonico.info:8081/repository/hellonico/"]]

 :main SimpleOpenCV

 :plugins [

 [lein-zinc "1.2.0"]

 [lein-auto "0.1.3"]]

 :prep-tasks ["zinc" "compile"]

 :auto {:default {:file-pattern #"\.(scala)$"}}

 :dependencies [

 [org.clojure/clojure "1.8.0"]

 [org.scala-lang/scala-library "2.12.4"]

 [opencv/opencv "3.3.1"]

 [opencv/opencv-native "3.3.1"]

])

Your new project file setup for scala should look something like the

structure shown in Figure 1-35.

Figure 1-35.  Scala project directory structure

Chapter 1 OpenCV on the JavaVM

60

As you can see, not so much is changed from the Java setup, but make

sure your source files are in the scala folder now.

To confirm that the whole thing is in place and set up properly, let’s try

a simplistic OpenCV example again, but this time in Scala.

You will need to load the OpenCV native library as was done before

in the Java examples. If you put the loadLibrary call anywhere in the scala

object definition, it will be treated as a static call for the JVM and will load

the library when loading the newly Scala written SimpleOpenCV class.

The rest of the code is a rather direct translation of the Java code.

import org.opencv.core._

import org.opencv.core.CvType._

import clojure.lang.RT.loadLibrary

object SimpleOpenCV {

 loadLibrary(Core.NATIVE_LIBRARY_NAME)

 def main(args: Array[String]) {

 val mat = Mat.eye(3, 3, CV_8UC1)

 println("mat = \n" + mat.dump())

 }

}

When compiling the preceding code, some Java bytecode is generated

from the scala sources, in the target folder, in the same way it was done

with the Java code.

Thus, you can run the scala code in the exact same way as you were

doing with Java, or in command terms:

lein auto run

The output in the console shows the expected OpenCV 3x3 eye mat

dumped onscreen.

Chapter 1 OpenCV on the JavaVM

61

NikoMacBook% lein auto run

auto> Files changed: scala/DrawingContours.scala, scala/

SimpleOpenCV.scala, scala/SimpleOpenCV1.scala, scala/

SimpleOpenCV2.scala, scala/SimpleOpenCV3.scala

auto> Running: lein run

scala version: 2.12.4

sbt version: 0.13.9

fork java? false

[warn] Pruning sources from previous analysis, due to

incompatible CompileSetup.

mat =

[1, 0, 0;

 0, 1, 0;

 0, 0, 1]

auto> Completed.

An overview of the updated setup in Atom for scala can be found in

Figure 1-36.

Figure 1-36.  Scala setup

Chapter 1 OpenCV on the JavaVM

62

�Blurred

Agreed, the first Scala example was a little bit too simple, so let’s use some

of the power of the OpenCV blurring effect in Scala now.

import clojure.lang.RT.loadLibrary

import org.opencv.core._

import org.opencv.imgcodecs.Imgcodecs._

import org.opencv.imgproc.Imgproc._

object SimpleOpenCV2 {

 loadLibrary(Core.NATIVE_LIBRARY_NAME)

 def main(args: Array[String]) {

 val neko = imread("images/bored-cat.jpg")

 imwrite("output/blurred_cat.png", blur_(neko, 20))

 }

 def blur_(input: Mat, numberOfTimes:Integer) : Mat = {

 for(_ <- 1 to numberOfTimes)

 blur(input, input, new Size(11.0, 11.0))

 input

 }

}

As you can see, the blur effect is called successively many times in a

row to incrementally apply the blur effect on the same Mat object.

And the bored cat from Figure 1-37 can be blurred to a blurred bored

cat in Figure 1-38.

Chapter 1 OpenCV on the JavaVM

63

Figure 1-38.  Blurred and bored

Figure 1-37.  Bored cat

Surely you have tried this on your local machine and found two things

that are quite nice with the scala setup.

Compilation times are reduced a bit, and it is actually quicker to see

your OpenCV code in action. The scala compiler seems to determine the

required compilation steps from incremental code changes.

Also, static imports, even though they exist already in Java, seem to be

more naturally integrated with the scala setup.

�Canny Effect

In an effort to reduce boilerplate code a little bit more, Scala makes it easy

to import not only classes but also methods.

This third example in the scala recipe will show how to apply the canny

transformation after changing the color space of a loaded OpenCV Mat.

Chapter 1 OpenCV on the JavaVM

64

The code is quite clean; the only sad part is that the OpenCV function

vconcat is expecting a java.util.Array and cannot take native scala objects as

parameters, and so you’ll need to use the Arrays.asList Java function instead.

import java.util.Arrays

import org.opencv.core._

import org.opencv.core.CvType._

import org.opencv.core.Core._

import org.opencv.imgproc.Imgproc._

import org.opencv.imgcodecs.Imgcodecs._

import clojure.lang.RT.loadLibrary

object SimpleOpenCV3 {

 loadLibrary(Core.NATIVE_LIBRARY_NAME)

 def main(args: Array[String]) {

 val cat = imread("images/cat3.jpg")

 cvtColor(cat,cat,COLOR_RGB2GRAY)

 Canny(cat,cat, 220.0,230.0,5,true)

 val cat2 = cat.clone()

 bitwise_not(cat2,cat2)

 val target = new Mat

 vconcat(Arrays.asList(cat,cat2), target)

 imwrite("output/canny-cat.png", target)

 }

}

The canny parameters have been taken to output something in the

simple art space, and this time it’s not really effective to find out edges at

all. Figures 1-39 and 1-40 show the before/after of the canny effect on a

loaded cat image.

Chapter 1 OpenCV on the JavaVM

www.allitebooks.com

http://www.allitebooks.org

65

Figure 1-39.  Not afraid of Scala

Figure 1-40.  I has been warned

The Drawing contours example written for Java has also been ported to

Scala and is available in the source code of the samples available with this

book; for now, this is left as a simple exercise to the reader.

Chapter 1 OpenCV on the JavaVM

66

�1-15 Writing OpenCV Code in Kotlin
�Problems
Writing OpenCV transformations in Scala was quite exciting, but now that

Google is pushing for Kotlin you would like to be like the new kids on the

block and write OpenCV code in Kotlin.

�Solutions
Of course, there is also a Kotlin plug-in for Leiningen. As for the scala

setup, you will need to update the project metadata, again the file

project.clj.
You will mostly need to add the Kotlin plug-in, as well as the path to

the Kotlin source files.

�How it works
�Basic Setup

The places to update in the project.clj file are very similar to those for the

updates required for the scala setup and have been highlighted in the

following snippet.

(defproject opencv-kotlin-fun "0.1.0-SNAPSHOT"

 :repositories [

 �["vendredi" "http://hellonico.info:8081/repository/

hellonico/"]]

 :main First

 :plugins [

 [hellonico/lein-kotlin "0.0.2.1"]

 [lein-auto "0.1.3"]]

Chapter 1 OpenCV on the JavaVM

67

 :prep-tasks ["javac" "compile" "kotlin"]

 :kotlin-source-path "kotlin"

 :java-source-paths ["kotlin"]

 :auto {:default {:file-pattern #"\.(kt)$"}}

 :dependencies [

 [org.clojure/clojure "1.8.0"]

 [opencv/opencv "3.3.1"]

 [opencv/opencv-native "3.3.1"]])

Since the Kotlin classes are compiled to JavaVM bytecode

transparently by the plug-in, you can refer to the compiled classes as you

have done up to now.

Obviously, the first test is to find out whether you can load a Mat object

and dump its nice zero and one values.

The following ultrashort Kotlin snippet does just that.

import org.opencv.core.*

import org.opencv.core.CvType.*

import clojure.lang.RT

object First {

 @JvmStatic fun main(args: Array<String>) {

 RT.loadLibrary(Core.NATIVE_LIBRARY_NAME)

 val mat = Mat.eye(3, 3, CV_8UC1)

 println(mat.dump())

 }

}

The First.kt file should be in the Kotlin folder before you run the

usual Leiningen run command.

lein auto run –m First

Chapter 1 OpenCV on the JavaVM

68

And the command output, showing the OpenCV object properly

created and printed on the console, is also necessary.

auto> Files changed: kotlin/Blurring.kt, kotlin/ColorMapping.

kt, kotlin/First.kt, kotlin/ui/World0.kt, kotlin/ui/World1.kt,

kotlin/ui/World2.kt, kotlin/ui/World3.kt, kotl

in/ui/World4.kt

auto> Running: lein run -m First

[1, 0, 0;

 0, 1, 0;

 0, 0, 1]

auto> Completed.

That was an easy one. Let’s see how to do something slightly more

complex with Kotlin and OpenCV.

�Color Mapping

The following new example shows how to switch between different color

maps using the applyColorMap function of Imgproc, everything now

coded in Kotlin.

import org.opencv.core.*

import org.opencv.imgproc.Imgproc.*

import org.opencv.imgcodecs.Imgcodecs.*

object ColorMapping {

 @JvmStatic fun main(args: Array<String>) {

 System.loadLibrary(Core.NATIVE_LIBRARY_NAME)

 val mat = imread("resources/kitten.jpg")

 applyColorMap(mat,mat,COLORMAP_WINTER)

 imwrite("output/winter.png", mat)

Chapter 1 OpenCV on the JavaVM

69

 applyColorMap(mat,mat,COLORMAP_BONE)

 imwrite("output/bone.png", mat)

 applyColorMap(mat,mat,COLORMAP_HOT)

 val mat2 = mat.clone()

 val newSize =

 �Size((mat.width()/2).toDouble(),(mat.height()/2).

toDouble())

 resize(mat2,mat2,newSize)

 imwrite("output/hot.png", mat2)

 }

}

As you may know, constructor calls in Kotlin do not need the verbose

new keyword, and just like in Scala, methods can be statically imported.

You can see this in action and with the original input image in Figure 1-41.

Figure 1-41.  Cat ready for anything

You can see three files being created; those three output files are shown

in Figures 1-42, 1-43, and 1-44.

Chapter 1 OpenCV on the JavaVM

70

Figure 1-42.  Bone cat

Figure 1-43.  Winter cat

Figure 1-44.  Hot cat, changed its size

Proper type conversion seems to be a bit challenging in Kotlin, but

the code is again very compact and just like in Scala removes quite a bit of

boilerplate code.

Chapter 1 OpenCV on the JavaVM

71

�User Interface

One main reason you may want to use Kotlin is for its quite incredible

tornadofx library, which make it easier to write simple user interface in the

JVM underlying GUI framework JavaFX.

Small applications like this are quite useful to give the user the chance

to change OpenCV parameters and see the results in pseudo–real time.

Kotlin Setup

The tornadofx library can be added to the project.clj file in the

dependencies section, like the extracted snippet in the following:

(defproject opencv-kotlin-fun "0.1.0-SNAPSHOT"

 ...

 :dependencies [

 [org.clojure/clojure "1.8.0"]

 [opencv/opencv "3.3.1"]

 [no.tornado/tornadofx "1.7.11"]

 [opencv/opencv-native "3.3.1"]])

Since the goal of this recipe is to give you ideas of creativity, we are not

going to get deep into learning how to write Kotlin code and write Kotlin

code with tornadofx. But you will quickly enjoy a few Kotlin examples on

how to integrate those with OpenCV.

The coming first example shows you how to bootstrap your Kotlin code

to show an image within a frame.

UI for Dummies

A simple tornadofx application basically follows a given Launcher ➤ App

➤ View structure, as shown in the graph of Figure 1-45.

Chapter 1 OpenCV on the JavaVM

72

With this diagram in mind, we need to create three classes.

•	 HelloWorld0: the main view of the User Interface

application

•	 MyApp0: the JavaFX application object to send to the

JavaFX launcher

•	 World0: the main class, created only once, thus using

object instead of class to define it, to start the JVM-

based application

A view in tornadofx is made of a root panel, which can be customized

with the javafx widgets as you want.

•	 The following code creates a single view, where the

view is composed of an image embedded with the

imageview widget.

•	 The size of the image of the imageview is set within the

block defining the widget.

•	 The view initialization is done in the init {..} block, and

the root object, since it cannot be instantiated again, is

using the magical function with.

package ui;

import tornadofx.*

import javafx.application.Application

import javafx.scene.layout.*

class HelloWorld0 : View() {

 override val root = VBox()

Figure 1-45.  Tornadofx application graph

Chapter 1 OpenCV on the JavaVM

73

 init {

 with(root) {

 imageview("cat.jpg") {

 fitHeight = 160.0

 fitWidth = 200.0

 }

 }

 }

}

The rest of the code is standard tornadofx/javafx boilerplate to start the

JavaFX-based application properly.

class MyApp0: App(HelloWorld0::class)

object World0 {

 @JvmStatic fun main(args: Array<String>) {

 Application.launch(MyApp0::class.java, *args)

 }

}

Running the preceding code with leiningen in auto mode is done as

you have done up to now with

lein auto run –m ui.World0

And a graphical frame should show up on your screen (Figure 1-46).

Figure 1-46.  Image in frame

Chapter 1 OpenCV on the JavaVM

74

Actually, the code and the frame are slightly different. A title was set in

the root block with the following snippet added at the proper location. You

should find out where!

title = "Image in Frame"

UI with Reactive Buttons

The next example builds on the previous one and adds a button that when

clicked increments an internal counter, and the value of that counter is

then displayed onscreen in real time.

A reactive value can be created with a SimpleIntegerProperty, or

SimpleXXXProperty from the javafx.beans package.

That reactive value can then bound to a widget, and in the coming

example it will be bound to a label, so that the value of the label is equal to

the value of the property.

A button is a simple UI widget on which you can define an action

handler. The handler code can be either inside the block or in a different

Kotlin function.

With the goal and explanation in place, let’s go to the following code

snippet.

package ui;

import tornadofx.*

import javafx.application.Application

import javafx.scene.layout.*

import javafx.beans.property.SimpleIntegerProperty

import javafx.geometry.Pos

class CounterView : View() {

 override val root = BorderPane()

 val counter = SimpleIntegerProperty()

Chapter 1 OpenCV on the JavaVM

75

 init {

 title = "Counter"

 with (root) {

 style {

 padding = box(20.px)

 }

 center {

 vbox(10.0) {

 alignment = Pos.CENTER

 label() {

 bind(counter)

 style { fontSize = 25.px }

 }

 button("Click to increment") {

 action {increment()} }}}}}

 fun increment() {counter.value += 1}

}

class CounterApp : App(CounterView::class)

object Counter {

 @JvmStatic fun main(args: Array<String>) {

 Application.launch(CounterApp::class.java, *args)

 }

}

Chapter 1 OpenCV on the JavaVM

76

The result of running the counter application is shown in Figure 1-47.

Figure 1-48.  A few button clicks to increase the counter

Figure 1-47.  Simple counter app

And after a few clicks on the beautiful button, you will get something as

in Figure 1-48.

Blurring Application

Well, that was cool, but it looked like a course on creating GUI, and had not

much to do with OpenCV.

Right.

So, this last Kotlin application builds on the two previous examples

and shows how to build a blurring application, where the amount of blur is

set by a reactive property.

You have to go back and forth between the Image object of the Java

land and the Mat object of the OpenCV land. The following example shows

Chapter 1 OpenCV on the JavaVM

77

a quick way of doing this by using the imencode function from OpenCV,

which encodes a Mat object to bytes without turning all this to a file.

The blurring application has a val of type SimpleObjectProperty, which

when changes as its graphical view is being updated.

The longer list of imports is a bit annoying, but you would probably not

need much more of those for your own custom application.

package ui.cv;

import org.opencv.core.*

import org.opencv.imgproc.Imgproc.*

import org.opencv.imgcodecs.Imgcodecs.*

import clojure.lang.RT

import tornadofx.*

import javafx.application.Application

import javafx.scene.layout.*

import javafx.scene.paint.Color

import javafx.application.Platform

import javafx.beans.property.SimpleIntegerProperty

import javafx.beans.property.SimpleObjectProperty

import javafx.geometry.Pos

import javafx.scene.image.Image

class CounterView : View() {

 override val root = BorderPane()

 val counter = SimpleIntegerProperty(1)

 val imageObj = SimpleObjectProperty(Image("/cat.jpg"))

 val source = imread("images/cat.jpg")

 init {

 title = "Blur"

 with (root) {

Chapter 1 OpenCV on the JavaVM

78

 style {

 padding = box(20.px)

 }

 center {

 vbox(10.0) {

 alignment = Pos.CENTER

 label() {

 bind(counter)

 style { fontSize = 25.px }

 }

 imageview(imageObj) {

 fitWidth = 150.0

 fitHeight = 100.0

 }

 button("Click to increment") {

 action {

 increment()

 randomImage()

 }

 }

 button("Click to decrement {

 action {

 decrement()

 randomImage()

 }

 }

 }

 }

 }

 }

Chapter 1 OpenCV on the JavaVM

79

 fun blurImage() {

 val result_mat = Mat()

 blur(source, result_mat,

 �Size(counter.value.toDouble(),counter.value.

toDouble()))

 val mat_of_bytes = MatOfByte()

 imencode(".jpg", result_mat, mat_of_bytes)

 imageObj.value =

 �Image(java.io.ByteArrayInputStream(mat_of_bytes.

toArray()))

 }

 fun increment() {

 counter.value += 6

 }

 fun decrement() {

 if(counter.value>6)

 counter.value -= 6

 }

}

class MyBlurApp : App(CounterView::class)

object Blur {

 @JvmStatic fun main(args: Array<String>) {

 RT.loadLibrary(Core.NATIVE_LIBRARY_NAME)

 Application.launch(MyBlurApp::class.java, *args)

 }

}

Chapter 1 OpenCV on the JavaVM

80

Figure 1-49.  Blurring application

As usual, Leiningen takes care of doing all the Kotlin compilation

automatically for you on file change, and the blurring application appears

as in Figure 1-49.

When you click the increment button, the cat image becomes more

blurred, and when you click decrement, it becomes smoother again.

There are a few more tornadofx examples in the code samples along

with this book, so do not hesitate to check them out. You will probably

get more UI with OpenCV ideas; for example a drag-and-drop panel of

images, when images can be blurred at will. Doesn’t sound that out of

reach anymore, does it?

Chapter 1 OpenCV on the JavaVM

81

The first chapter has been filled with recipes, starting from creating a

small project in OpenCV on the JavaVM, working through gradually more

complicated image manipulation examples, first in Java, and then finally

enjoying the JavaVM runtime environment and thus working with Scala

and then Kotlin code with the expressive tornadofx library.

The door is now wide open to introduce the origami library, which is a

Clojure wrapper for OpenCV. The environment will bring you even more

concise code and more interactiveness to try new things and be creative.

Time to get excited.

I have a general sense of excitement about the future, and I
don’t know what that looks like yet. But it will be whatever I
make it.

Amanda Lindhout

Chapter 1 OpenCV on the JavaVM

83© Nicolas Modrzyk 2018
N. Modrzyk, Java Image Processing Recipes, https://doi.org/10.1007/978-1-4842-3465-5_2

CHAPTER 2

OpenCV with Origami

After staring at origami directions long enough, you sort of
become one with them and start understanding them from the
inside.

Zooey Deschanel

The Origami library was born out of the motivation that computer vision–

related programming should be simple to set up, simple to keep running,

and easy to experiment with.

These days, when artificial intelligence and neural networks are all the

rage, I was on a mission to prepare and generate data for various neural

networks. It quickly became clear that you cannot just dump any kind

of image or video data to a network and expect it to behave efficiently.

You need to organize all those images or videos by size, maybe colors

or content, and automate the processing of images as much as possible,

84

because sorting those one billion images by hand may prove time

consuming indeed.

So, in this chapter we present Origami, a Clojure wrapper, a project

template, and samples to work with for the OpenCV library on the JavaVM,

all of this working with a concise language.

The examples will be done in such a way that you will be introduced to

the OpenCV code via Clojure.

The setup you have seen in the previous chapter can be almost entirely

reused as is, so no time will be wasted learning what was already learned.

Mainly, you will just need to add the library as a dependency to a newly

created project.

Once this simple additional setup is done, we will review OpenCV

concepts through the eyes of the Origami library.

�2-1 Starting to Code with Origami
Life itself is simple…it’s just not easy.

Steve Maraboli

�Problem
You have heard about this library wrapping OpenCV in a lightweight DSL

named Origami and you would like to install it and give it a try on your

machine.

�Solution
If you have read or flipped through the first chapter of this book, you will

remember that Leiningen was used to create a project template and lay out

files in a simple project layout.

Chapter 2 OpenCV with Origami

85

Here, you will use a different project template named clj-opencv,

which will download the dependencies and copy the required files for you.

You will then be presented with the different coding styles that can be

used with this new setup.

�How it works
With Leiningen still installed on your machine, you can create a new

project based on a template in the same way used for creating a Java

opencv-based project.

�Project Setup with a Leiningen Template

The project template this time is named clj-opencv and is called with

Leiningen using the following one-liner on the terminal or console:

lein new clj-opencv myfirstcljcv

This will download the new template and create a myfirstcljcv folder

with approximately the following content:

├── notes
│ ├── empty.clj
│ └── practice.clj
├── output
├── project.clj
├── resources
│ ├── XML
│ │ ├── aGest.xml
│ │ ├── closed_frontal_palm.xml
│ │ ├── face.xml
│ │ ├── fist.xml
│ │ ├── haarcascade_eye_tree_eyeglasses.xml
│ │ ├── haarcascade_frontalface_alt2.xml

Chapter 2 OpenCV with Origami

86

│ │ └── palm.xml
│ ├── cat.jpg
│ ├── minicat.jpg
│ ├── nekobench.jpg
│ ├── souslesoleil.jpg
│ └── sunflower.jpg
└── test
 └── opencv3
 ├── ok.clj
 ├── simple.clj
 ├── tutorial.clj
 └── videosample.clj

6 directories, 19 files

In the preceding file structure

•	 notes is a folder containing code in the form of notes,

for gorilla and lein-gorilla. We will review how to use

those two beasts right after.

•	 project.clj is the already seen leiningen project file.

•	 resources contains sample images and XML files for

exercising and opencv recognition feature.

•	 test contains sample Clojure code showing how to get

started with opencv and origami.

The project.clj file, as you remember, holds almost all of the project

metadata. This time we will use a version that is slightly updated from what

you have seen in Chapter 1.

Chapter 2 OpenCV with Origami

87

The main differences from the previous chapter are highlighted in the

following, so let’s review it quickly.

 (defproject sample5 "0.1-SNAPSHOT"

:injections [

 (clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_

LIBRARY_NAME)]

:plugins [[lein-gorilla "0.4.0"]]

:test-paths ["test"]

:resource-paths ["rsc"]

:main opencv3.ok

:repositories [

 ["vendredi" "https://repository.hellonico.info/repository/

hellonico/"]]

:aliases {"notebook" ["gorilla" ":ip" "0.0.0.0" ":port" "10000"]}

:profiles {:dev {

 :resource-paths ["resources"]

 :dependencies [

 ; used for proto repl

 [org.clojure/tools.nrepl "0.2.11"]

 ; proto repl

 [proto-repl "0.3.1"]

 ; use to start a gorilla repl

 [gorilla-repl "0.4.0"]

 [seesaw "1.4.5"]]}}

:dependencies [

 [org.clojure/clojure "1.8.0"]

 [org.clojure/tools.cli "0.3.5"]

 [origami "0.1.2"]])

As expected, the origami library has been added as a dependency in

the dependencies section.

Chapter 2 OpenCV with Origami

88

A plug-in named gorilla has also been added. This will help you run

python’s notebook style code; we will cover that later on in this recipe.

The injections segment may be a bit obscure at first, but it mostly says

that the loading of the native OpenCV library will be done on starting the

environment, so you do not have to repeat it in all the examples, as was the

problem in the first chapter.

�Everything Is OK

The main namespace to run is opencv3.ok; let’s run it right now to make

sure the setup is ready. This has not changed from the first chapter, and you

still use the same command on the terminal or console to load code with:

lein run

After a short bit of output, you should be able to see something like

Using OpenCV Version: 3.3.1-dev ..

#object[org.opencv.core.Mat 0x69ce2f62 Mat [1200*1600*CV_8UC1,

isCont=true, isSubmat=false, nativeObj=0x7fcb16cefa70,

dataAddr=0x10f203000]]

A new gray neko has arisen!

The file grey-neko.jpg would have been created in the project folder

and be like the picture in Figure 2-1.

Chapter 2 OpenCV with Origami

89

The code of the opencv3.ok namespace is written in full as follows:

(ns opencv3.ok

 (:require [opencv3.core :refer :all]))

(defn -main [& args]

 (println "Using OpenCV Version: " VERSION "..")

 (->

 (imread "resources/cat.jpg")

 (cvt-color! COLOR_RGB2GRAY)

 (imwrite "grey-neko.jpg")

 (println "A new gray neko has arisen!")))

You would recognize the imread, cvtColor, imwrite opencv functions

used in the previous chapter, and indeed the java opencv functions are

simply wrapped in Clojure.

Figure 2-1.  Grey Neko

Chapter 2 OpenCV with Origami

90

This first code sequence flow written in the origami DSL is shown in

Figure 2-2.

�Webcam Check

If you have a webcam plugged in, there is another sample that starts the

camera and stream in a video. The file to run this is in samplevideo.clj.
As before, you can start the sample by specifying the namespace to the

lein run command.

 lein run -m opencv3.videosample

When the command starts, you will be presented with a moving view

of the coffee shop you are typing those few lines of code in, just as in

Figure 2-3.

Figure 2-2.  Code flow from the first Origami example

Chapter 2 OpenCV with Origami

91

While this was just to run the examples included with the project

template, you can already start writing your own experimental code in

your own files and run them using the lein run command.

�The Auto Plug-in Strikes Back

You will see soon why this is usually not the best way to work with origami,

because this recompiles all your source files each time. This is however a

technique that can be used to check that all your code compiles and runs

without errors.

So here is a quick reminder on how to set up the auto plug-in solution

presented in Chapter 1 for Java, Scala, and Kotlin, this time for Clojure/

Origami code.

Figure 2-3.  Tokyo coffee shop

Chapter 2 OpenCV with Origami

92

Modify the project.clj file to add the lein-auto plug-in so it matches

the following code:

 :plugins [[lein-gorilla "0.4.0"][lein-auto "0.1.3"]]

 :auto {:default {:file-pattern #"\.(clj)$"}}

This is not in the project template by default because it’s probably not

needed most of the time.

Once you have added this, you can run the usual auto command by

prefixing the command you want to execute with auto. Here:

lein auto run

This will execute the main namespace and wait for the file change to

compile and execute again.

And so, after modifying the main method of the ok.clj file like in the

following:

(defn -main [& args]

 (->

 (imread "resources/cat.jpg")

 (cvt-color! COLORMAP_JET)

 (imwrite "jet-neko.jpg")

 (println "A new jet neko has arisen!")))

Chapter 2 OpenCV with Origami

93

You can see a new file jet-neko.jpg created and a new fun-looking cat,

as in Figure 2-4.

Figure 2-4.  Jet cat

Now while this setup with the auto plug-in is perfectly ok, let’s see how

to minimize latency between your code typing and the processing output,

by using a Clojure REPL.

�At the REPL

We have just reviewed how to run samples and write some Origami code

in a fashion similar to the setup with Java, Scala, and Kotlin, and saw again

how to include and use the auto plug-in.

Better than that, Clojure comes with a Read-Eval-Print-Loop (REPL)

environment, meaning you can type in lines of code, like commands, one

by one, and get them executed instantly.

To start the Clojure REPL, Leiningen has a subcommand named repl,

which can be started with

lein repl

Chapter 2 OpenCV with Origami

94

After a few startup lines are printed on the terminal/console:

nREPL server started on port 64044 on host 127.0.0.1 -

nrepl://127.0.0.1:64044

REPL-y 0.3.7, nREPL 0.2.11

Clojure 1.8.0

Java HotSpot(TM) 64-Bit Server VM 1.8.0_151-b12

 Docs: (doc function-name-here)

 (find-doc "part-of-name-here")

 Source: (source function-name-here)

 Javadoc: (javadoc java-object-or-class-here)

 Exit: Control+D or (exit) or (quit)

 Results: Stored in vars *1, *2, *3, an exception in *e

You will then be greeted with the REPL prompt:

opencv3.ok=>

opencv3.ok is the main namespace of the project, and you can type in

code at the prompt just like you were typing code in the opencv3/ok.clj file.

For example, let’s check whether the underlying OpenCV library is loaded

properly by printing its version:

(println "Using OpenCV Version: " opencv3.core/VERSION "..")

; Using OpenCV Version: 3.3.1-dev ..

The library is indeed loaded properly, and native binding is found via

Leiningen’s magic.

Let’s use it right now for a kick-start. The following two lines get some

functions from the utils namespace, mainly to open a frame, and then load

an image and open it into that frame:

(require '[opencv3.utils :as u])

(u/show (imread "resources/minicat.jpg"))

Chapter 2 OpenCV with Origami

95

The cute cat from Figure 2-5 should now be showing up on your

computer as well.

Figure 2-5.  Cute cat

Origami encourages the notion of pipelines for image manipulation.

So, to read an image, convert the color of the loaded image, and show the

resulting image in a frame, you would usually pipe all the function calls

one after the other, using the Clojure threading macro ->, just like in the

following one-liner:

(-> "resources/minicat.jpg" imread (cvt-color! COLOR_RGB2GRAY)

(u/show))

Which now converts the minicat.jpg from Figure 2-5 to its gray version

as in Figure 2-6.

Chapter 2 OpenCV with Origami

96

-> does nothing more than reorganize code so that the first invocation

result goes to the input of the next line and so on. This makes for very swift

and compact image-processing code.

Note that the lines execute directly, so you don’t have to wait for file

changes or anything and can just get the result onscreen as you press the

Enter key.

Instant gratification.

Instant gratification takes too long.

Carrie Fisher

�REPL from Atom

The REPL started by Leiningen is quite nice, with a bunch of other features

you can discover through the documentation, but it’s hard to compete with

the autocompletion provided by a standard text editor.

Using all the same project metadata from the project.clj file, the Atom

editor can actually provide, via a plug-in, instant and visual completion

choices.

Figure 2-6.  Grayed cute cat

Chapter 2 OpenCV with Origami

97

The plug-in to install is named proto-repl. Effectively, you will need to

install two plug-ins

•	 the ink plug-in, required by prot-repl

•	 the proto-repl plug-in

to get the same setup on your atom editor, as shown in Figure 2-7.

Figure 2-8.  Start a REPL from within Atom

Figure 2-7.  Install two plug-ins in Atom: ink and proto-repl

The same Leiningen-based REPL can be started either by the atom

menu as in Figure 2-8 or by the equivalent key shortcut.

Chapter 2 OpenCV with Origami

98

When starting the REPL, a window named Proto-REPL opens on the

right-hand side of the Atom editor. This is exactly the same REPL that

you have used when executing the lein repl command directly from the

terminal. So, you can type in code there too.

But the real gem of this setup is to have autocompletion and choice

presented to you when typing code, as in Figure 2-9.

Figure 2-9.  Instant completion

You can now retype the code to read and convert the color of an image

directly in a file, let’s say ok.clj. Your setup should now be similar to that

shown in Figure 2-10.

Chapter 2 OpenCV with Origami

99

Once you have typed the code in, you can select code and execute the

selected lines of code by using Ctrl-Alt+s (on Mac, Command-Ctrl+s).

You can also execute the code block before the cursor by using

Ctrl-Alt+b (on Mac, Command-Ctrl+b) and get your shot of instant

gratification.

After code evaluation, and a slight tab arrangement, you can have

instant code writing on the left-hand side, and the image transformation

feedback on the right-hand side, just as in Figure 2-11.

Figure 2-10.  Atom editor + Clojure code

Chapter 2 OpenCV with Origami

100

The jet-set cat is now showing in the output.jpg file, and can be

updated by updating and executing code in the opened editor tab.

For example, see by yourself what happens when adding the resize!

function call in the processing flow, as in the following code.

(->

 (imread "resources/cat.jpg")

 (resize! (new-size 150 100))

 (cvt-color! COLORMAP_JET)

 (imwrite "output.jpg"))

Nice. A newly resized jet-set cat is now instantly showing on your screen.

Figure 2-11.  The ideal editor-based computer vision
environment

Chapter 2 OpenCV with Origami

101

�Gorilla Notebook

To complete this recipe, let’s present how to use gorilla from within an

Origami project.

Gorilla is a Leiningen plug-in, where you can write and run notebooks,

à la python’s jupyter.

This means you can write code alongside documentation, and even

better, you can also share those notes to the outside world.

How does that work? Gorilla takes your project setup and uses it to

execute the code in a background REPL. Hence, it will find the origami/

opencv setup taken from the project.clj file.

It will also start a web server whose goal is to serve notes or

worksheets. Worksheets are pages where you can write lines of code and

execute them.

You can also write documentation in the sheet itself in the form of

markdown markup, which renders to HTML.

As a result, each of the notes, or worksheets, ends up being effectively a

miniblog.

The project.clj file that comes with the clj-opencv template defines a

convenient leiningen alias to start gorilla via the notebook alias:

:aliases {"notebook" ["gorilla" ":ip" "0.0.0.0" ":port"

"10000"]}

This effectively tells leiningen to convert the notebook subcommand

to the following gorilla command:

lein gorilla :ip 0.0.0.0 :port 10000

Let’s try it, by using the following command on a console or terminal:

lein notebook

Chapter 2 OpenCV with Origami

102

After a few seconds, the Gorilla REPL is started. You can access it

already at the following location:

http://localhost:10000/worksheet.html?filename=notes/practice.clj

You will be presented with a worksheet like in Figure 2-12.

Figure 2-13.  Markdown text mode

Figure 2-12.  Gorilla notebook and a cat

In a gorilla notebook, every block of the page is either Clojure code

or markdown text. You can turn the currently highlighted block to text

mode by using Alt+g, Alt+m (or Ctrl+g, Ctrl+m on Mac) where m is for

markdown, as in Figure 2-13.

Chapter 2 OpenCV with Origami

103

You can also turn back the highlighted block into code mode by using

Alt+g, Alt+j (or Ctrl+g, Ctrl+j on Mac), where j is for Clojure, as in Figure 2-14.

To execute the highlighted block of code, you would use Shift+Enter,

and the block turns into executed mode, as in Figure 2-15.

Figure 2-14.  Block of code

Figure 2-15.  Clojure code was executed

What that does is read from the code block, send the input to the

background REPL via a websocket, retrieve the result, and print it the

underlying div of the code block.

Chapter 2 OpenCV with Origami

104

Table 2-1.  Most Used Key Shorcuts for the Gorilla REPL

Shortcut
Windows/Linux

Shortcut Mac Usage

↑ ↑ Go to the block above

↓ ↓ Go to the block below

Shift+Enter Shift+Enter Evaluate the highlighted block

Alt+g, Alt+b Ctrl+g, Ctrl+b Insert a block before the current one

Alt+g, Alt+n Ctrl+g, Ctrl+n Insert a block next to the current one

Alt+g, Alt+u Ctrl+g, Ctrl+u Move the current block up one block

Alt+g, Alt+d Ctrl+g, Ctrl+d Move the current block down one

block

Alt+g, Alt+x Ctrl+g, Ctrl+x Delete the current block

Alt+space Ctrl+space Autocompletion options

Alt+g, Alt+s Ctrl+g, Ctrl+s Save the current worksheet

Alt+g, Alt+l Ctrl+g, Ctrl+l Load a worksheet (a file)

Alt+g, Alt+e Ctrl+g, Ctrl+e Save the current worksheet to a new

file name

To make it easy to navigate a worksheet, the most used shortcuts have

been gathered in Table 2-1.

Alright; so now you know all that is needed to start typing code in

the gorilla REPL. Let’s try this out right now. In a new code block of the

worksheet, try to type in the following Clojure code.

(-> "http://eskipaper.com/images/jump-cat-1.jpg"

 (u/mat-from-url)

 (u/resize-by 0.3)

 (u/mat-view))

Chapter 2 OpenCV with Origami

105

And now… Shift+Enter! This should bring you close to Figure 2-16 and

a new shot of instant gratification.

Remember that all of this is happening in the browser, which has
three direct positive consequences.

The first one is that remote people can actually view your
worksheets, and they can provide documentation directly from their
own machines by connecting to the URL directly.

Second, they can also execute code directly block by block to
understand the flow.

Third, the saved format of the worksheets is such that they can be used
as standard namespaces and can be used through normal code-writing
workflow. Conversely, it also means that standard Clojure files can be
opened, and documentation can be added via the Gorilla REPL.

Figure 2-16.  Instant jumping cat

Chapter 2 OpenCV with Origami

106

From now on, we won’t impose using either the Gorilla REPL or the

Atom environment, or even simply typing on the REPL. Effectively, these

are three different views on the same project setup.

Simply remember for now that to show a picture, the function to use is

slightly different depending on whether you are in the Gorilla REPL or in a

standard REPL.

In the Gorilla REPL:

(u/mat-view)

In the standard REPL:

(u/show)

In atom, you would save the file:

(imwrite mat “output.jpg”)

OK, this time you are really all set! Time for some computer vision basics.

�2-2 Working with Mats
�Problem
As you remember from Chapter 1, Mat is your best friend when working

with OpenCV. You also remember functions like new Mat(), setTo, copyTo,

and so on to manipulate Mat. Now, you wonder how you can do basic Mat

operations using the Origami library.

�Solution
Since Origami is mainly a wrapper around OpenCV, all the same functions

are present in the API. This recipe shows basic Mat operations again,

and takes them further by presenting code tricks made possible by using

Clojure.

Chapter 2 OpenCV with Origami

107

�How it works
�Creating a Mat

Remember that you need a height, a width, and a number of channels

to create a mat. This is done using the new-mat function. The following

snippet creates a 30×30 Mat, with one channel per pixel, each value being

an integer.

(def mat (new-mat 30 30 CV_8UC1))

If you try to display the content of the mat, either with u/mat-view

(gorilla repl) or u/show (standard repl), then the memory assigned to the

mat is actually left as is. See Figure 2-17.

Figure 2-17.  New Mat with no assigned color

Let’s assign a color, the same to every pixel of the Mat. This is either

done when creating the Mat, or can be done with set-to, which is a call to

the .setTo Java function of OpenCV.

(def mat (new-mat 30 30 CV_8UC1 (new-scalar 105)))

; or

(def mat (new-mat 30 30 CV_8UC1))

(set-to mat (new-scalar 105))

Chapter 2 OpenCV with Origami

108

Every pixel in the mat now has value 105 assigned to it (Figure 2-18).

Figure 2-18.  Mat with assigned color

To understand most of the underlying matrix concepts of OpenCV, it is

usually a good idea for you to check the values of the underlying mat using

.dump or simply dump.
This will be done a few times in this chapter. To use it, simply call

dump on the mat you want to see the internals from.

(->>

 (new-scalar 128.0)

 (new-mat 3 3 CV_8UC1)

 (dump))

And the expected output is shown in the following, with the mat points

all set to the value of 128.

[128 128 128]

[128 128 128]

[128 128 128]

.dump calls the original OpenCV function and will print all the row and

column pixel values in one string.

"[128, 128, 128;\n 128, 128, 128;\n 128, 128, 128]"

�Creating a Colored Mat

With one channel per pixel, you can only specify the white intensity of

each pixel, and thus, you can only create gray mats.

Chapter 2 OpenCV with Origami

109

To create a colored mat, you need three channels, and by default, each

channel’s value representing the intensity of red, blue, and green.

To create a 30×30 red mat, the following snippet will create an empty

three-channel mat with each point in the mat set to the RGB value of [255 0

0] (yes, this is inverted, so be careful):

(def red-mat (new-mat 30 30 CV_8UC3 (new-scalar 0 0 255)))

In a similar way, to create a blue or green mat:

(def green-mat (new-mat 30 30 CV_8UC3 (new-scalar 0 255 0)))

(def blue-mat (new-mat 30 30 CV_8UC3 (new-scalar 255 0 0)))

If you execute all this in the gorilla REPL, each of the mats shows up, as

in Figure 2-19.

Figure 2-19.  Red, green, and blue mats

�Using a Submat

You will remember that we have seen how to use a submat in Chapter 1;

let’s review how to use those submats using origami.

Here, we first create an RGB mat with three channels per pixel, and set

all the pixels to a cyan color.

A submat can then be created using, well, the submat function and a

rectangle to define the size of the submat.

Chapter 2 OpenCV with Origami

110

This gives the following code snippet:

(def mat (new-mat 30 30 CV_8UC3 (new-scalar 255 255 0)))

(def sub (submat mat (new-rect 10 10 10 10)))

(set-to sub (new-scalar 0 255 255))

The resulting main mat, with yellow inside where the submat was

defined, and the rest of the mat in cyan color, is shown in Figure 2-20.

Figure 2-21.  Origami fun

Figure 2-20.  Submats with Origami

Just for the kicks at this stage, see what a one-liner of origami code can

do, by using hconcat!, a function that concatenates multiple mats together,

and clojure.core/repeat, which creates a sequence of the same item.

(u/mat-view (hconcat! (clojure.core/repeat 10 mat3)))

The resulting pattern is shown in Figure 2-21.

At this point, you can already figure out some creative generative

patterns by yourself.

Chapter 2 OpenCV with Origami

111

�Setting One Pixel Color

Setting all the colors of a mat was done using set-to. Setting one pixel to a

color is done using the Java method put. The put function takes a position

in the mat, and a byte array representing the RGB values of that pixel.

So, if you want to create a 3×3 mat with all its pixels to yellow, you

would use the following code snippet.

(def yellow (byte-array [0 238 238]))

(def a (new-mat 3 3 CV_8UC3))

(.put a 0 0 yellow)

(.put a 0 1 yellow)

(.put a 0 2 yellow)

(.put a 1 0 yellow)

(.put a 1 1 yellow)

(.put a 1 2 yellow)

(.put a 2 0 yellow)

(.put a 2 1 yellow)

(.put a 2 2 yellow)

Unfortunately, the 3×3 mat is a bit too small for this book, so you

should type in the code yourself.

The dump function works nicely here though, and you can see the

content of the yellow mat in the following:

[0 238 238 0 238 238 0 238 238]

[0 238 238 0 238 238 0 238 238]

[0 238 238 0 238 238 0 238 238]

Typing all this line by line is a bit tiring though, so this where you use

Clojure code to loop over the pixel as needed.

Chapter 2 OpenCV with Origami

112

A call to Clojure core doseq gets convenient to reduce the boilerplate.

(doseq [x [0 1 2]

 y [0 1 2]]

 (prn "x=" x "; y=" y))

The preceding simple doseq snippet simply loops over all the pixels of

a 3×3 mat.

"x=" 0 "; y=" 0

"x=" 0 "; y=" 1

"x=" 0 "; y=" 2

"x=" 1 "; y=" 0

"x=" 1 "; y=" 1

...

So, to have a bit more fun, let’s display some random red variants for

each pixel of a 100×100 colored mat. This would be pretty tiresome by

hand, so let’s use the doseq sequence here too.

(def height 100)

(def width 100)

(def a (new-mat height width CV_8UC3))

(doseq [x (range width)

 y (range height)]

 (.put a x y (byte-array [0 0 (rand 255)])))

Chapter 2 OpenCV with Origami

113

Figure 2-22 gives one version of the executed snippet.

�Piping Process and Some Generative Art

You can already see how Origami makes it quite simple and fun to

integrate generative work with OpenCV mats.

This short section will also be a quick introduction to the piping

process that is encouraged by Origami.

Clojure has two main constructs (called macros) named -> and ->>.

They pipe results throughout consecutive function calls.

The result of the first function call is passed as a parameter to the

second function, and then the result of that call to the second function is

passed on the third one, and so on.

The first macro, ->, passes the result as the first parameter to the next

function call.

The second macro, ->>, passes the result as the last parameter to the

next function call.

For example, creating a random gray mat could be done this way:

(->> (rand 255)

 (double)

 (new-scalar)

 (new-mat 30 30 CV_8UC1)

 (u/mat-view))

Figure 2-22.  Randomly filled mat with variant of red pixels

Chapter 2 OpenCV with Origami

114

Which, read line by line, gives the following steps:

•	 A random value is generated with rand; that value is

between 0 and 255.

•	 The generated value is a float, so we turn the value to

double.

•	 new-scalar is used to create the equivalent of a byte

array that OpenCV can conveniently handle.

•	 We then create a new 30×30 mat of one channel and

pass the scalar to the new-mat function to set the color

of the mat to the randomly generated value.

•	 Finally, we can view the generated mat (Figure 2-23).

Figure 2-23.  Generated random gray mat

You could do the same with a randomly colored mat as well. This time,

the rand function is called three times (Figure 2-24).

(->> (new-scalar (rand 255) (rand 255) (rand 255))

 (new-mat 30 30 CV_8UC3)

 (u/mat-view))

Chapter 2 OpenCV with Origami

115

Or, with the same result, but using a few more Clojure core functions:

(->>

 #(rand 255)

 (repeatedly 3)

 (apply new-scalar)

 (new-mat 30 30 CV_8UC3)

 (u/mat-view))

where

•	 # creates an anonymous function

•	 repeatedly calls the preceding function three times to

generate an array of three random values

•	 apply uses the array as parameters to new-scalar

•	 new-mat, as you have seen before, creates a mat

•	 u/mat-view displays the mat (Figure 2-24) in the gorilla

REPL

You can see now how you could also build on those mini code flows to

build different generative variations of mat. You can also combine those

mats, of course, using hconcat! or vconcat! functions of OpenCV.

Figure 2-24.

Chapter 2 OpenCV with Origami

116

The following new snippet generates a sequence of 25 elements using

range and then creates gray mats in the range of 0–255 by scaling the range

values (Figure 2-25).

 (->> (range 25)

 (map #(new-mat 30 30 CV_8UC1 (new-scalar (double (* % 10)))))

 (hconcat!)

 (u/mat-view))

Figure 2-25.  A gray gradient of 25 mats

Figure 2-26.  Smooth gray gradient of 255 mats

You can also smooth things up by generating a range of 255 values,

and making the created mat slightly smaller, with each mat of size 2×10

(Figure 2-26).

(->> (range 255)

 (map #(new-mat 20 2 CV_8UC1 (new-scalar (double %))))

 (hconcat!)

 (u/mat-view))

Chapter 2 OpenCV with Origami

117

�2-3 Loading, Showing, Saving Mats
�Problem
You have seen how to create and generate mats; now you would like to

save them, reopen them, and open mats located in a URL.

�Solution
Origami wraps the two main opencv functions to interact with the

filesystem, namely, imread and imwrite.

It also presents a new function called imshow that you may have

seen before if you have used standard opencv before. It will be covered in

greater detail here.

Finally, u/mat-from-url is an origami utility function that allows you to

retrieve a mat that is hosted on the net.

�How it works
�Loading

imread works the exact same as its opencv equivalent; this mostly means

that you simply give it a path from the filesystem, and the file is read and

converted to a ready-to-be-used Mat object.

In its simplest form, loading an image can be done as in the following

short code snippet:

(def mat (imread "resources/kitten.jpg"))

The file path, resources/kitten.jpg, is relative to the project, or can

also be a full path on the file system.

Chapter 2 OpenCV with Origami

118

The resulting loaded Mat object is shown in Figure 2-27.

Figure 2-27.  “This is not a cat.”

Following the opencv documentation, the following image file formats

are currently supported by Origami:

•	 Windows bitmaps - *.bmp, *.dib

•	 JPEG files - *.jpeg, *.jpg, *.jpe

•	 Portable Network Graphics - *.png

•	 Sun rasters - *.sr, *.ras

The following are also usually supported by OpenCV but may not be

supported on all platforms coming with Origami:

•	 JPEG 2000 files - *.jp2

•	 WebP - *.webp

•	 Portable image format - *.pbm, *.pgm, *.ppm

•	 TIFF files - *.tiff, *.tif

When loading an image, you can refer to Table 1-3 to specify the option

used to load the image, such as grayscale, and resize at the same time.

Chapter 2 OpenCV with Origami

https://doi.org/10.1007/978-1-4842-3465-5_1#Tab3

119

To load in grayscale and resize the image to a quarter of its size, you

could use the following snippet, written using the pipeline style you have

just seen.

(-> "resources/kitten.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_4)

 (u/mat-view))

It loads the same picture, but the mat looks different this time, as its

color has been converted, like in Figure 2-28.

Figure 2-28.  “This is not a gray cat.”

�Saving

The imwrite function from Origami takes from opencv’s imwrite, but

reverses the order of the parameters to make the function easy to use in

processing pipes.

For example, to write the previously loaded gray cat to a new file, you

would use

(imwrite mat "grey-neko.png")

Chapter 2 OpenCV with Origami

120

A new file, grey-neko.png, will be created from the loaded mat object

(Figure 2-29).

Figure 2-29.  grey-neko.png

You can observe that the resulting file image has actually been

converted from jpg to png for you, just by specifying it as the extension in

the file name.

The reason that the parameter order has been changed is that, in this

case, you can save images from within the pipeline code flow.

See in the following how the image is saved during the flow of

transformation.

(-> "resources/kitten.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_4)

 (imwrite "grey-neko.png")

 (u/mat-view))

The mat will be saved in the file image grey-neko.png, and the

processing will go on to the next step, here mat-view.

�Showing

Origami comes with a quick way of previewing images, and streams in the

form of the imshow function, from the opencv3.utils namespace.

(-> "resources/kitten.jpg"

 (imread)

 (u/imshow))

Chapter 2 OpenCV with Origami

121

The imshow function takes a mat as the parameter and opens a Java

frame with the mat inside, as shown in Figure 2-30.

Table 2-2.  Default Keys in Quick View

Key Action

Q Close Frame

F Full Screen Frame; press again to return to window mode

S Quick Save the picture currently showing

Figure 2-30.  Framed cat

The frame opened by imshow has a few default sets of key shortcuts, as

shown in Table 2-2.

This is not all; you can pass a map when using imshow to define

various settings from the background color of the frame to its size and so

forth. Also, a handlers section can be added to the map, where you can

define your own key shortcuts.

Chapter 2 OpenCV with Origami

122

See an example of the configuration map for the following frame.

{:frame

 {:color "#000000" :title "image" :width 400 :height 400}

 :handlers

 { 85 #(gamma! % 0.1) 86 #(gamma! % -0.1)}}

In the handlers section, each entry of the map is made of an ASCII

key code and a function. The function takes a mat and has to return a mat.

Here, you can suppose gamma! is a function changing brightness on a mat,

depending on a brightness parameter.

Figure 2-31 shows the mat after pressing u.

Figure 2-31.  Dark cat

Figure 2-32.  Bright cat

Figure 2-32 shows the mat after pressing v.

This is not the most important section of this book, but the quick frame

becomes quite handy when playing with the video streams later on in

Chapter 4.

Chapter 2 OpenCV with Origami

123

�Loading from URL

While it is usually the case that the picture can be accessed from the

filesystem the code is running on, many times there is a need to process a

picture that is remotely hosted.

Origami provides a basic mat-from-url function that takes a URL and

turns it into an OpenCV mat.

The standard way to do this in origami is shown in the following

snippet:

(-> "http://www.hellonico.info/static/cat-peekaboo.jpg"

 (u/mat-from-url)

 (u/mat-view))

And the resulting image is shown in Figure 2-33.

Figure 2-33.  Cat from the Internet

This was the only way to load a picture until recently. But then, most of

the time, you would be doing something like

(-> "http://www.hellonico.info/static/cat-peekaboo.jpg"

 (u/mat-from-url)

 (u/resize-by 0.5)

 (u/mat-view))

Chapter 2 OpenCV with Origami

124

to resize the picture right after loading it. Now, u/mat-from-url also accepts

imread parameters. So, to load the remote picture in gray, and reduce its

size altogether, you can directly pass in the IMREAD_* parameter. Note

that this has the side effect of creating a temporary file on the filesystem.

(-> "http://www.hellonico.info/static/cat-peekaboo.jpg"

 (u/mat-from-url IMREAD_REDUCED_GRAYSCALE_4)

 (u/mat-view))

The same remote picture is now both smaller and loaded in black and

white, as shown in Figure 2-34.

Figure 2-34.  Return of the cat in black and white

�2-4 Working with Colors, ColorMaps,
and ColorSpaces

Color is the place where our brain and the universe meet.

Paul Klee

�Problem
You want to learn a bit more about how to handle colors in OpenCV. Up

to now, we have only seen colors using the RGB encoding. There must be

some more!

Chapter 2 OpenCV with Origami

125

�Solution
Origami provides two simple namespaces, opencv3.colors.html and

opencv3.colors.rgb, to create the scalar values used for basic coloring, so we

will start by reviewing how to use those two namespaces to set colors to mat.

A color map works like a color filter, where you make the mat redder or

bluer, depending on your mood.

apply-color-map! and transform! are the two opencv core functions

used to achieve the color switch.

Finally, cvt-color! is another core opencv function that brings a mat

from one color space to another one, for example from RGB to black and

white. This is an important key feature of OpenCV, as most recognition

algorithms cannot be used properly in standard RGB.

�How it works
�Simple Colors

Colors from the origami packages need to be required, and so when you

use them, you need to update your namespace declaration at the top of the

notebook.

(ns joyful-leaves

 (:require

 [opencv3.utils :as u]

 [opencv3.colors.html :as html]

 [opencv3.colors.rgb :as rgb]

 [opencv3.core :refer :all]))

With the namespace rgb, you can create scalars for RGB values instead

of guessing them.

Chapter 2 OpenCV with Origami

126

So, if you want to use a red color, you can get your environment to

help you find and autocomplete the scalar you are looking for, as shown in

Figure 2-35.

Figure 2-35.  RGB colors

And so, using this in action, you can indeed use the following snippet

to create a 20×20 mat of a red color.

(-> (new-mat 20 20 CV_8UC3 rgb/red-2)

 (u/mat-view))

Note that since rgb/red-2 is a scalar, you can dump the values for each

channel by just printing it:

#object[org.opencv.core.Scalar 0x4e73ed0 "[0.0, 0.0, 205.0, 0.0]"]

This is pretty nice to find color codes quickly.

The opencv3.colors.html namespace was created so that you could

also use the traditional hexadecimal notation used in css. For a nice light

green with a bit of blue, you could use this:

(html/->scalar "#66cc77")

In full sample mode, and using threading ->>, this gives

(->> (html/->scalar "#66cc77")

 (new-mat 20 20 CV_8UC3)

 (u/mat-view))

Chapter 2 OpenCV with Origami

127

which creates a small mat of a light green/blue color (Figure 2-36).

Figure 2-36.  Colors using HTML codes

Printing the color itself gives you the assigned RGB values:

(html/->scalar "#66cc77")

; "[119.0, 204.0, 102.0, 0.0]"

And you can indeed check that the colors match by creating the RGB

scalar yourself.

(->> (new-scalar 119 204 102)

 (new-mat 20 20 CV_8UC3))

This will give you a mat with the exact same RGB-based color.

�Color Maps

Color maps can be understood by a simple color change, using a simple

filter, which results in something similar to your favorite smartphone

photo application.

There are a few default maps that can be used with OpenCV; let’s try

one of them, say COLORMAP_AUTUMN, which turns the mat into a quite

autumnal red.

Chapter 2 OpenCV with Origami

128

The following snippet shows how to make use of the usual imread and

the apply-color-map sequentially.

(-> "resources/cat-on-sofa.jpg"

 (imread IMREAD_REDUCED_COLOR_4)

 (apply-color-map! COLORMAP_AUTUMN)

 (u/mat-view))

The resulting cat is shown in Figure 2-38.

Figure 2-37.  Cat to be colored

To apply the map to a Mat, for example the cat from Figure 2-37, simply

use the apply-color-map! function.

Figure 2-38.  Autumn cat

Chapter 2 OpenCV with Origami

129

Here is the full list of standard color maps available straight out of the

box; try them out!

•	 COLORMAP_HOT

•	 COLORMAP_HSV

•	 COLORMAP_JET

•	 COLORMAP_BONE

•	 COLORMAP_COOL

•	 COLORMAP_PINK

•	 COLORMAP_RAINBOW

•	 COLORMAP_OCEAN

•	 COLORMAP_WINTER

•	 COLORMAP_SUMMER

•	 COLORMAP_AUTUMN

•	 COLORMAP_SPRING

You can also define your own color space conversion. This is done by

a matrix multiplication, which sounds geeky, but is actually simpler than it

sounds.

We will take the example of rgb/yellow-2. You may not remember, so if

you print it, you’ll find out that this is actually coded as, no blue, some green,

and some red, which translated into RGB gives the following: [0 238 238].

Then, we define a transformation matrix made of three columns

and three rows; since we are working with RGB mats, we will do this in

three-channel mode.

[0 0 0] ; blue

[0 0.5 0] ; green

[0 1 0.5] ; red

Chapter 2 OpenCV with Origami

130

What does this matrix do? Remember that we want to apply a color

transformation for each pixel, meaning in output we want a set of RGB

values for each pixel.

For any given pixel, the new RGB values are such that

•	 Blue is 0 × Input Blue + 0 × Input Green + 0 × Input Red

•	 Green is 0 × Input Blue + 0.5 × Input Green + 0 × Input Red

•	 Red is 0 × Input Blue + 1 × Input Green + 0.5 Input Red

And so, since our Mat is all yellow, we have the following input:

[0 238 238]

And the output of each pixel is such as follows:

[0x0 + 0x238 + 0x238, 0x0 + 0.5x238 + 0 x 238, 0x0 + 1x238 +

0.5x238]

Or, since 255 is the maximum value for a channel:

[0 119 255]

Now in origami code, this gives the following:

(def custom

 (u/matrix-to-mat [

 [0 0 0] ; blue

 [0 0.5 0] ; green

 [0 1 0.5] ; red

]))

(-> (new-mat 3 3 CV_8UC3 rgb/yellow-2)

 (dump))

Chapter 2 OpenCV with Origami

131

Here, the mat content is shown with dump:

[0 238 238 0 238 238 0 238 238]

[0 238 238 0 238 238 0 238 238]

[0 238 238 0 238 238 0 238 238]

Then:

(-> (new-mat 30 30 CV_8UC3 rgb/yellow-2) u/mat-view)

(-> (new-mat 3 3 CV_8UC3 rgb/yellow-2)

 (transform! custom)

 (dump))

And the result of the transformation is shown in the following, as

expected consists of a matrix of [0 119 255] values.

[0 119 255 0 119 255 0 119 255]

[0 119 255 0 119 255 0 119 255]

[0 119 255 0 119 255 0 119 255]

(-> (new-mat 30 30 CV_8UC3 rgb/yellow-2)

 (transform! custom)

 u/mat-view)

Make sure you execute the statements one by one to see the different

RGB values in the output, along with the colored mats.

You may look around in the literature, but a nice sepia transformation

would use the following matrix:

(def sepia-2 (u/matrix-to-mat [

 [0.131 0.534 0.272]

 [0.168 0.686 0.349]

 [0.189 0.769 0.393]]))

Chapter 2 OpenCV with Origami

132

(-> "resources/cat-on-sofa.jpg"

 (imread IMREAD_REDUCED_COLOR_4)

 (transform! sepia-2)

(u/mat-view))

With the resulting sepia cat in Figure 2-39.

Figure 2-39.  Sepia cat

Time to go out and make your own filters!

We have seen how transform is applied to each pixel in RGB. Later on,

when switching to other colorspaces, you can also remember that even

though the values won’t be red, blue, green anymore, this transform!

function can still be used in the same way.

�Color Space

You have been working almost uniquely in the RGB color space up to now,

which is the simplest one to use. In most computing cases, RGB is not the

most efficient, so many other color spaces have been created in the past

and are available for use. With Origami, to switch from one to the other,

you usually use the function cvt-color!

What does a color space switch do?

It basically means that the three-channel values for each pixel have

different meanings.

Chapter 2 OpenCV with Origami

133

For example, red in RGB can be encoded in RGB as 0 0 238 (and its

graphical representation is shown in Figure 2-40):

(-> (new-mat 1 1 CV_8UC3 rgb/red-2)

 (.dump))

; "[0, 0, 238]"

(-> (new-mat 30 30 CV_8UC3 rgb/red-2)

 (u/mat-view))

Figure 2-40.  Red in RGB color space

Figure 2-41.  Red in HSV color space

However, when you change the color space and convert it to another

namespace, say HSV, Hue-Saturation-Value, the values of the matrix are

changed.

(-> (new-mat 1 1 CV_8UC3 rgb/red-2)

 (cvt-color! COLOR_RGB2HSV)

 (.dump))

(-> (new-mat 30 30 CV_8UC3 rgb/red-2)

 (cvt-color! COLOR_RGB2HSV)

 (u/mat-view))

And of course, the simple display of the mat content is not really

relevant anymore; as shown in Figure 2-41, it turned to yellow!!

Chapter 2 OpenCV with Origami

134

Changing color space does not mean changing anything to the colors
of the mat, but changing the way those are represented internally.

Why would you want to change colorspace?

While each colorspace has its own advantages, color space HSV is

widely used due to the fact that it is easy to use ranges to identify and find

shapes of a given color in a mat.

In RGB, as you remember, each value of each channel represents the

intensity of red, green, or blue.

In opencv cv terms, let’s say we want to see a linear progression of red;

we can increase or decrease the value of the two other channels, green

and blue.

(->> (range 255)

 (map #(new-mat 20 1 CV_8UC3 (new-scalar % % 255)))

 (hconcat!)

 (u/mat-view))

That shows the line of Figure 2-42.

Figure 2-42.  Linear intensity of red in RGB

But what if in a picture, we are trying to look for orange-looking

shapes? Hmm… How does that orange color look in RGB again?

Yes, it starts to get slightly difficult. Let’s take a different approach and

look into the HSV color space.

Chapter 2 OpenCV with Origami

135

As mentioned, HSV stands for Hue-Saturation-Value:

•	 Hue is the color as you would understand it: it is

usually a value between 0 and 360, for 360 degrees,

even though OpenCV eight-bit pictures, the ones we

use the most, actually use a range between 0 and 180,

or half.

•	 Saturation is the amount of gray, and it ranges between

0 and 255.

•	 Value stands for brightness, and it ranges between 0

and 255.

In that case, let’s see what happens if we draw this ourselves, with what

we have learned so far.

The function hsv-mat creates a mat from a hue value.

As you can read, the code switches the color space of the mat twice,

once to set the color space to HSV and set the hue, and then back to RGB

so we can draw it later with the usual function imshow or mat-view.

(defn hsv-mat [h]

 (let[m (new-mat 20 3 CV_8UC3)]

 (cvt-color! m COLOR_BGR2HSV)

 (set-to m (new-scalar h 255 255))

 (cvt-color! m COLOR_HSV2BGR)

 m))

We have seen the hue ranges from 0 to 180 in OpenCV, so let’s do

a range on it and create a concatenated mat of all the small mats with

hconcat.

(->> (range 180)

 (map hsv-mat)

 (hconcat!)

 (u/mat-view))

Chapter 2 OpenCV with Origami

136

The drawn result is shown in Figure 2-43.

Figure 2-44.  Inverted hue spectrum

Figure 2-43.  Hue values

First, you may notice that toward the end of the bar, the color goes back

to red again. It is often considered a cylinder for that reason.

The second thing you may notice is that it is easier to just tell which

color you are looking for by providing a range. 20-25 is usually used for

yellow, for example.

Because it can be annoying to select red in one range, you can

sometimes use the reverse RGB during the color conversion: instead of using

COLOR_BGR2HSV, you can try to use COLOR_RGB2HSV (Figure 2-44).

This makes it easier to select red colors, with a hue range between 105

and 150.

Let’s try that on a red cat. It is hard to find a red cat in nature, so we will

use a picture instead.

Chapter 2 OpenCV with Origami

137

The cat is loaded with the following snippet (Figure 2-45).

(-> "resources/redcat.jpg"

 (imread IMREAD_REDUCED_COLOR_2)

 (u/mat-view))

Figure 2-45.  Natural red cat

Then, we define a range of lower red and upper red. The remaining

saturation and value are set to 30 30 (sometimes 50 50) and 255 255

(sometimes 250 250), so from very dark and grayed to full-blown hue color.

(def lower-red (new-scalar 105 30 30))

(def upper-red (new-scalar 150 255 255))

Now, we use the opencv in-range function, which we will see again

later in recipe 2-7, to say we want to find colors in a specified range and

store the result in a mask, which is initialized as an empty mat.

(def mask (new-mat))

(-> "resources/redcat.jpg"

 (imread IMREAD_REDUCED_COLOR_2)

 (cvt-color! COLOR_RGB2HSV)

 (in-range lower-red upper-red mask))

(u/mat-view mask)

Chapter 2 OpenCV with Origami

138

Et voila: the resulting mask mat is in Figure 2-46.

Figure 2-46.  Mask of the red colors from the picture

We will see that finding-color technique in more detail later, but now

you see why you would want to switch color space from RGB to something

that is easier to work with, here again HSV.

�2-5 Rotating and Transforming Mats
I shall now recall to mind that the motion of the heavenly
bodies is circular, since the motion appropriate to a sphere is
rotation in a circle.

Nicolaus Copernicus

�Problem
You would like to start rotating mats and applying simple linear

transformations.

�Solution
There are three ways of achieving rotation in OpenCV.

Chapter 2 OpenCV with Origami

139

In very simple cases, you can simply use flip, which will flip the picture

horizontally, vertically, or both.

Another way is to use the rotate function, which is a simple function

basically taking only an orientation constant and rotating the mat

according to that constant.

The all-star way is to use the function warp-affine. More can be done

with it, but it is slightly harder to master, making use of matrix computation

to perform the transformation.

Let’s see how all this works!

�How it works
We will make use of a base image throughout this tutorial, so let’s start by

loading it now for further reference (Figure 2-47). And of course, yes, you

can already load your own at this stage.

(def neko (imread "resources/ai3.jpg" IMREAD_REDUCED_COLOR_8))

(u/mat-view neko)

Figure 2-47.  Kitten ready for flipping and rotation

Chapter 2 OpenCV with Origami

140

�Flipping

Alright; this one is rather easy. You just need to call flip on the image with a

parameter telling how you want the flip to be done.

Note here the first-time usage of clone in the image-processing flow.

While flip! does transformation in place, thus modifying the picture that it

is passed, clone creates a new mat, so that the original neko is left untouched.

(-> neko

 (clone)

 (flip! 0)

 (u/mat-view))

And the result is shown in Figure 2-48.

Figure 2-48.  Flipped Neko

Most of the Origami functions work like this. The standard version,
here flip, needs an input mat and an output mat, while flip! does the
conversion in place and only needs an input/output mat. Also, while
flip has no return value, flip! returns the output mat so it can be used
in a pipeline.

Similarly, you have already seen cvt-color, and cvt-color!, or hconcat
and hconcat!, and so on.

Chapter 2 OpenCV with Origami

141

Let’s play a bit with Clojure and use a sequence to show all the possible

flips on a mat.

(->> [1 -1 0]

 (map #(-> neko clone (flip! %)))

 (hconcat!)

 (u/mat-view))

This time, all the flips are showing (Figure 2-49).

Figure 2-49.  Flip-flop

�Rotation

The function rotate! also takes a rotation parameter and turns the image

according to it.

(-> neko

 (clone)

 (rotate! ROTATE_90_CLOCKWISE)

 (u/mat-view))

Chapter 2 OpenCV with Origami

142

Note again the use of clone to create an intermediate mat in the

processing flow, and the result in Figure 2-50.

Figure 2-51.  Using hconcat! on rotated mats

Figure 2-50.  Clockwise-rotated cat

Note also how clone and ->> can be used to create multiple mats from

a single source.

(->> [ROTATE_90_COUNTERCLOCKWISE ROTATE_90_CLOCKWISE]

 (map #(-> neko clone (rotate! %)))

 (hconcat!)

 (u/mat-view))

In the final step, the multiple mats are concatenated using hconcat!

(Figure 2-51) or vconcat! (Figure 2-52).

Chapter 2 OpenCV with Origami

143

Figure 2-52.  Using vconcat! on rotated mats

Thanks to the usage of clone, the original mat is left untouched and

can still be used in other processing pipelines as if it had just been freshly

loaded.

�Warp

The last one, as promised, is the slightly more complicated version of

rotating a picture using the opencv function warp-affine along with a

rotation matrix.

The rotation matrix is created using the function get-rotation-matrix-

2-d and three parameters:

•	 a rotation point,

•	 a rotation angle,

•	 a zoom value.

In this first example, we keep the zoom factor to 1 and take a rotation

angle of 45 degrees.

Chapter 2 OpenCV with Origami

144

We also make the rotation point the center of the original mat.

(def img (clone neko))

(def rotation-angle 45)

(def zoom 1)

(def matrix

 (get-rotation-matrix-2-d

 (new-point (/ (.width img) 2) (/ (.height img) 2))

 rotation-angle

 zoom))

matrix is also a 2×3 Mat, made of Float values, as you can see if you print

it out. The rotation matrix can then be passed to the warp function. Warp

also takes a size to create the resulting mat with the proper dimension.

(warp-affine! img matrix (.size img))

(u/mat-view img)

And the 45-degrees-rotated cat is shown in Figure 2-53.

Figure 2-53.  45 degrees

Let’s now push the fun a bit more with some autogeneration

techniques. Let’s create a mat that is made of the concatenation of multiple

mats of rotated cats, each cat rotated with a different rotation factor.

Chapter 2 OpenCV with Origami

145

Figure 2-54.  Range and rotation

For this purpose, let’s create a function rotate-by!, which takes an

image and an angle and applies the rotation internally, using get-rotation-

matrix-2-d.

(defn rotate-by! [img angle]

 (let [M2

 (get-rotation-matrix-2-d

 (new-point (/ (.width img) 2) (/ (.height img) 2)) angle 1)]

 (warp-affine! img M2 (.size img))))

Then you can use that function in a small pipeline. The pipeline takes a

range of rotations between 0 and 360, and applies each angle in sequence

to the original neko mat.

(->> (range 0 360 40)

 (map #(-> neko clone (rotate-by! %)))

 (hconcat!)

 (u/mat-view))

And the fun concatenated mats are shown in Figure 2-54.

Furthermore, let’s enhance the rotate-by! function to also use an

optional zoom parameter. If the zoom factor is not specified, its value

defaults to 1.

(defn rotate-by!

 ([img angle] (rotate-by! img angle 1))

 ([img angle zoom]

Chapter 2 OpenCV with Origami

146

 (let

 [M2

 (get-rotation-matrix-2-d

 (new-point (/ (.width img) 2) (/ (.height img) 2))

angle zoom)]

 (warp-affine! img M2 (.size img)))))

The zoom parameter is then passed to the get-rotation-matrix-2-d

function.

This time, the snippet simply does a range over seven random zoom

values.

(->> (range 7)

 (map (fn[_] (-> neko clone (rotate-by! 0 (rand 5)))))

 (hconcat!)

 (u/mat-view))

And the result is shown in Figure 2-55. Also note that when the

zoom value is too small, default black borders can be seen in the resulting

small mat.

Figure 2-55.  Seven randomly zoomed cats

In the same way, many other image transformations can be done with

warp-affine, by passing matrixes created with a transformation matrix

using get-affine-transform, get-perspective-transform, and so forth.

Chapter 2 OpenCV with Origami

147

Figure 2-56.  Feline affine transformation

Most of the transformations take a source matrix of points and a

target matrix of points, and each of the opencv get-** functions creates a

transformation matrix to accordingly map from one set of points to the others.

When OpenCV requires a mat of “something,” you can use the origami

constructors, matrix-to-matofxxx from the util package.

(def src

 (u/matrix-to-matofpoint2f [[0 0]

 [5 5]

 [4 6]]))

(def dst

 (u/matrix-to-matofpoint2f [[2 0]

 [5 5]

 [4 6]]))

(def transform-mat (get-affine-transform src dst))

Applying the transformation is done in the same way with warp-affine.

(-> neko clone (warp-affine! transform-mat (.size neko)) u/mat-

view)

Figure 2-56 shows the result of the affine transformation.

Chapter 2 OpenCV with Origami

148

�2-6 Filtering Mats
�Problem
In contrast to mat transformations, where shapes are distorted and points

are moved, filtering applies an operation to each pixel of the original mat.

This recipe is about getting to know the different filtering methods

available.

�Solution
In this recipe, we will first look at how to create and apply a manual filter

by manually changing the values of each pixel in the mat.

Since this is boring, we will then move on to using multiply! to

efficiently change the colors and luminosity of the mat by applying a

coefficient of each channel value.

Next, we will move to some experiments with filter-2-d, which is used

to apply a custom-made filter to the mat.

The recipe will finish with examples of how to use threshold and

adaptive-threshold to keep only part of the information in a mat.

�How it works
�Manual Filter

The first example is a function that sets all but one of a channel’s values to

0, in a three-channel picture. That has the effect of completely changing

the color of the mat.

Notice how the function internally creates a fully sequential byte array

of all the bytes of the mat. 3 is used here because we are supposing that we

are working with a mat made of three channels per pixel.

Chapter 2 OpenCV with Origami

149

(defn filter-buffer! [image _mod]

 (let [total (* 3 (.total image))

 bytes (byte-array total)]

 (.get image 0 0 bytes)

 (doseq [^int i (range 0 total)]

 (if (not (= 0 (mod (+ i _mod) 3)))

 (aset-byte bytes i 0)))

 (.put image 0 0 bytes)

 image))

The mod if statement makes it so we set all values of that channel to 0

for all pixels in the mat.

We then use a new cat picture (Figure 2-57).

Figure 2-57.  Beautiful French cat

And simply put our function into action. The value 0 in the parameter

means that all but the blue channel will be set to 0.

(->

 "resources/emilie1.jpg"

 (imread)

 (filter-buffer! 0)

 (u/mat-view))

Chapter 2 OpenCV with Origami

150

And yes, the resulting picture is overly blue (Figure 2-58).

Figure 2-58.  Blue cat

Playing with Clojure code generative capability here again, we range over

the channels to create a concatenated mat of all three mats (Figure 2-59).

(def source

 (imread "resources/emilie1.jpg"))

(->> (range 0 3)

 (map #(filter-buffer! (clone source) %))

 (hconcat!)

 (u/mat-view))

Figure 2-59.  Three cats

Chapter 2 OpenCV with Origami

151

Figure 2-60.  Mellow cat

�Multiply

It was nice to create a filter manually to see the details of how its filters are

working, but actually, OpenCV has a function called multiply that does

exactly all of this already for you.
The function takes a mat, created with origami’s matrix-to-mat-of-

double, to apply a multiplication to the value of each channel in a pixel.

So, in an RGB-encoded picture, using matrix [1.0 0.5 0.0] means that

•	 the blue channel will stay as is; the blue channel value

will be multiplied by 1.0

•	 the green channel value will be halved; its values will

be multiplied by 0.5

•	 The red channel value will be set to 0; its values will be

multiplied by 0.

Putting this straight into action, we use the following short snippet to

turn the white cat into a mellow blue picture (Figure 2-60).

(->

 "resources/emilie1.jpg"

 (imread)

 (multiply! (u/matrix-to-mat-of-double [[1.0 0.5 0.0]]))

 (u/mat-view))

Chapter 2 OpenCV with Origami

152

�Luminosity

Combined with what you have learned already in chapter 2 about

changing the channels, you may remember that while RGB is great at

changing the intensity of a specific color channel, changing the luminosity

value can be easily done in the HSV color space.

Here again, we use the multiply function of OpenCV, but this time, the

color space of the mat is changed to HSV ahead of the multiplication.

(->

 "resources/emilie1.jpg"

 (imread)

 (cvt-color! COLOR_BGR2HSV)

 (multiply! (u/matrix-to-mat-of-double [[1.0 1.0 1.5]]))

 (cvt-color! COLOR_HSV2RGB)

(u/mat-view))

Note how the matrix used with multiply only applies a 1.5 factor to the

third channel of each pixel, which in the HSV color space is indeed the

luminosity. A bright result is shown in Figure 2-61.

Figure 2-61.  Bright cat

Chapter 2 OpenCV with Origami

153

�Highlight

The preceding short snippet actually gives you a nice way of highlighting

an element in a mat. Say you create a submat, or you have access to it

through some finding shape algorithm; you can apply the luminosity effect

to highlight only that part of the whole mat.

This is what the following new snippet does:

•	 It loads the main mat into the img variable

•	 It creates a processing pipeline focusing on a submat

of img

•	 The color conversion and the multiply operation are

done only on the submat

 (def img (->

 "resources/emilie1.jpg"

 (imread)))

(-> img

 (submat (new-rect 100 50 100 100))

 (cvt-color! COLOR_RGB2HLS)

 (multiply! (u/matrix-to-mat-of-double [[1.0 1.3 1.3]]))

 (cvt-color! COLOR_HLS2RGB))

(u/mat-view img)

Chapter 2 OpenCV with Origami

154

The resulting highlight mat is shown in Figure 2-62.

Figure 2-62.  Cat face

�Filter 2d

filter-2-d, the new OpenCV function introduced here, also performs

operations on bytes. But this time, it computes the value of each pixel of

the target mat, depending on the value of the src pixel and the values of the

surrounding pixel.

To understand how it is possible to do absolutely nothing, let’s take

an example where the multiplication keeps the value of the pixel as is,

by applying a filter that multiplies the value of current’s pixel by 1, and

ignoring the values of its neighbors. For this effect, the 3×3 filter matrix has

a value of 1 in the center (the target pixel) and 0 for all the other ones, the

surrounding neighbor pixels.

(-> "resources/emilie4.jpg"

 (imread)

 (filter-2-d! -1 (u/matrix-to-mat

 [[0 0 0]

 [0 1 0]

 [0 0 0]]))

 (u/mat-view))

Chapter 2 OpenCV with Origami

155

Figure 2-64.  Gray mat

This does nothing! Great. We all want more of that. The filter-2-d

function call really just keeps the image as is, as shown in Figure 2-63.

Figure 2-63.  Undisturbed cat

Let’s get back to matrixes and raw pixel values to understand a bit

more about how things work under the hood, with an example using a

simple gray matrix.

(def m (new-mat 100 100 CV_8UC1 (new-scalar 200.0)))

The preceding snippet, as you know by now, creates a small 100×100

gray mat (Figure 2-64).

Chapter 2 OpenCV with Origami

156

Now, we’ll focus on a portion of that gray mat using submat and apply

the filter-2-d function only on the submat.

We take a 3×3 matrix for the operation and use a 0.3 value for the main

center pixel. This means that when we apply the filter, the value of the

corresponding pixel in the target matrix will be 200×0.25=50.

(def s (submat m (new-rect 10 10 50 50)))

(filter-2-d! s -1

 (u/matrix-to-mat

 [[0 0 0]

 [0 0.25 0]

 [0 0 0]]))

Here, that means the entire submat will be darker than the pixels not

located in the submat, as confirmed in Figure 2-65.

Figure 2-65.  Submat has changed

And if you look at the pixel values themselves on a much smaller mat,

you’ll see that the value of the center pixel (the submat) has been divided

by exactly 4.

(def m (new-mat 3 3 CV_8UC1 (new-scalar 200.0)))

(def s (submat m (new-rect 1 1 1 1)))

(filter-2-d! s -1 (u/matrix-to-mat

 [[0 0 0]

 [0 0.25 0]

 [0 0 0]]))

(dump m)

Chapter 2 OpenCV with Origami

157

Figure 2-66.  Artful cat

; [200 200 200]

; [200 50 200]

; [200 200 200]

What else can you do with filter-2-d? It can be used for art effects as

well; you can create your own filters with your custom values. So, go ahead

and experiment.

(-> "resources/emilie4.jpg"

 (imread)

 (filter-2-d! -1 (u/matrix-to-mat

 [[17.8824 -43.5161 4.11935]

 [-3.45565 27.1554 -3.86714]

 [0.0299566 0.184309 -1.46709]]))

 (bitwise-not!)

 (u/mat-view))

The preceding filter turns the cat image into a mat ready to receive

some brushes of watercolors (Figure 2-66).

Chapter 2 OpenCV with Origami

158

�Threshold

Threshold is another filtering technique that resets values in a mat to a

default, when they are originally above or below a threshold.

Uh, what did you say?

To understand how that works, let’s go back to a small mat at the pixel

level again, with a simple 3×3 mat.

(u/matrix-to-mat [[0 50 100] [100 150 200] [200 210 250]])

; [0, 50, 100

; 100, 150, 200

; 200, 210, 250]

We can apply a threshold that sets the value of a pixel to

•	 0, if the original pixel is below 150

•	 250 otherwise

Here is how this works.

(->

 (u/matrix-to-mat [[0 50 100] [100 150 200] [200 210 250]])

 (threshold! 150 250 THRESH_BINARY)

 (.dump))

And the resulting matrix is

[0, 0, 0

 0, 0, 250

 250, 250, 250]

As you can see, only pixels with values greater than 150 are left to

nonzero values.

Chapter 2 OpenCV with Origami

159

You can create the complementary matrix by using THRESH_BINARY_

INV, as seen in the following.

(->

 (u/matrix-to-mat [[0 50 100] [100 150 200] [200 210 250]])

 (threshold! 150 250 THRESH_BINARY_INV)

 (.dump))

; [250, 250, 250

 250, 250, 0

 0, 0, 0]

Now applying this technique to a picture makes things quite

interesting by leaving only the interesting shapes of the content of the mat.

(-> "resources/emilie4.jpg"

 (imread)

 (cvt-color! COLOR_BGR2GRAY)

 (threshold! 150 250 THRESH_BINARY_INV)

 (u/mat-view))

Figure 2-67 shows the resulting mat after applying the threshold to my

sister’s white cat.

Figure 2-67.  Thresholded cat

Chapter 2 OpenCV with Origami

160

For reference, and for the next chapter’s adventures, there is also

another method named adaptive-threshold, which computes the target

value depending on the values from the surrounding pixels.

(-> "resources/emilie4.jpg"

 (imread)

 (u/resize-by 0.07)

 (cvt-color! COLOR_BGR2GRAY)

 (adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_BINARY

9 20)

 (u/mat-view))

•	 255 is the resulting value if the threshold is validated.

•	 You have just seen THRESH_BINARY or THRESH_

BINARY_INV

•	 9 is the size of the neighboring area to consider

•	 20 is a value subtracted from the sum

Figure 2-68 shows the result of the adaptive threshold.

Figure 2-68.  Adaptive cat

Chapter 2 OpenCV with Origami

161

Adaptive threshold is usually used in recipe 2-8 with blurring

techniques that we will study very shortly.

�2-7 Applying Simple Masking Techniques
�Problem
Masks can be used in a variety of situations where you want to apply mat

functions only to a certain part of a mat.

You would like to know how to create masks and how to put them into

action.

�Solution
We will review again the use of in-range to create masks based on colors.

Then, we will use copy-to and bitwise- to apply functions on the main

mat, but only on pixels selected by the mask.

�How it works
Let’s start by picking a romantic rose from the garden and loading with

imread.

(def rose

 (-> "resources/red_rose.jpg"

 (imread IMREAD_REDUCED_COLOR_2)))

(u/mat-view rose)

Chapter 2 OpenCV with Origami

162

Figure 2-69 shows the flower that will be the source of this exercise.

Figure 2-69.  Rose

To search for colors, as we have seen, let’s first convert the rose to a

different color space.

You know how to achieve this by now. Since the color we will be

looking for is red, let’s convert from RGB to HSV.

(def hsv

 (-> rose clone (cvt-color! COLOR_RGB2HSV)))

(u/mat-view hsv)

Figure 2-70.  Rose in HSV color space

Chapter 2 OpenCV with Origami

163

Let’s then filter on red, and since the rose is a bit dark too, let’s make

low values for saturation and luminosity on the lower bound red.

(def lower-red (new-scalar 120 30 15))

(def upper-red (new-scalar 130 255 255))

(def mask (new-mat))

(in-range hsv lower-red upper-red mask)

(u/mat-view mask)

We used that method notably in recipe 2-4, but we forgot to have a look

at the created mask. Basically, the mask is a mat of the same size as the input

of in-range, with pixels set to 0 where the source pixel is not in range and to

1 where it is in range. Here indeed, in-range works a bit like a threshold.

The resulting mask is shown in Figure 2-71.

Figure 2-71.  Mask of the red rose

The mask can now be used along with bitwise-and! and the original

source rose so that we copy pixels only where the mask mat has values not

equal to 0.

(def res (new-mat))

(bitwise-and! rose res mask)

(u/mat-view res)

Chapter 2 OpenCV with Origami

164

As a small exercise, we’ll change the luminosity of the mat by using

convert-to and with it apply the following formula on each pixel:

original*alpha+ beta

And so, the following code snippet just does that by calling convert-to.

(def res2 (new-mat))

(convert-to res res2 -1 1 100)

(u/mat-view res2)

The resulting masked rose is a slightly brighter version of the original

rose (Figure 2-73).

Figure 2-73.  Bright rose

Figure 2-72.  Only the rose

And now you have a resulting mat (Figure 2-72) of only the red part of

the picture.

Chapter 2 OpenCV with Origami

165

Let’s copy that resulting bright rose back to the original picture, or a

clone of it (Figure 2-74).

(def cl (clone rose))

(copy-to res2 cl mask)

(u/mat-view cl)

The concepts are nicely coming together.

Finally, let’s try something different, for example, copying a completely

different mat in place of the rose, again using a mask.

We can reuse the mask that was created in the preceding, and in a

similar fashion use copy-to to copy only specific points of a mat.

To perform the copy, we need the source and the target in copy-to to

be of the exact same size, as well as the mask. You will get quite a bad error

when this is not the case.

The resizing of mat is done as a first step.

(def cl2

 (imread "resources/emilie1.jpg"))

(resize! cl2 (new-size (cols mask) (rows mask)))

Figure 2-74.  Coming together

Chapter 2 OpenCV with Origami

166

Then, on a clone of the original rose picture, we can perform the copy,

specifying the mask as the last parameter of copy-to.

(def cl3

 (clone rose))

(copy-to cl2 cl3 mask)

(u/mat-view cl3)

The cat mat is thus copied onto the rose, but only where the mask

allows the copy to happen (Figure 2-75).

Figure 2-75.  The cat and the rose

�2-8 Blurring Images
I’m giving in to my tendency to want to blur and blend the
lines between art and life […]

Lia Ices

�Problem
As promised, this is a recipe to review blur techniques. Blurring is a simple

and frequent technique used in a variety of situations.

You would like to see the different kinds of blur available, and how to

use them with Origami.

Chapter 2 OpenCV with Origami

167

�Solution
There are four main methods to blur in OpenCV: blur, gaussian-blur,

median-blur, and bilateral-filter.

Let’s review each of them one by one.

�How it works
As usual, let’s load a base cat picture to use throughout this exercise.

(def neko

 (-> "resources/emilie5.jpg"

 (imread)

 (u/resize-by 0.07)))

(u/mat-view neko)

Figure 2-76 shows another picture of my sister’s cat.

Figure 2-76.  Cat on bed

Chapter 2 OpenCV with Origami

http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=blur#blur
http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=gaussianblur#gaussianblur
http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur
http://docs.opencv.org/modules/imgproc/doc/filtering.html?highlight=bilateralfilter#bilateralfilter

168

�Simple Blur and Median Blur

The flow to apply a simple blur is relatively simple. Like many other

image-processing techniques, we use a kernel, a square matrix with the

main pixel in the center, like 3×3 or 5×5. The kernel is the matrix in which

each pixel is given a coefficient.

In its simplest form, we just need to give it a kernel size for the area

to consider for the blur: the bigger the kernel area, the more blurred the

resulting picture will be.

Basically, each pixel of the output is the mean of its kernel neighbors.

(-> neko

 (clone)

 (blur! (new-size 3 3))

 (u/mat-view))

The result can be seen in Figure 2-77.

Figure 2-77.  Blurred cat on bed

And the bigger the kernel, the more blurred the picture will be.

Chapter 2 OpenCV with Origami

169

Figure 2-79.  Gaussian blurred cat

Figure 2-78 shows the result of using different kernel sizes with the

blur function.

(->> (range 3 10 2)

 (map #(-> neko clone (u/resize-by 0.5) (blur! (new-size % %))))

 (hconcat!)

 (u/mat-view))

�Gaussian Blur

This type of blur gives more weight to the center of the kernel. We will see

that in the next chapter, but this type of blur is actually good at removing

extra noise from pictures.

(-> neko clone (gaussian-blur! (new-size 5 5) 17) (u/mat-view))

The result of the gaussian blur is shown in Figure 2-79.

Figure 2-78.  Bigger kernels

Chapter 2 OpenCV with Origami

170

�Bilateral Filter

Those filters are used when you want to smooth the picture, but at the

same time would also like to keep the edges.

What are edges? Edges are contours that define the shapes available in

a picture.

The first example shows a simple usage of this bilateral filter.

(-> neko

 clone

 (bilateral-filter! 9 9 7)

 (u/mat-view))

Figure 2-80.  Gaussian blur

This second example shows an example where we want to keep the

edges. Edges can be easily found with the famous opencv function canny.

We will spend some more time with canny in the next chapter.

For now, let’s focus on the output and lines of Figure 2-81.

(-> neko

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (bilateral-filter! 9 9 7)

Chapter 2 OpenCV with Origami

171

 (canny! 50.0 250.0 3 true)

 (bitwise-not!)

 (u/mat-view))

The third example quickly shows why you would want to use a bilateral

filter instead of a simple blur. We keep the same small processing pipeline

but this time use a simple blur instead of a bilateral filter.

 (-> neko

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (blur! (new-size 3 3))

 (canny! 50.0 250.0 3 true)

 (bitwise-not!)

 (u/mat-view))

The output clearly highlights the problem: defining lines have

disappeared, and Figure 2-82 shows a disappearing cat …

Figure 2-81.  Gaussian blur and canny

Chapter 2 OpenCV with Origami

172

Figure 2-82.  Lines and cats have disappeared!

�Median Blur

Median blur is a friend of simple blur.

(-> neko

 clone

 (median-blur! 27)

 (u/mat-view))

It is worth noting that at high kernel length, or a kernel length of

greater than 21, we get something more artistic.

It is less useful for shape detection, as seen in Figures 2-83 and 2-84, but

still combines with other mats for creative impact, as we will see in chapter 3.

Figure 2-83.  Artistic cat (kernel length 31)

Chapter 2 OpenCV with Origami

173

Voila! Chapter 2 has been an introduction to Origami and its ease of

use: the setup, the conciseness, the processing pipelines, and the various

transformations.

This is only the beginning. Chapter 3 will be taking this setup to the

next level by combining principles and functions of OpenCV to find

shapes, count things, and move specific parts of mats to other locations.

The future belongs to those who prepare for it today.

Malcolm X

Figure 2-84.  Median blur with kernel 7 makes lines disappear

Chapter 2 OpenCV with Origami

175© Nicolas Modrzyk 2018
N. Modrzyk, Java Image Processing Recipes, https://doi.org/10.1007/978-1-4842-3465-5_3

CHAPTER 3

Imaging Techniques
The most perfect technique is that which is not noticed at all.

Pablo Casals

The previous chapter was an introduction to Origami and how to perform

mostly single-step processing operations on simple mats and images.

While that was already a very good show to highlight the library’s ease

of use, the third chapter wants to take you one step further by combining

simple processing steps together to reach a bigger goal. From performing

content analysis, contour detection, shape finding, and shape movements,

all the way to computer-based sketching and landscape art, you name it,

many an adventure awaits here.

We will start again on familiar ground by manipulating OpenCV mats

at the byte level, to grasp in even more detail the ins and outs of image

manipulation.

The learning will be split into two big sections. First will be a slightly

art-focused section, where we play with lines, gradations, and OpenCV

functions to create new images from existing ones. You will be using

already known origami/opencv functions, but a few other ones will also be

introduced as needed to go with the creative flow.

176

It was one of the original plans of Origami to be used to create

drawings. It just happened that to understand how simple concepts were

brought together, I had to play with image compositions and wireframes

that actually came out better than I thought they would. Even more so, it

was easy to just add your own touch and reuse the creations later on. So

that first part is meant to share this experience.

Then, in a second part, we will move onto techniques more focused

on image processing. Processing steps will be easier to grasp at that stage,

after reviewing steps with immediate feedback from the art section.

Processing steps in OpenCV are easy most of the time, but the original

samples in C++ make it quite hard to read through the lines of pointers.

I personally find, even with the Clojure learning curve included, that

Origami is an easier way to get started with OpenCV: you can focus on the

direct impact of your lines of code, and try writing each step in different

ways without restarting everything by getting instant feedback each time,

until eventually it comes into place nicely. Hopefully, the second part of

the chapter will make you comfortable enough that you will want to go and

challenge the examples even more.

Note that it is probably a good idea to read this chapter linearly so

that you do not miss new functions or new tricks along the way. However,

nothing prevents you from just jumping in where you feel like it, of course.

It is a recipe book after all!

�3-1 Playing with Colors
�Problem
In the previous chapter, you already saw various techniques to change

colors in a mat.

You would like to get control over how to specify and impact colors,

for example, increasing or decreasing their intensity, by applying specific

factors or functions on the mats.

Chapter 3 Imaging Techniques

177

�Solution
Here, you will learn about the following: how to combine operations like

converting an image color channel using the already known cvt-color; how

to use other OpenCV functions like threshold to limit channel values; how

to create masks and use them with the function set-to; and how to use

functions to combine separate versions of a mat.

You will review also in more detail how to use the transform! function

to create basic art effects.

�How it works
To play with mats, we will be using another set of cats and flowers, but you

can of course try applying the functions on your own photos any time.

The namespace header of the chapter, with all the namespace

dependencies, will use the same namespaces required in the last chapter,

namely, opencv3.core and opencv3.utils as well as opencv3.colors.rgb

from origami’s opencv3 original namespaces.

The required section looks like the following code snippet.

 (ns opencv3.chapter03

 (:require

 [opencv3.core :refer :all]

 [opencv3.colors.rgb :as rgb]

 [opencv3.utils :as u]))

It is usually a good idea to create a new notebook for each experiment,

and to save them separately.

�Applying Threshold on a Colored Mat

Back to the basics. Do you remember how to threshold on a mat, and keep

only the values in the matrix above 150?

Chapter 3 Imaging Techniques

178

Yes, you’re correct: use the threshold function.

(-> (u/matrix-to-mat [[100 255 200]

 [100 255 200]

 [100 255 200]])

 (threshold! 150 255 THRESH_BINARY)

 (dump))

The input matrix contains various values, some below and some above the

threshold value of 150. When applying threshold, the values below are set to 0

and the ones above are set to threshold’s second parameter value, 255.

This results in the following matrix (Figure 3-1):

[0 255 255]

[0 255 255]

[0 255 255]

Figure 3-1.  Black and white mat

That was for a one-channel mat, but what happens if we do the same

on a three-channel mat?

(-> (u/matrix-to-mat [[0 0 170]

 [0 0 170]

 [100 100 0]])

 (cvt-color! COLOR_GRAY2BGR)

 (threshold! 150 255 THRESH_BINARY)

 (dump))

Converting the colors to BGR duplicates each of the values of the

one-channel mat to the same three values on the same pixel.

Chapter 3 Imaging Techniques

179

Applying the OpenCV threshold function right afterward applies the

threshold to all the values over each channel. And so the resulting mat

loses the 100 values of the original mat and keeps only the 255 values.

[0 0 0 0 0 0 255 255 255]

[0 0 0 0 0 0 255 255 255]

[0 0 0 0 0 0 0 0 0]

A 3×3 matrix is a bit too small to show onscreen, so let’s use resize on

the input matrix first.

(-> (u/matrix-to-mat [[0 0 170]

 [0 0 170]

 [100 100 0]])

 (cvt-color! COLOR_GRAY2BGR)

 (resize! (new-size 50 50) 1 1 INTER_AREA)

 (u/mat-view))

Applying a similar threshold on the preceding mat keeps the light gray,

which has a value above the threshold, but removes the darker gray by

turning it to black.

(-> (u/matrix-to-mat [[0 0 170]

 [0 0 170]

 [100 100 0]])

 (cvt-color! COLOR_GRAY2BGR)

 (threshold! 150 255 THRESH_BINARY)

 (resize! (new-size 50 50) 0 0 INTER_AREA)

 (u/mat-view))

Chapter 3 Imaging Techniques

180

This gives us Figure 3-2.

Notice the use of a specific interpolation parameter with resize,

INTER_AREA, which nicely cuts the shape sharp, instead of interpolating

and forcing a blur.

Just for some extra info, the default resize method gives something like

Figure 3-3, which can be used in other circumstances, but this is not what

we want here.

Anyway, back to the exercise, and you probably have it at this point:

applying a standard threshold pushes forward vivid colors.

Let’s see how that works on a mat loaded from an image, and let’s load

our first image of the chapter (Figure 3-4).

(def rose

 (imread "resources/chapter03/rose.jpg" IMREAD_REDUCED_COLOR_4))

Figure 3-2.  Thresholded!

Figure 3-3.  Resize with default interpolation

Chapter 3 Imaging Techniques

181

We start by applying the same threshold that was applied on the mat

loaded from a matrix, but this time on the rose image.

(->

 original

 (clone)

 (threshold! 100 255 THRESH_BINARY)

 (u/mat-view))

You get a striking result! (Figure 3-5)

Figure 3-4.  Some say love it is a river

Figure 3-5.  Vivid colors

Chapter 3 Imaging Techniques

182

In a nicely shot photograph, this actually gives you an artistic feeling

that you can build upon for cards and Christmas presents!

Let’s now apply a similar technique on a completely different image.

We’ll turn the picture to black and white first and see what the result is.

This time, the picture is of playful kittens, as shown in Figure 3-6.

 (-> "resources/chapter03/ai6.jpg"

 (imread IMREAD_REDUCED_COLOR_2)

 (u/mat-view))

Figure 3-6.  Playful cats

If you apply a similar threshold but on the grayscale version,

something rather interesting happens.

(-> "resources/chapter03/ai6.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_2)

 (threshold! 100 255 THRESH_BINARY)

 (u/mat-view))

The two cats are actually standing out and being highlighted (Figure 3-7).

Chapter 3 Imaging Techniques

183

Cool; this means that the shape we wanted to stand out has been

highlighted.

Something similar to this can be used to find out shapes and moving

objects; more in recipe 3-6 and 3-7.

For now, and to keep things artistic, let’s work on a small function that

will turn all the colors under a given threshold to one color, and all the

values above the threshold to another one.

We can achieve this by

•	 First, turning to a different color space, namely HSV

•	 creating a mask from the threshold applied with

THRESH_BINARY setting

•	 creating a second mask from the threshold applied with

THRESH_BINARY_INV setting, thus creating a mask

with opposite values from the first one

•	 converting the two masks to gray, so they are only made

of one channel

•	 setting the color of the work mat using set-to, following

the first mask

•	 setting the color of the work mat using again set-to, but

following the second mask

•	 That’s it!

Figure 3-7.  Playful, highlighted cats

Chapter 3 Imaging Techniques

184

In coding happiness, we will create a low-high! function that does the

algorithm described in the preceding.

The low-high! function is composed of cvt-color!, threshold, and set-

to, all functions you already have seen.

(defn low-high!

 ([image t1 color1 color2]

 (let [_copy (-> image clone (cvt-color! COLOR_BGR2HSV))

 _work (clone image)

 _thresh-1 (new-mat)

 _thresh-2 (new-mat)]

 (threshold _copy _thresh-1 t1 255 THRESH_BINARY)

 (cvt-color! _thresh-1 COLOR_BGR2GRAY)

 (set-to _work color1 _thresh-1)

 (threshold _copy _thresh-2 t1 255 THRESH_BINARY_INV)

 (cvt-color! _thresh-2 COLOR_BGR2GRAY)

 (set-to _work color2 _thresh-2)

 _work)))

We will call it on the rose picture, with a threshold of 150 and a white

smoke to light blue split.

(->

 (imread "resources/chapter02/rose.jpg" IMREAD_REDUCED_COLOR_4)

 (low-high! 150 rgb/white-smoke- rgb/lightblue-1)

 (u/mat-view))

Executing the preceding snippet gives us Figure 3-8.

Chapter 3 Imaging Techniques

185

Great. But, you ask, do we really need to create two masks for this?

Indeed, you do not. You can do a bitwise operation perfectly on the first

mask. To do this, simply comment out the second mask creation and use

bitwise-not! before calling set-to the second time.

 ;(threshold _copy _thresh-2 t1 255 THRESH_BINARY_INV)

 ;(cvt-color! _thresh-2 COLOR_BGR2GRAY)

 (set-to _work color2 (bitwise-not! _thresh-1))

From there, you could also apply thresholds on different color maps, or

create ranges to use as threshold values.

Another idea here is, obviously, to just hot-space-queen-ize any picture.

In case you are wondering, the following snippet does that for you.

(def freddie-red (new-scalar 26 48 231))

(def freddie-blue (new-scalar 132 46 71))

(def bryan-yellow (new-scalar 56 235 255))

(def bryan-grey (new-scalar 186 185 181))

(def john-blue (new-scalar 235 169 0))

(def john-red (new-scalar 32 87 233))

(def roger-green (new-scalar 72 157 53))

(def roger-pink (new-scalar 151 95 226))

Figure 3-8.  White on light blue rose

Chapter 3 Imaging Techniques

186

(defn queen-ize [mat thresh]

 (vconcat! [

 (hconcat!

 [(-> mat clone (low-high! thresh freddie-red freddie-blue))

 (-> mat clone (low-high! thresh john-blue john-red))])

 (hconcat!

 [(-> mat clone (low-high! thresh roger-pink roger-green))

 �(-> mat clone (low-high! thresh bryan-yellow bryan-

grey))])]))

This really just is calling low-high! four times, each time with colors

from the Queen album Hot Space, from 1982.

And the old-fashioned result is shown in Figure 3-9.

Figure 3-9.  Cats and Queen

You really know how to set the mood

And you really get inside the groove

Cool cat
Queen – “Cool Cat”

Chapter 3 Imaging Techniques

187

�Channels by Hand

Whenever you are about to play with channels of a mat, remember the

opencv split function. The function separates the channels in a list of

independent mats, so you can entirely focus on only one of them.

You can then apply transformations to that specific mat, without

touching the others, and when finished, you can return to a multichannel

mat using the merge function, which does the reverse and takes a list of

mats, one per channel, and creates a target mat combining all the channels

into one mat.

To see that in action, suppose you have a simple orange mat (Figure 3-10).

(def orange-mat

 (new-mat 3 3 CV_8UC3 rgb/orange-2))

Figure 3-10.  Orange mat

If you want to turn the orange mat into a red one, you would simply set

all the values of the green channel to 0.

So, you start by splitting the RGB channels into three mats; then, set all

the values of the second mat to 0 and merge all three mats into one.

First, let’s split the mat into channels, and see the content of each of them.

In happy coding, this gives

(def channels (new-arraylist))

(split orange-mat channels)

The three channels are now separated into three elements in the list.

You can look at the content of each channel simply by using dump.

Chapter 3 Imaging Techniques

188

For example, dump of the blue channel:

(dump (nth channels 0))

; no blue

;[0 0 0]

;[0 0 0]

;[0 0 0]

or dump of the green channel:

(dump (nth channels 1))

; quite a bit of green

;[154 154 154]

;[154 154 154]

;[154 154 154]

Finally, dump of the red channel:

(dump (nth channels 2))

; almost max of red

;[238 238 238]

;[238 238 238]

;[238 238 238]

From there, let’s turn all those 154 values in the green channel to 0.

(set-to (nth channels 1) (new-scalar 0.0))

And then, let’s merge all the different mats back to a single mat and get

Figure 3-11.

(merge channels red-mat)

Chapter 3 Imaging Techniques

189

The green intensity on all pixels in the mat was uniformly set to 0, and

so with all the blue channel values already set to 0, the resulting mat is a

completely red one.

We can combine all the different steps of this small exercise and create

the function update-channel!, which takes a mat, a function, and the

channel to apply the function to and then returns the resulting mat.

Let’s try a first version using u/mat-to-bytes and u/bytes-to-mat! to

convert back and forth between mat and byte arrays.

This gets complicated, but is actually the easiest version I could come

up with to explain the flow of the transformation.

The code flow will be as follows:

•	 split the channels into a list

•	 retrieve the target channel’s mat

•	 convert the mat to bytes

•	 apply the function to every byte of the channel mat

•	 turn the byte array back to a mat

•	 set that mat to the corresponding channels in the list

•	 merge the channels into the resulting mat

This should now, at least, read almost sequentially as in the following:

(defn update-channel! [mat fnc chan]

 (let [channels (new-arraylist)]

 (split mat channels)

Figure 3-11.  Red mat

Chapter 3 Imaging Techniques

190

 (let [

 old-ch (nth channels chan)

 new-ch

 (u/bytes-to-mat!

 (new-mat (.height mat) (.width mat) (.type old-ch))

 (byte-array (map fnc (u/mat-to-bytes old-ch))))]

 (.set channels chan new-ch)

 (merge channels mat)

 mat)))

Now let’s get back to my sister’s cat, who’s been sleeping on the couch

for some time. Time to tease him a bit and wake him up.

(def my-sister-cat

(-> "resources/chapter03/emilie1.jpg"

(imread IMREAD_REDUCED_COLOR_8)))

With the help of the update-channel! function, let’s turn all the blue

and green channel values to their maximum possible values of 255. We

could have written a function that applies multiple functions at the same

time, but for now let’s just call the same function one by one in a row.

(->

 my-sister-cat

 clone

 (update-channel! (fn [x] 255) 1)

 (update-channel! (fn [x] 255) 0)

u/mat-view)

This is not very useful as far as imaging goes, nor very useful for my

sister’s cat either, but by maxing out all the values of the blue and green

channels, we get a picture that is all cyan (Figure 3-12).

Chapter 3 Imaging Techniques

191

Figure 3-12.  Cyan cat

This newly created function can also be combined with converting

colorspace.

Thus, switching to HSV color space before calling update-channel!

gives you full control over the mat’s color.

(->

 my-sister-cat

 clone

 (cvt-color! COLOR_RGB2HSV)

 (update-channel! (fn [x] 10) 0) ; blue filter

 (cvt-color! COLOR_HSV2RGB)

 (u/mat-view))

The preceding code applies a blue filter, leaving saturation and

brightness untouched, thus still keeping the image dynamics.

Of course, you could try with a pink filter, setting the filter’s value to

150, or red, by setting the filter’s value to 120, or any other possible value.

Try it out!

For now, enjoy the blue variation in Figure 3-13.

Chapter 3 Imaging Techniques

192

Personally, I also like the YUV switch combined with maximizing all

the luminance values (Y).

(->

 my-sister-cat

 clone

 (cvt-color! COLOR_BGR2YUV)

 (update-channel! (fn [x] 255) 0)

 (cvt-color! COLOR_YUV2BGR)

 (u/mat-view))

This gives a kind of watercolor feel to the image (Figure 3-14).

Figure 3-13.  Blue-filtered cat

Figure 3-14.  Artful cat

Chapter 3 Imaging Techniques

193

�Transform

If you remember transform, you could also apply different sorts of

transformation using the opencv transform function.

To understand the background of transform a bit, let’s get back once

again to the usual byte-per-byte matrix manipulation, first on a one-

channel 3×3 mat that we would like to make slightly darker.

(def s-mat (new-mat 3 3 CV_8UC1))

(.put s-mat 0 0 (byte-array [100 255 200

 100 255 200

 100 255 200]))

This can be viewed with the following code (Figure 3-15).

Figure 3-15.  Flag in black and white

(u/mat-view (-> s-mat clone (resize! (new-size 30 30) 1 1

INTER_AREA)))

Then we define a 1×1 transformation matrix, with one value of 0.7.

(def t-mat

 (new-mat 1 1 CV_32F (new-scalar 0.7))

Next, we apply the transformation in place and also dump the result to

see the values out from the transformation.

(-> s-mat

 (transform! t-mat)

 (dump))

Chapter 3 Imaging Techniques

194

Calling the transform function has the effect of turning all the values of

the input matrix to their original value multiplied by 0.7.

The result is shown in the following matrix:

[70 178 140]

[70 178 140]

[70 178 140]

It also means that the visuals of the mat have become darker (Figure 3-16):

Figure 3-16.  Darker flag

(u/mat-view (-> s-mat (resize! (new-size 30 30) 1 1 INTER_AREA)))

This is a simple matrix computation, but it already shows two things:

•	 The bytes of the source mat are all multiplied by the

value in the 1×1 mat;

•	 It’s actually easy to apply custom transformation.

Those transformations work much the same for mats with multiple

channels. So, let’s grab an example and move to a colored colorspace

(yeah, I know) using cvt-color!

(def s-mat (new-mat 3 3 CV_8UC1))

(.put s-mat 0 0 (byte-array [100 255 200

 100 255 200

 100 255 200]))

(cvt-color! s-mat COLOR_GRAY2BGR)

Chapter 3 Imaging Techniques

195

Because the mat is now made of three channels, we now need a 3×3

transformation matrix.

The following transformation mat will give more strength to the blue

channel.

[2 0 0 ; B -> B G R

 0 1 0 ; G -> B G R

 0 0 1] ; R -> B G R

The transformation matrix is made of lines constructed as input-

channel -> output channel, so three values per row, one for each output

value of each channel, and three rows, one for each input.

•	 [2 0 0] boosts the values of the blue channel by 2, and

does not affect green or red output values

•	 [0 1 0] keeps the green channel as is, and does not

contribute to other channels in the output

•	 [0 0 1] keeps the red channel as is, and similarly does

not contribute to other channels in the output

(def t-mat (new-mat 3 3 CV_32F))

(.put t-mat 0 0 (float-array [2 0 0

 0 1 0

 0 0 1]))

Applying the transformation to the newly colored mat gives you

Figure 3-17, where blue is prominently standing out.

Figure 3-17.  Blue flag

Chapter 3 Imaging Techniques

196

Since there is definitely no way we can leave my sister’s cat in peace,

let’s apply a similar transformation to it.

The code is exactly the same as the preceding small mat example, but

applied on an image.

(-> my-sister-cat

 clone

 (transform! (u/matrix-to-mat [[2 0 0] [0 1 0] [0 0 1]])))

And Figure 3-18 shows a blue version of a usually white cat.

Figure 3-18.  Blue meeoooww

If you wanted blue in the input to also influence red in the output, you

could use a matrix slightly similar to the following:

[2 0 1.1

 0 1 0

 0 0 1]

You can understand why by now, right? [2 0 1.1] means that the blue in

the input is gaining intensity, but that it also contributes to the intensity of

red in the output.

Chapter 3 Imaging Techniques

197

You should probably try a few transformation matrices by yourself to

get a feel for them.

So, now, how could you increase the luminosity of a mat using a

similar technique?

Yes, that’s right: by converting the matrix to HSV colorspace first, then

multiplying the third channel and keeping the others as they are.

The following sample increases the luminosity by 1.5 in the same

fashion.

 (-> my-sister-cat

 clone

 (cvt-color! COLOR_BGR2HSV)

 (transform! (u/matrix-to-mat [[1 0 0] [0 1 0] [0 0 1.5]]))

 (cvt-color! COLOR_HSV2BGR)

 u/mat-view)

Figure 3-19 shows the image output of the preceding snippet.

Figure 3-19.  Luminous cat

Chapter 3 Imaging Techniques

198

�Artful Transformations

To conclude this recipe, let’s play a bit with luminosity and contours to

create something a bit artistic.

We want to create a watercolor version of the input picture, by

maximizing the luminosity. We also want to create a “contour” version of

the image, by using opencv’s canny quick feature of contour detection.

Then finally, we will combine the two mats for a pencil-over-watercolor

effect.

First, let’s work on the background. The background is created by

performing two transformations in a row: one to max out the luminosity in

the YUV color space, the other to get it more vivid by increasing blue and

red colors.

(def

 usui-cat

 (-> my-sister-cat

 clone

 (cvt-color! COLOR_BGR2YUV)

 (transform! (u/matrix-to-mat [

 [20 0 0]

 [0 1 0]

 [0 0 1]]))

 (cvt-color! COLOR_YUV2BGR)

 (transform! (u/matrix-to-mat [[3 0 0]

 [0 1 0]

 [0 0 2]]))))

If you get a result that is too transparent, you could also add another

transformation at the end of the pipeline to increase contrast; this is easily

done in another colorspace, HSV.

Chapter 3 Imaging Techniques

199

 (cvt-color! COLOR_BGR2HSV)

 (transform! (u/matrix-to-mat

 [[1 0 0]

 [0 3 0]

 [0 0 1]]))

 (cvt-color! COLOR_HSV2BGR)

This gives us a nice pink-y background (Figure 3-20).

Figure 3-20.  Pink cat for background

Next is the foreground. The front cat is created using a call to opencv’s

canny function. This time, this is done in the one-channel gray color space.

(def

 line-cat

 (-> my-sister-cat

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (canny! 100.0 150.0 3 true)

 (cvt-color! COLOR_GRAY2BGR)

 (bitwise-not!)))

The canny version of my sister’s cat gives the following (Figure 3-21):

Chapter 3 Imaging Techniques

200

Then, the two mats are combined using a simple call to the function

bitwise-and, which merges two mats together by doing simple “and” bit

operations.

(def target (new-mat))

(bitwise-and usui-cat line-cat target)

This gives the nice artful cat in Figure 3-22.

Figure 3-21.  Cartoon cat

Figure 3-22.  Pink and art and cat

Chapter 3 Imaging Techniques

201

While the pink color may not be your favorite, you now have all the

tools to modify to your liking the flows presented in this recipe to create

many variations of artful cats, with different background colors and also

different foregrounds.

But please. No dogs.

�3-2 Creating Cartoons
Be yourself. No one can say you’re doing it wrong.

Charles M. Schulz

�Problem
You have seen a very simple way of doing cartoon artwork using canny,

but you would like to master a few more variations of doing cartoony

artwork.

�Solution
Most of the cartoon-looking transformations can be creating using a

variation of grayscale, blur, canny, and the channel filter functions that

were seen in the previous recipe.

�How it works
You have already seen the canny function, famous for easily highlighting

shapes in a picture. It can actually also be used for cartooning a bit. Let’s

see that with my friend Johan.

Johan is a sharp Belgian guy who sometimes gets tricked into having a

glass of good Pinot Noir (Figure 3-23).

Chapter 3 Imaging Techniques

https://www.goodreads.com/author/show/209672.Charles_M_Schulz

202

In this recipe, Johan was loaded with the following snippet:

(def source

 (-> "resources/chapter03/johan.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_8)))

A naïve canny call would look like this, where 10.0 and 90.0 are the

bottom and top thresholds for the canny function, 3 is the aperture, and

true/false means basically superhighlight mode or standard (false).

(->

source

clone

(canny! 10.0 90.0 3 false))

Johan has now been turned into a canny version of himself (Figure 3-24).

Figure 3-23.  Johan

Chapter 3 Imaging Techniques

203

You already know that we can use the result of the canny function as a

mask and for example do a copy of blue over white (Figure 3-25).

(def colored (u/mat-from source))

(set-to colored rgb/blue-2)

(def target (u/mat-from source))

(set-to target rgb/white)

(copy-to colored target c)

Figure 3-24.  Naïve canny usage

Figure 3-25.  Copy blue over white

Chapter 3 Imaging Techniques

204

That is quite a few lines showing in the picture. By reducing the range

between the two threshold values, we can make the picture significantly

clearer and look less messy.

(canny! 70.0 90.0 3 false)

This indeed makes Johan a bit clearer (Figure 3-26).

Figure 3-26.  Clearer Johan

The result is nice, but it still seems that there are quite a few extra lines

that should not be drawn.

The technique usually used to remove those extra lines is to apply a

median-blur or a gaussian-blur before calling the canny function.

Gaussian blur is usually more effective; do not hesitate to go big and

increase the size of the blur to at least 13×13 or even 21×21, as shown in the

following:

(->

source

clone

(cvt-color! COLOR_BGR2GRAY)

(gaussian-blur! (new-size 13 13) 1 1)

(canny! 70.0 90.0 3 false))

Chapter 3 Imaging Techniques

205

That code snippet gives a neatly clearer picture (Figure 3-27).

Figure 3-27.  Even better Johan

Do you remember the bilateral filter function? If you use it after

calling the canny function, it also gives some interesting cartoon shapes,

by putting emphasis where there are more lines coming out of the canny

effect.

(->

 source

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (canny! 70.0 90.0 3 false)

 (bilateral-filter! 10 80 30)))

Figure 3-28 shows the bilateral-filter! applied through a similar

processing pipeline.

Chapter 3 Imaging Techniques

206

You would remember that the focus of the bilateral filter is on

reinforcing the contours. And indeed, that is what is achieved here.

Note also that the bilateral filter parameters are very sensitive,

increasing the second parameter to 120; this gives a Picasso-like rendering

(Figure 3-29).

Figure 3-28.  Applying a bilateral filter

Figure 3-29.  Johasso

So, play around with parameters and see what works for you. The

whole Origami setup is there to give immediate feedback anyway.

Also, canny is not the only option. Let’s see other techniques to achieve

cartoon effects.

Chapter 3 Imaging Techniques

207

�Bilateral Cartoon

The bilateral filter is actually doing a lot of the cartoon work, so let’s see

if we can skip the canny processing and stick with just using the bilateral

filter step.

We will create a new function called cartoon-0. That new function will

•	 turn the input image to gray

•	 apply a very large bilateral filter

•	 apply successive smoothing functions

•	 then turn back to an RGB mat

A possible implementation is shown in the following:

(defn cartoon-0!

 [buffer]

 (-> buffer

 (cvt-color! COLOR_RGB2GRAY)

 (bilateral-filter! 10 250 30)

 (median-blur! 7)

 �(adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_

BINARY 9 3)

 (cvt-color! COLOR_GRAY2BGR)))

The output of cartoon-0! applied to Johan makes it to Figure 3-30.

(-> "resources/chapter03/johan.jpg"

(imread IMREAD_REDUCED_COLOR_8)

cartoon-0!

u/mat-view)

Chapter 3 Imaging Techniques

208

Here again, the parameters of the bilateral filter pretty much make all

the work.

Changing (bilateral-filter! 10 250 30) to (bilateral-filter! 9 9 7) gives a

completely different feeling.

(defn cartoon-1!

 [buffer]

 (-> buffer

 (cvt-color! COLOR_RGB2GRAY)

 (bilateral-filter! 9 9 7)

 (median-blur! 7)

 �(adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_

BINARY 9 3)

 (cvt-color! COLOR_GRAY2BGR)))

And Johan now looks even more artistic and thoughtful (Figure 3-31).

Figure 3-30.  No canny cartoon

Chapter 3 Imaging Techniques

209

�Grayed with Update Channel

The last technique of this recipe will take us back to use the update-
channel! function written in the previous recipe.

This new method uses update-channel with a function that

•	 turns the gray channel’s value to 0 if the original value

is less than 70;

•	 turns it to 100 if the original value is greater than 80 but

less than 180; and

•	 turns it to 255 otherwise.

This gives the following slightly long but simple pipeline:

(->

 "resources/chapter03/johan.jpg"

 (imread IMREAD_REDUCED_COLOR_8)

 (median-blur! 1)

 (cvt-color! COLOR_BGR2GRAY)

 (update-channel! (fn[x] (cond (< x 70) 0 (< x 180) 100 :else 255)) 0)

 (bitwise-not!)

 (cvt-color! COLOR_GRAY2BGR)

 (u/mat-view))

Figure 3-31.  Thoughtful Johan

Chapter 3 Imaging Techniques

210

This is nothing you would not understand by now, but the pipeline is

quite a pleasure to write and its result even more so, because it gives more

depth to the output than the other techniques used up to now (Figure 3-32).

Figure 3-32.  In-depth Johan

The output of the pipeline looks great, but the pixels have had quite a

bit of processing, so it is hard to tell what’s inside each of them at this stage,

and postprocessing after that needs a bit of care.

Say you want to increase the luminosity or change the color of the

preceding output; it is usually better to switch again to HSV color space

and increase the luminosity before changing anything on the colors, as

highlighted in the following:

(->

"resources/chapter03/shinji.jpg"

(imread IMREAD_REDUCED_COLOR_4)

(cartoon! 70 180 false)

(cvt-color! COLOR_BGR2HSV)

(update-channel! (fn [x] 250) 1)

(update-channel! (fn [x] 5) 0)

(cvt-color! COLOR_HSV2BGR)

(bitwise-not!)

(flip! 1)

(u/mat-view))

Chapter 3 Imaging Techniques

211

The final processing pipeline gives us a shining blue Johan (Figure 3-33).

The overall color is blue due to channel 0’s value set to 5 in HSV range, and

the luminosity set to 250, almost the maximum value.

Figure 3-33.  Flipped and blue

As a bonus, we also just flipped the image horizontally to end this

recipe on a forward-looking picture!

�3-3 Creating Pencil Sketches
�Problem
You have seen how to do some cartooning for portraits, but would like

to give it a more artistic sense by combining front sketching with deep

background colors.

�Solution
To create backgrounds with impact, you will see how to use pyr-down and

pyr-up combined with smoothing methods you have already seen.

To merge the result, we will again be using bitwise-and.

Chapter 3 Imaging Techniques

212

�How it works
My hometown is in the French Alps, near the Swiss border, and there is a

very nice canal flowing between the houses right in the middle of the old

town (Figure 3-34).

Figure 3-34.  Annecy, France, in the summertime

The goal here is to create a painted-looking version of that picture.

The plan is to proceed in three phases.

A goal without a plan is just a wish.

Antoine de Saint-Exupéry

Phase 1: we completely remove all the contours of the picture by

smoothing out the edges and doing loops of decreasing the resolution of

the picture. This will be the background picture.

Phase 2: We do the opposite, meaning we focus on the contours, by

applying similar techniques to what was done in the cartoon recipe, where

Chapter 3 Imaging Techniques

https://www.goodreads.com/author/show/1020792.Antoine_de_Saint_Exup_ry

213

we turn the picture to gray, find all the edges, and give them as much depth

as possible. This will be the front part.

Phase 3: Finally, we combine the results of phase 1 and phase 2 to get

the painting effect that we are looking for.

�Background

pyr-down! is probably new to you. This decreases the resolution of an

image. Let’s compare the mats before and after applying the change of

resolution done by the following snippet.

(def factor 1)

(def work (clone img))

(dotimes [_ factor] (pyr-down! work))

Before:

#object[org.opencv.core.Mat 0x3f133cac "Mat [

431*431*CV_8UC3...]"]

After:

#object[org.opencv.core.Mat 0x3f133cac "Mat [

216*216*CV_8UC3...]"]

Basically, the resolution of the mat has been divided by 2, rounded to

the pixel. (Yes, I have heard stories of 1/2 pixels before, but beware… those

are not true!!)

Using a factor of 4, and thus applying the resolution downgrade four

times, we get a mat that is now 27×27 and looks like the mat in Figure 3-35.

Chapter 3 Imaging Techniques

214

To create the background effect, we actually need a mat of the same

size as the original, so there is a need to resize the output to the size of the

original.

The first idea is of course to simply try the usual resize! function:

(resize! work (.size img))

But that does result in something not very satisfying to the eyes.

Figure 3-36 indeed shows some quite visible weird pixelization of the

resized mat.

Figure 3-35.  Changed resolution

Figure 3-36.  Hmmm… resizing

Chapter 3 Imaging Techniques

215

Let’s try something else. There is a reverse function of pyr-down,

named pyr-up, which doubles the resolution of a mat. To use it effectively,

we can apply pyr-up in a loop, and loop the same number of times as done

with pyr-down.

(dotimes [_ factor] (pyr-up! work))

The resulting mat is similar to Figure 3-36, but is much smoother, as

shown in Figure 3-37.

Figure 3-37.  Smooth blurring

The background is finalized by applying blur in the mat in between the

pyr-down and pyr-up dance.

So:

(dotimes [_ factor] (pyr-down! work))

(bilateral-filter! work 11 11 7)

(dotimes [_ factor] (pyr-up! work))

The output is kept for later, and that’s it for the background; let’s move

to the edge-finding part for the foreground.

Chapter 3 Imaging Techniques

216

�Foreground and Result

The foreground is going to be mostly a copy-paste exercise of the previous

recipe. You can of course create your own variation at this stage; we will

use here a cartooning function made of a median-blur and an adaptive-

threshold step.

(def edge

 (-> img

 clone

 (resize! (new-size (.cols output) (.rows output)))

 (cvt-color! COLOR_RGB2GRAY)

 (median-blur! 7)

 �(adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_

BINARY 9 7)

 (cvt-color! COLOR_GRAY2RGB)))

Using the old town image as input, this time you get a mat showing

only the prominent edges, as shown in Figure 3-38.

Figure 3-38.  Edges everywhere

Chapter 3 Imaging Techniques

217

To finish the exercise, we now combine the two mats using bitwise-and.

Basically, since the edges are black, a bitwise-and operation keeps them

black, and their values will be copied over as they are to the output mat.

This will have the consequence of copying the edges over unchanged

onto the target result, and since the remaining part of the edges mat is

made of white, bitwise-and will be the value of the other mat, and so the

color of the background mat will take precedence.

(let [result (new-mat)]

 (bitwise-and work edge result)

 (u/mat-view result))

This gives you the sketching effect of Figure 3-39.

Figure 3-39.  Sketching like the pros

With the adaptive threshold step, you can tune the way the front

sketching looks.

(adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_BINARY

 edges-thickness edges-number)

Chapter 3 Imaging Techniques

218

We used 9 as edges-thickness and 7 as edges-number in the first

sketch; let’s see what happens if we put those two parameters to 5.

This gives more space to the color of the background, by reducing the

thickness of the edges (Figure 3-40).

Figure 3-40.  Thinner edges

It’s now up to you to play and improvise from there!

�Summary

Finally, let’s get you equipped with a ready-to-use sketch! function. This is

an exact copy of the code that has been used up to now, with places for the

most important parameters for this sketching technique:

•	 the factors, e.g., the number of loops in the dance, used

to turn the resolution down and then turn it up again

•	 the parameters of the bilateral filter of the background

•	 the parameters of the adaptive threshold of the

foreground

Chapter 3 Imaging Techniques

219

The sketch! function is made of smoothing! and edges!. First, let’s use

smoothing! to create the background.

(defn smoothing!

 [img factor filter-size filter-value]

 (let [work (clone img) output (new-mat)]

 (dotimes [_ factor] (pyr-down! work))

 (bilateral-filter work output filter-size filter-size filter-value)

 (dotimes [_ factor] (pyr-up! output))

 (resize! output (new-size (.cols img) (.rows img)))))

Then edges! to create the foreground.

(defn edges!

 [img e1 e2 e3]

 (-> img

 clone

 (cvt-color! COLOR_RGB2GRAY)

 (median-blur! e1)

 �(adaptive-threshold! 255 ADAPTIVE_THRESH_MEAN_C THRESH_

BINARY e2 e3)

 (cvt-color! COLOR_GRAY2RGB)))

Finally, we can use sketch!, the combination of background and

foreground.

(defn sketch!

 [img s1 s2 s3 e1 e2 e3]

 (let [output (smoothing! img s1 s2 s3) edge (edges! img e1 e2 e3)]

 (bitwise-and output edge output)

 output))

Calling sketch! is relatively easy. You can try the following snippet:

 (sketch! 6 9 7 7 9 11)

Chapter 3 Imaging Techniques

220

And instantly turn the landscape picture of Figure 3-41 …

into the sketched version of Figure 3-42.

A few others have been put in the samples, but now is indeed the

time to take your own pictures and give those functions and parameters

a shot.

Figure 3-41.  Trees

Figure 3-42.  Sketch landscape

Chapter 3 Imaging Techniques

221

�3-4 Creating a Canvas Effect
�Problem
Creating landscape art seems to have no more secrets for you, but you

would like to emboss a canvas onto it, to make it more like a painting.

�Solution
This short recipe will reuse techniques you have seen, along with two new

mat functions: multiply and divide.
With divide, it is possible to create burning and dodging effects of a

mat, and we will use those to create the wanted effect.

With multiply, it is possible to combine mats back with a nice depth

effect, and so by using a paper-looking background mat, it will be possible

to have a special draw on canvas output.

�How it works
We will take another picture from the French Alps—I mean why not!—and

since we would like to make it look slightly vintage, we will use an image of

an old castle.

(def img

 (-> "resources/chapter03/montrottier.jpg"

 (imread IMREAD_REDUCED_COLOR_4)))

Figure 3-43 shows the castle of Montrottier, which you should probably

visit when you have the time, or vacation (I do not even know what the

second word means anymore).

Chapter 3 Imaging Techniques

222

We first start by applying a bitwise-not!, then a gaussian-blur on

a gray clone of the source picture; this is pretty easy to do with Origami

pipelines.

We will need a grayed version for later as well, so let’s keep the two

mats gray and gaussed separate.

(def gray

 (-> img clone (cvt-color! COLOR_BGR2GRAY)))

(def gaussed

 (-> gray

 clone

 bitwise-not!

 (gaussian-blur! (new-size 21 21) 0.0 0.0)))

Figure 3-44 shows the gaussed mat, which looks like a spooky version

of the input image.

Figure 3-43.  Wish upon a star

Chapter 3 Imaging Techniques

223

We will use this gaussed mat as a mask. The magic happens in the

function dodge!, which uses the opencv function divide on the original

picture, and an inverted version of the gaussed mat.

(defn dodge! [img_ mask]

 (let [output (clone img_)]

 (divide img_ (bitwise-not! (-> mask clone)) output 256.0)

 output))

Hmmm… okay. What does divide do? I mean, you know it divides

things, but at the byte level, what is really happening?

Let’s take two matrices, a and b, and call divide on them for an

example.

(def a (u/matrix-to-mat [[1 1 1]]))

(def b (u/matrix-to-mat [[0 1 2]]))

(def c (new-mat))

(divide a b c 10.0)

(dump c)

The output of the divide call is

[0 10 5]

Figure 3-44.  Spooky castle

Chapter 3 Imaging Techniques

224

which is

[(a0 / b0) * 10.0, (a1 / b1) * 10.0, (a2 / b2) * 10.0]

which gives

[1 / 0 * 10.0, 1 / 1 * 10.0, 1 / 2 * 10.0]

then, given that OpenCV considers that dividing by 0 equals 0:

[0, 10, 5]

Now, let’s call dodge! on the gray mat and the gaussed mat:

(u/mat-view (dodge! gray gaussed))

And see the sharp result of Figure 3-45.

Figure 3-45.  Sharp pencil

�Apply the Canvas

Now that the main picture has been turned to a crayon-styled art form, it

would be nice to lay this out on a canvas-looking mat. As presented, this is

done using the multiply function from OpenCV.

We want the canvas to look like a very old parchment, and we will use

the one from Figure 3-46.

Chapter 3 Imaging Techniques

225

Now we will create the apply-canvas! function, which takes the

front-end sketch, and the canvas, and applies the multiply function

between them. (/ 1 256.0) is the value used for the multiplication; since

these are gray bytes here, the bigger the value the whiter, and so here

(/ 1 256.0) makes the dark lines stand out quite nicely on the final result.

(defn apply-canvas! [sketch canvas]

 (let [out (new-mat)]

 (resize! canvas (new-size (.cols sketch) (.rows sketch)))

 (multiply

 �(-> sketch clone (cvt-color! COLOR_GRAY2RGB)) canvas out

(/ 1 256.0))

 out))

Whoo-hoo. Almost there; now let’s call this newly created function

(u/mat-view (apply-canvas! sketch canvas))

And enjoy the drawing on the canvas (Figure 3-47).

Figure 3-46.  Old parchment

Chapter 3 Imaging Techniques

226

Now is obviously the time for you to go and find/scan your own old

papers, to try a few things using this technique; or why not reuse the

cartoon functions from previous recipes to lay on top of the different

papers?

�3-5 Highlighting Lines and Circles
�Problem
This recipe is about teaching how to find and highlight lines, circles, and

segments in a loaded mat.

�Solution
A bit of preprocessing is usually needed to prepare the image to be

analyzed with some canny and smoothing operations.

Once this first preparation step is done, finding circles is done with the

opencv function hough-circles.

The version to find lines is called hough-lines, with its sibling hough-

lines-p, which uses probability to find better lines.

Figure 3-47.  Castle on old Parchment

Chapter 3 Imaging Techniques

227

Finally, we will see how to use a line-segment-detector to draw the

found segments.

�How it works
�Find Lines of a Tennis Court with Hough-Lines

The first part of this tutorial shows how to find lines within an image.

We will take the example of a tennis court.

(def tennis (-> "resources/chapter03/tennis_ground.jpg" imread))

You have probably seen a tennis court before, and this one is not so

different from the others (Figure 3-48). If you have never seen a tennis

court before, this is a great introduction all the same, but you should

probably stop reading and go play a game already.

Figure 3-48.  Tennis court

Chapter 3 Imaging Techniques

228

Preparing the target for the hough-lines function is done by converting

the original tennis court picture to gray, then applying a simple canny

transformation.

(def can

 (-> tennis

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (canny! 50.0 180.0 3 false)))

With the expected result of the lines standing out on a black

background, as shown in Figure 3-49.

Figure 3-49.  Canny tennis court

Lines are collected in a mat in the underlying Java version of opencv,

and so, no way to avoid this, we will also prepare a mat to receive the

resulting lines.

The hough-lines function itself is called with a bunch of parameters.

The full underlying polar system explanation for the hough transformation

can be found on the OpenCV web site:

https://docs.opencv.org/3.3.1/d9/db0/tutorial_hough_lines.html

Chapter 3 Imaging Techniques

https://docs.opencv.org/3.3.1/d9/db0/tutorial_hough_lines.html

229

You don’t really need to read everything just now, but it’s good to

realize what can be done and what cannot.

For now, we will just apply the same parameters suggested in the

linked tutorial.

(def lines (new-mat))

(hough-lines can lines 1 (/ Math/PI 180) 100)

The resulting mat of lines is made of a list of rows with two values, rho

and theta, on each row.

Creating the two points required to draw a line from rho and theta is a

bit complicated but is described in the opencv tutorial.

For now, the following function does the work for you.

(def result (clone parking))

(dotimes [i (.rows lines)]

 (let [val_ (.get lines i 0)

 rho (nth val_ 0)

 theta (nth val_ 1)

 a (Math/cos theta)

 b (Math/sin theta)

 x0 (* a rho)

 y0 (* b rho)

 pt1 (new-point

 (Math/round (+ x0 (* 1000 (* -1 b))))

 (Math/round (+ y0 (* 1000 a))))

 pt2 (new-point

 (Math/round (- x0 (* 1000 (* -1 b))))

 (Math/round (- y0 (* 1000 a))))

]

 (line result pt1 pt2 color/black 1)))

Drawing the found lines on top of the tennis court mat creates the

image in Figure 3-50.

Chapter 3 Imaging Techniques

230

Note that when calling hough-lines, changing the parameter with

value 1 to a value of 2 gives you way more lines, but you may need to filter

the lines yourself afterward.

Also by experience, changing the Math/PI rounding from 180 to 90

gives fewer lines but better results.

�Hough-Lines-P

Another variant of the hough-lines function, named hough-lines-p, is an

enhanced version with probabilistic mathematics added, and it usually

gives a better set of lines by performing guesses.

To try hough-lines with P, we will this time take the example of… a

soccer field.

(def soccer-field

 (-> "resources/chapter03/soccer-field.jpg"

 (imread IMREAD_REDUCED_COLOR_4)))

(u/mat-view soccer-field)

As per the original hough-lines example, we turn the soccer field to

gray and apply a slight gaussian blur to remove possible imperfections in

the source image.

Figure 3-50.  Hough-lines result

Chapter 3 Imaging Techniques

231

Figure 3-51.  Gray soccer field

(def gray

 (-> soccer-field

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (gaussian-blur! (new-size 1 1) 0)))

The resulting grayed version of the soccer field is shown in Figure 3-51.

Let’s now make a canny version of the court to create the edges.

(def edges (-> gray clone (canny! 100 220)))

Now, we call hough-lines-p. The parameters used are explained in

line in the following code snippet. Lines are expected to be collected from

the newly created edges mat.

; distance resolution in pixels of the Hough grid

(def rho 1)

; angular resolution in radians of the Hough grid

(def theta (/ Math/PI 180))

; minimum number of votes (intersections in Hough grid cell)

(def min-intersections 30)

; minimum number of pixels making up a line

(def min-line-length 10)

Chapter 3 Imaging Techniques

232

; maximum gap in pixels between connectable line segments

(def max-line-gap 50)

The parameters are ready; let’s call hough-lines-p, with the result being

stored in the lines mat.

(def lines (new-mat))

(hough-lines-p

 edges

 lines

 rho

 theta

 min-intersections

 min-line-length

 max-line-gap)

This time, the lines are slightly easier to draw than with the regular

hough-lines function. Each line of the result mat is made of four values, for

the two points needed to draw the line.

(def result (clone soccer-field))

(dotimes [i (.rows lines)]

(let [val (.get lines i 0)]

 (line result

 (new-point (nth val 0) (nth val 1))

 (new-point (nth val 2) (nth val 3))

 color/black 1)))

The result of drawing the results of hough-lines-p is displayed in

Figure 3-52.

Chapter 3 Imaging Techniques

233

�Finding Pockets on a Pool Table

No more running around on a court; let’s move to… the billiard table!

In a similar way, opencv has a function named hough-circles to look

for circle-looking shapes. What’s more, the function is pretty easy to put in

action.

This time, let’s try to find the ball pockets of a billiard table. The

exercise is slightly difficult because it is easy to wrongly count the regular

balls as pockets.

You can’t knock on opportunity’s door and not be ready.

Bruno Mars

Let’s get the pool table ready first.

(def pool

 (->

 "resources/chapter03/pooltable.jpg"

 (imread IMREAD_REDUCED_COLOR_2)))

Figure 3-52.  Lines on a soccer field

Chapter 3 Imaging Techniques

234

With hough-circles, it seems you can actually get better results by

bypassing the canny step in the preprocessing.

The following snippet now shows where to put values for the min and

max radius of the circles to look for in the source mat.

(def gray (-> pool clone (cvt-color! COLOR_BGR2GRAY)))

(def minRadius 13)

(def maxRadius 18)

(def circles (new-mat))

(hough-circles gray circles CV_HOUGH_GRADIENT 1

 minRadius 120 10 minRadius maxRadius)

Here again, circles are collected in a mat, with each line containing the

x and y position of the center of the circle and its radius.

Finally, we simply draw circles on the result mat with the opencv circle

function.

(def output (clone pool))

(dotimes [i (.cols circles)]

 (let [_circle (.get circles 0 i)

 x (nth _circle 0)

 y (nth _circle 1)

 r (nth _circle 2)

 p (new-point x y)]

(circle output p (int r) color/white 3)))

All the pockets are now highlighted in white in Figure 3-53.

Chapter 3 Imaging Techniques

235

Note that if you put the minRadius value too low, you quickly get false

positives with the regular balls, as shown in Figure 3-54.

Figure 3-54.  False pockets

Figure 3-53.  Pockets of the pool table in white!

So defining precisely what is searched for is the recipe for success in

most of your OpenCV endeavors (and maybe other ones too…).

And so, to avoid false positives here, it is also probably a good idea to

filter on colors before accepting and drawing the lines. Let’s see how to do

this next.

Chapter 3 Imaging Techniques

236

�Finding Circles

In this short example, we will be looking for red circles in a mat where

circles of multiple colors can be found.

(def bgr-image

 (-> "resources/detect/circles.jpg" imread (u/resize-by 0.5)))

The bgr-image is shown in Figure 3-55.

Figure 3-55.  Colorful circles

You may not see it if you are reading straight from the black-and-white

version of the book, but we will be focusing on the large bottom left circle,

which is of a vivid red.

If you remember lessons from the previous recipes, you already know

we need to change the color space to HSV and then filter on a hue range

between 0 and 10.

The following snippet shows how to do this along with some extra

blurring to ease processing later on.

(def ogr-image

 (-> bgr-image

Chapter 3 Imaging Techniques

237

Figure 3-56.  Red circle showing in white

 (clone)

 (median-blur! 3)

 (cvt-color! COLOR_BGR2HSV)

 (in-range! (new-scalar 0 100 100) (new-scalar 10 255 255))

 (gaussian-blur! (new-size 9 9) 2 2)))

All the circles we are not looking for have disappeared from the mat

resulting from the small pipeline, and the only circle we are looking for is

now standing out nicely (Figure 3-56).

Now we can apply the same hough-circles call as was seen just

previously; again, the circle will be collected in the circle mat, which will

be a 1×1 mat with three channels.

(def circles (new-mat))

(hough-circles ogr-image circles CV_HOUGH_GRADIENT 1 (/ (.rows

bgr-image) 8) 100 20 0 0)

(dotimes [i (.cols circles)]

 (let [_circle (.get circles 0 i)

 x (nth _circle 0)

 y (nth _circle 1)

 r (nth _circle 2)

 p (new-point x y)]

 (circle bgr-image p (int r) rgb/greenyellow 5)))

Chapter 3 Imaging Techniques

238

The result of drawing the circle with a border is shown in Figure 3-57.

The red circle has been highlighted with a green-yellow color and a

thickness of 5.

Figure 3-57.  Highlighted red circle

�Using Draw Segment

Sometimes, the easiest may be to simply use a technique using the

provided segment detector. It is less origami friendly, since the methods

used are straight Java method calls (so prefixed with a dot “.”), but the

snippet is rather self-contained.

Let’s try that on the previously seen soccer field. We’ll load it straight to

gray this time and see how the segment detector behaves.

(def soccer-field

 (-> "resources/chapter03/soccer-field.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_4)))

(def det (create-line-segment-detector))

(def lines (new-mat))

(def result (clone soccer-field))

We call detect on the line-segment-detector, using Clojure Java Interop

for now.

(.detect det soccer-field lines)

Chapter 3 Imaging Techniques

239

Figure 3-58.  Premiere mi-temps ( first period)

At this stage, the lines mat metadata is 161*1*CV_32FC4, meaning 161

rows, each made of 1 column and 4 channels per dot, meaning 2 points per

value.

The detector has a helpful drawSegments function, which we can call

to get the resulting mat.

(.drawSegments det result lines)

The soccer field mat is now showing in Figure 3-58, this time with all

the lines highlighted, including circles and semicircles.

�3-6 Finding and Drawing Contours
and Bounding Boxes
�Problem
Since identifying and counting shapes are at the forefront of OpenCV

usage, you would probably like to know how to use contour-finding

techniques in Origami.

Chapter 3 Imaging Techniques

240

�Solution
Apart from the traditional cleanup and image preparation, this recipe will

introduce the find-contours function to fill in a list of contours.

Once the contours are found, we need to apply a simple filter to

remove extremely large contours like the whole pictures as well as

contours that are really too small to be useful.

Once filtering is done, we can draw the contours using either

handmade circles and rectangles or the provided function draw-contours.

�How it works
�Sony Headphones

They are not so new anymore, but I love my Sony headphones. I simply

bring them everywhere, and you can feed your narcissism and get all the

attention you need by simply wearing them. They also get you the best

sound, whether on the train or on the plane…

Let’s have a quick game of finding my headphones’ contours.

(def headphones

 (-> "resources/chapter03/sonyheadphones.jpg"

 (imread IMREAD_REDUCED_COLOR_4)))

My headphones still have a cable, because I like the sound better still,

whatever some big companies are saying.

Anyway, the headphones are shown in Figure 3-59.

Chapter 3 Imaging Techniques

241

Figure 3-60.  Masked headphones

First, we need to prepare the headset to be easier to analyze. To do this,

we create a mask of the interesting part, the headphones themselves.

(def mask

 (-> headphones

 (cvt-color! COLOR_BGR2GRAY)

 (clone)

 (threshold! 250 255 THRESH_BINARY_INV)

 (median-blur! 7)))

The inverted thresh binary output is shown in Figure 3-60.

Figure 3-59.  Sony headphones with a cable

Chapter 3 Imaging Techniques

242

Then with the use of the mask, we create a masked-input mat that will

be used to ease the finding contours step.

(def masked-input

 (clone headphones))

(set-to masked-input (new-scalar 0 0 0) mask)

(set-to masked-input (new-scalar 255 255 255) (bitwise-not!

mask))

Have you noticed? Yes, there was an easier way to create the input,

by simply creating a noninverted mask in the first place, but this second

method gives more control for preparing the input mat.

So here we basically proceed in two steps. First, set all the pixels of the

original mat to black when the same pixel value of the mask is 1. Next, set

all the other values to white, on the opposite version of the mask.

The prepared result mat is in Figure 3-61.

Figure 3-61.  Preparation of the input mat

Now that the mat that will be used to find contours is ready, you can

almost directly call find-contours on it.

find-contours takes a few obvious parameters, and two ones, the last

two, that are a bit more obscure.

Chapter 3 Imaging Techniques

243

RETR_LIST is the simplest one, and returns all the contours as a list,

while RETR_TREE is the most often used, and means that the contours are

hierarchically ordered.

CHAIN_APPROX_NONE means all the points of the found contours

are stored. Usually though, when drawing those contours, you do not need

all of the points defining them. In case you do not need all of the points,

you can use CHAIN_APPROX_SIMPLE, which reduces the number of

points defining the contours.

It eventually depends how you handle the contours afterward. But for

now, let’s keep all the points!

(def contours

 (new-arraylist))

(find-contours

 masked-input

 contours

 (new-mat) ; mask

 RETR_TREE

 CHAIN_APPROX_NONE)

Alright, now let’s draw rectangles to highlight each found contour.

We loop on the contour list, and for each contour we use the bounding-rect

function to get a rectangle that wraps the contour itself.

The rectangle retrieve from the bounding-rect call can be used almost

as is, and we will draw our first contours with it.

(def exercise-1 (clone headphones))

(doseq [c contours]

 (let [rect (bounding-rect c)]

 (rectangle

 exercise-1

 (new-point (.x rect) (.y rect))

Chapter 3 Imaging Techniques

244

 �(new-point (+ (.width rect) (.x rect)) (+ (.y rect)

(.height rect)))

 (color/->scalar "#ccffcc")

 2)))

Contours are now showing in Figure 3-62.

Figure 3-62.  Headphone coutours

Right. Not bad. It is pretty obvious from the picture that the big

rectangle spreading over the whole picture is not very useful. That’s why

we need a bit of filtering.

Let’s filter the contours, by making sure they are

•	 not too small, meaning that the area they should cover

is at least 10,000, which is a surface of 125×80,

•	 nor too big, meaning that the height shouldn’t cover

the whole picture.

That filtering is now done in the following snippet.

(def interesting-contours

 (filter

 #(and

 (> (contour-area %) 10000)

 (< (.height (bounding-rect %)) (- (.height headphones) 10)))

 contours))

Chapter 3 Imaging Techniques

245

And so, drawing only the interesting-contours this time gives

something quite accurate.

(def exercise-1 (clone headphones))

(doseq [c interesting-contours]

 ...)

Figure 3-63 this time shows only useful contours.

Figure 3-63.  Headphones’ interesting contours

Drawing circles instead of rectangles should not be too hard, so here

we go with the same loop on interesting-contours, but this time, drawing a

circle based on the bounding-rect.

(def exercise-2 (clone headphones))

(doseq [c interesting-contours]

 (let [rect (bounding-rect c) center (u/center-of-rect rect)]

 (circle exercise-2

 center

 (u/distance-of-two-points center (.tl rect))

 (color/->scalar "#ccffcc")

 2)))

The resulting mat, exercise-2, is shown in Figure 3-64.

Chapter 3 Imaging Techniques

246

Figure 3-64.  Circling on it

Finally, while it’s harder to use for detection processing, you can also

use the opencv function draw-contours to nicely draw the free shape of

the contour.

We will still be looping on the interesting-contours list. Note that the

parameters may feel a bit strange, since draw-contours uses an index along

with the list instead of the contour itself, so be careful when using draw-

contours.

(def exercise-3 (clone headphones))

(dotimes [ci (.size interesting-contours)]

 (draw-contours

 exercise-3

 interesting-contours

 ci

 (color/->scalar "#cc66cc")

 3))

And finally, the resulting mat can be found in Figure 3-65.

Chapter 3 Imaging Techniques

247

Things are not always so easy, so let’s take another example up in

the sky!

�Up in the Sky

This second example takes hot-air balloons in the sky, and wants to draw

contours on them.

The picture of hot-air balloons in Figure 3-66 seems very innocent and

peaceful.

Figure 3-66.  Hot-air balloons

Figure 3-65.  Headset and pink contours

Chapter 3 Imaging Techniques

248

Unfortunately, using the same technique as previously shown to

prepare the picture does not reach a very sexy result.

(def wrong-mask

 (-> kikyu

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (threshold! 250 255 THRESH_BINARY)

 (median-blur! 7)))

It’s pretty pitch-black in Figure 3-67.

Figure 3-67.  Anybody up here?

So, let’s try another technique. What would you do to get a better

mask?

Yes—why not? Let’s filter all this blue and create a blurred mask from

it. This should give you the following snippet.

(def mask

 (-> kikyu

 (clone)

 (cvt-color! COLOR_RGB2HSV)

 (in-range! (new-scalar 10 30 30) (new-scalar 30 255 255))

 (median-blur! 7)))

Nice! Figure 3-68 shows that this actually worked out pretty neatly.

Chapter 3 Imaging Techniques

249

We will now use the complement version of the mask to find the

contours.

(def work (-> mask bitwise-not!))

Using the finding-contours function has no more secrets to hide from

you. Or maybe it does? What’s the new-point doing in the parameter list?

Don’t worry; it is just an offset value, and here we specify no offset, so 0 0.

(def contours (new-arraylist))

(find-contours work contours (new-mat) RETR_LIST CHAIN_APPROX_

SIMPLE (new-point 0 0))

Contours are in! Let’s filter on the size and draw circles around them.

This is simply a rehash of the previous example.

(def output_ (clone kikyu))

(doseq [c contours]

 (if (> (contour-area c) 50)

 (let [rect (bounding-rect c)]

 (if (and (> (.height rect) 40) (> (.width rect) 60))

 (circle

 output_

Figure 3-68.  Useful mask

Chapter 3 Imaging Techniques

250

Next, let’s filter ahead of the drawing, and let’s use the bounding-rect

again to draw rectangles.

(def my-contours

 (filter

 #(and

 (> (contour-area %) 50)

 (> (.height (bounding-rect %)) 40)

 (> (.width (bounding-rect %)) 60))

contours))

 (new-point (+ (/ (.width rect) 2) (.x rect))

 (+ (.y rect) (/ (.height rect) 2)))

 100

 rgb/tan

 5)))))

Nice. You are getting pretty good at those things. Look at and enjoy the

result of Figure 3-69.

Figure 3-69.  Circles over the hot-air balloons

Chapter 3 Imaging Techniques

251

And yes indeed, if you checked its content, my-contours has only three

elements.

(doseq [c my-contours]

 (let [rect (bounding-rect c)]

 (rectangle

 output

 (new-point (.x rect) (.y rect))

 �(new-point (+ (.width rect) (.x rect)) (+ (.y rect)

(.height rect)))

 rgb/tan

 5)))

Now drawing those rectangles results in Figure 3-70.

Figure 3-70.  Rectangles over hot-air balloons

Chapter 3 Imaging Techniques

252

�3-7 More on Contours: Playing with Shapes
�Problem
Following on the previous recipe, you would like to see what’s returned by

the function find-contours. Drawing contours with all the dots is nice, but

what if you want to highlight different shapes in different colors?

Also, what if the shapes are hand-drawn, or not showing properly in

the source mat?

�Solution
We still are going to use find-contours and draw-contours as we have done

up to now, but we are going to do some preprocessing on each contour

before drawing them to find out how many sides they have.

approx-poly-dp is the function that will be used to approximate shape,

thus reducing the number of points and keeping only the most important

dots of polygonal shapes. We will create a small function, approx, to turn

shapes into polygons and count the number of sides they have.

We will also look at fill-convex-poly to see how we can draw the

approximated contours of handwritten shapes.

Lastly, another opencv function named polylines will be used to draw

only wireframes of the found contours.

�How it works
�Highlight Contours

We will use a picture with many shapes for the first part of this exercise,

like the one in Figure 3-71.

Chapter 3 Imaging Techniques

253

Figure 3-71.  Shapes

The goal here is to draw the contours of each shape with different

colors depending on the number of sides of each shape.

The shapes mat is loaded simply with the following snippet:

(def shapes

 (-> "resources/morph/shapes3.jpg" (imread IMREAD_REDUCED_COLOR_2)))

As was done in the previous recipe, we first prepare a thresh mat from

the input by converting a clone of the input to gray, then applying a simple

threshold to highlight the shapes.

(def thresh (->

 shapes

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (threshold! 210 240 1)))

(def contours (new-arraylist))

Looking closely, we can see that the shapes are nicely highlighted, and

if you look at Figure 3-72, the thresh is indeed nicely showing the shapes.

Figure 3-72.  Functional thresh

Chapter 3 Imaging Techniques

254

Ok, the thresh is ready, so you can now call find-contours on it.

(find-contours thresh contours (new-mat) RETR_LIST CHAIN_

APPROX_SIMPLE)

To draw the contours, we first write a dump function that loops on the

contours list and draws each one in magenta.

(defn draw-contours! [img contours]

 (dotimes [i (.size contours)]

 (let [c (.get contours i)]

 (draw-contours img contours i rgb/magenta-2 3)))

 img)

(-> shapes

 (draw-contours! contours)

 (u/mat-view))

The function works as expected, and the result is shown in Figure 3-73.

Figure 3-73.  Magenta contours

But, as we have said, we would like to use a different color for each

contour, so let’s write a function that selects a color depending on the sides

of the contour.

(defn which-color[c]

 (condp = (how-many-sides c)

 1 rgb/pink

Chapter 3 Imaging Techniques

255

 2 rgb/magenta-

 3 rgb/green

 4 rgb/blue

 5 rgb/yellow-1-

 6 rgb/cyan-2

 rgb/orange))

Unfortunately, even with CHAIN_APPROX_SIMPLE passed as

parameter to find-contours, the number of points for each shape is way too

high to make any sense.

8, 70, 132, 137...

So, let’s work on reducing the number of points by converting the

shapes to approximations.

Two functions are used from opencv, arc-length, and approx-poly-dp.

The factor 0.02 is the default proposed by opencv; we will see its impact

with different values slightly later in this recipe.

(defn approx [c]

 (let[m2f (new-matofpoint2f (.toArray c))

 len (arc-length m2f true)

 ret (new-matofpoint2f)

 app (approx-poly-dp m2f ret (* 0.02 len) true)]

 ret))

Using this new approx function, we can now count the number of

sides by counting the number of points of the approximation.

The following is the how-many-sides function that simply does that.

(defn how-many-sides[c]

 (let[nb-sides (.size (.toList c))]

 nb-sides))

Chapter 3 Imaging Techniques

256

Everything is in place; let’s rewrite the dumb draw-contours! function

into something slightly more evolved using which-color.

(defn draw-contours! [img contours]

 (dotimes [i (.size contours)]

 (let [c (.get contours i)]

 (draw-contours img contours i (which-color c) 3)))

 img)

And now calling the updated function properly highlights the

polygons, counting the number of sides on an approximation of each of

the found shapes (Figure 3-74).

Figure 3-74.  Different shapes, different colors

Note how the circle still goes slightly overboard, with too many sides,

but that was to be expected.

�Hand-Drawn Shapes

But perhaps you were going to say that the shapes were nicely showing

already, so you still have some doubts about whether the approximation

is really useful or not. So, let’s head to a beautiful piece of hand-drawn art

that was prepared just for the purpose of this example.

(def shapes2

 (-> "resources/chapter03/hand_shapes.jpg"

 (imread IMREAD_REDUCED_COLOR_2)))

Chapter 3 Imaging Techniques

257

Figure 3-75.  Piece of art

Figure 3-75 shows the newly loaded shapes.

Figure 3-76.  Contours over art

First, let’s call find-contours and draw the shapes defined by them.

Reusing the same draw-contours! function and drawing over the art

itself gives Figure 3-76.

Now this time, let’s try something different and use the function

fill-convex-poly from the core opencv package.

It’s not very different from draw-contours, and we indeed just loop on

the list and use fill-convex-poly on each of the contours.

Chapter 3 Imaging Techniques

258

(def drawing (u/mat-from shapes2))

(set-to drawing rgb/white)

(let[contours (new-arraylist)]

 �(find-contours thresh contours (new-mat) RETR_LIST CHAIN_

APPROX_SIMPLE)

 (doseq [c contours]

 (fill-convex-poly drawing c rgb/blue-3- LINE_4 1)))

And so, we get the four shapes turned to blue (Figure 3-77).

Figure 3-77.  Piece of art turned to blue

As we can see, the contours and shapes are found and can be drawn.

Another way to draw the contours is to use the function polylines.

Luckily, the function polylines hides the loop over each element of the

contours, and you can just pass in as parameters the contour list as is.

(set-to drawing rgb/white)

(let[contours (new-arraylist)]

 (find-contours

 thresh

 contours

 (new-mat)

Chapter 3 Imaging Techniques

259

 RETR_LIST

 CHAIN_APPROX_SIMPLE)

 (polylines drawing contours true rgb/magenta-2))

(-> drawing clone (u/resize-by 0.5) u/mat-view)

And this time, we nicely get the wireframe only of the contours

(Figure 3-78).

Figure 3-78.  Wireframe of art

Alright, but again those shapes for now all have too many points.

Let’s again use the approx function that was created, and enhance it so

we can specify the factor used by approx-poly-dp.

(defn approx_

 ([c] (approx_ c 0.02))

 ([c factor]

 (let[m2f (new-matofpoint2f (.toArray c))

 len (arc-length m2f true)

 ret (new-matofpoint2f)]

 (approx-poly-dp m2f ret (* factor len) true)

 (new-matofpoint (.toArray ret)))))

Chapter 3 Imaging Techniques

260

A higher factor means we force the reduction of points to a greater

extent. And so, to that effect, let’s increase the usual value of 0.02 to 0.03.

(set-to drawing rgb/white)

(let[contours (new-arraylist)]

 �(find-contours thresh contours (new-mat) RETR_LIST CHAIN_

APPROX_SIMPLE)

 (doseq [c contours]

 (fill-convex-poly drawing

 (approx_ c 0.03)

 (which-color c) LINE_AA 1)))

The shapes have been greatly simplified, and the number of sides has

quite diminished: the shapes are now easier to identify (Figure 3-79).

Figure 3-79.  Art with simpler shapes

�3-8 Moving Shapes
�Problem
This is based on a problem found on stack overflow.

https://stackoverflow.com/questions/32590277/move-area-of-an-

image-to-the-center-using-opencv

Chapter 3 Imaging Techniques

https://stackoverflow.com/questions/32590277/move-area-of-an-image-to-the-center-using-opencv
https://stackoverflow.com/questions/32590277/move-area-of-an-image-to-the-center-using-opencv

261

The problem was “Move area of an image to the center,” with the base

picture shown in Figure 3-80.

Figure 3-80.  Moving shapes

The goal is to move the yellow shape and the black mark inside to the

center of the mat.

�Solution
I like this recipe quite a lot, because it brings in a lot of origami functions

working together toward one goal, which is also the main theme of this

chapter.

The plan to achieve our goal is as follows:

•	 First, add borders to the original picture to see the

boundaries

•	 Switch to the HSV color space

•	 Create a mask by selecting only the color in-range for

yellow

•	 Create a submat in the original picture from the

bounding rect of the preceding mask

•	 Create the target result mat, of the same size as the original

Chapter 3 Imaging Techniques

262

•	 Create a submat in the target mat, to the place the

content. That submat must be of same size, and it will

be located in the center.

•	 Set the rest of the target mat to any color …

•	 We’re done!

Let’s get started.

�How it works
Alright, so the first step was to highlight the border of the mat, because we

could not really see up to where it was extending.

We will start by loading the picture and adding borders at the same time.

(def img

 (-> "resources/morph/cjy6M.jpg"

 (imread IMREAD_REDUCED_COLOR_2)

 �(copy-make-border! 1 1 1 1 BORDER_CONSTANT (->scalar

"#aabbcc"))))

Bordered input with the rounded yellow mark is now shown in

Figure 3-81.

Figure 3-81.  Yellow mark and borders

Chapter 3 Imaging Techniques

263

We then switch to hsv color space and create a mask on the yellow

mark, and this is where Origami pipelines make it so much easier to pipe

the functions one after the other.

(def mask-on-yellow

 (->

 img

 (clone)

 (cvt-color! COLOR_BGR2HSV)

 (in-range! (new-scalar 20 100 100) (new-scalar 30 255 255))))

Our yellow mask is ready (Figure 3-82).

Figure 3-82.  Mask on yellow mark

Next is to find the contours in the newly created mask mat. Note here

the usage of RETR_EXTERNAL, meaning we are only interested in external

contours, and so the lines inside the yellow mark will not be included in

the returned contour list.

(def contours (new-arraylist))

(find-contours mask-on-yellow contours (new-mat) RETR_EXTERNAL

CHAIN_APPROX_SIMPLE)

Let’s now create an item mat, a submat of the original picture, where

the rectangle defining it is made from the bounding rect of the contours.

Chapter 3 Imaging Techniques

264

(def background-color (->scalar "#000000"))

; mask type CV_8UC1 is important !!

(def mask (new-mat (rows img) (cols img) CV_8UC1 background-color))

(def box

 (bounding-rect (first contours)))

(def item

 (submat img box))

The item submat is shown in Figure 3-83.

Figure 3-83.  Submat made of the bounding rect of the contour

Figure 3-84.  Segmented item

We now create a completely new mat, of the same size of the item

submat, and copy into the content of the segmented item. The background

color has to be the same as the background color of the result mat.

(def segmented-item

 (new-mat (rows item) (cols item) CV_8UC3 background-color))

(copy-to item segmented-item (submat mask box))

The newly computed segmented item is shown in Figure 3-84.

Chapter 3 Imaging Techniques

265

Now let’s find the location of the rect that will be the target of the copy.

We want the item to be moved to the center, and the rect should be of the

same size as the original small box mat.

(def center

 (new-point (/ (.cols img) 2) (/ (.rows img) 2)))

(def center-box

 (new-rect

 (- (.-x center) (/ (.-width box) 2))

 (- (.-y center) (/ (.-height box) 2))

 (.-width box)

 (.-height box)))

Alright, everything is in place; now we create the result mat and copy

the content of the segmented item through a copy, via the submat, at the

preceding computed centered location.

(def result (new-mat (rows img) (cols img) CV_8UC3 background-color))

(def final (submat result center-box))

(copy-to segmented-item final (new-mat))

And that’s it.

The yellow shape has been moved to the center of a new mat. We made

sure the white color of the original mat was not copied over, by specifically

using a black background for the final result mat (Figure 3-85).

Figure 3-85.  Victory

Chapter 3 Imaging Techniques

266

�3-9 Looking at Trees
�Problem
This is another recipe based on a stack overflow question. The interest this

time is to focus on a tree plantation, and before counting the trees, being

able to highlight them in an aerial picture.

The referenced question is here:

https://stackoverflow.com/questions/31310307/best-way-to-

segment-a-tree-in-plantation-aerial-image-using-opencv

�Solution
Recognizing the trees will be done with a call to in-range as usual. But the

results, as we will see, will still be connected to each other, making it quite

hard to actually count anything.

We will introduce the usage of morphology-ex! to erode the created

mask back and forth, thus making for a better preprocessing mat, ready for

counting.

�How it works
We will use a picture of a hazy morning forest to work on (Figure 3-86).

Figure 3-86.  Hazy trees

Chapter 3 Imaging Techniques

https://stackoverflow.com/questions/31310307/best-way-to-segment-a-tree-in-plantation-aerial-image-using-opencv
https://stackoverflow.com/questions/31310307/best-way-to-segment-a-tree-in-plantation-aerial-image-using-opencv

267

Eventually, you would want to count the trees, but right now it is even

difficult to see them with human eyes. (Any androids around?)

Let’s start by creating a mask on the green of the trees.

(def in-range-pict

 (-> trees

 clone

 �(in-range! (new-scalar 100 80 100) (new-scalar 120 255

255)) (bitwise-not!)))

We get a mask of dots … as shown in Figure 3-87.

Figure 3-87.  Black and white

The trick of this recipe comes here. We will apply a MORPH_ERODE

followed by a MORPH_OPEN on the in-range-pict mat. This will have the

effect of clearing up the forest, and gives each tree its own space.

Morphing is done preparing a mat to pass, as parameter, a kernel

matrix created from a small ellipse.

(def elem

 (get-structuring-element MORPH_ELLIPSE (new-size 3 3)))

If you call dump on elem, you will find its internal representation.

Chapter 3 Imaging Techniques

268

[0 1 0]

[1 1 1]

[0 1 0]

We then use this kernel matrix, by passing it to morpholy-ex!.

(morphology-ex! in-range-pict MORPH_ERODE elem (new-point -1 -1) 1)

(morphology-ex! in-range-pict MORPH_OPEN elem)

This has the desired effect of reducing the size of each tree dot, thus

reducing the overlap between the trees (Figure 3-88).

Figure 3-88.  Trees not overlapping after morph

To finish, we just apply a simple coloring on the original mat to

highlight the position of the trees for the human eye. (Still no androids

around?)

(def mask

 (->

 in-range-pict

 clone

 (in-range! (new-scalar 0 255 255) (new-scalar 0 0 0))))

Chapter 3 Imaging Techniques

269

(def target

 (new-mat (.size trees) CV_8UC3))

(set-to target rgb/greenyellow)

(copy-to original target mask)

This could be great to do in real time over a video stream.

You also already know what exercise awaits you next. Count the

number of trees in the forest by using a quick call to find-contours …

This is of course left as a free exercise to the reader!

�3-10 Detecting Blur
�Problem
You have tons of pictures to sort, and you would like to have an automated

process to just trash the ones that are blurred.

�Solution
The solution is inspired from the pyimagesearch web site entry

http://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/,

which itself is pointing at the paper variation of the Laplacian by

Pech-Pacheco et al, “Diatom autofocusing in brightfield microscopy:

A comparative study.”

It does highlight cool ways of putting OpenCV and here origami into

actions quickly for something useful.

Basically, you need to apply a Laplacian filter on the one-channel

version of your image. Then, you compute the deviation of the result from

the preceding and check if the deviation is below a given threshold.

The filter itself is applied with filter-2-d!, while the variance is

computed with mean-std-dev.

Chapter 3 Imaging Techniques

http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
http://optica.csic.es/papers/icpr2k.pdf#_blank
http://optica.csic.es/papers/icpr2k.pdf#_blank

270

�How it works
The Laplacian matrix/kernel to be used for the filter puts emphasis on the

center pixel and reduces emphasis on the left/right top/bottom ones.

This is the Laplacian kernel that we are going to use.

(def laplacian-kernel

 (u/matrix-to-mat

 [[0 -1 0]

 [-1 4 -1]

 [0 -1 0]

]))

Let’s apply this kernel with filter-2-d!, followed by a call to mean-std-

dev to compute the median and the deviation.

(filter-2-d! img -1 laplacian-kernel)

(def std (new-matofdouble))

(def median (new-matofdouble))

(mean-std-dev img median std)

When processing a picture, you can view the results of the averages

with dump, since they are matrices. This is shown in the following:

(dump median)

; [19.60282552083333]

(dump std)

; [45.26957788759024]

Finally, the value to compare to detect blur will be the deviation raised

to the power of 2.

(Math/pow (first (.get std 0 0)) 2)

Chapter 3 Imaging Techniques

271

Figure 3-89.  Blurred cat

We will then get a value that will be compared to 50. Lower than 50

means the image is blurred. Greater than 50 means the image is showing

as not blurred.

Let’s create an is-image-blurred? function made of all the preceding

steps:

(defn std-laplacian [img]

 (let [std (new-matofdouble)]

 (filter-2-d! img -1 laplacian-kernel)

 (mean-std-dev img (new-matofdouble) std)

 (Math/pow (first (.get std 0 0)) 2)))

(defn is-image-blurred?[img]

 (< (std-laplacian (clone img)) 50))

Now let’s apply that function to a few pictures.

(-> "resources/chapter03/cat-bg-blurred.jpg"

 (imread IMREAD_REDUCED_GRAYSCALE_4)

 (is-image-blurred?))

And … our first test passes! The cat of Figure 3-89 indeed gives a

deserved blurred result.

Chapter 3 Imaging Techniques

272

And what about one of the most beautiful cat on this planet? That

worked too. The cat from Figure 3-90 is recognized as sharp!

Figure 3-90.  Sharp but sleepy cat

Now, probably time to go and sort all your beachside summer pictures…

But yes, of course, yes, agreed, not all blurred pictures are to be trashed.

�3-11 Making Photomosaics
�Problem
In a project lab, now maybe 20 years ago, I saw a gigantic Star Wars poster,

made of multiple small scenes of the first movie, A New Hope.

The poster was huge, and when seen from a bit far away, it was actually

a picture of Darth Vader offering his hand to Luke.

The poster left a great impression, and I always wanted to do one of

my own. Recently, I also learned there was a name for this type of created

picture: photomosaic.

�Solution
The concept is way simpler than what I originally thought. Basically, the

hardest part is to download the pictures.

Chapter 3 Imaging Techniques

273

You mainly need two inputs, a final picture, and a set of pictures to use

as subs.

The work consists of computing the mean average of the RGB channels

for each picture, and creating an index from it.

Once this first preparation step is done, create a grid over the picture

to be replicated, and then for each cell of the grid, compute the norm

between the two averages: the one from the cell, and the one from each file

of the index.

Finally, replace the sub of the big picture with the picture from the

index that has the lowest mean average, meaning the picture that is

visually closer to the submat.

Let’s put this in action!

�How it works
The first step is to write a function that computes the mean average of the

colors of a mat. We use again mean-std-dev for that effect, and since we

are only interested in the mean for this exercise, this is the result returned

by the function.

(defn mean-average-bgr [mat]

 (let [_mean (new-matofdouble)]

 (-> mat clone

 (median-blur! 3)

 (mean-std-dev _mean (new-matofdouble)))

 _mean))

Let’s call this on any picture to see what happens.

(-> "resources/chapter03/emilie1.jpg"

 (imread IMREAD_REDUCED_COLOR_8)

 get-averages-bgr-mat

 dump)

Chapter 3 Imaging Techniques

274

The return values are shown in the following. Those values are the

mean average for each of the three RGB channels.

[123.182]

[127.38]

[134.128]

Let’s sidestep a bit and compare the norms of three matrices: ex1, ex2,

and ex3. Looking at their content, you can “feel” that ex1 and ex2 are closer

than ex1 and ex3.

(def ex1 (u/matrix-to-mat [[0 1 2]]))

(def ex2 (u/matrix-to-mat [[0 1 3]]))

(def ex3 (u/matrix-to-mat [[0 1 7]]))

(norm ex1 ex2)

; 1.0

(norm ex1 ex3)

; 5.0

This is confirmed by the result of the output of the norm function,

which calculates the distance between the matrices.

And this is what we are going to use. First, we create an index of all the

files available. The index is a map created by loading each image as a mat,

and computing its mean-average-bgr.

 (defn indexing [files for-size]

 (zipmap files

 �(map #(-> % imread (resize! for-size) mean-average-bgr)

files)))

The output of the function is a map where each element is a set of

key,val like filepath -> mean-average-bgr.

Chapter 3 Imaging Techniques

275

To find the closest image now that we have an index, we compute

the norm of the mat (or submat later on) considered, and all the possible

mean-bgr matrices of our index.

We then sort and take the lowest possible value. This is what

find-closest does.

 (defn find-closest [target indexed]

 (let [mean-bgr-target (get-averages-bgr-mat target)]

 (first

 (sort-by val <

 (apply-to-vals indexed #(norm mean-bgr-target %))))))

apply-to-vals is a function that takes a hashmap and a function, applies

a function to all the values in the map, and leaves the rest as is.

(defn apply-to-vals [m f]

 (into {} (for [[k v] m] [k (f v)])))

The hardest part is done; let’s get to the meat of the photomosaic

algorithm.

The tile function is a function that creates a grid of the input picture

and retrieves submats, one for each tile of the grid.

It then loops over all the submats one by one, computes the submat’s

mean color average using the same function, and then calls find-closest

with that average and the previously created index.

The call to find-closest returns a file path, which we load a submat

from and then replace the tile’s submat in the target picture, just by

copying the loaded mat with the usual copy-to.

See this in the function tile written here.

(defn tile [org indexed ^long grid-x ^long grid-y]

 (let[

 dst (u/mat-from org)

 width (/ (.cols dst) grid-x)

Chapter 3 Imaging Techniques

276

 height (/ (.rows dst) grid-y)

 total (* grid-x grid-y)

 cache (java.util.HashMap.)

]

 (doseq [^long i (range 0 grid-y)]

 (doseq [^long j (range 0 grid-x)]

 (let [

 square

 �(submat org (new-rect (* j width) (* i height) width

height))

 best (first (find-closest square indexed))

 img (get-cache-image cache best width height)

 �sub (submat dst (new-rect (* j width) (* i height)

width height))

]

 (copy-to img sub))))

 dst))

The main entry point is a function named photomosaic, which calls

the tile algorithm by just creating the index of averages upfront, and

passing it to the tile function.

(defn photomosaic

 [images-folder target-image output grid-x grid-y]

 (let [files (collect-pictures images-folder)

 �indexed (indexing (collect-pictures images-folder)

(new-size grid-x grid-y))

 target (imread target-image)]

 (tile target indexed grid-x grid-y)))

Chapter 3 Imaging Techniques

277

Whoo-hoo. It’s all there. Creating the photomosaic is now as simple as

calling the function of the same name with the proper parameters:

•	 Folder of jpg images

•	 The picture we want to mosaic

•	 The size of the grid

Here is a simple sample:

(def lechat

 (photomosaic

 "resources/cat_photos"

 "resources/chapter03/emilie5.jpg"

 100 100))

And the first photomosaic ever of Marcel the cat is shown in Figure 3-91.

Another photomosaic input/output, this from Kenji’s cat, is in Figure 3-92.

Figure 3-91.  Mosaic of a sleeping cat

Chapter 3 Imaging Techniques

278

Cats used in the pictures are all included in the examples, not a single

cat has been harmed, and so now is probably your turn to create your own

awesome-looking mosaics… Enjoy!

And, a romantic mosaic in Figure 3-93.

Figure 3-93.  Neko from Fukuoka

Figure 3-92.  Kogure-san’s cat

Chapter 3 Imaging Techniques

279© Nicolas Modrzyk 2018
N. Modrzyk, Java Image Processing Recipes, https://doi.org/10.1007/978-1-4842-3465-5_4

CHAPTER 4

Real-Time Video

Up to now, this book has been focused on getting the reader up to speed

with working on images and generated graphical art. You should now feel

pretty confident with the methods introduced, and you have room for

many ideas.

Great!

We could keep going on expanding and explaining more on the other

methods from OpenCV, but we are going to do something else in Chapter 4,

as we switch to real-time video analysis, applying the knowledge learned

during the previous chapters to the field of video streaming.

280

You may ask: What is real-time video analysis and why would I do that?

OpenCV makes it a breeze to look into video streams and focus on the

content of the video. For example, how many people are there showing on

a video stream now? Are there cats in this video? Is this a tennis game, and

the root of all questions, is it a sunny day today?

OpenCV has many of those algorithms implemented for you, and

what’s even better, Origami adds a bit of sweet sugar, so you can get started

straightaway and put blocks together in an easy way.

In this chapter, we will get started with a first recipe that will show you

how little is required to be ready for video streaming.

Then, we move on to more substantial subjects like face recognition,

background diffing, and finding oranges and most importantly, body soap.

�4-1 Getting Started with Video Streaming
�Problem
You have the Origami setup for image processing; now, you would like to

know the origami setup for video processing.

�Solution
Well, the bad news is that there is no extra project setup. So, we could

almost close this recipe already.

The good news is that there are two functions that Origami gives you,

but before using them we will cover how the underlying processing works.

First, we will create a videocapture object from the origami opencv3.

video package and start/stop a stream with it.

Second, since we think this should definitely be easier to use, we will

introduce the function that does everything for you: u/simple-cam-window.

Last, we will review u/cams-window, which makes it easy to combine

multiple streams from different sources.

Chapter 4 Real-Time Video

281

�How it works
�Do-It-Yourself Video Stream

You could skip this small section of the recipe, but it’s actually quite

informative to know what is behind the scenes.

The simple idea of video stream manipulation starts with creating an

opencv videocapture object that accesses available video devices.

That object can then return you a mat object, just like all the mat

objects you have used so far. It is possible to then act on the mat object,

and in the simplest case show the mat in a frame on the screen.

Origami uses something similar to u/imshow to display mats taken

from video, but for this very first example let’s simply use u/imshow to

display the mat.

Here, we do require another namespace: [opencv3.video :as v], but

later on you will see that this step is not necessary, and you would require

that extra video namespace only when using opencv video functions

directly.

Let’s see how it goes by going through the following code example.

First, we create the videocapture object, which can access all the

webcams of your host system.

We then open the camera with ID 0. That is probably the default in

your environment, but we will also see later how to play with multiple

devices.

(def capture (v/new-videocapture))

(.open capture 0)

We need a window to display the frame recorded from the device, and

sure enough, we’ll create a binding named window. This window will be

set to have a black background.

(def window

 (u/show (new-mat 200 200 CV_8UC3 rgb/black)))

Chapter 4 Real-Time Video

282

We then create a buffer to receive video data, as a regular OpenCV mat.

(def buffer (new-mat))

The core video loop will copy content to the buffer mat using the read

function on the capture object, and then it will show the buffer in the

window, using the function u/re-show.

(dotimes [_ 100]

 (.read capture buffer)

 (u/re-show window buffer))

At this stage, you should see frames showing up in a window on your

screen, as in Figure 4-1.

Figure 4-1.  My favorite body soap

Finally, when the loop has finished, the webcam is released using the

release function on the capture object.

(.release capture)

Chapter 4 Real-Time Video

283

This should also have the effect of turning off the camera LED of your

computer. One thing to think about at the end of this small exercise is …

yes, this is a standard mat object that was used as a buffer in the display

loop, and so, yes, you could already plug in some text or color conversion

before displaying it.

�One-Function Webcam

Now that you understand how the underlying webcam handling is done,

here is another slightly shorter way of getting you to the same result, using

u/simple-cam-window.

In this small section, we want to quickly review how to take the stream

and manipulate it using that function.

In its simplest form, simple-cam-window is used with the identity

function as the parameter. As you remember, identity takes an element and

returns it as is.

(u/simple-cam-window identity)

Providing you have a webcam connected, this will start the same

streaming video with the content of the stream showing in a frame.

The function takes a single parameter, which is the function applied to

the mat before it is shown inside the frame.

Sweet. We’ll get back to it in a few seconds, but for now, here’s what

you’ll find: simply converting the recording frames to a different colormap,

you could pass an anonymous function only using apply-color-map!.

(u/simple-cam-window #(apply-color-map! % COLORMAP_HOT))

With the immediate result showing in Figure 4-2.

Chapter 4 Real-Time Video

284

In the second version of u/simple-cam-window, you can specify

settings for the frame and the video recording, all of this as a simple map

passed as the first parameter to simple-cam-window.

For example:

(u/simple-cam-window

�{�:frame {:color "#ffcc88", :title "video", :width 350,

:height 300}

 :video {:device 0, :width 100, :height 120}}

 identity)

In the map, the video key specifies the device ID, the device to take

stream from, and the size of the frame to record. Note that if the size is not

according to what the device is capable of, the setting will be silently ignored.

In the same parameter map, the frame key can specify the parameter,

as seen in previous chapter, with the background color, the title, and the

size of the window.

Ok, great; all set with the basics. Let’s play a bit.

Figure 4-2.  Hot body soap

Chapter 4 Real-Time Video

285

�Transformation Function

The identity function takes an element and returns it as is. We saw how

identity worked in the first cam usage, by returning the mat as it was

recorded by the opencv framework.

Now, say you would like to write a function that

•	 takes a mat

•	 resizes the mat by a factor of 0.5

•	 changes the color map to WINTER

•	 adds the current date as a white overlay

Not so difficult with all the knowledge you have gathered so far.

Let’s write a small origami pipeline in a function my-fn! to do the image

transformation:

(defn my-fn![mat]

 (-> mat

 (u/resize-by 0.5)

 (apply-color-map! COLORMAP_WINTER)

 (put-text! (str (java.util.Date.)) (new-point 10 50) FONT_

HERSHEY_PLAIN 1 rgb/white 1)))

Note here that the pipeline returns the transformed mat. Now let’s use

this newly created pipeline on a still image.

(-> "resources/chapter03/ai5.jpg"

 imread

 my-fn!

 u/mat-view)

Chapter 4 Real-Time Video

286

And let’s enjoy a simple winter feline output (Figure 4-3).

Figure 4-3.  Cool feline

Figure 4-4.  Starbucks ice coffee refill

And then, if you are in Starbucks and using your laptop webcam, you

can use the new function my-fn! straight onto a video stream by passing it

as an argument to simple-cam-window.

(u/simple-cam-window my-fn!)

Which would give you something like Figure 4-4.

Chapter 4 Real-Time Video

287

�Two Frames, or More, from the Same Input Source

This is a convenient method when trying to apply two or more functions

from the same source. This is really only a matter of using the clone

function to avoid memory conflicts with the source buffer.

Here, we create a function that takes the buffer as input, and then

concatenates two images created from the same buffer. The first image on

the left will be a black-and-white version of the stream, while the right one

will be a flipped version of the buffer.

 (u/simple-cam-window

 (fn [buffer]

 (vconcat! [

 (-> buffer

 clone

 (cvt-color! COLOR_RGB2GRAY)

 (cvt-color! COLOR_GRAY2RGB))

 (-> buffer clone (flip! -1))])))

Note that we use the clone twice for each side of the concatenation

(Figure 4-5).

Figure 4-5.  Gray left, flipped right, but it is still body soap

Chapter 4 Real-Time Video

288

You can push this method even further by cloning the input buffer

as many times as you want; to highlight this, here is another example of

applying a different color map three times onto the same input buffer.

(u/simple-cam-window

 (fn [buffer]

 (hconcat! [

 (-> buffer clone (apply-color-map! COLORMAP_JET))

 (-> buffer clone (apply-color-map! COLORMAP_BONE))

 (-> buffer clone (apply-color-map! COLORMAP_PARULA))])))

And the result is shown in Figure 4-6.

Figure 4-6.  Jet, bone, and parula, but this is still body soap

�4-2 Combining Multiple Video Streams
�Problem
You played around creating many outputs from the same buffer, but it

would be nice to also be able to plug in multiple cameras and combine

their buffers together.

Chapter 4 Real-Time Video

289

�Solution
Origami comes with a sibling function to u/simple-cam-window named

u/cams-window, which is an enhanced version where you can combine

multiple streams from the same or multiple sources.

�How it works
u/cams-window is a function that takes a list of devices, each defining a

device from an ID, and usually a transformation function.

The function also takes a video function to concatenate two or more

device outputs, and finally a frame element to define the usual parameters

of the window, like sizes and title.

(u/cams-window

 {:devices [

 {:device 0 :width 300 :height 200 :fn identity}

 {:device 1 :width 300 :height 200 :fn identity}]

 :video { :fn

 #(hconcat! [

 (-> %1 (resize! (new-size 300 200)))

 (-> %2 (resize! (new-size 300 200)))])}

 :frame

 {:width 650 :height 250 :title "OneOfTheSame"}})

Figure 4-7 shows two devices targeting the same body soap, but from

different angles.

The left frame takes input from the device with ID 0, and the right

frame input from the device with ID 1.

Chapter 4 Real-Time Video

290

Note that even though sizes are specified for each device, a resize is

actually still needed, because devices have very specific combinations of

height and width they can use, and so using different devices may be a bit

of a challenge.

Still, the resize! call in the combining video function does not feel out

of place, and things work smoothly afterward.

�4-3 Warping Video
�Problem
This recipe is about warping the buffer of the video stream using a

transformation, but it is also about updating the transformation in real time.

�Solution
The warping transformation itself will be done using opencv’s get-
perspective-transform from the core namespace.

The real-time updating will be done using a Clojure atom, with the

software transactional memory, well suited here to update the value of the

matrix required to do the transformation, while the display loop is reading

the content of that matrix, thus always getting the latest value.

Figure 4-7.  More body soap pictures

Chapter 4 Real-Time Video

291

�How it works
To perform a perspective transform, we need a warp matrix. The warp

matrix is contained in an atom and first initialized to nil.

(def mt

 (atom nil))

The warp matrix used to do the transformation can be created from

four points, with their locations before and after the transformation.

Instead of acting on a local binding, we will update the atom value

using reset!.

(def points1

 [[100 10]

 [200 100]

 [28 200]

 [389 390]])

(def points2

 [[70 10]

 [200 140]

 [20 200]

 [389 390]])

(reset! mt

 (get-perspective-transform

 (u/matrix-to-matofpoint2f points1)

 (u/matrix-to-matofpoint2f points2)))

Remember, you can still dump the warp matrix, which is a regular

3×3 mat, by using a dereferencing call on it, using @, or deref.

(dump @mt)

With the points defined in the preceding, this gives the following

matrix of doubles.

Chapter 4 Real-Time Video

292

[1.789337561985906 0.3234215275201738 -94.5799621372129]

[0.7803091692375479 1.293303360247406 -78.45137776386103]

[0.002543030309135725 -3.045754676722361E-4 1]

Now let’s create the function that will warp a mat using the matrix

saved in the mt atom.

(defn warp! [buffer]

 (-> buffer

 (warp-perspective! @mt (size buffer))))

Remember that this function can still be applied to standard images;

for example, if you want to warp cats, you could write the following origami

pipeline:

(-> "resources/chapter03/ai5.jpg"

 imread

 (u/resize-by 0.7)

 warp!

 u/imshow)

And the two cats from before would be warping as in Figure 4-8.

Figure 4-8.  Warped cats

Chapter 4 Real-Time Video

293

Now let’s apply that function to a video stream, using warp! as a

parameter to the u/simple-cam window.

(u/simple-cam-window warp!)

The body soap has been warped! (Figure 4-9)

Obviously, the book is not doing too much to express the difference

between a still cat image and the body soap stream, so you can plug in

your own stream there.

Figure 4-9.  Warped body soap

�4-4 Using Face Recognition
�Problem
While the OpenCV face recognition features work perfectly fine on still

pictures, working on video streams differs in terms of looking for moving

faces showing up in real time, as well as counting people and so on.

�Solution
The first step is to load a classifier: the opencv object that will be able to

find out the matching element on a mat.

The classifier is loaded from an xml definition using the origami

function new-cascadeclassifier.

Chapter 4 Real-Time Video

294

Then, a call to detectMultiScale with that classifier and a mat will

return a list of matching rect objects.

Those rect objects can then be used to highlight the found faces with a

rectangle, or for creating submat.

�How it works
There is no extra Clojure namespace required to make this work, as the

new-cascadeclassifier function is already in the core namespace.

If the xml file is on the file system, then you can load the classifier with

(def detector

 (new-cascadeclassifier

 "resources/lbpcascade_frontalface.xml"))

If the xml is stored as a resource in a jar file, then you could load it with

(def detector

 (new-cascadeclassifier

 (.getPath (clojure.java.io/resource "lbpcascade_

frontalface.xml"))))

Rectangle objects found by the classifier will need to be drawn. The

classifier’s detect function returns a list of rectangles, so let’s write a

function that simply loops over the list of rect objects and draws a blue line

border on each rect.

(defn draw-rects! [buffer rects]

 (doseq [rect (.toArray rects)]

 (rectangle

 buffer

 (new-point (.-x rect) (.-y rect))

 �(new-point (+ (.-width rect) (.-x rect)) (+ (.-height rect)

(.-y rect)))

Chapter 4 Real-Time Video

295

 rgb/blue

 5))

 buffer)

Then let’s define a second function, find-faces!, which calls the

detectMultiScale method on the classifier and draws the rectangles using

the draw-rects! function defined in the preceding.

(defn find-faces![buffer]

 (let [rects (new-matofrect)]

 (.detectMultiScale detector buffer rects)

 (-> buffer

 (draw-rects! rects)

 (u/resize-by 0.7))))

We have all the blocks here again, and it’s now a simple matter of

calling find-faces! through u/simple-cam-window.

(u/simple-cam-window find-faces!)

And if you find yourself in Starbucks one morning on a terrace, the

image could be something like Figure 4-10.

Figure 4-10.  Quiet impressive morning coffee face

Chapter 4 Real-Time Video

296

The draw-rects! function could really be anything since you have

access to a buffer object.

For example, this second version of draw-rects! applies a different

color map on the submat created by the rect of the found face.

(defn draw-rects! [buffer rects]

 (doseq [r (.toArray rects)]

 (-> buffer

 (submat r)

 (apply-color-map! COLORMAP_COOL)

 (copy-to (submat buffer r))))

 (put-text! buffer (str (count (.toArray rects)))

 (new-point 30 100) FONT_HERSHEY_PLAIN 5 rgb/magenta-2 2))

And reusing the created building blocks, this gives the cool face from

Figure 4-11.

Figure 4-11.  Cool morning coffee face

This last example of drawing faces takes the first found face and makes

a big close-up on the right-hand side of the video stream.

(defn draw-rects! [buffer rects]

 (if (> (count (.toArray rects)) 0)

Chapter 4 Real-Time Video

297

 (let [r (first (.toArray rects))

 �s (-> buffer clone (submat r) (resize! (.size

buffer)))]

 (hconcat! [buffer s]))

 buffer))

Obviously, Figure 4-12 will quickly get you convinced that this should

really only be used for house BBQs, in order to show everyone who has

been eating all the meat.

Figure 4-12.  Overview and close-up on the same video window

�4-5 Diffing with a Base Image
�Problem
You would like to take a mat image, define it as a base, and discover

changes made to that base image.

�Solution
This is a very short recipe but is quite helpful on its own to understand the

more complex recipe on movement that is coming after.

Chapter 4 Real-Time Video

298

To create a diff of an image and its base, we here first create two pieces

of video callback code: one will store the background picture in a Clojure

atom, and the other will do a diff with that base atom.

A grayed version of the result will then be passed through a simple

threshold function, to prepare the result for additional shape recognition

and/or for further processing.

�How it works
To compute a diff of an image with another one, you need two mats: one for

the base, and one updated version with (we hope) new extra shapes in it.

We start by defining the Clojure atom and starting a video stream to

create an atom with a reference on the image of the background.

As long as the cam-window is running, the latest buffer mat from the

video stream will be stored in the atom.

(def base-image (atom nil))

(u/simple-cam-window

 (fn [buffer] (swap! base-image (fn[_] buffer))))

Once you are happy enough with the background, you can stop the

cam-window and check the currently stored background for the picture

with imshow and a deref-ed version of the atom.

(u/imshow @base-image)

This time, the image is a typical one of a busy home workplace

(Figure 4-13).

Chapter 4 Real-Time Video

299

Now, the next step is to define a new stream callback to use with simple-

cam-window, which will diff with the mat stored in the Clojure atom.

The diff is done with the opencv function absdiff, which takes three

mats, namely, the two inputs to diff and the output.

(defn diff-with-bg [buffer]

 (let[output (new-mat)]

 (absdiff buffer @base-image output)

 output))

(u/simple-cam-window diff-with-bg)

Obviously, before starting the second stream and introducing new

shapes, you should stop the first recording stream.

This would give something like Figure 4-14, where the added body

soap is clearly being recognized.

Figure 4-13.  Hearts and a speaker

Chapter 4 Real-Time Video

300

Now usually, the next step is to clean the shape showing on top of the

background a bit by turning the diff mat to gray and applying a very high

threshold after a blur.

; diff in gray

(defn diff-in-gray [buffer]

 (-> buffer

 clone

 (cvt-color! COLOR_RGB2GRAY)

 (median-blur! 7)

 (threshold! 10 255 1)))

We have two processing functions for the same buffer, and in Clojure it

is actually quite easy to combine them with comp, so let’s try this now.

Remember that comp combines the function from right to left,

meaning the first function that is being applied is the rightmost one.

(u/simple-cam-window (comp diff-in-gray diff-with-bg))

Figure 4-14.  Body soap in the office!

Chapter 4 Real-Time Video

301

See the composition result and the shape of the body soap showing in

Figure 4-15.

Figure 4-15.  Added shape worked for more processing

Here, you could compile all the steps, creating a simple mask from

the preceding added shape mat, and use the mask to highlight the diff-ed

part only.

None of this is too surprising, except maybe the bitwise-not! call,

summarized in the highlight-new! function.

(defn highlight-new! [buffer]

 (let [output (u/mat-from buffer) w (-> buffer

 clone

 diff-with-bg

 (cvt-color! COLOR_RGB2GRAY)

 (median-blur! 7)

 (threshold! 10 255 1)

 (bitwise-not!))]

 (set-to output rgb/black)

 (copy-to buffer output w)

 output))

Chapter 4 Real-Time Video

302

And the body soap output shows in Figure 4-16.

Figure 4-16.  Back to body soap

The streams were taken during a heavy jet lag around 3 am, and so the

lighting conditions give a bit of noise at the bottom of the body soap, but

you could try to remove that noise by updating the mask to not include the

desk wood color. Your turn!

�4-6 Finding Movement
�Problem
You would like to identify and highlight movement and moving shapes in a

video stream.

�Solution
We start by doing an accumulation of the float values of the buffer, after

cleaning it up. This is done with the function accumulate-weighted.

Then, we do a diff between the grayed version of the buffer and the

computed average mat, and we retrieve a mask mat of the delta as quickly

presented in the previous recipe.

Chapter 4 Real-Time Video

303

Finally, we apply a threshold on the delta, clean up the result with a

bit of dilation, and transform the mat back to color mode to be displayed

onscreen.

This is actually easier than it sounds!

�How it works
Here, we would like to show on a mat the delta created by the movements.

�Finding Movement in Black and White

The first step is to take a buffer and create a cleaned (via a blur) gray

version of it.

We are not interested to display this mat, but just to perform arithmetic

on it; we will convert the mat to a 32-bit float mat, or in opencv language

CV_32F.

(defn gray-clean! [buffer]

 (-> buffer

 clone

 (cvt-color! COLOR_BGR2GRAY)

 (gaussian-blur! (new-size 3 3) 0)

 (convert-to! CV_32F)))

This function will be used to prepare a gray version of the mat. Let’s

now work on computing the accumulated average and a diff between the

average and the most recent buffer.

We’ll create another function, find-movement, which will highlight, in

black and white, recent movement in the picture.

That function will get a Clojure atom, avg, as a parameter to keep

track of the average value of the video’s incoming mat objects. The second

parameter is the usual buffer mat passed to the callback. The function will

display the frame-delta.

Chapter 4 Real-Time Video

304

In the first if switch, we make sure the average mat, stored in the atom,

is initialized with a proper value from the incoming stream.

Then a diff is computed using absdiff, onto which we apply a short

threshold-dilate-cvt-color pipeline to show the movements directly.

(defn find-movement [avg buffer]

 (let [gray (gray-clean! buffer) frame-delta (new-mat)]

 (if (nil? @avg)

 (reset! avg gray))

 ; compute the absolute diff on the weighted average

 (accumulate-weighted gray @avg 0.05 (new-mat))

 (absdiff gray @avg frame-delta)

 ; apply threshold and convert back to RGB for display

 (-> frame-delta

 (threshold! 35 255 THRESH_BINARY)

 (dilate! (new-mat))

 (cvt-color! COLOR_GRAY2RGB)

 (u/resize-by 0.8))))

We finally define a function wrapping the find-movement function,

with an inlined Clojure atom. That atom will contain the average of the

mat objects.

(def find-movements!

 (partial find-movement (atom nil)))

Time to put those functions in action with u/simple-cam-window.

(u/simple-cam-window find-movements!)

This is shown in Figure 4-17.

Chapter 4 Real-Time Video

305

We would like to show movements here, but because the amount of

black ink required to print this is going to scare the publisher, let’s add

a bitwise operation to do a black-on-white instead and see how the live

progression goes.

Let’s update the find-movement function with a bitwise-not! call on

the frame-delta mat. Before that, we need to convert the matrix back to

something we can work on, using opencv’s convert-to! function, with a

type target CV_8UC3, which is usually what we work with.

(defn find-movement [avg buffer]

 (let [gray (gray-clean! buffer) frame-delta (new-mat)]

 ...

 (-> frame-delta

 (threshold! 35 255 THRESH_BINARY)

 (dilate! (new-mat))

 (convert-to! CV_8UC3)

 (bitwise-not!)

 (cvt-color! COLOR_GRAY2RGB)

 (u/resize-by 0.8))))

Figure 4-17.  Movement is detected!

Chapter 4 Real-Time Video

306

Good; let’s call simple-cam again. Wow. Figure 4-18 now looks a bit

scary.

Figure 4-18.  Scary black-on-white movement

Figure 4-19.  Stabilizing movement

And if you stop getting agitated in front of your computer, the

movement highlights are stabilizing and slowly moving to a fully white

mat, as shown in the progression of Figure 4-19.

�Find and Draw Contours

At this stage, it would be easy to find and draw contours to highlight

movement on the original colored buffer.

Let’s find contours of the nice movement mat that you managed to create.

A few more lines are added to the find-movement function, notably the

finding contours on the delta mat and the drawing on the color mat.

Chapter 4 Real-Time Video

307

You have seen all of this find-contours dance in the previous chapter,

so let’s get down to the updated code.

(defn find-movement [avg buffer]

 (let [gray (base-gray! buffer)

 frame-delta (new-mat)

 contours (new-arraylist)]

 (if (nil? @avg)

 (reset! avg gray))

 (accumulate-weighted gray @avg 0.05 (new-mat))

 (absdiff gray @avg frame-delta)

 (-> frame-delta

 (threshold! 35 255 THRESH_BINARY)

 (dilate! (new-mat))

 (convert-to! CV_8UC3)

 �(find-contours contours (new-mat) RETR_EXTERNAL CHAIN_

APPROX_SIMPLE))

 (-> frame-delta

 (bitwise-not!)

 (cvt-color! COLOR_GRAY2RGB)

 (u/resize-by 0.8))

 (-> buffer

 ; (u/draw-contours-with-rect! contours)

 (u/draw-contours-with-line! contours)

 (u/resize-by 0.8))

 (hconcat! [frame-delta buffer])))

Chapter 4 Real-Time Video

308

Calling this new version of the find-movement function gives

something like Figure 4-20, but you can probably be way more creative

from there.

Figure 4-20.  Highlights moving parts in blue

�4-7 Separating the Foreground
from the Background Using Grabcut
�Problem
Grabcut is another opencv method that can be used to separate the

foreground from the background of an image. But can it be used in real

time like on a video stream?

�Solution
There is indeed a grab-cut function that easily separates the front from

the background. The function needs just a bit of understanding to see the

different masks required to get it going, so we will focus first on understanding

how things works on a still image.

We will then move on to the live stream solution. This will quickly

lead to a speed problem, because grab-cut takes more time than what is

available with real-time processing.

Chapter 4 Real-Time Video

309

So, we will use a small trick by turning down the resolution of the work

area just to bring the time used by grab-cut to a minimum; then, we’ll use

the full resolution when performing the rest of the processing, resulting in

a grabcut.

�How it works
�On a Still Image

Here we want to call grabcut and separate a depth layer from the other ones.

The idea with grabcut is to prepare to use either a rectangle or a mask

on the input picture and pass it to the grabcut function.

The result stored in that single output mask will contain a set of 1.0,

2.0, or 3.0 scalar values depending on what grabcut thinks is part of each of

the different layers.

Then we use opencv compare on this mask and another fixed 1×1 mat

of the scalar value of the layer we would like to retrieve. We obtain a mask

only for the layer of interest.

Finally, we do a copy of the original image, on an output mat, using the

mask created in step 2.

Ready? Let’s go for a cat example.

First, we load one of those cat pictures that we love so much and turn it

to a proper working-size mat object.

(def source "resources/chapter03/ai6.jpg")

(def img (-> source imread (u/resize-by 0.5)))

The loaded cat picture is shown in Figure 4-21.

Chapter 4 Real-Time Video

310

Then, we define a mask mat, which will receive the output of the

grabcut call, namely, per-pixel information about the layer info.

We also define a rectangle for the region of interest (ROI) of where

we want the grabcut to be done, here almost the full picture, mostly just

removing the borders.

(def mask (new-mat))

(def rect

 (new-rect

 (new-point 10 10)

 (new-size (- (.width img) 30) (- (.height img) 30))))

Now that we have all the required inputs for grabcut, let’s call it with

the mask, the ROI, and the grabcut init param, here GC_INIT_WITH_

RECT. The other available method is to use GC_INIT_WITH_MASK, which

as you probably have guessed is initialized with a mask instead of a rect.

(grab-cut img mask rect (new-mat) (new-mat) 11 GC_INIT_WITH_RECT)

Grabcut has been called. To get an idea of the retrieved content of the

output, let’s quickly see the matrix content on a small submat of the mask.

(dump (submat mask (new-rect (new-point 10 10) (new-size 5 5))))

Figure 4-21.  A feline kiss for you

Chapter 4 Real-Time Video

311

If you try it yourself, you would see values like

[2 2 2 2 2]

[2 2 2 2 2]

[2 2 2 2 2]

[2 2 2 2 2]

[2 2 2 2 2]

Another submat dump elsewhere in the mat gives a different result:

(dump (submat mask (new-rect (new-point 150 150) (new-size 5 5))))

In turn, this gives

[3 3 3 3 3]

[3 3 3 3 3]

[3 3 3 3 3]

[3 3 3 3 3]

[3 3 3 3 3]

We can guess from this different matrix that the layer is different.

The idea here is to retrieve a mask made of all the same values, so now

let’s create a mask from all the pixels that are contained in layer 3, meaning

that they are made of 3.0 values.

We’ll call this the fg-mask, for foreground mask.

(def fg-mask (clone mask))

(def source1 (new-mat 1 1 CV_8U (new-scalar 3.0)))

(compare mask source1 fg-mask CMP_EQ)

(u/mat-view fg-mask)

Chapter 4 Real-Time Video

312

The cat foreground mask is shown in Figure 4-22.

Figure 4-22.  Foreground mask

Figure 4-23.  Only the foreground of the feline kiss

We can then use copy-to from the original input image, and the fg-

mask on a new black mat of the same size as the input.

(def fg_foreground (-> img (u/mat-from) (set-to rgb/black)))

(copy-to img fg_foreground fg-mask)

(u/mat-view fg_foreground)

And we get the mat of Figure 4-23.

Chapter 4 Real-Time Video

313

Notice how we get a bit of an approximation where the two kittens

cross each other, but overall the result is pretty effective.

Before moving on, let’s quickly retrieve the complementary mask, the

background mask, by focusing on the layer with scalar values of 2.0.

First, we create a mask again to receive the output, this time bg-mask.

(def bg-mask (clone mask))

(def source2 (new-mat 1 1 CV_8U (new-scalar 2.0)))

(compare mask source2 bg-mask CMP_EQ)

(u/mat-view bg-mask)

The result for the background mask is shown in Figure 4-24.

Figure 4-24.  Background mask

Then, simply do a copy similar to the one that was done for the

foreground.

(def bg_foreground (-> img (u/mat-from) (set-to (new-scalar 0

0 0))))

(copy-to img bg_foreground bg-mask)

(u/mat-view bg_foreground)

And the result is shown in Figure 4-25.

Chapter 4 Real-Time Video

314

Now that you have seen how to separate the different layers on a still

image, let’s move on to video streaming.

�On a Video Stream

As you may have noticed, the grabcut step in the preceding example was

very slow, mostly due to a lot of heavy computations done to achieve a

clean separation of the different layers. But how bad is it?

Let’s give it a quick try with a first dumb version of a real-time grabcut.

We’ll call this function in-front-slow, and basically just compile the

steps we have just seen in the still example in a single function.

(defn in-front-slow [buffer]

 (let [

 img (clone buffer)

 rect (new-rect

 (new-point 5 5)

 �(new-size (- (.width buffer) 5) (- (.height buffer)

5)))

 mask (new-mat)

 pfg-mask (new-mat)

 source1 (new-mat 1 1 CV_8U (new-scalar 3.0))

Figure 4-25.  Mat of the background layer

Chapter 4 Real-Time Video

315

 �pfg_foreground (-> buffer (u/mat-from) (set-to rgb/

black))]

 �(grab-cut img mask rect (new-mat) (new-mat) 7 GC_INIT_WITH_

RECT)

 (compare mask source1 pfg-mask CMP_EQ)

 (copy-to buffer pfg_foreground pfg-mask)

 pfg_foreground))

And then, let’s use this function as a callback to our now-familiar u/
simple-cam-window.

(u/simple-cam-window in-front-slow)

This slowly gives the output seen in Figure 4-26.

Figure 4-26.  Slow, slow, slow

As you will quickly realize, this is not very usable as is on a video

stream.

The trick here is actually to turn down the resolution of the input

buffer, do the grabcut on that lower-resolution mat, and get the grabcut

mask. Then, do the copy using the full-sized picture and the mask retrieve

from grabcut on a lower resolution.

Chapter 4 Real-Time Video

316

This time, we’ll create an in-front function, which will be a slightly

updated version of the preceding, but now including a pyr-down–pyr-up

dance around the grabcut call (Figure 4-27).

To make this easier, we’ll set the number of iterations of the dance as a

parameter of the callback.

(defn in-front [resolution-factor buffer]

 (let [

 img (clone buffer)

 rect (new-rect

 (new-point 5 5)

 �(new-size (- (.width buffer) 5) (- (.height buffer)

5)))

 mask (new-mat)

 pfg-mask (new-mat)

 source1 (new-mat 1 1 CV_8U (new-scalar 3.0))

 �pfg_foreground (-> buffer (u/mat-from) (set-to

(new-scalar 0 0 0)))]

 (dotimes [_ resolution-factor] (pyr-down! img))

 �(grab-cut img mask rect (new-mat) (new-mat) 7 GC_INIT_WITH_RECT)

 (dotimes [_ resolution-factor] (pyr-up! mask))

 (compare mask source1 pfg-mask CMP_EQ)

 (copy-to buffer pfg_foreground pfg-mask)

 pfg_foreground))

Then, call simple-cam-window with this new callback.

(u/simple-cam-window (partial in-front 2))

It’s hard to get the feeling of speed by just reading, so do go ahead and

try this locally.

Chapter 4 Real-Time Video

317

Usually, a factor of 2 for the resolution-down dance is enough, but it

depends on both your video hardware and the speed of the underlying

processor.

Figure 4-27.  As fast as you want, baby

�4-8 Finding an Orange in Real Time
�Problem
You would like to detect and track an orange in a video stream. It could

also be a lemon, but the author ran out of lemons so we will use an orange.

�Solution
Here we will use techniques you have seen before, like hough-circles or

find-contours, and apply them to real-time streaming. We’ll draw the

shape of the moving orange on the real-time stream.

For either of the solutions, you probably remember that the buffer

needs some minor preprocessing to detect the orange. Here, to keep things

simple, we’ll do a simple in-range processing in the hsv color space.

Chapter 4 Real-Time Video

318

�How it works
�Using Hough-Circles

First, we’ll focus on finding the proper hsv range by taking a one-shot

picture of the orange.

First, let’s put the orange on the table (Figure 4-28).

Figure 4-28.  Orange on the table, Annecy, France

We first switch to hsv color space, then apply the in-range function,

and finally dilate the found orange shape a bit so it’s easier for the coming

hough-circle call.

In origami, this gives

(def hsv (-> img clone (cvt-color! COLOR_RGB2HSV)))

(def thresh-image (new-mat))

(in-range hsv (new-scalar 70 100 100) (new-scalar 103 255 255)

thresh-image)

(dotimes [_ 1]

 (dilate! thresh-image (new-mat)))

Chapter 4 Real-Time Video

319

Now, you’ll remember how to do hough-circles from Chapter 3, so no

need to spend too much time on that here. The important thing in this part is

to have the proper radius range for the orange, and here we take a 10–50 pixels

diameter to identify the orange.

(def circles (new-mat))

(def minRadius 10)

(def maxRadius 50)

(hough-circles thresh-image circles CV_HOUGH_GRADIENT 1

minRadius 120 15 minRadius maxRadius)

At this stage, you should have only one matching circle for the orange.

It is quite important to work on this step until exactly one circle is found.

As a check, printing the circle mat should give you a 1×1 mat, like the

following:

#object[org.opencv.core.Mat 0x3547aa31 Mat [1*1*CV_32FC3,

isCont=true, isSubmat=false, nativeObj=0x7ff097ca7460,

dataAddr=0x7ff097c4b980]]

Once you have the mat nailed, let’s draw a pink circle on the original

image (Figure 4-29).

(def output (clone img))

(dotimes [i (.cols circles)]

 �(let [circle (.get circles 0 i) x (nth circle 0) y (nth

circle 1) r (nth circle 2) p (new-point x y)]

 (opencv3.core/circle output p (int r) color/ color/magenta- 3)))

Chapter 4 Real-Time Video

320

Everything is there, so let’s wrap up our discoveries as a single

function working on the buffer from the video stream; we’ll call that

function my-orange!, which is a recap of the previous steps.

(defn my-orange! [img]

 (u/resize-by img 0.5)

 (let [hsv (-> img clone (cvt-color! COLOR_RGB2HSV))

 thresh-image (new-mat)

 circles (new-mat)

 minRadius 10

 maxRadius 50

 output (clone img)]

(in-range hsv (new-scalar 70 100 100) (new-scalar 103 255 255)

thresh-image)

(dotimes [_ 1]

 (dilate! thresh-image (new-mat)))

(hough-circles thresh-image circles CV_HOUGH_GRADIENT 1

minRadius 120 15 minRadius maxRadius)

(dotimes [i (.cols circles)]

 �(let [circle (.get circles 0 0) x (nth circle 0) y

(nth circle 1) r (nth circle 2) p (new-point x y)]

Figure 4-29.  Orange and magenta

Chapter 4 Real-Time Video

321

 (opencv3.core/circle output p (int r) color/magenta- 3)))

output))

Now it’s a simple matter of again passing that callback function to the

simple-cam-window.

(u/simple-cam-window my-orange!)

Figures 4-30 and 4-31 show how the orange is found properly, even in

low-light conditions. Winter in the French Alps after a storm did indeed

make the evening light, and everything under it, a bit orange.

Figure 4-30.  Orange on a printer

Figure 4-31.  Mei and oranges

Chapter 4 Real-Time Video

322

�Using Find-Contours

Instead of looking for a perfect circle, you may be looking for a slightly

distorted shape, and this is when using find-contours actually gives better

results than hough-circles.

Here we combine the same hsv range found a few minutes ago to select

the orange and apply the find-contours technique from Chapter 3.

The find-my-orange! callback brings back the familiar find-contours

and draw-contours function calls. Note that we draw the contour of found

shapes only if those are bigger than the smallest expected size of the orange.

(defn find-my-orange! [img]

 (let[hsv (-> img clone (cvt-color! COLOR_RGB2HSV))

 thresh-image (new-mat)

 contours (new-arraylist)

 output (clone img)]

 (in-range hsv (new-scalar 70 100 100) (new-scalar 103 255 255)

thresh-image)

 (find-contours

 thresh-image

 contours

 (new-mat) ; mask

 RETR_LIST

 CHAIN_APPROX_SIMPLE)

 (dotimes [ci (.size contours)]

 (if (> (contour-area (.get contours ci)) 100)

 (draw-contours output contours ci color/pink-1 FILLED)))

 output))

Giving this callback to simple-cam-window shows Mei playing around

with a pink-colored orange in Figure 4-32.

Chapter 4 Real-Time Video

323

�4-9 Finding an Image Within the Video
Stream
�Problem
You would like to find the exact replica of an image within a stream.

�Solution
OpenCV comes with feature detection functions that you can use.

Unfortunately, those features are mostly Java oriented.

This recipe will show how to bridge Java and Origami, and how using

Clojure helps a bit by reducing boilerplate code.

Here we will use three main OpenCV objects:

•	 FeatureDetector,

•	 DescriptorExtractor,

•	 DescriptorMatcher.

Figure 4-32.  Mei and the pink orange, playing at a theater
nearby

Chapter 4 Real-Time Video

324

Feature extraction works by finding keypoints of both the input picture

and the to-be-found image using a feature detector. Then, you compute a

descriptor from each of the two sets of points using a descriptor extractor.

Once you have the descriptors, those can be passed as input to a

descriptor matcher, which gives a matching result as a set of matches, with

each match being given a score via a distance property.

We can then eventually filter points that are the most relevant and

draw them on the stream.

The code listings are a bit longer than usual, but let’s get this last recipe

working on your machine too!

�How it works
For this example, we will be looking around for my favorite body soap,

eucalyptus scent, both in still images and in real time.

Figure 4-33 shows the concerned body soap.

Figure 4-33.  Petit Marseillais

Chapter 4 Real-Time Video

325

�Still Image

The first test is to be able to find the body soap in a simple still picture, like

the one in Figure 4-34.

Figure 4-34.  Carmen, where in the world is my body soap?

To get started, we need a few more Java object imports, namely, the

detector and the extractor, which we will initialize straightaway before

doing any processing.

(ns wandering-moss

 (:require

 [opencv3.core :refer :all]

 [opencv3.utils :as u])

 (:import

 �[org.opencv.features2d Features2d DescriptorExtractor

DescriptorMatcher FeatureDetector]))

(def detector (FeatureDetector/create FeatureDetector/AKAZE))

(def extractor (DescriptorExtractor/create

DescriptorExtractor/AKAZE))

Chapter 4 Real-Time Video

326

Basic setup is done; we then load the body soap background through a

short origami pipeline and ask the detector to detect points on it.

(def original

 (-> "resources/chapter04/bodysoap_bg.png" imread (u/resize-by

0.3)))

(def mat1 (clone original))

(def points1 (new-matofkeypoint))

(.detect detector mat1 points1)

The coming step is not required whatsoever, but drawing the found

keypoints gives an idea of where the matcher thinks the important points

are in the mat.

(def show-keypoints1 (new-mat))

(Features2d/drawKeypoints mat1 points1 show-keypoints1

(new-scalar 255 0 0) 0)

(u/mat-view show-keypoints1)

This gives a bunch of blue circles, as shown in Figure 4-35.

Figure 4-35.  Keypoints of the bodysoap background

Chapter 4 Real-Time Video

327

Of course, it may be useful to clean up and remove imperfections before

retrieving keypoints, but let’s check how the matching works on the raw mat.

Note how the intensity of the points is already pretty strong on the

body soap itself.

We now repeat the same steps for a body soap–only mat.

(def mat2

 (-> "resources/chapter04/bodysoap.png" imread (u/resize-by 0.3)))

(def points2 (new-matofkeypoint))

(.detect detector mat2 points2)

Here again, this drawing points part is not required but it helps to give

a better idea of what is going on.

(def show-keypoints2 (new-mat))

(Features2d/drawKeypoints mat2 points2 show-keypoints2 (new-

scalar 255 0 0) 0)

(u/mat-view show-keypoints2)

The detector result is in Figure 4-36, and again, the keypoints look to

be focused on the label of the body soap.

Figure 4-36.  Detector result on the body soap

Chapter 4 Real-Time Video

328

The next step is to extract two feature sets that will then be used with

the matcher.

This is simply a matter of calling compute on the extractor with the sets

of found points from the previous step.

(def desc1 (new-mat))

(.compute extractor mat1 points1 desc1)

(def desc2 (new-mat))

(.compute extractor mat2 points2 desc2)

Now, on to the matching step. We create a matcher through

DescriptorMatcher and give it a way to find out matches.

In IT, brute force is always the recommended way to find a solution.

Just try every single solution and see if any match.

(def matcher

 �(DescriptorMatcher/create DescriptorMatcher/BRUTEFORCE_

HAMMINGLUT))

(def matches (new-matofdmatch))

(.match matcher desc1 desc2 matches)

As was said in the solution summary, each match is rated on how good

it is through its distance value.

If printed, each match looks something like the following:

#object[org.opencv.core.DMatch 0x38dedaa8 "DMatch [queryIdx=0,

trainIdx=82, imgIdx=0, distance=136.0]"]

With the distance value, the score of the match itself usually shows up

as a value between 0 and 300.

So now, let’s create a quick Clojure function to sort and filter good

matches. This is simply done by filtering on their distance property. We

will filter on matches that are below 50. You may reduce or increase that

value as needed, depending on the quality of the recording.

Chapter 4 Real-Time Video

329

(defn best-n-dmatches2[dmatches]

 (new-matofdmatch

 (into-array org.opencv.core.DMatch

 (filter #(< (.-distance %) 50) (.toArray dmatches)))))

The draw-matches method is a coding nightmare, but it can be seen

as mostly a wrapper around the nightmarish drawMatches Java method

from the OpenCV.

We mostly pass the parameters the way they are expected using Java

interop and some cleanup on each parameter. We also create the output

mat bigger, so that we can fit in the background picture and the body soap

on the same mat.

(defn draw-matches [_mat1 _points1 _mat2 _points2 _matches]

 (let[output (new-mat

 (* 2 (.rows _mat1))

 (* 2 (.cols _mat1))

 (.type _mat1))

 _sorted-matches (best-n-dmatches2 _matches)]

 (Features2d/drawMatches

 _mat1

 _points1

 _mat2

 _points2

 _sorted-matches

 output

 (new-scalar 255 0 0)

 (new-scalar 0 0 255)

 (new-matofbyte)

 Features2d/NOT_DRAW_SINGLE_POINTS)

 output))

And now, with all this, we can draw the matches found by the matcher,

using the preceding function.

Chapter 4 Real-Time Video

330

We pass it the first and second mats, as well as their respective found

key points and the set of matches.

(u/mat-view

 (draw-matches mat1 points1 mat2 points2 matches))

This, surprisingly after all the obscure coding, works very well, as

shown in Figure 4-37.

Figure 4-37.  Drawing matches

�Video Stream

Compared to what you have just been through, the video stream version is

going to feel like a breath of fresh air.

We will create a where-is-my-body-soap! function that will reuse

the matcher defined in the preceding and run the detector, extractor, and

match within the stream callback on the buffer mat.

The previously defined draw-matches function is also reused to draw

the matches on the real-time stream.

Chapter 4 Real-Time Video

331

(defn where-is-my-body-soap! [buffer]

 (let[mat1 (clone buffer)

 points1 (new-matofkeypoint)

 desc1 (new-mat)

 matches (new-matofdmatch)]

 (.detect detector mat1 points1)

 (.compute extractor mat1 points1 desc1)

 (.match matcher desc1 desc2 matches)

 (draw-matches mat1 points1 mat2 points2 matches)))

And you can use that callback to simple-cam-window but … Ah!

It seems Mei has found the body soap just before this recipe feature

detection could be run!

Figure 4-38 shows both on the video stream.

Figure 4-38.  Thanks for finding the body soap, Mei!

Chapter 4 Real-Time Video

332

This brings this recipe, chapter, and book to a humble end. We do

hope this gave you plenty of ideas for things to try out by playing with the

Origami framework and bringing light to your creation.

For now, “Hello Goodnight”:

Searching the sky

I swear I see shadows falling

Could be an illusion

A sound of hidden warning

Fame will forever leave me wanting

Wanting

Well it’s alright

I’ve been alright

Hello Hello Goodnight

Mamas Gun
“Hello Goodnight”

Chapter 4 Real-Time Video

https://muzikum.eu/en/120-15939/mamas-gun/biography.html

333© Nicolas Modrzyk 2018
N. Modrzyk, Java Image Processing Recipes, https://doi.org/10.1007/978-1-4842-3465-5

Index

A
Atom editor

add plug-ins, 16
automatic updated image, 19–20
description, 16
IDE

autocompletion, 19
clean layout, 18
standard layout, 17–18

installing, 16
java language plug-in, 17
submat function, 20

B
Bilateral filter, 170–172
Blur detection, 269–272
Blurring images

bilateral filter, 170–172
gaussian blur, 169
main methods, 167
median blur, 168, 169, 172, 173
simple blur, 168–169

C, D, E
Canny

bitwise_not function, 42
black-and-white picture, 41

cvtColor function, 40–41
description, 40
drawContours, 47, 49–51
findContours, 47–48
function, 41
gradient value, 42
inverted tools, 43
kitten pictures, 43–44
mask, 44–46
parameters, 41
tools, 41, 42

Canvas effect
applying, 224–226
problem, 221
solution, 221

Cartoons
bilateral filter, 207–208
grayed with update

channel, 209–211
problem, 201
solution

bilateral filter
function, 205–206

canny function, 201–203
Gaussian blur, 204

Circles, highlighting
draw segment, 238–239
finding circles, 236–237

https://doi.org/10.1007/978-1-4842-3465-5

334

hough-lines-p, 230–232
pockets on pool table, 233–235

Colors, playing
applying threshold, 177–186
artful transformations, 198,

200, 201
channels by hand

artful cat, 192
blue-filtered cat, 191
cyan cat, 190
merge function, 187–188
opencv split function, 187
transformation, 189
update-channel!

function, 189
problem, 176
solution, 177
transform, 193–197

F
Face recognition

classifier, 293
cool face, 296
draw-rects!, 296
features, 293
find-faces!, 295
new-cascadeclassifier, 294
overview and close-up, 297
quiet impressive morning

coffee face, 295
rectangle objects, 294
xml file, 294

Filtering methods
bilateral, 170–172
filter-2-d, 154–157
highlight, 153
luminosity, 148, 150, 152
manual, 148–150
multiply, 148, 151
threshold, 158–161

G
Gaussian blur, 169
Gorilla

block of code, 103
in browser, 105
clojure code, 103–104
instant gratification, 105
key shorcuts, 104
notebook, 101–102
project.clj file, 101
REPL, 106
text mode, 102–103

Grabcut
description, 308
live stream solution, 308
still image

background mask, 313
cat picture, 309, 310
foreground mask, 311–312
foreground of feline kiss, 312
GC_INIT_WITH_MASK, 310
grabcut init param, 310
mask mat, 310
mat of background layer, 314

Circles, highlighting (cont.)

Index

335

opencv compare, 309
rectangle, 309
region of interest, 310
submat mask, 310

video stream
in-front function, 316
in-front-slow function, 314
lower-resolution mat, 315
simple-cam-window, 316
slow, slow, slow, 315
speed, 316, 317
u/simple-cam-window, 315

H
Hue-Saturation-Value (HSV),

133–136

I, J
Imaging techniques

blur detection
problem, 269
solution, 269
working, 270–272

canvas effect
applying, 224–226
problem, 221
solution, 221

cartoons
bilateral filter

function, 205–208
canny function, 201–203
gaussian blur, 204

grayed with update
channel, 209–211

problem, 201
solution, 201

colors, playing
applying threshold, 177–186
artful transformations, 198,

200, 201
channels by hand, 187–192
problem, 176
solution, 177
transform, 193–197

contours
approx-poly-dp function, 252
hand-drawn

shapes, 256–260
highlight, 252–256
problem, 252
solution, 252

contours and bounding boxes
hot-air balloons, 247–251
problem, 239
solution, 240
Sony headphones, 240–247

highlight lines and circles
draw segment, 238–239
finding circles, 236–238
hough-lines-p, 230–232
pockets on pool table,

233–235
problem, 226
solution, 226
tennis court with

hough-lines, 227–230

Index

336

pencil sketches
background, 213–215
foreground and

result, 216–218
problem, 211
solution, 211

photomosaics
problem, 272
solution, 272–273
working, 273–278

shapes
problem, 260
solution, 261
working, 262–265

trees
problem, 266
solution, 266
working, 266–269

K
Kitten image

cropping, submat
autocompletion, 31
blue cat, 34
blue color, 34
blur effect, 32–33
imread, 31
Mat object, 30–32
parameters, 31
println, 31
ranges, 33
Rect object, 34
sub-cat, 32

loading
black-and-white mode, 26
google search, 25
gray scale, 26
image reading options, 27
imread function, 24–25
Mat object, 26
reduced size, 27
running kitten, 25

saving
imwrite, 28
JPEG format, 28–29
parameters, 29
PNG format, 29

Kotlin
color mapping

applyColorMap
function, 68

bone cat, 70
hot cat, 70
original cat image, 69
winter cat, 70

command output, 68
First.kt file, 67
Mat object and dump, 67
project.clj file, 66
snippet, 67
UI (see User interface (UI))

L
Leiningen

auto plug-in, 13–14
compiled code, 2

Imaging techniques (cont.)

Index

337

description, 2
file changes, 14
installing

Java 8, 3
macOS and Unix, 3–4
Windows, 4

java program
HelloCv.java, 11–12
opencv and opencv-native

dependencies, 11
project template, 9–11

java project
directory

structure, 5–7
Hello2.java file, 8
metadata, 6
project.clj, 5

lein-auto plug-in, 14
Mat object, 15
template

file structure, 86
gorilla plug-in, 88
myfirstcljcv folder, 85
REPL, 93, 96

Lines and circles, highlighting
draw segment, 238–239
finding circles, 236–238
hough-lines-p, 230–232
pockets on pool

table, 233–235
problem, 226
solution, 226
tennis court with

hough-lines, 227–230

M, N
Mats

bright cat, 122
create, 107–108
create colored mat, 108–109
create random gray, 113–114
dark cat, 122
default keys, 121
filtering methods

filter-2-d, 154–157
highlight, 153
luminosity, 148, 150, 152
manual, 148–150
multiply, 148, 151
threshold, 158–161

flipping, 140–141
framed cat, 121
gray gradient, 116
grey-neko.png, 120
loading from URL, 123–124
not a cat, 118
not a gray cat, 119
piping process, 113–116
rotate function, 139
rotation

create matrix, 143–144
45-degrees-rotated, 144
parameter, 141–142
pipeline, 145
rotate-by! function, 145
using hconcat!, 142
using vconcat!, 143
zoom parameter, 146

Index

338

setting pixel color, 111–113
submat, 109–110
warp-affine function, 139,

143–147
Median blur, 172–173

O
Open Source Computer Vision

(OpenCV)
Canny (see Canny)
definition, 1
Github’s Atom editor (see Atom

editor)
Kotlin, 66
leiningen (see Leiningen)
Mat object, 1–2

channels per pixel, 22–23
colored submats, 35–37
float values, 24
picture submats, 38–40
setTo and copyTo, 35
static functions, 21–22

Scala, 57
threshold function, 179
video streaming, 51

Origami, 176
atom, REPL from, 96–100
auto plug-in, 91–93
clj-opencv template, 85
color maps

apply-color-map function, 128
sepia cat, 131–132

standard, 129
three-channel

mode, 129–130
color space

advantages, 134
HSV, 133, 135, 136
linear intensity, 134
mask mat, 138
natural red cat, 137
red in RGB, 133
switch, 132

DSL, 90
gorilla

block of code, 103
in browser, 105
clojure code, 103–104
instant gratification, 105
key shorcuts, 104
notebook, 101–102
project.clj file, 101
REPL, 106
text mode, 102–103

grey-neko.jpg file, 88–89
leiningen template

file structure, 86
gorilla plug-in, 88
myfirstcljcv folder, 85
REPL, 93, 96

library, 83
mats (see Mats)
opencv3.ok namespace, 89
REPL, 93–100
RGB colors, 126–127
webcam, 90–91

Mats (cont.)

Index

339

P, Q
Pencil sketches

background, 213–215
foreground and result, 216–218
problem, 211
solution, 211

Photomosaics
problem, 272
solution, 272–273
working, 273–278

Piping process, 113–116
Pixel color, 111–113
Portable Network Graphic (PNG)

format, 29

R
Read-Eval-Print-Loop (REPL)

from atom, 96–100
cute cat, 95
gray version, 95–96

Rose masking techniques
bitwise-and, 163–164
brightened version, 164–165
convert from RGB to HSV, 162
convert-to, 164
copy-to, 165
with imread, 161
saturation and luminosity, 163

S
Scala

blurring effect, 62–63
canny effect, 63–65

code compilation, 60
Leiningen plug-in, 58
loadLibrary, 60
project.clj, 58
project directory

structure, 59
setup, 61
SimpleOpenCV class, 60

Shapes, moving
problem, 260
solution, 261
working, 262–265

T
Threshold filtering, 158–161

U
User interface (UI)

blurring application,
76, 78, 80, 81

Kotlin setup, 71
reactive buttons

action handler, 74
counter application, 76
SimpleIntegerProperty, 74

tornadofx application
classes, 72
graph, 72
graphical frame, 73
javafx boilerplate, 73
javafx widgets, 72
library, 71

Index

340

V
Video streaming

background diffing
absdiff, 299
body soap, 299, 302
cam-window, 298
Clojure atom, 298
comp, 300
hearts and speaker, 299
highlight-new! function, 301
shape of body soap, 301

buffer, display loop, 283
camera_id, 52
camera.read()function, 52
colormap, 283
combining functions, 288–290
do_still_captures function, 52
face recognition (see Face

recognition)
finding movement

accumulate-weighted
function, 302

black and white, 303–306
contours, 306–308

finding orange
find-contours, 317, 322
hough-circles, 317–321

functions, 280
grabcut (see Grabcut)
image finding, body soap

background, 326
Carmen, 325

detector and extractor, 325
distance value, 328
draw-matches

method, 329–330
Eucalyptus scent, 324
feature extraction, 324
keypoints, 326–327
matching step, 328
OpenCV objects, 323
parameters, 329
Petit Marseillais, 324
picture, 331
where-is-my-body-soap!

function, 330
namespace, 281
Origami setup, 280
read function, 282
real time

BufferedImage, 54
canny picture, 57
do_still_captures

method, 55
Japanese room, 56
Mat objects, 55
MatPanel, 55
MatToBufferedImage, 54–55

release function, 282
release method, 52
soap, 282
Starbucks, 286
transformation function, 285–286
two/more frames,

same source, 287, 288

Index

341

u/imshow, 281
u/simple-cam-window, 280,

283, 284
VideoCapture object, 51, 52,

280–281
video folder, 53
warping, 290–293

webcams, 281
window, 281

W, X, Y, Z
Warping video, 290–293
Webcam, 90–91

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: OpenCV on the JavaVM
	1-1 Getting Started with Leiningen
	Problem
	Solution
	How it works
	Installing Leiningen
	Creating a New OpenCV-Ready Java Project with Leiningen

	1-2 Writing Your First OpenCV Java Program
	Problem
	Solution
	How it works

	1-3 Automatically Compiling and Running Code
	Problem
	Solution
	How it works

	1-4 Using a Better Text Editor
	Problem
	Solution
	How it works

	1-5 Learning the Basics of the OpenCV Mat Object
	Problem
	Solution
	How it works

	1-6 Loading Images from a File
	Problem
	Solution
	How it works

	1-7 Saving Images into a File
	Problem
	Solution
	How it works

	1-8 Cropping a Picture with Submat
	Problem
	Solution
	How it works

	1-9 Creating a Mat from Submats
	Problem
	Solution
	How it works
	Mat of Colored Submats
	Mat of Picture Submats

	1-10 Highlighting Objects in a Picture
	Problem
	Solution
	How it works

	1-11 Using a Canny Result as a Mask
	Problem
	Solutions
	How it works

	1-12 Detecting Edges with Contours
	Problem
	Solution
	How it works

	1-13 Working with Video Streams
	Problem
	Solution
	How it works
	Taking Still Pictures
	Working in Real Time

	1-14 Writing OpenCV Code in Scala
	Problem
	Solution
	How it works
	Basic Setup
	Blurred
	Canny Effect

	1-15 Writing OpenCV Code in Kotlin
	Problems
	Solutions
	How it works
	Basic Setup
	Color Mapping
	User Interface
	Kotlin Setup
	UI for Dummies
	UI with Reactive Buttons
	Blurring Application

	Chapter 2: OpenCV with Origami
	2-1 Starting to Code with Origami
	Problem
	Solution
	How it works
	Project Setup with a Leiningen Template
	Everything Is OK
	Webcam Check
	The Auto Plug-in Strikes Back
	At the REPL
	REPL from Atom
	Gorilla Notebook

	2-2 Working with Mats
	Problem
	Solution
	How it works
	Creating a Mat
	Creating a Colored Mat
	Using a Submat
	Setting One Pixel Color
	Piping Process and Some Generative Art

	2-3 Loading, Showing, Saving Mats
	Problem
	Solution
	How it works
	Loading
	Saving
	Showing
	Loading from URL

	2-4 Working with Colors, ColorMaps, and ColorSpaces
	Problem
	Solution
	How it works
	Simple Colors
	Color Maps
	Color Space

	2-5 Rotating and Transforming Mats
	Problem
	Solution
	How it works
	Flipping
	Rotation
	Warp

	2-6 Filtering Mats
	Problem
	Solution
	How it works
	Manual Filter
	Multiply
	Luminosity
	Highlight
	Filter 2d
	Threshold

	2-7 Applying Simple Masking Techniques
	Problem
	Solution
	How it works

	2-8 Blurring Images
	Problem
	Solution
	How it works
	Simple Blur and Median Blur
	Gaussian Blur
	Bilateral Filter
	Median Blur

	Chapter 3: Imaging Techniques
	3-1 Playing with Colors
	Problem
	Solution
	How it works
	Applying Threshold on a Colored Mat
	Channels by Hand
	Transform
	Artful Transformations

	3-2 Creating Cartoons
	Problem
	Solution
	How it works
	Bilateral Cartoon
	Grayed with Update Channel

	3-3 Creating Pencil Sketches
	Problem
	Solution
	How it works
	Background
	Foreground and Result
	Summary

	3-4 Creating a Canvas Effect
	Problem
	Solution
	How it works
	Apply the Canvas

	3-5 Highlighting Lines and Circles
	Problem
	Solution
	How it works
	Find Lines of a Tennis Court with Hough-Lines
	Hough-Lines-P
	Finding Pockets on a Pool Table
	Finding Circles
	Using Draw Segment

	3-6 Finding and Drawing Contours and Bounding Boxes
	Problem
	Solution
	How it works
	Sony Headphones
	Up in the Sky

	3-7 More on Contours: Playing with Shapes
	Problem
	Solution
	How it works
	Highlight Contours
	Hand-Drawn Shapes

	3-8 Moving Shapes
	Problem
	Solution
	How it works

	3-9 Looking at Trees
	Problem
	Solution
	How it works

	3-10 Detecting Blur
	Problem
	Solution
	How it works

	3-11 Making Photomosaics
	Problem
	Solution
	How it works

	Chapter 4: Real-Time Video
	4-1 Getting Started with Video Streaming
	Problem
	Solution
	How it works
	Do-It-Yourself Video Stream
	One-Function Webcam
	Transformation Function
	Two Frames, or More, from the Same Input Source

	4-2 Combining Multiple Video Streams
	Problem
	Solution
	How it works

	4-3 Warping Video
	Problem
	Solution
	How it works

	4-4 Using Face Recognition
	Problem
	Solution
	How it works

	4-5 Diffing with a Base Image
	Problem
	Solution
	How it works

	4-6 Finding Movement
	Problem
	Solution
	How it works
	Finding Movement in Black and White
	Find and Draw Contours

	4-7 Separating the Foreground from the Background Using Grabcut
	Problem
	Solution
	How it works
	On a Still Image
	On a Video Stream

	4-8 Finding an Orange in Real Time
	Problem
	Solution
	How it works
	Using Hough-Circles
	Using Find-Contours

	4-9 Finding an Image Within the Video Stream
	Problem
	Solution
	How it works
	Still Image
	Video Stream

	Index

